
CrossTalk—July/August 2011 25

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

Introduction
The AV-8B Software Development Task Team has success-

fully maintained and enhanced avionics and support products
for the Harrier II aircraft for the better part of a decade. While
there are several factors that contribute to its success, a key
element is the team’s ability to provide timely and accurate cost
and schedule estimates to its management and customer. This
was not always the case. When the team first began prepar-
ing software estimates, it was ad-hoc. At that point, neither the
Software Development Task Team nor its management had faith
in the estimates. When the team adopted the Team Software
ProcessSM (TSP)/Personal Software ProcessSM (PSP), it became
a priority to define and document accurate estimates. In order
for a team to execute a successful TSP/PSP project, the task-
ing estimates need to be well defined and communicated. If not
done, the team will not buy into the resulting schedule and plan
which could put the project in jeopardy of failure.

Background
The Naval Air Warfare Center Weapons Division (NAWCWD)

AV-8B Joint System Support Activity has successfully applied
TSP/PSP for software development and maintenance projects
for nine years.

This began in the spring of 2002 when the software develop-
ment task team began the H2.0 block upgrade maintenance
software effort [1]. Since then the software team has completed
an additional four block development efforts (H4.0, H5.0, H5.1,
and H6.0) and is currently working the H6.1 block development
effort. The block efforts typically last approximately two years
and incorporate the TSP/PSP framework.

Up until 2002, all estimates were performed by a single
individual, the lead software engineer. These estimates did not
follow a documented process, much less a proven method.
The estimates were rough and relied on engineering judgment
(i.e., the estimates were prepared using the old “thumb to the
wind” method). It was up to the team to develop a consistent
estimation process. However, several questions needed to be
addressed as part of this effort: How would the team determine
the accuracy of its estimation approach? How would they know
if the estimate was complete? Would something be missed?
Could a reliable schedule that the team could execute against
be produced from a set of detailed estimates? To compound
matters, the team found out that the program office required
multiple types of estimates. These estimates were needed to
support the team’s management in making budgeting, planning,
and build decisions.

Types of Estimates
TSP projects are initiated by a project launch. This is a four-

or five-day workshop where the TSP project team develops the
project plan. Key roles, goals, objectives, requirements, and con-
straints are established during this workshop. Most importantly,
for this discussion, the team establishes a detailed estimate and
an overall project schedule [2]. Therefore, the software team’s
launch success was predicated on the team’s ability to have an
accurate reliable method of performing estimations for which to
generate a realistic schedule. In order to be successful, the team
needed to provide as accurate of an estimate as possible, but
estimates were being provided by the team having had no prior
experience in software estimation and with limited resources. In
order to accommodate the types of estimates needed by both
management and the software team launch, the team estab-
lished the following: High Level (30,000-foot) Estimate, Low
Level (10,000-foot) Estimate, and Detailed Estimate.

High Level Estimate: This estimate is also referred to as the
30,000-foot estimate or a rough order of magnitude and does not
contain details since, at that height, you would not see any details.
From a conceptual point of view, management may want to
integrate some new capability into the software and needs a not-
to-exceed cost estimate. Typically, Technical Interchange Meetings
(TIM) are held for the purpose of discussing both a proposed
capability (including modification to an existing one) and the
general idea of how the new software would function. However,

Developing an
Accurate,
Reliable Method

Abstract: From a management perspective, it is essential that software esti-
mates used in a TSP launch are as accurate as possible. Significant growth due
to estimation inaccuracy can wreak havoc on a team attempting to stay within
cost and schedule while executing its established plan. This article discusses how
a software team that uses both proxy-based and size-based estimates is able to
accurately plan, launch, and execute on schedule.

