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Final Report on DARPA Grant W911NF0910337:

Adversarial Risk Analysis for Dynamic Network Routing

David Banks, Department of Statistical Science, Duke University

banks@stat.duke.edu; 919-684-3743

Foreword: The U.S. military relies upon logistical networks. These networks carry the

personnel and materiál that are critical for mission success. In many situations, strategic

adversaries attempt to disrupt these networks, e.g., through use of IEDs. Previous work in

this area used game theory to identify optimal routes, but that approach cannot incorporate

probabilistic information from human intelligence or prior history. The Bayesian approach

proposed in our research takes full advantage of such information.
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Problem Statement

This project has combined tools from game theory, network analysis, Bayesian inference,

and risk analysis. It represents an extension of the new field of adversarial risk analysis (cf.

Rios Insua, Rios, and Banks, 2009) into the domain of secure routing across a network in

which there is probabilistic information about threats and relevant historical information.

Suppose that one has a network of roads, and missions that require traversals of the

network between various points at various times. There is an enemy that can deploy

resources to set traps or to block segments of the network, and one must select a route

and allocate security assets to improve the overall probability of mission success while

controlling mission cost. To inform the choice of route and the allocation of security assets,

one can use the observed record from previous traversals and beliefs or intelligence about

enemy operations. In general, the selection of the route is determined in advance; in some

cases that choice may be altered during the traversal, perhaps as a result of an obstacle or

an attack.

This research has emphasized practical application, although some components entail

academic research. To ensure relevance, we met with the leading researchers at the Naval

Postgraduate School who work on modeling and mitigation of threats from improvised

explosive devices (IEDs) and with scientists at Los Alamos National Laboratory who apply

game theory to network interdiction.

Our primary goal was to develop new methodology for convoy routing that would allow

decision-makers to make better use of the available information than traditional game

theory permits. A secondary goal was to further the progress of adversarial risk analysis

as a solution concept in the military and coutnerterrorism communities.
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Important Results

The primary results of the proposed research are:

1. a theoretical framework for route selection that incorporates modeling of decision

processes by an intelligent adversary;

2. a paper that describes the convoy-routing methodology in detail;

3. prototype software that handles non-trivial problems in routing choice from an ad-

versarial risk analysis perspective;

4. a growing community of researchers who consider this approach a useful alternative

to classical game theory.

These results are described in more detail below.

The theoretical framework for adversarial risk analysis (ARA) is laid out in Rios, Rios

Insua, and Banks (2009), Banks Petralia and Wang (2011) and in the paper in the ap-

pendix of this report. Essentially, ARA provides an explicit method for implementing the

decision analysis paradigm (cf. Kadane and Larkey, 1982; Raiffa, 1982). The key is a “mir-

roring” argument, in which the decision-maker constructs a model of the analysis that the

opponent performs, and that model may include the fact that the opponent is building a

corresponding model for the analysis of the decision-maker. This may be regarded as a

Bayesian version of level-k thinking, as described in Stahl and Wilson (1995). The ARA

approach is novel, and offers significant advantages compared to other methods for strategic

planning.

The paper in the appendix applies the ARA approach to the convoy routing problem.

Among its contributions are an existence proof of the mirroring fixed-point solution; an

algorithm that robustly converges to that solution; a statement of sufficient conditions

under which the ARA solution coincides with the Bayes Nash equilibrium solution; two

worked examples; and a study of the computational requirements for the ARA solution.
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The software used in this research is provided in the second appendix. It is written

in MATLAB and runs on a personal computer. The software consists of several routines

which collectively generate the solutions and tables for the manuscript in Appendix A.

ARA has been gaining attention in the military and counterterrorism communities. In

the last three months I have been asked to referee two papers on ARA that were written

by people who are not part of my research circle. The ARA perspective formed the basis

for a workshop at the DIMACS center at Rutgers University, and has been featured in

invited sessions at four statistics conferences (with two more scheduled for this summer).

The reason for this success is probably a combination of some reasonably high-profile pub-

lications, a large number of seminars and colloquia at various institutions, and a nearly

universal sense among military decision-makers that classical game theory is inadequate

for the kinds of problems that arise in practice. The ARA approach may seem a little

technical, but in fact it simply mathematizes the kinds of decision processes that normal

people regularly employ.
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Abstract

Problems in counterterrorism and corporate competition have prompted research

that attempts to combine statistical risk analysis with game theory in ways that

support practical decision-making. This paper applies these methods of adversarial

risk analysis to the problem of selecting a route through a network in which an

opponent chooses vertices for ambush. The motivating application is convoy routing

across a road network when there may be improvised explosive devices and imperfect

intelligence about their locations.

1 Introduction

An important class of problems in game theory pertains to routing choice through a network

when an intelligent adversary is attempting to block passage. A famous example is Nash,

a game invented by John Nash (cf. Nasar, 1998, p. 77) in which two opponents compete

to create an unbroken path from North to South or from East to West, respectively, on a

board tiled by hexagons. In real life, analogous problems arise when corporations attempt

11



to impede each other’s access to critical resources or distribution links. In this paper,

the motivating application is a game involving convoy routing on a road network with

improvised explosive devices (IEDs).

In our application, the use of IEDs does not necessarily block passage. Rather, the IEDs

cause random amounts of damage. The mission fails if the cumulative damage exceeds the

value of the convoy, but it is more realistic to suppose that the convoy commander wants

to select a route that minimizes total damage, whereas the insurgents want to locate IEDs

so as to maximize the damage. In this framework, one has a game between the Defender

(the convoy commander) and the Attacker (the insurgents). We suppose this is a normal

form game, in that both the selection of the entire route and the decision about the siting

of the IEDs are made in advance; i.e., the Defender does not alter the route based upon

outcomes that occur along the route, and the Attacker does not plant IEDs in real-time as

the route choice is revealed.

Traditional game theorists have treated somewhat similar games. Normal form net-

work interdiction games have been studied by Dimitrov et al. (2009), Bayrak and Bailey

(2008), and Washburn and Wood (1995), although these papers make somewhat different

assumptions and have different payoff criteria. Extensive form games, in which the route

or the IED placement or both are decided adaptively, have been studied by Guttfraind,

Hagberg and Pan (2009), Israeli and Wood (2002), and arise generally in Woodruff (2002).

More distantly, without the network structure, there is a relationship to Blotto games (cf.

Dresher, 1961; Roberson, 2006).

Our concern is that traditional game theory is well known to be an unreliable guide to

human behavior (cf. Camerer, 2003). Kadane and Larkey (1982) and Raiffa (1982) pro-

posed decision analysis as an alternative; this is controversial departure from the customary

equilibrium solution concepts (e.g., Harsanyi, 1982), but it has appealing advantages in

terms of plausibility; Stahl and Wilson (1995) report that people appear to make decisions

based on probabilistic models for their opponent’s reasoning. The main difficulty in oper-

ationalizing the decision analysis approach is that there has been little exploration of the

mechanism whereby a decision-maker formulates the subjective probability distributions

that represent their opponent’s behavior.

12



This paper addresses that difficulty by describing a “mirroring” procedure, in which

the decision-maker mimics the opponent’s analysis, taking account of the fact that the

opponent is simultaneously performing a symmetric study of the decision-maker’s analysis.

The result is a probability distribution over the opponent’s options, and the decision-maker

then selects the action (a route) that maximizes expected utility.

We use the term Adversarial Risk Analysis (ARA) to describe methods that combine

decision analysis with an explicit model for the strategic thinking of one’s opponent, usually

through a mirroring argument. The rest of this chapter is organized as follows. Section

2 sets up the model and notation in the convoy routing context. A detailed examination

of the ARA solution concept, with connections to related ideas in classical game theory, is

given in Section 3. Section 4 discusses computational issues. Section 5 provides conclusions.

