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SUMMARY 

 

We introduce novel, truly non-ionic hydrogen-bonded layer-by-layer (LbL) coatings for 

cell surface engineering capable of long-term support of cell function. Utilizing the LbL 

technique imparts the ability to tailor membrane permeability, which is of particular 

importance for encapsulation of living cells as cell viability critically depends on the 

diffusion of nutrients through the artificial polymer membrane. Ultrathin, permeable 

polymer membranes are constructed on living cells without a cationic pre-layer, which is 

usually employed to increase the stability of LbL coatings.  In the absence of the 

cytotoxic PEI pre-layer utilized in traditional LbL shells, viability of encapsulated cells 

drastically increases to 94%, as compared to 20-50% in electrostatically-bonded shells. 

Engineering surfaces of living cells with natural or synthetic compounds can mediate 

intercellular communication, render the cells less sensitive to environmental changes, and 

provide a protective barrier from hostile agents. Surface engineered cells show great 

potential for biomedical applications, including biomimetics, biosensing, enhancing 

biocompatibility of implantable materials, and may represent an important step toward 

construction of an artificial cell.  
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 2

Motivations for engineering nanomaterials for cell encapsulation include protecting 

the cell through the use of semi-permeable membranes with tunable permeability while 

maintaining cell function by using materials which are non-toxic and do not limit the 

transport of nutrients. Cells enclosed in artificial membranes can be easily incorporated into 

artificial scaffolds used for engineering tissues or other parts of the body. Additionally, 

artificial membranes around cells can serve as a nurturing environment in which the 

encapsulated cells would essentially lie dormant until placed into appropriate “reviving” 

media with their function and viability restored.  

Next, we will review methods of cell encapsulation, their benefits and drawbacks, 

and introduce our method and discuss its advantages. 

Methods of Cell Encapsulation 

Bulk Hydrogels 

Hydrogels are a well-known and widely used method of cell encapsulation. They 

are of interest in biomaterials research because their watery structure provides a tissue-

like environment for cells and promotes transport, enabling long-term survival of cells. 

The viscoelastic nature of hydrogels brings about some advantages: an injectable matrix 

can be implanted in the human body with minimal surgical wounds, and bioactive 

molecules or cells can be incorporated simply by mixing before injection.7 A schematic 

of the typical hydrogel formation process is shown in Fig. 2. Thermosensitive hydrogels 

are especially attractive as specific injectable biomaterials due to their spontaneous 

gelation at physiological conditions, which does not require any extra chemical treatment. 
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 4

used because the wide variety of membrane proteins to which polymers can be covalently 

bonded means the method can be applied to many different cell types.14 However, the 

strength and stability usually imparted by covalent bonding is not present here; coatings 

are not stable and polymers dissociate from the cell surface over time.12,13 Additionally, 

the presence of these thick synthetic materials can adversely affect cell function by 

hindering the diffusion of nutrients.14 

Shells via Hydrophobic Interactions with Amphiphilic Polymers 

Cell surface modification using polyethylene glycol (PEG) and polyvinyl alcohol 

(PVA) conjugated amphiphilic polymers has been achieved by spontaneously anchoring 

the hydrophobic alkyl chains into the lipid bilayer of cell membranes.11,14-16 This 

spontaneous anchoring can be achieved by simply incubating the amphiphilic polymers 

in the cell suspension. The hydrophobic chains will embed themselves into the cell 

membrane to escape the aqueous environment. Despite being incorporated into the cell 

membrane, amphiphilic polymers do not remain attached to the cell surface and 

dissociate into the surrounding medium. 

Shells via Electrostatic Interactions 

The innate negative charge on the cell surface is exploited in methods using 

electrostatic interactions. Cationic polymers interact with the cell surface, which is 

further modified using the layer-by-layer (LbL) technique.11,17 Typically, a cationic pre-

layer is deposited onto the cell surface. Next, anionic and cationic polymers are 

alternately adsorbed onto the surface until the desired number of bilayers (i.e. thickness) 

is achieved (Fig. 3).  
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electrostatic contributions to the adsorption energy.39-41 This allows the use of PEI as an 

almost universal priming layer that eliminates many of the uncertainties associated with a 

poorly defined surface charge. However, the cytotoxicity of PEI has a negative effect on 

cell function.42 Consequently, an encapsulation method that would increase cell viability 

without sacrificing the desired diffusion properties and mechanical stability of the shells 

achieved previously would be valuable. 

Therefore, we introduce novel, truly non-ionic hydrogen-bonded LbL coatings for 

cell surface engineering capable of long-term support of cell function. In this study, we 

show that ultrathin, permeable polymer membranes can be constructed on living cells 

without a cationic pre-layer.  In the absence of the cytotoxic PEI pre-layer, viability of 

encapsulated cells climbs to 94%. The membranes display vastly improved diffusion 

properties and their mechanical properties allow cells to grow and divide through 

membrane rupture. 

Electrostatic vs. PEI Hydrogen-Bonded Shell Performance 

Cell Viability 

To show that the presence of ionic components was responsible for LbL shell 

cytotoxicity, comparative studies were conducted between hydrogen-bonded and ionic 

LbL shells.31 Unlike the PAH/PSS shells, hydrogen-bonded shells exerted much lower, 

5%, cytotoxicity with subsequent bilayers assembled. The initial decrease in cell viability 

in the case of PEI(TA/PVPON) shells can be attributed to the PEI pre-layer. Assembly of 

3- and 4-bilayer PEI(TA/PVPON) LbL shells maintained high viability up to 79% in 

contrast to polyelectrolyte (PAH/PSS) shells, which caused up to 88% cell death (Fig. 8). 
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CHAPTER 2 

GOALS & OBJECTIVES 

 
 

The goal of the study is to develop truly non-ionic hydrogen-bonded polymer 

shells in order to increase the viability of encapsulated cells. Though hydrogen-bonded 

shells which utilize a cationic pre-layer are stable and result in better cell viability than 

other methods of encapsulation, these pre-layers, specifically PEI, are cytotoxic to cells. 

Therefore, we expect construction of these shells in the absence of a cationic pre-layer 

will increase cell viability. 

We will address whether hydrogen-bonded shells can, in fact, be constructed in 

the absence of a pre-layer, and whether this can be done without compromising shell 

stability. Additionally, we will explore whether these truly non-ionic hydrogen-bonded 

shells show greatly improved cell viability, and why or why not this effect is seen. We 

believe changes in cell viability may be related to the rate of diffusion through the shells 

and the thickness of the shells. 

