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a b s t r a c t

Analytical solutions for diffuse interface propagation are found for two recently developed

Landau potentials that account for the phenomenology of stress-induced martensitic phase

transformations. The solutions include the interface profile and velocity as a function of

temperature and stress tensor. An instability in the interface propagation near lattice insta-

bility conditions is studied numerically. The effect of material inertia is approximately

included. Two methods for introducing an athermal interface friction in phase field models

are discussed. In the first method an analytic expression defines the location of the diffuse

interface, and the rate of change of the order parameters is required to vanish if the driving

force is below a threshold. As an alternative and more physical approach, we demonstrate

that the introduction of spatially oscillatory stress fields due to crystal defects and the Pei-

erls barrier, or to a jump in chemical energy, reproduces the effect of an athermal thresh-

old. Finite element simulations of microstructure evolution with and without an athermal

threshold are performed. In the presence of spatially oscillatory fields the evolution self-

arrests in realistic stationary microstructures, thus the system does not converge to an

unphysical single-phase final state, and rate-independent temperature- and stress-induced

phase transformation hysteresis are exhibited.

Ó 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Phase field or Ginzburg–Landau (GL) models are widely used for the simulation of various first-order solid–solid phase

transformations; see books Salje (1991) and Toledano and Toledano (1987). In this paper we will focus on martensitic or dif-

fusionless transformations (Ahluwalia et al., 2003; Artemev et al., 2001; Curnoe and Jacobs, 2001a,b; Jacobs et al., 2003; Jin

et al., 2001; Levitas and Preston, 2002a,b; Levitas et al., 2003; Levitas and Lee, 2007; Lookman et al., 2003a,b; Rasmussen

et al., 2001; Seol et al., 2003; Shenoy et al., 1999; Wang et al., 2001). Deformation of the crystal lattice of the austenite,

A, the high-temperature phase, into the martensite, M, the low temperature phase, can be described by the transformation

strain tensor et (also called the Bain strain or spontaneous strain). The relative symmetries of the A and M crystal lattices

implies the existence of a finite number n of crystallographically equivalent variants of martensite. All martensitic variants

Mi; i ¼ 1;2; . . . ;n, have the same components of the transformation strain tensor in their respective crystallographic bases. A

list of components of transformation strain tensors for transformations between various crystal lattices are given, for exam-

ple, in Bhattacharya (2004) and Pitteri and Zanzotto (2002). The phase field approach describes both stress- and tempera-

ture-induced phase transformations in a unified framework.
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In the phase field framework the evolution of a multi-connected martensitic microstructure is described by a thermody-

namically consistent set of kinetic equations, the Ginzburg–Landau equations, for the order parameters. Order parameters

are similar to internal variables in continuum thermodynamics (Valanis, 1996). However, in the phase field approach these

internal variables describe material instabilities, such as the instabilities of a crystal lattice responsible for solid–solid phase

transformations, twin and dislocation nucleation, melting, fracture and so on. Some theories of martensitic phase transfor-

mations employ order parameters related to transformation strains (Artemev et al., 2001; Levitas and Preston, 2002a,b; Lev-

itas et al., 2003; Levitas and Lee, 2007; Seol et al., 2003; Shenoy et al., 1999; Wang and Khachaturyan, 1997; Wang et al.,

2001), while the order parameters in other models are the components of the strain tensor responsible for lattice instability

(Curnoe and Jacobs, 2001a,b; Jacobs et al., 2003; Lookman et al., 2003a,b; Rasmussen et al., 2001). The thermodynamic (Lan-

dau) potential is typically a polynomial in the order parameters with multiple minima (as in Fig. 2) corresponding to the

various phases. The phase with the deepest minimum is the stable phase, while other minima correspond to metastable

phases; all minima are separated by potential barriers. The thermodynamic potential also includes gradient terms. Solutions

of the time-dependent Ginzburg–Landau equation, which describes the evolution of the order parameters, are generally

comprised of regions corresponding to local minima of the potential (stable or metastable phases) separated by diffuse sta-

tionary or moving interfaces where the gradient energy is localized; it represents the interface energy. The key advantage of

the phase field approach is that the computation of the microstructure evolution proceeds without the additional effort re-

quired to track multiple interfaces. However, the standard phase field method does not encode the microphysics governing

interface propagation.

As we demonstrated in Levitas and Preston (2002a,b), all previous Landau potentials did not account for the typical fea-

tures of stress–strain curves for martensitic phase transformations, e.g., in shape memory alloys. In our papers (Levitas and

Preston, 2002a,b; Levitas et al., 2003) we developed several polynomial Gibbs (Landau) potentials for the description of

multivariant stress- and temperature-induced martensitic phase transformations under general three-dimensional loading.

These potentials were designed by requiring that they describe the experimentally observed features of martensitic phase

transformation in shape memory alloys and steels, specifically, a constant or weakly temperature dependent transformation

strain tensor and stress hysteresis, and transformation at non-zero tangent elastic moduli. They include all temperature-

dependent thermomechanical properties of the austenite and martensitic variants and describe phase transformations be-

tween austenite and martensitic variants and between martensitic variants for arbitrary crystal structures. These potentials

are based on order parameters related to transformation strain rather than total strain. We do not know how to derive a sim-

ilar potential in terms of order parameters related to the total strain.

In Levitas et al. (2003), analytic solutions of the one-dimensional time-independent Ginzburg–Landau equations for our 2–

3–4 and 2–4–6 polynomial potentials were obtained. Solutions include martensitic (M) and austenitic (A) critical nuclei, and

diffuse M–A and M–M interfaces. The widths and energies of the nuclei and interfaces were found as functions of the ther-

modynamic driving force, the gradient energy coefficient, and a parameter that characterizes the stability of A. Static micro-

structures in a finite sample, their stabilities, and physical interpretations were studied in Levitas et al. (2006a). Combined

surface and size effects and a barrierless nucleation mechanism were analyzed in Levitas et al. (2006b). Dynamic problems

were treated in Idesman et al. (2008).

In this paper, interface propagation kinetics is incorporated in the models developed in Levitas and Preston (2002a,b) and

Levitas et al. (2003). We consider both one-dimensional (1D) and two-dimensional (2D) cases. In the 1D case, we obtain and

analyze both analytical and numerical solutions of the time-dependent Ginzburg–Landau equations for both A–M and M–M

interface propagation. Both 2–3–4 and 2–4–6 polynomial potentials are used. For the A–M interface an exact solution for the

interface profile and velocity is obtained for negligible inertia (mass density), in which case the stress is the same in both A

and M, i.e., rA ¼ rM ¼ r. Analytical relationships between the interface velocity, the driving force for the phase transforma-

tion, and a parameter that characterizes the lattice stability of A are obtained and analyzed. For non-zero mass density,

rA
–rM. To a good approximation the driving force for interface propagation depends on rA and rM only through their aver-

age. Thus, inertial effects can be approximately taken into account by replacing the homogeneous stress r in the zero-inertia

A–M interface solution by �r ¼ ðrA þ rMÞ=2.
The propagation of M–M and A–M interfaces is studied numerically. For the M–M interface, we simulate the case where

the temperature equals the phase equilibrium temperature and an austenitic region appears between the martensitic vari-

ants. We present several numerical solutions illustrating instabilities in M–M and A–M interface propagation. When stresses

reach and exceed the values corresponding to lattice instability, homogeneous or surface-induced nucleation may occur in

addition to interface propagation, and the nucleation interacts with the interface propagation.

In 2D, the coupled Ginzburg–Landau and quasi-static equations of linear elasticity theory are solved using the finite ele-

ment method (FEM). The coupled evolution of microstructures and stress fields in square samples is studied numerically.

Despite significant success in modeling microstructure formation in Artemev et al. (2001), Curnoe and Jacobs (2001a,b),

Jacobs et al. (2003), Jin et al. (2001), Levitas and Preston (2002a,b), Levitas et al. (2003), Levitas and Lee (2007), Lookman et al.

(2003a,b), Rasmussen et al. (2001), Seol et al. (2003), Shenoy et al. (1999), Wang and Khachaturyan (1997), and Wang et al.

(2001), and here, the phase field approach has a major drawback: it does not include an athermal resistance to interface mo-

tion. This resistance is analogous to dry friction in classical mechanics. Because of this athermal resistance, interface prop-

agation occurs only if the driving force for the corresponding phase transformation exceeds a rate-independent threshold K.

The athermal resistance is responsible for hysteresis in the temperature or the rate-independent part of the stress, and en-

ergy dissipation.
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In our numerous simulations (some of them are presented below) for a single crystal with homogeneous stresses at the

boundary we found that complex martensitic microstructures appear that are similar to those observed experimentally;

however, they eventually evolve into a single phase. Similar results have already been reported in the literature (see, for

example, Jacobs et al., 2003). Consequently, microstructural formation in samples with stress-free surfaces (temperature-in-

duced phase transformations), with homogeneous stresses at the boundaries (as in the experiments in Abeyaratne et al.

(1996)), or with zero stresses at selected surfaces (for example, uniaxial tension–compression or torsion), cannot be mod-

eled. Even for periodic boundary conditions, the final microstructure is sometimes a single variant (Jin et al., 2001; Kerr

et al., 1999). In contrast, kinematic constraints, e.g., due to polycrystallinity or prescribed displacements at the boundary,

promote stationary multivariant microstructures (Jacobs et al., 2003; Jin et al., 2001; Rasmussen et al., 2001). However,

an athermal threshold exists in any case, and if taken into account it would change the microstructure evolution, path depen-

dence, and energetics, especially under cyclic loading. While the necessity of introducing an athermal threshold in phase

field modeling has been recognized for a long time, we are not aware of any successful attempts to do so.

An athermal threshold is included in all mesoscale models (Auricchio et al., 2007; Boyd and Lagoudas, 1996; Ghosh and

Olson, 1994; Grujicic et al., 1985; Levitas, 1994, 1995, 1998, 2000a,b; Levitas et al., 1999, 2002c; Levitas and Ozsoy, 2009a,b;

Lim and McDowell, 2002; Pan et al., 2007; Peng et al., 2008; Thamburaja and Anand, 2002) that include kinetic equations for

sharp interfaces or for product phase concentration. It is also included in our recent mesoscale phase field model (Idesman

et al., 2005; Levitas et al., 2004) since neglect of the gradient energy term (which is reasonable at the mesoscale) results in a

threshold value for the driving force for interface motion. However, the introduction of an athermal threshold in the tradi-

tional nanoscale phase field approach (where gradient energy cannot be neglected) is not straightforward because there is no

equation for the interface, only evolution equations for the order parameters. Thus, Vedantam (2006) introduced a sophis-

ticated kinetic coefficient in the Ginzburg–Landau equation that is singular for zero rate of change of the order parameter _g,
which allows one to obtain _g ¼ 0 for non-zero driving force. However, the introduction of such a threshold in the kinetic

equation for the order parameters arrests certain unphysical intermediate configurations (e.g., particular critical nuclei);

therefore the system does not converge to a realistic microstructure consisting of austenite A and martensitic variants Mi

divided by moving or fixed diffuse interfaces. Note that a similar problem exists in the phase field theory of dislocations

(Hu et al., 2004; Wang et al., 2001). In Wang et al. (2001), a periodic thermodynamic potential in terms of order parameters

was introduced for dislocations. The potential, which was called a ‘Peierls potential’, was supposed to represent the Peierls

barrier to interface propagation due to discreteness of the crystal lattice, but it was shown in Hu et al. (2004) using an ana-

lytical solution for the dislocation that there was in fact no athermal threshold. Similarly, the analytical expressions for inter-

face velocity in our original GL model (Levitas and Preston, 2002a,b; Levitas et al., 2003) do not include an athermal

threshold. More generally, there is no threshold in any GL model because the gradient energy term renders it non-local, thus

interface points are coupled through the order parameter and interface motion occurs at any non-zero driving force. Since

there is no essential difference between GL theories for phase transformations or dislocations, a prescription for introducing

an athermal threshold for interface motion applies equally well to dislocations.