2 Model and Notation

Suppose there is a Defender and an Attacker. For narrative simplicity, we will use the

female gender when referring to the Defender and the male gender for the Attacker. The

Defender wants to start at a location S in a fixed network, and chooses a route that leads

to a terminus T . At certain locations in the network, it is possible for the Attacker to

cause damage, for example, by placing improvised explosive devices (IEDs). The Defender

may have historical information and military intelligence on the placement of the IEDs,

which can be encoded in the Attacker’s utility function assessed by her; these can guide

her selection of a route. Similarly, the Attacker may possess historical information and

intelligence regarding previous routing choices, which can be encoded in the Defender’s

loss function as estimated by him; these can guide his choice of where to place a fixed

number of available IEDs.

In this game, once the path is selected, the convoy traverses that path to the end,

possibly absorbing cumulative damage along the way. The Defender wants to choose the

route that will minimize the expected cumulative damage (and, more generally, to discover

whether the minimum expected damage exceeds either the value of the convoy or the value

of the mission, as appropriate, in which case the trip should be canceled). Similarly, the
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Attacker wants to place a fixed number of IEDs, or other kinds of ambush, so as to maximize

the expected cumulative damage (and, more generally, to discover whether the maximum

expected utility of the inflicted damage is less than the cost of placing the IEDs, in which

case no IEDs should be sited). This formulation is different from the resource allocation

problems encountered in some interdiction and Colonel Blotto games (e.g., Dresher, 1961;

Roberson, 2006); the Defender is picking a single path rather than dividing resources among

battlefields, and the Attacker gets no increase in damage from placing multiple IEDs at

the same location.

Because the road network hardly changes during a short time window, we assume the

underlying structure is static. Of course, in the real world, the Defender might find that

a traffic jam precludes passage on a particular street. We do not attempt to model such

situations, which would require a more complex dynamic analysis.

Similarly, the convoy routing problem is modeled as a one-shot game. The Defender

chooses the entire route at the outset and will continue the chosen route as planned even

if there are one or more IED ambushes. And the Attacker places all the IEDs before the

convoy sets out, rather than planting new ones adaptively as the path of the convoy is real-

ized. Our model complies with most standard convoy operations in Iraq and Afghanistan,

and could serve as a starting point for dynamic extensions.

Our main task in this section is to formulate the network routing problem as a two-

player simultaneous game with private information in which the payoff depends upon the

structure of the roadway graph.

2.1 Routes Through an Undirected Graph

For a road network, we use a vertex to denote a candidate location for the Attacker to place

an IED and road segment between vertices is denoted as an undirected edge (i.e., traffic

can move in both directions). This set-up has no substantive effect on the analysis except

to simplify the notation. Thus, the network is an undirected graph G = (V , R) where

V = {v0 = S, v1, . . . , vN , vN+1 = T} is the set of vertices and R = {r1, . . . , rK} is the set of

all possible routes connecting S to T (that do not traverse the same edge twice). Obviously,

we may assume R 6= ∅. Algebraically, G can be represented by an N ×K incidence matrix
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(denoted by G) whose rows are indexed by the elements in V \ {S, T} and whose columns

are indexed by the elements in R. The (i, j)th element of G is 1 if the ith vertex is visited

on the jth route; otherwise, it is 0.

Figure 1 provides a toy example to illustrate these definitions.

(Insert Figure 1 here.)

There are four possible routes that can connect S to T :

r1 : S → v1 → v3 → v5 → v4 → v6 → T

r2 : S → v1 → v3 → v6 → T

r3 : S → v2 → v3 → v5 → v4 → v6 → T

r4 : S → v2 → v3 → v6 → T.

The corresponding incidence matrix is:

G =




r1 r2 r3 r4

v1 1 1 0 0

v2 0 0 1 1

v3 1 1 1 1

v4 1 0 1 0

v5 1 0 1 0

v6 1 1 1 1




. (1)

The action space for the Defender is identical to R. A pure strategy for the Defender

is to choose a particular route in R. These strategies can be represented by a (column)

vector of K dimension, with K − 1 zeroes and a one in the kth position to indicate that

route k has been chosen. Let D consist of the K standard basis elements of R
K . Then the

set of all pure strategies for the Defender can be denoted as D .

In the road network example illustrated in Figure 1, the set of all pure strategies for

the Defender is

D = {r1, r2, r3, r4},
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where the strategies correspond to vectors in the obvious way:

r1 = (1, 0, 0, 0)′,

r2 = (0, 1, 0, 0)′,

r3 = (0, 0, 1, 0)′,

r4 = (0, 0, 0, 1)′.

Notice that D (and hence the element ri) and R (and hence the element ri) actually refer to

the same object with the former as an algebraic representation and the latter as a graphical

representation. To facilitate later exposition, we call it a mixed strategy for the Defender if

she chooses among the routes in R at random according to some probability distribution

Q = (q1, · · · , qK); i.e., route rk ∈ D is chosen with probability qk. Denote the set of all

probability distributions over D as

Q =

{
Q = (q1, · · · , qK) :

K∑

k=1

qk = 1 and qk ≥ 0 for k = 1, . . . , K

}
.

Similarly, the set of all pure strategies for the Attacker, which we denote as A , consists

of all possible combinations of locations at which the Attacker may site IEDs. Usually,

because of financial, time or human resource constraints, the Attacker cannot attack all of

the vertices; the subset A reflects this constraint. Each pure strategy a ∈ A can now be

algebraically represented by a binary (column) vector of length N , with ones corresponding

to the vertices at which IEDs are placed and zeroes corresponding to vertices without IEDs.

Formally,

A = {ai : ai = (α1i, . . . , αNi)
′ where αni = 0 or 1 for n = 1, . . . , N and i = 1, . . . , I} ,

where I = |A | is the cardinality of A . Obviously, A is a subset in ⊆ {0, 1}N . This

formulation assumes, innocuously, that IEDs cannot be placed at S or T , the start or

terminus of the route.

In the road network example illustrated in Figure 1, if the Attacker can choose at most

three IED locations, then

A = {a : a = (α1, . . . , αN)′ : for αi = 0 or 1 and

N∑

i=1

αi ≤ 3}.
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A pure strategy a = (0, 1, 1, 0, 0, 1)′ in A occurs if the Attacker makes a non-randomized

choice to place IEDs at (and only at) vertices v2, v3 and v6.

The mixed strategies for the Attacker are obtained by choosing the elements in A at

random according to some probability distribution P = (p1, · · · , pI); i.e., ai ∈ A is chosen

with probability pi. Denote the set of all probability distributions over A as

P =

{
P = (p1, · · · , pI) :

I∑

i=1

pi = 1 and pi ≥ 0 for i = 1, . . . , I

}
.

2.2 Payoff Structures

The next step is to describe the payoff structures. In applications, these will be complex,

and the Attacker and Defender will have only imperfect knowledge of their opponent’s

valuations. For adversarial advantage, both sides need to model the payoff functions of

their opponents.

The Defender realizes gains associated with the successful arrival of the convoy at T ,

but costs associated with damage to the convoy. Additionally, there are costs specific to

the route—long routes cost more in time and fuel, and some routes may block traffic and

antagonize the city population. For the Attacker, the gains are the (probably unknown and

hence random) value of inflicting damage, and perhaps political capital. The Attacker’s

costs are the resources needed for the attack. In practice, neither the Defender nor the

Attacker will have precise knowledge of their opponent’s payoff function, but previous

experience and intelligence information will enable subjective probability assessments.

To formalize this, we make two assumptions:

Assumption 1: It is possible to express the utility function of both the Attacker and

Defender in commensurate scalar units; i.e., the values can be monetized.

Assumption 2: The total payoff to the Defender and the Attacker is the sum of their

corresponding incremental payoffs across the entire route.