In developing these polymer shells, we seek to characterize their morphology, 

including surface topography, effect on cell viability, and the ability of small molecules 

to diffuse through the shell. 

This study will facilitate understanding the fundamentals of interfacial 

organization and interactions of responsive synthetic macromolecular nanomaterials at 

the cell surface for intelligent cell surface engineering. 
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All solutions were filter-sterilized with polystyrene nonpyrogenic membrane systems 

(0.22 mm pore size) (Corning filter system) before applying to the cells. When hollow 

shells of (TA/PVPON) were needed for diffusion experiments, the hydrogen-bonded 

multilayers were assembled onto silica particles in the same manner described above.35 

Atomic Force Microscopy (AFM) 

AFM was used to study the morphology of coated cell surfaces. We perform these 

measurements to visualize the initial roughness (signifying polymer adhesion) and 

subsequent smoothing of cell surfaces (signifying uniform coverage). AFM images were 

collected using a Dimension-3000 (Digital Instruments) microscope in the “light” tapping 

mode according to the well-established procedure.43 

ζ-potential 

Independent measurements of ζ-potentials on encapsulated yeast cells after 

deposition of each layer were performed on Zetasizer Nano-ZS equipment (Malvern). 

Yeast cells were collected at mid-log phase (OD = 0.6–0.8), washed three times in a 

solution of 0.01 M phosphate buffer and 0.1 M NaCl at pH 6.0 before depositing 

subsequent layers of TA and PVPON (Mw = 360 kDa). After deposition and washing, 

100 mL of encapsulated cells were combined with 900 mL of deionized Nanopure water 

to obtain 1 mL of solution to perform ζ-potential measurements. Each value was acquired 

by averaging three independent measurements of 40 sub-runs each. 

Confocal Laser Scanning Microscopy (CLSM) 

Confocal images of encapsulated and non-encapsulated yeast cells were obtained 

with an LSM 510 NLO META inverted confocal microscope equipped with 63 x 1.4 oil 
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immersion objective lens (Zeiss, Germany). Before imaging, cells were washed three 

times in deionized water to reduce background auto-fluorescence from the SMM 

medium. Coated or uncoated yeast cells were seeded in Lab-Tek chamber glasses 

(Electron Microscopy Sciences) for half an hour before imaging. The 488 nm excitation 

from the Argon ion laser and 514 nm emission wavelengths were used for yEGFP 

visualization, whereas 543 nm excitation (He–Ne laser) and 565 nm emission were used 

to visualize fluorescently labeled polymer shells surrounding yeast cells. 

Resazurin Assay 

Cell viability was measured using resazurin assay. Control (non-treated) and 

encapsulated cells were re-suspended in 1 mL of media. 100 mL of resazurin (7-hydroxy-

3H-phenoxazin-3-one 10-oxide) solution was added to cell cultures. The mixtures were 

incubated at 30 ºC for 2 hours. Fluorescence was measured at λ = 590 nm (λEx = 560 nm). 

Fluorescence Recovery After Photobleaching (FRAP) 

Experiments on permeability were performed using CLSM44 and the fluorescence 

recovery after photobleaching (FRAP) method. The basic principle of FRAP is illustrated 

in Fig. 11. Hollow capsules of hydrogen-bonded TA/PVPON with 4, 5 and 6 bilayers 

were prepared as described elsewhere.33 100 mL of hollow capsules solution was 

combined with 200 mL of 1 mg mL-1 fluorescein isothiocyanate (FITC) solution (pH = 6) 

and allowed to settle down in a Lab-Tek chamber glass cell for three hours. Laser beam 

(488 nm) was focused within a region of interest (ROI) inside a capsule, and pulsed at 

100% intensity to photobleach the dye molecules. 
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recovery was considered complete when the intensity of the photobleached region 

stabilized. The quantitative analysis was performed using ImageJ software, and curve-

fitting was conducted in Origin. The recovery curve of the fluorescence intensity, I(t), as 

a function of time, t, was fit by: 

       I = I0(1 – e-At)    (1) 

where I and I0 are the equilibrium and initial fluorescence intensities, respectively. The 

coefficient A is related to the diffusion coefficient, D, according to:  

A = 3D/rh    (2) 

for FITC diffusion through a spherical wall with radius r and thickness h. In the solution, 

eqn (1) obeys Fick’s law and can be written as: 

     dc/dt = -A(c - c0)     (3) 

where c and c0 are the concentrations inside and outside the capsules, respectively, and c 

≈ I. A typical fit of the recovery curve was obtained using eqn (1) and the coefficient A 

was deduced from the fitting.46-48 
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Materials 

Tannic acid (TA) (Mw = 1700 Da), poly(N-vinylpyrrolidone) (Mw = 360 000 Da 

and Mw = 1 300 000 Da) (PVPON), mono- and dibasic sodium phosphate, galactose, and 

glucose were purchased from Sigma-Aldrich. Alexa Fluor 532 carboxylic acid 

succinimidyl ester fluorescent dye was purchased from Invitrogen. Ultrapure (Nanopure 

system) filtered water with a resistivity of 18.2 MΩ cm was used for experiments.  

The S. cerevisiae YPH501 diploid yeast strains expressing yEGFP (yeast 

enhanced green fluorescence protein) were used for this study. Cells were cultured in 

synthetic minimal medium (SMM) supplemented with appropriate dropout solution and 

sugar source, 2% glucose. Yeast cells were grown at 30 ºC in a shaker incubator (New 

Brunswick Scientific) with 225 rpm to bring them to an early exponential phase.52 

Evaluation 

Polymer shells were constructed around S. cerevisiae cells using LbL, as 

described in the methods section. Hydrogen bonding between the hydroxyl groups of TA 

and the carbonyl groups of PVPON preserve cell integrity and functioning under 

deposition conditions.33,49,50,51 The successful formation of shells around cells was 

confirmed by confocal microscopy. Alexa Fluor 532-labeled PVPON was used to 

validate the presence of polymer shells. Homogeneous fluorescence from Alexa Fluor 

532-fluorescently tagged PVPON, which confirms formation of the polymer membrane, 

is shown in Fig. 13.  
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transmitted mode. By overlapping images from both florescent and transmitted modes 

(Fig. 13c), one can confirm that all the cells visible in the selected area have been coated. 