Bob Sinclair, NAWCWD

Chris Rickets, NAWCWD

Brad Hodgins, NAWCWD

Software
Estimation

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Software Estimation: Developing an Accurate, Reliable Method

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Air Warfare Center (NAWCWD),414600D MS 2016,507 E. Corsair
Street,China Lake,CA,93555-6110

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
From a management perspective, it is essential that software estimates used in a TSP launch are as
accurate as possible. Significant growth due to estimation inaccuracy can wreak havoc on a team
attempting to stay within cost and schedule while executing its established plan. This article discusses how
a software team that uses both proxy-based and size-based estimates is able to accurately plan, launch, and
execute on schedule.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

26 CrossTalk—July/August 2011

Management Practices for Quality Products

at this level there are no formal requirements; hence, the concept
of a 30,000-foot estimate. Why? From 30,000 feet, there is not
enough detail to get a clear enough picture of all the areas of
code that are affected or needed. This type of estimation is used
in order to determine if it is feasible and cost effective to proceed
into development. Once the TIMs have occurred, an estimate of
this type typically takes a day or two to develop.

Low Level Estimate: Once management has determined
that the new or modified capability is worth funding and ap-
pears to be within the budget, they may request a more refined
(i.e., more accurate) assessment. Additionally, the functionality
of the proposed capability may be reduced or increased, de-
pending on the budget available. At this point, there is typically
a better understanding of what needs to be done. Level 1
requirements (high level system requirements) may be avail-
able, along with view graphs calling out detailed functionality;
hence, the concept of a 10,000-foot estimate. Things are a
little clearer and better defined.

Detailed Estimate: The detailed estimate is performed prior
to, and in preparation for, the TSP Launch. During this phase,
the Software Engineer (SWE) that is preparing the estimate
works with a Systems Engineer1 to understand both system
and software functionality and to evaluate the requirements.
The SWE develops a conceptual design that identifies the initial
architectural components. These components are then mapped
to development tasks, which are workable sized tasks that are
identified as development or maintenance tasks. The informa-
tion associated with each task is documented in a standardized
spreadsheet. A set of spreadsheets will be used to document
the estimates for each capability with one spreadsheet per af-
fected subsystem. At this point in the Software Estimation, Level
2 system requirements may be available, as well as data from
formal program reviews. This is typically in the form of Critical
Design Review or Preliminary Design Review slides and action
items. These inputs are taken into consideration, if available.
The tasks are then divided among the team so that they may
prepare detailed task estimates. These task estimates will be
documented in the spreadsheets.

Software Estimating (Proxy-based vs. Size-based)
Early on in H2.0 block development, the team realized that

the lifecycle for new software development did not address
problems associated with software maintenance. Therefore,
a lifecycle for maintenance was developed that did not use
size-based estimates but used proxy-based estimates instead.
The primary reason for both the new lifecycle and the focus on
proxy-based estimates is that the development pattern that is
followed for maintenance is not consistent with that for new
development. For example, in some cases a significant amount
of time must be spent identifying the source of the problem
with little time up front spent identifying the fix, followed by a
significant amount of time spent verifying and testing the fix.
Therefore, the software team decided to use the PSP concept
of proxy-based estimation. The proxy sizes and times were
adjusted over time based on actual data until it stabilized. It took
approximately three years before the team identified the four
proxy (size to effort) categories [3]:

Figure 1: Proxy Size-Estimating Table

These proxy sizes have stood the test of time and have not
deviated since the H4.0 block build. Originally, the software
team used size-based estimates for all new development efforts
and proxy-based estimates for maintenance efforts. But this
was later abandoned when the team realized that both types of
estimation techniques could be used with either new develop-
ment or maintenance efforts. Analysis of the team using proxy-
based estimates showed that the software team was accurate
when estimating small and medium tasks, but the complicated,
larger maintenance tasks were more difficult to accurately
estimate the level of effort involved [3]. The team has developed
two strategies for handling these more complicated tasks: (1)
change the estimation type to size-based or (2) break the task
up into small- and medium-sized tasks and use the proxy-based
method on the resulting tasks.