An athermal threshold appears in phase field theory when the latent heat of transformation is taken into account (Ngan

and Truskinovsky, 1999). Allowance for microinertia related to the strain tensor also produces a threshold (Theil and Levitas,

2000). A discrete model can exhibit athermal hysteresis; see Kressea and Truskinovsky (2003). The quasi-continuum approx-

imation of a discrete model can also exhibit some hysteresis, but it is much smaller than for the initial discrete model (Kres-

sea and Truskinovsky, 2003).

None of the above approaches solves the problem of athermal friction for interfaces or dislocations. Indeed, for slow inter-

face motion, the hysteresis due to latent heat release or internal inertia is too small to account for measured values of K. In

fact, apart from the Peierls barrier, the origin of the athermal threshold K is the interaction of the moving interface or dis-

locations with the long-range stress fields of point and line defects, and various boundaries (e.g., twin and tilt boundaries)

(Ghosh and Olson, 1994; Grujicic et al., 1985; Kocks et al., 1975). The most compelling evidence to support this claim is the

observed proportionality of the athermal threshold and the rate-independent hysteresis to the yield strength, which char-

acterizes the types, densities, and distributions of the point, line, and boundary defects that limit dislocation motion; see

Levitas (1997, 1998, 2004) for high pressure phase transformations, and Ghosh and Olson (1994) and Levitas et al.

(2002c) for martensitic transformations in steel. Also, it is known that the phase transformation hysteresis is changed along

with the defect microstructure by thermomechanical treatment (Hornbogen, 1999).

In this paper, we propose two different schemes for introducing an athermal interface friction in phase fieldmodels, andwe

show that each provides a realistic description of interface propagation. In the first method, an analytic expression defines the

location of the diffuse interface, and the rate of change of the order parameters in a neighborhood of the interface is required to

vanish if the driving force is below some threshold. In that case, the interface is subject to an athermal friction similar to that

experienced by sharp interfaces in micromechanical models, and the value of K is the only required information. This method

workswell in the 1D case but should be checked for 2D and 3D problems. As an alternative approach, we demonstrate that the

introduction in our phase fieldmodel of spatially oscillatory stress fields (due to the Peierls barrier and various defects), or of a

jump in chemical energy, DGh, reproduces the effect of an athermal threshold on interface propagation. In the presence of spa-

tially oscillatory fields, experimentally observed microstructures self-arrest before the system can converge to a single-phase

final state, and rate-independent temperature- and stress-induced phase transformation hysteresis are exhibited. These fields

do not affect the evolution of an intermediate microstructure, such as a critical nucleus, to an A—Mi orMi—Mj microstructure

divided by diffuse interfaces. Also, some experimentally observed microstructures appear in phase field simulations with
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oscillatory fields that do not follow from GL energy minimization. A similar approach can be applied to other phase transfor-

mations – reconstructive, ferroelectric, ferroelastic, andmagnetoelastic – aswell as to dislocationmotion. The incorporation of

spatially oscillatory fields in phase field models dramatically improves the fidelity of numerical simulations of the develop-

ment of martensitic microstructures. However, a new problem arises: the necessity of finding realistic oscillatory fields cor-

responding to a given defect structure; this is just as important but even more challenging than finding a proper Landau

potential. We also discuss the introduction of an athermal threshold in a model for thermally activated dislocation motion.

The results of many FEM simulations of microstructure evolution with an athermal barrier are presented.

Note that, practically speaking, the phase field approach is limited to nanoscale samples because the width of the diffuse

interface is of the order of magnitude of 1 nm and it has to be resolved with several finite elements. In the given paper, all

material parameters for the thermodynamic potential were determined from the results of molecular dynamic simulations

(see Levitas and Preston, 2002b). At such small scales (for example, in nanofilms), one usually neglects nucleating crystal

defects. Then, there are no stress concentrators to promote nucleation, and nucleation occurs close to the lattice instability

at stresses of the order of magnitude of 10 GPa. These values correspond to molecular dynamic simulations while stresses

measured in macroscopic experiments are below 1 GPa. This situation is similar to the case of fracture and/or plastic flow:

stresses that cause fracture and plastic flow in defect-free nanoscale volumes correspond to the theoretical strength, which is

of the order of magnitude of 10 GPA; the engineering strength and yield strength for materials with defects are 1–2 orders of

magnitude lower. In contrast, interface propagation can occur close to the thermodynamic equilibrium conditions, and we

operate with stresses of several 100 MPa.

Some authors (e.g., Vedantam, 2006) calibrate the parameters in the thermodynamic potential using experimental data

for macroscopic samples. With these parameter values, interface widths and energies are calculated to have values much

larger than those observed. The problem is that the parameter values determined from macroscopic data incorporate the

effects of mesoscale defects and should not be used at small length scales. The microscale phase field approach is based

on essentially different concepts (see Levitas et al., 2004; Idesman et al., 2005).

2. Interface propagation in one dimension

In this section we provide the background and establish notation for our analytical and numerical studies of A–M and M–

M interface propagation in one dimension. All transformations can be described with a single order parameter. The order

parameter, g, is a function of the coordinate x in the direction of propagation n; n � n ¼ 1. Numerical simulations are carried

out in a rectangular parallelepiped in an arbitrary three-dimensional homogeneous stress field r; the corresponding normal

and shear stresses on the surface are denoted ri ði ¼ 1;2Þ and s (Fig. 1). The transformation strain which transforms the crys-

tal lattice of A into the lattice ofM is the invariant plane strain et ¼ 1
2
cðmnþ nmÞsignðgÞ þ enn, where c is the shear strain in

directionm in the habit plane with normal n (direction of interface propagation) and normal strain e along n; the faces of the

parallelepiped are orthogonal and parallel to n and m. The transformation strain as a function of order parameter is de-

scribed by the following equations:

�et6 ¼ etu6ðgÞ and �et4 ¼ etu4ðgÞ; ð1Þ

σ2

σ2

σ1σ1

τ

τ

τ

τ

n

m

o

A

M

x

η(x)

Fig. 1. Schematic of solution of the Landau–Ginzburg equation in 1D. The curve labled gðxÞ represents the solution. The crystal lattice transforms from

austenite to martensite by an invariant plane strain.
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where

u6ðgÞ ¼ ag2=2þ ð3ÿ aÞg4 þ ðaÿ 4Þg6=2 and u4ðgÞ ¼ ag2 þ 4ÿ 2að Þg3 þ ðaÿ 3Þg4; ð2Þ

and a is a material parameter, 0 6 a 6 6. Here and later the subscripts 4 and 6 refer to the 2–3–4 and 2–4–6 potentials,

respectively. The 2–4–6 and 2–3–4 potentials derived in Levitas et al. (2003) are

G6 ¼ s1g
2½1ÿ ð4ÿ PÞg2=2þ ð3ÿ PÞg4=3�=2; ð3Þ

G4 ¼ s1g
2½1ÿ ð6ÿ PÞg=3þ ð4ÿ PÞg2=4�; ð4Þ

s1 :¼ Aÿ ar : et ; s2 :¼ 12ðDGh ÿ r : etÞ; P :¼ s2=s1: ð5Þ

The order parameter satisfies ÿ1 6 g 6 1 for the 2–4–6 potential and 0 6 g 6 1 for the 2–3–4 potential. DGh is the difference

between the thermal parts of the Gibbs energies ofM and A. Note that elastic strains are neglected in Eqs. (3)–(5), but can be

trivially included. The minima of the potential G4 are at g ¼ 0 ðAÞ;g ¼ 1 ðMÞ, and for G6 the minima are at

g ¼ 0 ðAÞ; g ¼ 1 ðMþÞ; g ¼ ÿ1 ðMÿÞ, independent of r and temperature h (Fig. 2). The quantity s1 characterizes the stability

of the austenite lattice; s1 ¼ 0 corresponds to the loss of A lattice stability, i.e., to the disappearance of the A minimum. For

both potentials, the thermodynamic driving force for the M ! A transition, i.e., Gð1Þ—Gð0Þ, is equal to s2=12. However, the

rate of the M ! A transformation is controlled not just by the driving force but also by the height of the potential barrier

separating the A and M minima. The location and height of this barrier are simple rational functions of s1 and s2; in the limit

s2 ! 0 of small driving force the barrier height is G4 ¼ ð1=16Þs1; G6 ¼ ð2=27Þs1.
Adding a gradient energy term to the Landau free energy yields the Ginzburg–Landau energy ~GGL ¼ Gþ bðdg=dxÞ2 and

GGL ¼
R
l
~GGLdx. The time-dependent Ginzburg–Landau (TDGL) equation follows from the assumption that the generalized flux

@g=@t is proportional to the generalized force ÿdGGL=dg:

@g
@t

¼ ÿk
dGGL

dg
¼ ÿk

@G

@g
ÿ 2b

@2g
@x2

 !
: ð6Þ

Here dGGL=dg is the functional derivative of GGL with respect to g; k > 0 and b > 0 are the kinetic and gradient energy coef-

ficients with dimensions of volume/energy–time and energy/length, respectively. The GL equation for the 2–3–4 potential can

be written

@g
@t0

¼ @2g
@x02

ÿ gðgÿ 1Þ gÿ 2s1
4s1 ÿ s2

� �
;

t0 ¼ ð4s1 ÿ s2Þkt; x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s1 ÿ s2

2b

s

x;

ð7Þ

and the GL equation for the 2–4–6 potential is

@g
@t0

¼ @2g
@x02

ÿ gðg2 ÿ 1Þ g2 ÿ s1
3s1 ÿ s2

� �
;

t0 ¼ ð3s1 ÿ s2Þkt; x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s1 ÿ s2

2b

s

x:

ð8Þ

Note that Eqs. (7) and (8) are nonlinear diffusion equations, and as such possess solitonic solutions representing propagating

interfaces.

4

1

G

s

6

1

G

s

η

P = 0 

P = 0 

P = 1 

P = 1 

P = -1 

P = -1 

10-1 0.5 -0.5 

0.2 

0.1 

-0.1 

η10.5 

-0.05 

0.05 

0.1 

Fig. 2. Plot of Landau potential versus order parameter for the potentials G4 and G6 .
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The equations of motion read

@r
@x

¼ q
@2u

@t2
;

@s
@x

¼ q
@2v

@t2
; ð9Þ

where q is the mass density, u and v are the displacements in the directions n and m, respectively, r ¼ n � r � n is the normal

stress (r ¼ r1 in Fig. 1) and s ¼ n � r �m is the shear stress; it follows that r : et ¼ reþ scsignðgÞ.

