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Introduction  
 
Our team is composed of the PI, Gregory J. Gerling, PhD, School of Engineering and two co-Is 
Reba Moyer Childress, MSN, FNP, School of Nursing and Marcus L. Martin, MD, School of 
Medicine.  We have worked with graduate students (Angela Lee, William Carson, Leigh 
Baumgart, Ninghuan Wang, and Elmer Kim).  We have also brought in two undergraduate 
students (Petheree Norman and Tashima Lambert).  We have developed working collaborations 
with Tracey Krupski, MD, School of Medicine (Urology) and Randy Jones, School of Nursing – 
both of whom have particular expertise as relates to prostate cancer and disease.  We have 
worked also in conjunction with O. John Semmes, PhD, Eastern Virginia Medical School 
(EVMS) and Beatriz Lopes, MD, University of Virginia, Autopsy Services. 
 
The main topic of this work was to build and validate a physical-computerized simulator used 
to train physicans in performing the digitial rectal exam (DRE).  This required an understanding 
of prostate tissue and also human perception limits. 
 

 
Figure 1. Main Components of Virginia Prostate Examination Simulator Apparatus: (A) 
electronics for automatic balloon inflation and sensor signal conditioning, (B) instrumented 
torso, (C) laptop and (D) instrumented prostate. 
 
More specifically, the following series of aims and tasks were the subject of this project.   
 
Aim 1. Determine distinct skill levels for discernment of palpable characteristics. 

Task 1.a) Characterize anatomical attributes and pathological stages of disease.   
Task 1.b) Determine the range of disease states that are palpable and simulate.   
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Task 1.c) Determine appropriate training scenarios to cover skill levels of various 
individuals.   
 

Aim 2. Determine how contextual factors in the exam influence diagnosis decision-making. 
Task 2.a) Setup contextual scenarios.  
Task 2.b) Setup human-like aspects of standardized patient in simulated training 
environment.   
 

Aim 3. Determine methods to customize performance assessment and training intervention. 
Task 3.a) Setup assessment based first on “up-down” or computerized adaptive testing 
(CAT) strategies.   
Task 3.b) Determine training interventions and levels of feedback.   
 

Aim 4. Determine if applied finger techniques correlate with level of performance. 
Task 4.a) Correlate general aspects of technique with measures of assessment. 
Task 4.b) Correlate technique patterns of experts and novices with measures of performance 
assessment.   

(Task 5) Plan for interaction with EVMS and U.Va. Biomaterials 
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Body  
 
Aim 1 seeks to determine distinct skill levels for discernment of palpable characteristics.   
 
Task 1.a is to characterize anatomical attributes and pathological stages of disease.  Graduate 
student William Carson worked in this area.  Following first year work to build the indenter 
and begun validating it with silicone-elastomer samples, we continued to collect data in the 
clinic with normal autopsied prostates at U.Va and cancerous prostates at EVMS.  This data has 
since been analyzed, formed into a publication and accepted by the journal Medical Engineering 
and Physics.  I attach below this abstract for this journal article listed in Key Research 
Accomplishments below.   
 
Overall, the work in Task 1.a has sought to characterize the material properties of prostate 
tissue, removed post-surgery, and indented with a custom-built spherical indenter.  The 
mechanical characterization of prostate tissue has not received much attention and is often 
disconnected from the clinic, where samples are readily attained.  This work sought to inform 
the realistic design of artificial tissue – and also to relate material properties with disease states. 
We developed a spherical indenter to generate force-displacement data from ex vivo tissue, both 
whole mount and 5 mm cross-sections.  Indentation velocity, depth, and sphere diameter, and 
four means of estimating elastic modulus (EM) were validated.  EM was then estimated for 26 
prostate specimens obtained from radical prostatectomy and 6 samples obtained from autopsy.  
Specimens were obtained in conjunction with Dr. Tracey Krupski (Urology, U.Va.) and Dr. O. 
John Semmes (Urology, Eastern Virginia Medical School).  Prostatectomy prostates were also 
evaluated clinically upon digital rectal exam and pathologically post-extirpation. Overall, this 
work found that diseased prostate tissue is stiffer than normal tissue, stiffness increases with 
disease severity, and a large variability exists between samples, even though disease differences 
within a prostate are detectable.  We compared these measurements with those of simulated 
prostate tissues and found that the two coincide, in terms of gross stiffness.   
 

Background – The mechanical characterization of prostate tissue has not received much 
attention and is often disconnected from the clinic, where samples are readily attained. 
Methods – We developed a spherical indenter for the clinic to generate force-
displacement data from ex vivo prostate tissue.  Indentation velocity, depth, and sphere 
diameter, and four means of estimating elastic modulus (EM) were validated.  EM was 
then estimated for 26 prostate specimens obtained via prostatectomy and 6 samples 
obtained from autopsy.  Prostatectomy prostates were evaluated clinically upon digital 
rectal exam and pathologically post-extirpation.  Findings – Whole-mount measurements 
yielded median EM of 43.2 kPa (SD = 59.8 kPa).  Once sliced into cross-sections, median 
EM for stage T2 and T3 glands were 30.9 and 71.0 kPa, respectively, but not significantly 
different.  Furthermore, we compared within-organ EM difference for prostates with 
(median = 46.5 kPa, SD = 22.2 kPa) and without (median = 31.0 kPa, SD = 63.1 kPa) 
palpable abnormalities.  Interpretation – This work finds that diseased prostate tissue is 
stiffer than normal tissue, stiffness increases with disease severity, and large variability 
exists between samples, even though disease differences within a prostate are detectable.  
A further study of late-stage cancers would help to strengthen the findings presented in 
this work. 
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Figure 2.  Portable indentation system and user interface built to make tissue measurements. 
 
Figures 3 and 4 (below) represent the prostate specimen processing and the example collection 
of force versus displacement data. 
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Table 1.  EM for cross-section (CS) samples across pathological diagnosis 
 

 
 
 
Tables 2 and 3. EM for WM and CS samples across pathologic T stage 

 
 
 
We have also written a second paper “Authenticating a high fidelity prostate exam simulator” 
and submitted it for review.  It is presently under review.  We are collected human-subjects data 
with urologists at UVa for this work.  The main idea was to justify our hypothesis that tissue 
elasticity is indicative of carcinomous changes by correlating DRE findings with tissue elasticity 
and histopathology. Second, we sought to employ urologic surgeons to evaluate our prostate 
simulator in three ways: 1) authenticate that the elasticity of the simulated prostates accurately 
represents the range of normal prostate stiffness, 2) determine the range of nodule size 
reasonably palpable by DRE, and 3) discern what degree of elasticity difference within the same 
prostate suggests malignancy.  These three overall results, respectively, are presented in the 
figures that follow. 
 

Title: Authenticating a High Fidelity Prostate Exam Simulator 
 
Objective: Despite continued controversy on the utility of digital rectal examination 
(DRE) in prostate cancer screening, all health care practitioners should be facile in its 
performance as it provides information on prostate size and nodularity, rectal 
pathology, and neurologic tone.  By measuring the elastic properties of ex-vivo prostate 
specimens, we authenticated a novel prostate simulator for training of the DRE.   The 
purpose of this study was first to justify our hypothesis that tissue elasticity is indicative 
of carcinomatous changes by correlating DRE findings with tissue elasticity and 
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histopathology. Second, we employed urologic surgeons to evaluate our prostate 
simulator in three ways: 1) authenticate that the elasticity of the simulated prostates 
accurately represents the range of normal prostate stiffness, 2) determine the range of 
nodule size reasonably palpable by DRE, and 3) discern what degree of elasticity 
difference within the same prostate suggests malignancy.  
 
Materials and Methods: Materials characterization, human-subjects experiments, 
histopathology, and chart abstraction of clinical history were used.  To perform 
mechanical characterization of prostate tissue, 26 ex vivo prostatectomy specimens were 
evaluated using a custom-built and portable spherical indentation device that builds 
force-displacement curves to calculate tissue elastic modulus. To measure human-
subject perception of prostatic state, the Virginia Prostate Examination Simulator (VPES) 
was employed and combines rubber-like synthetic materials with expandable balloons 
embedded within to simulate prostates and is controlled by a computer. Twelve 
urologic surgeons, naïve to the simulator, performed a methods of limits psychophysical 
test and completed a 30 minute qualitative assessment.  In addition, histopathologic 
assessment was performed on both the entire prostate and sections from which the 
elastic modulus was calculated.  Finally, chart abstraction identified the clinical 
parameters of interest. All portions of the study were IRB approved. 
 
Results: From the materials characterization, the measurements of the 26 gross prostates 
and 40 cross-sections yielded 306 data points of which 84 comprised normal tissue and 
41 consisted of adenocarcinoma.  Within the same prostate, cancer was always stiffer. Of 
the 7 cases with an abnormal DRE, the DRE accurately identified adenocarcinoma in 
85%. From the human-subjects experiments, the simulated prostates evaluated by 
urologists ranged in stiffness from 8.9-91 kPa, mimicking the range found on ex vivo 
analysis of 4.6-236.7 kPa. The urologic surgeons determined the upper limit of stiffness 
palpated as realistic for a healthy prostate was 59.63 kPa while the lower limit of 
stiffness was 27.1 kPa. Nodule size less than 7.5 mm was felt to be too small to 
reasonably palpate.  In their experiments with palpable differences within a prostate, a 
background prostate of 34.1 kPa with less elastic nodules (85.1kPa) embedded within 
was felt to be the most realistic.  
 
Conclusions:  Based on materials characterization and histopathology of prostates and 
urologic expert opinion, our study confirms that a wide range of prostate tissue 
elasticity is deemed “normal.” We found it is not the absolute elasticity of the nodule, 
but rather the relationship of the nodule to the background prostate elasticity that 
constitutes the critical tactile feedback. Urologic surgeons determined that within-
prostate differential of approximately 50 kPa was most representative of what might be 
found clinically.  Prostate simulator training may lead to greater familiarity with both 
the range of “normal” prostate elasticity, pertinent diagnostic cues, and diagnosis of 
prostate cancer. 
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Figure 5. Upper and Lower Average Prostate Stiffness Bounds from human-subjects experiment 
with Urologists. 
 
 
 

 

Figure 6. Nodule Size Limits of Detection (N=12 on each scenario) 
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Figure 7. Prostate-Nodule Stiffness Differential for Cancer and BPH Scenarios 
 
 
Task 1.b is to determine the range of disease states that are palpable and simulate those.  
Graduate student Leigh Baumgart worked in this area.  Listed in Key Research Accomplishments 
below, this work has since been accepted by the Journal of Cancer Epidemiology.  Its abstract is 
attached below. 
 
Overall, this work has sought to understand the perceptible limits of the DRE, which are based 
on some unresolved combination of the size, depth, and hardness of abnormalities within a 
given prostate stiffness.  This work seeks to inform the range of disease states that are palpable, 
from human sensory limits.  Using a custom-built device similar to the VPES, an 18 participant 
human-subjects study was conducted that simulated the four aforementioned conditions.  
Within silicone-elastomers that mimic normal prostate tissue, only abnormalities of diameter 
greater than 4 mm (20 mm3 in volume) were consistently detectable (above 75% of the time) at 
the shallowest depth (5 mm).  In contrast, abnormalities located in simulated tissue of greater 
stiffness (82 kPa compared to 21 kPa) must be twice that volume.  Overall, the study found that 
size and depth of abnormalities most influence detectability, while the relative hardness 
between abnormalities and tissue affects detectability for some size-depth combinations.   

Background: Although the digital rectal exam (DRE) is a common method of screening 
for prostate cancer and other abnormalities, the limits of ability to perform this hands-on 
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exam are unknown. Perceptible limits are a function of the size, depth, and hardness of 
abnormalities within a given prostate stiffness. Methods: To better understand the 
perceptible limits of the DRE, we conducted a psychophysical study with 18 participants 
using a custom-built apparatus to simulate prostate tissue and abnormalities of varying 
size, depth, and hardness. Utilizing a modified version of the psychophysical method of 
constant stimuli, we uncovered thresholds of absolute detection and variance in ability 
between examiners. Results: Within silicone-elastomers that mimic normal prostate 
tissue (21 kPa), abnormalities of 4 mm diameter (20 mm3 volume) and greater were 
consistently detectable (above 75% of the time) but only at a depth of 5 mm. 
Abnormalities located in simulated tissue of greater stiffness (82 kPa) had to be twice 
that volume (5 mm diameter, 40 mm3 volume) to be detectable at the same rate. 
Conclusions: This study finds that the size and depth of abnormalities most influence 
detectability, while the relative stiffness between abnormalities and substrate also affects 
detectability for some size/depth combinations. While limits identified here are 
obtained for idealized substrates, this work is useful for informing the development of 
training and allowing clinicians to set expectations on performance. 

 
 
Figures 8 and 9 show the high-level results of the psychophysical experiment.  As can be 
observed, the abnormalities positioned in shallower depths are more readily detectable, as are 
abnormalities of larger size.  A comparison of the figures also indicates that substrate stiffness 
also plays a role. 
 

Prostate stiffness: 82 kPa
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Figure 8. Psychophysical functions for the detectability of abnormalities of various diameters 
and depths for prostate stiffness of 82 kPa.  Dotted line denotes 75% correct threshold.   
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Prostate stiffness: 21 kPa
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Figure 9. Psychophysical functions for the detectability of abnormalities of various diameters 
and depths for prostate stiffness of 21 kPa (more pliant). 

 
Further work using logistic regression analyzed the relative importance of each factor and their 
interactions.  This work formed the basis for a second publication, which was accepted for and 
presented at the Proceedings of the 2010 IEEE Haptic Interfaces for Virtual Environment and 
Teleoperator Systems. 

 
Softness discrimination and the detection of inclusions are important in surgery and 
other medical tasks. To better understand how the characteristics of an inclusion (size, 
depth, hardness) and substrate (stiffness) affect their tactile detection and discrimination 
with the bare finger, we conducted a psychophysics experiment with eighteen 
participants.  The results indicate that within a more pliant substrate (21 kPa), inclusions 
of 4 mm diameter (20 mm3 volume) and greater were consistently detectable (above 75% 
of the time) but only at a depth of 5 mm. Inclusions embedded in stiffer substrates (82 
kPa) had to be twice that volume (5 mm diameter, 40 mm3 volume) to be detectable at 
the same rate. To analyze which tactile cues most impact stimulus detectability, we 
utilized logistic regression and generalized estimating equations. The results indicate 
that substrate stiffness most contributes to inclusion detectability, while the size, depth, 
and hardness of the stimulus follow in individual importance, respectively. The results 
seek to aid in the development of clinical tools and information displays and more 
accurate virtual haptic environments in discrimination of soft tissue.  

 
 
Task 1.c is to determine appropriate training scenarios to cover skill levels of various 
individuals.  Reba Childress and Greg Gerling brought in a nursing student (Petheree Norman) 
along with an engineering student (Angela Lee) to help us develop the scenarios.   Overall, we 
selected 3 instrumented prostates for use, down from the 10 we normally use.  These cover the 
range of normal, prostatitis, carcinoma and BPH that we need.  They also include a variety of 
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different carcinomas.  With each of the three layouts, we chose 4 combinations of large balloons 
(row 1) to represent BPH and inflammation of the prostate, combinations of smaller balloons to 
represent carcinomas (row 2) and combinations of large and small balloons to represent 
prostatitis and inflammation with carcinoma. 
 

 
 

Figure 10. Layout of prostate 1 
 

 
 

Figure 11. Layout of prostate 2 
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Figure 12. Layout of prostate 3 
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Aim 2 seeks to determine how contextual factors in the exam influence diagnosis decision-
making. 
 
Tasks 2.a and 2.b. is to setup contextual scenarios and user feedback.   We used the detailed 
prostate tactile scenarios from Aim 1  to create the VPES Full Circle Interactive Learning Model 
to allow the integration of VPES simulator training into the Medical & Nursing Curricula.  The 
figure below delineates the major training steps. 
 

 

Figure 13. VPES Full Circle Interactive Learning Model 

 

With this framework in places, we are developing scenarios for BPH, Prostatitis, Carcinoma and 
normal cases, following the example that can be observed in the 3 figures that follow. 
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Figure 14.  Patient information including age, race, history, etc. given to the student before the 
exam. 

 
 
Figure 15.  This information delineates an example of what the student should be finding and 
should be discussing with the teaching instructor upon debriefing. 
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Figure 16.  This is the user interface that the student interacts with to indicate aspects of the 
prostate that are found to be irregular upon the DRE. 
 
 
We have also redesigned the feedback that the student receives in the exam from the simulator 
itself.  Figure 17 shows the opening screen. 
 

 
 

Figure 17:  The screen when a user logs in for the first time. 
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In Figure 18, the user selects a patient scenario by clicking on the picture of the appropriate 
patient.  Here, he or she may choose to perform the patient scenario or may view additional 
details about the patient.  Another version of the interface abstracts the images of the prostates, 
if it is the case that the learner is selecting the scenarios, so not to provide the answers before the 
test begins. 

 
 
Figure 18.  (left) Scenario selection with abnormalities shown and a specific patient selected and 
(right) Detailed view for patient Matthew Cannon 
 
Once the simulated tumors are filled with water, it is time for the user to begin the exam.  While 
palpating, the user will see the screen depicted in Figure 19.  The user knows where he or she is 
palpating at a given time by looking at the red shading on the larger picture.  The interface also 
displays a smaller picture that depicts all locations on the prostate that has already been 
palpated.  The user knows how many abnormalities are being simulated by how many circles 
appear on the picture of the larger prostate and knows which abnormalities have been palpated 
because the circle becomes darker as the water pressure in the line spikes. 

 

 
 

Figure 19: Screenshot of the feedback displayed to a user while he or she is palpating. 
 

Three types of post-performance feedback are provided to a user after the simulation.  The first, 
time elapsed, is depicted in Figure 20a, force exerted is depicted in Figure 20b, and percentage 
of the prostate palpated is shown in Figure 20c.  Each of these prominently displays the 
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criterion for a successful run and a green check mark or a red X to indicate whether the criteria 
were met. 
 

 

 
 

Figure 20: Screenshots of the post-performance feedback provided to the user 
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Aim 3. seeks to determine methods to customize performance assessment and training 
intervention. 
 
Task 3.a is to setup assessment based first on “up-down” or computerized adaptive testing 
(CAT) strategies.  Graduate student Angela Lee worked in this area.   
 
This task sought to develop an efficient and accurate means of assessing the palpation skill of 
trainees.  We seek to integrate computerized adaptive testing (CAT) with the VPES to provide 
proficiency estimates with fewer test items, thereby reducing testing duration. The main 
components in our CAT exam are to develop an item bank of prostate scenarios, implement the 
item response theory (IRT) and an item selection procedure, and determine the stopping criteria 
and scoring method.  Using a three parameter logistic model, the developed computer 
algorithm will selectively choose subsequent prostate scenarios based on responses to previous 
scenarios.  The three parameters that characterize each scenario are difficulty, item 
discrimination, and guessing parameters.  To validate the CAT application, a set of two 
experiments will be conducted.  The first hypothesis is that low performers will be 
differentiable from high performers.  The second hypothesis is that the assessment made in 
experiment 2 will equal that of experiment 1 but be achieved within a reduced time period, of 
approximately 25 to 50%.  The overall idea is presented in the figures below. 

 
The four main components in the CAT as we have implemented are delineated in Figure 21. 
 

 
 

Figure 21: Four main steps in the CAT implementation (abstracted) as applied to VPES 
 
To enable the CAT style of test administration, we had to build a new prostate torso apparatus 
that could hold 10 instrumented prostates, instead of the previous 3.  Figure 22 shows the 
scenarios that each of the new 10 simulated prostates can offer. 
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Figure 22: VPES Version 2.0 instrumented prostates and scenario generation, modified to 

accommodate the requirements of at least 200 scenarios for a CAT implementation. 
 
The image sequence in Figure 23 shows an example iteration of CAT implemented with the 
VPES simulator.  The participant is asked three questions.  The first question is of medium 
difficulty and the participant answers correctly.  Therefore, the next question is automatically 
selected to be of greater difficulty.  This one is answered incorrectly which leads to an easy 
question.  This process will help us to identify participant ability in fewer questions by reaching 
a stable ability state in few questions.   
 

 
 

Figure 23: Example sequence of three questions administered to participants in a sequence 
 
 
Listed below is the abstract from the thesis of Angela Lee.  We are currently seeking to turn this 
work into a journal manuscript. 
 

Title: Applying the Partial Credit Model to the Assessment of Clinical Hands-On Skills 
in a Part-Task Simulator 

 
The training and assessment of palpation skills using patient simulators may improve 
hands-on skills and lead to earlier clinical diagnosis of cancer.  The Virginia Prostate 
Examination Simulator (VPES) was built to improve skills in the digital rectal 
examination (DRE).  The work herein seeks to address a new means of assessing 
performance in the simulated exam.  First, a set of five performance factors relevant to 
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the DRE was developed (prostate enlargement, symmetry, median sulcus definition, 
nodule location, and nodule size), each discretized with three to five levels.  Then, we 
applied a partial credit model (PCM) to i) determine an appropriate points allocation 
system for each prostate scenario where its five factors vary in difficulty, ii) identify the 
best scoring methodology for these factors, and iii) calibrate the factors of each prostate 
scenario to determine their difficulty measures.  The PCM’s use of polytomous scoring 
allows examinees to acquire points based on factor levels, therefore resulting in a more 
informative overall score, as compared to a simple correct or incorrect detection.  A 
human subjects experiment (n = 13) was performed where each participant palpated 40 
scenarios of graded difficulties and entered a total of 200 responses to a custom-built 
interface.  The results of the experiment show that the best scoring method for the 
majority of the factors is dichotomous, where the original levels for each factor collapse 
to a binary score.  The resulting scoring models and difficulty measures may serve as the 
foundation for a computerized adaptive test for the VPES.  Such a CAT may provide a 
new means for clinical assessment of large numbers of students in short time periods in 
an automated way, potentially desirable for clinical board exams. 

 
 
Task 3.b has been combined with Task 3.a above since the computerized adaptive test does 
adapt questions for learners of various levels. 
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Aim 4. seeks to determine if applied finger techniques correlate with level of performance. 
 
Tasks 4.a and 4.b are to correlate general aspects of technique with measures of performance 
assessment and correlate technique patterns of experts and novices with measures of 
performance assessment.  Graduate student Ninghuan “Miki” Wang worked in this area, along 
with undergraduate student Tashima Lambert.  Two journal articles based on work done have 
been published and listed in Key Research Accomplishments below.   
 
Overall, the study done with 16 resident physicians and 18 nurse practitioner students 
algorithmically defined a set of finger palpation techniques for the digital rectal exam (DRE) 
based upon past qualitative definitions of hands-on technique and evaluated performance 
between experts and novices.  Four palpation techniques were defined: global finger movement, 
local finger movement, and average intentional finger pressure, and dominant intentional 
finger frequency.  Streaming feedback from force and balloon sensors in the instrumented 
prostate provided the source data.  With this information we sought to assess if certain 
techniques were prevalently used and correlated with greater performance accuracy.  Although 
technique utilization varied, some elements clearly impacted performance.  For example, those 
utilizing the local finger movement of vibration (i.e., firm pressure of varying intensity) were 
significantly better at detecting abnormalities. Also, the V pattern of global finger movement led 
to greater success and average finger pressure of greater magnitude was required to detect 
smaller, more deeply positioned abnormalities. We found that the quantified palpation 
techniques appear to account for examination ability at some level but not entirely for 
differences between experience levels.   

Abstract for paper in IEEE Transactions on Information Technology in Biomedicine 
 

This work seeks to quantify finger palpation techniques in the prostate clinical exam, 
determine their relationship with performance in detecting abnormalities, and 
differentiate the tendencies of nurse practitioner students and resident physicians. One 
issue with the digital rectal examination (DRE) is that performance in detecting 
abnormalities varies greatly and agreement between-examiners is low.  The utilization 
of particular palpation techniques may be one way to improve clinician ability. Based on 
past qualitative instruction, this work algorithmically defines a set of palpation 
techniques for the DRE, i.e., global finger movement, local finger movement, and 
average intentional finger pressure, and utilizes a custom-built simulator to analyze 
finger movements in an experiment with two groups: 18 nurse practitioner students and 
16 resident physicians. Although technique utilization varied, some elements clearly 
impacted performance. For example, those utilizing the local finger movement of 
vibration were significantly better at detecting abnormalities. Also, the V global finger 
movement led to greater success, but finger pressure played a lesser role. Interestingly, 
while the residents were clearly the superior performers, their techniques differed only 
subtly from the students. In summary, the quantified palpation techniques appear to 
account for examination ability at some level but not entirely for differences between 
groups. 
 