Software Estimating Tool
In an attempt to improve estimation accuracy for large and

extra large tasks, the software team developed an estimation
tool to assist developers in making proxy-based estimations. At
first, the software team felt that this tool was a good concept, but
after using the tool for several years, the software team found
more disadvantages than advantages. The advantage was that
the tool provided new SWEs with a means to ensure that they
did not underestimate the size of a task. The disadvantages were
experienced by the seasoned SWEs. Once seasoned engineers
enter their data, they would often find their engineering judg-
ment disagreeing with the tool. When this was the case, they
would simply change the answers to the questions until the tool
produced what they felt was the proper proxy size or ignore the
proxy size that the tool provided altogether and submit their own.
Another disadvantage was that it became difficult to identify what
the correct questions for the tool to ask should be, along with the
correct computations and weightings to represent each question’s
impact on the estimated proxy size, to get around the previous
disadvantage. This last disadvantage resulted in one SWE spend-
ing a considerable portion of time working on refining the size es-
timation tool rather than working on actual software tasking (i.e.,
modifying the size estimation tool had become a time-consuming,
never-ending chore)[3]. For this reason, the team abandoned the
tool concept and adopted establishing an estimating process and
spreadsheets to capture the estimates.

CrossTalk—July/August 2011 27

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

A Detailed Estimating Tool is Born
As mentioned earlier, the software team needed to establish

a stable way of performing estimations. Initially, estimates were
captured in a text file, but this became hard to track and each
estimation file did not resemble the next. The team then adopted
a spreadsheet approach. At first, the spreadsheet files were
simple, but over time they have evolved into MACRO-driven and
organized sheets that are very effective in capturing all tasking,
size, and lifecycle model information needed for a TSP Launch.
This was a departure from the software estimating tool where
the SWE would answer questions and the tool would factor in
criteria to determine the estimation. The detailed estimating
spreadsheets and their usage is described below:

Rollup Sheet: The first sheet in the file is a rollup of all other
sheets that contains each component or task and its associated
data (i.e., Source Lines Of Code (SLOC), lifecycle used, sub-com-
ponent name, etc). All SLOC on the first sheet is rolled up at the
top of the page to allow size determination. During a launch, there
is typically no need to go further in the file than the rollup sheet
for populating the Work Breakdown Structure (WBS) size data. A
typical estimation workbook will contain the following:

Assumptions Sheet: This sheet captures any assump-
tions that are being made which could affect the level of effort
needed to complete the tasks within the sheets.

Architecture Sheet: This sheet is used to capture the
conceptual design/architecture that the tasking sheets support.
Any change to design could cause tasking sheets to be added,
modified or removed.

Tasking Sheets: Each component/tasking sheet contains
the requirement, the files affected, description of changes to the
file and the SLOC count. The SLOC is rolled up and displayed
at the top of the sheet. Once all requirements are entered, files,
changes, and SLOC are identified, the SWE can then determine
and select from a drop-down menu the lifecycle model to be
used for this component/task. If the lifecycle supports proxies,
then the proxy size is also selected from another drop-down
menu. Once all tasking is identified for the sheet, it can be inte-
grated into the rollup sheet.

Once the launch is complete, these tasking sheets contain
the detailed effort needed to complete each task and can now
be used by the assigned SWE in determining what the assigned
tasks in the WBS entail.

The detailed estimate spreadsheets works so well that it is now
also used for High Level and Low Level estimating, although very
little detail is added on the tasking sheets in these estimates.

Quality
The next step in the estimation process is for the estimates to

be inspected. For 30,000-foot and 10,000-foot estimates, the
software development task team Lead and software subsystem
technical expert will review the estimate. For detailed estimates
created before a launch and during the development cycle, the
software team will review them as part of the final check. During
these reviews, all defects including both substantive and minor
documentation issues are addressed. All identified defects are
reworked as required.

Estimation Currency
As mentioned previously, each capability that is produced in a

block development undergoes several iterations of estimates. Initially,
in order to support the customer’s build decision the software team
will create a 30,000-foot estimate. Later, when the customer has
made the decision to build the capability, the software team will
create a 10,000-foot estimate to support the customer’s budgeting
and funding activities. These course estimates may be updated as re-
quired by the customer. Then, before the first launch to support block
development, the software team will create a detailed estimate. This
estimate will support the launch activities and will result in a schedule
and cost that management and the software team will work with
going forward. The software team uses Process Dashboard2 to track
the development effort. It is this detailed estimate from the launch
that will be used as the plan of record in Process Dashboard.