Our sense is that the assumptions are generally realistic. Assumption 1 is quite standard in

the literature. Assumption 2 could be inadequate when, say, the Defender’s utility function

is nonlinear in monetized loss, but it provides a good approximation for most situations.
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To illustrate these assumptions, suppose that the Attacker places IEDs at v1 and v3 in

the road network described in Figure 1. If the Defender follows route r1 (respectively, route

r2), then Assumption 1 asserts that there exist two real numbers ℓ11 and ℓ31 (respectively,

ℓ12 and ℓ32) measuring the payoffs incurred to the Defender at these two locations, and there

exist two real numbers u11 and u31 (respectively, u12 and u32) that measure the payoffs for

the Attacker at these two locations. In general, we do not need to require any particular

relationship between the ℓij’s or between the uij’s. As we indicated at the beginning of this

section, the values of the ℓij’s and uij’s incorporate not only payoff-relevant information

such as military intelligence beliefs about values of targets but also network-dependent

information such as the cost associated with a particular vertex or route. Assumption 2

asserts that the total payoff for the Defender is ℓ11+ℓ31 and the total payoff for the Attacker

is u11 + u31 if the Defender chooses route r1 and the attacks occur at v1 and v3.

Under these assumptions, one can define the payoff matrices for the Defender and the

Attacker.

Definition 1 The payoff matrix for the Defender corresponding to the graph incidence

matrix G = [gij] is denoted by Y = [Yij ] for i = 1, . . . , N and j = 1, 2, . . . , K, where Yij is

a numerical value (possibly a random variable) representing the payoff the Defender receives

if she chooses route j and there is an attack at vertex i. Similarly, the payoff matrix for the

Attacker is X = [Xij ] for i = 1, . . . , N and j = 1, 2, . . . , K, where Xij is a numerical value

(possibly a random variable) representing the payoff the Attacker receives if he attacks at

vertex i when the Defender chooses route j.

Using this notation, the payoffs to the Defender and the Attacker are a
′
Y r and a

′
Xr,

respectively, when the Defender chooses route r ∈ D and the Attacker chooses IED sites

a ∈ A . If the Defender employs a mixed strategy Q = (q1, · · · , qK) and the Attacker

uses P = (p1, · · · , pI), then the expected payoffs to the Defender and the Attacker are
K∑

k=1

I∑
i=1

piqka
′
iY rk and

K∑
k=1

I∑
i=1

piqka
′
iXrk, respectively.

In the road network example illustrated in Figure 1, if we assume that the payoffs are

both vertex-dependent but are route-independent, then the payoff matrices for the Defender
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and the Attacker are:

Y =




r1 r2 r3 r4

v1 L1 L1 0 0

v2 0 0 L2 L2

v3 L3 L3 L3 L3

v4 L4 0 L4 0

v5 L5 0 L5 0

v6 L6 L6 L6 L6




, X =




r1 r2 r3 r4

v1 U1 U1 0 0

v2 0 0 U2 U2

v3 U3 U3 U3 U3

v4 U4 0 U4 0

v5 U5 0 U5 0

v6 U6 U6 U6 U6




. (2)

In this particular example, if the Defender chooses route r1 = (1, 0, 0, 0)′ and the At-

tacker selects vertices v2, v3 and v6 as IED sites, so a = (0, 1, 1, 0, 0, 1)′, then the total

payoff for the Defender will be a
′
Y r1 = L3 + L6 and the total payoff for the Attacker will

be a
′
Xr1 = U3 + U4.

3 Game Theory and Adversarial Risk Analysis

Given the previous formulation of the problem, there are two major solution strategies:

game-theoretic and decision-analytic. The former seeks an equilibrium in which no agent,

acting alone, can improve their outcome; the latter attempts to maximize an agent’s ex-

pected utility. Both of these can be implemented in multiple ways. We shall use an

adversarial risk analysis (ARA) approach, which is a particular kind of decision analysis.

But first we give a brief review of some alternatives.

Classical game theory would treat the routing problem as a normal form game. There

is a small difficulty in that the entries in the payoff matrices are mutually unknown, and so

must be represented by random variables. Harsanyi (1967a,b,c) devised a Bayesian Nash

equilibrium solution, in which Nature makes a prior move to randomly determine the ”type”

of the player, each type having its own distinct belief about the payoff matrix, and where

the distribution with which Nature assigns types is common knowledge to both players.

Alternatively, the global game solution concept (cf. Morris and Shin, 1998) imagines that

players observe noisy correlated signals about the random payoff matrices. Global game

solutions are attractive in part because they are unique, unlike the multiple Nash equilibria
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that provide little prescriptive guidance. But these methods, and others, require strong

assumptions such as common knowledge that are not tenable in the context of convoy

routing.

To avoid this problem, a recent approach (Brown, Carlyle, Salmeron, and Wood, 2006;

Brown, Carlyle and Wood, 2008) is to elicit expert opinion (cf. O’Hagan et al., 2006) and

use this to develop a joint distribution for the random variables. Then one replaces the

entries in the tables by their expected values and computes the Nash equilibrium solution.

But the operations of computing expectations and Nash equilibria do not commute.

The best solution to the average game need not be the solution that is, on average, the

best. In particular, information encoded in the player’s payoff functions may get lost in

the averaging procedure; this is related, in a different context than game theory, to the

value of information (cf. Raiffa and Schlaifer, 1961, Part II, chap. 1). To resolve this,

one could simulate many payoff tables at random, according to the joint distribution over

costs obtained from the experts, find the minimax solution for each, and then choose the

action that has the largest average payoff (cf. Banks and Anderson, 2006). A slightly

different approach is to simulate outcomes according to the joint distribution on costs, use

probabilities on the actions of opponents obtained from some method (e.g., our mirroring

argument, or the relative utility of Paté-Cornell and Guikema, 2002), and then choose the

action that maximizes the expected payoff (Rios Insua, Rios, and Banks, 2009).

Classical game theory, based on some sort of equilibrium solution concept, has many

critics. One issue is that it does a poor job of describing human behavior (Camerer, 2003;

also the game-theorist Gintis, 2009). A second issue is that it does not take account of

all the information that is available (cf. Arce and Sandler, 2007; Hausken, 2002). In our

example, it is quite plausible that the Defender would have highly reliable (but not perfect)

intelligence about where the Attacker has sited IEDs; however, that information would not

affect the computation of the classical Nash equilibrium, nor is that information employable

by any of the alternative equilibrium concepts without substantial additional machinery

and assumptions.

Decision analysis arose in response to these concerns (Raiffa, 1982; Kadane and Larkey,

1982). It was and remains controversial; Harsanyi (1982) laid out the main arguments
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against it. Raiffa (2002) provides a more recent account of the issues.

In general, decision analysis uses expert judgment to place a subjective distribution over

the actions of one’s opponent, and then makes the choice that maximizes one’s expected

value. The advantage is that it provides a natural unification of several types of uncertainty

(the random payoffs from a given pair of Attacker-Defender actions, the uncertainty about

the utility functions, and the behavioral uncertainty about the opponent’s choice). But it

suffers the usual criticism of Bayesian subjectivity.

A second disadvantage is that decision analysis is difficult to operationalize. Previous

work is largely opaque about the process through which the distribution on the oppo-

nent’s choices is developed. In the context of infrastructure protection, when the Defender

must choose which assets to protect, Paté-Cornell and Guikema (2002) propose taking the

subjective distribution to be proportional to the Attacker’s utility function evaluated at

the possible targets, but this is a ”zero-order” analysis in that it precludes consideration

of strategy by the Attacker. Banks and Anderson (2006) apply decision analysis to the

prospect of a bioterrorist attack with smallpox, but their distributions have only a first-

order grounding in strategy. It might apply when the opponent has some meager cunning,

but is not adequate in general.

