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“Whenever possible, experiments should be

comparative. For example, if you are testing

a modification, the modified and unmodified

procedures should be run side by side in the same

experiment.” Box, Hunter, and Hunter [1]

“It is possible, and indeed it is all too frequent,

for an experiment to be so conducted that no valid

estimate of error is available. In such a case the

experiment cannot be said, strictly, to be capable of

proving anything.” R. A. Fisher [2]

Abstract

Two methodological practices are well established in

other scientific disciplines yet remain rare in computer-

security research: comparative experiments and statisti-

cal inferences. Comparative experiments offer the only

way to control factors that might vary from one study

to the next. Statistical inferences enable a researcher to

draw general conclusions from empirical results.

Despite their widespread use in other sciences, these

practices are haphazardly used in security research.

Choosing keystroke dynamics as an example to study,

we survey the literature. Of 80 papers wherein these

practices would be appropriate, only 43 (53.75%) per-

formed comparative experiments, and only 6 (7.5%)

drew statistical inferences.

In disciplines such as medicine, comparative experi-

ments and statistical inferences save lives and cut costs.

Rigorous methodological standards are required. We

see no reason why security research, another discipline

where the stakes are critically high, cannot or should not

adopt these practices as well. Failure to take a more sci-

entific approach to security research stalls progress and

leaves us vulnerable.

1 Introduction

If a science of security were to emerge, we would ex-

pect it to resemble other sciences of complex systems:

medicine, biology, or even quality control [3, 4]. The

data collected and analyzed by security technologies are

records of people’s behavior, both legitimate and mali-

cious. Packets on a network are largely a manifestation

of people, for instance, checking their email, watching

movies, or engaging in industrial espionage. A security

technology such as a firewall or intrusion detection sys-

tem (IDS) which analyzes network packets can only be

effective if its capabilities allow it to recognize the be-

havior of users and attackers. It makes sense that a scien-

tific understanding of these security technologies might

share features with other sciences that seek to understand

complex systems such as people and other organisms.

The research methods for sciences of complex sys-

tems all share some similarities. First, they all rely on

well-designed comparative experiments. In medicine,

a new treatment is compared either to a baseline treat-

ment or to a placebo. Likewise, biology experiments

make use of control groups. Comparative experiments

allow researchers to control nuisance factors, and to es-

tablish causal connections between treatments and out-

comes. Second, they all use statistical methods for draw-

ing inferences from experimental results. For instance,

statistical hypothesis tests such as the t-test can ascertain

whether differences between a control group and a treat-

ment group are significant. Statistical inferences enable

a researcher to draw conclusions that hold more gener-

ally than a particular experiment. These conclusions, if

they withstand scrutiny, form the discipline’s body of

scientific knowledge.

If we expect that a science of security might be simi-

lar to fields such as medicine or biology, then we might

justifiably look to those disciplines for good method-

ological practices. Throughout this paper, we use exam-

ples from intrusion detection and keystroke dynamics to

demonstrate that nothing special about security research

exempts the field from standard scientific practices. In

Section 2, we explain the benefits of comparative exper-

iments over one-off evaluations typical of security re-

search. In Section 3, we explain why statistically-based
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Detector Data Set Error Rate

A 1 20%

B 2 15%

C 3 10%

D 4 5%

(a): Error rates from one-off evaluations

Data Set

Detector 1 2 3 4

A 20% 10% 0% 0%

B 25% 15% 5% 0%

C 30% 20% 10% 0%

D 35% 25% 15% 5%

(b): Error rates from comparative experiments

Table 1: Example demonstrating how results from one-off evaluations can be misleading. In Panel (a), where each

detector is evaluated on a private data set, Detector D appears best. In Panel (b), where every detector is evaluated on

every data set, it is revealed that Detector A is always one of the best and Detector D is never the best.

inferences keep researchers from misinterpreting their

own results and each others’. In Section 4, a survey

of the literature demonstrates that computer-security re-

search has not yet adopted these practices. In Sections

5–7, we discuss our concern with current practices, re-

view the similar concerns of others’, and argue for a

more scientific approach to security.

