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• Positrons introduction
• Reality check:  near- vs. far-term applications
• Positron production, moderation, and trapping
• Solid parahydrogen (pH2) as a positron moderator
• Slow electron transport experiments & simulations
• Positron moderation experiments

• solid Ne moderator
• solid pH2 “moderator”
• H2O-doped solid Kr moderator
• H2O-ice coated Kr moderator

• Summary & Future Directions

Outline
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• The positron (e+) is the antiparticle to the electron (e-).

• Positrons are stable, but annihilate 
with electrons to produce γ-rays.

• “Positronium” (Ps) is a bound e+/e- pair; 
analogous to the H-atom (p+/e-).

• Sum of γ-ray energies: E ≈ 2 me c2 ≈ 1.02 MeV; 
⇒ no photonuclear reactions or secondary radioactivity,
but lots of energy/mass (>1010 x chemical energies).

• However, bulk positron or positronium production and 
storage are problematic (understatement!).

Introduction - Positrons
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Current Positron Applications

• 2-γ decay exploited in Positron Emission Tomography 
(PET) scanners.

• Positrons localize & annihilate preferentially at defects in 
materials.  Basis for materials diagnostics:  

Doppler Broadening of Annihilation Radiation (DBAR)
& Positron Annihilation Lifetime Spectroscopy (PALS).

Antimatter is real, and is utilized in hundreds of labs worldwide.
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Energetic Materials Characterization

 Voids and defects play critical roles in 
energetic materials (EM).

 Few data available on nanoscale (sub-
micron) defects.  

 In-house NanoEnergetics effort 
underway to develop characterization 
tools to probe nanoscale defects in EM. 

 Objective:  measure defect size and 
concentration in EM and their 
relationship to processing and 
mechanical insults, and EM sensitivity.

 Accomplishments:  PALS  and 2D-
DBAR instrumentation in use (home-
built, pushing state-of-the-art).  

 POC:  Dr. C.M. Lindsay (ARFL/RWME).

Near-term payoffs from in-house positron investments.  
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Generic Positron Trapping Scheme

Moderation efficiency improvements are cumulative for slow e+ applications.  

↑
focus of in-house
research effort
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Moderation vs. Velocity Selection

P.J. Schultz and K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988).

Moderation converts fast positrons into slow positrons.
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Positron Moderation Physics

fast e+
slow e+

l ~ 100 µm
t ~ 10-12 s

L~1µm
t ~10-9 s

energy lost to:  |-----electronic excitations-----|-phonons-|

solid Ne                          solid pH2
rxtal ~ 100 nm                   rxtal ~ 100 µm

E.M. Gullikson and A.P. Mills, Jr., 
Phys. Rev. Lett. 57, 376 (1986).

• Fast positrons decelerate rapidly in 
the first ~ picosecond by creation of 
electronic excitations. 

• Slow positrons (below bandgap 
energy) can only create phonons and 
diffuse randomly for nanoseconds.

• Positrons which reach a moderator 
surface can be extracted & 
recovered.

• Slow positrons scatter, trap and 
annihilate at defects, becoming lost 
to the moderation process.

• Conjecture:  higher quality RVD 
pH2 solids should permit more slow 
positrons to emerge from deeper 
within the moderator.  

Moderation efficiency increases as ~ L / l.
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Moderation Objectives & Approach

• Develop improved efficiency (ε) 
positron moderators based on cryogenic 
(T ≈ 2 K) RVD pH2 solids

goal: 10x improvement over the 
state of the art (Ne), yielding ε ≈ 5 %. 

• Determine preferred pH2 moderator 
structures and moderator failure modes 
by in-situ spectroscopic characterization.

• Moderate fast positrons from ~ 1 mCi 
22Na source in reflection geometry.  

• Separate slow from fast positrons using 
electrostatic and magnetic guiding fields 
around bend into annihilation chamber.  

• Slow positron detection:  charged 
particle and annihilation γ-radiation.  

 

Solid pH2 
Moderator  

Fast Positron 
Source 

Electrostatic 
System 

Guiding 
Magnetic 

Field 
Positron 
Detection 
Chamber 

Moderated 
Positrons 

Notional Experimental Diagram 

C.D. Molek, “Moderation of Fast Positrons 
Using Solid Parahydrogen,” 

NRC Research Proposal (2007).
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Rapid Vapor Deposition of Solid pH2

M.E. Fajardo and S. Tam, J. Chem. Phys. 108, 4237 (1998).
S. Tam and M.E. Fajardo, Rev. Sci. Instrum. 70, 1926 (1999).
M.E. Fajardo and C.M. Lindsay, J. Chem. Phys. 128, 014505 (2008).
M.E. Fajardo, C.M. Lindsay, and T. Momose, J. Chem. Phys. 130, 244508 (2009).

Edwards AFB
c1996

Eglin AFB
c2005

(C.M. Lindsay)

Building upon solid pH2 expertise developed during 1990’s “HEDM” program.
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Polarized IR Absorption Spectra
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Polarization dependence 
as predicted by Crystal 
Field Theory modeling.

M.E. Fajardo and C.M. Lindsay, 
J. Chem. Phys. 128, 014505 (2008).
M.E. Fajardo, C.M. Lindsay, and 
T. Momose, J. Chem. Phys. 130, 
244508 (2009).