We perform AFM measurements to visualize the surface morphology of coated 

cell surfaces and evaluate the initial microroughness and subsequent smoothing of cell 

surfaces. AFM topographical images show overall shape and dimensions of cells as well 

as fine surface features for (a) bare, single bilayer with polymer concentrations of (b) 0.5 

mg/mL and (d) 2 mg/mL, and two bilayers with concentrations of (c) 0.5 mg/mL and (e) 

2 mg/mL. Average root mean square (RMS) roughness was taken from a 100nm square 

measurement area on 2 µm AFM scans. 
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TA/PVPON bilayers (Fig. 14c and 14e) by approximately 22% (from 4.64 ± 2.74 nm to 

3.47 ± 1.32 nm), and decreases significantly with an increase in polymer concentration 

(Fig. 14d and 14e) by approximately 52% (from 7.59 ± 2.84 nm to 3.47 ± 1.32 nm).  In 

effect, the more material adsorbed onto the shell, the lower the roughness. 3D renderings 

of these coated cells are shown in Fig. 15a-e, and correspond with the sample 

designations in Fig. 14a-e. RMS roughness as measured by AFM is shown in Fig. 16. 

Initial microroughness of 4 nm for bare cell surface increases to 9 nm for one bilayer but 

decreases to 3.5 nm for two bilayers deposited from higher concentration solution.  The 

resulting smoothed surface is evidence of uniform, conformal and homogeneous LbL 

coatings on the cells if thickness increased beyond 5 nm. 
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Figure 16: RMS roughness measurements as calculated by AFM 

 
 
 
 

The absence of cationic pre-layer during LbL assembly caused little change in the 

surface charge of the cells in contrast to previous studies with PEI pre-layer (Fig. 17). ζ 

potential remains the nearly constant (around -50 mV) and varies very little after 

deposition of each layer thus confirming that hydrogen bonded assembly does not change 

initial potential.  It is worth noting that maintaining a constant, high ζ-potential on cell 

surfaces results in good cell suspension stability and prevents severe aggregation which 

further simplifies the formation of uniform cell layers and study of their viability.33  
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Figure 17: ζ-potential of encapsulated yeast cells at pH 6 

 

Encapsulated Cell Viability & Growth 

Procedure 

Encapsulated cells were incubated in 2% raffinose and 2% galactose in SMM 

yeast media at 30 ºC to induce the yEGFP production. Optical density at 600 nm 

(OD600) and fluorescence were measured at indicated time points to assess cell growth. 

Evaluation 

The viability of encapsulated cells was assessed with the resazurin assay.55 

Bioreduction of resazurin is achieved by reducing enzyme cofactors in viable cells and 

results in the conversion of resazurin’s oxidized blue form to its pink fluorescent 

intermediate, resorufin.56 The absence of such cofactors in dead cells leads to no 

conversion and no fluorescence can be detected.57  
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Cells coated with (TA/PVPON) layers showed viability exceeding that of 

PEI(TA/PVPON)-coated cells when comparing a number of variables. Fig. 18 shows 

viability of cells encapsulated with and without PEI, with different molecular weights of 

PVPON (360 kDa or 1 300 kDa), and with different numbers of TA/PVPON bilayers 

(two or four).  

 
 

 

Figure 18: Comparison of encapsulated yeast cell viability (%) for cells encapsulated with 
and without PEI as measured by resazurin assay.  

 
 

When comparing viability of cells encapsulated with and without PEI pre-layer, 

those without PEI outperform those with PEI in all cases: for two and four bilayer shells 

and different molecular weights of PVPON component.  The highest viability was 

recorded for cells encapsulated with two bilayer shells with the highest molecular weight 

of PVPON component, reaching 94% vs those with PEI pre-layer with only 42% (Fig. 

18).  For four bilayer shells, the viability slightly decreased to 85% but still remains much 

higher than that for shells with cationic PEI component.  It is worth noting that higher 
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Figure 21: Comparison of diffusion coefficient of cells encapsulated with (PAH/PSS), 
PEI(TA/PVPON), and (TA/PVPON). 

 
 

 
Figure 22: Thickness of collapsed hollow capsules as determined via AFM height measurements. 

 
The higher thickness of shells constructed using PEI would lead one to assume 

that the rate of diffusion through these shells would be lower than those constructed 

without PEI. However, we see the opposite effect in our study. This can be attributed to 
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incorporated GFP reporters. GFP expression is determined by normalizing fluorescence 

of expressed GFP to cell density as measured by optical density (OD600). Fig. 24 shows 

the fluorescence intensity of cells incubated with and without galactose. Those without 

galactose do not express GFP. 

 

Figure 24: GFP expression of cells encapsulated with and without galactose 
 
 

The characteristic S-shaped growth curves of control cells, PEI(TA/PVPON)-

coated cells, and (TA/PVPON)-coated cells are shown in Fig. 24. To monitor cell growth, 

we measure optical density (OD600) of cell suspensions. During the initial lag phase, cell 

division (growth rate) is slow in all cases. This stage is followed by the exponential 

growth mode, where cell division accelerates and a unicellular organism duplicates, i.e., 

one cell produces two in a given period of time. The exponential phase then proceeds to a 

stationary phase when there is no discernible change in cell concentration.  

As shown in our previous studies, there is a delay of the exponential phase for the 

PEI(TA/PVPON)-coated cells, as compared to bare yeast cells, which is dependent on the 
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thickness of the polymer coating (Fig. 25a). In contrast, no delay in cell growth is shown 

for (TA/PVPON)-coated cells, no matter the thickness of the coating (Fig. 25b). 

Similarly, GFP expression is delayed in cells encapsulated with PEI, and there is no delay 

in expression for cell encapsulated without PEI (Fig. 26). 

 

 
Figure 25: Characteristic s-shaped cell growth as measured by OD600. (a) Cells 

encapsulated with cationic precursor PEI show delayed entrance into exponential phase, 
while (b) cells encapsulated with no precursor show no delay of cell growth. 
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Figure 26: GFP expression of cells encapsulated with and without PEI 
 

 

We expected to see the opposite result here due to the higher diffusion coefficient 

of shells constructed with PEI. The explanation for this apparent contradiction lies in the 

mechanical stability of the polymer shells. Cells encapsulated in PEI(TA/PVPON) 

actually begin to divide within the polymer shell. Their loose, grainy morphology allows 

for stretching, and thus can accommodate a budding cell. When the daughter cell is large 

enough, the polymer shell is ruptured. Thicker shells (more bilayers) take longer for cells 

to break through, and consequently delay the growth curve of PEI(TA/PVPON)-coated 

cells. In contrast, dense, tightly packed (TA/PVPON) shells are easily ruptured by 

dividing cells, and therefore show no delay in the growth curve. 
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CHAPTER 5 

CONCLUSIONS 

Herein we discuss the benefits of hydrogen-bonded LbL shells as compared to 

electrostatically-bonded LbL shells and to other methods of encapsulation. 