2 Why conduct comparative experiments?

Strictly speaking, what security researchers colloqui-

ally call an experiment rarely qualifies. Typically, re-

searchers use the term experiment to denote empirical

work in contrast to theoretical work. However, in other

sciences, not all empirical work qualifies as an experi-

ment:

experiment An investigation in which the in-

vestigators have sufficient control of the sys-

tem under study, in particular to be able to

determine the assignment of different units

of study to different treatments (conditions or

modes of intervention). [5, p.139]

Key to this definition of an experiment is the concept of

comparison. The purpose of assigning different treat-

ments to different units of study is to compare the effec-

tiveness of those treatments. To avoid confusionwith the

colloquial meaning of experiment, we use the term com-

parative experiment. For instance, in medicine, a com-

parative experiment might compare the effectiveness of

a new drug (first treatment) to that of the currently rec-

ommended drug (second treatment).

We contrast an experiment with what we call a one-

off evaluation. When proposing a new security technol-

ogy, researchers often collect a private data set specifi-

cally for the purpose of evaluating the technology. They

do the evaluation and report the results, thereby demon-

strating proof of concept (e.g., that an IDS can detect

attacks). Since the evaluation uses a new, never-to-be-

reused data set, we refer to it as a one-off evaluation.

2.1 Problem with one-off evaluations

By introducing both a new technology and a new data

set, a researcher makes it impossible to separate the ef-

fectiveness of the technology with the difficulty of the

evaluation. One data set may make an evaluation eas-

ier than another. In contrast to a one-off evaluation, one

could conduct an experiment by evaluating the new tech-

nology against a benchmark data set on which current

technologies have already been tested. Then, compar-

isons between the new and current technologies can be

made while keeping the evaluation data constant.

To illustrate the problem with one-off evaluations,

consider four researchers who have individually pro-

posed four intrusion detection systems: A, B, C, and

D. Table 1 presents the error rates of these four detec-

tors. For the sake of simplicity, assume that every re-

searcher uses the same performance metric (e.g., equal-

error rate). In practice, different researchers use different

metrics (e.g., misses and false alarms), but that would

needlessly complicate the example.

Panel (a) shows the results if all four researchers con-

duct one-off evaluations. Each researcher collects a pri-

vate data set and reports evaluation results using that

data set. According to these evaluations, Detector A has

the highest error, and D has the lowest error of the four.

A reader might believe that Detector D is the best detec-

tor. However, in the one-off evaluations, each detector

is evaluated using a different data set. When multiple

factors are allowed to vary in lockstep (e.g., the detec-

tor and the data set), statisticians say that they are con-

founded because it is impossible to separate the effects

of one from the effects of the other.

Panel (b) shows the results if all four researchers share

their detectors and their data, enabling comparative ex-

periments in which each detector is evaluated using each

data set. Here, we can see that error rates for all detectors

are high when using the first data set and low when us-

ing the last data set. In a sense, Data Set 1 is difficult for

the detectors while Data Set 4 is easy. The variation in

difficulty between data sets overwhelms the differences

in detector performance. However, for any given data

set (i.e., any column of the table), Detector A has one of

the lowest error rates while Detector D has the highest

error rate. DetectorA appears to be the best detector, not

Detector D as the one-off evaluations suggest.



The dangers of one-off evaluations are not confined to

contrived examples. For instance, in keystroke dynam-

ics, a detector’s accuracy depends substantially on the

data used in the evaluation. A neural network’s false-

alarm rate changed from 1.0% to 85.9% from one evalu-

ation data set to another. On the same two data sets, a k-

nearest-neighbor’s false-alarm rate changed from 19.5%

to 46.8% [6, 7]. The detector and data interaction is so

strong that the best-performing detector depends on the

data set. This important interaction, which will require

more research to understand, cannot be discovered with

one-off evaluations.

2.2 Case for comparative experiments

One-off evaluations should be abandoned in almost all

circumstances because they are dangerously misleading.