Myerson (1991, p. 114) points up this problem clearly:

“A fundamental difficulty may make the decision-analytic approach impossible

to implement, however. To assess his subjective probability distribution over

the other players’ strategies, player i may feel that he should try to imagine

himself in their situations. When he does so, he may realize that the other

players cannot determine their optimal strategies until they have assessed their

subjective probability distributions over i’s possible strategies. Thus, player i

may realize that he cannot predict his opponents’ behavior until he understands

what an intelligent person would rationally expect him to do, which is, of course,

the problem that he started with. This difficulty would force i to abandon the

decision analytic approach and instead undertake a game-theoretic approach,

in which he tries to solve all players’ decision problems simultaneously.”
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However, instead of following Myerson in defaulting back to game theory, the remainder

of this section describes a new way to address the problem. Our approach is similar to a

Bayesian implementation of Level-k thinking (Stahl and Wilson, 1995), for a single value

of k. It also has similarities to a partially-observable Markov decision process approach

developed by Goodie, Doshi and Young (2010) to model different levels of reasoning about

an opponent’s thinking.

3.1 The Mirroring Argument and ARA Solution

Decision analysis emphasizes formulating the decision making process from a single decision

maker’s perspective and models adversarial situations through subjective assessments about

the opponents’ behaviors. We describe the decision analysis solution of the routing problem

described in Section 2 from the standpoint of the Defender.

The Defender must use her belief about the payoff functions and other available in-

formation to develop a subjective prediction for the Attacker’s behavior, i.e., his (mixed)

strategy; this is her probability distribution over A , the set of all pure strategies for the

Attacker. Her distribution should reflect the fact that the Attacker is performing a similar

analysis regarding the Defender’s strategy, although (since she is not telepathic) she must

employ a subjective Bayesian model that describes the Attacker’s thinking. We use the

term mirroring to refer to the process of modeling an opponent’s decision-making.

To formalize the idea, suppose that the Defender has somehow constructed a probability

distribution P over the Attacker’s strategy space A . Then the Defender finds IEP [ã′] =
∑I

i=1 piai, where ã is Attacker’s choice of IED sites, which is unknown and thus random to

the Defender. And, as an expected utility maximizer, the Defender’s problem is to select

the route r
∗ (a pure strategy) such that

r
∗ = argmax

r∈D

IEP [ã′]Y r,

where Y is the (actual) payoff matrix for the Defender.

In order to construct P , we describe the mirroring argument. The following key to

the notation is helpful. (As a notational convention, we place a tilde on the top of a

deterministic quantity to denote the corresponding random quantity.)
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(Ω, F , IP): the probability space which models the Defender’s information set (a generic

outcome is denoted as ω);

Y : the Defender’s privately known loss matrix (which is unknown to the Attacker);

X̃(ω): the random matrix on (Ω, F , IP) which the Defender uses to model the Attacker’s

payoff matrix;

Ỹ (ω): the random matrix on (Ω, F , IP) that the Defender uses to describe the Attacker’s

beliefs about the Defender’s payoff matrix;

ã: the random vector that the Defender uses to model the Attacker’s decision (a mixed

strategy);

r̃: the random vector that the Defender uses to model the Attacker’s belief about the

Defender’s decision (a mixed strategy).

In the this setting, all uncertainties are described from the perspective of the Defender. We

notice that no common knowledge assumption is imposed. In particular, the probability

space (Ω, F , IP) is assessed purely based on the Defender’s historical data, military intelli-

gence, expert opinions, and so forth, about which the Attacker may have no knowledge. A

generic outcome ω ∈ Ω can be interpreted as the state of the situation from the Defender’s

perspective.

First suppose that the Defender has a point-mass prior that the state of the situation is

ω. Then the Defender believes that the Attacker’s payoff matrix is given by X̃(ω) (viewed

as deterministic for the fixed ω) and that the Attacker forms a probability distribution

Q[·|ω] ∈ Q over the Defender’s strategy space D . Thus, the Defender believes that the

Attacker will try to find

argmax
P∈P

IEP [ã′]X̃(ω)IEQ[·|ω][r̃], (3)

which elicits one mixed-strategy. Next, allowing ω to have non-unitary support , the

probability distribution defined in (3) becomes a random vector on (Ω, F , IP) taking values

in P. Thus, given all the information (Ω, F , IP) that she has, the Defender will predict
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the Attacker’s strategy to be

IEP

[
argmax

P∈P

IEP [ã′]X̃(ω)IEQ[·|ω][r̃]

]
∈P,

which is a probability distribution over A .

On the other hand, knowing the state of the situation ω ∈ Ω and a prediction P of the

Attacker’s strategy, the Defender believes that the Attacker believes that the Defender will

try to solve

argmax
Q∈Q

IEP [ã′]Ỹ (ω)IEQ[r̃], ∀ω ∈ Ω,

which yields a random vector on (Ω, F , IP) taking values in Q.

These predicted probability distributions will be consistent if they satisfy the following

definition:

Definition 2 A probability distribution P ∗ ∈ P and a family of probability distributions{
Q∗[·|Ỹ (ω)] ∈ Q : ω ∈ Ω

}
constitute a mirroring fixed point based on the Defender’s in-

formation set (Ω, F , IP) if they simultaneously satisfy

P ∗ = IEP

[
argmax

P∈P

IEP [ã′]X̃(ω)IEQ∗[·|eY(ω)][r̃]

]
, (4a)

Q∗[·|Ỹ (ω)] = argmax
Q∈Q

IEP ∗ [ã′]Ỹ (ω)IEQ[r̃], ω ∈ Ω. (4b)

A route r
ARA is said to be a pure-strategy adversarial risk analysis (ARA) solution for the

Defender whose actual payoff matrix is Y if

r
ARA = argmin

r∈D

IEP ∗ [ã]′Y r, (5)

where P ∗ is obtained as the fixed point in the mirroring analysis.

Note that mixed-strategy ARA solution is given by QARA = argmin
Q∈Q

IEP ∗ [ã]′Y IEQ[r̃]. In

our case, where the payoff functions are linear in the decision variables, the mixed-strategy

solution reduces to the pure-strategy case.

Also note that the mirror fixed point defined above is asymmetric in terms of how

the Defender’s information (Ω, F , IP) is used. Knowing the state of the situation, the

Defender’s strategy should be conditioned on that information. In contrast, the prediction
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for the Attacker should not depend on the information that is only available to the Defender.

This asymmetry reflects the basic starting point of ARA framework: information is not

equally available to all decision makers and should be used to favor of the party who owns

the information and who is conducting the analysis as well. An unsurprising consequence

is that, in general, the party with the best information obtains better outcomes from its

own perspective.

The differences and connections between the ARA approach and the traditional game-

theoretical approach are discussed in the next subsection. We also prove the existence of

the mirroring fixed point in Section 3.3, demonstrating that it is a well-defined solution

concept.

3.2 ARA versus Classical Game-Theoretical Solution Concepts

We compare the ARA solution concept with those of traditional game theory. When

finding Nash equilibria, the random payoff matrices X̃(ω) and Ỹ (ω) are modeled as private

information (types) for the corresponding players. Most importantly, the probability space

(Ω, F , IP) is assumed to be common knowledge (Harsanyi’s common prior assumption;

cf. Morris, 1995), which fundamentally limits its applicability (e.g., as in our counter-

insurgency example).

Under the common prior assumption, one can define a commonly used solution con-

cept, the Bayesian Nash Equilibrium (BNE) (c.f. Myerson (1991)), whose computation is

achieved jointly by the Defender and the Attacker based on their common prior (Ω, F , IP).

In contrast, within the ARA framework, the probability space (Ω, F , IP) is constructed

based solely on the information available to the Defender. More importantly, X̃(ω) and

Ỹ (ω) are not interpreted as the private information of the players but rather are subjec-

tive assessments purely based on the Defender’s information (Ω, F , IP) and, hence, the

computation of the mirroring fixed point is conducted only by the Defender. The subjec-

tive probability assessment by a single party versus the preassumption of common prior

among all the parties is the first philosophical difference between the ARA solution and

the classical game theory approach.