Electrostatically-bonded LbL components demonstrate extreme cytotoxicity and limit 

diffusion of nutrients into the cell. We report on an improved strategy for cell surface 

modification through LbL assembly of truly non-ionic nanoscale hydrogen-bonded shells. 

The elimination of the polycation PEI as a pre-layer allows encapsulated cells to maintain a 

high viability (94%) as compared to cells encapsulated with the cationic pre-layer (74%). 

This high cytocompatibility is a result of the cells having no exposure to the cytotoxic 

polycations once presumed necessary for shell construction, and from the high permeability 

of the shells. Their permeability allows for easy penetration of nutrients to the cell interior. 

Additionally, the mechanical stability of the non-ionic shells is such that the shell shape is 

maintained, but can be ruptured by dividing cells.  

A potential next step in this area of research is to verify that these truly non-ionic 

LbL shells do indeed possess tunable permeability by measuring changes in the diffusion 

coefficient with pH variation. Evaluating the cell storage capability of the shells by 

monitoring how long encapsulated cells remain viable will also be beneficial. It is likely 

that these truly non-ionic shells will not display the same storage properties as shells 

utilizing the PEI pre-layer, since the mechanical stability of the former allows for easy 

rupture by dividing cells. 

This research contributes to the fields of materials and polymer science by 

communicating new knowledge about physical and chemical mechanisms to 
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functionalize cell membranes. These methods for molecular design of materials can serve 

as the building blocks for assembling responsive artificial cell membranes, which then 

facilitate an understanding of responsive cell membranes’ potential capabilities in 

polymer-based regulation of cell viability and role in easing cell integration into synthetic 

functional matrices. This research is applicable to designing polymer-based cell coatings 

which aid in the protection, prolonged storage, and controlled delivery of cells. It is also a 

step toward development of robust engineered synthetic cell systems. The fields of 

biomedical and biosensing sciences stand to benefit from living cell surface engineering 

utilizing non-cytotoxic, potentially stimulus-responsive LbL components. 

 

  

 



 38

REFERENCES 

 

1. Raymond, M. C.; Neufeld, R. J.; Poncelet, D., Encapsulation of brewers yeast in 
chitosan coated carrageenan microspheres by emulsification/thermal gelation. Artif Cells 
Blood Substit Immobil Biotechnol 2004, 32 (2), 275-91. 
 
2. Wilson, J. T.; Chaikof, E. L., Challenges and emerging technologies in the 
immunoisolation of cells and tissues. Adv Drug Deliv Rev 2008, 60 (2), 124-45. 
 
3. Caruso, F.; Trau, D.; Möhwald, H.; Renneberg, R., Enzyme Encapsulation in 
Layer-by-Layer Engineered Polymer Multilayer Capsules. Langmuir 2000, 16 (4), 1485-
1488. 
 
4. Orive, G.; Hernandez, R. M.; Gascon, A. R.; Calafiore, R.; Chang, T. M. S.; Vos, 
P. D.; Hortelano, G.; Hunkeler, D.; Lacik, I.; Shapiro, A. M. J.; Pedraz, J. L., Cell 
encapsulation: Promise and progress. Nat Med 2003, 9 (1), 104-107. 
 
5. Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. A., Biomedical Applications of 
Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. Advanced 
Materials 2006, 18 (24), 3203-3224. 
 
6. Sukhorukov, G. B.; Moehwald, H., Polyelectrolyte Microcapsules as Biomimetic 
Assemblies. In Colloids and Colloid Assemblies, Caruso, F., Ed. 2004. 
 
7. Yu, L.; Ding, J., Injectable hydrogels as unique biomedical materials. Chemical 
Society Reviews 2008, 37 (8), 1473-1481. 
 
8. Xu, Y.; Jang, K.; Konno, T.; Ishihara, K.; Mawatari, K.; Kitamori, T., The 
biological performance of cell-containing phospholipid polymer hydrogels in bulk and 
microscale form. Biomaterials 2010, 31 (34), 8839-8846. 
 
9. Nuttelman, C. R.; Rice, M. A.; Rydholm, A. E.; Salinas, C. N.; Shah, D. N.; 
Anseth, K. S., Macromolecular monomers for the synthesis of hydrogel niches and their 
application in cell encapsulation and tissue engineering. Progress in Polymer Science 
2008, 33 (2), 167-179. 
 
10. Hennink, W. E.; van Nostrum, C. F., Novel crosslinking methods to design 
hydrogels. Adv Drug Deliv Rev 2002, 54 (1), 13-36. 
 
11. Teramura, Y.; Iwata, H., Cell surface modification with polymers for biomedical 
studies. Soft Matter 2010, 6 (6), 1081-1091. 
 



 39

12. Yun Lee, D.; Hee Nam, J.; Byun, Y., Functional and histological evaluation of 
transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 
year. Biomaterials 2007, 28 (11), 1957-1966. 
 
13. Cabric, S.; Sanchez, J.; Lundgren, T.; Foss, A.; Felldin, M.; Kallen, R.; Salmela, 
K.; Tibell, A.; Tufveson, G.; Larsson, R.; Korsgren, O.; Nilsson, B., Islet surface 
heparinization prevents the instant blood-mediated inflammatory reaction in islet 
transplantation. Diabetes 2007, 56 (8), 2008-15. 
 
14. Teramura, Y.; Kaneda, Y.; Totani, T.; Iwata, H., Behavior of synthetic polymers 
immobilized on a cell membrane. Biomaterials 2008, 29 (10), 1345-55. 
 
15. Rabuka, D.; Forstner, M. B.; Groves, J. T.; Bertozzi, C. R., Noncovalent cell 
surface engineering: incorporation of bioactive synthetic glycopolymers into cellular 
membranes. J Am Chem Soc 2008, 130 (18), 5947-53. 
 