3. Analytical kink solutions: propagating A–M diffuse interfaces

3.1. Zero inertia

3.1.1. Interface profile

The neglect of inertia (mass density) in the equations of motion, Eq. (9) means that the stresses r and s are constants;

hence, s1 ¼ Aÿ a½reþ scsignðgÞ� and s2 ¼ DGh ÿ reÿ scsignðgÞ are nearly constant provided the temperature change

accompanying the phase transformation is small. We consider the case where the phase is A as x ! ÿ1 and M as

x ! þ1. When A and M are in thermodynamic equilibrium, then, Gðÿ1Þ ¼ GðAÞ ¼ Gðþ1Þ ¼ GðMÞ ¼ 0 and s2 ¼ P ¼ 0. The

solutions of the static version of Eq. (6) read (Levitas et al., 2003)

gAM

4s ðxÞ ¼ 1þ exp ÿ
ffiffiffiffiffiffiffiffiffiffi
s1=b

p
ðxÿ x0Þ

� �h iÿ1

; gAM

6s ðxÞ ¼ 1þ exp ÿ
ffiffiffiffiffiffiffiffiffiffiffiffi
2s1=b

p
ðxÿ x0Þ

� �h iÿ1=2

: ð10Þ

The transformation strain profiles u4½gðxÞ� and u6½gðxÞ� and the gðxÞ profiles are shown in Fig. 13 in Levitas et al. (2003) and

schematically in Fig. 1. They smoothly connect the austenitic ðg ¼ 0Þ and martensitic ðg ¼ 1Þ regions.
Propagating interface solutions of the TDGL equation, Eq. (6), for our 2–3–4 and 2–4–6 potentials for constant stresses r

and s (zero mass density in the equations of motion, Eq. (9)) can be obtained by generalizing the forms of gAM

4s and gAM

6s given

in Eq. (10). In the case of the 2–3–4 potential we write

gAM

4 ðfÞ ¼ 1þ exp ÿ
ffiffiffiffiffiffiffiffiffiffi
s1=b

p
fþ FðfÞ

� �h iÿ1

; f ¼ xÿ c4t: ð11Þ

Here c4 is the interface velocity and F is a function to be determined. Substituting Eq. (11) in Eq. (6) and requiring the coef-

ficients of powers of expðÿ
ffiffiffiffiffiffiffiffiffiffi
s1=b

p
fÞ and expðFðfÞÞ to vanish, one obtains simultaneous equations for dF=df and dF

2
=df2. These

equations are quadratic in dF=df; signs are chosen so that cs2 > 0 (i.e., when c < 0 and the M phase grows to the left, then

s2 < 0) and dF=df ¼ 0 for s2 ¼ 0. The F derivatives are given by

dF=df ¼
ffiffiffiffiffi
s1
b

r
ÿ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s1 ÿ s2

p

2
ffiffiffi
b

p ; dF
2
=df2 ¼

c4

ffiffiffiffiffiffiffiffiffiffiffi
4s1ÿs2

p
b3=2

ÿ ks2
b

4k
: ð12Þ

Since dF=df is constant, then dF
2
=df2 ¼ 0, which determines the interface velocity c4. Finally, we obtain

gAM

4 ðx; tÞ ¼ 1

1þ e
ÿ
ffiffiffiffiffiffiffiffiffi
4s1ÿs2

p
2
ffiffi
b

p ðxÿc4tÞ
; c4 ¼ ks2

ffiffiffi
b

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s1 ÿ s2

p ¼ k
ffiffiffiffiffiffiffiffiffiffi
bas2

p
signðs2Þ; ð13Þ

where a :¼ P=ð4ÿ PÞ ¼ s2=ð4s1 ÿ s2Þ ða ¼ 0 for thermodynamic equilibrium, a ¼ 1 when M loses its stability, and a ¼ ÿ1

when A loses its stability). For the 2–4–6 potential we have

gAM

6 ðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e
ÿ
ffiffiffiffiffiffiffiffiffiffi
6s1ÿ2s2

3b

q
ðxÿc6tÞ

r ; c6 ¼
ffiffiffiffiffiffi
2b

3

r
ks2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3s1 ÿ s2
p ¼ 2ffiffiffi

3
p k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2bas2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
3ÿ a

p signðs2Þ: ð14Þ

3.1.2. Interface velocity

In contrast to the sharp interface approximation in which the interface velocity depends only on the driving force for the

phase transformation, in the phase field approach there is also an explicit dependence on s1 (or a) which characterizes the

relative stabilities of the phases. However, in Eq. (13) for c4; s1 appears only in the combination

4s1 ÿ s2 ¼ 4 AðhÞ ÿ ar : etð Þ ÿ 12 DGh ÿ r : et
� �

; ð15Þ

though in Eq. (14) for c6; s1 appears in the combination 3s1 ÿ s2 ¼ ð3=4Þð4s1 ÿ s2Þ ÿ s2=4. Using the approximate relations

(Levitas and Preston, 2002a,b)

A ¼ A0ðhÿ hcÞ; DGh ¼ A0ðhÿ heÞ=3; ð16Þ
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where he is the equilibrium temperature for stress-free A andM, hc is the temperature of A loss of stability for zero stress, and

A0 ¼ ÿ3Ds with Ds for transformation entropy, we find

4s1 ÿ s2 ¼ A0ðhe ÿ hcÞ þ ð3ÿ aÞr : et : ð17Þ

Remarkably, the temperature dependencies of AðhÞ and Gh have cancelled, and since a is approximately equal to 3 (Levitas

and Preston, 2002a,b), we set a ¼ 3, thereby eliminating the dependence on stress as well; therefore

4s1 ÿ s2 ¼ A0ðhe ÿ hcÞ � eA ð18Þ

is a constant. With these approximations it follows that a and the interface velocities in both potentials are functions of only

the driving force, as in the sharp interface approximation

a ¼ s2

4eA
; c4 ¼ ks2

ffiffiffi
b

p

2
ffiffiffiffi
eA

p ; c6 ¼ 2ks2
ffiffiffiffiffiffi
2b

p

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12eA ÿ s2

q : ð19Þ

In this approximation, a is proportional to s2 and has no additional dependency on stresses. For the 2–3–4 potential, the

interface velocity is proportional to the driving force for the phase transformation, but for the 2–4–6 potential the depen-

dence is nonlinear: it is stronger than linear for M ! A phase transformation and weaker than linear for A ! M phase

transformation.

3.1.3. Interface width

The AM interface width is defined in Levitas et al. (2003) by

D
AM

:¼ du½gðfÞ�
df

� �ÿ1

max

; ð20Þ

which results in

D
AM

4 ¼ 2ð21ÿ 5aþ Y4Þ5

32ðaÿ 6Þ3ð11a3 ÿ 81ð9þ Y4Þ ÿ 5a2ð24þ Y4Þ þ að486þ 39Y4ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

4s1 ÿ s2

s

;

D
AM

6 ¼ ð72ÿ 15aþ Y6Þ4

128
ffiffiffi
2

p
ðaÿ 6Þ3ðÿ27a2 ÿ 24ð24þ Y6Þ þ 5að48þ Y6ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b

3s1 ÿ s2

s

;

Y4 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81ÿ 30aþ 5a2

p
; Y6 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
576ÿ 240aþ 33a2

p
:

ð21Þ

Both D
AM

4 and D
AM

6 are complicated functions of a but they are accurately approximated by the polynomials

1:88 6 p6ðaÞ ¼ 1:88þ 0:179aþ 0:00065a2 ÿ 0:0035a3 6 2:386;

4:822 6 p4ðaÞ ¼ ÿ0:056ðaÿ 3Þ2 þ 5:334 6 5:334:
ð22Þ

Then we obtain

D
AM

4 ¼ p4ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b

4s1 ÿ s2

s

¼ p4ðaÞ
ffiffiffiffiffiffi
ba
s2

s

; D
AM

6 ¼ p6ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3b

3s1 ÿ s2

s

¼ 2p6ðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ba
ð3ÿ aÞs2

s
: ð23Þ

In the approximation of Eq. (19)

D
AM

4 ¼ 2:668

ffiffiffiffi
b

eA

s
; D

AM

6 ¼ 8:066

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

12eA ÿ s2

s
: ð24Þ

The interface thickness for the 2–3–4 potential is independent of the driving force, but for the 2–4–6 potential it increases

(decreases) with driving force for the M ! A ðA ! MÞ phase transformation.

3.1.4. Evaluation of k

To obtain an order of magnitude estimate of the kinetic coefficient k we take a ¼ 3 and s1 ¼ 0 (loss of A stability), for

which s2 ¼ ÿ4eA, and approximate the interface velocity by the shear wave velocity cs. From Eq. (19) we obtain

cs ¼ 2k4

ffiffiffiffiffiffiffi
beA

q
¼ 2k6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2beA=3

q
: ð25Þ

Using the following data for NiAl (Levitas and Preston, 2002a,b; Levitas et al., 2003; Miracle, 1993)

A0 ¼ 4:40 MPa Kÿ1; b ¼ 2:59� 10ÿ10 N; he ¼ 215 K; hc ¼ ÿ183 K; q ¼ 5850 kg=m
3
;

G ¼ 71:5 GPa; and cs ¼
ffiffiffiffiffiffiffiffiffi
G=q

p
¼ 3496 m=s; ð26Þ
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we obtain

k4 ¼
ffiffiffiffiffiffiffiffi
2=3

p
k6 ¼ 2596 m2=N s: ð27Þ

Note that b ¼ 2:59� 10ÿ10 N corresponds to the equilibrium width of 1 nm for a M–M interface (Levitas and Preston,

2002a,b; Levitas et al., 2003). For a M–M interface width of 0.3 nm (which corresponds to an interatomic distance) the gra-

dient energy and kinetic coefficients are respectively decreased and increased to

b ¼ 2:33� 10ÿ11N and k4 ¼ k6=
ffiffiffi
3

p
¼ 8653:5 m2=N s: ð28Þ

3.2. Inertial effects on interface propagation

The results of the previous section are valid in the limit of zero mass density, which implies constant stresses r and s. The
actual stress variation and the corresponding solutions for g are governed by the coupled equations of elasticity theory and

Eqs. (6) and (9). An analytic solution is impossible, so we have developed an approximation scheme.

We consider a diffuse planar interface separating A at x ! ÿ1 from M at x ! þ1; the unit normal to this plane, n, is

directed from A to M. The stress tensor r, which has the normal component r and in-plane shear component s, varies from
rA at x ! ÿ1 to the prescribed value rM at x ! 1.