As the development proceeds, new system and software require-
ments will be added to the project that will require the plan to be
modified. The estimates that are associated with these new require-
ments will be updated, as will the plan of record in Process Dash-
board. Also, every six months the team revisits its capability estimates
and re-launches the project. This is primarily a realignment of the
team’s plans to accommodate project progress and changes to the
organization’s direction and priorities [2]. In order to realign the proj-
ect plans to the new guidelines, the team must make adjustments
for requirements growth and also accommodate the addition and
removal of capabilities. The result is that management has current
information on the plans for completing the current block. Because
the team is continually updating the task completion information in
Process Dashboard, management has good quality information on
the performance of the team against the plan.

Proof is in the Numbers
So how successful is this approach? Peter Russo, general man-

ager for Microsoft’s IT application architecture group comments that:
“There are two fundamental issues in most IT organizations

today, one being the ability to accurately predict a project sched-
ule, and the other being the quality of the product once you are
finally done” [4].

As Russo points out, identifying a realistic and reliable schedule
is essential. This, of course, cannot be done unless you have solid
tasking estimates from which to create it. In addition, what is the
point of meeting a schedule if the quality of the product is poor?
These issues transcend the boundaries of just an IT organization
and apply to any organization developing software on a timeline
within a fixed budget. Figure 2 shows the actual size in SLOC of
the effort for blocks H4.0 – H6.0. Note that the source size grew
46K between builds H4.0 and H5.0 and 35K between H5.0 and
H6.0. SLOC size is determined by the number of SLOC that are
added and modified to the existing baseline.

Figure 2: Actual Size by block

28 CrossTalk—July/August 2011

Management Practices for Quality Products

Product Quality: There are different measures to indicate
the quality in a product. The book, Code Complete, indicates
that the Industry Average defect density is between 15 and 50
defects per 1,000 Lines of Code (KLOC). Microsoft applica-
tions are produced with a defect density of about 0.5 defects
per KLOC in released code. Organizations using the Harlan
Mills pioneered “cleanroom development” technique have been
able to achieve densities as low as 0.1 defects per KLOC [5].
The software team uses defect density (defects per KLOC) to
determine the quality of its products. Figure 3 compares the de-
fect density of each block delivery against defects delivered by
CMM® level 1 and level 5 organizations. Defects identified here
for CMM level 1 and level 5 are captured from Capers Jones
who has identified software delivered defects at each level of
the SEI CMM [6]. As can be seen, the defect density for all
blocks is significantly lower than that expected of a CMM level
5 organization. In addition, the quality is better than Microsoft’s
threshold and approaching that expected by those using the
cleanroom development technique.

The number of tasks identified for each block was 11, 62, 45,
and 204 respectfully. Although the number of tasks grew signifi-
cantly by H6.0, the team was still able to accurately estimate
this size category.

For medium software development efforts (Figure 5), the soft-
ware team did a good job of identifying these tasks. They im-
proved with each development effort given that H5.0 and H6.0
only varied by 2%. The number of tasks identified for each block

Figure 3: Defect Density

One notable trend is that the quality of the finished product
decreases as the size of the product increases. For these three
data points the relationship is almost linear; the defect density
increases by about 0.002 per KLOC. Other factors including
task complexity and team volatility may have an affect on the
quality, but were not factored into the data. That being said, the
quality of the software at release is high.

Proxy Estimating Accuracy: As mentioned earlier, estab-
lishing a reliable schedule requires accurate software estimates.
Given that the team is developing high quality products, figures
4-7 illustrate how well the team did at estimating task sizes
indicated in the Proxy Size Estimating Table (Figure 1).