As indicated in Figures 24 – 26, we have now setup algorithms to quantify finger palpation 
patterns and examined palpation patterns of medical resident physicians and nurse practitioner 
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students who identified that palpation via a particular method was associated with improved 
detection rates. In depth analysis of the palpation technique ascertained that global finger 
movement (GFP), local finger movement (LFP), and average intentional finger pressure (AIFP) 
were key components of this palpation technique (Fig. 24, Analysis Tool).  In short, GFP is 
defined as the systematic movement of one’s finger over the entire prostate (U, V, L, and Line 
patterns) while LFP is defined as palpation by finger movement within a single quadrant of the 
instrumented prostate or near a single abnormality.  Three patterns are defined as tapping, 
vibration and sliding. Finally, we calculate AIFP as that applied over the duration of the exam 
in the vicinity of filled balloons.   

 
 

Figure 24: Palpation Technique Analyzer and Analysis Results, including a) Global Finger 
Pattern, b) Local Finger Pattern and c) Average Intentional Finger Pressure.  
 
The continuous nature of the recording from force and balloon sensors (Fig. 25, left) allows for 
the quantification of these patterns. 
 

 
Figure 25: Example Plot of Force Sensor and Balloon Sensor Data for an Example Testing 
Scenario 
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With “local” finger pattern as an example, we show more formally the mathematical definition 
of the three local patterns (tapping, vibration and sliding), Fig. 26.   
 

 
 

Figure 26: Three local finger palpation patterns of tapping, vibration and sliding. 
 
The local tapping pattern is defined formally for the ith sensor Litap in equation below, where the 
period between time j and k is a break with no spikes (para 1).  
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Visible in the data of Figure 26b, the vibration pattern is defined formally for the ith sensor in 
equation below as an examiner maintaining finger pressure above a certain value (para 2) on 
the prostate over a continuous time span of at least 320-msec. 
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The sliding pattern comes in contrast to the tapping and vibration patterns where the examiner 
appears to transition from the global finger pattern to an intentional focus upon the local 
detection of a balloon.  Visible in Figure 26c, the sliding pattern is defined formally for the ith 
sensor in equation 7 as an examiner maintaining pressure above a certain value (para 2) 
continuously for 90 to 320-msec. 
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Abstract for paper in Journal of Simulation in Healthcare 
 

Introduction: Prostate carcinoma (and other prostate irregularities and abnormalities) 
are detected in part via the digital rectal exam.  Training clinicians to use particular 
palpation techniques may be one way to improve rates of detection.  Methods: In an 
experiment of 34 participants with clinical backgrounds, we used a custom-built 
simulator to determine if certain finger palpation techniques improved one’s ability to 
detect abnormalities smaller in size and dispersed as multiples over a volume.  The 
intent was to test abnormality cases of clinical relevance near the limits of size 
perceptibility (i.e., 5 mm diameter).  The simulator can present abnormalities in various 
configurations and record finger movement.  To characterize finger movement, four 
palpation techniques were quantitatively defined (global finger movement, local finger 
movement, average intentional finger pressure, and dominant intentional finger 
frequency) to represent the qualitative definitions of other researchers.  Results:  
Participants who used more thorough patterns of global finger movement (V and L) 
ensured the entire prostate was searched and detected more abnormalities.  A higher 
magnitude of finger pressure was associated with the detection of smaller abnormalities.  
The local finger movement of firm pressure with varying intensity was most indicative 
of success and was required to identify the smallest (5 mm diameter) abnormality.  
When participants utilized firm pressure with varying intensity, their dominant 
intentional finger frequency was about 6 Hz.  Conclusions:  The use of certain palpation 
techniques does enable the detection of smaller and more numerous abnormalities, and 
we seek to abstract these techniques into a systematic protocol for use in the clinic. 

 
We have since begun a study with collaborator Tracey Krupski to evaluate the finger patterns of 
expert urologist examiners.  Testing with 12 urological clinicians has finished, seeking to 
determine if there is a standard palpation technique.  If such a palpation technique does exist, 
the potential exists for a high yield training intervention.  The analysis of this work will 
continue into the future. 
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Task 5 is to setup the interaction with EVMS and U.Va. Biomaterials.  Task 5 was completed in 
year 1.  We have IRB agreements in place at the University of Virginia and Eastern Virginia 
Medical School.  These have also been approved by the IRB of the Department of Defense. 
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Key Research Accomplishments  
 
We list several journal and conference publications, either already presented or published, 
currently under review, or to be submitted. 
 

Peer-reviewed publications accepted 
1. Baumgart, L.A., Gerling, G.J., and Bass, E.J. Characterizing the range of simulated 

prostate abnormalities palpable by digital rectal examination, Cancer Epidemiology, 34 
(1): 79-84 2010 

2. Wang, N., Gerling, G.J., Moyer Childress, R., and Martin M.L. Quantifying palpation 
techniques in relation to performance in a clinical prostate exam, IEEE Transactions on 
Information Technology in Biomedicine, 14(4): 1088-97 2010 

3. Wang, N., Gerling, G.J., Moyer Childress, R., and Martin M.L. Using a prostate exam 
simulator to decipher palpation techniques that facilitate abnormality detection near 
clinical limits, Simulation in Healthcare: The Journal of the Society for Simulation in 
Healthcare, 5(3):152-160 2010 

4. Carson, W.C., Gerling, G.J., Krupski, T.L., Gundersen, C.A., Harper, J.C., and Moskaluk, 
C.A.,  Material characterization of ex vivo prostate tissue via spherical indentation in the 
clinic, Medical Engineering & Physics, 33(3): 302-309 2011 

 

Peer-reviewed publications in progress 
1. Gerling, G.J., Moyer Childress, R. and Martin, M.L., Designing a clinically functional 

simulator to support effective learning: features and cases.  Planned submission to 
Medical Teacher. 

2. Kowalik, C.G., Lee, A.J., Carson, W.C., Gerling, G.J., Harper, J.C., Moskaluk, C.A., and 
Krupski, T.L., Authenticating a High Fidelity Prostate Exam Simulator. Under review. 

3. Lee, A.J., Schmidt, K., and Gerling, G.J. Applying the Partial Credit Model to the 
Assessment of Clinical Hands-On Skills in a Part-Task Simulator, in preparation for the 
Journal of the Human Factors and Ergonomics Society. 

 

Conference papers and presentations (peer-reviewed) 
1. Wang, N., Gerling, G.J., Moyer Childress, R., and Martin M.L. Characterizing finger 

palpation in the detection of prostate cancers and abnormalities.  Proceedings of the 
Human Factors and Ergonomics Society 52nd Annual Meeting, 2008, New York City, NY, 
pp. 813-817 

2. Baumgart, L.A., Gerling, G.J., and Bass, E.J., Psychophysical detection of inclusions with 
the bare finger amidst softness differentials, Proceedings of the 2010 IEEE Haptic 
Interfaces for Virtual Environment and Teleoperator Systems, Boston, MA, pp 17-20 
2010 (acceptance rate: 42%) 

 

Student conferences (not rigorously peer-reviewed) 
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1. Baumgart, L.A., Gerling, G.J. & Bass, E.J., Characterizing the range of simulated prostate 
abnormalities palpable by digital rectal examination. Presented at the NLM Informatics 
Training Conference (July 23-24, 2009) Portland, Oregon 

2. Lee, A.J., Gerling, G.J., Applying computerized adaptive testing to the Virginia prostate 
examination simulator, Works in Progress Abstract and Poster Presentation at the 10th 
Annual International Meeting on Simulation in Healthcare (Jan. 23-27, 2010) Phoenix, 
Arizona. 

3. Baumgart, L.A., Gerling, G.J. and Bass, E.J., Characterizing the range of simulated 
prostate abnormalities palpable by digital rectal examination, Abstract and Poster 
Presentation for Academy of Distinguished Educators – 6th Medical Education Research 
Day and Poster Session (February 22-26, 2010) U.Va. School of Medicine 

4. Lee, A.J., Gerling, G.J., Applying computerized adaptive testing to the Virginia prostate 
examination simulator, Abstract and Poster Presentation for Academy of Distinguished 
Educators – 6th Medical Education Research Day and Poster Session (Feb. 22-26, 2010)  
U.Va. School of Medicine 

5. Gundersen, C.A., Gerling, G.J., Carson, W.C., Thomas, K.R., Harper, J., Moskaluk, C.A., 
Krupski, T.L., Assessing mechanical properties of benign and malignant prostate tissue. 
American Society of Clinic Oncology 2010, Chicago, Illinois (Published Abstract, 
Permanent Abstract ID: e15109) 

6. Poster presentation at 2011 Academy of Distinguished Educators (ADE) medical 
education poster session March 7th-11th, 2011, entitled “Comparing Accuracy of Digital 
Rectal Exam Finger Patterns: Novice to Expert”, George C. Bailey1, Casey G. Kowalik2, 
Angela J. Lee3, N. Wang3, Tashima Lambert3, Gregory J. Gerling3, and Tracey L. Krupski4 
1. University of Virginia, School of Medicine, 2. Lahey Clinic Medical Center, Department of 
Urology, 3. University of Virginia, Department of Systems and Information Engineering, 4. 
University of Virginia, Department of Urology  

 
Students graduated 
 Ninghuan Wang (Master of Science, May 2009) 

 Angela Lee (Master of Science, May 2011) 

 William Carson (Master of Science, May 2011) 

 
Other grants written 
Title: Connecting Digital Rectal Exam (DRE) Training with Improving Healthcare Provider 
Performance and Patient Safety using a Novel Prostate Simulator 
Sponsor: AHRQ - NIH 
Status: Declined, preparing resubmission 
 
Congressionally Directed Research Program’s Conference IMPACT on Prostate Cancer.  
Orlando, FL, 3/9-11, 2011.  Presented two posters. 

 
 Ninghuan Wang, Gregory J. Gerling, Tracey L. Krupski, Reba Moyer Childress, Marcus 
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L. Martin, "Quantifying palpation techniques in relation to performance in a clinical 
prostate exam, especially that facilitate the detection of abnormalities near clinical 
limits" to IMPaCT: Innovative Minds in Prostate Cancer Today 

 
 William C. Carson, Gregory J. Gerling, Tracey L. Krupski, Casey A. Gundersen, Jeffrey 

C. Harper, and Christopher A. Moskaluk, "The mechanical characterization of ex 
vivoprostate tissue via spherical indentation in the clinic" to IMPaCT:Innovative Minds 
in Prostate Cancer Today 

 
 
In terms of Public Service and Outreach, we have also presented to the public in several 
venues both in the popular press and with booths at the one-to-one level. 

 
Coverage in Popular Press 
 NBC 29 Interview: “Simulator Helps UVA Doctors Detect Cancer” (January 26th, 2009) 

Newscast available for viewing at: http://www.nbc29.com/global/story.asp?s=9730404 

 Cavalier Daily Newspaper Article: “New Simulator Provides Unique Practice” (January 
27th, 2009) Story available for reading at: 
http://www.cavalierdaily.com/news/2009/jan/27/new-simulator-provides-unique-
practice/  

 
Presented at a booth at the Charlottesville Community Health Fair, in conjunction with the 
19th annual African-American Cultural Arts Festival in Booker T. Washington Park, 
Saturday, July 26, 2008, Attended and demonstrated the Virginia Prostate Examination 
Simulator, our research and posters, along with group informing the public about prostate 
and breast cancer. 

 
 

Reportable Outcomes  

Several papers have now been published.  Those are listed above. 
 
 
Conclusions  
 

Our team made good progress on our three year grant toward achieving all aims.  We have 7 
journal papers either submitted or accepted, in addition to 2 conference proceedings, with other 
physical artifacts completed.  We also had other presentations that were not peer reviewed.  We 
have collected data from several human-subjects experiments and also tissue measurement 
experiments.  We have recruited a group of students and have established collaborations with 
other researchers, in particular to gain access to tissue specimens.  We have successfully built 
and validated a materials characterization procedure, a series of algorithms for detecting finger 
palpation patterns, formalized contextual feedback, have worked on the development of a 
curriculum framework in which to embed the simulator in practice, and formulated an 
algorithm to allow computerized adaptive testing principles to be applied to reduce simulation 
exam duration.    
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A B S T R A C T

Background: Although the digital rectal exam (DRE) is a common method of screening for prostate cancer

and other abnormalities, the limits of ability to perform this hands-on exam are unknown. Perceptible

limits are a function of the size, depth, and hardness of abnormalities within a given prostate stiffness.

Methods: To better understand the perceptible limits of the DRE, we conducted a psychophysical study

with 18 participants using a custom-built apparatus to simulate prostate tissue and abnormalities of

varying size, depth, and hardness. Utilizing a modified version of the psychophysical method of constant

stimuli, we uncovered thresholds of absolute detection and variance in ability between examiners.

Results: Within silicone-elastomers that mimic normal prostate tissue (21 kPa), abnormalities of 4 mm

diameter (20 mm3 volume) and greater were consistently detectable (above 75% of the time) but only at

a depth of 5 mm. Abnormalities located in simulated tissue of greater stiffness (82 kPa) had to be twice

that volume (5 mm diameter, 40 mm3 volume) to be detectable at the same rate. Conclusions: This study

finds that the size and depth of abnormalities most influence detectability, while the relative stiffness

between abnormalities and substrate also affects detectability for some size/depth combinations. While

limits identified here are obtained for idealized substrates, this work is useful for informing the

development of training and allowing clinicians to set expectations on performance.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Prostate cancer has a high incidence rate (one in six for men in
the U.S.), with an estimated 192,280 new cases in 2009. When
diagnosed in an early and less aggressive stage, the five-year
survival rate approaches 100% [1]. To promote early detection, the
American Cancer Society advises that screening via the digital
rectal examination (DRE) and prostate specific antigen (PSA) blood
test be conducted concurrently. The DRE is important because the
PSA tends to both over diagnose (65–75% of findings reported as
false positives for PSA greater than 4.0 ng/l [2]) and miss cancerous
tumors (15.2% of findings reported as false negatives for PSA less
than 4.0 ng/l [3]). Although the DRE plays an integral role in early
detection and is a skill clinicians are expected to learn, the
perceptible limits surrounding this exam are unknown. Therefore,
there is no basis from which to set reasonable expectations about
clinical performance or to develop appropriate training.
Abbreviations: DRE, digital rectal examination; PSA, prostate specific antigen; BPH,

benign prostatic hyperplasia; CBE, clinical breast examination; BSE, self breast

examination; kPa, kilopascals.
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1877-7821/$ – see front matter � 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.canep.2009.12.002
When conducting a DRE, the clinician’s task is to detect hard
nodules that vary in size, depth and hardness or prostate
enlargement that varies in volume change and stiffness. The
former typically relate to carcinoma, the latter signal benign
prostatic hyperplasia (BPH) or prostatitis [4]. The size, depth, and
hardness of nodules and relative stiffness of a given prostate
contribute to the perceptible range of abnormalities. At present,
neither the thresholds of absolute detection nor variance in ability
between examiners have been identified.

In contrast, palpable limits have been studied in terms of the
clinical (CBE) and self (BSE) breast exams [5]. In two studies with
rubber-like materials, abnormality size emerged as the major
dimension affecting the detection of lumps [6,7]. In general, larger
lumps in more shallow positions pose the least difficulty. However,
simulated lumps as small as 3.0 mm diameter were detectable
when embedded in breast-like materials (which is an order of
magnitude more pliant than prostate tissue) [9–10]. Aside from the
lump size findings, abnormality depth and hardness appear to have
a minimal impact, whereas the stiffness of surrounding tissue may
decrease one’s ability to detect deeper lumps [11].

Hall et al. have shown that training on silicone models
effectively increases exam performance on natural breast tissue
[12]. Most of their training, and that prescribed by others for use
with silicone models [13–17], takes place at the level of hands-on

mailto:lab3h@virginia.edu
mailto:gg7h@virginia.edu
mailto:ejb4n@virginia.edu
http://www.sciencedirect.com/science/journal/18777821
http://dx.doi.org/10.1016/j.canep.2009.12.002
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skills. There is a focus on tactile skills because knowledge of disease
and attitudes about domain are not strongly related to proficiency
[18] and basic rules for diagnosing abnormalities as certain
diseases are not difficult to master [19]. One major prerequisite for
improving hands-on skills, however, is knowing the limits of tactile
sensation, in this case with respect to the DRE.

When characterizing the limits on performance, the DRE differs
from the breast exam in several key ways. First, a rectal wall is
positioned between the finger and prostate, in addition to a glove
and lubricant. Second, the clinician uses a single finger and is more
constrained in search movement. Third, the prostate is a stiffer
gland with less volume. Fourth, the exam typically takes place in
less than 30 s in contrast to 2 min for the breast exam [7,20]. With
these differences in mind, one common factor is that clinician
performance in both exams does benefit from training.

In this work, the overall goal is to determine the perceptible
limits of simulated abnormalities of various size, depth, and
hardness within substrates of different stiffness when the
examiner is constrained as with a DRE. In addition to determining
the thresholds of absolute detection, we seek to determine the
degree of variance in ability between examiners.

2. Methods

To analyze the limits of tactile perception in the DRE, we
conducted a human-subjects experiment with 18 participants,
using simulated prostates where abnormality size, depth, and
hardness were varied within substrates of two stiffness levels. The
objectives were to determine (1) the size of abnormalities
detectable above 75% of the time at three discrete depths, (2)
how substrate stiffness impacts the detectability of size/depth
combinations, (3) if changes in abnormality hardness (consistent
in objectives 1–2) impact detectability over size/depth combina-
tions, (4) if some abnormalities require a minimum hardness be
consistently detected, and (5) the variance in ability between
participants.

2.1. Apparatus

An apparatus was built specifically for this study. The apparatus
utilized silicone-elastomers to simulate the feel of prostate tissue
and a rectal wall and employed a computer and electronics to
control polyethelene balloons that simulated abnormalities. The
computer also monitored the water pressure in the balloons and
force on sensors embedded in the simulated tissue. The apparatus
design is similar to that described in Ref. [19].

Twenty-three simulated prostates, 30 mm diameter and 20 mm
tall, were mounted to a round platform that could be rotated so
that the prostate under test was located beneath the examiner’s
finger. The idealized cyndrilical prostates did not include the
surface undulations or an overall walnut shape, although the size
was roughly the same as an actual prostate [19]. The platform
containing the simulated prostates was housed within a structure
that restricted access to and view of the simulated prostates. The
examiner inserted his or her finger through an opening in the
structure that was built of silicone-elastomer to mimic the rectal
wall. The opening was angled at approximately 1108 from the
participant.

Each simulated prostate included a single polyethelene balloon
embedded at one of three depths: 5, 10, and 15 mm. Balloons of
seven volumes were used: 20, 40, 80, 200, 470, 1060, and
1770 mm3 that correspond to diameters of 4.0, 5.0, 7.5, 10.0, 15.0,
17.0, and 20.0 mm, respectively. Preliminary studies found that
balloons of 3.0 mm diameter were inconsistently detected in stiffer
simulated prostates and were not included. The balloons were
filled with water, thereby controlling hardness. Balloons could be
inflated to be hard, like a rock, but were not detectable when
deflated. In this study, three hardnesses were used: 23, 27, and 31
durometers, type Shore A. These fall within the range used for
simulated breast tumors [6,7]. Water pressure sensors (Honeywell,
SenSym Pressure Sensor, Model SX100DD4) monitored the water
pressure over time, which was logged by the computer.

In addition to factors of depth, size, and abnormality hardness,
simulated prostates of two stiffness levels were used: 21 and
82 kPa. These have been evaluated via compression tests and fall
into the measured range of prostate stiffness (mean elastic
modulus = 44.20 kPa, SD = 25.89 kPa [8]). These stiffness values
also fall in line with those deemed ‘‘realistic’’ in a subjective study
with resident physicians and nurse practioner students [19].
Located in the backing of each prostate were four, laterally spaced
pressure sensors (Flexiforce 0–1 lb, Tekscan, South Boston, MA)
which logged the examiner’s finger pressure over the simulated
prostate.

2.2. Participants

Ten male and eight female participants (mean age = 20.4 years,
SD = 1.38) were enrolled in the human-subjects study, approved by
the IRB at the University of Virginia. No participant had prior
clinical experience. A questionnaire also indicated that no
participant had any remarkable prior experience working with
his or her hands.

2.3. Experimental design

Using a modified version of the psychophysical method of
constant stimuli [21], participants palpated the simulated pros-
tates to determine the presence or absence of abnormalities.
Typically the method of constant stimuli employs stimulus and
blank trials presented in a randomized fashion where all stimulus
combinations are presented an equal number of times. However, in
the version we employed, we made three modifications to reduce
participant fatigue. First, from all possible combinations (abnor-
mality size, depth, hardness and substrate stiffness) only a subset
of stimulus combinations were presented to participants (e.g., size
4 mm was used at 5 and 10 mm depth but not 15 mm depth). Pilot
testing was conducted to remove combinations that were
detectable 0% or 100% of the time. Second, the number of times
that each stimulus combination was presented varied from two to
four times depending on the difficulty of detecting the abnormality
in the pilot study. Specifically, from the chosen subset of
abnormalities, the most difficult to detect were presented four
times, while the easiest to detect were presented two times. Third,
due to hardware and time limitations, participants were presented
with stimuli and blanks in one of six pre-determined random
orders. Table 1 shows all stimulus combinations used and the
number of times each was presented per participant in the
experiment.

2.4. Procedure

Every participant participated in two experimental sessions,
held on separate days for 90 min each. In session 1, each
participant completed a 5 min pre-test questionnaire, a 5 min
hands-on practice, and an 80 min hands-on experiment. During
session 2, each participant completed a 5 min hands-on practice,
an 80 min hands-on experiment and a 5 min post-test
questionnaire. During sessions 1 and 2, participants palpated
96 simulated prostates, half of which contained an abnormality
(the balloons were not inflated for the other half). Four
participants returned for session 3, which was a 5 min hands-
on practice and a 45 min hands-on experiment. Session 3



Table 1
Stimulus combinations and number of presentations per participant.

Abnormality dimensions Number of

presentations

at 82 kPa

stiffness

Number of

presentations at

21 kPa stiffness
Size (diameter

in mm)

Depth

(mm)

Hardness

(durometers,

Shore A)

4 5 31 4 2

4 10 31 2 4

5 5 23, 27, 31 3*, 3*, 3* 3*, 3*, 2*

5 10 23, 27, 31 3*, 3*, 3* 3*, 3*, 3*

7.5 5 31 3 –

7.5 10 31 3 2

7.5 15 31 – 4

10 5 31 2 –

10 10 23, 27, 31 4, 4, 4 4, 4, 2

10 15 23, 27, 31 –, –, 2 4, 4, 3

15 10 31 3 –

15 15 23, 27, 31 4, 4, 4 –, –, 2

17 10 31 2 –

17 15 31 3 –

20 15 31 2 –

* Stimulus combinations only presented in Session 3 and examined by four

participants.

Fig. 1. Psychophysical functions for the detectability of abnormalities at 5, 10 and

15 mm depths as a function of abnormality size for prostate stiffness of 82 kPa. The

dotted line denotes the 75% correct threshold. The circle denotes a size/depth

combination expected to minimally surpass the 75% threshold when abnormality

hardness is decreased, and is referenced in Fig. 3. Standard error bars are shown

around the data points.

Fig. 2. Psychophysical functions for the detectability of abnormalities at 5, 10 and

15 mm depths as a function of abnormality size for prostate stiffness of 21 kPa. The

dotted line denotes the 75% correct threshold. The circle denotes a size/depth

combination expected to minimally surpass the 75% threshold when abnormality

hardness is decreased, and is referenced in Fig. 3. Standard error bars are shown

around the data points.
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participants palpated 48 additional simulated prostates, 24 of
which contained an abnormality.

Participants were given 20 s to examine a single prostate. At the
conclusion of each exam, participants informed the proctor (via
‘‘yes’’ or ‘‘no’’) as to whether an abnormality was present. Verbal
responses were recorded by the proctor on paper. Participants
were given a 10 s break between subsequent examinations, a 60 s
break after every 10–17 examinations and a 5 min break after
every 32–42 examinations. During each exam, the proctor also
monitored the pressure exerted on the prostates to ensure that
finger pressure remained within 4 and 6 N and that the quadrants
were palpated in the specified order. During the hands-on practice
session, participants had been taught to utilize a consistent search
technique. The technique was to move one’s finger across the
prostate surface in lines parallel with and then perpendicular to
the participant’s seated position. When traversing these line paths,
participants used small, dime-sized circular motions.

3. Results

The results are summarized in five subsections corresponding
with the five objectives.