The driving force for M ! A is s2=12 ¼ DGh ÿ r : et , where r : et is the transformation work per unit volume. Consider an

interface separating A at ÿ1 fromM at þ1 that is propagating at constant speed þc. The transformation work is obtained by

integration

W t ¼
Z 1

ÿ1
dfr :

det
df

; ð29Þ

where f ¼ xÿ ct. We define interface profiles fr and f� for the stress and transformation strain

rðfÞ ¼ rM þ rA ÿ rM
ÿ �

frðfÞ;
etðfÞ ¼ etf�ðfÞ:

ð30Þ

The profiles satisfy fr;� � 1 for f ! þ1 and fr;� � 0 for f ! ÿ1. If fr ¼ f� then the transformation work is independent of the

profile

W t ¼
1

2
ðrA þ rMÞ : et ; ð31Þ

but in general fr–f�. In this case we approximate the profiles by quartic polynomials constrained to satisfy fr;�ð0Þ ¼ 0 and

fr;�ðf0Þ ¼ 1 (f0 is the interface thickness), and f 0r;�ð0Þ ¼ f 0r;�ðf0Þ ¼ 0. The resulting one-parameter interface profiles are

fr;�ðfÞ ¼ ar;�ðf=f0Þ2 þ ð4ÿ 2ar;�Þðf=f0Þ3 þ ðar;� ÿ 3Þðf=f0Þ4 ð32Þ

which is just u4ðf=f0Þ with a replaced by ar;�. The transformation work is

W t ¼
1

2
ðrA þ rMÞ : et þ

3

35
ðar ÿ a�Þ �

1

2
ðrA ÿ rMÞ : et: ð33Þ

Note that W t is independent of the interface thickness. The contribution of ð1=2ÞðrA ÿ rMÞ : et to W t , which arises from the

difference between the stress and strain profiles, is suppressed by roughly an order of magnitude (3/35) relative to

ð1=2ÞðrA þ rMÞ : et . To a good approximation, W t , and therefore the driving force depends on the stresses in the A and M only

through their average: �r :¼ ðrA þ rMÞ=2; hence, W t ¼ �r : et . Thus, in this approximation, inertial (finite mass density) effects

are taken into account by replacing the constant stress r by �r. This is consistent with the sharp interface approach (Abey-

aratne and Knowles, 1993; Kondaurov and Nikitin, 1986). Accordingly, we utilize Eqs. (13) and (14) with r ! �r for the gen-

eral dynamic case.

Combining the Hadamard compatibility condition ½v� ¼ ÿc½F� � n with the jump condition ðrM ÿ rAÞ � n ¼ ÿqc½v� corre-
sponding to the equation of motion (9), one obtains for sharp interface

ðrM ÿ rAÞ � n ¼ qc2½F� � n: ð34Þ

Here ½a� ¼ aM ÿ aA, v is the particle velocity, and F is the deformation gradient. Neglecting the jump in elastic strain across the

interface, one obtains ½F� ¼ cmnþ enn for invariant plane strain. Then Eq. (34) reads

rM ÿ rA ¼ qc2e; sM ÿ sA ¼ qc2c: ð35Þ

In the definitions of s1 and s2, �r : et ¼ �reþ �sc. Considering rM and sM as prescribed values, Eqs. (35) and (13)2 (or Eq. (14)2)

constitute three equations in the three unknowns rA; sA (or equivalently �r and �s), and c. The solutions for both potentials are

given by
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�r ¼ Z4rM ÿ ceZ3sM ÿ eZ7

2 c2 þ e2ð ÞZ1

; �s ¼ Z5sM ÿ ceZ3rM ÿ cZ7

2 c2 þ e2ð ÞZ1

; ð36Þ

c2 ¼ Z3 erM þ csMð Þ þ Z7

qðc2 þ e2ÞZ1

; ð37Þ

with

Z1 ¼ mbðc2 þ e2Þk2q; Z2 ¼ nÿ aþ Z1; Z3 ¼ nÿ aþ 2Z1;

Z4 ¼ ðnÿ 3Þð2c2 þ e2Þ þ 2c2Z1; Z5 ¼ ðnÿ 3Þðc2 þ 2e2Þ þ 2e2Z1; Z6 ¼ Aÿ DGhðnþ 2Z1Þ;

Z7 ¼ Z6 ÿ Z6 þ Z3 erM þ csM
ÿ �� �2 ÿ 4Z1Z2 erM þ csM ÿ DGh

� �2� �1=2

;

ð38Þ

where ðm;nÞ ¼ ð18;3Þ for the 2–3–4 potential and ðm;nÞ ¼ ð16;4Þ for the 2–4–6 potential. The sign of c is chosen from the

condition cs2 > 0, i.e that the stable phase grows. To choose the physically relevant solution when solving the quadratic we

require �r ¼ rM and �s ¼ sM in the limit of zero inertia ðq ¼ 0Þ. The above equations describe the propagation of a diffuse

interface with approximate allowance for stress variation across the interface. In thermodynamic equilibrium, s2 ¼ 0, and

Eq. (36) reduces to �r ¼ rM and �s ¼ sM.
The dependence of rM ÿ �r on rM for several values of sM is presented in Fig. 3. Despite significant differences between the

2–3–4 and 2–4–6 potentials, the rM ÿ �r versus rM curves for the two potentials nearly coincide. The corresponding relation

between interface velocity and rM for the 2–3–4 potential, determined with the help of Eq. (13) (for �r ¼ rM) and (37) is

shown in Fig. 4. In addition to the parameter values for NiAl from Eq. (26), we also used the values c ¼ 0:2; e ¼ 0:1, and

h ¼ 300 K for Figs. 3 and 4.

4. Numerical study: propagation and stability of A–M, M–M, and M–A–M interfaces

In this section we present the results of FEM simulations of A–M and M–M interface propagation, interactions between

interfaces, and the stability of interface propagation. Introducing the dimensionless parameters

GGL ¼ ~GGL=eA; �x ¼ x

ffiffiffiffi
eA
b

s

; �t ¼ tkeA ð39Þ

where eA ¼ A0ðhe ÿ hcÞ (defined in Eq. (18)), we obtain

@g
@�t

¼ ÿ dGGL

dg
¼ ÿ @G

@g
ÿ 2

@2g
@�x2

 !
: ð40Þ

We use boundary conditions at the ends of the sample corresponding to equal surface energies of A and M:

dgðÿl=2Þ
dx

¼ dgðl=2Þ
dx

¼ 0; ð41Þ

where l is the sample length. The material parameters are those of NiAl given in Eq. (26); in addition, we have used a ¼ 2:98.

The temperature is fixed at h ¼ he; the driving force for phase transformation is varied by changing the stress r.
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Fig. 3. Dependence of rM ÿ r on rM for four values of the shear stress s for the 2–3–4 potential: (1) s ¼ 0; (2) s ¼ 100 MPa; (3) s ¼ 500 MPa; (4)

s ¼ 1000 MPa.
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For temperatures around the phase equilibrium temperature he, an A region appears between martensitic variants; we

study this case as well. When stresses reach and exceed the value corresponding to lattice instability, we expect that homo-

geneous or surface-induced nucleation occurs in addition to interface propagation, and it may interact with the interface

propagation.

4.1. A–M interfaces

In Fig. 5a and b we show the evolution of two layers of M separated by A from a stationary state at r ¼ 0, under, respec-

tively, tensile and compressive stresses of magnitude 500 MPa. In tension (s1 ¼ 1:431 GPa; s2 ¼ ÿ1:290 GPa, thus metastable

A and stableM) theM layers broaden by interface propagation until the A has completely disappeared, while in compression

(s1 ¼ 2:072 GPa and s2 ¼ 1:290 GPa, metastable M and stable A) the M layers narrow, eventually disappearing. Note that A is

unstable (s1 ¼ 0) for r ¼ 2:733 GPa.

In the next simulation, the initial condition is again an A–M diffuse interface in equilibrium at r ¼ 0. At r ¼ 2:733 GPa

and even at r ¼ 2:9335 GPa, where A is unstable, the interface propagates into the A region ðs1 < 0, A ! MÞ, but homoge-

neous transformation of the unstable A does not occur. This is because @G=@g ¼ 0 for g ¼ 0 in our model so there is no local

driving force for the transformation of A. To initiate the instability we impose the perturbation gðxÞ ¼ 0:01sinð80pxÞ. For
r ¼ 2:5335 GPa (s1 > 0; s2 < 0; Ametastable) the perturbation rapidly disappears, and for r ¼ 2:9335 GPa ðs1 < 0; A unsta-

ble) the initial perturbation again disappears except near the A surface of the specimen where a M nucleus appears and

grows (the nucleus energy at the surface is half that in the bulk – Levitas et al., 2003); see Fig. 6a. After complete transfor-

mation toM at the surface, the newly formed A–M interface propagates toward the first (Fig. 6a). After the interfaces meet at

the point g ¼ 0, they continue to propagate into one another until the A completely disappears. The same process occurs at

the limit of A instability (r ¼ 2:733 GPa), but the newly formed interface moves at a lower speed.

If the initial perturbation is of the form g ¼ 0:01jsinð40pxÞj (non-symmetric with respect to g ¼ 0) then at r ¼ 2:5335 GPa

(A metastable), in addition to the propagating interface, the A homogeneously transforms to M. At r ¼ 2:733 GPa (s1 ¼ 0)

and r ¼ 2:9335 GPa (s1 < 0; A unstable) the homogeneous transformation occurs faster (Fig. 6b). If the sample is sufficiently

long then the A disappears (homogeneously) before the interface reaches the surface.
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Fig. 5. Evolution of austenite–martensite microstructures. The initial condition is a stationary state of two layers of martensite at r ¼ 0 for l ¼ 27:3 nm. (a)

Under an applied stress r ¼ 500 MPa the layers broaden by motion of all four interfaces until the transformation is complete. (b) For r ¼ ÿ500 MPa, the M

layers narrow and finally disappear.
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Fig. 4. Relation between interface velocity and rM for the 2–3–4 potential: (1) s ¼ 0; (2) s ¼ 100 MPa; (3) s ¼ 500 MPa; (4) s ¼ 1000 MPa.
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4.2. Mÿ—Mþ and Mÿ—A—Mþ interfaces

In Fig. 7 we show a twinned Mÿ—Mþ microstructure, stable at s ¼ 0. After applying the shear stress s ¼ 500 MPa the

microstructure evolves via interfaces propagation into a homogeneous Mþ final state. Note that the normal stress r does

not contribute to the driving force for Mÿ—Mþ propagation. The single interfaces propagate for any applied stress.

As A–M equilibrium ðDGh ¼ 0Þ is approached, an Mÿ—Mþ interface splits into Mÿ—A and A—Mþ diffuse interfaces sepa-

rated by a layer of A (soliton splitting – Falk, 1983; Levitas et al., 2003). In Fig. 8 we display the results of our FEM simulations

of a propagating Mÿ—A—Mþ interface for h ¼ he. We assume c ¼ 0:2, hence Mÿ loses its stability at s ¼ A=ð6ÿ aÞc ¼
2:899 GPa, and A loses its stability at s ¼ A=ac ¼ 2:938 GPa, very close values. Initially, s ¼ 0 and the interface is stationary,

but under the applied shear stress s ¼ 2:689 GPa (Mÿ; A metastable) the interface propagates and the width of the A layer

concurrently widens (Fig. 8a). The reason for this is that theMÿ—A interface (metastable–metastable) propagates faster than

the A—Mþ interface (metastable–stable); the propagatingMÿ—A—Mþ interface is stable (no A growth) if all phases are stable

or metastable.

To check for an instability in the interface propagation due to A instability, an initial perturbation gðxÞ ¼ 0:04jsin60pxj
was used in the A layer. At s ¼ 2:689 GPa (Mÿ; A metastable), the perturbation disappears, interface propagation is stable,

and the width of the A layer increases, as in Fig. 8a. Under s ¼ 2:938 GPa (Mÿ unstable, lower limit of A instability), the sit-

uation is very similar, but there are small deviations of g from zero in the A layer (Fig. 8b). For s ¼ 3:1885 GPa (A; Mÿ unsta-

ble) a section of the A layer transforms to Mþ during interface propagation. This transformation runs to completion, thus

forming a new stable A—Mþ interface that continues to propagate; shown in Fig. 8c.