The second conceptual difference between the ARA solution and the classical game
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theory approach lies in the distinction between prediction versus implementation. Game

theory solutions are regarded as a prediction as well as a decision rule for all the play-

ers; while in the ARA framework, the mirroring fixed point serves only as a (subjective)

prediction of the opponents’ behavior. The decision maker’s decision rule is determined

subsequent to and separately from the mirroring process.

The ARA approach also has computational advantages. Calculating the BNE usually

requires conditional probability elicitation, which is avoided within the ARA framework. Of

course, typically the Defender must still perform a difficult elicitation—this is an ubiquitous

challenge in BNE and decision analysis.

Mathematically, Definition 2 asserts that the mirroring fixed point is the simultaneous

best responses on average (from the Defender’s perspective) between the Defender and

the Attacker as opposed to the simultaneous best responses of an “averaged game”, which

would correspond to the following system of fixed point equations:

argmax
P∈P

IEP [ã′]XIEQ̄[r̃] = P̄ ,

argmax
Q∈Q

IEP̄ [ã′]Y IEQ[r̃] = Q̄,

where X = IEP

[
X̃(ω)

]
and Y = IEP

[
Ỹ (ω)

]
are the average payoff matrices. Comparing

these with equations (4a) and (4b), we notice that the order of taking expectation IEP and

optimization argmax are interchanged. Indeed,
{
P̄ , Q̄

}
is, by definition, a (mixed strategy)

Nash Equilibrium for a bimatrix game with payoff matrices X for the row player and Y

for the column player. Thus the averaged game only uses the “mean” information of X̃

and Ỹ .

We summarize this discussion in the following proposition:

Proposition 1 If X̃(ω) ≡ X and Ỹ (ω) ≡ Y with probability one, then the mirroring

fixed point (P ∗, Q∗[·|Ỹ (ω)]) coincides with a (mixed strategy) Nash Equilibrium (P̄ , Q̄) for

a bimatrix game with payoff matrices X for the row player and Y for the column player,

i.e. with probability one,

P ∗ = P̄ , Q∗[·|Ỹ (ω)] = Q̄.

Proposition 1 establishes the connection between the ARA and the traditional game-

theoretical approaches in the absence of uncertainty. When there is uncertainty, we want
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to identify the relationship between the mirroring fixed point and BNE solutions. Because

classical game theory models all the players jointly, as explained above, each of the players

will use Bayes rule to update their belief simultaneously based on their private information

when they are making decisions. In terms of notation, we use IP [·|X] to denote the

conditional probability IP
[
·|X̃(ω) = X

]
for any given deterministic payoff matrix X and

a similar convention applies to IP [·|Y ]. By definition, the family of distributions

IP
[
·|X̃

]
:=
{
P ∗∗[·|X] ∈P : X is in the support of X̃(ω)

}

and

IP
[
·|Ỹ
]

:=
{
Q∗∗[·|Y ] ∈ Q : Y is in the support of Ỹ (ω)

}

constitute a BNE for the game where (Ω, F , IP) is common knowledge, provided that they

satisfy

argmax
P∈P

IEP [a′]X̃IEP

[
IEQ∗∗[·|eY][r̃]

∣∣∣X̃
]

= P ∗∗[·|X̃], (6a)

argmax
Q∈Q

IEP

[
IE

P ∗∗[·|eX][ã
′]
∣∣∣Ỹ
]
Ỹ IEQ[r] = Q∗∗[·|Ỹ ]. (6b)

Comparing (4a)-(4b) in Definition 2 with the equations (6a)-(6b), we find that the

mirroring fixed point and BNE solutions are fundamentally different. In ARA, the Defender

solely possesses knowledge of the underlying information set, so, for each realized state

of the situation, she can evaluate and optimize the payoff functions with respect to her

decision. There is no Bayesian updating based on privately observed information as in BNE.

Secondly, in BNE, players have to first average out the payoff functions according to their

updated beliefs and hence pick the strategy; whereas, in the mirroring fixed point solution,

the Defender will first pick the strategy and hence average out to form the prediction for

the Attacker whose strategy cannot depend on the information that is only available to

the Defender. Therefore, in general, there is no correspondence between between ARA

mirroring fixed point and BNE.

To illustrate the differences between the predictions made by the mirroring fixed point

and the traditional game theoretical approach, we consider the following toy example where

exact calculation can be performed.
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Toy Example: The simplest nontrivial road network is one where the Defender (the

column player) has two routes r1 and r2 to choose from and the Attacker (the row player)

has two attacking strategies a1 and a2, where ai represents an attack at a location along

the route ri (i = 1, 2). This example is represented by the following graph:

(Insert Figure 2 here)

Suppose, from the Defender’s perspective, that the information set is Ω = {ω1, ω2, ω3}

and that

IP(ω1) =
1

2
, IP(ω2) =

1

3
, IP(ω3) =

1

6
.

The payoff matrices are given by

X̃(ω1) = X1, X̃(ω2) = X2, X̃(ω3) = X2,

Ỹ (ω1) = Y 1, Ỹ (ω2) = Y 1, Ỹ (ω3) = Y 2,

where we take

X1 =


 9 2

3 6


 , X2 =


 10 1

3 7


 , Y 1 =


 1 8

7 4


 , Y 2 =


 0 9

7 3


 .

In this example we can now compute the mixed-strategy solutions under three different

solution concepts:

• For the average game with averaged payoff matrices,

X =


 19/2 3/2

3 13/2


 , Y =


 5/6 49/6

7 23/6


 ,

the Nash Equilibrium
{
P̄ , Q̄

}
is given by

P̄ =

(
19

63
,
44

63

)
, Q̄ =

(
11

21
,
10

21

)
.

• For the Bayesian game where (Ω, F , IP) is assumed to be common knowledge for

both players whose privately known payoff matrices are X̃ and Ỹ , respectively, the

Bayesian Nash Equilibrium {P ∗∗[·|X1], P
∗∗[·|X2], Q

∗∗[·|X1], Q
∗∗[·|X2]} is given by

P ∗∗[·|X1] =

(
23

78
,
55

78

)
, P ∗∗[·|X2] =

(
4

13
,

9

13

)
,

Q∗∗[·|Y 1] = (0.4, 0.6) , Q∗∗[·|Y 2] =

(
38

65
,
27

65

)
.
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• For the ARA framework, the mirroring fixed point {P ∗, Q∗} is given by

P ∗ = (0.3, 0.7) , Q∗[·|ω1] = Q∗[·|ω2] = (0.4, 0.6) , Q∗[·|ω3] = (1, 0) .

We note that IEP

[
P ∗∗[·|X̃]

]
6= P ∗.

In summary, a fundamental difference between ARA and traditional game theory is

whether the assumption of common knowledge is imposed or not. For the motivating

problem of convoy routing, it is unrealistic to assume that the Defender and the Attacker

have the same common information. But it is entirely reasonable to imagine that the players

in such games have relevant probabilistic knowledge about their opponent’s actions, derived

from military intelligence and previous IED placements. Therefore we recommend the ARA

solution concept in problems of this kind.

3.3 Existence of the Mirroring Fixed Point

In order to show that the ARA approach yields a well-defined solution concept, we need to

prove the existence of the mirroring fixed point defined by (4a) and (4b). To that end, we

assume Ω = {ω1, . . . , ωL} is finite (this could easily be relaxed) and that

IP[ωl] = πl, l = 1, 2, . . . , L.

For any fixed pair a and r, define the quantities

V (l)
a,r := a

′
X̃(ωl)r, l = 1, 2, . . . , L,

W (l)
a,r := a

′
Ỹ (ωl)r, l = 1, 2, . . . , L,

W
(l,m)

a,r := πmW (l)
a,r, l, m = 1, 2, . . . , L.