3.1. Absolute threshold – abnormality size, depth, and substrate

stiffness combinations

Scenarios across participants were combined to determine the
size of abnormalities consistently detectable (above 75% of the
time for all participants combined) at the three discrete depths for
two levels of prostate stiffness. Deeper abnormalities were more
difficult to detect for all abnormality sizes. For the stiffer substrate
(82 kPa), the abnormality size threshold was 5 mm diameter at
5 mm depth, 10 mm diameter at 10 mm depth, and 17 mm
diameter at 15 mm depth (Fig. 1). For the more pliant substrate
(21 kPa), the abnormality size threshold was 4 mm diameter at
5 mm depth, 5 mm diameter at 10 mm depth, and 15 mm diameter
at 15 mm depth (Fig. 2). Therefore, both increases to substrate
stiffness and abnormality depth make similarly sized abnormali-
ties harder to detect.

3.2. Effect of substrate stiffness on abnormality detection

The detection rate for larger abnormalities in stiffer substrates
(Fig. 1) is similar to smaller abnormalities in more pliant substrates
(Fig. 2), given equal depth. For example, at a depth of 15 mm,
17 mm abnormalities in the 82 kPa substrate were detected at
approximately the same percentage (80%) as 10 mm abnormalities
in the 21 kPa substrate (74%).

3.3. Effect of abnormality hardness on abnormality detection

To investigate the effect of abnormality hardness (held constant
in objectives 1–2) on detectability, we analyzed specific size/depth
combinations that were expected to minimally surpass the 75%
threshold when abnormality hardness was decreased (see circled
data points in Fig. 1 and Fig. 2). Fig. 3 illustrates the impact of
varying the hardness of an abnormality that is 10 mm diameter
and 10 mm depth, for both 21 and 82 kPa substrates. At the lowest
abnormality hardness (23 durometers, type Shore A) the detect-
ability rate in the stiffer substrate (82 kPa) drops close to the 75%
threshold from the 100% detectable threshold when its hardness is
greater. In contrast, the detectability rate in the more pliant
substrate (21 kPa) was unaffected by changes to abnormality
hardness.

3.4. Absolute threshold – abnormality hardness

Some size/depth combinations require a minimum abnormality
hardness to be detected 75% of the time. Fig. 4 shows how
abnormality hardness affects the detectability of four different



Fig. 3. Psychophysical functions for the detectability of abnormalities 10 mm

diameter at 10 mm depth as a function of abnormality hardness for prostate

stiffness levels of 82 and 21 kPa. Standard error bars are shown around the data

points.
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size/depth combinations in both substrates. In stiffer substrates
(two top plots – 82 kPa), the decrease in detection rate with
changes in the abnormality hardness is more evident. The
detection rate decreased by 38% (Fig. 4a) and by 42% (Fig. 4b)
when the hardness of the two abnormalities decreased from 31 to
23 durometers. In contrast for the 21 kPa simulated prostates, the
detection rate exhibited a more gradual decrease (by 10% (Fig. 4c)
and by 14% (Fig. 4d)) when abnormality hardness was decreased.

3.5. Variance in detection performance between examiners

Detection varied across stimulus combinations (abnormality
size, depth, hardness and substrate stiffness) encountered by each
Fig. 4. Psychophysical functions for the detectability of four different size/depth combina

diameter abnormality at a 10 mm depth embedded within prostate of stiffness 82 kPa,

stiffness 82 kPa, (c) 5 mm diameter abnormality at a 5 mm depth embedded within prosta

within prostate of stiffness 21 kPa. Standard error bars are shown around the data poi
participant and also between participants. The hit rate for each
participant was defined as the number of abnormalities detected
by the participant divided by the total number of abnormalities
presented to that participant. Participants’ hit rates ranged from
95.8% to 48.5% (mean = 74.0%, SD = 13.0%), as indicated by the solid
points in Fig. 5. Three (out of 18) participants were below one
standard deviation of the mean hit rate. The distribution of
participants’ hit rates is shown in Fig. 6.

Furthermore, all stimulus combinations that were detected
more than 90% of the time (from Figs. 1 and 2) were classified as
‘‘easy’’ stimulus combinations. All stimulus combinations that
were detected less than 90% of the time were classified as
‘‘difficult’’ stimulus combinations. Participants’ hit rates for ‘‘easy’’
stimulus combinations are indicated by the crosses (+) in Fig. 5,
whereas hit rates for ‘‘difficult’’ stimulus combinations are
indicated by the exes (x). The mean hit rate for all participants
decreased (96.9% to 56.4%) while the standard deviation in hit rate
increased (4.8% to 21.4%) from the ‘‘easy’’ to ‘‘difficult’’ stimulus
combinations. Fig. 7 shows the hit rate distributions for these
subsets of stimulus combinations.

The Pearson’s product-moment correlation model was used to
determine that there was no significant correlation between
participants’ hit rates and false alarm rates (r = �0.174, p = 0.489)
for all stimulus combinations (Fig. 8).

4. Discussion

This study sought to characterize the range of prostate
abnormalities that are palpable via digital rectal examination.
Among the four factors (abnormality size, depth, hardness,
and substrate stiffness), our overall finding was that at a depth
of 5 mm, the majority of abnormalities can be detected
tions in two prostate stiffness levels as a function of abnormality hardness: (a) 5 mm

(b) 15 mm diameter abnormality at a 15 mm depth embedded within prostate of

te of stiffness 21 kPa, (d) 10 mm diameter abnormality at a 15 mm depth embedded

nts.



Fig. 5. Hit rates for all 18 participants. The solid points represent the hit rate for all

stimulus combinations, the crosses (+) represent the hit rate for ‘‘easy’’ stimulus

combinations, and the exes (x) represent the hit rates for ‘‘difficult’’ stimulus

combinations. The solid line represents the mean hit rate for all stimulus

combinations and the dashed lines represent one standard deviation above or

below the mean hit rate for all stimulus combinations.

Fig. 6. Distribution of participants’ hit rates for all stimulus combinations.

Fig. 7. Distribution of participants’ hit rates for ‘‘easy’’ and ‘‘difficult’’ stimulus

combinations. The ‘‘easy’’ stimulus combinations are indicated by the solid grey

bars and the ‘‘difficult’’ stimulus combinations are indicated by the shaded bars.

Fig. 8. Hit rate for all stimulus combinations versus false alarm rate for each

participant.

L.A. Baumgart et al. / Cancer Epidemiology 34 (2010) 79–84 83
independent of prostate stiffness or abnormality hardness or
size. However, abnormalities located more deeply must be
larger to be consistently detected. This is especially pertinent
for the stiffer substrates, where abnormalities must be 10–
17 mm diameter to be consistently detected at depths 10–
15 mm. In more pliant substrates, detectable abnormalities at
depths 10–15 mm are smaller (5–10 mm diameter). These
results may aid in the development of training regimens so
that scenarios utilize reasonable ranges per the four factors.
Additionally the between examiner variance may also have
implications in the clinic for a starting point in placing
expectations on detection performance.

In comparison to simulated breast lumps, we found that the size
of prostate abnormalities had be larger to be consistently
detectable (5 mm compared to 3 mm) [6,7]. Additionally, our
study found that depth played a larger role in abnormality
detection. These findings are most likely due to the differences in
substrate stiffness (21 or 82 kPa compared to 1–5 kPa).
Compared to size and depth, the hardness of an abnormality did
not play as large a role, similar to results related to simulated
breast tissue [6]. While hardness was not as prominent a factor
overall, it did emerge as relevant when substrate stiffness and
abnormality hardness were varied for the more deeply embedded
(5–15 mm diameter and 10–15 mm depth) abnormalities. Detect-
ing the hardness of an abnormality is most pertinent to detecting
changes in prostate stiffness due BPH or prostititus, and therefore
is relevant to larger and more deeply embedded tumors.

When we considered the performance of individual examiners,
we uncovered that there were clearly a set of ‘‘easy’’ and ‘‘difficult’’
stimulus combinations. More effective training may need to be
developed that reduces the number of ‘‘easy’’ training scenarios
that yield high levels of detection performance and little variance
between examiners. It is clearly the ‘‘difficult’’ scenarios that yield
a lower level of detection performance and greater variability.

This experiment utilized simulated prostates in a simulated
environment. The simulated prostates did not include fibrous
tissue, varying surface texture, or undulations of the surface.
Additionally, the experimental environment lacked any of the
typical patient–clinician interactions. Ideally, future studies will
augment our findings by using in vivo human prostate tissue with
known abnormalities of various size, depth, and hardness. As a first
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approximation, however, this study afforded a repeatable and
controlled method and the results are valuable for gathering data
on thresholds of detection and variance between examiners,
similar to that done for the breast exam.

In relation, when analyzing the individual examiners, we also
identified a low false alarm rate. This is likely because the
simulated prostates did not include non-homogenous, fibrous
tissue. The introduction of such elements would likely increase
detection thresholds. That said, our false alarm finding does not
indicate that better detectors are more willing to answer ‘‘yes’’ to
improve their performance. Finally, participants were required to
use the defined search technique. Other work indicates that search
technique plays a role in detection performance [22] and should
inform investigations, similar to that presented in here, to further
quantify the impact of technique on improving the detection of
smaller and deeper tumors.
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Quantifying Palpation Techniques in Relation to
Performance in a Clinical Prostate Exam

Ninghuan Wang, Gregory J. Gerling, Member, IEEE, Reba Moyer Childress, and Marcus L. Martin

Abstract—This paper seeks to quantify finger palpation tech-
niques in the prostate clinical exam, determine their relationship
with performance in detecting abnormalities, and differentiate the
tendencies of nurse practitioner students and resident physicians.
One issue with the digital rectal examination (DRE) is that per-
formance in detecting abnormalities varies greatly and agreement
between examiners is low. The utilization of particular palpation
techniques may be one way to improve clinician ability. Based on
past qualitative instruction, this paper algorithmically defines a set
of palpation techniques for the DRE, i.e., global finger movement
(GFM), local finger movement (LFM), and average intentional fin-
ger pressure, and utilizes a custom-built simulator to analyze finger
movements in an experiment with two groups: 18 nurse practi-
tioner students and 16 resident physicians. Although technique
utilization varied, some elements clearly impacted performance.
For example, those utilizing the LFM of vibration were signifi-
cantly better at detecting abnormalities. Also, the V GFM led to
greater success, but finger pressure played a lesser role. Interest-
ingly, while the residents were clearly the superior performers,
their techniques differed only subtly from the students. In sum-
mary, the quantified palpation techniques appear to account for
examination ability at some level, but not entirely for differences
between groups.

Index Terms—Biomedical measurements, human factors, medi-
cal decision making, simulation.

I. INTRODUCTION

TO PROMOTE the early detection of prostate cancer, the
American Cancer Society advises screening via both the

prostate-specific antigen (PSA) blood test and the digital rectal
exam (DRE) [1]. Clinicians palpate the prostate gland in con-
ducting a DRE. Since there is a high false-positive rate (67% [2],
[3]) for the PSA blood test, the DRE conducted concurrently is
a valuable procedure used in the detection of cancer. Presently
with the DRE, clinician performance in detecting tumors is vari-
able (positive predictive value is 17%–34% [1] and agreement
between examiners on diagnosis is low (21%–40% [4], [5]).
Hands-on training is typically conducted for the DRE via stan-
dardized patients or physical simulators [6], [7] and improves
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palpation skills, in general [8]. However, we do not understand
exactly which elements of training improve performance.

It may be that performance improves as clinicians become
more proficient in their hands-on technique. Palpation tech-
niques, for example, in the clinical breast exam (CBE), include
global finger movement (GFM) for the search of abnormali-
ties over the entire breast, local finger movement (LFM) for
the palpation of small areas of the breast, and levels of finger
pressure for adequate search through the tissue depth [9]–[11].
A range of studies have shown that examiners, who utilize
these components in a specified fashion, increase mean lump-
detection rates at a statistically significant level [12], [13], in
some cases doubled from pre- to posttest [9], [14]. In addition,
skills learned on silicone models transfer to the detection of
human lesions [14]. Together, these results tend to indicate that
improved technique correlates with improved performance, al-
though the majority of studies focus upon the CBE, rather than
the DRE.

Among the three palpation techniques typically cited for the
CBE, often discussed is the technique of GFM. Specific GFMs
are the vertical strip, concentric circle, and radial spoke [15].
For example, in utilizing 1) the vertical strip, one begins at one
outside quadrant and continues in overlapping vertical strips;
2) the concentric circle, one originates at outermost top of the
breast and moves in concentric circles until terminating at nip-
ple; and 3) the radial spoke, one begins at the perimeter of the
conical part of the breast and converges in a vector toward the
nipple. Study results indicate that use of the vertical strip leads
to an increased detection of abnormalities [10], [16], as it may
enable a more efficient and thorough coverage of tissue. Others
have shown that search technique plays a lesser role [17]–[19],
although these studies evaluated breast self-exam (BSE) rather
than CBE.

Additionally for the technique of LFM, the literature advises
palpation with the finger pads of the middle three fingers in
dime-sized circular motions [15], [20], [21]. Others suggest
using two or three fingers in circular motions with varying pres-
sure, rolling tissue between two fingers, sliding the fingers over
the surface of the breast, or employing the patterns in com-
bination [22]. While such strategies are widely promoted and
utilized in practice, one of the only empirical comparisons of
circular and sliding patterns found that neither resulted in more
lumps being detected in breast models, although sliding move-
ment was associated with increased false-positive reports [19].
Finally, for the technique of finger pressure, the application of
three magnitudes (light subcutaneous, medium midlevel, and
deep-chest wall) advocates increased pressure for each concen-
tric circle [9], although little evidence supports its effectiveness.

1089-7771/$26.00 © 2010 IEEE
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Studied widely for the CBE, few techniques have been intro-
duced in relation to the DRE, although typically mentioned is
the need to search its entire volume.

Few researchers have sought to quantify hands-on techniques.
This is due, in part, to the lack of sensor arrays to track finger mo-
tion, lack of algorithms and tools to analyze finger motion, and
lack of devices to present a variety of scenarios, although sev-
eral simulators are moving in this direction [6], [23], [24]. Such
analysis might allow us to determine if certain techniques are
consistently utilized or positively correlated with performance
over a range of test scenarios. Work in this direction has be-
gun for the female pelvic exam, utilizing a simulator (E-Pelvis)
that can track finger motion [25]. The results of Pugh’s work
introduced three techniques (number of critical areas touched,
frequency at which areas were touched, and maximum pressure
exerted) that were correlated with ability to diagnose simulated
findings. More broadly, analysis of force sensor data has sought
to classify human behaviors and knowledge, e.g., stride patterns
in human gait [26] and characteristics underlying activities of
walking, running, and cycling [27], though many examples in
the literature span medical and athletic domains.

In this paper, our overall goal is to quantify hands-on tech-
niques that characterize human performance in the palpation of
prostate abnormalities via a custom-built simulator. In doing so,
we seek to determine if certain techniques are related to superior
performance.

II. METHODS

To analyze palpation technique and its link with performance,
we conducted an experiment with two groups: group 1 with
18 nurse practitioner students and group 2 with 16 resident
physicians, using the Virginia Prostate Examination Simulator
(VPES), described later. Utilizing algorithms and software de-
veloped here, the objectives were to determine:

1) if performance in detecting abnormalities differs between
the two groups;

2) the characteristic patterns that underlie the palpation tech-
niques of GFM (e.g., U, V, L, or Line), LFM (e.g, tapping,
vibration, or sliding), and average intentional finger pres-
sure (AIFP);

3) for each palpation technique, if the identified patterns are
consistently employed;

4) if their utilization differs between the two groups;
5) if certain techniques and patterns yield better performance

in the number of abnormalities detected.

A. Apparatus: VPES

The design of the VPES utilizes rubber-like materials to sim-
ulate the feel of tissue while using a computer to reconfigure test
scenarios and pressure sensors to record finger pressure for im-
mediate feedback and postperformance review [6]. See previous
reference for in-depth detail on the simulator.

Three instrumented prostate models with accurate size and
stiffness are attached to a tracking system internal to a pos-
terior torso. Their dimensions are 5.5 cm (transverse, width
dimension) by 5.0 cm (longitudinal, length dimension). Four to

six polyethylene balloons are embedded in each instrumented
prostate and filled with water to simulate palpable abnormali-
ties. Deflated balloons are not palpable. In this study, we utilized
the VPES to simulate normal and abnormal prostate conditions,
including prostatitis (enlarged and boggy inflammation) and car-
cinoma (small and firm isolated nodule) by utilizing balloons
in various configurations of size and location, but similar hard-
ness (∼30 Shore A durometers). Balloons of increasing size are
named from “A” to “E” and are positioned in different locations
for each prostate. The size of the smallest balloon “A” is 0.5 by
0.5 cm, while that of the largest balloon “E” is 3.0 by 1.5 cm.

Using water pressure and force sensors, respectively, the
VPES captures the finger pressure employed on inflated bal-
loons and on the prostate. A change in water pressure denotes
that a user has palpated an abnormality and this information is
logged for postexamination analysis. Accompanying the water
pressure sensors, force sensors monitor forces exerted by the
examiner’s finger on the prostate. Four force sensors (Tekscan,
South Boston, MA, Flexiforce 0-1 lb) are embedded at the base
of each instrumented prostate and record the location and mag-
nitude of applied finger pressure.

B. Experiment

1) Participants: Eighteen nurse practitioner students and 16
resident physicians participated in the human–subjects experi-
ment, approved by the Institutional Review Board at the Univer-
sity of Virginia. Among the nurse practitioner students (group 1)
were 4 males and 14 females, ages 23–47 (M = 33.90, standard
deviation (SD) = 8.56), while among the resident physicians
(group 2) were six males and ten females, ages 26–32 (M =
28.70, SD = 1.70). The major difference between two groups
is that resident physicians have much more clinical experience
in DRE. In general, group 2 had performed more DREs in the
clinic (median = 15) than group 1 (median = 0). Based on their
recollections, all resident physicians had performed at least nine
clinical exams, while only five nurse practitioner students had
ever performed a clinical exam, within the preceding 18 months.

2) Basic Setup: The overall procedure included the experi-
ence questionnaire, a hands-on orientation, and a hands-on test-
ing session. In the 5-min orientation, the participant palpated
the VPES in three scenarios. After each scenario, the proctor
pointed out simulated abnormalities on a printed figure. During
the 20-min testing session, each participant was given 30 s to
palpate each of five scenarios. The participants were asked to
palpate the entire prostate, as they would in a clinical exam.
After each 30-s testing session, the participant identified any
abnormalities to the proctor stating, in particular, their size and
location. Utilizing two proctors, the first proctor facilitated pa-
per work, hands-on sessions, and recording the verbal report
of detections (on a standardized score sheet, where data were
the size, location, and hardness of an abnormality). While this
proctor was blind to scenario, the second proctor controlled the
order of scenarios presented. The proctors trained in a prelimi-
nary experiment.

3) Statistical Analysis: We generated logistic regression
models by employing the GENMOD procedure in SAS,
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Version 9.1, which uses generalized estimating equations for
repeated measurements. Factors were GFM × LFM × AIFP
× group × (abnormality simulated or testing scenario). For the
technique variables, there were four levels of GFM, three levels
of LFM, and one continuous variable of average AIFP. These
are described algorithmically in high-level algorithms. Group
was a between-subjects factor: group 1 and group 2. Abnor-
mality simulated was a within-group factor consisting of six
simulated abnormalities in four testing scenarios (scenarios 2–
5). While abnormality simulated applied to LFM and AIFP, the
within-group factor for GFM was the four test scenarios (2–5).

In regards to performance (P ), the dependent variable is a
correct detection, valued 1 or 0. The performance variables
applied to the six abnormalities simulated (LFM/AIFP) or four
test scenarios (GFM). Note that the normal prostate (scenario
1) was not analyzed because no abnormality was simulated.

Given these variables, we formed a relationship between per-
formance and technique in (1), where α1 , α2 , α3 , α4 are co-
efficients associated with each factor. Note that coefficient α4
relates to group, where there are multiple subdifferences, in-
cluding accumulated experience and disciplinary training. In
addition, we use β to represent uncertainty related to other cog-
nitive elements, at the level of tactile object recognition, which
certainly impact proficiency, but which are difficult to decouple
from physical techniques. We know that knowledge of disease
and attitudes about the domain are not strongly related to profi-
ciency [28] and the basic rules for diagnosing abnormalities, as
certain diseases, are not difficult to master [6]

P = α1GFP + α2LFP + α3AIFP + α4group + β. (1)

In an analysis of sample size for a regression analysis, we
found that at least 144 participants (12 technique combinations
× 6 abnormalities simulated × 2 groups) would be required.
This is well more than the 34, we employ here. Therefore, we
present the results here as preliminary and as the rationale for
entering into a larger scale (and more costly) study. In addition,
because the participant number is small in comparison to the
number of explanatory variables in the model, it is possible that
our model overfits the data. For this reason, we also investigated
the explanatory variables separately.

4) Prostate Scenarios Simulated: Each of the eight total sce-
narios utilized one of three instrumented prostates in either nor-
mal or abnormal (prostatitis or carcinoma) states. Orientation
scenarios 1–3 and testing scenarios 1–5 were used (see Fig. 1).
Note that orientation scenario 3 and testing scenario 1 are not
shown because they are normal cases, with no balloons. The
choice of simulated abnormalities was made in consultation
with clinicians, to include sizes and locations typical of tumors
and prostatitis. Moreover, the simulated order of the testing sce-
narios was varied across participants.

C. Data and Data Collection

Three sources of data collected in the testing session were
analyzed, which are as follows: 1) finger pressure from force
sensors; 2) balloon pressure; and 3) participant reports to proc-
tor of abnormalities palpated. The finger pressure data were

Fig. 1. Simulated orientation and testing scenarios. “S1–S4” denote positions
of force sensors and letters “A–E” denote sizes of balloons.

collected from the four force sensors at a rate of 1000 samples
per second, set by the resolution of the A/D converter, over the
∼30 s exam. The data were converted from volts (V ) to Newtons
(F ) in the following equation:

F = 1.7744 × V. (2)

Balloon sensor data were sampled from the water pressure
transducers attached to balloons and at a rate of 3 samples per
second. The only use of the balloon sensor data was to help to
determine the interval over which to analyze LFM, i.e., when
the examiner palpated a balloon.

The third source of data was the paper record maintained by
the proctor, indicating if a participant reported palpating any
abnormalities.

D. High-Level Algorithms

The analysis focuses upon three palpation techniques: GFM,
LFM, and AIFP. A preliminary analysis of the data had identi-
fied four GFMs (U, V, L, and Line) and three LFMs (tapping,
vibration, and sliding) [29]. Algorithms were set up to mathe-
matically characterize these techniques and inform the design
of an analysis tool.

1) Global Finger Movement: GFM is defined as the system-
atic movement of one’s finger over the entire prostate. Four
patterns are defined as U, V, L, and Line with deviations in the
orientation for each pattern.

The algorithm to identify the GFM follows three main steps:
1) eliminate low-magnitude noise of the circuit and any noise
initially produced by a balloon inflated over the sensor; 2) dis-
cretize the resultant continuous data into binary values (0 or 1)
every 16 ms for each sensor, to create a state for the group of
four sensors (e.g., 0 0 0 0, 0 1 1 0, or 1 1 1 1); and 3) recognize
the GFM as the sequence of sensor states. First, the two types
of noise are eliminated that are produced from the hardware
circuit (noise, valued at 0.005 N) and that are produced from the
initial forces of a balloon on the ith sensor (toli). The following
equation (3) is thereby employed for the ith sensor data at time
t (si

t):

si
t = si

t − noise − toli . (3)
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Fig. 2. Three patterns of LFM. Identifying characteristics (parameters 1–
6) marked in the panels accompany algorithmic descriptions in the text.
(a) Tapping. (b) Vibration. (c) Sliding.

Then, the ith sensor data are discretized (biti
t) via (4), if it is

larger than g_threshold, set to indicate the intentional pressure
exerted by an examiner’s finger. The g_threshold is set at 0.05 N,
i.e., minimum AIFP

biti
t= 1 if si

t > g threshold, otherwise biti
t = 0.

(4)
The resultant bit values for sensors 1–4 are used to identify

a sensor state at time t (statet). Sixteen states were defined in
advance as 4-bit numbers, ranging from 0 0 0 0 to 1 1 1 1. The
leftmost bit stands for sensor 1 and the rightmost bit stands
for sensor 4. The bit is set as 1 if the sensor is triggered and 0
otherwise. For example, a state defined as 0 1 1 1 specifies a point
in time whereby sensors 2, 3, and 4 are triggered simultaneously,
while sensor 1 is untouched.

The completion of this procedure typically results in a high
frequency of sensor states, i.e., one for every 16 ms time period.
Sequential time periods at the same state indicates a static point,
i.e., lack of finger movement. Between the static points are
transition vectors, i.e., movements of the finger from one state to
another. The static points and transition vectors are conceptually
similar to fixations and saccades in vision, although they happen
on a different time scale (static point = accumulated duration
of at least 16 ms up to 30 s, vectors = 16 ms duration; where
16 ms is set by the resolution of the A/D converter). Therefore,
GFM is made up of transition vectors between static points.