16. Paulick, M. G.; Forstner, M. B.; Groves, J. T.; Bertozzi, C. R., A chemical 
approach to unraveling the biological function of the glycosylphosphatidylinositol 
anchor. Proc Natl Acad Sci U S A 2007, 104 (51), 20332-7. 
 
17. Teramura, Y.; Kaneda, Y.; Iwata, H., Islet-encapsulation in ultra-thin layer-by-
layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the 
cell membrane. Biomaterials 2007, 28 (32), 4818-25. 
 
18. Diaspro, A.; Silvano, D.; Krol, S.; Cavalleri, O.; Gliozzi, A., Single Living Cell 
Encapsulation in Nano-organized Polyelectrolyte Shells. Langmuir 2002, 18 (13), 5047-
5050. 
 
19. Hammond, P. T., Form and function in multilayer assembly: New applications at 
the nanoscale. Adv. Mater. (Weinheim, Ger.) 2004, 16 (Copyright (C) 2011 American 
Chemical Society (ACS). All Rights Reserved.), 1271-1293. 
 
20. Quinn, J. F.; Johnston, A. P. R.; Such, G. K.; Zelikin, A. N.; Caruso, F., Next 
generation, sequentially assembled ultrathin films: beyond electrostatics. Chem. Soc. Rev. 
2007, 36 (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 
707-718. 
 
21. del Mercato, L. L.; Rivera-Gil, P.; Abbasi, A. Z.; Ochs, M.; Ganas, C.; Zins, I.; 
Sonnichsen, C.; Parak, W. J., LbL multilayer capsules: recent progress and future outlook 
for their use in life sciences. Nanoscale 2010, 2 (4), 458-67. 
 
22. Hoffman, A. S., Hydrogels for biomedical applications. Adv Drug Deliv Rev 
2002, 54 (1), 3-12. 
 
 



 40

23. Zelikin, A. N.; Becker, A. L.; Johnston, A. P. R.; Wark, K. L.; Turatti, F.; Caruso, 
F., A General Approach for DNA Encapsulation in Degradable Polymer Microcapsules. 
ACS Nano 2007, 1 (Copyright (C) 2011 American Chemical Society (ACS). All Rights 
Reserved.), 63-69. 
 
24. Zelikin, A. N.; Li, Q.; Caruso, F., Disulfide-Stabilized Poly(methacrylic acid) 
Capsules: Formation, Cross-Linking, and Degradation Behavior. Chem. Mater. 2008, 20 
(Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 2655-
2661. 
 
25. Kozlovskaya, V.; Kharlampieva, E.; Erel, I.; Sukhishvili, S. A., Multilayer-
derived, ultrathin, stimuli-responsive hydrogels. Soft Matter 2009, 5 (Copyright (C) 2011 
American Chemical Society (ACS). All Rights Reserved.), 4077-4087. 
 
26. Kinnane, C. R.; Such, G. K.; Antequera-Garcia, G.; Yan, Y.; Dodds, S. J.; Liz-
Marzan, L. M.; Caruso, F., Low-Fouling Poly(N-vinyl pyrrolidone) Capsules with 
Engineered Degradable Properties. Biomacromolecules 2009, 10 (Copyright (C) 2011 
American Chemical Society (ACS). All Rights Reserved.), 2839-2846. 
 
27. De Koker, S.; De Geest, B. G.; Cuvelier, C.; Ferdinande, L.; Deckers, W.; 
Hennink, W. E.; De Smedt, S. C.; Mertens, N., In vivo Cellular Uptake, Degradation, and 
Biocompatibility of Polyelectrolyte Microcapsules. Advanced Functional Materials 2007, 
17 (18), 3754-3763. 
 
28. Stadler, B.; Chandrawati, R.; Price, A. D.; Chong, S. F.; Breheney, K.; Postma, 
A.; Connal, L. A.; Zelikin, A. N.; Caruso, F., A microreactor with thousands of 
subcompartments: enzyme-loaded liposomes within polymer capsules. Angew Chem Int 
Ed Engl 2009, 48 (24), 4359-62. 
 
29. Bieber, T.; Meissner, W.; Kostin, S.; Niemann, A.; Elsasser, H. P., Intracellular 
route and transcriptional competence of polyethylenimine-DNA complexes. J Control 
Release 2002, 82 (2-3), 441-54. 
 
30. Godbey, W. T.; Wu, K. K.; Mikos, A. G., Size matters: molecular weight affects 
the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 
1999, 45 (3), 268-75. 
 
31. Germain, M.; Balaguer, P.; Nicolas, J.-C.; Lopez, F.; Esteve, J.-P.; Sukhorukov, 
G. B.; Winterhalter, M.; Richard-Foy, H.; Fournier, D., Protection of mammalian cell 
used in biosensors by coating with a polyelectrolyte shell. Biosensors and Bioelectronics 
2006, 21 (8), 1566-1573. 
 
32. Fakhrullin, R. F.; Zamaleeva, A. I.; Morozov, M. V.; Tazetdinova, D. I.; Alimova, 
F. K.; Hilmutdinov, A. K.; Zhdanov, R. I.; Kahraman, M.; Culha, M., Living Fungi Cells 
Encapsulated in Polyelectrolyte Shells Doped with Metal Nanoparticles. Langmuir 2009, 
25 (8), 4628-4634. 



 41

33. Kozlovskaya, V.; Harbaugh, S.; Drachuk, I.; Shchepelina, O.; Kelley-Loughnane, 
N.; Stone, M.; Tsukruk, V. V., Hydrogen-bonded LbL shells for living cell surface 
engineering. Soft Matter 2011, 7 (6), 2364-2372. 
 
34. Kharlampieva, E.; Kozlovskaya, V.; Sukhishvili, S. A., Layer-by-Layer 
Hydrogen-Bonded Polymer Films: From Fundamentals to Applications. Advanced 
Materials 2009, 21 (30), 3053-3065. 
 
35. Kozlovskaya, V.; Kharlampieva, E.; Drachuk, I.; Cheng, D.; Tsukruk, V. V., 
Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer 
assemblies. Soft Matter 2010, 6 (15), 3596-3608. 
 
36. Such, G. K.; Johnston, A. P. R.; Caruso, F., Engineered hydrogen-bonded 
polymer multilayers: from assembly to biomedical applications. Chemical Society 
Reviews 2011, 40 (1), 19-29. 
 
37. Erel-Unal, I.; Sukhishvili, S. A., Hydrogen-Bonded Multilayers of a Neutral 
Polymer and a Polyphenol. Macromolecules 2008, 41 (11), 3962-3970. 
 