Here, for cosmetic reasons, we drop the boldface on a and r when they are used as sub-

scripts.

With this notion, the fixed point equations (4a) and (4b) defining the probability dis-

tributions P ∗ = (P ∗
a )a∈A ∈ P and

{
Q∗(l) = (Q

∗(l)
r )r∈D ∈ Q : l = 1, . . . , L

}
can now be
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written in the following form:

P ∗ =

L∑

l=1

πl

(
argmax
(Pa)∈P

∑

a∈A ,r∈D

PaV
(l)
a,rQ

∗(l)
r

)
(7)

Q∗(l) = argmax
(Qr)∈Q

∑

a∈A ,r∈D

P ∗
a W (l)

a,rQr, l = 1, . . . , L. (8)

Lemma 1 Suppose L probability distributions {P ∗(l) ∈P : l = 1, 2, . . . , L} over A and L

probability distributions {Q∗(m) ∈ Q : m = 1, 2, . . . , L} over D satisfy the following system

of fixed-point equations:

P ∗(l) = argmax
(Pa)∈P

∑

a∈A ,r∈D

PaV
(l)
a,rQ

∗(l)
r , l = 1, . . . , L, (9)

Q∗(l) = argmax
(Qr)∈Q

∑

a∈A ,r∈D

1≤m≤L

P ∗(m)
a W

(l,m)

a,r Qr, l = 1, . . . , L. (10)

Then P ∗ =
∑L

l=1 πlP
∗(l) and

{
Q∗(l) : l = 1, . . . , L

}
satisfy (7) and (8) and hence constitute

a mirroring fixed point.

Proof: Multiplying (9) with πl and summing over l = 1, . . . , L, we immediately recover (7).

In (10), we notice, by definition, that for any Qr ∈ Q,

L∑

m=1

P ∗(m)
a W

(l,m)

a,r Qr =
L∑

m=1

P ∗(m)
a πmW (l)

a,rQr = P ∗
a W (l)

a,rQr,

which yields (8). 2

Lemma 2 The fixed point of the system (9) and (10) exists.

Proof: For any l and any fixed Q = (Qr)r∈D , the term
∑

a∈A ,r∈D

PaV
(l)
a,rQr in (9) is linear

(and hence concave) in the decision variables P = (Pa)a∈A . Similarly, for any l and

any fixed
{

P (m) = (P
(m)
a )a∈A : m = 1, . . . , L

}
, the term

∑
a∈A ,r∈D

1≤m≤L

P
(m)
a W

(l,m)

a,r Qr is also linear

(and hence concave) in the decision variables Q = (Qr)r∈D . Also, all the feasible sets of

decision variables are convex compact sets in a finite Euclidean space. Indeed, for any

(P̂
(l)
a )a∈A ∈P and (P̌

(l)
a )a∈A ∈P, we have

∑

a∈A

(
α1P̂

(l)
a + α2P̌

(l)
a

)
= α1

∑

a∈A

P̂ (l)
a

︸ ︷︷ ︸
=1

+α2

∑

a∈A

P̌ (l)
a

︸ ︷︷ ︸
=1

= 1, l = 1, . . . , L
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for any α1, α2 such that α1 + α2 = 1 and hence α1P̂
(l)
a + α2P̌

(l)
a ∈P. A similar argument

applies to Q. Therefore, by the Nash Fixed-Point Theorem (c.f. Aubin, 1993), the fixed

point exists for the system (9) and (10). 2

As a remark, we point out that the fixed point to the system (9) and (10) can mathe-

matically be regarded as the (mixed-strategy) Nash Equilibrium of a game where there are

L P -players (choosing {P (l) ∈P : l = 1, . . . , L}) with payoff functions
∑

a∈A ,r∈D

P
(l)
a V

(l)
a,r Q

(l)
r

and there are L Q-players (choosing {Q(l) ∈ Q : l = 1, . . . , L}) with the payoff functions
∑

a∈A ,r∈D

1≤m≤L

P
(m)
a W

(l,m)

a,r Q
(l)
r .

Combining Lemma 1 and Lemma 2, we obtain the main result.

Theorem 1 The mirroring fixed point defined by (4a) and (4b) exists.

4 Algorithm Structure

To solve an ARA problem, the key step is to compute the probability distribution P ∗

in the mirroring fixed point (the Q∗[·|ω] is auxillary, and not of primary interest to the

analyst). Given P ∗, the rest of the procedure is simply an optimization problem with the

mirroring fixed point as an input. In the traditional game-theoretic literature on equilibria

for games with complete information, there are many algorithms for computing (mixed-

strategy) Nash equilibria, but each algorithm usually applies to a particular class of games

with some specific structure. For example, three standard algorithms and their domains of

success are:

1. The Fictitious Play (FP) scheme proposed by Brown (1949) has been proven to work

for zero-sum games (Robinson, 1951), 2× n games (Berger, 2005) and supermodular

games with diminishing returns (Krishna, 1992), among others.

2. The Round Robin (or tatônnement) scheme–a stronger modification of FP based on

best response dynamics–has been proven to work for supermodular games (Topkis,

1998).
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3. The Lemke-Howson scheme based on simplex methods has been shown to solve the

class of bimatrix games (Lemke and Howson, 1964).

In general, the search for algorithms that solve for Nash equilibria (i.e., the Nash-type

fixed points) is still an open and active research area (Papadimitriou, 2000). In particular,

there are many counterexamples and open questions regarding the convergence of the above

algorithms beyond the stated families of games. To the best of our knowledge, no iterative

algorithms have been proposed to solve for equilibria for games with incomplete information.

In our situation, due to the randomness in the payoff matrices in order to model the

asymmetric information between the players, we propose an iterative algorithm to compute

the probability distribution P ∗ in the ARA mirroring fixed point, following the spirit of

the FP scheme. Our algorithm incorporates statistical simulation in each iteration step,

which is an effective and natural approach in the ARA setting. This is due to the nature

of such fixed points: first one optimizes, and then one takes expectations. The main

difference between our algorithm and the FP scheme is that we just need to keep track of

and update one of the empirical distributions, namely that for P ∗, and update Q[·|ω] with

a (pure-strategy) best response dynamics (i.e., we don’t need to keep track of or update the

empirical distribution of the Defender’s play). Therefore, our algorithm will only estimate

P ∗ but not Q∗[·|ω], because only P ∗ is needed in the third step, when the Defender selects

the route that maximizes her expected utility.

This algorithm also demonstrates a computational advantage of the ARA mirroring

fixed point as a solution concept. For traditional games of complete information, the FP

algorithm must update all of the players’ mixed strategies while we just need to keep track

of the Attacker’s mixed strategy in our ARA algorithm. Compared with the classical BNE

solution concept for games of incomplete information, the ARA mirroring fixed point is a

computation-friendly solution concept compared with the classical BNE, where Bayesian

updating of the players’ belief systems is computationally a more challenging task.

The specifics of the iterative algorithm for the ARA mirroring fixed point solution are

as follows:

ARA Algorithm: Let the primitives be (Ω, F , IP), a ∈ A and r ∈ D .
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1. Initialize. The Defender starts with a probability distributions P0 over A .

2. Iterate. Given distributions Pt, simulate M samples from (Ω, F , IP).

2.A For each sample ω ∈ Ω, compute

k∗
t (ω) = argmax

1≤k≤K

{[
IEPt

[ã]′Ỹ (ω)
]

k

}
,

where [ · ]k represents the kth element of a vector.

2.B Compute the empirical mean:

Rt ←
1

M

∑

ω∈Ω

argmax
P∈P

IEP [ã]′X̃(ω)ek∗
t (ω),

where ek represents the K-dimensional vector with 1 in the kth component and

0 in all other components.