2) Local Finger Movement: LFM is defined as palpation by
finger movement within a single quadrant of the instrumented
prostate or near a single abnormality. Three patterns are defined
as tapping, vibration, and sliding (see Fig. 2).

Another set of experiments was conducted to identify the
parameters that objectively characterize these three patterns.
Pressure was exerted on each of the four force sensors for three
iterations, applying the quantitatively defined local techniques
following the order of tapping, vibration, and sliding. Parameters
were adjusted until the analysis tool recognized the applied
pattern. After averaging the parameter values for three iterations,
the following parameters distinguish the patterns:

1) the break between two periods of continuous spikes;
2) the offset to recognize maintained finger pressure for vi-

bration and sliding;
3) the longest period for the tapping pattern;

4) the smallest period for the vibration pattern;
5) the smallest period for the sliding pattern is the value of

which equals parameter 3;
6) the longest period for the sliding pattern is the value of

which equals parameter 4.
Based on these parameters, the three algorithms for LFM

were quantitatively defined. Note that a spike in the sensor data
is defined as S Spikei

t = (si
t> l_threshold), i.e., pressure exerted

above a threshold (l_threshold = g_threshold), set to indicate
the intentional finger pressure on the ith sensor. In addition,
tS Spike represents the time when a spike (S Spikei

t) appears.
Therefore, different from the analysis of GFM, the continuous
data from sensors were not compiled into binary states.

A tapping pattern is identified as an examiner striking briefly
on the defined area, before quickly pulling up his finger, and
doing so in an intermittent fashion. As shown in data of Fig. 2(a),
the tapping pattern is the duration of continuous spikes not
longer than 90 ms (parameter 3), followed by a sequence of no
spikes for less than 48 ms (parameter 1). Given the sampling
rate of the A–D converter (16 ms per sample), up to three spikes
could appear in a time span of 48 ms. The tapping pattern
is defined formally for the ith sensor Li

tap in the following
equation, where the period between time j and k is the break
with no spikes (parameter 1) and j < k:

Li
tap =

k∑
t=j

tS Spikei
t
≤ 90 tS Spikei

j
− tS Spikei

k
< 48.

(5)
A vibration pattern is identified as an examiner maintaining

finger contact with a single area, but shifting the weight of the
finger (e.g., proximally to distally, side to side, or in a circular
motion). A shown in data of Fig. 2(b), the vibration pattern
is defined formally for the ith sensor in (6) as an examiner
maintaining finger pressure above a certain value (parameter 2)
on the prostate over a continuous time span of at least 320 ms
(parameter 4). The frequency of oscillation is not considered

Li
vibr =

k∑
t=j

tS Spikei
t
≥ 320 S Spikei

t > offset. (6)

A sliding pattern is identified as an examiner moving the
finger smoothly over a defined area without stopping. The ob-
servation of a sliding pattern indicates a lack of finger pause.
This comes in contrast to the tapping and vibration patterns,
where the examiner appears to transition from the GFM to an
intentional focus upon the local detection of a balloon. As shown
in Fig. 2(c), the sliding pattern is defined formally for the ith
sensor in the following equation as an examiner maintaining
pressure above a certain value (parameter 2) continuously for
90–320 ms (parameters 5 and 6):

Li
sl = 90 <

k∑
t=j

tS Spikei
t
< 320 S Spikei

t > offset. (7)

3) Average Intentional Finger Pressure: We calculate AIFP
as that applied over the duration of the exam in the vicinity of
filled balloons. If a filled balloon is located directly over a force
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TABLE I
LOGISTIC REGRESSION (LR) MODELS WITH ALL FOUR FACTORS: (a) SCORE

STATISTICS FOR EACH FACTOR IN THE OVERALL MODEL. (b) LR MODEL WITH

ALL FOUR FACTORS AS PREDICTORS

sensor, the finger pressure measured by that force sensor alone
is used in calculating the average. Otherwise, if a filled balloon
is located between two sensors, the finger pressure from both
sensors is averaged.

Further, as a simple average is heavily weighted by the lack
of any finger pressure, AIFP (si

avg ) was computed in the fol-
lowing equation, for sensors i = 1–4, where si

t is force sensor
data at time t for sensor i, T is the time interval, and the param-
eter p_threshold ( = g_threshold) indicates intentional finger
pressure:

si
avg =

1
T

T∑
t=1

si
t , subject to si

t > p threshold. (8)

III. RESULTS

This preliminary data were analyzed in accordance with the
five objectives. Recall that objectives 1 and 5 involve perfor-
mance, while objectives 2 and 3 relate to technique only, in-
dependent of performance. We first note the overall results of
a logistic regression model setup to determine the impact of
the explanatory variables (GFM, LFM, AIFP, and group) on
performance. As evident in Table I(a), LFM and group both
significantly impact performance (p < 0.0001 and p = 0.0037,
respectively). This is discussed in details in Section III-E.

A. Performance Differences Between Groups (Objective 1)

In a trend, which held across simulated abnormalities, group
2 detected more abnormalities than did group 1 (see Table II). To
test for a statistical difference, a logistic regression model was
used with group as the categorical predictor in (9), where p is
the probability that the abnormality was successfully detected.

TABLE II
PERFORMANCE IN DETECTING SIMULATED ABNORMALITIES

TABLE III
LOGISTIC REGRESSION (LR) MODELS WITH EACH FACTOR SEPARATELY.

(a) LR MODEL WITH GROUP AS THE PREDICTOR. (b) LR MODEL WITH GFM
AS THE PREDICTOR. (c) LR MODEL WITH LFM AS THE PREDICTOR. (d) LR

MODEL WITH AIFP AS THE PREDICTOR

The reference level is group 2, with coefficient 0

log
(

p

1 − p

)
= β0 + β1(group 1). (9)

Table III(a) shows that the estimated coefficient for group 1
is negative (−0.7849) and significant (p = 0.0098). In addition,
the score statistic for group in this model has p-value 0.0159
(not displayed in Table III(a)). Therefore, being a participant in
group 1 decreased the odds of successful detection by a factor
of 0.46 [exp(β2 )] relative to being in group 2.
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TABLE IV
EMPLOYED GFM PER PARTICIPANT (NO.) PER TESTING SCENARIO (T.S)

TABLE V
EMPLOYED LFM PER PARTICIPANT (NO.) PER ABNORMALITY (T.S 2E—T.S 5B) (1 = TAPPING, 2 = VIBRATION, 3 = SLIDING, “-” = UNTOUCHED, AND TEXTS

HIGHLIGHTED INDICATE EMPLOYING A CONSISTENT PATTERN)

B. Identified Patterns Within Palpation Techniques
(Objective 2)

For GFM, by a visual inspection of Table IV, all participants
utilized either U, V, L, or Line patterns. For LFM, most par-
ticipants utilized either tapping, vibration, or sliding (see “1,”
“2,” and “3” in Table V), although in a few cases abnormalities
went untouched (“–”). Note that we dropped six observations
from occurrences, where sensors were not touched (indicated by
dash). In each case, the participant failed to find the abnormal-
ity because his or her finger never moved over the abnormality.
Three of these observations came from one nurse practitioner
student in group 1 and two others came from another partici-
pant in group 1. The sixth came from a resident physician in
group 2. Since these cases produced certain failure in GEN-
MOND when the repeated measures were included to address
dependence between observations from the same participant,
they were dropped from the dataset. Thus, 198 observations (34
participants × 6 abnormalities, minus the 6 dropped cases) were
left for analysis of LFM and AIFP.

For AIFP, participants exerted 0.05–5.29 N of pressure on
force sensors in vicinity of that abnormality.

C. Consistency of Pattern in Palpation Techniques
(Objective 3)

For GFM, no participant utilized the same pattern across his
or her five testing scenarios (within-subjects, i.e., rows in Ta-
ble IV). Nor was any pattern consistently utilized by all trainees
over a single testing scenario (between-subjects, i.e., columns in
Table IV). We can also test the probability of choosing an incon-
sistent examiner from the population of examiners (PGFM ) if
we assume that the 34 subjects are representative of prostate ex-
aminers and that the choice of dominant GFM is independent of
the scenario. In doing so in a one-sided significance test (where
α = 0.05) of H0 : PGFM = X and Hα: PGFM > X, where all
34 subjects are inconsistent in their predominant GFM, the fact
that H0 is true means that PGFM is larger than 0.9160 (given by
X34).
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For LFM, only two participants utilized a single pattern across
all six presented abnormalities (within-subjects, i.e., highlight
rows in Table V), and no single pattern was consistently utilized
by all trainees for a simulated abnormality (between-subjects,
i.e., a column in Table V).

For AIFP, SD and mean were examined as metrics to evaluate
the dispersion and consistency of AIFP in the vicinity of the sim-
ulated abnormality. Across the six simulated abnormalities, the
SD range of AIFP for each participant is 0.16–2.34 N. To further
test the inconsistency, we used a Mantel–Haenszel statistic to
see if mean AIFP was different between participants, adjusting
for abnormality. The result was significant (p < 0.0001), which
indicated that no participant employed consistent finger pres-
sure across the six simulated abnormalities. Nor did all trainees
exert similar finger pressure on a given simulated abnormality.
The SD range of AIFP by all 34 participants on each abnormal-
ity is 0.73–1.08 N. Here, the Mantel–Haenszel statistic was also
significant (p < 0.0001), thus indicating that mean AIFP varied
between abnormalities across the 34 participants.

D. Difference in Techniques Utilized by Groups 1 and 2
(Objective 4)

For GFM, both group 1 and group 2 employed similar pat-
terns. The Fisher’s exact test was conducted to see if utilized
GFM was independent of group. The p-values for each sce-
nario (testing scenario 2–5) were 0.0160, 0.9399, 0.3083, and
0.6284, respectively. However, we conducted an additional test
using the Bonferroni approach to validate preliminary signifi-
cance for scenario 2. Because the probability of a type I error
increases with a small sample size, the level of significance was
set equal to desired significance level (0.05) divided by number
of tests (4). At (p < 0.0125), there were no statistically signifi-
cant differences between the groups for any testing scenario.

For LFM, both group 1 and group 2 employed similar pat-
terns. The Fisher’s exact test was conducted to see if utilized
LFM was independent of group. The p-values for individual
abnormalities were 0.3538, 0.4590, 1.000, 0.2007, 0.0222, and
0.4200, respectively, for test scenario (T.S) 2, abnormality E,
T.S 3C, T.S 3D, T.S 4A, T.S 4C, T.S 5B. Similarly, with the
desired significance level (0.0083) by the Bonferroni approach,
none of the tests were significant.

For AIFP, group 1 and group 2 employed different AIFP
across the six abnormalities. A multivariate analysis of variance
(MANOVA) was conducted to see if group was a significant
predictor of AIFP across the six abnormalities, doing a single
analysis with the six finger pressure numbers as six dependent
variables and group as a single independent variable. Using
the Wilks’ Lambda test statistic, the results were significant (p
= 0.0002), indicating the effect of group on finger pressure.
The MANOVA results also included individual ANOVA tests
on each pressure variable separately. The p-values for individual
abnormalities (aforementioned paragraph) were 0.0780, 0.1010,
0.1725, 0.0235, 0.0016, and < 0.0001, respectively, based on
the assumption of equal variance for the two groups. Therefore,
AIFP significantly impacted the detection of only the last three,
the smallest, abnormalities (A and C in testing scenario 4 and B

in scenario 5). Greater finger pressure was utilized by group 2
on these three scenarios.

E. Impact of Technique on Detection Performance
(Objective 5)

Technique was then analyzed relative to performance. First, a
logistic regression model was run with all explanatory variables
(GFM, LFM, AIFP, and group), (10), where p is the probability
that an abnormality was successfully detected. GFM_variables
are indicators for three GFMs: U, V, and L. LFM_variables
are indicators for two LFMs: tapping and vibration. Pressure is
AIFP. Group is a dichotomous variable that identifies the exam-
iners: group 1 or group 2. The reference levels for GFM, LFM,
and group variables are line, sliding, and group 2, respectively,

log
(

p

1 − p

)
= β0 + β1(GFM U) + β2(GFM V)

+ β3(GFM L) + β4(LFM Tap)

+ β5(LFM Vib) + β6(pressure)

+ β7(group). (10)

Table I(a) shows that both LFM and group are significant (p <
0.0001 and p = 0.0037, respectively). According to Table I(b),
the effect of LFM comes from LFM_Vib, where the odds of
success, using (10), increase by an estimated factor of 9.20
(exp(β5 − β4), where β5 = 2.2073 and β4 = −0.0122) when
one uses vibration instead of tapping and of 9.09 [exp(β5)] when
one uses vibration instead of sliding. The overall effect of GFM
is not significant, but the coefficients suggest that the V pattern
(0.75) and an L pattern (0.69) give better performance than a U
pattern (0.04) or a Line pattern (0.00).

Second, each of GFM, LFM, and AIFP were analyzed sep-
arately as a predictor of performance. In analysis of GFM, a
logistic regression was employed to see which defined GFM (U,
V, L, and Line) leads to better performance across all six abnor-
malities. Therefore, the statistical model can be expressed in the
following equation, where the variables are as defined earlier:

log
(

p

1 − p

)
= β0 + β1(GFM U) + β2(GFM V)

+ β3(GFM L). (11)

The score statistic for GFM in this model has a p-value of
0.0461 (not displayed in table), so is a significant predictor when
no other effects are taken into account. But as we saw earlier,
its effect is not significant in the presence of other explanatory
variables. Since the latter analysis had a small number of obser-
vations (N = 34) in relation to the seven explanatory variables,
it is possible that the results were affected by overfitting. In this
situation, with inconsistent results, we cannot draw a firm con-
clusion regarding the significance of GFM on performance. On
the other hand, the parameter estimates and significance levels
from (11) are consistent with the results of the overall model
(10), in that the V and L patterns are superior to U and Line
patterns. Among all GPMs, those who employed the V pattern
performed the best. For LFM, the following equation was used
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with the variables defined earlier:

log
(

p

1 − p

)
= β0 + β1(LFM Tap) + β2(LFM Vib). (12)

The results of this regression are consistent with those from
the overall regression. The score statistic for LFM in this model
has p-value less than 0.0001, from Table I(b), as before. There-
fore, use of the vibration pattern increases the odds of success-
ful detection, using (12) and Table III(c), by a factor of 8.23
[exp(β2)] relative to use of sliding, and by a factor of 11.15
(exp(β2 − β1), with β2 = 2.1079 and β1 = −0.3037) relative
to use of tapping.

For AIFP, the following equation was used with variables
defined earlier:

log
(

p

1 − p

)
= β0 + β1(pressure). (13)

The results of this regression are also consistent with those
from the overall regression. The score statistic for AIFP in this
model has p-value 0.0810, which is much lower than in the
overall model, but still falls short of significance. The coefficient
pressure is positive in both regressions, indicating that greater
pressure is associated with the more successful detection of
abnormalities.

IV. DISCUSSION

Overall, while technique utilization varies both between par-
ticipants on the same simulated abnormality and within each
participant across abnormalities, some elements of technique
clearly impact performance. This assertion is supported by six
main findings from this pilot experiment, which are as follows.

1) Group 2 (resident physicians) performed significantly bet-
ter than group 1 (nurse practitioner students) in detecting
abnormalities.

2) Finger techniques (GFM, LFM, and AIFP) were not con-
sistently utilized by single participants across abnormali-
ties or by all participants within an abnormality.

3) Both group 1 and group 2 employed similar GPF and
LFM, but different AIFP.

4) The V and L patterns led to greater success in detecting
abnormalities.

5) The vibration pattern led to greater success in detecting
abnormalities.

6) Higher AIFP led to a greater success in detecting some of
the abnormalities.

A. Techniques

Neither nurse practitioner students, nor resident physicians
employed a consistent set of techniques. The odds of a partici-
pant consistently employing the same set of techniques over six
simulated abnormalities is quite low, and so are the odds that the
same techniques are being utilized by all participants over the
same abnormality. The fact that the technique is not consistent
suggests that the technique utilized may be affected by size, lo-
cation, and stiffness of the presented abnormality, although this
is not studied as part of this paper.

B. Technique and Performance

Correct detectors employed a characteristic subset of tech-
niques. Following from their definition in (1), the relation-
ship of the α’s in (14) indicates that a participant’s LFM (α2)
was a significantly better predictor of performance than GFM
(α1), which was a slightly better predictor than AIFP (α3) (see
Table I(a)):

α2 � α1 > α3 . (14)

LFM using vibration was significantly linked with improved
detection (p < 0.0001). Further, in examining the data for a
single participant, who made correct and incorrect detections,
seems to indicate the use of vibration only when in the vicinity of
inflated balloons, thus indicating an engaged search of a subarea
of the prostate. This focused, local search is likely prompted by
an initial encounter with a suspected abnormality in the global
search. In contrast, a lack of initial recognition may lead to the
continuance of the sliding pattern, where the examiner is never
drawn out of his or her global search.

Usage of the V GFM was the best predictor of correct detec-
tions when compared with the other three patterns. The V pattern
may enable a more thorough search, although these experiments
used an artificial simulator and need to be confirmed in exper-
iments with actual human prostate. Even though the U pattern
covers more area, its usage does not relate to better performance
over the V pattern. At this point, however, the significance of
the GFM remains in some question because of the fact that only
six participants employed the U pattern. While extent of being
thorough is perhaps not as difficult with the prostate as in the
larger volume of the breast, it may become important in search
of dispersed and small tumors. Another idea is that a strategic
examiner might utilize the V and L patterns to compare the
two halves of the prostate, although further data are needed to
support this.

The level of finger pressure appears to impact performance
less than other factors. However, the use of greater AIFP is asso-
ciated with the more successful detection of some abnormalities.
In a contradictory findingthough, note that group 2 exerted a
significantly lower average pressure than group 1 across several
abnormalities. Perhaps, group 2 more clearly understands the
dynamics of patient interaction, where higher finger pressure
would create tension with the patient in conducting the exam.
It could also be the case that the size, location, and stiffness of
individual tumors may require utilizing greater finger pressure,
which averaging across abnormalities can negate, but which
experienced examiners selectively employ.

C. Technique and Group 1/Group 2 Performances

The resident physicians (group 2) performed at significantly
higher levels than nurse practitioner students (group 1). How-
ever, while correct detectors in both groups tended to utilize
LFM of vibration, GFM of V and higher finger pressure, these
metrics do not fully explain the performance difference between
the two groups.

According to the logistic regression in Table I(a), being in
group 1 is the major factor accounting for the difference (p =
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0.0037). This does not, however, delineates a specific element
of technique, but may be due to an inherent difference between
two groups, such as accumulated years of clinical experience
or the nature of training in each discipline. It is to note that
more of group 1 (11 of 18 or 61.1%) than group 2 (6 of 16 or
37.5%) had practiced with silicone models. That practice would
have come from silicone models other than the VPES. Silicone
models apart from the VPES are not realistic enough, do not
generate enough practice cases, or do not provide the right type
of feedback [6]. Therefore, accumulated clinical experience,
disciplinary training, and practice background (α4), together
with cognitive objective recognition or another unknown factor
(β) may contribute to our current inability to entirely account
for performance differences between groups.

V. STUDY LIMITATIONS

The study methodology has a few limitations. First, the no-
tion of an “experienced examiner” was applied to residents, who
certainly have more clinical experience than students. However,
it is more likely that there are levels of expertise following from
student to resident, and ultimately, attending urologist. A fu-
ture study should be extended to the latter group. Second, the
sample size (as noted in Section II) was small, which means
that it is possible that the regression models overfit the data.
Third, the techniques defined herein link back to accepted pal-
pation strategies of the clinical literature, but other techniques—
currently unknown—might more adequately describe to what
clinicians are doing. For example, clinicians may conduct an
initial, overview search to find gross irregularities before fo-
cusing in on a GFM that will lead to a thorough subsequent
search.
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Empirical Investigations

Using a Prostate Exam Simulator to Decipher Palpation Techniques
that Facilitate the Detection of Abnormalities Near Clinical Limits
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Introduction: Prostate carcinoma (and other prostate irregularities and abnormali-
ties) is detected in part via the digital rectal examination. Training clinicians to use
particular palpation techniques may be one way to improve the rates of detection.
Methods: In an experiment of 34 participants with clinical backgrounds, we used a
custom-built simulator to determine whether certain finger palpation techniques im-
proved one’s ability to detect abnormalities smaller in size and dispersed as multiples
over a volume. The intent was to test abnormality cases of clinical relevance near the
limits of size perceptibility (ie, 5-mm diameter). The simulator can present abnormalities
in various configurations and record finger movement. To characterize finger move-
ment, four palpation techniques were quantitatively defined (global finger movement,
local finger movement, average intentional finger pressure, and dominant intentional
finger frequency) to represent the qualitative definitions of other researchers.
Results: Participants who used more thorough patterns of global finger movement (V
and L) ensured that the entire prostate was searched and detected more abnormalities.
A higher magnitude of finger pressure was associated with the detection of smaller
abnormalities. The local finger movement of firm pressure with varying intensities was
most indicative of success and was required to identify the smallest (5-mm diameter)
abnormality. When participants used firm pressure with varying intensities, their
dominant intentional finger frequency was about 6 Hz.
Conclusions: The use of certain palpation techniques does enable the detection of
smaller and more numerous abnormalities, and we seek to abstract these techniques
into a systematic protocol for use in the clinic.
(Sim Healthcare 5:152–160, 2010)

Key Words: Haptics, Simulation, Nursing, Medical, Human factors, Assessment, Palpation,
Clinical prostate examination.

Prostate cancer is one of the most common causes of death
in American men, with an estimated 189,280 new cases dur-
ing 2009.1 Although the digital rectal examination (DRE)
complements the prostate-specific antigen blood test as a
valuable screening examination,2 its variable positive predic-
tive value (17%–34%1) and low agreement on diagnosis be-
tween examiners (21%– 40%3,4) seems to indicate a need for
enhanced clinical examination training. Concurrently,
hands-on training is being increasingly emphasized and con-
ducted in medical and nursing schools via standardized pa-
tients or physical simulators5,6 and has a positive effect on
clinical performance.7 In addition to the training devices and

protocols being designed as training aids, we also need to
better understand how the employment of particular tech-
niques impact performance.

Hands-on techniques have been studied for the clinical
breast examination and include global finger movement
(GFM) for the search of abnormalities over the entire breast,
local finger movement (LFM) for the palpation of small areas
of the breast, and levels of finger pressure for adequate search
through the tissue depth.8 –10 A range of studies show that
certain techniques increase clinical breast examination effec-
tiveness by increasing the mean lump detection rates at a statis-
tically significant level,11,12 sometimes doubled from pre- to
post-test.8,13 Very few studies have assessed specific hands-on
techniques relative to the DRE. However, Balkissoon et al14

found a DRE simulator useful in determining that students as
opposed to experienced clinicians used different palpation tech-
niques.

Palpation techniques have begun to be quantitatively de-
fined by building on qualitative definitions. With respect to
the female pelvic examination, the E-Pelvis simulator was
used to track the motion of the finger over force sensors
embedded in silicone. Three characteristic palpation prac-
tices emerged (number of critical areas touched, frequency at
which areas were touched, and maximum pressure exerted),
which correlated with ability to diagnose simulated find-
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ings.15 In addition, our group has sought to characterize pal-
pation techniques for the clinical prostate examination using
a custom-built simulator that can present abnormalities in
various configurations and record finger movement.16 That
work quantified three palpation techniques [GFM, LFM, and
average intentional finger pressure (AIFP)] based on the
qualitative, clinical definitions. A human-subjects study re-
vealed that one’s pattern of LFM (firm pressure with varying
intensity, in particular) strongly impacted his ability to detect
abnormalities, and that more thorough patterns of GFM led
to greater success. Differences between novices and experts
were also evaluated.

This work investigates more specifically whether the use of
certain finger palpation techniques improves one’s ability to
detect abnormalities smaller in size (5, 10, and 20 mm) and
dispersed as multiples (one vs. two) over a volume. Abnor-
mality size and examiner thoroughness are factors particu-
larly relevant to clinical detection. Furthermore, we used test
cases that link both with clinical findings and limits of human
tactile detection. Because of the notable impact that the LFM
of firm pressure with varying intensity played previously on
abnormality detection, this work introduces a fourth palpa-
tion technique, dominant intentional finger frequency
(DIFF), which analyzes the varying intensity.

METHODS
A human-subjects experiment was conducted with 34

participants using the Virginia Prostate Examination Simu-
lator (VPES). Postexperiment analysis was conducted to
evaluate four objectives: (1) whether those participants who
detect more than one abnormality in a prostate apply a more
thorough GFM (U pattern that covers four sensors compared
with a V or L pattern that covers three sensors and Line
pattern that covers only two sensors), (2) whether the LFM
pattern of firm pressure with varying intensity is required to
detect the smallest (5-mm diameter) of abnormalities, (3)
whether greater AIFP will be required to detect relatively
smaller abnormalities (�20, 10, and 5 mm), and (4) whether
a higher DIFF will be required to detect relatively smaller
abnormalities.