Obviously if a new technology purports to solve a to-

tally new problem (e.g., the first IDS ever), there may

be no basis for comparison. However, from that point

forward, we see no scientific reason not to conduct com-

parative experiments. Ideally, any new attempt to solve

a problem should be compared empirically against prior

attempts to solve the same problem.

In practice, comparative experiments of security tech-

nologies are hindered by confidential data sets that can-

not be shared. While we are sensitive to this issue, it

is not a valid excuse. Comparative experiments may be

inconvenient, but the dangers of one-off evaluations do

not go away simply because they are easier. Suppose, for

the sake of discussion, that conferences and journals re-

quired comparative experiments. We are confident that

many more researchers would find a way to overcome

the inconvenience and collect data that they can share.

In the meantime, we should acknowledge that some

researchers have recognized the importance of compara-

tive experiments by providing benchmark data sets. The

1998/1999 IDS evaluations constitute comparative ex-

periments [8, 9]. PREDICT and DETER offer data and

a testbed, respectively, with which to evaluate technolo-

gies under controlled conditions [10, 11]. More recently,

benchmarks of other technologies such as worm detec-

tion have also been performed [12]. While no bench-

mark is perfect, we think that research effort is better

spent addressing those flaws than continuing to report

results of one-off evaluations.

3 Why make statistical inferences?

Regardless of whether a researcher performs a compar-

ative experiment or a one-off evaluation, we believe that

he or she has a duty to explain the evaluation results,

not just to report them. Suppose a new technology has

a 0% error rate in an empirical evaluation. Should the

reader infer that the technology will always perform per-

fectly? A skeptical reader may doubt that any technol-

Detector Error Rate

A 20%

B 17%

C 15%

D 10%

E 8%

F 6%

Table 2: Error rates for six detectors on an evaluation.

Because the table includes no estimates of the uncer-

tainty of the results, they can be interpreted in a variety

of ways by different readers (as illustrated in Figure 1).

ogy works perfectly, but how high could the error rate

climb? Should a 1% or even a 10% error rate be an-

ticipated? Obviously, any inferences made from the re-

sults of an evaluation will be limited by factors such as

the representativeness of the data, but a researcher ought

to be able to offer some conclusions within those lim-

itations. If the researcher cannot tell a reader what an

evaluation means, why expend the time and cost of con-

ducting what is, in effect, a meaningless exercise?

In other sciences, the process of analyzing empirical

results and drawing more general conclusions is known

as statistical inference.

inferential statistics The process of making

inferences about a population from findings

based on sampled observations. Inferential

statistics are used to go beyond the description

of the data and to examine hypotheses about

underlying research questions. [5, p.199]

For instance, in medicine, a researcher might ask

whether a new drug increases the chance of a positive

outcome. A drug trial will reveal the percentage of posi-

tive outcomes from a sample of patients, but the research

question concerns everyone with the disease, not just the

sample patients. Inferential statistics offer a means to

generalize to the population from the sample.

Computer security has its own pressing research ques-

tions. For example, how well will a new intrusion-

detection system perform, and is its error rate lower than

those of existing IDSes? To answer these questions, a

researcher can collect data and conduct an experiment,

at which point he knows the error rates of the IDSes on

that set of evaluation data. In medicine, inferential statis-

tics would then be used to generalize from the empirical

results and answer the research question. However, the

security researcher typically reports the empirical results

and leaves the research question unanswered.

3.1 Problem with no statistical inference

For the sake of illustration, consider a security re-

searcher who is interested in knowing the relative per-

formance of six detectors. The researcher sets out to
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(a) Interpretation 1: Each detector

has a different true error rate.

(b) Interpretation 2: All detectors

could have the same true error rate.

(c) Interpretation 3: Error rates fall

into one of two groups, low or high.

Figure 1: Three different interpretations of the results shown in Table 2. Panel (a) shows one interpretation, where the

estimates are all very accurate and so detector F is the best. Panel (b) shows another interpretation, where none of

the estimates are very accurate, so no detector is clearly better than the others. Panel (c) shows a third interpretation

where A–C are roughly equivalent, D–F are roughly equivalent, but the latter three detectors definitely have lower

error than the former. The different interpretations would lead future research in very different directions.

answer the question by conducting an experiment, eval-

uating each detector using the same data set. Table 2

provides results for this example experiment. The error

rates for each of the six detectors are labeled A through

F . According to the table, the empirical error rate for

detectorA was highest, and the error rate for F was low-

est. However, there are many different ways to interpret

these results.

