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ABSTRACT

Open computing environments are under a deluge of network attacks from complex threats. These threats are
distributed, decentralized , dynamic, and operate over multiple timescales. Trusted Computing environments
provide a means to manage cryptographic identity and authentication operations in the form of static assertions,
but were not developed to provide complete end-to-end security for heterogeneous environments such as the
NATO Architecture Framework (NAF). There is a gap in the contextual understanding of trust that reaches
beyond identity to the behavior of that identity. The challenge in deriving trust, and ultimately risk, from
network behavior is that it is inherently subjective compared to identity.

Trust is defined in the Webster dictionary as the “assured reliance on the character, ability, strength, or truth
of someone or something” 1. When we trust a person there is the notion of identity; e.g., family, and the implied
context of trust. Structural identity alone cannot be used to define the overall measure of an entity’s trust; the
notion of behavior must be taken into account. Trust then becomes a layered concept that can be realized by
a number of perspectives including an object’s identity along with the behavior of that object. In assessing
the trustworthiness of an entity; e.g., host, within a complex enterprise, a cyber defense strategy should take
into account various signals regarding identity and behavior that promote an attestation of a digital “self and
non-self”.

In this paper we define behavioral-based trust of hosts derived from aggregated network behaviors, which
offers a model to bridge this gap and provide a layer of trust that can be used in open environments. We describe
a model and approach through which a detection capability can derive trust, and rate the trustworthiness of
hosts, based on aggregated network behaviors. This approach is rooted in the context of a global/enterprise

1http://www.merriam-webster.com/dictionary/trust
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identity management and cryptographic key management (IdM/CKM) which serves as a bridge between the
sensor network and the user/administrator/ISP. It offers a mechanism through which an understanding of trust
can be derived from aggregated behavioral analysis of network flow data. Our unique view into network
behaviors can be used to provide a basis for language to define the various behaviors that threats exhibit over
time. We conclude that a more formal model of trust is needed that couples identity with behavior along with
the identity of the user of a computer.

1.0 INTRODUCTION

The North Atlantic Treaty Organization (NATO) is faced with the increasing need to support international
operations that leverage the use of Enterprise Architectures. NATO Network Enabled Capability (NNEC) is an
integral program focused on meeting these needs [1]. The ubiquity of these net-centric information systems is
realized by the connectivity of hand-held technologies, operated and managed by users in the field, to backend
mission support systems managed by tens of thousands of administrators. Each officers’ transactions cross
into the operational jurisdiction of multiple ISPs that deploy a number of commercial off-the-shelf hardware
systems, which in turn provide symbiotic Internet services; e.g., DNS and IPv6. Today each hardware system
and service within the Service Oriented Architecture (SOA) provide an independent notional thread of trust
within the open fabric of the Internet.

The European Union (EU) has outlined the need for international cooperation in section 2.6 of draft De-
liverable 3.1B focusing on the need to develop international security standards 2. The United States (US) in
Point 9 of the Cyberspace Policy Review noted that “In collaboration with other [Executive Office of the Presi-
dent] EOP entities, develop a framework for research and development strategies that focus on game-changing
technologies that have the potential to enhance the security, reliability, resilience, and trustworthiness of digital
infrastructure.” [2]

In order to realize the defense of these complex systems a multi-layered approach is required that consists
of: a) hardened software and operating systems, b) trusted hardware, c) trusted tokens, d) distributed decentral-
ized behavioral sensors within application software, hardware and networks, e) a distribute decentralized IdM
framework that associates electronic identifiers (and possibly organizational identities) with hardware tokens,
and f) a distributed decentralized IdM framework that associates human users with unique tokens.

Trusted hardened software and hardware is required to reduce the number of exploitable weaknesses, sensor
networks to detect the presence of malicious software or malicious user behavior, and various identity manage-
ment and authentication frameworks to facilitate the application of access control technologies to software,
data, and users. One such gap is the formalized notion of trust found within a Digital Provenance (DP) [3].

Ultimately, the definition of DP must reach beyond notions of trusted hardware and software and extend
into the realm of both digital and human identities; e.g., company registries, legal persons and physical person.
DP then becomes an aspect of Information Assurance and is used as a method in managing risk in Enterprises.
Information assurance (IA) is the practice of managing risks related to the use, processing, storage, and trans-
mission of information or data and the systems and processes used for those purposes. In this paper we will
scope DP to be realized by hardware and software through which trust can be initially derived.