Apparatus: VPES
The VPES (Figs. 1A–C) uses rubber-like materials to sim-

ulate the feel of tissue, a computer, valves, and a pump to
create test scenarios by inflating with water, small embedded

balloons, and pressure sensors to record finger pressure.5

Three instrumented prostates (Fig. 1D) with dimension of 55
mm (transverse, width dimension) by 50 mm (longitudinal,
length dimension) are attached to a track system (Fig. 1E)
internal to a posterior torso. The stiffness of the instrumented
prostates, evaluated via compression tests, yielded an elastic
modulus of �55 kPa.

Each prostate was embedded with four to six polyethylene
balloons. Balloons are filled with water to simulate palpable
abnormalities, whereas deflated balloons are not palpable.
With this feature, both normal and abnormal prostate con-
ditions including prostatitis (enlarged and boggy inflamma-
tion) and carcinoma (small and firm isolated nodule) can be
simulated by varying the configurations of balloons in size
and location. Balloons of different sizes are positioned in
unique locations for each instrumented prostate. Four spher-
ical balloons (5, 7.5, 10, and 15 mm diameter) were used
along with one elongated (E) balloon (30-mm length �
15-mm width � 10-mm height).

Using water pressure and force sensors, the VPES captures
the finger pressure used on both inflated balloons and the
entire prostate. The finger pressure is recorded for postexam
analysis. Water pressure sensors (SenSym Pressure Sensor,
Model SX100DD4, Honeywell, Golden Valley, MN) on each
balloon are sampled at a rate of three samples per second.
Force sensors (Tekscan, South Boston, MA, Flexiforce 0 –1 lb
range) embedded in each instrumented prostate were used to
record the location and magnitude of applied finger pressure
during palpation at 1000 samples per second over the �30
seconds time interval of the examination.

Example Data Collection
Force sensor data were used to characterize finger move-

ments, whereas the balloon sensor data were used to deter-
mine the interval over which local palpation techniques were
analyzed (ie, LFM, AIFP, and DIFF). Example data from as-
sessment scenario 3 are plotted in Figure 2. Spikes in the
balloon pressure data indicate if a simulated abnormality was
palpated. In this example, the 5-mm balloon went untouched
over the 30-second period, whereas the 10-mm balloon was
palpated multiple times (upward spike; circle “A” in Fig. 2).
Moreover, when this balloon was palpated, the magnitude of
finger pressure for nearby sensors 1 and 4 increases while that
applied to sensor 2 decreases (circle “B”).

Figure 1. Main components of Vir-
ginia Prostate Examination Simulator
apparatus, including (A) torso, (B) lap-
top, (C) automatic balloon inflation, (D)
instrumented prostate, and (E) internal
track system.
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High-Level Algorithms
DIFF is introduced in this work. The other three palpation

techniques—GFM (U, V, L, and Line), LFM (repetitive tap-
ping, firm pressure with varying intensity, and sliding), and
AIFP— have been presented in greater detail elsewhere16 and
therefore are detailed here only at a high level.

Global Finger Movement
GFM is defined as the systematic movement of one’s fin-

ger over the entire prostate in search of abnormalities. Four
patterns are defined as U, V, L, and Line (Fig. 3) with devia-
tions in orientation recognized.

The algorithm to identify the GFM follows two main steps.
First, the initial pressure on the kth sensor data at time t (St

k)
is discretized (bit1

k) into binary values (0 or 1) every 16 milli-
seconds for each sensor to create a state for the group of four
sensors (eg, 0000, 0110, or 1111) via Eq. (1). The g_threshold
is set at 0.05 N to indicate intentional pressure exerted by an
examiner’s finger.

bitt
k � 1 if St

k � g_threshold, otherwise bitt
k � 0; (1)

The resultant bit values for sensors 1 to 4 are used to
identify a sensor state at time t (statet). The states range from
0000 to 1111. The leftmost bit stands for sensor 1 and the
rightmost bit for sensor 4. A bit is set as 1 when a sensor is
triggered and 0 otherwise. For example, a state defined as
0111 specifies a point in time whereby sensors 2, 3, and 4 are
triggered simultaneously, while sensor 1 is untouched.

As noted in the example in Figure 2, the identified GFM by
the analysis tool (written in the C# programming language) is
displayed (Fig. 4A), where the “L” GFM was identified and is
shown with lines and arrows. Although a participant may use
more than one GFM pattern during an examination, the pat-
tern classified is the single one used for the longest duration.

Local Finger Movement
LFM is defined as palpation by finger movement within a

single quadrant of the instrumented prostate or near a single
abnormality. An LFM is typically used in the palpation of
small areas to isolate suspected abnormalities. The three pat-
terns are defined as repetitive tapping, firm pressure with

varying intensity, and sliding. These are presented below and
shown with their corresponding parameters in Figure 5.

The LFM pattern of repetitive tapping (Fig. 5A) is defined
as an examiner striking briefly on a small area in an intermit-
tent fashion. With the pattern of firm pressure with varying
intensity (Fig. 5B), an examiner maintains his or her finger
contact with a single area but shifts the weight of the finger
(eg, proximally distally or laterally medially). A sliding pat-
tern (Fig. 5C) is identified when an examiner moves the fin-
ger smoothly over a defined area without stopping. Often
examiners locally isolate an abnormality, with a repetitive
tapping or firm pressure with varying intensity, after their
global search hints at a suspected area. In contrast, the sliding
pattern likely represents the continuous movement of one’s
finger across a sensor (ie, low-magnitude spikes observed
when the finger is far from the sensor’s center and high-
magnitude spikes when the finger passes over the sensor’s
center). The sliding pattern may represent failure to notice an
abnormality in one’s global search. Figure 4B indicates the
identification of the pattern of firm pressure with varying
intensity by the analysis tool on sensor 4 lasting for 2.24 of
the 3.50 seconds analysis period over which balloon C was
palpated.

Average Intentional Finger Pressure
AIFP is defined as the pressure applied on each of the four

force sensors over the duration of the examination. Force
greater than the p_threshold (0.05 N) is averaged for each
sensor (k) given the analysis period (T), Eq. (2).

Savg
k �

1

T �
t�1

T

St
k, subject to St

k � p_threshold (2)

As shown in Figure 4C, the AIFP for the example was
computed over the entire examination for sensors 1 to 4 as
0.45, 1.21, 0.27, and 1.06 N, respectively.

Dominant Intentional Finger Frequency
DIFF is used in the palpation of a simulated abnormality.

This analysis is done when a participant’s LFM has been de-
fined as firm pressure with varying intensity. DIFFs were

Figure 2. Example plot of force (lower
four lines) and balloon (upper two lines)
sensor data for assessment scenario 3.
Force data have been smoothed to im-
prove its display for this example.

Figure 3. Defined patterns of global
finger movement.
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identified using the Fourier transform (MATLAB, version
6.5). In Eq. (3), force data from each of the sensors over the
time span of an intentional palpation (St

k) are converted to a
discrete Fourier transform of the sensor signal [trans-
form(k)] for each of the k force sensors. The variable N rep-
resents the total number of discrete force values collected by
the particular force sensor (k � 1, 2, 3, and 4) under analysis.

transform(k) � �
i�1

N

sl
ke

�2�i

N
� � j�1� (3)

Once the data has been converted to a discrete Fourier
transform [transform(k)], the power at each of the various
frequencies is obtained to give the power spectrum
[power(k)], Eq. (4).

power�k� � etransform�k� � conj �transform�k��/N (4)

An analyzed frequency range of 5 to 32 Hz was setup, with
the nth frequency (freqn) in that range calculated via Eq. (5).
The lowest (lf) and highest (hf) finger frequencies are set to 5
and 32 Hz. This particular frequency range has physiological
implications, because slowly and rapidly adapting mechano-
receptors in fingertip skin are most sensitive to vibration in
the 5 to 30 Hz17 range. The sampling frequency (sf) of 64 Hz
was double the Nyquist frequency (hf).

freqn � sf � � j � 1�/N & freqn � [lf, hf],

n � 1, 2 … �N � 1� (5)

Finally, the dominant frequency (DIFF) is identified as the
frequency of greatest power where Y is the vector of power(k),
Eq. (6).

Sk_DIFF � freqn & n � position (Y, max�power�k��)

(6)

In an example analysis of DIFF, a set of data from force
sensor 4 and a balloon sensor are shown in Figure 6A. From
that dataset, a subsection of the force sensor data, over a
period of intentional balloon palpation, were isolated in Fig-
ure 6B. Then, from this dataset, a series of finger frequencies
were extracted (Fig. 6C). The frequency (5.59 Hz) with the
largest power number (3.41) is identified as the DIFF.

Experiment
Participants
Thirty-four participants, including 18 nurse practitioner

students and 16 resident physicians, were enrolled in the hu-
man-subjects experiment that was approved by the Institu-
tional Review Board at the University of Virginia. There were
10 men and 24 women, ranging in age from 23 to 47 (mean �
31.47, SD � 6.79) years. Sixteen participants had performed
at least 10 DREs in the clinic, another 5 had performed at least

Figure 4. Palpation technique analyzer with example results
for (A) global finger movement, (B) local finger movement,
and (C) average intentional finger pressure.

Figure 5. Three patterns of local finger
movement. Identifying characteristics
are overviewed in each panel.
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one, and 13 had performed none. Seventeen participants had
practiced with silicone models on a prior occasion.

Procedure
Participants performed three tasks over 40 minutes: (1)

the experience questionnaire, (2) the 5-minute hands-on ori-
entation, and (3) the 20-minute hands-on assessment ses-
sion. Two proctors jointly facilitated this process. The first
proctor facilitated the paperwork, hands-on orientation, and
assessment sessions and recorded the participant’s verbal re-
port of any detected abnormalities (on a standardized score
sheet in which data were the size, location, and hardness of an

abnormality). The second proctor configured the scenarios
and controlled the order of the scenarios presented to each
participant, because the first proctor was blind to the scenario
of abnormalities being presented. The proctors had been
trained in a preliminary experiment. During the orientation
and assessment sessions, a total of seven scenarios in either
normal or abnormal (prostatitis or carcinoma) states were
simulated using three instrumented prostates. Orientation
scenario 1 simulated a normal prostate, orientation scenario
2 filled a large, elongated balloon covering sensors 2 and 3,
and orientation scenario 3 filled a 15-mm balloon covering

Figure 6. A, Finger pressure upon force sen-
sor 4 (below spikes) and balloon sensor for
the 10-mm abnormality (above line) in assess-
ment scenario 3. Circle “B” marks the section
of force data, per the corresponding inten-
tional palpation of circle “A”, which is ana-
lyzed further part B. B, Force sensor 4 data
from circle “B” in part A. C, Two prominent
frequencies are identified for force sensor 4
in frequency range 5 to 32 Hz, with 5.58 Hz
being the DIFF.
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sensor 2. Immediately after each orientation scenario, the
proctor pointed out the simulated abnormalities on a printed
figure. No instructions on techniques to use were provided
during the orientation nor were participants allowed to view
the simulator’s immediate feedback display. The orientation
scenarios were not included in the analysis.

Assessment Session and Scenarios
Assessment scenarios 1 to 4 are shown in Figure 7 and are

presented in a randomized order. Over the 20-minute assess-
ment session, each participant was given 30 seconds, which is
an appropriate duration for the clinical examination, to pal-
pate each of four scenarios and was instructed to report any
abnormalities found over the entire prostate. After palpating
within each scenario presented, the participant identified any
abnormalities to the proctor, indicating their approximate
size and location. To get at the limits of clinical detectability,
we used 5-mm balloons as the smallest size. A previous psy-
chophysical experiment had shown that this size was detected
at reasonable perceptual limits, being detected 55% of the
time at a 10-mm depth and 95% of time at the 5-mm depth.18

In contrast, 4-mm balloons at the 5-mm depth were detected
�75% of the time.

Dependent and Independent Variables
The dependent variables were based on performance,

ie, the correct or incorrect detection of a simulated abnor-
mality. The four independent variables were the quantified
palpation techniques, ie, GFM, LFM, AIFP, and DIFF.

Analysis Methods
Logistic regression, t tests, and confidence intervals were

used in the analysis of the four objectives. Statistical Analysis
System, version 9.1, software was used. The data were
grouped into three datasets: dataset 1, overall regression
model (independent variable impact on performance); data-
set 2, objective 1 (abnormality number and GFM); and data-
set 3, objectives 2 to 4 (abnormality size and LFM, AIFP, and
DIFF). Dataset 1 contained 198 observations (34 partici-
pants � all 6 abnormalities). Note that the independent vari-
able DIFF was not included in the regression model, because
it is only used when analyzing a particular LFM (firm pres-
sure with varying intensity) and therefore is not assigned a
value for other LFMs. Dataset 2 comprised 68 observations
(34 participants � 2 assessment scenarios; ie, scenarios 2 and
3). Because only GFM was analyzed, we considered just the
two scenarios with more than one abnormality. Dataset 3
comprised 102 observations (34 participants � 3 abnormal-
ities) using the following three abnormalities: E in assessment
scenario 2, 15 mm in assessment scenario 2, and 5 mm in
assessment scenario 3. Because the three abnormalities were

located in the right side of the prostate, the impact of lateral
location was minimized.

RESULTS
The data were analyzed in accordance with the four study

objectives. Results related to the overall logistic regression
model and the four study objectives are detailed in the sub-
sections.

Overall Logistic Regression Model
The logistic regression model [Eq. (7)] was used to deter-

mine those independent variables that most significantly im-
pact performance.

log� p

1 � p
� � �o � �1�Global_U� � �2�Global_V�

� �3�Global_L� � �4�Local_Tapping�

� �5�Local_Vibration� � �6�AIFP� (7)

Among the variables, P represents the probability that the
abnormality was detected. Global_variables are indicators for
the three GFM patterns (U, V, and L) with Line as the refer-
ence level. Local_variables are indicators for the two LFM
patterns (repetitive tapping and firm pressure with varying
intensity) with sliding as the reference level. AIFP is a contin-
uous variable.

The results indicate that LFM was significantly more impor-
tant in abnormality detection than GFM or AIFP (Table 1).

Objective 1: Do Those Participants Who Detect More
Than One Abnormality in a Prostate Apply a More
Thorough GFM Pattern?
Participants who used a more thorough GFM pattern (ie,

V or L that covers three sensors) performed better in detect-
ing both simulated abnormalities than those using the Line
pattern (ie, that cover only two sensors). In assessment sce-
nario 2, among participants who detected both abnormali-
ties, 4 of 5 (80.00%) used either a V or L pattern; among
participants who detected just one abnormality, 10 of 15
(66.67%) used a V or L pattern (Table 2). In contrast, among
participants who failed to find an abnormality, 10 of 14
(71.43%) had used the Line pattern. The same trend held in

Figure 7. Four assessment scenar-
ios. Balloon E dimensions are
3.0-mm length � 1.5-mm width �
10-mm height.

Table 1. Score Statistics for Each Factor in the
Overall Model
Source df �2 P

Global 3 3.56 0.3134

Local 2 19.98 �0.0001

Pressure 1 0.76 0.3841
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assessment scenario 3. The V and L patterns were most prom-
inently used by those who detected both abnormalities
(100%). The Line pattern again yielded worse performance,
with no correct detections of both abnormalities and 7 of 15
incorrect detectors of abnormalities having used this pattern.
Utilization of the U pattern, whereby all four force sensors
were touched, was identified only twice.

Objective 2: Is the LFM Pattern of Firm Pressure
With Varying Intensity Required to Detect the
Smallest Abnormalities?
Firm pressure with varying intensity was the only pattern

of LFM that led to the detection of the smallest (5 mm)
abnormality, ie, 7 of 7 (100%) in Table 3. In addition, this
pattern was used consistently across the other sizes of abnor-
malities, ie, 22 of 25 (88%) for the E balloon and 9 of 12
(75%) for the 15-mm balloon.

Objective 3: Is a Greater Magnitude of Finger
Pressure (AIFP) Required to Detect Relatively
Smaller Abnormalities?
Correct detectors of abnormalities used higher AIFP as

the size of the abnormality became smaller, but the differ-
ence between abnormalities was not statistically signifi-
cant. The mean values of AIFP applied by correct detectors
increased 1.91 N (SD � 0.98), 2.02 N (SD � 0.68), and
2.51 N (SD � 1.36) as abnormality size increased for E, 15,
and 5 mm. However, when AIFP was compared, the dif-
ferences were not statistically significant: P � 0.6975
[t(29.26) � �0.39] between the E and 15 mm abnormal-
ities, P � 0.4359 [t(7.70) � �0.82] between the 15 and 5

mm abnormalities, and P � 0.3404 [t(7.61) � �1.02]
between the E and 5 mm abnormalities.

Objective 4: Is a Higher Finger Frequency (DIFF)
Required to Detect Relatively Smaller Abnormalities?
Participants did not increase their finger frequency when

localizing small-sized abnormalities, but we do find that par-
ticipants tend to use frequencies near 6 Hz consistently. The
mean DIFF values applied by the 38 correct detectors on
abnormalities E size, 15 and 5 mm were 5.78 (SD � 0.53),
5.76 (SD � 0.68), and 6.16 (SD � 0.91) Hz, respectively
(Table 4). Although these values are not significantly differ-
ent, the DIFF range does increase as the size of the simulated
abnormality decreases. DIFF was also evaluated between cor-
rect and incorrect detectors of abnormalities. The mean DIFF
values used by the 12 incorrect detectors on abnormalities E
size, 15 and 5 mm were 6.51 (SD � 1.00), 6.32, and 6.82
(SD � 3.29) Hz, respectively. The DIFFs were nearly equal
between correct and incorrect detectors, although slightly
higher and more variable for incorrect detectors.

DISCUSSION
This study sought to determine whether the use of certain

finger palpation techniques improves one’s ability to detect
abnormalities smaller in size and dispersed as multiples over
a volume. Abnormality size and examiner thoroughness are
factors particularly relevant to clinical detection. The results
show that utilization of the LFM pattern of firm pressure with
varying intensity seems to be required to detect the smallest
abnormalities (5-mm diameter) and that the dominant pal-
pation frequency associated was approximately 6 Hz. In ad-
dition, those who used the V or L GFM patterns, where more
area is palpated, found a greater number of abnormalities in a
single prostate. Comparing the utility of the three palpation
techniques, the logistic regression model indicated that LFM
was a significantly better predictor of performance than GFM
or AIFP.

Those who used the LFM pattern of firm pressure with
varying intensities detected more abnormalities of all sizes,
especially the smallest size. The dominant frequency used was
approximately 6 Hz across participants, consistently at or
lower than 10 Hz, and increased only slightly as the abnor-
mality size decreased. This frequency lies in a range that elicits
a response from both slowly adapting (Merkel cells) and rap-
idly adapting (Meissner’s corpuscles) receptors in fingertip
skin.17 These receptors assist in resolving spatial differences,
which may enhance one’s spatial detection and discrimina-
tion. In addition, because skin mechanoreceptors are about

Table 2. Number of Correct and Incorrect Detections per
Pattern of Global Finger Movement

GFM Pattern Utilized

No. Detectors

Correct

Incorrect SumBoth One

Test scenario 2 abnormalities

U 0 1 0 1

V 3 8 3 14

L 1 2 1 4

Line 1 4 10 15

Sum 5 15 14 34

Test scenario 3 abnormalities

U 0 1 0 1

V 2 3 4 9

L 1 6 4 11

Line 0 6 7 13

Sum 3 16 15 34

Table 3. Number of Correct (and Incorrect) Detections per Pattern of Local
Finger Movement

LFM Pattern Used

No. Correct
(Incorrect) Detectors

Repetitive
Tapping

Firm Pressure
With Varying

Intensity Sliding
None

Detected

Test scenario 1, E 0 (3) 22 (4) 3 (2) 0 (0) 25 (9)

Test scenario 2, 15 mm 1 (18) 9 (1) 2 (3) 0 (0) 12 (22)

Test scenario 3, 5 mm 0 (9) 7 (7) 0 (10) 0 (1) 7 (27)
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10 times more responsive to dynamic stimuli than to static,19

varying one’s finger on the substrate may enhance his or her
ability to detect smaller objects. A further analysis of DIFF
also showed that incorrect detectors of abnormalities used a
frequency of approximately 6 Hz similar to correct detectors.
This seems to be a preferred frequency. This finding also
indicates that the utilization of the 6 Hz frequency does not
guarantee detection, although the number of correct detec-
tors (22, 9, and 7; total � 38) was greater than the number of
incorrect detectors (4, 1, and 7; total � 12) across the three
abnormalities (E size, 15, and 5 mm).

Although the correlation of GFM and AIFP with correct
detection was not as strong as for LFM, both measures reveal
interesting insights. The use of the V or L GFM patterns,
where greater area is palpated, increases the number of ab-
normalities detected in a single prostate, compared with the
Line pattern. This links with literature on the qualitative em-
ployment of palpation techniques, whereby it is consistently
acknowledged that a main factor in tumor palpation is that
the examiner systematically covers the entire area.8 –10,15 As
for AIFP, although the finger pressure used did monotoni-
cally increase for correct detectors of incrementally smaller
tumors, the magnitude differences were not statistically sig-
nificant. This was in part because of a wide variance in finger
pressure used between examiners.

Clinical Applicability of the Palpation Techniques
Although several studies have evaluated genitourinary

skills training,20,21 we found few studies to date that analyze
the finger palpation techniques used during a DRE. In one in
particular, however, the authors found that medical students
were more likely to supinate and pronate their finger as op-
posed to sweeping across the gland as did the experienced
clinicians.14 This is not only an inadequate DRE but will also
miss the lateral aspects of the prostate where prostate cancer
is most likely to occur. Poststudy, one-on-one interviews
with the participants found that the videos and textbooks the
students used to learn the DRE did not adequately address all
the palpation maneuvers. Similarly, medical students at
the University of California, Irvine, have ranked standard-
ized patient digital rectal examinees as more valuable than
either didactic lectures or tutorials of abnormal genitouri-
nary exams.21

Taken together, these studies suggest that the current ed-
ucation of the DRE in medical school and residency can be
improved. At present, in our institution, we teach medical
and nurse practitioner students to systematically search the

entire prostate but not how to do so. Resident DRE training
falls into the apprenticeship category with attending urolo-
gists performing a rectal examination after the resident and
describing what was palpated. This discussion centers more
on clinical diagnosis rather than palpation techniques, per-
haps to the resident’s detriment. Furthermore, this method
provides no feedback to the resident as to what his or her
finger actually palpated but rather only what the attending
urologist felt the resident should have palpated. Such instruc-
tion differs from offering specific techniques as in the breast
examination (eg, the use of a global coverage pattern of ver-
tical strip or radial spoke), where global (and local) tech-
niques increase rates of detection.13

The finding that particular LFM patterns (firm pressure
with varying intensity) were linked with the detection of the
smallest lesions is provocative. Although the analysis of pat-
terns here is our first effort to determine how to instruct
learners, the logical next step is to discern whether experi-
enced urologists use these same palpation patterns in the
clinical arena. We are pursuing these experiments. If repeti-
tive patterns are uncovered among experienced urologists,
then these palpation techniques can be systematically taught
and may improve DRE education for all health care practi-
tioners. Also of note is that from the perspective of future
training, we seek to tighten links to what will be encountered
in the clinic. Toward that end, we sought here to use sets of
tumors and abnormalities of a variety of sizes, depths, hard-
ness, etc. that lie, as reported elsewhere,18 within a reasonable
level of detectability.

Study Limitations
There are some limitations to the study and algorithmic

methods. First, our sample population included residents
and nurse practitioner students. Although this group has
some clinical experience, a further study should be extended
to experienced, attending urologists to further validate these
outcomes. Second, the finger palpation techniques that were
quantified here relate directly to the clinical literature, but
there may yet be other techniques, currently unknown, which
could also be of interest. Third, we used two proctors in the
study, one to record participants’ answers and the other to
operate the simulator. Although recording in writing a par-
ticipant’s verbal answers might tend to introduce bias, we
used a standardized score sheet, trained the proctors, and
ensured that the proctor to which the participant reported
was blind to the abnormality being presented. This was done
because it was awkward for the participants to write while

Table 4. Mean DIFF for Correct (and Incorrect) Detectors
No.