The stability of the variantMÿ under varying stress was studied for the initial perturbation gðxÞ ¼ 0:04jsin60pxj in theMÿ
region. At s ¼ 2:689 GPa (Mÿ; A metastable) the perturbation had no effect. At s ¼ 2:938 GPa (loss of A stability) and

s ¼ 3:1885 GPa (Fig. 8d), the Mÿ homogeneously transforms to A as the A—Mþ interface propagates.
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Fig. 6. Instabilities in the propagation of austenite–martensite interfaces. The initial condition is a stationary austenite–martensite microstructure at r ¼ 0

for l ¼ 27:3 nm. (a) The perturbation gðxÞ ¼ 0:01sinð80pxÞ is applied. For r ¼ 2:9335 GPa (stress exceeding the lattice stability limit), in addition to interface

propagation, a martensitic nucleus appears and grows at the sample surface. After complete transformation to M at the surface, which forms a second A–M

interface, the two interfaces move toward one another until the martensitic transformation is complete. (b) Application of the perturbation

gðxÞ ¼ 0:01jsinð40pxÞj. For r ¼ 2:9335 GPa (A unstable), along with interface propagation, the austenite homogeneously transforms to martensite.
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Fig. 7. The initial state is a stationary twinned martensitic microstructure at s ¼ 0; l ¼ 13:6 nm. For an applied stress of s ¼ 500 MPa, the twins disappear,

resulting in a homogeneous Mþ final state.
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5. Three-dimensional Landau model for multivariant stress-induced martensitic phase transformations and 2D

simulations

Recently (Levitas and Preston, 2002a,b; Levitas et al., 2003), a 3D Landau theory for stress-induced martensitic phase

transformations was developed. It can describe phase transformations between A and Mi and between Mi variants for any

crystal structures, as well as typical stress–strain curves for phase transformations in shape memory alloy, steels, and inter-

metallics. Also, it can incorporate all temperature-dependent thermomechanical properties of the A andM phases. The Gibbs

energy G and the transformation strain tensor et are of the form (Levitas and Preston, 2002a,b)

G ¼ ÿ1

2
r : k : rÿ r : et ÿ r : ed þ

Xn

k¼1

f ðh;gkÞ þ
Xnÿ1

i¼1

Xn

j¼iþ1

F ijðgi;gjÞ; ð42Þ

et ¼
Xn

k¼1

ekt ðag2
k þ ð4ÿ 2aÞg3

k þ ðaÿ 3Þg4
kÞ ÿ

Xnÿ1

i¼1

Xn

j¼iþ1

g2
i g

2
j ðgiLij þ gjLjiÞ; ð43Þ

with

f ðgkÞ ¼ Ag2
k þ ð4DGh ÿ 2AÞg3

k þ ðAÿ 3DGhÞg4
k ; Lij ¼ ðaÿ 3Þejt þ 3eit ; and

F ijðgi;gjÞ ¼ gigjð1ÿ gi ÿ gjÞfB½ðgi ÿ gjÞ
2 ÿ gi ÿ gj� þ Dgigjg þ g2

i g
2
j ðgi þ gjÞðAÿ AÞ:

ð44Þ

Here, r is the stress tensor; gi and eit are the order parameter and the transformation strain tensor of the ith variant, where

i ¼ 0 corresponds to A and e0t ¼ 0; k is the elastic compliance tensor (assumed, for simplicity, to be the same for A and Mi);

and A;A; B, and C are material parameters. In comparison with equations in Levitas and Preston (2002a,b) and Levitas et al.

(2003), we added the eigen strain ed due to crystal defects (dislocation, points defects, grain and subgrain boundaries) that

we will need in the next section. The parameters A and A characterize the thresholds for A $ Mi and Mj $ Mi transforma-

tions, while B and C control the Gibbs energy away from both the A andMi minima and the minimum-energy paths between
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Fig. 8. Propagation of a Mÿ—A—Mþ interface and its instability; l ¼ 20:4 nm. (a) For the shear stress s ¼ 2:689 GPa (Mÿ; A metastable), the width of the A

region widens as the interface propagates. (b) For the shear stress s ¼ 2:938 GPa (Mÿ unstable, minimum stress for A instability), the initial perturbation

gðxÞ ¼ 0:04jsinð60pxÞj in the A region disappears and the interface propagation is stable. (c) For the shear stress s ¼ 3:1885 GPa and the initial perturbation

gðxÞ ¼ 0:04jsin60pxj in A, a portion of the A transforms to Mþ during interface propagation. This transformation results in a new stable A—Mþ propagating

interface. (d) For the shear stress s ¼ 3:1885 GPa and the initial perturbation gðxÞ ¼ 0:04jsinð60pxÞj in the Mÿ region, the Mÿ homogeneously transforms to

A as the A—Mþ interface propagates.
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the minima, therefore they do not affect the phase equilibrium and transformation conditions. The constants B and D do not

contribute to phase equilibrium and instability conditions. They are used to avoid non-physical energy minima that may ap-

pear for such a complex polynomial.

The evolution of the n order parameters is described by the n coupled TDGL equations

@gk

@t
¼ ÿk

dGGL

dgk

¼ k 2br2gk ÿ
@G

@gk

� �
; ð45Þ

where GGL ¼
R
V
~GGLdX and ~GGL ¼ Gþ b

Pn
k¼1ðrgkÞ2 is the GL energy. In the following we use Eq. (16) for DGh and A, the mate-

rial parameters for the cubic-tetragonal phase transformation in NiAl found in Levitas and Preston (2002a,b) and Levitas et al.

(2003) and summarized in Eqs. (26) and (28), as well as

a ¼ 2:980; A ¼ 5320 MPa; B ¼ 0; D ¼ 5500 MPa; m ¼ 0:238; ð46Þ

where m is Poisson’s ratio. For our 2D FEM simulations we consider just two of the three possible NiAl martensitic variants

e1t ¼ ð0:215;ÿ0:078;ÿ0:078Þ; e2t ¼ ðÿ0:078; 0:215;ÿ0:078Þ; ð47Þ

The potential (42) leads to the elasticity relation

e ¼ k : rþ et þ ed: ð48Þ

We solve Eq. (48) for the stress tensor

r ¼ kÿ1
: ðeÿ etÞ þ rd; ð49Þ

where we designated rd ¼ ÿkÿ1
: ed for an oscillatory defect stress field, which we will discuss in detail in the next Section. In

addition, the standard equilibrium equations and the relationship between strains and displacements u are given by:

r � r ¼ 0; e ¼ ðruÞs; ð50Þ

where ð� � � Þs means symmetrization. Thus, the complete system of equations describing the phase transformation is com-

prised of Eqs. (42)–(45) and (49), (50). Eqs. (43), (45), (49), and (50) are similar in structure to the coupled equations of ther-

moelasticity. Eq. (45) resembles a set of heat conduction equations for n temperatures gk with temperature-dependent heat

sources k@G=@gk. The transformation strain et corresponds to a thermal strain with a complicated temperature dependence

(43). This correspondence between phase transformation and thermoelasticity equations has important computational con-

sequences: finite element thermoelasticity codes can be used, after some minor modifications, for phase-field model simu-

lations of phase transformations. In contrast to approaches based on the spectral (fast Fourier transform) method (Artemev

et al., 2001; Curnoe and Jacobs, 2001a,b; Jacobs et al., 2003; Jin et al., 2001; Lookman et al., 2003a,b; Rasmussen et al., 2001;

Seol et al., 2003; Wang and Khachaturyan, 1997; Wang et al., 2001), the finite element approach allows us to easily expand

the treatment to heterogeneous materials, large strains, arbitrary boundary conditions, and complex material models.

Because the potential (42), (43) accurately describes the important features of martensitic phase transformations, we expect

that our calculated microstructure evolution in this study is more realistic than that predicted by other approaches (Artemev

et al., 2001; Curnoe and Jacobs, 2001a,b; Jacobs et al., 2003; Jin et al., 2001; Lookman et al., 2003a,b; Rasmussen et al., 2001;

Seol et al., 2003;Shenoy et al., 1999; Wang and Khachaturyan, 1997; Wang et al., 2001). In this work we used the code FEAP

(Zienkiewicz and Taylor, 2000).

We consider a square sample of size l ¼ 60 nm under plane strain conditions. The temperature is h ¼ 100 K, and at the

boundaries constant stresses rb ¼ ðrb1;rb2Þ are applied which satisfy n �rgk ¼ 0, where n is the normal to the boundary.

In our simulations, 10,000 eight-node quadrilateral finite elements were used. The thermodynamic driving force for vari-

ant–variant phase transformations due to the boundary conditions is Xb
1!2 ¼ rb : ðe2t ÿ e1t Þ ¼ ðrb2 ÿ rb1Þðe2t2 ÿ e2t1Þ ¼

0:293ðrb2 ÿ rb1Þ. The thermodynamic driving force for the A ! Mi phase transformation due to boundary conditions is

Xb
A!Mi

¼ rb : eit ¼ rb1eit1 þ rb2eit2. Note that large internal stresses that exceed the stability limit of austenite may lead to val-

ues gi > 1 where the Landau potential may exhibit unphysical behavior (Levitas and Preston, 2002a,b; Levitas et al., 2003). To

avoid this, we enforced the constraint gi 6 1 in our numerical simulations.

In our first simulation, the initial conditions are randomly distributed g1 and g2 fields (Fig. 9), and the boundary condi-

tions are rbi ¼ 10 GPa (an arbitrary stress that provides a large driving force for the phase transformation A ! Mi); therefore

Xb
1!2 ¼ 0. The solutions of Eqs. (42)–(45) and (49), (50) are shown in Fig. 9: the first column shows the evolution of g1, the

second and third columns show the stresses r1 and r1 ÿ r2 (since the thermodynamic driving force X2!1 is proportional to

r1 ÿ r2), and the last column depicts the local driving force, @G=@g1, for the evolution of g1. The evolution of g2 and @G=@g2

are qualitatively the same; for example, in the bottom figure for g1, the dark blue field corresponds to g2 ¼ 1, i.e., with the

variant M2. After passing through a complex microstructure containing plates, laths, and needles the solution converges to a

primitive M1—M2 twin microstructure (Fig. 9). Stresses and local driving forces are concentrated at the interfaces, and local

driving forces are quite low. However, this microstructure is not stable – driven by a decrease in gradient energy through a

reduction in interface area it converges to a single phase,M1 orM2, depending upon initial conditions. The propagation direc-

tion of each planar interface as well as the final state variant can be easily predicted: each interface moves to reduce its

length, thus the variant occupying the central part of the sample is the survivor.
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Note that the normals to the interfaces vary from parallel to the boundary in a very thin surface layer (due to the bound-

ary condition n �rgk ¼ 0) to 45° to the boundaries (determined by elastic energy minimization). This is typical of all sim-

ulations below but difficult to see in the figures.