2.C Update:

Pt+1 ←
t

t + 1
Pt +

1

t + 1
Rt.

2.D If Pt− Pt+1 is sufficiently small with respect to a suitable metric, terminate the

iteration and set P ∗ to be the terminating estimate Pt. Otherwise, repeat all of

Step 2.

3. At termination, the Defender chooses the action

r
∗ = argmin

r∈D

IEP ∗[ã]′Y r,

where Y is the Defender’s true loss matrix.

The purpose of the second step of the algorithm is to calculate the Defender’s subjective

probability assessment about the Attacker’s choices, so that the Defender can optimize the

route selection in the third step.

For the Toy Example, the above algorithm converges and correctly finds the theoretical

result P ∗ = (0.3, 0.7). However, a general proof of convergence is unresolved.

In order to investigate the computational complexity of this algorithm, we conducted

an experiment based on the Toy Example proposed in Section 3.2 on a Lenovo ThinkPad
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X201 personal laptop with a 2.67GHz Intel Core 2 i7 CPU processor and 2.92GB of RAM,

running 32-bit Windows 7. The calculations were done using Matlab with a single processor;

the run times were estimated using Matlab’s Profiler utility.

Specifically, we extend the Toy Example by concatenating J copies of the the simple

road network together with the associated payoff matrices. (These J payoff matrices are in-

dependently and identically distributed according to the probability distributions specified

in the Toy Example. Because of the finiteness of the distribution, we can obtain the exact

probability distribution to use in the computation instead of simulating the distribution.)

This extension has 2J potential locations to attack and 2J possible routes.

(Insert Figure 3 here.)

We record the CPU compute time for J = 1, 2, . . . , 8 and plot the logarithm of that

time against the number of copies J in Figure 3(a). As can be seen, the computational

time scales exponentially with respect to the network size. Figure 3(b) records the number

iterations of the main oracle in the ARA algorithm needed in order to meet the convergence

criterion: ‖Pt−Pt+1‖∞ < 0.00001. As may be seen, when the network size and the number

of attacks are of the same order, the algorithm takes longer to converge; also, the number of

iterations decreases and then levels off as the size of the network increases. This shows that

the computational time increases because of algebraic operations involving matrices and

vectors of larger dimension, not because more iterations of the main oracle are needed. In

this sense, the computational complexity of the algorithm does not scale with the network

size.

We now turn to the road network given by Figure 1. Suppose the payoff matrices for

the Defender and the Attacker are given by (2). Furthermore, we assume that their payoff

matrices are of zero-sum; i.e., Li = −Ui for i = 1, . . . , 6. Also, suppose

Ui
i.i.d.
∼ Binomial(10, 0.5), i = 1, . . . , 6.

The positive quantity Ui can be interpreted as the gain obtained by an IED attack at

vertex i while Li < 0 is the loss to the Defender from an IED attack at vertex i. So the

Attacker wants to maximize his cumulative gains and the Defender wants to minimize her

cumulative loss. The Defender’s action space is simply D = {r1, r2, r3, r4}.
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• Suppose the Attacker’s budget can afford at most only one IED attack, so that

the Attacker’s action space is A = {∅, v1, · · · , v6}. After 3598 iterations of the main

oracle in the ARA Algorithm (with convergence criterion again set to ‖Pt−Pt+1‖∞ <

0.00001), we obtain P ∗ in Table 1.

(Insert Table 1 here.)

• Now suppose the Attacker’s budget can afford at most two IED attacks, so that

the Attacker’s action space is A = {∅, v1, · · · , v6, {v1, v2}, · · · , {v5, v6}}. After 3907

iterations of the main oracle in the ARA Algorithm, we obtain P ∗ in Table 2.

(Insert Table 2 here.)

Our simulation-based modified FP algorithm appears to work well in solving the ARA

mirroring fixed-point problem. Although it is well-known that the FP algorithm in tra-

ditional game theory only converges to the (mixed-strategy) Nash Equilibrium for some

classes of games, we suspect it converges more generally in ARA problems. One reason is

its correct performance across a range of numerical experiments. A second reason is that

the ARA solution only requires update of the Attacker’s mixed strategy. But the general

conditions for convergence of FP remain an open question in the literature.

5 Conclusion

Adversarial routing problems are of longstanding interest in game theory, and the emer-

gence of IEDs as a threat to military convoys has underscored their importance. Classical

approaches to such problems make unrealistic assumptions about shared information; in

practice, many decision-makers have imperfect knowledge of the utility function and re-

sources of their opponents (and perhaps even of their own). Additionally, there may be

relevant history and military intelligence, which, although unreliable and probabilistic,

should inform the analysis.

Bayesian methods express such uncertainty through subjective probability elicitation.

This leads to the creation of an ARA solution concept, in which one encodes personal
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uncertainty through a mirroring argument in order to calculate a subjective distribution

over the actions of the opponent. The mirroring argument hinges upon the construction of

a model for the analysis that one’s opponent is performing, in which personal probability

is used to model all quantities unknown to the decision-maker. This framework allows the

decision-maker to find the distribution that expresses her belief about the choices of her

opponent. She can then make the decision that maximizes her expected value.

The validity of the ARA approach depends upon the existence of a fixed-point solution,

which we show to exist. We also provide a modified Fictitious Play algorithm which, in

our experience, successfully converges to the fixed point.

More broadly, the ARA approach is a viable solution concept with several attractive

features:

• ARA aims a maximizing expected utility; it is hard to imagine a circumstance in

which a decision-maker would not want to do this.

• ARA naturally incorporates soft information, of the kind that is nearly always avail-

able in real-world problems.

• ARA integrates different kinds of uncertainty, including uncertainty about random

outcomes conditional on the choices that are made, uncertainty about the decision

process that produces the opponent’s choices, and uncertainty about how the oppo-

nent values different outcomes.

• ARA specifically addresses asymmetric information, which is certainly more realistic

than the traditional assumptions, especially the common knowledge formulation.

• ARA explicitly models the decision processes of one’s opponent, which focuses an-

alytic attention on a key psychological aspect of strategic games that is too often

overlooked.

• As a minor virtue, ARA is straightforward to compute. The algorithm is fast and

perhaps faster than BNE solutions for comparably complex problems.

These are substantial advantages over the other solution concepts reviewed in this paper.
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In most practical situations, one’s opponent is not a supercomputer armed with perfect

knowledge that has been programmed to find Nash equilibria. Instead, one’s opponent

suffers all the cognitive frailties of human beings, and, if these are properly accounted for,

it opens the door to superior play. ARA offers a solution concept that directly models the

opponent’s decision process. If the decision-maker has an accurate model, then she should

be able to achieve better outcomes.
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Figure 1: An example of a road network.
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Figure 2: The road network represented by the toy example.
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Figure 3: Computational complexity with respect to the network size J = 1, . . . , 8. −2−,

−◦− and −⋄− represent the cases when the maximum number of locations can be attacked

is 1, 2 and 3, respectively.

43



Table 1: The mirroring fixed point P ∗ when the Attacker can afford at most one IED.

Attack ∅ v1 v2 v3 v4 v5 v6

P ∗ .0000 .1241 .1241 .4275 .0001 .0000 .3243
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Table 2: The mirroring fixed point P ∗ when the Attacker can afford at most two IEDs.

Attack ∅ v1 v2 v3 v4 v5 v6 v1, v2 v1, v3 v1, v4 v1, v5

P ∗ .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .1699 .0000 .0000

Attack v1, v6 v2, v3 v2, v4 v2, v5 v2, v6 v3, v4 v3, v5 v3, v6 v4, v5 v4, v6 v5, v6

P ∗ .1334 .1699 .0000 .0000 .1334 .0000 .0000 .3933 .0000 .0000 .0000
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Appendix B: Computer Code
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Code that defines the example problem.