Participants Mean (Hz) SD
95% Confidence

Interval Min (Hz) Max (Hz)

Correct detector

Test scenario 1, E 22 5.78 0.53 5.57–5.99 5.26 6.90

Test scenario 2, 15 mm 9 5.76 0.68 5.32–6.20 5.30 7.53

Test scenario 3, 5 mm 7 6.16 0.91 5.32–7.05 5.37 7.80

Incorrect detector

Test scenario 1, E 4 6.51 1.00 6.11–6.91 5.66 7.81

Test scenario 2, 15 mm 1 6.32 — — — —

Test scenario 3, 5 mm 7 6.82 3.29 4.39–9.26 5.41 14.26
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conducting multiple sequential exams with a glove and sur-
gical lube.
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a b s t r a c t

Background: The mechanical characterization of prostate tissue has not received much attention and is
often disconnected from the clinic, where samples are readily attained.
Methods: We developed a spherical indenter for the clinic to generate force–displacement data from
ex vivo prostate tissue. Indentation velocity, depth, and sphere diameter, and four means of estimating
elastic modulus (EM) were validated. EM was then estimated for 26 prostate specimens obtained via
prostatectomy and 6 samples obtained from autopsy. Prostatectomy prostates were evaluated clinically
upon digital rectal exam and pathologically post-extirpation.
Findings: Whole-mount measurements yielded median EM of 43.2 kPa (SD = 59.8 kPa). Once sliced
into cross-sections, median EM for stage T2 and T3 glands were 30.9 and 71.0 kPa, respectively, but
not significantly different. Furthermore, we compared within-organ EM difference for prostates with
(median = 46.5 kPa, SD = 22.2 kPa) and without (median = 31.0 kPa, SD = 63.1 kPa) palpable abnormalities.
Interpretation: This work finds that diseased prostate tissue is stiffer than normal tissue, stiffness increases
with disease severity, and large variability exists between samples, even though disease differences
within a prostate are detectable. A further study of late-stage cancers would help to strengthen the
findings presented in this work.

© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The digital rectal exam (DRE), a palpation-based diagnostic, is
part of the recommended clinical screening protocol for prostate
cancer [1]. Training practitioners for the DRE can improve per-
formance and is typically done with standardized-patients or
part-task and human-patient simulators [2,3]. However, most cur-
rent simulators are palpably inaccurate and this is partially due to
a lack of literature on the mechanical properties of the prostate.
Better understanding a tissue’s stiffness, viscoelastic and vibratory
responses may also impact the further development and valida-
tion of non-invasive characterization technologies, especially since
we know that bulk tissue properties systematically vary between
normal and diseased organs (e.g., in the liver [4]).

∗ Corresponding author at: Department of Systems and Information Engineer-
ing, University of Virginia, P.O. Box 400747, 151 Engineer’s Way, Charlottesville, VA
22904, United States. Tel.: +1 434 924 0533; fax: +1 434 982 2972.

E-mail address: gregory-gerling@virginia.edu (G.J. Gerling).

Materials characterization of biological tissues, such as bone,
cartilage, liver, kidney, and other organs [5–8], is typically done
via tensile testing, ultrasound, whole-organ compression, aspira-
tion, or indentation testing—each modality has its benefits and
limitations. Tensile testing is often the preferred and simplest
form of materials characterization [9], but the thin cross-sections
it requires destroy the original sample. Moreover, tensile tests
do not subject the sample to compressive forces similar to those
applied in the DRE. Ultrasonic imaging is a non-invasive method
that has been used successfully with soft tissues [10,11]. Another
technique is whole-organ compression, which precludes one from
precisely gathering data from regions-of-interest within an organ.
Finally, indentation testing is minimally damaging and, if neces-
sary, can be performed on organs in vivo [12,13], like recent work
using aspiration-based material characterization devices [14,15].
Although indentation tests are typically not as accurate as uni-
axial tensile tests for estimating material properties, reasonable
engineering estimates can be achieved for these parameters [16].

At least four groups have analyzed prostate tissue, in various
states of health, using ultrasonic elastography and strain mapping
methodologies [17–20]. In this work, we used a spherical inden-

1350-4533/$ – see front matter © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.medengphy.2010.10.013
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Fig. 1. Indenter rig (left) and user interface (right).

tation technique to estimate elastic modulus (EM) for the prostate
in both whole-organ and cross-sectioned forms. The rationale for
using this approach was that: (1) the technique does not dam-
age the tissue prior to histopathologic sectioning; (2) the interface
between sphere and sample matches the interface between finger-
tip and prostate during the DRE; and (3) the data collection process
takes less than 20 min, as diseased prostate tissue is pathologically
evaluated shortly after extirpation. EM was compared between
healthy and diseased prostates gathered post-autopsy and post-
prostatectomy, respectively. Though calculating EM is not always
straightforward for biological samples, it is a convenient metric to
compare tissue stiffness across specimens. Furthermore, although
family history, prostate-specific antigen (PSA) levels, and the DRE
help detect prostate cancer, ultimately the diagnostic result is a
histopathologic one. We measured the elastic modulus of organ
confined (T2) and non-organ confined tumors (T3) for comparison
to clinical and histopathologic findings.

2. Methods

To compare the elasticity of normal and diseased tissues, we
designed and built a spherical indentation rig to process whole-
organ and cross-sectioned ex vivo prostate tissue samples. From
26 prostates removed via radical prostatectomy and 6 removed
at autopsy, we obtained EM values as converted from load versus
displacement measurements. These prostates were also clinically
evaluated upon DRE and pathologically evaluated post-operation.
The data were analyzed according to three research questions:

(1) What are the ranges of EM: (a) between and within prostate
glands and (b) between prostates gathered via autopsy and
prostatectomy?

(2) Considering cross-sectioned samples, how does stiffness relate
to the pathologic T stage?

(3) Within a single prostate diagnosed with carcinoma, is one
indentation site stiffer than an adjacent location and does this
differential relate to a DRE report of firmness or nodularity?

Since a novel method is used for calculating EM in soft tissues,
we evaluated its robustness beforehand in tests with silicone-
elastomer phantoms (see Appendix).

2.1. Apparatus: actuation, recording hardware, and data collected

The actuation sled, recording hardware and user interface are
shown in Fig. 1. The indenter tip is a 12 mm diameter AISI E52100
steel ball mounted to an aluminum standoff (1.27 cm length,
0.64 cm diameter). The standoff is attached to a load cell (Honey-
well, Model Sensotec 11, Columbus, OH) with a 44 N maximum load
capacity. The load cell is mounted to an aluminum sled which is
driven by a motorized linear stage (Newport, Model ILS100, Moun-
tain View, CA) with 100 mm travel and 50 mm/s maximum velocity.
It is controlled by a motion controller (Newport, Model ESP300)
with 0.0001 mm positioning accuracy. A laptop computer (Lenovo,
Model X61 ThinkPad, Morrisville, NC) is used for data acquisition
(National Instruments, Model DAQCard-6036E, Austin, TX) and for
operating the graphical user interface (National Instruments, Lab-
View 8.5 Professional). We used a 24-bit, 1000 sample/sec A–D
converter and a high-quality instrumentation amplifier to digitize
analog load cell signals for the National Instruments I/O card on the
computer. Samples are positioned on an aluminum plate attached
to two low-profile linear stages (Newport, Model 443) mounted in
an X–Y configuration with 50 mm travel and 5 turn/mm positioning
resolution.

Two classes of data are logged, force on the load cell and position
of the linear stage (1 × 10−6 N and 0.0005 mm resolutions, respec-
tively). To smooth the recorded force versus displacement data
from the load cell, the Smoothing Filter Coefficients Virtual Instru-
ment in LabView was implemented with a 20-sample half-width.
This is a moving average filter of the form:

MA(f (x0)) =
∑m

i=−mf (xi)

2m + 1
, (1)

where force, f, is a function of displacement, x, for a given time
epoch, i, and m is the half-width of the filter. Since the experimen-
tal data follow a generally monotonically increasing trend across
time, the moving average filter positively biases the resultant data.
However for these data, this bias is negligible. Fig. 2 shows an exam-
ple of smoothed force versus displacement data collected from a
cross-sectioned prostate sample of average EM.

2.2. Equations for estimating EM

EM is calculated for soft tissues from load versus displace-
ment data using a technique originally used to characterize hard
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Fig. 2. Example force versus displacement data taken from a cross-section sample.

materials. The Appendix details the specifics of the preliminary
experiments used to validate the procedure with soft tissues. We
refer to the following equation as the “Oliver–Pharr method” for
relating Oliver–Pharr stiffness, S, and contact area, A, to reduced
EM, Ered [21]:

Ered = S
√

�

2
√

A
. (2)

Contact area is simplified to 2�r2, the surface area of a hemi-
sphere, where r is the radius of the indenter. Justification for this
simplification can be found in Appendix A.1.2. Oliver–Pharr stiff-
ness is given by the following equation [21]:

S = dP

dh
, (3)

where dP/dh is the change in load, P, with respect to the change
in indentation depth, h, at the initial instant of unloading in a
load–unload indentation procedure. To approximate S, we used the
slope from a linear fit applied to the first 20 unloading data points
from the force versus displacement data gathered by the inden-
ter for all specimens—whole-mount and cross-sectioned, biological
and synthetic. Trial and error experimentation led us to the use of
20 data points for the slope estimate, as it minimized error due to
jittery load cell data and downward bias from too many samples in
the time-dependent linear estimate. Finally, Ered is related to both
the EM of the indenter, Ei, and the EM of the sample, Es [22]:

Ered =
[

1 − v2
s

Es
+ 1 − v2

i

Ei

]−1

, (4)

where vs and vi are Poisson’s ratios for the sample and indenter,
respectively. Note that in this work, values for Ei and vi are 210 GPa
and 0.30, respectively, for an AISI E52100 steel ball bearing. Based
on internal organ material property data in Fung [5,23] and ranges

of Poisson’s ratios used in Hu’s modeling of the prostate [24], we set
vs to 0.47 as an estimate for the Poisson’s ratio of prostate tissue. We
set vs to 0.499 for the nearly incompressible, polydimethylsiloxane-
based silicone-elastomers. Since Ei is about 104 times greater than
Es, the inclusion of the second term contributes minimally to the
reduced elastic modulus of the system. Nonetheless, Eq. (4) was
presented in this form for completeness.

The Oliver–Pharr method with simplified contact area,
described above, was selected from the possible candidates because
it best minimized EM variance in the preliminary experiments
with silicone-elastomers. This method was also desirable because
it was insensitive to indenter diameter and sample thickness, it
was highly sensitive to sample stiffness and small stiffness differ-
entials, and through validation with finite element (FE) analysis, it
produced reasonable EM estimates. For support of these findings,
see Figs. 5 and 6 and Tables 7 and 8 in Appendix.

2.3. Experiment

After obtaining approval from the Institutional Review Board,
patients undergoing radical prostatectomy consented to allow the
material properties of their prostates to be measured. There were
three parts to the experiment: the measurement of the mate-
rial properties on both whole-mount and cross-sectioned samples,
pathological evaluation, and chart abstraction to document the
clinical indications.

2.3.1. Material properties of radical prostatectomy specimens
Once dissected free of investments (i.e., the vas deferens, sem-

inal vesicles, urethra, and musculature) and removed from the
patients, prostates were transferred from the operating room to
pathology within 20 min of extirpation (autopsies were conducted
within 24 h after patient deaths and tissue samples were harvested
within 1 h after the procedures began). After weighing and mark-
ing surgical margins, spherical indentation measurements were
obtained from intact and then cross-sectioned specimens.

In the whole-mount procedure, the prostates were placed on
top of an aluminum plate, in an orientation of anterior-side down,
such that their apices faced the operator. The samples were neither
constrained at their periphery nor affixed to the plate. The geom-
etry of the excised prostate is such that when placed anterior-side
down, a substantial portion of the organ’s surface area rests flat
on the specimen plate and the indenter contributes to indenta-
tion into the tissue, not whole-organ deformation. Each sample was
indented to 30% of its total thickness in the z-direction (i.e., 9 mm
indentation for 30 mm thick whole mount samples and 2.4 mm
indentation for 8 mm thick cross sections), at a rate of 0.1 mm/s
and in 2–4 of the following quadrants—superior right, superior left,
inferior left, and inferior right (see Fig. 3). We consistently indented
in the inferior left and right quadrants, as these locations are most
readily accessible in the DRE; however, measurements were made
in a greater breadth of quadrants in the first few experimental

Fig. 3. (a) Whole-mount prostate on specimen plate; (b) cross-sectioning procedure; (c) a single, cross-sectioned sample with its four quadrants labeled. Note: views (a and
c) are top-down and indentation occurs in the z-direction into the page. Adapted from [30].
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Table 1
EM across whole-mount prostatectomy and autopsy samples.

EM (kPa)

Prostatectomy Autopsy All
n = 92 n = 18 n = 110

Median 43.5 42.5 43.2
Mean 60.2 69.6 61.8
SD 46.9 105.3 59.8

runs. Each load–unload procedure took between 6 and 10 min, with
approximately 15 min being spent taking all measurements of a
single sample.

After the whole-mount measurements were completed, the
cross-section procedure was performed with prostate specimens
serially sectioned into 3–4 slices between 0.5 and 1.0 cm thick.
These sections were placed on the specimen plate, in an orientation
with the inferior-side down and posterior-side closest to operator.
Four measurements were taken from each slice; thus, approxi-
mately 20 measurements were possible for each prostate—4 from
whole mount and 16 from 4 slices of 4 quadrants each. En face tissue
samples from each quadrant that had been indented were then pro-
cured for histologic processing. The cross-sectional procedure was
performed only with prostates acquired via prostatectomy, as there
were no gross differential diagnoses done for autopsy samples.

2.3.2. Pathologic and histologic evaluation of prostate tissue
The remainder of the specimen was processed and sampled for

routine histologic examination by the clinical staff of the univer-
sity hospital’s pathology department. The en face tissue samples
were processed into formalin-fixed paraffin blocks from which
hematoxylin and eosin-stained histologic sections were made.
The histologic sections were examined by a single Board-Certified
Anatomic Pathologist. The sections were scored for the presence
of normal tissue, benign prostatic hyperplasia (BPH), inflamma-
tion and carcinoma. If carcinoma was present, the Gleason score
and the percentage of cross sectional area occupied by cancer were
recorded. Each prostate was given a pathologic T stage and assessed
for margin positivity and percentage of gland affected by adenocar-
cinoma using standard techniques [25,26].

2.3.3. Chart abstraction to interpret clinical findings
We performed chart abstraction to interpret clinical findings

from the DREs and pathologic gross differential diagnoses. While
the procedures for reporting gross differential diagnosis are spec-
ified in M.3.2, DRE reports typically involve narrative statements
which address prostate shape, size, stiffness, texture, symmetry,
and nodularity. A trained urologist abstracted these narratives
into “abnormality-positive” or “abnormality-negative” for both the
right and the left lobes of all prostates.

3. Results

The dataset, consisting of 32 excised prostates from 26 radical
prostatectomies and 6 autopsies, was analyzed in accordance with
the three research questions.

3.1. EM for whole-mount and cross-section samples

3.1.1. Whole-mount measurements
With respect to the whole-mount specimens, the EM (median,

mean and standard deviation) for prostatectomy, autopsy and
combined samples are presented in Table 1. The median EM for
prostatectomy samples is slightly greater than that for autopsy
samples, while the mean EM is greater for autopsy samples than
it is for prostatectomy samples, which reflects the contribution of

Table 2
EM for cross-section samples across pathologic diagnosis.

EM (kPa)

Benign AC ≥ 10% BPH Prostatitis
n = 71 n = 39 n = 35 n = 20

Median 27.2 43.0 26.2 31.9
Mean 41.1 135.0 36.8 49.2
SD 41.3 240.6 37.0 52.8

Fig. 4. EM versus percent adenocarcinoma for cross-section samples.

the outliers but also follows Tay et al. [12], since organ stiffness
increases with the length of time after death. However, these differ-
ences were not statistically significant. In Table 1, each indentation
is considered as one sample and each prostate was indented 2–4
times, therefore n represents the total number of samples and not
participants.

3.1.2. Cross-section data
From each cross-section, one indentation measurement was

made per quadrant. Based on histologic findings (benign, adenocar-
cinoma in at least 10% of sample, BPH, or prostatitis), the median,
mean, and standard deviation of the EM are shown in Table 2. Sam-
ples with no histologic data, adenocarcinoma in less than 10% of
sample, high-grade prostatic intraepithelial neoplasia (HGPIN), or
composed of smooth muscle were not included.

From these data, the adenocarcinoma group exhibits the great-
est median and mean EM, followed by the prostatitis, benign, and
BPH groups, but these differences are not statistically significant.
Furthermore, we plotted EM versus percentage adenocarcinoma in
Fig. 4 and found there is no relationship between the two variates.

3.2. Relationship between stiffness and pathologic T stage

One prostate was given a T0 stage, 23 were given T2 stages, and
two were given T3 stages. With the prostatectomy samples grouped
by T2 and T3 pathologic stage, the EM (median, mean and standard
deviation) for whole-mount measurements are shown in Table 3.
Both the median and the mean EM for the stage T3 samples are
greater than those for the stage T2 samples, with the T3 median
of 59.9 kPa and the T2 of 42.1 kPa, but again these differences are
insignificant.

Table 3
EM for whole-mount samples from stage T2 and T3 prostates.

EM (kPa)

T2 T3
n = 83 n = 6

Median 42.1 59.9
Mean 59.9 61.8
SD 48.8 31.4

Note: nT2 + nT3 < nprostatectomy since one prostate (three samples) was stage T0.
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Table 4
EM for cross-section samples from stage T2 and T3 prostates.

EM (kPa)

T2 T3
n = 27 n = 10

Median 30.9 71.0
Mean 91.4 241.5
SD 201.7 328.9

Table 5
Maximum within-prostate EM difference for whole-mount samples with and with-
out palpable abnormalities.

Max EM difference within prostate (kPa)

Palpable Not palpable
n = 5 n = 14

Median 46.5 31.0
Mean 47.7 58.1
SD 22.2 63.1

As with the whole mount samples, we grouped the cross-section
samples by clinical stage, given the samples had at least 10% adeno-
carcinoma. As Table 4 indicates, the T3 median of 71.0 kPa is larger
than the T2 median of 30.9 kPa, but this difference is not significant.
The mean EM for stage T3 samples is twice the mean of stage T2
samples.

3.3. Within prostate EM variability and relationship to DRE
findings

We calculated the maximum difference in EM within prostates
for those which had DRE-palpable abnormalities and those which
did not in Table 5. In comparing the maximum EM difference, the
median difference in EM for prostates with palpable abnormalities
is greater than that for prostates without palpable abnormali-
ties. Although counterintuitive, the mean difference in EM for
prostates with palpable abnormalities is less than that for prostates
without palpable abnormalities, but the standard deviations for
both groups are large and the difference between these means is
insignificant.

A further analysis was then done to consider within-prostate
stiffness differences. Few prostate specimens yielded samples
which are uniformly malignant. For a given prostate, we compared
the EM of malignant and benign samples to examine across-disease
stiffness variability within an organ. As shown in Table 6, there
appears to be a relationship between malignancy and EM within-
prostate, although more samples are required for confirmation.

A paired t-test was performed and yielded a p-value of 0.05.
However, because the data violate the “normally distributed” and

Table 6
Comparison of within-prostate EM for malignant and benign cross-section samples.

Sample, slice, ANT/POS EM (kPa) Difference % Difference

Malignant Benign

11, 1, ANT 17.4 9.4 8.0 46.2
15, 1, ANT 264.6 20.8 243.8 92.1
15, 1, POS 68.5 19.2 49.4 72.0
15, 2, POS 920.8 28.7 892.1 96.9
16, 3, ANT 70.3 63.8 6.5 9.3
29, 2, POS 17.6 13.3 4.3 24.5
30, 1, POS 102.9 44.3 58.6 56.9
32, 1, POS 978.3 17.4 960.9 98.2
32, 1, ANT 7.1 30.6 −23.5 −331.6

Median – – 49.4 –
Mean – – 244.5 –
SD – – 394.9 –

“equal variance” assumptions required to infer from the results of
a t-test, we must be cautious with this result.

4. Discussion and conclusions

In reviewing the results on the whole-mount level, we find
few significant differences between the EM for normal and dis-
eased tissues, because across-sample variability is large. The mean
EM for our benign samples from autopsy was 69.6 kPa—Krouskop
et al. reported approximately 65 kPa [19], Murayama et al. reported
10–15 kPa [17], and Parker et al. reported only 2.15 kPa [18]. The
mean EM for diseased samples was 60.2 kPa, while Krouskop et
al. reported 230 kPa. Again, we believe the mean EM for autopsy
samples is greater than that for prostatectomy samples because
of a change in tissue stiffness due to patient death, as seen in Tay
et al. [12]. There are also no systematic differences between the
EM for prostates with and without palpable abnormalities at the
whole-mount level. However, it is important to note that a spheri-
cal indentation procedure in which a large sphere is used and few
indentations are performed can only reveal information about a
prostate’s overall firmness. Detection of DRE-specific disease cues,
such as nodularity, texture, and size, must rely upon a set of metrics
other than simple EM and force versus displacement estimations.
Finally, there is an insignificant difference in EM between patho-
logic stage T2 and T3 for whole-mount samples, though we only
have 6 samples with stage T3 disease. We hypothesize that since
prostate cancer is detected earlier due to the PSA test, it is difficult
to gain access to prostates with more advanced disease.

Although the mean cross-section sample differences in Table 2
were not statistically significant, the results follow Murayama and
Phipps [20] in their conclusions that stiffness differences exist
between prostate glands with and without carcinoma. The mean
EM for benign samples was 41.1 kPa, 135.0 kPa for samples with
adenocarcinoma in over 10% of the gland, and 36.8 kPa for sam-
ples with BPH. Of note is that Krouskop et al. reported a similar
mean of 38 kPa for samples with BPH. We found that cross-section
samples from stage T3 (non-organ confined) tumors were stiffer
than samples from stage T2 (organ confined) tumors, with medi-
ans of 71.0 and 30.9 kPa, respectively. However, these differences
were insignificant. There are insignificant EM differences for cross-
sectioned samples if one compares malignant and benign regions
within the same prostate. It is this type of within-prostate compar-
ison upon which a DRE most likely relies. However, we only have 9
cases in which this situation arises, again likely due to cancers now
being caught earlier because of PSA screening.

Large variance in the measurements is evident in the study.
However, we conducted a thorough validation of the indentation
and EM calculation techniques used here in the preliminary exper-
iments with silicone elastomers. Based on those results, we believe
we can justify that the large variances in EM observed for whole-
mount and cross-section ex vivo prostate tissue samples are due
to large differences in tissue stiffness, as opposed to measurement
error. Other recent work [7] also affirms that accurate characteri-
zation of the mechanical properties of soft biological tissues can be
accomplished through small indentation devices.

Finally, we note that we used a procedure to acquire the
prostates to be measured within 20 min upon removal from the
body. Although this minimized tissue degradation, others have
made significant efforts to keep tissues perfused both before and
during the measurement procedure. It has been shown that per-
fused and non-perfused livers have different mechanical properties
[27]; however, the prostate is a small, fibrous gland which secretes
comparatively less fluid. Furthermore, our diseased organs were
cauterized upon extirpation and tested immediately thereafter. As
such, we hypothesize that the ex vivo mechanical properties pre-
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sented herein closely approximate in vivo conditions encountered
during the DRE.

5. Study limitations

There are limitations to the experiment and mathematical
methods. Our selection of a relatively large 12 mm sphere some-
what limited the spatial precision of our force versus displacement
data. However, this size sphere was validated in preliminary exper-
iments and allowed us to characterize the material properties of
the prostate at large, yielding a higher probability of contacting
a tumor, given our 20 min constraint in which to complete test-
ing. For cross-section samples, a load cell with lower total range,
perhaps ∼10 N, may have yielded more accurate data in lower
load ranges. Nonetheless, the use of a high-fidelity 24-bit A–D
converter allowed us to gather data which was still highly accu-
rate over the load cell’s full scale. It would also have been ideal
to perform uniaxial testing on at least one prostate for compar-
ison with our spherical indentation findings. Finally, most of the
prostates studied here had low-grade cancers, most likely due to
advances in diagnosing prostatic disease. Sampling more prostates
with advanced stage disease may have further strengthened our
findings of stiffness differences between normal and diseased
tissue.
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Appendix A.

A.1. Indenter validation with silicone-elastomer specimens

Validation of the indentation procedure and the means for cal-
culating EM were done with silicone-elastomer specimens. The
silicone-elastomers were employed because their properties are
controllable and they are mechanically similar to soft biological
tissues. The spherical indentation parameters, indentation velocity
and indenter tip diameter, were validated for the load–unload pro-
cedure in conjunction with controlled changes to the stiffness and
thickness of the silicone-elastomer samples. Given those indepen-
dent variables, the outcome variables were EM, calculated using
four disparate methods in Section A.1.2.

A.1.1. Independent variables
The first set of independent variables included the stiffness

and thickness of the silicone-elastomer samples (BJB Enterprises,
TC-5005, Tustin, CA). We employed three levels of stiffness, deter-
mined by the percentage of silicone mixture component C, in which
a greater percentage yields a more pliant sample. These stiffness
levels, 25, 75, and 85%, correspond with those thought to reason-
ably estimate prostate stiffness, as determined by psychophysical

tests with clinicians [2]. For each level of stiffness, there were two
levels of sample thickness: 20 and 30 mm.