For small software development tasks (Figure 4), the software
team did an excellent job identifying them and improved its
estimation accuracy with each consecutive development effort.

Figure 4: Small Proxy Estimation Accuracy

Figure 5: Medium Proxy Estimation Accuracy

was 61, 65, 50, and 291 respectfully. Although the number of
tasks grew significantly for H6.0, the team was still reasonably
accurate in estimating this size category.

For large software development efforts (Figure 6), the number
of tasks identified for each block was 37, 29, and 76 respectful-
ly. H5.0 did not have enough data points in this proxy category
for comparison. Here the team did a good job of estimating and
is improving in this area. But because tasks of this size tend to

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS

CrossTalk—May/June 2011 29

be more complex, it is more difficult to estimate as accurately as
compared to smaller task sizes.

For very large software development efforts, the number of
tasks identified for H2.0 was 18 and H6.0 was 21. Both H4.0
and H5.0 did not have enough data points in this proxy category
for comparison. As one would expect, tasks this size are signifi-
cantly more complex and difficult to estimate. In some cases,

Figure 6: Large Proxy Estimation Accuracy

Figure 8: H2.0 Schedule Accuracy

Figure 9: H4.0 Schedule Accuracy

Figure 7: Very Large Proxy Estimation Accuracy

these tasks can be more of what is referred to as “science proj-
ects,” where the task is known to be very complicated and has
too many unknowns to determine what is required. The team
has gotten better at breaking down complex tasks into multiple
smaller tasks. Overall, the team trend appears to be getting bet-
ter at identifying tasks of this size.

In summary, for proxy-based estimations, the software team
did an excellent job estimating the number of small tasks, but
as the data indicates, as the tasks became larger and more
complex it became more difficult to estimate the level of effort

involved. So how well does this estimation methodology support
the production of an accurate plan?

Plan Accuracy: Progress against the plan is described in
terms of earned value, which is based upon the estimated labor
hours needed to complete each task. As the team completes
tasks, they are able to determine how well they have done
in meeting the plan. Figures 8-11 show how well the team’s
execution (earned value) compared to the plan (planned value)
for blocks H2.0-H6.0.

Figure 8 illustrates the planned versus actual earned value
for the H2.0 block project. Initially the actual earned value was
accrued at a significantly higher rate than the planned earned

value. This was a result of the team overestimating the H2.0
tasking efforts. At this point, the team had not yet established
a reliable estimating method. A relaunch occurred where the
graph of the planned value abruptly joins the actual earned
value curve (October 2002). After this relaunch, the team ac-
crued earned value more closely to the planned earned value.

The planned versus actual earned value for the H4.0 block proj-
ect is shown in Figure 9. Between August and November of 2004,
the graph is flat due to missing project data. The team at this point
had established the estimating sheets but still had not bridged

30 CrossTalk—July/August 2011

Management Practices for Quality Products

Summary
The team’s approach in estimating has enabled it to produce

a realistic plan that the team, its customers, and its management
are able to effectively use. Even though the team is now able to
accurately produce a plan from established estimations, it con-
tinues to look for ways to improve its estimating ability because,
in the end, it all begins with quality estimates.

Disclaimer:
®CMM is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.
SMPSP and SMTSP are service marks of Carnegie Mellon
University.

1.	 Rickets, Chris A, “A TSP Software Maintenance Life Cycle”, CrossTalk, March, 2005.
2.	 Koch, Alan S, “TSP Can Be the Building blocks for CMMI”, CrossTalk, March, 2005.
3.	 Hodgins, Brad, Rickets, Chris, Lindeman, Robert “How TSP Implementation Has Evolved
	 at AV-8B.” TSP Symposium September 2007.
4.	 Grojean, Carol A., “Microsoft’s IT Organization Uses PSP/TSP to Achieve Engineering
	 Excellence”, CrossTalk, March, 2005.
5.	 McConnell, Steve, “CODE Complete”, Microsoft Press, 2004.
6.	 Jones, Capers, “Software Assessments, Benchmarks, and Best Practices”, Addison-Wesley
	 Professional, April 2000.