Trusted Computing exists to ensure trust within a given entity, and does not address end-to-end security [4].
Trusted computing, encompassing hardened software and hardware, is intended to ensure a system performs
a given set of well-defined functions correctly, even when an attacker attempts to coerce it to do otherwise.
However trusted computing does not imply the computer is “trust worthy” from the perspective of the user, i.e.,

2
http://media.pqs.io/pub/papers/ThinkTrust/20100126-TT-D3_1b-Consult-Synaptic-Input-Part2-RapidEvolve.pdf
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trusted software does not imply it can be trusted by all users to behave in their best interest. For example, a
Government may require “trusted software” to report on civilian activities back to the Government, even when
the user attempts to prevent it. From the perspective of the user, this software would be accurately considered
spy-ware. This can be expressed in several forms, such as “software license management”, where the computer
enforces the usage policies of a vendor, and not the computer’s owner.

Access control systems, implemented on trusted computing platforms, require the availability of identifica-
tion and authentication services. These may be provided by assertions/declarations/guarantees made by identity
management service providers, hardware tokens, biometric readers, and/or challenge/response schemes. Cryp-
tographic mechanisms, such as message authentication and digital signatures, running on hardened platforms
allow a chain of assertions to be electronically validated. Access control policies may require a given set of cre-
dentials/assertions to be provided and be cryptographically validated before software can perform a privileged
operation.

Modern X.500 based PKI IdM/CKM systems were designed as predominantly offline systems for making
identity assertions. These offline architectures do not suggest an obvious method for bridging online behavioral
trust with their offline static identity assertions. Summarizing the content of various statements made (2009) by
senior U.S. National Institute of Standards and Technologies (NIST) staff at the NIST CKM Workshop [5], there
exists a gap between today’s CKM/public key infrastructure and the requirements needed to vastly improve ICT
security. Such designs should be highly available, fault tolerant, and support accountability, auditing policy
management which we observe are requirements leaning towards behavioral trust.

Behavioral analysis extends a static assertion checking model with history. This history is used to determine
if the software, hardware or users performing an action has a known dirty track record and is considered a high
security risk. This is a useful risk management strategy that limits exposure but cannot itself guarantee that
the software/hardware/user will not act maliciously in the next instance. What large systems need are formal
strategies to derive trust from a new online global identity management and cryptographic key management
(IdM/CKM) architecture, such as the one proposed by Synaptic Laboratories [6] which satisfies many of NIST’s
2009 CKM requirements, and by creating and synergistically integrating a dynamic notion of trust derived from
Network Behavioral Analysis (NBA). Behavioral-based trust has been researched as a enabling technology to
provide trust in an open environment such as NNEC [4, 7].

The complexity of cyber threats has steadily increased in recent years evolving into distributed threats
operating over large time scales. Our detection models and defense strategies are still tuned for single ingress
points. In 1987, Denning proposed an intrusion detection model that focused on the identification of network
attacks directed toward a single host [8]. The threat at that time comprised attackers attempting to gain remote
access to a host. Todays threats are often distributed, decentralized, dynamic, and operate over multiple time-
scales. In addition to a renewed rigor in applying traditional information assurance methods, we require new
behavioral models that are capable of detecting known and new threats to our network infrastructure, facilitating
both deterrence and correction [9]. Considering the increasing size and complexity of NATO networks and the
threat space, we note that there is no single algorithm or strategy that can detect the wide range of known and
emergent threats that exist. In response to this complexity, we join the migration from developing solutions that
are reactionary to developing those that are more proactive, by leveraging current and historical information.
Another threat to NATO-like environments is the rate-of-change of contemporary cyber threats, as it negates the
effectiveness of misuse-based detection strategies that use known attack signatures as a method of detection.
NBA, as used in the agent-based system CAMNEP, is an approach towards addressing this challenge. But even
systems like CAMNEP can be hindered in their ability to detect real-time threats due to the volumes of both
current and historic traffic, an issue that is of concern to those monitoring NATO networks [10, 11].

In this paper we address the derivation of trust about a host measured by a sensor performing aggregated

RTO-MP-IST-091 28- 3



Combining Trust and Behavioral Analysis to Detect Security
Threats in Open Environments

behavioral analysis in the context of a Digital Provenance. Behavioral monitoring can happen at all levels, from
application to network, and this paper will focus on the network. The goal is to offer the measurement of be-
havioral trust further enabling and strengthening end-to-end security needed to foster an understanding of risk
to operations in complex environments such as NAF. A key aspect of our approach is the ability to find malware
behavior without infringing on the privacy of individuals. We review a number of enabling concepts, technolo-
gies and models such as Digital Provenance, Trust Computing, Network Behavioral Analysis, Behavioral Trust,
and digital “self, non-self”. We then propose a model for the derivation of subjective behavioral trust, using
aggregating behavioral analysis and suggests that behavioral security might be integrated into IdM/CKM both
internally, and as a clearing house. Lastly, we highlight future research leading to development of a behavioral
Ontology. Our approach is of benefit to NATO analysts since it addresses the issues noted above; e.g., volume
of data, complexity of networks, and the rate at which cyber-threats change. It is based on the insight that a
common metric is needed to provide an understanding of risk to the analyst.