The second set of independent variables relates to the spherical
indentation procedure and include indentation velocity and inden-
ter tip diameter. There were two levels for indentation velocity,
0.01 mm/s and 0.1 mm/s. Previous work by Cox et al. with bio-
artificial muscle has shown that a suitable lower-bound to velocity
is 0.01 mm/s with a 2 mm indenter [28]. However, an indenter
driven at 0.01 mm/s requires more than 20 min to complete one
load–unload procedure on a whole-mount sample, an impractical
timeframe for the clinical setting. The difference in EM estimates
for data collected at indenter speeds of 0.01 mm/s and 0.1 mm/s
were approximately one percent. Furthermore, preliminary tests at
velocities over 0.1 mm/s yielded poor estimates of EM. There were
six levels for indenter tip diameter: 6 mm, 8 mm, 10 mm, 12 mm,
16 mm, and 24 mm.

A.1.2. Dependent variables
The outcome variables were EM values calculated using four

disparate methods. The first is the “compressive strain” method:

Ered = pm

εest
= P/A

h/t
, (5)

where pm is mean contact pressure or indentation stress, given by
load per unit contact area, and εest is a rough estimate for compres-
sive strain, based on indentation depth and sample thickness at the
point of indentation, t.

The second method is the “indentation strain” method, and
closely resembles the first, but uses the notion of indentation strain,
or εind, which is given by indenter contact radius, a, divided by
nominal indenter radius, r [29]:

Ered = pm

εind
= P/A

a/r
. (6)

Fischer-Cripps proposed that indentation strain scales with elas-
tic strains for a given specimen, thus providing an analog to the
stress-strain relationship found in uniaxial tensile testing [29]. The
third method was derived from Fischer-Cripps’ analysis of Hertz’s
contact equations:

Ered = 3rP

4a3
. (7)

The fourth method, Oliver and Pharr’s stiffness to elastic modulus
relation, is described in Section 2. We take indenter displacement,
h, from Eq. (3) and subtract from it substrate surface deflection at
the contact perimeter, hs, to obtain contact depth, hc [21]:

hc = h − hs, (8)

where hs is given by:

hs = �P

S
. (9)

The geometric constant, �, of a spherical indenter is 0.75. For a
spherical indenter, contact radius at any given contact depth is
given by:

a =
√

2rhc − hc
2. (10)

However, since the indenter has an EM much greater than that of
the samples and the loads applied in this experiment were small
enough to preclude macrodeformation of the steel tip, we made
the assumption that the area of contact between the two objects
was not of a conventional “Hertzian circle”, but of a partial sphere.
Therefore, for each displacement step, contact surface area between
the specimen and the load applied by the indenter is given by:

A = 2�r2[1 − cos(˛(·))], (11)
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where ˛(·) is the function for the generating angle of the partial
sphere of contact, with respect to the axis of compression. This
generating angle is related to nominal radius of the indenter tip,
contact depth, and contact radius:

˛(·) = arctan
(

a

r − hc

)
. (12)

Combining Eqs. (8) through (12) yields:

A = 2�r2

[
1 − cos

(
arctan

(√
2r(h − (�P/S)) − (h − (�P/S))2

r − (h − (�P/S))

))]
. (13)

The use of Eq. (13) for contact area constitutes “complex” calculi
in the results below, while the use of 2�r2 for contact area of the
surface area of a hemisphere, constitutes “simple” calculi (which
can be justified since we are using a large deformation framework
with a rigid indenter and an extremely pliant substrate).

A.1.3. Results of silicone-elastomer tests
The procedure for testing the silicone-elastomer samples

described in Section A.1.1 was that in each configuration of
sample stiffness, sample thickness, and indenter diameter, one
load–unload trial was performed per sample. These data were ana-
lyzed using ANOVA.

Fig. 5 and Table 7 contain visual and numerical summaries of
the EM estimates from the tests. EM calculated with the complex
Oliver–Pharr method (i.e., what would have been Method 4C) are
not shown in Fig. 5A because they were hundreds of times larger
than other values. Table 8 summarizes the ANOVA performed on
the EM estimates using the simple Oliver–Pharr method with % Part
C, indenter diameter, and sample thickness as factors.

Two important results arise from the data in Fig. 5 and Table 7.
First, the simple Oliver–Pharr method minimizes the variance in
EM across stiffnesses. Second, from the boxplot in Fig. 5B, we see
that EM estimates across sample stiffnesses are well-defined, as
the boxplots do not overlap. This suggests the indenter rig can
gather data which yield unique EM across both relatively large stiff-
ness differentials, 25% Part C versus 85% Part C, and small stiffness
differentials, 75% Part C versus 85% Part C.

These effects are due to the insensitivity of the simple
Oliver–Pharr method to indenter diameter and sample thickness
compared to the other calculi. In Table 8, we performed ANOVA
on the EM calculated using this method with sample stiffness,
indenter diameter, and sample thickness as factors. As expected,
sample stiffness accounted for an overwhelming proportion of vari-
ation in the data, approximately 99.12%, and yielded an F-statistic
greater than 4093, which is significant at any practical level. Fur-
thermore, indenter diameter accounted for 0.02% of data variation
and was insignificant at the ˛ = 0.05 level. This result suggests that
the indentation procedure and calculation method are robust to
different indenter sizes, which allows us to compare the EM of
prostates collected in this experiment. Sample thickness accounted
for 0.05% of variation in the data and was significant at the ˛ = 0.05
level. However, although this factor was statistically significant, its
practical significance is suspect, considering it accounted for so lit-

Fig. 5. (a) Results of silicone-elastomer validation study. EM (y-axis) is plotted
against silicone cross-linker percentage and method of calculating EM (where
number–letter designations represent the method and contact area calculation com-
plexity: e.g., 1C is complex method 1). (b) A closer view of boxplots for the simplified
Oliver–Pharr method, 4S.

Table 8
ANOVA table of simplified Oliver–Pharr method, 4S, for silicone-elastomer valida-
tion tests.

Df Sum of Sq. Mean Sq. F value Pr(F)

% Part C 2 71149.84 35574.92 4093.48 0
Diameter 1 13.67 13.67 1.57 0.21
Thickness 1 34.85 34.85 4.01 0.05
Residuals 67 582.27 8.69 – –

tle variation in the data and, for comparison, 0.81% of variation in
the data was unexplained.

To ensure our EM estimates were reasonable, we created a FE
model in ABAQUS 6.6 (SIMULIA, Providence, RI) which simulated
spherical indentation by a 12 mm diameter indenter into a 20 mm
thick, 85% Part C elastomer sample. This elastomer model used
2,160 CAX4RH elements (4-node, bilinear axisymmetric quadrilat-
eral elements with hourglass distortion control) 0.5 mm × 0.5 mm
in size and was constrained on the bottom to replicate the sample
resting on the specimen plate during indentation. From our exper-
imental data, we had estimated that such a sample had an EM of
25.3 kPa. In our FE analysis, we used two models to replicate this

Table 7
Summary of EM estimates from silicone-elastomer validation tests.

Method 1 (kPa) Method 2 (kPa) Method 3 (kPa) Method 4 (kPa)

Complex Simple Complex Simple - Complex Simple

25% Part C Mean (SD) 144.38 (79.11) 133.47 (76.68) 46.29 (10.83) 44.00 (21.33) 181.88 (52.81) 23127.51 (10057.10) 94.68 (4.40)
Coeff. of Variation 0.55 0.57 0.23 0.48 0.29 0.43 0.05

75% Part C Mean (SD) 53.91 (33.72) 50.06 (26.18) 17.29 (23.74) 17.38 (7.51) 75.70 (16.88) 8161.82 (2286.40) 32.95 (2.59)
Coeff. of Variation 0.63 0.52 1.37 0.43 0.22 0.28 0.08

85% Part C Mean (SD) 41.57 (16.28) 36.43 (19.88) 14.33 (7.39) 12.67 (5.80) 54.11 (13.47) 5805.10 (1653.61) 23.95 (1.18)
Coeff. of Variation 0.39 0.55 0.52 0.46 0.25 0.28 0.05
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Fig. 6. FE analysis output for a silicone-elastomer specimen, noting the fit of linear
and hyperelastic modeling parameters.

scenario: an Ogden hyperelastic model and a simple linear elastic
model. Our Ogden hyperelastic model had parameters � = 8.4 kPa
and ˛ = 2, since shear modulus, �, is related to Young’s modulus, Y,
by:

� = Y

2(1 + v)
, (14)

and ˛ = 2 is appropriate for near-incompressible, rubber-like mate-
rials. Our linear elastic model had Young’s modulus Y = 25.3 kPa and
Poisson’s ratio v = 0.499. In Fig. 6 below, we overlay experimental
and FE output force versus displacement data.

A visual inspection of the plot demonstrates that although
the exact material properties of the simulated and experimental
substrates differ, indentation tests yield very similar force versus
displacement relationships.

To further validate the spherical indentation estimates, we com-
pared EM values obtained in our spherical indentation experiments
with Young’s moduli from uniaxial tensile tests performed on a uni-
axial testing machine (MTS Systems Corporation, Eden Prairie, MN).
The three samples were 25%, 75%, and 85% Part C elastomers; they
had lengths and cross-sectional areas of 0.0495 m and 0.001662 m2,
0.0475 m and 0.001662 m2, and 0.048 m and 0.001385 m2, respec-
tively. At 30% strain, uniaxial testing yielded Young’s moduli of
116.8 kPa, 28.8 kPa, and 21.9 kPa for 25%, 75%, and 85% Part C elas-
tomers, respectively. In comparison, the spherical indentation tests
had yielded similar EM values of 94.7 kPa, 33.0 kPa, and 24.0 kPa,
respectively.

These validation tests suggest our method for estimating EM in
thick silicone-elastomer samples produces values close to Young’s
moduli generated using uniaxial tensile testing and commercial FE
analysis software.
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Prostate cancer is detected in part via the digital rectal examination.  Training for this hands-on exam is 
limited, in particular, by feedback given trainees with respect to finger palpation.  This work characterizes 
finger palpation technique exerted by participants, using a simulator that can electronically record finger 
pressure on the prostate gland and abnormalities.  In principal, we analyze 1) global finger movement, 2) 
local finger movement and 3) average finger pressure.  The analysis determined that p articipants utilize 
four patterns of global finger movement (U, V, L and line), three patterns of local finger movement 
(tapping, vibration, smooth movement), and distinct finger pressures (in Newtons).  T his analysis also 
determined that participants who utilized certain techniques were b etter able to d etect presented 
abnormalities.         
 

INTRODUCTION 
 

To promote early detection of prostate cancer, screening via 
two diagnostic tools is ad vised, the prostate specific antigen 
(PSA) blood test and the digital rectal examination (DRE) 
(American Cancer Society, 2007).  Th e DRE is the clin ical 
palpation of the prostate gland.  Alarmingly, the level of 
clinician performance with the DRE is variable (positive 
predictive value is 1 7-34% (AMA, 2000)) and agreement 
between-examiners on diagnosis is low (21-40% (Hennigan, 
Franks, Hocken, & Allenmersh, 1990; Saslow et al., 2004)).  
Hands-on training is used to improve these skills, typically via 
either standardized patients or physical simulators.  Training 
with physical simulators, in particular, helps to improve the 
detectability of abnormalities (Pilgrim, Lannon, Harris, 
Cogburn, & Fletcher, 1993).  While physical simulators mimic 
abnormal cases, current models present few practice cases (4-
5) and offer little feedback on examiner performance.   

The Virginia Prostate Examination Simulator (VPES) was 
designed to address both issues (Rigsbee, Gerling, Childress, 
& Martin, 2007).  It combines the use of rubber-like materials 
to simulate the feel o f tissue while using a computer to 
generate scenarios and record data for immediate feedback 
and post-performance review of exam performance.   

Of interest to this work is the VPES’s capability to acquire 
data on the finger pressure exerted on the instrumented 
prostate.  In  palpation exams, clinicians are often taught to 
utilize proper technique.  In  clinical br east exams, the to tal 
exam time, search pattern utilized and finger palpation 
technique are thought  to infl uence an exam iner’s accuracy  
(Barton, Harris, & Fletcher, 1999; Bickley, 2002).  Finger 
pressure has also been examined for the pelvic exam (Pugh & 
Youngblood, 2002).  Here, we  analyze finger palpation 
utilized in the DRE and determine if underlying characteristics 
impact abnormality detection.  

 
METHODS 

 
To inform the analysis, we u tilized data from our previous 

experiment with 25 medical students.  Our three analyses of 
finger palpation considered: 1) global finger movement, 2) 

local finger movement and 3) average finger pressure.  
Additionally, we considered how patterns employed within 
each (of 1-3) impacted one’s ability to detect abnormalities. 

 
Apparatus 

 
The VPES (Fig.1, A-E) utilizes three instrumented prostates 

(Fig.1, F) of accurate size and stiffness attached to a track  
system (Fig.1, G) internal to a co nstructed posterior section 
(Rigsbee, Gerling, Childress, & Martin, 2007).  The simulator 
includes three features not in current physical simulators: 
multiple and reconfigurable scenarios of graded difficulty, 
technique and performance feedback, and physiologically 
accurate anatomy.  

 
Figure 1: Main Components of VPES Apparatus, including (A) torso, (B) 

laptop, (C-D) automatic balloon inflation, (E) pressure sensor signal 
conditioning, (F) instrumented prostate and (G) internal track system. 

To enable multiple and reconfigurable scenarios of graded 
difficulty, 4 to 6 balloons are embedded in each inst rumented 
prostate.  Basically, water-filled balloons are used to simulate 
palpable abnormalities.  Attached to the balloons, sensors 
monitor the water pressure.  This mechanism helps enable the 
performance feedback as the water pressure can d enote 
whether or not an examiner has palpated an abnormality.   

 
Figure 2:  Real-time Visual Feedback Display 
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For example, when an examiner applies finger pressure to a 
water-filled balloon, the change in water pressure is displayed 
on the feedback screen (Figure 2, “Balloon Pressure Display,” 
where the spike i ndicates that a balloon has been pressed).  
While the display offers information in the training mode, the 
data is also logged to a file for post-exam analysis. 

To enable the feature of technique feedback, force sensors 
are embedded in each  instrumented prostate.  The four 
Flexiforce force sensors (Tekscan, South Boston, MA, 0-1 lb 
range) record the location and magnitude of applied finger 
pressure during palpation.  T he instantaneous magnitude of 
finger pressure exerted on the prostate is v isually displayed 
via colored tanks that correspond to pressure sensor locations 
in four regions of the prostate (Figure. 2, “Palpation Pressure 
by Region”), and via continuous pressure plots in an analog 
view (Figure. 2, “Magnitude Display”).  Finger force is also  
logged to a file for post-exam analysis. 

 
Analysis Techniques 
 

Overview and Rationale. In each analysis, characteristics of 
finger palpation technique were related with ability to detect 
abnormalities.  In analysis 1, global finger movement was 
examined.  We define global finger movement as tracking an 
examiner’s finger in procession from one of the four 
quadrants of the prostate to another.  A similar idea applies in 
the clinical breast exam, where global finger patterns (e.g., 
radial, clock, and vertical strip) are tau ght, ensuring that the 
entire breast is examined (Bennett et al., 1990).  In analysis 2, 
local finger movement was co nsidered.  We define local 
finger movement as p alpation by the finger within a sin gle 
quadrant or near a sing le abnormality.  Sim ilarly, superior 
technique in a b reast exam entails the use of the pads of the 
2nd, 3rd, and 4th fingers held together, making dime-sized 
circles.  In analysis 3, we computed average finger pressure 
employed near an abnormality. 

Participants and Procedure of Experiment.  All 25 subjects 
were novice medical students in their 3rd or 4th year.  Th e 
overall procedure was a series o f pretests, training session, 
and posttest-2 always co nducted on the VPES (s cenario 
described in the following section).  Only the posttest-2 results 
are examined here.  Also, while 36 subjects participated in the 
prior experiment, the participant number reduced to 25 due to 
a technical issue.  This smaller dataset is believed to broadly 
characterize the entire subject pool. 

Experimental Testing Scenario of Posttest-2.  For the 
posttest-2 scenario analyzed, a carcinoma disease state was 
simulated via the inflation of two balloons (denoted by circles 
“1” and “2” in Figure 3).   

Figure 3: Balloon 
and Sensor 
Layouts in a 
Simulated 
Prostate: Top and 
Side views.  S1-S4 
are force sensors 
and 1, 2 are  
balloons. 

Balloon 1 is sized 0.5 cm × 0.5 cm and balloon 2 is sized 1.0 
cm × 1.0 cm.  Both  of them were inflated to 25 PSI t o 
generate Shore A durometer hardness of approximately 25.54 
and 29.92, respectively.  M oreover, balloon 1 is positioned 
slightly deeper than balloon 2.  See (Hall, Roehrborn, & 
McConnell, 1996; Jarvis, 2004) for details on the prostate 
gland and disease states, including carcinoma.   

Data and Data Collection.  The analyses utilized three 
sources of data: a) finger pressure from force sensors (“S1”-
“S4” in Figure 3), b) balloon pressure (“1” and “2” in Figure 
3), and c) participant reporting with the experiment’s proctor 
to indicate if an abnormality was palpated, its size and 
location. 

Force sensor data (a) were collected from the four sensors at 
a rate of 60 samples per second over the duration of the exam 
(approximately 30 seconds).  Then, the sensor output ( i

ts ), in 
Newtons for the ith sensor at time t, was normalized. 

i i
t ts s=               (1) 

Additionally, we eliminated data below 1.50 Newton, as 
these were below a significant magnitude of exerted pressure, 
and so were set to zero, via equations 2 and 3.  

if  i
ts < 1.50, i

ts = 0              (2) 

delete ith data if 
4

1

0i

t

i

s
=

=∩              (3) 

Balloon sensor data (b) were collected from water pressure 
transducers attached to the two balloons inflated for the 
experimental scenario above.  The data were sampled at a rate 
of 3 samples per second.  The data were converted from volts 
to psi and then converted from psi (p) into Shore A durometer 
hardness (h), via equation 4 for balloon 1 and equation 5 for 
balloon 2, which were achieved by our measurement. 

hballoon1 = 0.3067p + 17.867             (4) 
hballoon2 = 0.3767p + 20.5                      (5) 
The third source of data was collected via p aper records 

charting by the proctor (c).  Following the exam, a participant 
indicated if he or she palpated any abnormalities, specifically 
its location and size.  These data are used to determine if any 
balloon had been palpated.  While we can also  determine if a 
tumor has been palpated by looking at the water pressure data, 
it is possible that a participant can press on a balloon and not 
know it, or vice versa.  Therefore, using the paper charts gives 
us greater confidence in the correctness of participant 
responses. 

An example set of data collected from force and balloon 
sensors are plotted together in Figure 4.  Spikes in the data 
(Spikeb) indicate if a balloon was palpated.  Equation 6 is used 
to determine if the current balloon pressure hcur has exceeded 
an increase of 3% compared to the previous measurement hpre. 

bSpike  = ((hcur / hpre )≥ 1.03)             (6) 
Hence, whenever balloon 2 is p alpated (an upward spike; 

circle “A” in Figure 4), it is evident the magnitude of finger 
pressure for sensors 1 and 4 increases while t hat applied to 
sensor 2 decreases (circle “B”).  This makes sense given the 
layout of the sensor numbers and balloon 2 in Figure 3. 
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Figure 4: Plot for Sensor and Balloon Data 

 
EXPERIMENTS AND RESULTS 

 
Global Finger Movement (Analysis 1) 
 

For analysis 1, the goal was to determine if any patterns of 
global finger movement are applied systematically.  In  our 
analysis of the data, four main patterns (U, V, L an d line) 
were identified and defined (Table 1).  Deviations within each 
pattern were also defined so that, for example, the V pattern 
could be conducted in a variety of orientations.  

Table 1: Finger Pattern Categories 
U pattern V Pattern 

 
L pattern Line pattern  

 
As noted in the previous example concerning Figure 4, 

when the exerted pressure in b alloon 2 increases, the force 
exerted on sensors 1 and 4 increases while sensor 2 decreases. 
This happens each time balloon 2 is palpated.  As time 
progress, when the water pressure in balloon 2 returns to its 
average value, the force exerted on sensor 2 increases again 
while sensors 1 an d 4 d ecreases.  Furthermore, since t he 
participant does not exert pressure on sensor 3 nearly as often 
and because the water pressure in balloon 1 does not indicate 
a spike, we could infer that the participant’s finger traversed 

back and forth among sensor 2, sensor 1, 
and sensor 4 in a “V(a)” pattern.  

 
Figure 5: V(a) Global Finger Pattern 
 

The number of participants who 
employed particular patterns, along with 
the number of participants in each 

respective category who detected either or both abnormalities, 
is shown in Table 2, where rate is th e percentage of those 
participants who successfully reported at least one balloon. 

Table 2: Statistics of Patterns of Global Finger Movement Employed and 
Abnormality Detections Based on Pattern Employed. 

Pattern Number of 
participant 

Number of participant to detect 
abnormalities (rate=%) 

Balloon 1 Balloon 2 Both 
U pattern 11 1(9.09%) 4(36.36%) 6(54.55%)
V pattern 5 0 4(80%) 1(20%) 
L pattern 3 2(66.66%) 1(33.33%) 0 

Line pattern 5 1(20.00%) 0 0 
Other 1 0 0 0 

Table 2 results demonstrate that 11 participants exerted a U 
pattern, 5 applied a V pattern and 3 used an L pattern (19 of 
25).  These three patterns were most associated with the 
detection of an ab normality. People who used one of three 
patterns achieved 100% rate to report at least one abnormality.  
Second, those who employed either the U o r V pattern were 
the only to detect both abnormalities.  Third, those who 
employed the U pattern  detected the greatest number of both 
abnormalities (6 of 11).  Four th, of t he 6 participants who 
used either a line or other pattern, only one detected an 
abnormality.  Finally, balloon 2 was more easily detected than 
balloon 1 (16 people found balloon 2, wh ile 11 people 
identified balloon 1). 

 
Local Finger Movement (Analysis 2) 
 

For analysis 2, the goal was to determine if any patterns of 
local finger movement were applied systematically, where 
local finger movement is defined as palpation by finger 
movement within a sin gle quadrant or near a single 
abnormality.  In an analy sis of local finger movement, we 
identified three patterns as tapping, vibration and smooth.  
Figure 6 displays characteristic features of each pattern, where 
data originate from force sensors alone. 

 
Figure 6: Examples of the Three Patterns of Local Finger Movement 

Objective criteria were developed to identify these three 
patterns.  A spike in th e local finger pattern is d efined as 
Spikes = (si

t > 0), i.e., pressure exerted above 0 N. 
1) A tapping pattern is defined when an examiner strikes 

briefly on the defined area, before quickly pulling up hi s 
finger, and doing this in  an in termittent fashion.  
Quantitatively, this pattern  is identified (Figure 6(a)) by a 
period of continuous spikes (i.e., spikes of > 0 N) of 35-250 
msec, followed by a sequence of no spikes (i.e., spikes of = 
0N) that occurs for a period of at least 35 msec.  Within a time 
span of ~35 msec, up to two spikes could have appeared, 
given sufficient finger pressure was exerted. 

2) A vibration pattern is defined when an ex aminer 
maintains pressure on the prostate over a continuous time span 
of at least 600 msec.  Th e pressure may not necessarily be 
constant, but rather exhibit oscillatory features (Figure 6(b)).  
The participant’s behavior therefore is likely that of 
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maintaining finger contact with a single area but shifting the 
weight of the finger (e.g., proximally-distally or laterally-
medially).  Exact frequencies of oscillations are not analyzed.   

3) A smooth pattern is identified when an examiner’s finger 
moves smoothly through a defined area.   I t is similar to the 
tapping pattern, except that the period of spikes in either case 
differs (duration of 250-600 msec for the former compared to 
35-250 msec for the latter).  Moreover, in the smooth pattern, 
there is n o break between these periods of spikes, rather a 
sustained, low magnitude pressure. The smooth pattern likely 
represents the continuous movement of one’s finger across a 
sensor (low magnitude spikes observed when the finger is far 
from the sensor’s center, higher magnitude spikes finger 
passes over the sensor’s center).  With tapping or vibration 
patterns, the examiner likely transitions out of the global 
finger movement mode due to the local detection of a balloon. 
In contrast, the smooth pattern may represent an examiner 
having not detected a balloon to focus more closely upon. 