Figure 1 illustrates three different ways that a reader

might interpret the results of the evaluation. One set

of readers will see any difference in the empirical error

rates as significant. They see the empirical error rates as

very accurate estimates of the true error rates. In other

words, if more data were collected, the evaluation results

for each detector would eventually converge to an error

rate very close to the empirical one. Panel (a) illustrates

the view of readers who believe the estimates are very

accurate. The points indicate the empirically calculated

error for the six methods, and the small intervals around

each point represent where these readers believe the true

error rates lie. Since the intervals do not overlap, these

people believe all six detectors have significantly differ-

ent error rates.

Another set of readers looking at the table will think

that none of the six error rates are really that different

from the rest. Panel (b) illustrates the view of such read-

ers. They see the empirical error rates as very imprecise

estimates of the underlying true error. If more data were

collected, these people believe that the error rates could

change quite a lot. Since these readers believe the inter-

vals are wide and overlap one another, they are uncon-

vinced that the experiment shows any significant differ-

ence in the true error rates of the six detectors.

Yet another set of readers might perceive a split be-

tween the error rates for the first three detectors and the

last three. Based on this perception, they might not see

any difference in the true errors for A–C, or for D–F ,

but they believe there is a significant difference between

the A–C group and the D–F group. Panel (c) depicts

this interpretation with intervals that overlap within each

of the two groups but do not overlap between the groups.

These different interpretations of the results would

drive future research in very different directions. If there

are significant differences among all six detectors, re-

searchers might focus future attention on further im-

provements to Detector F , the best detector available.

If there are significant differences between groups A–C

and D–F , those same researchers should seek to under-

stand whether secondary measures of performance (e.g.,

speed or resource usage) distinguish detectorsD, E, and

F . If there are no differences among the detectors, re-

searchers might need to collect more data or ask different

research questions.

The danger of a researcher reporting empirical results

without drawing statistical inferences is not simply that

different readers will have different interpretations of the

results. Even if the researcher makes his or her own in-

terpretation clear, some readers will likely disagree. The

danger is that the researcher and the readers will not

know they disagree. With a clear idea of the researcher’s

conclusions, future research can undertake to support or

disprove those conclusions. When no conclusions are

drawn, there is no foundation on which to build future

work or to add new knowledge.



3.2 Case for statistical inferences

In our experience, most security researchers are famil-

iar with statistical inference insofar as they know that

other sciences use it to distinguish a significant result

from one that can be explained by chance. However,

it can be challenging to translate hypothesis testing or

confidence-interval estimation to security research. The

problem arises because security data violate the assump-

tions behind many statistical inference procedures. Tra-

ditionally, the noise is assumed to be Normally dis-

tributed and stationary (i.e., not changing over time). In

many security domains, these assumptions are probably

violated. Security data such as the number of attacks and

the frequency of detection are not Normally distributed,

and they change over time. To avoid making incorrect

conclusions, researchers simply ignore the issue by not

making any conclusions at all.

However, computer security is not the first domain to

struggle with ill-behaved data. Non-Normal and non-

stationary data do exist outside of security data sets, and

statisticians have developed statistically sound ways to

draw inferences regardless [13]. In many cases, tradi-

tional statistical methods have been shown to be sur-

prisingly robust to assumption violations. When neces-

sary, more modern statistical methods like bootstrapping

trade computing power for fewer assumptions.

Whatever the difficulty, researchers have a duty to

draw inferences and offer their own explanation of their

findings, going beyond the mere reporting of empiri-

cal results. By not making any inferences or offering

any explanations, a researcher has effectively abrogated

that duty. An experiment that has not been explained

is effectively meaningless, and arguably a waste of time

and resources. A preferable alternative would be for re-

searchers to analyze the data and draw conclusions while

acknowledging any limitations. Even flawed or limited

conclusions provide fodder for future research.