1.	 At the AV-8B Joint System Support Activity, the systems engineering team is responsible for 	
	 system and software requirements.
2.	 Process Dashboard is a software planning and tracking tool by Tuma Solutions, LLC.

the gap between low level and detailed estimates. Although the
software team’s accrued earned value followed the planned earned
value relatively closely, there are numerous steep and shallow
slopes of the earned value line, reflecting periods during which the
team received extra credit for completing over-estimated tasks, or
too little credit for completing under-estimated tasks.

By the time the software team had launched H5.0, the esti-
mating method was fully established. Figure 10 illustrates the
planned versus actual earned value for the H5.0 block project.
The separation of planned versus actual earned value in the latter

Figure 10: H5.0 Schedule Accuracy

Figure 11: H6.0 Schedule Accuracy

half of the project is due to the delay of several tasks that were
not related directly to the product development. These efforts in-
clude non-product documentation, post-mortem data analysis, and
other non-block related tasks. The team now had an established
reliable estimating methodology and it was beginning to show.

Under the H6.0 development effort, the team continued to
refine its estimating process. The planned versus actual earned
value chart is shown in Figure 11. For 31 months, the software
team was able to accrue earned value very consistently with the
expected planned value. Although it had taken several blocks,
this is the type of planning and execution that the team had
hoped for and had finally achieved.

NOTES

REFERENCES

CrossTalk—July/August 2011 31

MANAGEMENT PRACTICES FOR QUALITY PRODUCTS
ABOUT THE AUTHORS

Robert Sinclair is a senior engineer at the Naval
Air Warfare Center in China Lake, Ca. He has
more than 20 years of experience in developing
software in various capacities for the Air Force and
the Navy. Mr. Sinclair is currently the supervisor of
a group that is developing embedded software. He
holds a bachelor’s degree in Electrical Engineer-
ing from Iowa State University and a Master’s in
System Engineering from Virginia Tech.

Robert Sinclair
NAWCWD
414600D MS 2016
507 E. Corsair Street
China Lake, CA 93555-6110
760-939-6989

Brad Hodgins is an interim TSP Mentor Coach,
SEI-Authorized TSP Coach, SEI-Certified PSP/TSP
Instructor, and SEI-Certified Software Developer for
the Process Resource Team of the Engineering Divi-
sion of the Naval Air Systems Command (NAVAIR)
located at China Lake, California. Hodgins has been
with NAVAIR for 27 years. He has over 20 years ex-
perience as a software engineer developing simulation
and avionics software. He has been applying PSP/
TSP for over eleven years and has coached over 50
TSP/TPI launches. Hodgins earned a BS in Computer
Science from California State University, Chico.

Brad Hodgins
NAWCWD
414600 MS 6308
9100 N. Knox Road, Bldg. 01494
China Lake, CA 93555-6110
Phone: 760-939-0666

Chris Rickets is a senior engineer at the
Naval Air Warfare Center, China Lake, Ca.
He has more than 26 years of experience
in developing embedded software for the
Navy. Mr. Rickets has been involved in
Harrier block upgrades H2.0 – H6.0 and
is currently the Mission Systems Computer
Technical Lead for the H6.1 block effort and
the supervisor for the software developing
team. Mr. Rickets holds both a BS and MS
in Computer Science from California State
University, Chico.

Chris Rickets
NAWCWD
414300D MS 2016
507 E. Corsair St.
China Lake, CA 93555-6100
Phone: 760-939-5838

The Software Maintenance Group at Hill Air Force Base is recruiting civilian positions
(U.S. Citizenship Required). Benefits include paid vacation, health care plans, matching retirement fund,

tuition assistance and time off for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

Send resumes to:
phil.coumans@hill.af.mil

or call (801) 586-5325
Visit us at:

http://www.309SMXG.hill.af.mil

mailto:phil.coumans@hill.af.milor
mailto:phil.coumans@hill.af.milor
http://www.309SMXG.hill.af.mil