Given these patterns, we compared data over the period of 
the entire exam (approximately 30 sec) when a p articipant’s 
finger was located in the vicinity of a balloon.  First, given the 
above criteria, we inferred each examiner’s dominant pattern.  
Second, by looking at his charted responses, the relationship 
between pattern and performance in reporting abnormalities 
was established.  Since balloon 1 is located between sensors 2 
and 3, while balloon 2 is placed  near sensors 1 and 4, we 
separated sensors into two pairs (S2-S3) and (S1-S4).  Then, 
we developed seven “combined” patterns (Table 3).  Each of 
them is made up of two patterns used near one pair of sensors 
(e.g., a smooth-vibration pattern indicates a smooth pattern for 
sensor 2 and vibration pattern for sensor 3 in Pair 1, or  vise 
versa). 

All 25 participants palpated the area over both pairs of 
sensors.  T he results are shown in Table 3, where “B1” and 
“B2” indicate the number of detections for each respective 
balloon, and “success rate” is the percentage of participants 
who successfully reported a balloon given a combined pattern. 

Table 3: Statistics on Combined Patterns of Local Finger Movement 
Employed and Rate of Abnormalities Detected per Pattern.   

Pair 1 (S2-S3) Pair 2 (S1-S4) 
Patterns # 

patterns 
# B1 

detections 
Success 

Rate 
# 

patterns 
# B2 

detections
Success 

Rate 
Smooth-Vibration 14 11 78.57% 11 11 100%

Vibration-Vibration 0 0 0 2 2 100%

Vibration-Untouched 3 0 0 5 3 60%

Smooth-Smooth 4 0 0 1 0 0% 

Smooth-Untouched 3 0 0 4 0 0% 

Tapping-Tapping 1 0 0 1 0 0% 

Untouched-Untouched 0 0 0 1 0 0% 

Table 3 indicates that near balloon 1 (the smaller and deeper 
of the two abnormalities), 14 of 25 pa rticipants used a 
smooth-vibration pattern on sensors 2 and 3, with a detection 
success rate o f 78.57%.  Of th e 11 participants who utilized 
another technique, none detected balloon 1.  Near balloon 2 
(the larger abnormality located nearer the s urface), 11 of 25 
participants employed the smooth-vibration pattern 

respectively on sensors 1 and 4, with a detection success rate 
of 100%.  Those who employed patterns of vibration-vibration 
demonstrated a detection success rate of 100% while the 
vibration-untouched pattern produced a 6 0% rate.  
Furthermore, across both balloons, participants who did not 
employ a vibration pattern did not detect an abnormality.  

 
Average Finger Pressure (Analysis 3) 
 

Sub-methods.  Sim ilar to Analysis 2, the sensors were 
separated into two pairs (Pair 1 =  sensors 2 and 3, which 
reflect the pressure near balloon 1 and Pair 2 = sensors 1 and 
4, which reflect the pressure near balloon 2.   

First, average finger pressure for each sensor si
avg was 

computed using equation 7, for sensors i = 1, 2, 3, 4, where i
ts  

is the finger pressure data (in Newtons) at time t for sensor i.   

1

1 T
i i
avg t

t

s s
T =

= ∑ , subject to 0i
ts ≠            (7) 

Then the average pressure for each pair was computed. 
2 3

1 ( , )avg avgPair avg s s=              (8) 
1 4

2 ( , )avg avgPair avg s s=              (9) 
Results. The average finger pressure for Pair 1 is shown in 

Figure 7 as 5.065 N.   
 

 
Figure 7: Average Finger Pressure per Participant near Balloon 1 (Pair 1) 

 

Of the 11 participants who applied more than 5.065 N near 
balloon 1, s even (63.64%) found balloon 1.  In contrast, 
among the remaining 14 participants who applied pressure 
below 5.065 N, only 4 (28.57%) found balloon 1.  Moreover, 
those who applied greater than 8 N ( 4 participants) scored a 
100% success rate.   Additionally, a t-test was run to compare 
finger pressure exerted between two groups: those who 
successfully detected balloon 1 and those who failed to find it.  
The resultant p-value was 0.020.   This significant difference 
indicates the finger pressure employed near balloon 1 
significantly contributed to its detectability.  

Similarly, the average finger pressure for Pair 2 is shown in 
Figure 8 as 3.890 N. Thirteen of 15  (86 .67%) who exerted 
over 3.890 N n ear balloon 2 found the abnormality, while 
only 3 out of 10 (30%) located it when applying pressure 
below 3.890 N.  Furthermore, the average finger pressure for 
most participants ranged from 3.50 to 5.0 N.  Si milar to the 
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analysis of Pair 1 data, a t-test compared the pressure exerted 
by those who succeeded in detecting balloon 2 and those who 
failed to detect balloon 2.  The resultant p-value was 0.269.   
This is not a significant difference.  However, nearly 75% of 
those who exerted a greater magnitude of finger pressure 
found balloon 2.  

 
Figure 8: Average Finger Pressure per participant near Balloon 2 (Pair 2) 

A final t-test compared finger pressure exerted on Pair 1  
with finger pressure exerted on Pair 2, regardless of successful 
or unsuccessful balloon detection.  T he p-value obtained is 
0.033.  This finding indicates that the finger pressure used to 
detect balloon 1 and that u sed to detect balloon 2 were 
statistically different.  Th at is, g reater pressure was u sed to 
locate balloon 1.   

 
DISCUSSION 

 
In addition to characterizing patterns, the wo rk here 

positively relates these with ability to detect abnormalities. 
Under our selected testing scenario, the results indicate that: 

1) For global finger movement, examiners who employed a 
U, V or L pattern correctly reported a greater number of 
abnormalities (100% success rate) than those who exert ed a 
line pattern (20%).  Among those three patterns, the U pattern 
yielded the highest percentage of success (54.55%) in 
detecting both of abnormalities.  This may be explained by the 
fact that those who utilize this pattern tend to palpate a greater 
amount of surface area, leading to a hig her possibility of 
detection. 

2) For local finger movement, among examiners who 
successfully identified at least o ne abnormality, all employed 
a derivative of the v ibration pattern.  When comparing the 
results for pairs 1 and 2, the addition of the smooth pattern to 
the vibration pattern enhances the rate of successful detection.  
We believe that the addition of the smooth pattern, rather than 
two vibration patterns, indicates that th e trainee is transiting 
from global finger movement to local finger movement.  In 
other words, the tr ainee has initially identified something in 
his global search and is now transitioning into a clos er 
evaluation of an anomaly via a local search. 

3) For average finger pressure, greater exerted pressure may 
be required to detect d eeper and smaller balloons.  Fo r 
example, those who found balloon 1 (smaller, deeper balloon) 
utilized greater pressure (5.065 N) than those who found 

balloon 2 (3.890 N).  And the difference between  p ressures 
applied in the vicinity of balloon 1 ve rsus balloon 2 i s 
significant (p = 0.033 between Pair 1 and Pair 2). Size and  
depth of the balloon may be the most reasonable factors to 
explain the need for increased finger pressure because balloon 
1 is 1 /4th the size of balloon 2 a nd nearly twice the depth.  
Moreover, a greater pressure on Pair 1 increases the 
possibility of detecting balloon 1 (p = 0.020).  However, for 
Pair 2, greater pressure did not boast such a co ntribution to 
identify balloon 2 (p = 0.269).  This may indicate that pressure 
may not be a dominant factor in detecting larger and shallower 
balloons, while it would be for smaller and deeper balloons. 

 
CONCLUSION 

 
In this paper, we analyzed t hree techniques of finger 

palpation: global finger movement, local finger movement and 
average finger pressure.  Add itionally, we examined the 
correlation between the utilization of certain palpation 
techniques and performance in detecting abnormalities.  We 
find that participants who utilize certain techniques (a U 
global pattern, a vibration-smooth local pattern and greater 
finger pressure) are better able to detect presented 
abnormalities.  However, our future work will examine if 
these trends remain over a breadth of scenarios. 
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ABSTRACT 

Softness discrimination and  the detection of inclusions are 
important in surgery and other medical tasks. To better understand 
how the characteristics of an inclusion (size, depth, hardness) and 
substrate (stiffness) affect their tactile detection and 
discrimination with th e bare finger, we conducted a 
psychophysics experiment with eighteen participants.  The results 
indicate that within a more pliant substrate (21 kPa), inclusions of 
4 mm diameter (20 mm3 volume) and greater were consisten tly 
detectable (above 75% of th e time) but only  at a depth of 5 mm. 
Inclusions embedded in stiffer substrates (82 kPa) had to be twice 
that volume (5 mm diameter, 40 mm3 volume) to be detectable at 
the same rate. To analyze which tactile cues most impact stimulus 
detectability, we utili zed logistic regression and genera lized 
estimating equations. The r esults indicate that substrate stiffness 
most contributes to inclusion d etectability, while the s ize, depth, 
and hardness of  the stimulus f ollow in ind ividual importance, 
respectively. The results seek to aid in the development of clinical 
tools and infor mation displays and more accu rate virtual haptic 
environments in discrimination of soft tissue.  

 
KEYWORDS: Softness discrimination, inclusion detection, 
psychophysics, tactile perception, medical simulation. 

1 INTRODUCTION 

Inclusion detection, or the detection of one bo dy (a stimulus) 
within another, is important in many environments, particularly 
clinical surgery (e.g., cauterization during surgery, the removal of 
cysts using surgical scissors) and palpation exams (e.g. breast and 
prostate cancer screenings). It is necessary to understand how the 
characteristics of the substrate in which the stimulus is embedded 
and dimensions of the stimulus itself affect tactile perception. This 
knowledge can inform the developm ent of appropriate clin ical 
tools and information displays [1-2].  

With the adv ent of m inimally invasive surgery, teleoperation, 
and virtual-environment applicati ons, there is a growing interes t 
in how to pres ent human operators with natural tactile and haptic 
experiences, particularly those experienced through a sheath o r 
other form of constraint [3-6] . Many of these devices involve the 
interaction of a rigid body (probe or indenter) with an elastic body 
(tissue). In these cases, such as during laparos copic surgery, the 
operator feels the shaft of the in strument and therefore uses cues 

such as its angle, the force at its tip, and any vibrations in the 
shaft. For this class of inter action, psychophysical research has 
focused on tex ture perception or discrimination of absolu te 
stiffness [7] in order to dete rmine how to build sim ulated 
environments or appropriate virtual feedback devices.  

Another class of inter actions involves th e bare finger and 
another elastic bod y (tissue).  In fact, some robotic devices are 
now being developed to incorp orate tactile sensors that m imic 
human perception [8]. However, there has been less focus on the 
underlying psychophysical experiments, modeling, and simulation 
that surround bare finger in teraction with soft objects . Most 
research in this area has focused on the discrimination of softness 
[9-10], roughness [11 ], and objects through a glove [12]. Other 
analysis of perception with the bare finger surrounds the modeling 
of neural r esponses (both single-units and populations o f 
mechanoreceptors in fingertip skin) [13-14]. 

The objective of the work presented h ere is to conduct a 
psychophysical experiment to characterize the factors that 
surround inclusion detection. The overall goal is to und erstand 
how varying the characteristics of th e substrate and  inclusion 
affect tactile perception in a constrained environment.   

2 METHODS 

We conducted an experiment using a modified method of constant 
stimuli with 18  participants and inclusions that varied in size, 
depth, and hardness that were placed within s ubstrates of tw o 
stiffness levels. The participants’ task was to palpate the substrate 
and indicate if the stimulus is present. The objectives of the study 
were to determine a) the size of inclusions consistently detected at 
three discrete depths, b) how substrate stiffness impacts 
detectability, c) how inclusion hardness impacts detectability, and 
d) how each o f the vari ables differentially impact inclusion 
detection. 

2.1 Apparatus  

An apparatus was built speci fically for th is study. The main 
components were a hole to constrai n the finger, a thin sheath, and 
twenty-three cylindrical substrates (30 mm diameter and  20 mm 
tall) mounted onto a round platform. The substrates were made of 
silicone-elastomers of two stiffness levels (21 and 82 kPa) tha t 
simulate the fe el of interior human prostate tissue and other 
internal organs. The platform was housed w ithin a structure that 
restricted viewing of th e substrates and included the finger hole 
angled at appro ximately 110 d egrees from the participan t. A 
sheath made of silicone-elastomer (2 mm  thick, 180 kPa) was 
attached to the hole. This constrained the finger at the knuckle and 
extended beyond the length o f the fing er. The platform of  
substrates could be rotated  so th at only the substrate und er test 
was located beneath the sheath. 

Each cylindrical substrate in cluded a single poly ethylene 
balloon embedded at one of three depths: 5, 10, and 15 mm. 
Balloons of seven volumes were used: 20, 40, 80, 200, 470, 1060, 
and 1770 mm3 that correspond to diameters of 4.0, 5.0, 7.5, 10.0, 
15.0, 17.0, and 20.0 mm, respectiv ely. The balloons were filled 
with water, thereby controlling hardness of the stimulus. Balloons 
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could be inflated to be hard, lik e a rock, but we re not detectable 
when deflated. In this study, three hardness levels were used: 23, 
27, and 31 durometers, type Shore A. 

2.2 Participants  

Ten male and eight female participants (mean age = 20 .4 years, 
SD = 1.4) were enrolled in the human-subjects study, approved by 
the IRB at t he University of Virginia.  A dem ographic 
questionnaire indicated that no  participant h ad any remarkable 
prior experience working with his or her hands. 

2.3 Procedure  

Using a modified version of the ps ychophysical method of 
constant stimuli [15] , participants palpated the substrates to 
determine the d etectability of s timuli. Typically the method of 
constant stimuli employs stimulus and noise only trials presented 
in a randomized fashion wher e all stimulus combinations are 
presented an eq ual number of times. However, here we made 
three modifications to reduce the number of trials and  thereby 
participant fatigue. First, only 31 of the possible 42 combinations 
of independent variable levels (stimulus size, depth, hardness and 
substrate stiffness) was presented to participants (Table 1) as pilot 
testing identified combinations that were a lways or never 
detectable and therefore were r emoved from th is study. Second, 
the number of times that each stimulus combination was presented 
varied depending on the difficulty  of detecting the stimulus in the 
pilot study. The most difficult to detect were presented four times, 
while the easiest to detect were presented twice and the rest were 
presented three times (Table 1). Third, to address potential trial 
order issues, particip ants were presented with stimuli and noise 
trials in one of six random orders.  

Every participant completed two, 90-min  experimental 
sessions, held on separate days. Before the first experimental trial, 
participants had a h ands-on practice session with f eedback 
concerning whether or not the s ubstrate contained an inclus ion. 
They were ins tructed to achieve a cons istent search technique:  
move one’s finger across th e substrate surface in lin es parallel 
with and then p erpendicular to the participant’s seated position . 
When traversing these line paths, participants were ins tructed to 
use small, dime-sized circular motions. During train ing and the 
experimental trials, the proctor monitored the pressure exerted on 
the substrates to ensure that finger pressure remained within 4 and 
6 N and that the quadrants were palpated in the specified order. 
When participants deviated from the specified pressure or 
palpation order, they were reminded of the appropriate technique.  

During the ex perimental trials, participants palpated 192  
substrates, half of which contained a stimulus (the balloons wer e 
not inflated for  the others). Pa rticipants were given 20-sec to  
examine a single substrate. After each trial, participants informed 
the proctor (via “y es” or “no”) as to whether  a s timulus was 
present and th e proctor noted the response. P articipants were 
given a 10-sec break between subsequent tr ials, a 60-sec break 
after every 10-17 trials and a 5 -minute break after ev ery 32-42 
trials.  

Table 1. Stimulus trials per participant. 

Stimulus dimensions Number of 
trials at  
82 kPa 

stiffness 

Number of 
trials at  
21 kPa 

stiffness 
Size 

(dia mm)
Depth 
(mm) 

Hardness 
(durometers, 

Shore A) 
4 5 31 4 2 
4 10 31 2 4 
5 5 31 3 2
5 10 31 3 3

7.5 5 31 3 - 
7.5 10 31 3 2 
7.5 15 31 - 4 
10 5 31 2 - 
10 10 23, 27, 31 4, 4, 4 4, 4, 2 
10 15 23, 27, 31 -, -, 2 4, 4, 3 
15 10 31 3 - 
15 15 23, 27, 31 4, 4, 4 -, -, 2 
17 10 31 2 - 
17 15 31 3 - 
20 15 31 2 - 

2.4 Data Analysis  

In seeking to  identify general relationships between th e 
independent variables (stimulus  size, dep th, hardness an d 
substrate stiffness) and inclusion detectability, graphical analysis 
was used to address objectives a-c. Logistic regression was used 
to address objectiv e d. For th e logistic regression, we used 
generalized estimating equations or GEE, [16]. Substrate stiffness 
was considered both a fixed and random effect and stimulus size, 
depth, and hardness as quantitative and continuous variables. Size 
was coded as 1 -7 (4 mm – 20 mm); depth was coded as 1 (15 
mm), 4 (10 mm), and  7 (5 mm); hardn ess was coded  as 1 (23  
durometers), 4 (27 durometers), and 7 (31 d urometers); and 
substrate stiffness was coded as 1 (82 kPa) and 2 (21 kPa).  

For logistic regr ession, one response per partic ipant for each 
combination of independent variables was needed. Ther efore, if 
participants detected at le ast half of the s timuli for a s pecific 
combination of variables, the response was con sidered a “yes” 
(coded as 1) and if less than half of the st imuli were detected, the 
response was considered a “no” (coded as 0). 

Statistical analyses were conducted using R . For the logistic 
regression results, the geeglm function for GEE from the geepack 
package was used. 

3 RESULTS 

In general, deeper and smaller  stimuli were m ore difficult t o 
detect at both s ubstrate stiffness levels and stimuli were more 
likely to be de tected in the 21 k Pa substrate compared to the 82 
kPa substrate. To help illustrate the impact of s ize and depth on 
the percent detected, Figure 1 depicts the relationship betw een 
detection percentage and stimulus size at each of the three depths 
for the 82kPa stiffness (top) and the 21kPa stiffness (bottom). 
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Figure 1. Detection percentage as a function of stimulus size and 
depth at two stiffness levels – 82 kPa (top) and 21 kPa (bottom). 
Standard error bars are shown around data points. 

 
The detection rate for larger inc lusions in stiffer substrates is 

similar to smaller inclusions in more pliant substrates, given equal 
depth (Figure 1 ). For ex ample, at a depth of 15 mm, 17 mm  
inclusions in the 82 kPa substrate were detected at approximately 
the same percentage as 10 m m inclusions the 2 1 kPa substrate 
(80% and 75% respectively). 

The impact of hardness can be more readily seen for particular  
size-depth combinations. Figure 2 illustrates the result of varying 
the hardness of a 10 mm diameter stimulus at a 10 mm depth, for 
both the 21 and 82 kPa substrates. At the lowest hardness (23  
durometers, type Shore A) the percent d etected in the s tiffer 
substrate (82 k Pa) drops to 75% from 100%. In con trast, the 
percent detected in th e more pliant substrate (2 1 kPa) was not 
affected by changes to stimulus hardness. Similarly, in the other 
two cases where hardness was varied, the percent detected was 
impacted more in the 82 kPa substrate compared to the stimulus in 
the 21 kPa substrate (Figures 3 and 4).  

Figure 2. Detection percentage as a function of stimulus 
hardness for a 10 mm diameter, 10 mm deep stimulus for both 
substrate stiffness levels. Standard error bars are shown around 
data points. 

Figure 3. Detection percentage as a function of stimulus 
hardness for a 15 mm diameter, 15 mm deep stimulus in the 82 
kPa substrate. Standard error bars are shown around data points. 

Figure 4. Detection percentage as a function of stimulus 
hardness for a 10 mm diameter, 15 mm deep stimulus in the 21 
kPa substrate. Standard error bars are shown around data points. 

 
The following logistic regression model was used to determine 

how the independent variables impacted detection of the stimulus, 
where p is the percent of stimuli detected. 

logሺ݌/ሺ1 െ ሻሻ݌ ൌ
଴ߚ ൅ (ଵሺstiffnessߚ ൅  (ସሺhardnessߚ ଷሺdepth) ൅ߚ ଶሺsize) ൅ߚ

Table 2 d epicts the ou tput of the model using  stiffness as a 
random effect. The output ind icates that all variables significantly 
impacted detection of the inclusion. In addition, the values of the 
coefficients indicate that stiffness of the substrate most contributes 
to detectability, then si ze, then depth and finally stimulus 
hardness. The results ar e presented using  = 0 .05 for 
significance. 

 
Table 2. First order coefficients for the main effects model. 

 Coefficient SE Wald St. Pr(>|W|)
Intercept -10.41 1.51 47.33 5.99e-12
Stiffness 2.16 0.41 28.33 1.02e-07
Size 1.29 0.17 58.62 1.91e-14
Depth 1.09 0.14 60.74 6.55e-15
Hardness 0.18 0.065 7.60 0.0058
Correlation 
Parameter 0.12 0.067 

 
Tables 3-4 show the model out puts from a sub- group analysis 

with substrate stiffness considered as a fixed effect. From the sub-
group model o utputs, we can  see that all stimulus variables 
significantly impacted detection  of the stimulus in the 82 kPa 
substrate. However, in the more pliant substrate (21 kPa) stimulus, 
inclusion hardness was not a significant factor in detection. 
Further, we see in the 82 kPa model, the coefficients for size and 
depth are comparable, while in the 21 kP a model, s ize has a 
greater impact on detection. 
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Table 3. First order coefficients for each stimulus dimension in sub-
group model for 82 kPa stiffness. 

 Coefficient SE Wald St. Pr(>|W|)
Intercept -8.43 1.32 41.07 1.5e-10
Size 1.25 0.17 54.89 1.3e-13
Depth 1.13 0.16 47.71 4.9e-12
Hardness 0.24 0.08 8.92 0.0028
Correlation 
Parameter 0.07 0.08  
 

Table 4. First order coefficients for each stimulus dimension in sub-
group model for 21 kPa stiffness. 

 Coefficient SE Wald St. Pr(>|W|)
Intercept -7.50 1.87 16.10 6.0e-05
Size 1.75 0.40 18.68 1.5e-05
Depth 1.24 0.20 37.70 8.2e-10
Hardness 0.15 0.11 1.76 0.18
Correlation 
Parameter 0.20 0.34  

An analysis of two factor interaction effects was completed in 
two steps. First intera ction effects to consider were identified. 
Each two-way interaction was added one at a time to the m ain 
effects model. Using this method, the size-depth, depth-stiffness, 
and hardness-stiffness interactions effects were  significant. 
However, when the statistical analysis was conducted with these 
three interaction effects along with the main effects, only the size-
depth and stiffn ess-hardness interactions were signi ficant (Table 
5). The values of the coefficients indicate that stiffness of th e 
substrate still most contributes to detectability, then size, then 
depth, then stimulus hardness , and then the size-depth an d 
stiffness-hardness interactions.  

Table 5. First order coefficients and selected interactions. 

 Coefficient SE Wald St. Pr(>|W|)
Intercept -11.20 2.10 28.46 9.57e-08
Stiffness 3.54 0.87 16.57 4.70e-05
Size 0.90 0.20 20.32 6.53e-06
Depth 0.72 0.27 7.20 0.007
Hardness 0.54 0.17 10.75 0.001
Size-Depth 0.18 0.05 13.39 0.0002
Stiffness-
Hardness -0.23 0.09 7.05 0.008

Stiffness-
Depth -0.06 0.11 0.31 0.57

Correlation 
Parameter 0.12 0.08  

4 DISCUSSION AND CONCLUSION 

This study sought to understand  the effects of substrate stiffnes s 
and inclusion characteristics on tactile perception in a constrained 
environment, representing a clinical setting. Through an elasti c 
sheath, participants palpated 31 different combinations of  
substrate stiffness and stimulus size, depth, and hardness. 

Within a m ore pliant substra te (21 kPa), inclus ions of 4 mm 
diameter (20 mm3 volume) and greater were detected above 75% 
of the time, but only at a depth of 5 mm. Inclusions embedded in  
stiffer substrates (82 kPa) h ad to be twice that volume (5 mm 
diameter, 40 mm3 volume) to be detected at the same rate.   

Substrate stiffness most impacted inclusion detection in all 
cases while the interaction of stiffness and hardness also play ed a 
role in detection, particularly in the less pliant substrates (82 kPa). 
However, compared to size and depth, stimulus hardness did not 
play as large a role in detection and was not a significant factor in 
the model of the more pliant substrates (21 kPa), similar to results 

found in [1] . This could be, in part, because th e hardness of the 
stimuli was not varied over a large enough range (only 23 to 31 
durometers, Shore A). To give s ome perspective on the hardness 
of various objects in durometers, Shore A, a rub ber band is 40, a 
rubber shoe heel is 70, and a sho pping cart wheel is 100. It might 
be appropriate to go up to 60 durometers, Shore A in  further 
studies in addition to including more substrate stiffness levels. 

The results of this study may aid in the development of clinical 
tools and infor mation displays and more accu rate virtual haptic 
environments in discrimination of soft tissue. 
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