4 Keystroke-dynamics literature review

In the previous sections, we offered arguments in favor

of comparative experiments and statistical inferences,

and we warned of the dangers of not using them. These

arguments will not surprise readers with a statistical

background, but our perception is that the security com-

munity has either not heard or not heeded these argu-

ments.

Perhaps these practices are not used because security

researchers arrive in the field via different paths, includ-

ing mathematics, formal methods, computer systems,

and networks. The diversity of backgrounds has un-

doubtedly helped the field make advances in many dif-

ferent directions, but it may also have resulted in inad-

equate exposure to proper experimental research meth-

ods.

Whatever the reason, comparative experiments and

statistical inferences seem to be the exception rather than

the rule in computer security. To establish whether this

perception is true, we conducted a survey of a segment

of the literature to confirm how often researchers really

do conduct comparative experiments and draw statistical

inferences.

4.1 Method

We chose to survey papers on keystroke dynamics—the

study of whether genuine users and impostors can be dis-

tinguished by their typing rhythms—in part because of

our familiarity with the topic, but in larger part because

some aspects of the topic make it particularly well suited

to comparative experiments and statistically based infer-

ences. Keystroke dynamics has been studied for over 30

years [14, 15], and by now there are dozens of existing

classifiers against which to compare new proposals. Any

reluctance to conduct comparative experiments is diffi-

cult to justify. Likewise, standard methods of statistical

hypothesis testing (e.g., t-tests orWilcoxon tests) should

be suitable for analyzing evaluation data without much

worry about assumption violations. In short, researchers

could conduct comparative experiments and make statis-

tical inferences without too much additional investment,

and the relative gains to scientific knowledge would be

enormous.

To obtain a large and representative sample of

keystroke-dynamics research papers, we consulted the

IEEE Xplore database of articles and conference pro-

ceedings published by the IEEE, to which our university

maintains a subscription. We conducted two keyword

searches for keystroke dynamics and keystroke biomet-

rics. In total, these two searches returned 101 unique

papers: 13 journal articles and 88 conference or work-

shop papers.

We screened these papers to identify those which de-

scribed the evaluation of a keystroke-dynamics classifier

and reported the evaluation results. This screening ex-

cluded 21 papers after which 80 papers remained. The

majority of excluded papers were surveys which men-

tioned keystroke dynamics but did not conduct a tech-

nology evaluation. A few of the papers described a new

keystroke-dynamics technology but did not evaluate it

empirically; consequently, we considered them outside

the scope of a review of papers containing empirical

evaluations.

We read each of the remaining 80 papers to as-

sess whether a comparative experiment was performed.

Specifically, we recognized a paper as having performed

a comparative experiment if, in the section describing

the evaluation and its results (including tables and fig-

ures), the researchers compared the performance of mul-

tiple classifiers on the same keystroke-dynamics data set.



95% CI

Proportion lower upper

Comparative experiments: 43 out of 80 = 53.75% 42.2% 65.0%

Statistical inferences: 6 out of 80 = 7.5% 2.8% 15.6%

Table 3: Counts of how many papers perform comparative experiments and draw statistical inferences. In addition to

the raw count and the percentage, we include the lower and upper bounds of a 95% confidence interval (assuming a

Binomial distribution). The results show that many papers do not perform comparative experiments, and most do not

draw statistical inferences.

We consider this definition to be lenient. In fields

such as medicine, a new treatment would be compared

to an established baseline treatment, not another new

treatment. However, we recognized a paper as having a

comparative experiment even if two new classifiers were

compared. We considered using stricter criteria, but it

can be surprisingly tricky to determine whether a classi-

fier is intended to be new (e.g., support vector machines

have been independently proposed for keystroke dynam-

ics by several researchers).

While we recognized papers that evaluated multiple

classifiers as comparative, we did not recognize papers

that evaluated multiple tunings of a single classifier.

An exploration of how error rates change with differ-

ent amounts of training or with different anomaly-score

thresholds would not be recognized as a comparative

experiment. Otherwise, any paper with an ROC curve

would need to be recognized as performing a compari-

son across different tunings. We felt that including such

papers would grossly distort the value of what we aimed

to measure.