38. Hushpulian, D. M.; Fechina, V. A.; Kazakov, S. V.; Sakharov, I. Y.; Gazaryan, I. 
G., Non-enzymatic interaction of reaction products and substrates in peroxidase catalysis. 
Biochemistry (Mosc) 2003, 68 (9), 1006-11. 
 
39. Takebayashi, J.; Tai, A.; Yamamoto, I., pH-dependent long-term radical 
scavenging activity of AA-2G and 6-Octa-AA-2G against 2,2'-azinobis(3-
ethylbenzothiazoline-6-sulfonic acid) radical cation. Biol Pharm Bull 2003, 26 (9), 1368-
70. 
 
40. Shutova, T.; Agabekov, V.; Lvov, Y., Reaction of radical cations with multilayers 
of tannic acid and polyelectrolytes. Russian Journal of General Chemistry 2007, 77 (9), 
1494-1501. 
 
41. Kozlovskaya, V.; Yakovlev, S.; Libera, M.; Sukhishvili, S. A., Surface Priming 
and the Self-Assembly of Hydrogen-Bonded Multilayer Capsules and Films. 
Macromolecules 2005, 38 (11), 4828-4836. 
 
42. Koper, G. J. M.; van Duijvenbode, R. C.; Stam, D. D. P. W.; Steuerle, U.; 
Borkovec, M., Synthesis and Protonation Behavior of Comblike Poly(ethyleneimine). 
Macromolecules 2003, 36 (7), 2500-2507. 
 
43. Mészáros, R.; Thompson, L.; Bos, M.; de Groot, P., Adsorption and 
Electrokinetic Properties of Polyethylenimine on Silica Surfaces. Langmuir 2002, 18 
(16), 6164-6169. 
 



 42

44. Brunot, C.; Ponsonnet, L.; Lagneau, C.; Farge, P.; Picart, C.; Grosgogeat, B., 
Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte 
multilayer films. Biomaterials 2007, 28 (4), 632-40. 
 
45. Tsukruk, V. V.; Reneker, D. H., Scanning probe microscopy of organic and 
polymeric films: from self-assembled monolayers to composite multilayers. Polymer 
1995, 36 (9), 1791-1808. 
 
46. Glinel, K.; Sukhorukov, G. B.; Möhwald, H.; Khrenov, V.; Tauer, K., 
Thermosensitive Hollow Capsules Based on Thermoresponsive Polyelectrolytes. 
Macromolecular Chemistry and Physics 2003, 204 (14), 1784-1790. 
 
47. Contributers, W. Fluorescence recovery after photobleaching. 
http://en.wikipedia.org/w/index.php?title=Fluorescence_recovery_after_photobleaching&
oldid=406389463 (accessed 28 February). 
 
48. Ibarz, G.; Dähne, L.; Donath, E.; Möhwald, H., Controlled Permeability of 
Polyelectrolyte Capsules via Defined Annealing. Chemistry of Materials 2002, 14 (10), 
4059-4062. 
 
49. Glinel, K.; Dubois, M.; Verbavatz, J. M.; Sukhorukov, G. B.; Zemb, T., 
Determination of pore size of catanionic icosahedral aggregates. Langmuir 2004, 20 (20), 
8546-51. 
 
50. Antipov, A. A.; Sukhorukov, G. B.; Donath, E.; Möhwald, H., Sustained Release 
Properties of Polyelectrolyte Multilayer Capsules. The Journal of Physical Chemistry B 
2001, 105 (12), 2281-2284. 
 
51. Shutava, T. G.; Balkundi, S. S.; Vangala, P.; Steffan, J. J.; Bigelow, R. L.; 
Cardelli, J. A.; O'Neal, D. P.; Lvov, Y. M., Layer-by-Layer-Coated Gelatin Nanoparticles 
as a Vehicle for Delivery of Natural Polyphenols. ACS Nano 2009. 
 
52. Riedl, K. M.; Hagerman, A. E., Tannin-protein complexes as radical scavengers 
and radical sinks. J Agric Food Chem 2001, 49 (10), 4917-23. 
 
53. Lopes, G. K.; Schulman, H. M.; Hermes-Lima, M., Polyphenol tannic acid 
inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. 
Biochim Biophys Acta 1999, 1472 (1-2), 142-52. 
 
54. Sherman, F., Getting started with yeast. Methods Enzymol 2002, 350, 3-41. 
 
55. Dutka, B. J.; Nyholm, N.; Petersen, J., Comparison of several microbiological 
toxicity screening tests. Water Research 1983, 17 (10), 1363-1368. 
 



 43

56. Strotmann, U. J.; Butz, B.; Bias, W. R., The dehydrogenase assay with resazurin: 
practical performance as a monitoring system and Ph-dependent toxicity of phenolic 
compounds. Ecotoxicol Environ Saf 1993, 25 (1), 79-89. 
 
57. Mak, W. C.; Sum, K. W.; Trau, D.; Renneberg, R., Nanoscale surface engineered 
living cells with extended substrate spectrum. IEE Proc Nanobiotechnol 2004, 151 (2), 
67-72. 
 
58. Shutava, T.; Prouty, M.; Kommireddy, D.; Lvov, Y., pH Responsive 
Decomposable Layer-by-Layer Nanofilms and Capsules on the Basis of Tannic Acid. 
Macromolecules 2005, 38 (7), 2850-2858. 
 