Annealed hcp c-axes all parallel to substrate surface normal!  Single crystal?
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Preliminary Electron Transport Expt.

Shown configured for 
initial slow electron 
transport experiments 
through bent solenoid 
using hot-filament 
electron source and 
Faraday cup detector.
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Ion Optics & Deposition Substrate

lHe Cold tip

Single Crystal Sapphire

Insulating washers Deposition
Substrate

Electrical bias connection

Indium gaskets

SIMION
calculations

Vgate
Vsubstrate
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Isolated Deposition Substrate
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Only minor changes to spectra from ≈ 0.5 K higher substrate base temperature. 
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Photoelectron Transport Expts.

Electron throughput and energy resolution acceptable for e+ moderation expts. 

λvac = 184.95 nm 
(hν = 6.70 eV)

λvac = 253.73 nm 
(hν = 4.89 eV)
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22Na Positron Source – 1 mCi
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Ne Moderator Deposition

← deposit 1.4 mmol Ne in ≈ 200 s ⇒ d = 8 µm
Pcryo(300 K) = 3x10-9 torr, To/p = 27 K → 7 K
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Ne Moderator Thickness

ν1
ν2

d(µm) = 10000(µm/cm)  mfringes / [2 nRg cos{Θt}(ν2 - ν1)]
dNe(µm) = 4968  mfringes / (ν2 - ν1)

= (4968) 3 / (3884 - 2092)
= 8.3 µm
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Ne Moderator Performance

∆KE⊥ ≈ 2 eV
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500 ppm oH2/pH2 Overcoat

pH2 dep. dH2 ≈ 1 µm
To/p → 11K→12K

350     +      350 µmol Ne
dNe ≈ 2 µm

dNe ≈ 14 µm

Solid pH2 appears to be a very poor positron moderator!
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Dirty Ne Moderator + pH2 Overcoat

Ne deposited from dopant manifold.  Pcryo(300K) = 1.1x10-8 torr.

dNe(µm) = 4968  mfringes / (ν2 - ν1)
= (4968) 13 / (6786 - 1985)
= 13.5 µm
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lopt = 3.3 µm
dpH2 = 1.3 µm
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Effects of H2O Impurities

M.P. Petkov, K.G. Lynn, and L.O. Roellig, J. Phys. Cond. Mat. 8, L611 (1996).

H2O concentrations estimated 
from H2O partial pressures in 

deposition chamber.  
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H2O/Kr Moderators
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H2O/Kr Moderators
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H2O/Kr Moderators

nominal H2O concentration (ppm)
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H2O concentration estimates  differ by two orders of magnitude.
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H2O Ice Overcoat on Kr Moderator
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FTIR spectrum consistent with amorphous ice, as
expected for vapor deposition with Tsub = 30 K. 
[W. Hagen, A.G.G.M. Tielens, and J.M. Greenberg, CP 56, 367 (1981).]

See initial rapid drop in slow e+ yield, as expected.

Plateau in slow e+ signal for thick ice not expected;
⇒ porous ice, possible experimental artifact (?!).

lopt = 230 nm
dH2O = 100 nm
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Summary & Future Directions

• Demonstrated an apparatus for combined positron moderation + matrix 
isolation spectroscopy; permits testing of theories proposed to explain 
observed moderator efficiency reductions upon extended operation.

• Unfortunately, ~ 500 ppm oH2/pH2 cryogenic solids are poor e+

moderators; εpH2 < 0.01 εNe.

• Previous studies of the role of water impurities in Rg moderators may 
have seriously underestimated trapped H2O concentrations.  

• Slow positrons can emerge from Kr moderator coated with ≈ 100 nm 
amorphous water ice.  

• One last set of experiments planned for the end of FY11.  Will repair 
ortho/para hydrogen converter to bring residual oH2 concentrations below 
100 ppm.  
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Backup Slides
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Solid Ne vs. Solid pH2

Electron micrograph and diffraction 
pattern of vapor deposited solid Ne 
showing sub-micron scale defects.

J.A. Venables and B.L. Smith, “Crystal Growth 
and Crystal Defects,” in Rare Gas Solids Vol. II, 
edited by M.L. Klein and J.A. Venables 
(Academic Press, London, 1977).  

Typical crystallite size in vapor 
deposited pH2 is ~ 100 µm, or 
~1000x larger than for vapor 
deposited Ne.

G.W. Collins, W.G. Unites, E.R. Mapoles, 
and T.P. Bernat, Phys. Rev. B 53, 102 (1996). 

Also: solid pH2 is a special material – a “quantum solid.”

|------------ 1.7 mm ------------|
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fcc & hcp Structures

“face-centered cubic”
fcc ⇒ Oh site symmetry, 

nearly isotropic 

“hexagonal close-packed”
hcp ⇒ D3h site symmetry, 

unique c-axis 

Use dopant molecules in solid pH2 as probes to determine crystal structure. 
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fcc/hcp Regions in RVD Solid pH2
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Mixed fcc/hcp microstructure in as-deposited samples; anneals to hcp.
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Radiation-Induced Features

Monitor buildup of radiation damage in-situ during moderator operation. 
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Modify Solenoid “Magnetic Funnel”

magnetic 
field

magnetic 
field

electron
trajectories

electron
trajectories

More electrons collected, but some trajectories evade energy selection gate!
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