For the same 80 papers, we also assessed whether a

statistical inference was made. Specifically, we recog-

nized a paper as having performed a statistical inference

if, in the section describing the evaluation results and

analysis (including tables and figures), the researchers

reported the results of a hypothesis test (e.g., a p-value)

or included confidence intervals. A few authors used

the word “significant” without, to the best of our knowl-

edge, meaning it in a statistically precise way. We would

not count a statement that a “new classifier was signif-

icantly better” as evidence of a statistical inference un-

less the test procedure was named or a p-value provided.

Note that we recognized all statistical inferences, not

just those concerning the relative performance of mul-

tiple classifiers. For instance, if a researcher performed

a hypothesis test to establish that error rates were lower

on long passwords than short passwords, we counted it

as a statistical inference.

4.2 Findings

A listing of all 101 papers included in our survey is avail-

able as an online supplement:

http://www.cs.cmu.edu/˜keystroke/cset-2011.

Table 3 summarizes the overall results. Of the 80 pa-

pers that evaluated keystroke-dynamics classifiers, 43

(53.75%) conducted comparative experiments, and only

6 (7.5%) drew statistical inferences.

The final two columns of the table give 95% confi-

dence intervals. To interpret the confidence intervals,

imagine that every paper reporting evaluation results for

keystroke-dynamics classifiers were collected and as-

sessed. Based on the whole population, one could calcu-

late the true percentage of papers that include compar-

ative experiments and inferential statistics. Assuming

that the 80 papers in our sample are representative (i.e.,

that papers in IEEE Xplore are similar to those published

elsewhere), these confidence intervals estimate the re-

gions where those true percentages would lie with 95%

probability. The intervals were calculated assuming the

counts come from a Binomial distribution with a sample

size of 80.

As noted, we believe that our criteria for recogniz-

ing a comparative experiment were lenient. Even with

that leniency, only a slim majority of papers qualified

(53.75%). Many papers simply reported the results of

one-off evaluations which are misleading when com-

pared to other results. We are concernedwith the state of

the field that approximately half of the published results

are impossible to compare soundly with other results.

Even more alarming is that only 6 papers (7.5%) draw

statistical inferences from their evaluation results. Re-

search that does not draw inferences is difficult to justify

in terms of the time and resources expended. Effectively,

such research offers results without really explaining

what those results mean. That so few papers contribute

statistically rigorous conclusions about keystroke dy-

namics is cause for concern.

5 Discussion

Our intent in surveying the keystroke-dynamics litera-

ture is not to criticize individual papers (including some

of our own), but to demonstrate the lack of standard sci-

entific practices across the field. The haphazard usage

of comparative experiments and the rarity of inferential

statistics is alarming and must improve. Our survey was

limited to keystroke dynamics, but our experience sug-

gests that one-off evaluations are common and statistical

http://www.cs.cmu.edu/~keystroke/cset-2011


inferences are rare throughout security research. A fail-

ure to adopt these practices wastes resources and stalls

progress. In the security arms race, lack of progress de-

creases security.

In other scientific disciplines, a significant portion of

the overall research effort is aimed at improving and re-

fining the scientific methodology used in the field. One

famous example is the Hawthorne effect, named after a

study of worker productivity at Western Electric Com-

pany’s Hawthorne site. An increase in worker produc-

tivity was eventually traced not to the conditions under

study but to workers’ excitement and enthusiasm over

being studied. The discovery spurred changes in the re-

search methods of behavioral science [16]. Some previ-

ous studies, which did not account for the Hawthorne ef-

fect, were recognized as flawed. Future studies adjusted

their methodologies to accommodate the effect.

Computer security should devote a larger portion of

its research effort to improving and refining method-

ology. One-off evaluations without statistical in-

ferences threaten computer-security research just as

the Hawthorne effect threatened behavioral-science re-

search. Security results based on one-off evaluations and

without proper statistical analysis are dangerously mis-

leading. Just as behavioral research methods changed

with the discovery of the Hawthorne effect, we hope

that security research methods adopt comparative exper-

iments and inferential statistics going forward.