In our second simulation, the initial conditions are g1 ¼ g2 ¼ 0:1 in a circle of radius 2 nm (an embryo) at the center of the

sample and zero elsewhere. The boundary stresses are rb1 ¼ rb2 ¼ 15 GPa; hence, the system is initially symmetric with re-

spect to each variant. A very complicated microstructure consisting of a combination of four herring bone types of micro-

structure is developed (Fig. 10). At some stage, the equivalence of both variants is violated-units of M2 coalesce at the

center, and M1coalesces in four triangles near the sample boundaries. Other units evolve to a needle-like microstructure

(similar to that observed experimentally in Abeyaratne et al. (1996)). Later, the solution evolves into a primitive twinned

microstructure and finally to homogeneous M2.

Thus, as discussed in the Introduction, in both of these simulations, for which the boundary stresses are specified, the lack

of athermal friction leads asymptotically to a single phase.

6. Athermal threshold for interface propagation

The above equations are valid when the magnitude of the driving force exceeds all barriers due to point and line defects,

as well as the Peierls barrier, because these barriers were not included in the preceding analysis. At these high driving forces

the interface motion is governed by the phonon (and at lower temperatures, by the electron) drag mechanism, but the bar-

riers, which result in an athermal friction force opposing the interface motion (Ghosh and Olson, 1994; Grujicic et al., 1985;

Olson and Cohen, 1986), must be taken into account at lower driving forces. As discussed in the Introduction, the inclusion of

an athermal threshold in the phase field approach is not straightforward because the phase field approach does not involve a

separate equation for the interface but rather an evolution equation for the order parameter. We can put, for example, k ¼ 0

if js2=12j < K , however, this can arrest unphysical intermediate configurations, thus the system never converges to a realistic

microstructure consisting of A and M variants separated by diffuse interfaces, either stationary or moving. We now propose

two schemes for solving this problem.

Fig. 9. Evolution of initially randomly distributed fields g1 and g2 (first column), r1 and r1 ÿ r2 (second and third columns), and the local driving force,

@G=@g1 , for evolution of g1 (right column) for rb1 ¼ rb2 ¼ 10 GPa. The microstructure finally converges to homogeneous M2 with zero internal stresses and

driving forces.
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6.1. Athermal threshold I: modified evolution equations

To introduce a threshold for interface propagation, we need to find a way to distinguish between interface propagation

and an arbitrary non-stationary process. At all points of the propagating interface ð@g=@tÞ=ð@g=@xÞ ¼ �c; therefore, the spa-

tial derivative of this expression is zero, which results in

R :¼ @2g
@x@t

@g
@x

ÿ @g
@t

@2g
@x2

¼ 0: ð51Þ

Near the interface, jRj � 1. We can account for interface friction by requiring very slow dynamics, which is realized for

very small values of the kinetic coefficient k, in narrow bands around the interfaces if the driving force is less than a critical

value, K:

Fig. 10. Evolution of an embryo, gi ¼ 0:1, in a circle of radius of 2 nm at the center of the sample for rbi ¼ 15 GPa. Left column: g1; second and third

columns: r1 and r1 ÿ r2; right column: @G=@g1 , the local driving force for evolution of g1 . The stationary microstructure is M2. In the first two rows, red is

M1 , and the blue outside of theM1 regions is A; the distribution for M2 is rotated 90° from the distribution for M1. In the last four rows, red isM1 and blue is

M2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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k ¼ o for jRj < 1 and js2=12j < K; k ¼ k0 otherwise: ð52Þ

Here 1 is a small quantity of order the computational error, and o is sufficiently small that @g=@t is negligible. We use o in-

stead of zero to avoid k ¼ 0 at points where @g=@t ¼ @g=@x ¼ 0 ðR ¼ 0Þ, but which do not belong to the moving interface, e.g.,

at the maximum of a critical M nucleus.

Fig. 11 shows the results of a numerical simulation of the evolution of an initial sinusoidal order parameter (2–4–6 po-

tential, DGh ¼ 0). First, two Mÿðg ¼ ÿ1Þ—Mþðg ¼ 1Þ interfaces are formed but their motion is arrested because js2=12j < K .

The magnitude of the driving force is then increased above the threshold K (by increasing s) and the interfaces begin moving

toward each other. They first meet at the point ðx;gÞ ¼ ð0;ÿ1Þ. Subsequently, gð0; tÞ increases toward g ¼ þ1 until Mÿ com-

pletely disappears, resulting in a final state of homogeneous Mþ. It is clear that our goal has been accomplished: interface

motion can be both arrested and released, while intermediate unstable configurations are not affected by the athermal

threshold.

Eq. (52) has the drawback that the kinetic coefficient k and the interface velocity jump from zero to a finite value at

js2=12j ¼ K . However, experimental observations (Ghosh and Olson, 1994; Grujicic et al., 1985; Levitas et al., 2002c; Olson

and Cohen, 1986) show, and sharp interface theory predicts, that the magnitude of the interface velocity depends on the

excess of the driving force over the athermal threshold, s2=12ÿ K for s2=12 > K and s2=12þ K for s2=12 < ÿK , rather than

on js2=12j. Note that these replacements are equivalent to r : et ! r : et � K . If the athermal threshold is caused by the stress

fields of various crystal defects, then all occurrences of r : et in Eqs. (13) and (14) for c4 and c6 must be replaced by r : et � K .

Thus, the interface speeds for js2=12jP K are

c4 ¼ k4
ffiffiffi
b

p s2ð1ÿ K=js2=12jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s1 ÿ s2 þ signðs2Þ4ð3ÿ aÞK

p ð53Þ

c6 ¼ k6

ffiffiffiffiffiffi
2b

3

r
s2ð1ÿ K=js2=12jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3s1 ÿ s2 þ signðs2Þ3ð4ÿ aÞK
p ð54Þ

The interface speeds Eqs. (53) and (54) can be incorporated in our phase field model through k0 (kinetic coefficient for

js2=12jP K; see Eq. (52)) defined by requiring that c4 and c6 as given by Eqs. (13) and (14) with k ! k0 are equal to the cor-

responding velocities in Eqs. (53) and (54):

k04 ¼ k4
1ÿ K=js2=12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 signðs2Þð3ÿ aÞK=ð4s1 ÿ s2Þ
p ð55Þ

k06 ¼ k6
1ÿ K=js2=12jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3 signðs2Þð4ÿ aÞK=ð3s1 ÿ s2Þ
p ð56Þ

For the general case of three dimensions and multivariant phase transformations described by m order parameters gi,

ð@gi=@tÞ=jrgij ¼ �c on the interface. The local direction of interface propagation is n :¼ rgi=jrgij; let r be the local coordi-

nate along n. Then ð@gi=@tÞ=ð@gi@rÞ ¼ �c at all points of the interface. Again setting the r derivative to zero yields

Ri :¼
@2gi

@r@t

@gi

@r
ÿ @gi

@t

@2gi

@r2
¼ 0: ð57Þ

For each i we can express ki in the same way as in Eq. (52).

-3 -2 -1 0 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2

3

4

5

6

-0.5 0 0.5 

x/l

0

-1 

1

η

Fig. 11. Numerical simulation of the evolution of the initial configuration (curve 1) gðxÞ ¼ cosðpx=2Þ for the threshold-type kinetics defined by Eq. (52). The

initial configuration evolves into two Mÿ—Mþ interfaces (curve 2) which are arrested due to the condition js2=12j < K. Subsequently, js2=12j is increased

above the threshold K and interfaces move toward each other. They first meet at the point ðx;gÞ ¼ ð0;ÿ1Þ and then gð0; tÞ increases toward g ¼ þ1 leading

to complete disappearance of Mÿ and to a homogeneous Mþ structure.
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Our approach can also be used for thermally activated interface motion, which is described, for example, by the equation

(Ghosh and Olson, 1994; Grujicic et al., 1985)

c ¼ cs exp ÿQ0

kh
1ÿ ½ðjs2=12j ÿ KÞ=W0�p
ÿ �b

� �
; ð58Þ

where Q0 is the activation energy, W0 is the height of the driving force barrier corresponding to the rate-controlling

(short-range) obstacles, k is the Boltzmann constant, and p and b are constants. All of the material parameters appearing

in (58) have been estimated for Fe–22.31Ni–2.888Mn alloy (Table 1 in Levitas et al., 2002c). As above, we can define

threshold-dependent kinetic coefficients k04 and k06 by equating c4 and c6 as given by Eqs. (13) and (14) with k ! k0 to

c from Eq. (58).

Note that for DGh ÿ re ¼ 0, the limit condition for the A ! Mþ transformation, XA!Mþ ¼ ÿs2=12 ¼ sc ¼ K , and that for the

Mÿ ! A transformation, XMÿ!A ¼ s2=12 ¼ sc ¼ K , result in XMÿ!Mþ ¼ XA!Mþ þ XMÿ!A ¼ 2sc ¼ 2K , i.e., the threshold for

Mÿ ! Mþ interface propagation is 2K . In this case a finite A region appears between the martensitic variants, and there is

no need to introduce a separate threshold condition for variant–variant transformations. We consider only the case where

the interface moves into Mÿ; the opposite case leads to identical conditions for interface propagation. If DGh ÿ re–0, then
XA!Mþ–XMÿ!A and it is possible that, for example, XMÿ!A < 0, in which case the transformation condition XMÿ!A P K for

the Mÿ ÿ A interface cannot be satisfied. This means that one must consider the Mÿ ! Mþ interface separately and apply

the condition

k ¼ o for jRj < 1 and jscj < K; k ¼ k0 otherwise: ð59Þ

6.2. Athermal threshold II: oscillatory defect stress fields

Usually, kinetic equations for thermally activated dislocation (Kocks et al., 1975) or interface motion are derived by

considering spatially oscillatory energy profiles that represent the Peierls barrier or the energy profiles of various defects

(Ghosh and Olson, 1994). We will introduce a spatially oscillatory energy profile through oscillatory stress fields, rd, due

to defects; the stress tensor is given by Eq. (49). If, for example, rd ¼ Ket1 sinð2px=bÞ=ðet1 : et1Þ, then the Landau potential con-

tains an additional transformation work, K sinð2px=bÞ, which produces an effect similar to an interface friction K for motion

in both directions. A similar effect can be obtained by adding K sinð2px=bÞ to the change in the thermal part of the Gibbs

energy, DGh.

The period b is determined by the actual field of defects. If the origin of the athermal threshold is the Peierls barrier, then b

is the period of the crystal lattice. If the stress field is due to stochastically distributed dislocations, then the period is the

averaged distance between dislocations, a well-known length scale. Multiple length scales would be present in a more de-

tailed treatment of the system of dislocations.

The evolution of an initial sinusoidal gðxÞ (2–4–6 potential) under the shear stress s ¼ 75 MPa is shown in Fig. 12. In the

absence of the periodic field, the solution evolves to Mþ, but in contrast, a Mÿ—A—Mþ microstructure (Fig. 12a, configuration

3) is formed in the presence of the periodic stress field sd ¼ ÿ100sinð8pxÞMPa (Fig. 12c). After increasing the stress s to

125 MPa, the Mÿ—A—Mþ interface propagates to the left (Fig. 12b).

7. Microstructure evolution in the presence of oscillatory defect stress fields

In all calculations we use the material parameters for the cubic–tetragonal transformation in NiAl. We perform 2D sim-

ulations, impose the boundary stress rb1 ¼ rb2 ¼ 10 GPa, take h ¼ 100 K, and consider only the two NiAl martensitic variants

with transformation strains e1t ¼ ð0:215;ÿ0:078;ÿ0:078Þ and e2t ¼ ðÿ0:078;0:215;ÿ0:078Þ. For rd ¼ ðrd1;rd2Þ, the thermo-

dynamic driving force for the M1 ! M2 phase transformation due to the defect stress fields is Xd
1!2 ¼ rd : ðe2t ÿ e1t Þ ¼

Detðrd2 ÿ rd1Þ, where Det ¼ e2t2 ÿ e1t2 ¼ e1t1 ÿ e2t1 ¼ 0:293. The thermodynamic driving force for the A ! Mi phase transforma-

tions due to the stress fields of the defects is Xd
A!Mi

¼ rd : eit ¼ rd1eit1 þ rd2eit2. In the particular case rd2 ¼ rd1 one has

Xd
1!2 ¼ 0 and Xd

A!Mi
¼ rd1ðeit1 þ eit2Þ.