G=[1 1 0 0;

0 0 1 1;

1 1 1 1;

1 0 1 0;

1 0 1 0;

1 1 1 1];

% number of vertices and routes

[numV, numR]=size(G);

numSample=1000000;

epsilon=0.00001;

numAttack=1;

%%% binominal parameter

baseN=10*ones(1,6);

baseP=0.5*ones(1,6);

% baseM=5*ones(1,6);

% baseQ=0.6*ones(1,6);

%%%%%%%%%%%%%%%%%%%%%

A=[];

A=[A; zeros(1,numV)];

numA=1;

for j=1:numAttack

attack=nchoosek(1:numV,j);

numAtt=nchoosek(numV,j);
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numA=numA+numAtt;

for i=1:numAtt

Atemp=zeros(1,numV);

Atemp(1,attack(i,:))=1;

A=[A; Atemp];

end

end

Pa=(1/numA)*ones(1,numA); %%% we want to find the fixed point

Patemp=-ones(1,numA);%% row vector

t=0;

while (max(abs(Pa-Patemp))>=epsilon)

Patemp=Pa;

pay=binornd(repmat(baseN,numSample,1),repmat(baseP,numSample,1));

c=G’*diag(Patemp*A)*pay’;

[C,K]=min(c);

c=A*(pay’.*G(:,K));

[C,I]=max(c);

Pa=t/(t+1)*Patemp+(1/(1+t))*histc(I,1:numA)/numSample;

t=t+1;

end

Code that defines the Toy Problem.

function [X,Y]=randXY(i)

X1=[9 2; 3 6];

X2=[10 1; 3 7];

Y1=[1 8; 7 4];

Y2=[0 9; 7 3];
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switch i

case 1

X=X1;

Y=Y1;

case 2

X=X2;

Y=Y1;

case 3

X=X2;

Y=Y2;

end

Code that defines the attack space.

%% given the number of vertices in the network and the number of attacks,

%% formulate the Attacker’s strategy space adn return the number of

%% strategies

function [A,numA]=AttackSpace(numV,numAttack)

A=[];

A=[A; zeros(1,numV)];

numA=1;

for j=1:numAttack

attack=nchoosek(1:numV,j);

numAtt=nchoosek(numV,j);

numA=numA+numAtt;

for i=1:numAtt

Atemp=zeros(1,numV);
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Atemp(1,attack(i,:))=1;

A=[A; Atemp];

end

end

Code that implements the fictitious play algorithm to find the mirroring fixed-point solu-

tion.

numSample=1000000;

epsilon=0.00001;

%%% number of copies that can be concatenated

%numCopy=2;

%numAttack=2;

%%%%%%%%%%%%%%%%%%%%%

maxAttack=3;

maxCopy=8;

for numAttack=1:maxAttack

for numCopy=1:maxCopy

if numAttack==3 && numCopy==1

continue

end

fprintf(’numAttack=%d, numCopy=%d\n’,numAttack,numCopy);

[run_time,P,t]=Routing_Toy(numSample,epsilon,numCopy,numAttack);

savefile=[’numAttack=’ int2str(numAttack) ’numCopy=’ int2str(numCopy)];

save(savefile,’run_time’, ’P’, ’t’);

end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

maxAttack=3;

maxCopy=8;

RunTime=zeros(maxCopy,maxAttack);

iterations=zeros(maxCopy,maxAttack);

for numAttack=1:maxAttack

for numCopy=1:maxCopy

if numAttack==3 && numCopy==1

continue

end

savefile=[’numAttack=’ int2str(numAttack) ’numCopy=’ int2str(numCopy)];

x=load(savefile,’run_time’,’t’);

RunTime(numCopy,numAttack)=x.run_time;

iterations(numCopy,numAttack)=x.t;

end

end

figure;

plot(1:maxCopy,RunTime(:,1), ’-’,’marker’,’s’);

hold on;

plot(1:maxCopy,RunTime(:,2), ’-.’,’marker’,’o’);

hold on;

plot(2:maxCopy,RunTime(2:end,3), ’--’,’marker’,’x’);

xlabel(’Number of Copies’,’Fontsize’,20)

ylabel(’CPU Computational Time ’,’Fontsize’,20)

figure;
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plot(1:maxCopy,iterations(:,1), ’-’,’marker’,’s’);

hold on;

plot(1:maxCopy,iterations(:,2), ’-.’,’marker’,’o’);

hold on;

plot(2:maxCopy,iterations(2:end,3), ’--’,’marker’,’x’);

xlabel(’Number of Copies’,’Fontsize’,20)

ylabel(’Number of Iterations’,’Fontsize’,20)

Code that produced the concatenated networks used as input for the study on computation

time.

%% given the base matrix and numCopy, create the concatenated matrix and

%% return the dimension parameters too

function [GX,GY,indexSample,V,R]=concateCopy(n,numCopy,numV,numR)

%[numV,numR]=size(baseG);

%n= number of samples

V=numCopy*numV;

R=numR^numCopy;

%SampleIndex=zeros(numCopy,n^numCopy);

GX=zeros(V,R,n^numCopy); % this will be the network node-route incidence matrix

GY=zeros(V,R,n^numCopy);

if numCopy>1

X = cell(1, numCopy);

[X{:}] = ndgrid(1:numR);
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X = X(end : -1 : 1);

y = cat(numCopy+1, X{:});

indexG = reshape(y, numR^numCopy, numCopy);

indexG=indexG’;

%n= number of outcomes

X = cell(1, numCopy);

[X{:}] = ndgrid(1:n);

X = X(end : -1 : 1);

y = cat(numCopy+1, X{:});

indexSample = reshape(y, n^numCopy, numCopy);

indexSample=indexSample’;

for sample=1:n^numCopy

for column=1:numR^numCopy

vx=[];

vy=[];

for row=1:numCopy

[X,Y]=randXY(indexSample(row,sample));

vx=[vx; X(:,indexG(row,column))];

vy=[vy; Y(:,indexG(row,column))];

end

GX(:,column,sample)=vx;

GY(:,column,sample)=vy;

end

end

else

indexSample=1:n;

for sample=1:n

[GX(:,:,sample),GY(:,:,sample)]=randXY(sample);
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end

end

Code that generated the table on computation time.

function [run_time,P,t]=Routing_Toy(epsilon,numCopy,numAttack)

%% the basic parameters

% numSample=1000000;

% epsilon=0.00001;

% %%% number of copies that can be concatenated

% numCopy=2;

%%% the probability distribution of the states of situations

phi=[1/2 1/3 1/6];

n=length(phi);

%mnrnd(numSample,phi)

%%% max number of attacks that are allowed

% numAttack=2;

%%%%

numV=2*numCopy; %% number of vertices

%%%%

[A,numA]=AttackSpace(numV,numAttack);

%%% A will be the strategy space of attacks

P=(1/numA)*ones(1,numA); % the initial probability

% distribution over the attacker’s strategy space,

% we will use this to store the result

Ptemp=-ones(1,numA);

% q=0.5;

% qtemp=-1;

[GX,GY,indexSample,V,R]=concateCopy(n,numCopy,2,2);
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W=zeros(1,n^numCopy);

for i=1:n^numCopy

Z=1;

for copy=1:numCopy

Z=Z*phi(indexSample(copy,i));

end

W(i)=Z;

end

t=0;

run_time=cputime;

while (max(abs(P-Ptemp))>=epsilon)

%sample=mnrnd(numSample,phi,numCopy);

Ptemp=P;

P=zeros(1,numA);

for i=1:n^numCopy

X=GX(:,:,i);

Y=GY(:,:,i);

[C,K]=max(Ptemp*A*Y);

Z=A*X;

[C,I]=max(Z(:,K));

P(I)=P(I)+W(i);

end

P=t/(t+1)*Ptemp+(1/(t+1))*P;

%%%%%%%%%%%%%%

t=t+1;

end

run_time=cputime-run_time;
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