Of course, even if security researchers begin conduct-

ing comparative experiments and drawing statistical in-

ferences, research methods may not be perfect. In this

respect, comparative experiments and inferential statis-

tics are necessary but not sufficient. A researcher might

conduct a comparative experiment, draw statistical in-

ferences, and still arrive at a fundamentally flawed con-

clusion. The comparison could be invalid (e.g., due to

artifacts in the evaluation data), or the analysis could be

wrong. It is easy to see how poor science might happen

even with comparative experiments and statistical infer-

ences; it is hard to see how good science will happen

with one-off evaluations and no inferential statistics.

A discipline’s scientific method arises out of a con-

sensus among researchers. Our hope with this paper is to

start a discussion about when comparative experiments

and statistical analysis should be used. When is a one-off

evaluation okay, and when should a comparative experi-

ment be required? At what point does exploratory work

need to become statistically rigorous? We welcome the

discussion because, given the current state of security

research methods, any discussion is progress.

6 Related work

We are not the first to question the role of experimenta-

tion in computer science. Walter Tichy’s “Should Com-

puter Scientists Experiment More?” [17] inspired the ti-

tle of our work. He observed that proper experimen-

tation is lacking throughout computer science research.

He identified eight arguments that researchers use to ar-

gue against experimentation in computer science. These

included the high cost of doing experiments and the suf-

ficiency of mere demonstrations. He also recognized a

tendency among computer scientists to award the sub-

ject with an ascended status among sciences, effectively

rendering the “traditional scientific method” inapplica-

ble. A decade has passed since his paper was written,

but we still encounter these sentiments today.

More directly, Peisert and Bishop offered an exem-

plary scientific method for a science of security [18].

Based on the philosophy of science, they identified three

characteristics of a scientific experiment. An experiment

must be falsifiable, controlled, and reproducible. These

hallmarks of science should certainly be recognizable in

any emerging science of security. While we took inspi-

ration from the shared practices of various life sciences

rather than philosophy, one could argue that our work

and that of Peisert and Bishop are approaching similar

positions from different directions. Control and repro-

ducibility are necessary components of a well-designed

comparative experiment, and falsifiability is integral to

statistical inferences made via hypothesis testing (e.g.,

establishing criteria by which the null hypothesis is re-

jected).

A small portion of computer-security research has

already taken aim at improving methodology. For

instance, in computer security, Sommer and Paxson

have offered guidance on evaluation methodology when

machine-learning algorithms are involved [19]. More

generally, Kurkowski et al. established best practices

in the evaluation of mobile ad-hoc network protocols

[20]. Their methodological recommendations include

establishing standard simulation environments for ease

of comparison and the estimation of confidence inter-

vals. They conducted a survey of papers similar to

ours and identified many shortcomings, establishing that

computer science, not just computer security, faces a

methodological challenge.

7 Summary

Comparative experiments are necessary to control lurk-

ing variables and rule out alternative explanations, yet in

a survey of 80 security papers only 43 (53.75%) actually

used a comparative experiment. The rest performed one-

off evaluations that have been shown to produce incom-

parable and misleading results. Admittedly, comparative

experiments in computer security are made difficult by

a lack of shared data, but that inconvenience does not

make the alternative (one-off experiments) a better op-

tion.



Inferential statistics are widely used in other sciences

for drawing conclusions and explaining the results of an

experiment, but in computer security, they are almost

never used. In the survey of 80 security papers, only

6 (7.5%) drew statistical inferences. Researchers have

a duty to explain what their experimental results mean,

otherwise, the experiment had no point. Assumption vi-

olations and other complexities can make statistical in-

ference a challenge but not an insurmountable one.

Sciences such as medicine demand comparative ex-

periments and statistical inferences. The stakes in com-

puter security are just as high, but scientific methods are

seen as a bonus rather than a requirement. With this pa-

per, we hope to promote discussion of these practices,

what problems arise when they are not used, and when

they should be required. Our opinion is that comparative

experiments and statistical inferences are necessary for

a science of security.
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