We study four classes of problems. Some preliminary results can be found in Levitas and Lee (2007).

1. Solution to the same problem as in Fig. 9 (random initial distribution of A and M) but with the periodic defect stress

field rd2 ¼ ÿrd1 ¼ 10sinð16pxÞsinð16pyÞ and consequently Xd
1!2 ¼ 20Det sinð16pxÞsinð16pyÞ; see Fig. 13. In the absence of

surface energy and internal stresses due to transformation strain, a minimum of the energy would correspond to multi-con-

nected microstructures with M1 ðM2Þ in the regions with Xd
1!2 < 0 ðXd

1!2 > 0Þ. This is essentially the case in the first row of

Fig. 13. The elastic energy due to evolving transformation strain fields (within evolving martensitic regions) promotes the

appearance of straight plates aligned at 45°, and surface energy reduction drives coalescence. In this stage, elastic and surface

energy exceed the potential barriers due to the Xd
1!2 field, and the units coalesce in two orthogonal groups of twinned plates.

One group eventually predominates, resulting in a stationary microstructure comprised of equidistant twinned plates. Our

periodic fields do not arrest any intermediate microstructures (0 < gi < 1), nor do they change the orientation of the mar-

tensitic plates which is determined by minimization of elastic energy, but they do slightly distort the otherwise planar

interfaces.
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Fig. 14 shows the solution to the same problem as in Fig. 8 but with equal periodic stress fields of defects

rd2 ¼ rd1 ¼ 10sinð16pxÞsinð16pyÞ (and consequently Xd
1!s2 ¼ 0). Again, elastic energy due to evolving transformation strain

fields (within evolving martensitic regions) promotes the appearance of straight plates aligned at 45°, and the surface energy

promotes coalescence.

The field Xd
Mi!A

affects the initial stages of formation of the microstructure, reducing the initial Mi units to sizes compa-

rable to its period. In this stage, the elastic and surface energies exceed the potential barriers due to the Xd
Mi!A

field, and the

units coalesce. Once the system has converged to a twin microstructure topologically similar to that in Fig. 9, it is arrested

because the elastic and surface energies cannot overcome the barriers due to the Xd
Mi!A

field. The widths of different mar-

tensitic plates vary by several times, and for most plates the width exceeds the half period of the field Xd
Mi!A

. Consequently,

small islands of incompletely transformed A, stabilized by the Xd
Mi!A

, appear within broad martensitic plates, as can be seen

in Fig. 14. If the boundary stresses rbi, and consequently Xb
A!Mi

, are decreased, then these islands will serve as heterogeneous

nucleation sites for A. Although the volume fractions ofM1 andM2 vary with the initial conditions, the volume fraction ofM1

is invariably larger than that of M2. The presence of both M1 and M2 is due entirely to the defect stress field-if removed, the

final microstructure consists of M1 or M2 only, depending on initial conditions. Even though Xd
1!2 ¼ 0, the stress field of the

defects nevertheless forms a mixed M1—M2 microstructure because it arrests the formation and propagation of A—Mi

interfaces.

2. For the fields rd1 ¼ 5cosð16pxÞcosð16pyÞ and rd2 ¼ 5sinð16pxÞsinð16pyÞ; Xd
1!2 ¼ ÿ5Det cosð16pðxþ yÞÞ, which is peri-

odic along the diagonal. The initial microstructure evolves into a perfect, alternating, equally sized M1—M2 microstructure

oriented at 45° (Fig. 15). The widths of the Mi plates are determined by the period of the oscillating stress field-there is

no lateral coalescence of Mi plates.

Next – see Fig. 16 – the stationary microstructure obtained in the previous simulation (Fig. 14) was taken as an initial

condition, with rbi ¼ 10 GPa. The defect stress field is removed (Xd
1!2 ¼ 0), thus there is no athermal threshold or hysteresis.

After removal of rdi the M1 plates widen at the expense of M2 until the transformation to M1, driven by the reduction of sur-

face energy, is complete.

When, prior to phase transformation completion, the stress rb1 at the boundary was decreased to 9.9 GPa, the reverse

phase transformation M1 ! M2 occurred by equal widening of all M2 plates until the transformation was complete.

In Fig. 17 we plot interface velocity v vs. the macroscopic driving force Xb
1!2 for four interfaces from the microstructure in

Fig. 16. The small, non-zero velocity for Xb
1!2 ¼ 0 is caused by the driving force due to the reduction of surface energy; with

increasing Xb
1!2, the contribution of the surface energy is negligible. All of these points can be approximated by

v ¼ ÿ0:005þ 0:0034Xb
1!2 with very small v for Xb

1!2 ¼ 0. For an interface of constant length, v ¼ 0 for Xb
1!2 ¼ 0, which is also

confirmed by our 1D analytical solution. Thus, the athermal threshold and hysteresis are absent.
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For the same initial and boundary conditions, the defect stress field rd1 ¼ rd2 ¼ 10sinð8pðxþ yÞÞ leads to Xd
1!2 ¼ 0 and to

Xd
A!Mi

a periodic function along the diagonal. The initial microstructures coalesce into alternating M1—M2 plates of different

widths oriented at 45°; Fig. 18.

3. In Fig. 19 we simulate the evolution of a stochastic initial distribution of M1 and M2 in a defect stress field for which

rd2 ÿ rd1 is a 2D plane square wave (in general, the periodic extension of the function C½hðrÞ ÿ hðÿrÞ� on ÿb 6 r 6 b, where C

is a constant, r is the coordinate along the normal to the wave, and 2b is the wavelength). We superimpose equal period, in-

phase square waves for rd2 and ÿrd1, each with an amplitude of 2 GPa, a wavelength of 0:2l, and normals inclined 45°

(Fig. 19). The amplitude of the rd2 ÿ rd1 square wave is 4 GPa ðjXd
1!2j ¼ Detjrd2 ÿ rd1j ¼ 4Det GPa ¼ 1:172 GPaÞ, thus the ex-

pected stress hysteresis is H ¼ jrd2 ÿ rd1j ¼ 4 GPa. Indeed, keeping rb2 ¼ 10 GPa for 6 < rb1 < 14 GPa the interfaces do not

move; for rbi ¼ 10 GPa the system converges to a twinned microstructure with twins occupying the regions of positive and

negative Xd
1!2. Only for rb1 > 14 GPa ðrb1 < 6 GPaÞ does the variant M1 ðM2Þ grow until the phase transformation is com-

plete. Thus plane square wave defect stress fields produce a finite, rate-independent athermal hysteresis (deviation from

Xb
1!2 ¼ 0 (equilibrium) needed to initiate interface motion). Note that the local driving force @G=@gi is concentrated at the

interfaces because it is zero for both gi ¼ 0 and gi ¼ 1; internal stresses are also concentrated at the interfaces.

The evolution of stochastic initial data under rb1 ¼ rb2 ¼ 10 GPa in the presence of the equal square wave defect stress

fields rd2 ¼ rd1 ¼ �10 GPa (i.e., Xd
1!2 ¼ 0) with b ¼ 0:2l and inclined at 45° is shown in Fig. 20. The stationary solution (last

row) consists of Mi plates in the regions of positive stress separated by A plates in the regions of negative stress.

Instead of a plane square wave, one can smooth the transition from ÿH to H with a continuous function defined in a band

of width bt . In this case, a change in stress rb2 ÿ rb1 � Xd
1!2 below the threshold value will induce only a slight movement of

the interfaces that depends on the stress field within bt . If bt � b, this interface motion does not significantly change the

Fig. 13. Solution to the same problem as in Fig. 9 but with the periodic defect stress field rd2 ¼ ÿrd1 ¼ 10sinð16pxÞ sinð16pyÞ. Left column: g1; second and

third columns: r1 and r1 ÿ r2; right column: the local driving force, @G=@g1 , for the evolution of g1 . The bottom row is the stationary solution (red isM1 and

blue is M2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)

V.I. Levitas et al. / International Journal of Plasticity 26 (2010) 395–422 413



volume fraction of twins. But if bt ’ b, a variation in stress below the threshold value changes the stationary microstructure

and twin concentration continuously and significantly. In particular, for rd1 ¼ 5cosð6pxÞcosð6pyÞ and rd2 ¼ 5 sinð6pxÞ
sinð6pyÞ ðXd

1!2 ¼ ÿ5Det cosð6pðxþ yÞÞÞ ðH ¼ 5 GPaÞ and rbi ¼ 10 GPa, we obtained the same stationary structure as for the

square wave fields. However, when we varied rb1 between 5 and 15 GPa, the concentration and widths of all stationary twins

Fig. 14. Solution to the same problem as in Fig. 9 but with the periodic stress field rd1 ¼ rd2 ¼ 10 sinð16pxÞsinð16pyÞðXd
1!2 ¼ 0Þ. Left column: g1; second

and third columns: r1 and r1 ÿ r2; right column: the local driving force, @G=@g1 , for evolution of g1 . The bottom row is the stationary solution in which red

is M1 and blue is M2 . The small islands within broad M1 plates are incompletely transformed A stabilized by the field Xd
A!M1

of defects. If Xb
A!M1

is reduced

then these islands will serve as heterogeneous nucleation sites for A. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this paper.)

Fig. 15. Solution to the same problem as in Fig. 9 but with the periodic defect stress field rd1 ¼ 5cosð16pxÞcosð16pyÞ and rd2 ¼ 5sinð16pxÞsinð16pyÞ for
which Xd

1!2 ¼ ÿ5Det cosð16pðxþ yÞÞ, a periodic function along the diagonal. Left column: g1; second and third columns: r1 and r1 ÿ r2; right column: the

local driving force, @G=@g1 , for evolution of g1 . The bottom row is the stationary solution (red is M1 and blue is M2). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this paper.)
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varied continuously and coalesced to pure M2 (or M1) at 5 GPa (or 15 GPa) (Fig. 21). We emphasize that the slow cyclic

stress–twin concentration curve does not exhibit a hysteresis loop and energy dissipation.

4. In Fig. 22 we display the evolution of an embryo with gi ¼ 0:1 as in Fig. 10 but with the addition of the periodic defect

fields rd1 ¼ 5cosð16pxÞcosð16pyÞ and rd2 ¼ 5sinð16pxÞsinð16pyÞ. The defect fields completely change the microstructure

evolution. The stationary solution is a twinned structure with equal width twins, where M2 (orM1) is located in regions with

positive (or negative) values of Xd
1!2 ¼ ÿ5Det cosð16pðxþ yÞÞ. Around two opposite corners M1 units evolve into triangles.