 

 

1. Raymond, M. C.; Neufeld, R. J.; Poncelet, D., Encapsulation of brewers yeast in 
chitosan coated carrageenan microspheres by emulsification/thermal gelation. Artif Cells 
Blood Substit Immobil Biotechnol 2004, 32 (2), 275-91. 
2. Wilson, J. T.; Chaikof, E. L., Challenges and emerging technologies in the 
immunoisolation of cells and tissues. Adv Drug Deliv Rev 2008, 60 (2), 124-45. 
3. Caruso, F.; Trau, D.; Möhwald, H.; Renneberg, R., Enzyme Encapsulation in 
Layer-by-Layer Engineered Polymer Multilayer Capsules. Langmuir 2000, 16 (4), 1485-
1488. 
4. Orive, G.; Hernandez, R. M.; Gascon, A. R.; Calafiore, R.; Chang, T. M. S.; Vos, 
P. D.; Hortelano, G.; Hunkeler, D.; Lacik, I.; Shapiro, A. M. J.; Pedraz, J. L., Cell 
encapsulation: Promise and progress. Nat Med 2003, 9 (1), 104-107. 
5. Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. A., Biomedical Applications of 
Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. Advanced 
Materials 2006, 18 (24), 3203-3224. 
6. Sukhorukov, G. B.; Moehwald, H., Polyelectrolyte Microcapsules as Biomimetic 
Assemblies. In Colloids and Colloid Assemblies, Caruso, F., Ed. 2004. 
7. Yu, L.; Ding, J., Injectable hydrogels as unique biomedical materials. Chemical 
Society Reviews 2008, 37 (8), 1473-1481. 
8. Xu, Y.; Jang, K.; Konno, T.; Ishihara, K.; Mawatari, K.; Kitamori, T., The 
biological performance of cell-containing phospholipid polymer hydrogels in bulk and 
microscale form. Biomaterials 2010, 31 (34), 8839-8846. 
9. Nuttelman, C. R.; Rice, M. A.; Rydholm, A. E.; Salinas, C. N.; Shah, D. N.; 
Anseth, K. S., Macromolecular monomers for the synthesis of hydrogel niches and their 
application in cell encapsulation and tissue engineering. Progress in Polymer Science 
2008, 33 (2), 167-179. 
10. Hennink, W. E.; van Nostrum, C. F., Novel crosslinking methods to design 
hydrogels. Adv Drug Deliv Rev 2002, 54 (1), 13-36. 
11. Teramura, Y.; Iwata, H., Cell surface modification with polymers for biomedical 
studies. Soft Matter 2010, 6 (6), 1081-1091. 



 44

12. Yun Lee, D.; Hee Nam, J.; Byun, Y., Functional and histological evaluation of 
transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 
year. Biomaterials 2007, 28 (11), 1957-1966. 
13. Cabric, S.; Sanchez, J.; Lundgren, T.; Foss, A.; Felldin, M.; Kallen, R.; Salmela, 
K.; Tibell, A.; Tufveson, G.; Larsson, R.; Korsgren, O.; Nilsson, B., Islet surface 
heparinization prevents the instant blood-mediated inflammatory reaction in islet 
transplantation. Diabetes 2007, 56 (8), 2008-15. 
14. Rabuka, D.; Forstner, M. B.; Groves, J. T.; Bertozzi, C. R., Noncovalent cell 
surface engineering: incorporation of bioactive synthetic glycopolymers into cellular 
membranes. J Am Chem Soc 2008, 130 (18), 5947-53. 
15. Paulick, M. G.; Forstner, M. B.; Groves, J. T.; Bertozzi, C. R., A chemical 
approach to unraveling the biological function of the glycosylphosphatidylinositol 
anchor. Proc Natl Acad Sci U S A 2007, 104 (51), 20332-7. 
16. Teramura, Y.; Kaneda, Y.; Iwata, H., Islet-encapsulation in ultra-thin layer-by-
layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the 
cell membrane. Biomaterials 2007, 28 (32), 4818-25. 
17. Diaspro, A.; Silvano, D.; Krol, S.; Cavalleri, O.; Gliozzi, A., Single Living Cell 
Encapsulation in Nano-organized Polyelectrolyte Shells. Langmuir 2002, 18 (13), 5047-
5050. 
18. Hammond, P. T., Form and function in multilayer assembly: New applications at 
the nanoscale. Adv. Mater. (Weinheim, Ger.) 2004, 16 (Copyright (C) 2011 American 
Chemical Society (ACS). All Rights Reserved.), 1271-1293. 
19. Quinn, J. F.; Johnston, A. P. R.; Such, G. K.; Zelikin, A. N.; Caruso, F., Next 
generation, sequentially assembled ultrathin films: beyond electrostatics. Chem. Soc. Rev. 
2007, 36 (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 
707-718. 
20. del Mercato, L. L.; Rivera-Gil, P.; Abbasi, A. Z.; Ochs, M.; Ganas, C.; Zins, I.; 
Sonnichsen, C.; Parak, W. J., LbL multilayer capsules: recent progress and future outlook 
for their use in life sciences. Nanoscale 2010, 2 (4), 458-67. 
21. Hoffman, A. S., Hydrogels for biomedical applications. Adv Drug Deliv Rev 
2002, 54 (1), 3-12. 
22. Zelikin, A. N.; Becker, A. L.; Johnston, A. P. R.; Wark, K. L.; Turatti, F.; Caruso, 
F., A General Approach for DNA Encapsulation in Degradable Polymer Microcapsules. 
ACS Nano 2007, 1 (Copyright (C) 2011 American Chemical Society (ACS). All Rights 
Reserved.), 63-69. 
23. Zelikin, A. N.; Li, Q.; Caruso, F., Disulfide-Stabilized Poly(methacrylic acid) 
Capsules: Formation, Cross-Linking, and Degradation Behavior. Chem. Mater. 2008, 20 
(Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 2655-
2661. 
24. Kozlovskaya, V.; Kharlampieva, E.; Erel, I.; Sukhishvili, S. A., Multilayer-
derived, ultrathin, stimuli-responsive hydrogels. Soft Matter 2009, 5 (Copyright (C) 2011 
American Chemical Society (ACS). All Rights Reserved.), 4077-4087. 
25. Kinnane, C. R.; Such, G. K.; Antequera-Garcia, G.; Yan, Y.; Dodds, S. J.; Liz-
Marzan, L. M.; Caruso, F., Low-Fouling Poly(N-vinyl pyrrolidone) Capsules with 
Engineered Degradable Properties. Biomacromolecules 2009, 10 (Copyright (C) 2011 
American Chemical Society (ACS). All Rights Reserved.), 2839-2846. 