For the same problem but with equal defect stresses rd1 ¼ rd2 ¼ 10sinð16pðxÞÞ sinð16pyÞ ðXd
1!2 ¼ 0Þ, the symmetry of the

problem is changed from the very beginning, and Xd
A!Mi

drives the microstructure to four twinned regions, as seen in Fig. 23.

One can also see multiple nucleation of new M2 (and M1) units around the maxima of Xd
A!Mi

. Thus, the stress fields of the

defects not only produce an athermal threshold but also create sites for heterogeneous nucleation. However, the driving

force due to decreases in the energy associated with internal stresses and the surface energy exceeds the barriers due to

Xd
A!Mi

. Coalescence of M1 occurs and the final stationary solution is a two-twin microstructure.

Results for the same problem but with the magnitude of the oscillatory field increased to 20 GPa are shown in Fig. 24. The

stationary microstructure consists of four twins with islands of incompletely transformed material, which may serve as

nucleation sites for austenite if it is promoted by the boundary conditions.

Fig. 16. Evolution of the initially stationary microstructure obtained in the previous simulation (Fig. 14) after removal of the defect stress field rdi . At first,

for rbi ¼ 10 GPa, the M1 plates widen, but then, before the transformation is complete, the boundary stress rb1 is decreased to 9.9 GPa. Variant M2 grows by

coalescence of the plates, finally converging to homogeneous M2 with zero internal stresses and driving forces. Left column: g1; second and third columns:

r1 and r1 ÿ r2; right column: the local driving force for evolution of g1 , @G=@g1 . The red corresponds to M1 and blue to M2 . (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this paper.)
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We next considered a defect stress field that is stepped in both rd1 and rd2 with rd2 ¼ ÿrd1; the defect field

Xd
1!2 ¼ 2Detrd2 is plotted in Fig. 25. The stresses have the values 0 (green), ÿ10 (yellow), and 10 GPa (blue). The system

evolves into a four-grain microstructure in which many M1 variants from one grain contact M2 variants from other grains.

For the same initial and boundary conditions, we again used a stepped defect field satisfying rd2 ¼ ÿrd1, and

Xd
1!2 ¼ 2Detrd2, where the stresses assume the values 0 (green), ÿ10 (yellow) and 10 GPa (blue), as shown in Fig. 26; the

width of each step is b ¼ 0:2l. The microstructure evolves unsymmetrically; the stationary microstructure consists primarily

of rectangular lath and a few needle-like units (Fig. 26). Lath microstructures are usually observed when phase transforma-

tions are accompanied by plastic accommodation due to dislocation generation (Ghosh and Olson, 1994). Such a structure

cannot appear in the absence of an athermal threshold because elastic energy minimization leads to relatively sharp tips.

The widths of most (but not all) of the laths are determined by the defect stress field.

Finally, we carried out a simulation similar to the previous (Fig. 26) except that the step width was decreased to b ¼ 0:1l.

As seen in Fig. 27, the early stages of the microstructure evolution is similar to the evolution without defects (Fig. 10). How-

ever, the defect field arrests this complicated microstructure, which is a combination of four herring-bone microstructures.

In all of the above simulations with stepped Xd
1!2, the initial stage of the evolution is heterogeneous nucleation ofM2 (M1)

units in the regions with positive (negative) Xd
1!2. The late-time growth of martensitic units is driven by a reduction in the

energy of the internal stress field.

Note that in Kartha et al. (1995), heterogeneous distributions of disorder and an elastic constant were used to model pre-

martensitic structures like tweeds. In Abeyaratne et al. (1996), an oscillatory contribution was added to a local mesoscale

potential in terms of the volume fraction of a martensitic variant, and this produces an athermal threshold for the mesoscale

modeling, as in other mesoscale models (Ghosh and Olson, 1994; Levitas et al., 2004). This approach is not applicable to

nanoscale phase field modeling because it arrests unphysical intermediate configurations.

8. Concluding remarks

In this paper, interface propagation kinetics was incorporated in advanced phase field models developed in Levitas

and Preston (2002a,b) and Levitas et al. (2003). For 1D, we obtained and analyzed both analytical and numerical

Fig. 18. Solution to the same problem as in Fig. 9 but with the periodic stress field rd1 ¼ rd2 ¼ 10sinð8pðxþ yÞÞ; hence, Xd
1!2 ¼ 0 and Xd

A!Mi
is a periodic

function along the diagonal. Left column: g1; second and third columns: r1 and r1 ÿ r2; right column: @G=@g1 , the local driving force for the evolution of g1.

The bottom row is the stationary solution (red is M1 and blue is M2). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this paper.)
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Fig. 19. (top row) Stationary solution following evolution from a stochastic initial state under rb1 ¼ rb2 ¼ 10 GPa in the presence of a plane square wave

defect stress field (see text for details). The final state is a twinned microstructure with twins occupying adjacent regions of positive and negative Xd
1!2.

(middle row) For rb1 ¼ 15 GPa and rb2 ¼ 10 GPa the driving force for the M2 ! M1 phase transformation exceeds the athermal threshold of 4 GPa and

variant M1 grows until the phase transformation is complete. (bottom row) Similarly, when rb1 ¼ 10 GPa and rb2 ¼ 5 GPa, so that the driving force for the

M1 ! M2 phase transformation exceeds the athermal threshold, variant M2 grows until the phase transformation is complete.

Fig. 20. Evolution of stochastic initial data under rb1 ¼ rb2 ¼ 10 GPa in the presence of a plane square wave defect stress field (see text for details). The

stationary solution (last row) consists of Mi plates in the regions of positive stress separated by A plates in the regions of negative stress.
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solutions of the time-dependent Ginzburg–Landau equations for A–M and M–M interface propagation. This included the

determination of the interface velocity and profile, and a study of interface propagation instabilities for thermody-

namic parameters near the conditions for lattice instability. In 2D, the coupled Ginzburg–Landau and quasi-static

equations of linear elasticity were solved using FEM for the evolution of microstructures and stress fields in square

samples.

Fig. 21. (a) Stationary solution following evolution from stochastic initial data under rb1 ¼ rb2 ¼ 10 GPa in the presence of the periodic stress field

rd1 ¼ 5cosð6pxÞcosð6pyÞ and r2d ¼ 5sinð6pxÞ sinð6pyÞ ðH ¼ 5 GPaÞ; Xd
1!2 ¼ ÿ5Det cosð6pðxþ yÞÞ. The solution converges to the same twinned microstruc-

ture as in Fig. 19 (top row). (b) Stationary microstructure for rb1 ¼ 14 GPa and rb2 ¼ 10 GPa. (c) Stationary microstructure for rb1 ¼ 10 GPa and

rb2 ¼ 6 GPa. The stress–twin concentration is continuous and the slow cyclic stress–twin concentration curve does not exhibit a hysteresis loop or energy

dissipation.

Fig. 22. Evolution of an embryo, gi ¼ 0:1, for rb1 ¼ rb2 ¼ 15 GPa, as in Fig. 10, but with the addition of the periodic defect field

rd1 ¼ 5cosð16pxÞcosð16pyÞ; rd2 ¼ 5sinð16pxÞsinð16pyÞ. The stationary solution is a twinned microstructure (lowest row) with equal width twins, where

M2 – blue (M1 – red) is located in the region with a positive (negative) Xd
1!2. Around two opposite corners, M1 units evolve into triangles. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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We introduced an athermal threshold in the evolution equation for the order parameter and found that it works well in

1D, but this approach should be checked in higher dimensions.

We proposed the inclusion of oscillatory background stress fields in the phase field approach to model athermal

thresholds to interface motion due to crystal defects. With these defect fields the system is arrested in experimentally

observed microstructures instead of evolving to a single phase, and rate-independent stress and temperature hysteresis

are present. In addition to producing an athermal threshold, these fields also create sites for heterogeneous nucleation.

Some microstructures, e.g., laths, appear in phase field simulations with oscillatory defect fields that are not seen

otherwise.

Similar results are obtained by introducing spatial oscillations in DGh due, for example, to fluctuations in chemical com-

position. An athermal threshold for twinning and dislocation motion can be introduced in the same way. For other types of

phase transformations, oscillatory electric, magnetic, or other fields can be used. The oscillatory defect fields not only stabi-

lize certain experimentally observed microstructures and cause rate-independent phase transformation hysteresis, but they

also significantly change the microstructure.

Oscillatory defect fields not only open up new opportunities for realistic microstructure modeling, but also lead to a new

major problem: how to find a realistic oscillatory field corresponding to a given defect structure. For any given (for example,

experimentally observed) distribution of dislocations and other defects, we can find a numerically corresponding stress field

rd using, for example, the approach in Wang et al. (2001). For any given (or evolving) heterogeneous alloy composition, in

cases in which the dependence of DGh on the composition is known and included in the simulation, the heterogeneous (oscil-

latory) contribution to DGh appears automatically. For a particular defect stress field, the corresponding fields of the driving

forces, Xd
A!M

and Xd
Mi!Mj

, point to the possible effects of rd on the microstructure evolution. However, because the two tra-

ditional contributions to the driving force – the surface energy and the energy of the internal stress field due to the heter-

ogeneous distribution of transformation strain – depend upon the evolving geometry of the martensitic units, the final

microstructure may be very sensitive to variations in Xd
1!2. This is typical of systems governed by material instability and

may explain the variety of microstructures observed experimentally that do not follow from the minimization of the Ginz-

burg–Landau energy.

It is known that the defect microstructure and phase transformation hysteresis can be changed by thermomechanical

treatment (Hornbogen, 1999); this can be modeled with oscillatory fields. In addition, if a phase transformation is

Fig. 23. Evolution of an embryo, gi ¼ 0:1, for rb1 ¼ rb2 ¼ 15 GPa (as in Figs. 10 and 22) but with the periodic field

rd1 ¼ rd2 ¼ 10 sinð16pxÞsinð16pyÞ ðXd
1!2 ¼ 0Þ. The intermediate microstructure consists of four twinned regions with clear boundaries between them.

The final stationary solution is a two-twin microstructure.
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accompanied by plastic accommodation, the defect structure changes, and the athermal threshold increases (Ghosh and Ol-

son, 1994), thus one needs to determine the evolving oscillatory field. The numerical solution to this coupled defect field-

phase structure problem, is, however, quite challenging.

In the future we will study oscillatory defect fields in the context of our phase field model for finite strain and material

rotation (Levitas and Preston, 2005; Levitas et al., 2009).

Fig. 24. Evolution of an embryo, gi ¼ 0:1, for rb1 ¼ rb2 ¼ 15 GPa (as in Fig. 23) but with the amplitude of the periodic field doubled:

rd1 ¼ rd2 ¼ 20sinð16pxÞsinð16pyÞ ðXd
1!2 ¼ 0Þ. The stationary microstructure consists of four twins with islands of incompletely transformed material,

which may serve as nucleation cites for another twin if promoted by the boundary conditions.

Fig. 25. Evolution of an embryo, gi ¼ 0:1, under rb1 ¼ rb2 ¼ 15 GPa (as in Fig. 24) but with a stepped defect stress field for which

rd2 ¼ ÿr1d; Xd
1!2 ¼ 2Detrd2 is shown top left. Stress values are 0 (green), ÿ10 (yellow), and 10 GPa (blue). The stationary microstructure is shown in

the last row. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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