 45

26. De Koker, S.; De Geest, B. G.; Cuvelier, C.; Ferdinande, L.; Deckers, W.; 
Hennink, W. E.; De Smedt, S. C.; Mertens, N., In vivo Cellular Uptake, Degradation, and 
Biocompatibility of Polyelectrolyte Microcapsules. Advanced Functional Materials 2007, 
17 (18), 3754-3763. 
27. Stadler, B.; Chandrawati, R.; Price, A. D.; Chong, S. F.; Breheney, K.; Postma, 
A.; Connal, L. A.; Zelikin, A. N.; Caruso, F., A microreactor with thousands of 
subcompartments: enzyme-loaded liposomes within polymer capsules. Angew Chem Int 
Ed Engl 2009, 48 (24), 4359-62. 
28. Bieber, T.; Meissner, W.; Kostin, S.; Niemann, A.; Elsasser, H. P., Intracellular 
route and transcriptional competence of polyethylenimine-DNA complexes. J Control 
Release 2002, 82 (2-3), 441-54. 
29. Godbey, W. T.; Wu, K. K.; Mikos, A. G., Size matters: molecular weight affects 
the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 
1999, 45 (3), 268-75. 
30. Germain, M.; Balaguer, P.; Nicolas, J.-C.; Lopez, F.; Esteve, J.-P.; Sukhorukov, 
G. B.; Winterhalter, M.; Richard-Foy, H.; Fournier, D., Protection of mammalian cell 
used in biosensors by coating with a polyelectrolyte shell. Biosensors and Bioelectronics 
2006, 21 (8), 1566-1573. 
31. Kozlovskaya, V.; Harbaugh, S.; Drachuk, I.; Shchepelina, O.; Kelley-Loughnane, 
N.; Stone, M.; Tsukruk, V. V., Hydrogen-bonded LbL shells for living cell surface 
engineering. Soft Matter 2011. 
32. Kharlampieva, E.; Kozlovskaya, V.; Sukhishvili, S. A., Layer-by-Layer 
Hydrogen-Bonded Polymer Films: From Fundamentals to Applications. Advanced 
Materials 2009, 21 (30), 3053-3065. 
33. Kozlovskaya, V.; Kharlampieva, E.; Drachuk, I.; Cheng, D.; Tsukruk, V. V., 
Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer 
assemblies. Soft Matter 2010, 6 (15), 3596-3608. 
34. Such, G. K.; Johnston, A. P. R.; Caruso, F., Engineered hydrogen-bonded 
polymer multilayers: from assembly to biomedical applications. Chemical Society 
Reviews 2011, 40 (1), 19-29. 
35. Erel-Unal, I.; Sukhishvili, S. A., Hydrogen-Bonded Multilayers of a Neutral 
Polymer and a Polyphenol. Macromolecules 2008, 41 (11), 3962-3970. 
36. Hushpulian, D. M.; Fechina, V. A.; Kazakov, S. V.; Sakharov, I. Y.; Gazaryan, I. 
G., Non-enzymatic interaction of reaction products and substrates in peroxidase catalysis. 
Biochemistry (Mosc) 2003, 68 (9), 1006-11. 
37. Takebayashi, J.; Tai, A.; Yamamoto, I., pH-dependent long-term radical 
scavenging activity of AA-2G and 6-Octa-AA-2G against 2,2'-azinobis(3-
ethylbenzothiazoline-6-sulfonic acid) radical cation. Biol Pharm Bull 2003, 26 (9), 1368-
70. 
38. Shutova, T.; Agabekov, V.; Lvov, Y., Reaction of radical cations with multilayers 
of tannic acid and polyelectrolytes. Russian Journal of General Chemistry 2007, 77 (9), 
1494-1501. 
39. Kozlovskaya, V.; Yakovlev, S.; Libera, M.; Sukhishvili, S. A., Surface Priming 
and the Self-Assembly of Hydrogen-Bonded Multilayer Capsules and Films. 
Macromolecules 2005, 38 (11), 4828-4836. 



 46

40. Koper, G. J. M.; van Duijvenbode, R. C.; Stam, D. D. P. W.; Steuerle, U.; 
Borkovec, M., Synthesis and Protonation Behavior of Comblike Poly(ethyleneimine). 
Macromolecules 2003, 36 (7), 2500-2507. 
41. Mészáros, R.; Thompson, L.; Bos, M.; de Groot, P., Adsorption and 
Electrokinetic Properties of Polyethylenimine on Silica Surfaces. Langmuir 2002, 18 
(16), 6164-6169. 
42. Brunot, C.; Ponsonnet, L.; Lagneau, C.; Farge, P.; Picart, C.; Grosgogeat, B., 
Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte 
multilayer films. Biomaterials 2007, 28 (4), 632-40. 
43. Tsukruk, V. V.; Reneker, D. H., Scanning probe microscopy of organic and 
polymeric films: from self-assembled monolayers to composite multilayers. Polymer 
1995, 36 (9), 1791-1808. 
44. Glinel, K.; Sukhorukov, G. B.; Möhwald, H.; Khrenov, V.; Tauer, K., 
Thermosensitive Hollow Capsules Based on Thermoresponsive Polyelectrolytes. 
Macromolecular Chemistry and Physics 2003, 204 (14), 1784-1790. 
45. Contributers, W. Fluorescence recovery after photobleaching. 
http://en.wikipedia.org/w/index.php?title=Fluorescence_recovery_after_photobleaching&
oldid=406389463 (accessed 28 February). 
46. Ibarz, G.; Dähne, L.; Donath, E.; Möhwald, H., Controlled Permeability of 
Polyelectrolyte Capsules via Defined Annealing. Chemistry of Materials 2002, 14 (10), 
4059-4062. 
47. Glinel, K.; Dubois, M.; Verbavatz, J. M.; Sukhorukov, G. B.; Zemb, T., 
Determination of pore size of catanionic icosahedral aggregates. Langmuir 2004, 20 (20), 
8546-51. 
48. Antipov, A. A.; Sukhorukov, G. B.; Donath, E.; Möhwald, H., Sustained Release 
Properties of Polyelectrolyte Multilayer Capsules. The Journal of Physical Chemistry B 
2001, 105 (12), 2281-2284. 
49. Shutava, T. G.; Balkundi, S. S.; Vangala, P.; Steffan, J. J.; Bigelow, R. L.; 
Cardelli, J. A.; O'Neal, D. P.; Lvov, Y. M., Layer-by-Layer-Coated Gelatin Nanoparticles 
as a Vehicle for Delivery of Natural Polyphenols. ACS Nano 2009. 
50. Riedl, K. M.; Hagerman, A. E., Tannin-protein complexes as radical scavengers 
and radical sinks. J Agric Food Chem 2001, 49 (10), 4917-23. 
51. Lopes, G. K.; Schulman, H. M.; Hermes-Lima, M., Polyphenol tannic acid 
inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. 
Biochim Biophys Acta 1999, 1472 (1-2), 142-52. 
52. Sherman, F., Getting started with yeast. Methods Enzymol 2002, 350, 3-41. 
 

 