2.0 RELATED WORK

In this section, we review related work on digital provenance, behavioral analysis and trust. We present im-
portant works on trust and behavioral analysis, intrusion detection leveraging network flow and cyber situation
awareness. This section contrasts the evolving threat with the models that were used in establishing existing
detection technologies.

2.1 Trust Models

A large number of trust models have been created, most of which define trust statically, i.e., in terms of the
identity and authentication of single entities within a network information system. These “fixed evaluation
schemes contradict the subjective nature of trust” and do not reach out to the operational needs and vulnerabil-
ities inherent in open systems [7]. Even though a system can be identified and authenticated by cryptographic
means, it still can be compromised by threats like a botnet. In the context of trust, its behaviors can be used to
identify, and behavioral-based trust can be used to manage the overall trust of the entity. Open and heteroge-
neous computing environments need a more dynamic formalization of trust, combined with trust derived from
identity.

Weth and Bohm have provided a unifying notion of trust based on behavior [7]. In this approach, they create
a formal representation of behavior-specific knowledge about an entity, e.g., a user in a virtual environment.
They formulate the notion of both first and second-hand knowledge based on the experiences of other entities.
Their model defines four types of behavior-specific knowledge.

1. Feedback: a feedback of an entity’s rating, µratee, of interaction performed by another entity, µrater,

feedback = (µrater, µratee, φ, ψφ, τ, σ, ε, ν) (1)

In the case the rater entity, µrater, scores the ratee, µratee, based on the context, φ, of the measurement
of the value measured, ν. The value of trust is context-specific and dependent on the facts, or knowledge,
supporting the measurement. They define the φ, context of the interaction, is the set of all facts or
circumstances that surround an interaction. The effort, ε, is a measure of the estimated cost of behavior
by an entity, both good and bad. The time dependency, τ , take into account the trustworthiness of an
entity at t1 versus a measurement of trustworthiness at t2. Lastly, certainty, σ, is a measure of accuracy
of trust associated by a entity, νrater, and is measured in the interval [0, 1].

28- 4 RTO-MP-IST-091
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2. Recommendation: is the opinion from one entity about a previous behavior of another entity, and is
typically an aggregation of experiences,

recommendation = (µrecommender, µrecommendee, φ, ψφ, τ, σ, ν) (2)

3. Reputation: is the general opinion of a whole population of entities, µ, regarding specific behaviors of a
single entity, and is typically an aggregation of experiences.

reputation = (µ, φ, ψφ, τ, σ, ν) (3)

4. Trust: is the belief held by an entity that another entity will behave as expected in future interactions,
and is based on recommendations and direct experiences regarding an entity, or that entities reputation.

trust = (µtruster, µtrustee, φ, ψφ, τ, σ, ν) (4)

Haldar and Franz have well noted that although “Trusted Computing is a solution to the trust problem
regarding identity, it does not address the problem of end-to-end security” [4]. They have created a different
behavioral model called “remote semantic attestation,” which derives improved assurances of trust from the
execution of code in a Trusted Virtual Machine e.g. java virtual machine, and is based on a number of behavioral
properties that address the end-to-end security needs. In [4], it is noted that there are two fundamental views
on trust; first, trust in terms of an entity’s integrity and authentication, and second, how an entity is behaving
within a given environment. Behavioral-based trust models are a common way to determine trust of an entity
in an open environment [7].

In 2009 at the National Cyber Leap Year, a broad group of cyber-security, immunological biologists, and
other researchers met to share ideas both past and present, putting together a notion of trust. In their report,
end-to-end trust is defined as a “set of technologies, behaviors, implementations, and infrastructure that, when
used consistently, can enable a predictable level of trust” [3]. In order to assess trust in these complex systems
a formal understanding is needed.

In 1994, Marsh discussed a computational formalism regarding trust that provided a basis through which
trust can be measured [12]. In May 2009, Rehak leveraged Marsh’s work to aggregate and share trust within
an agent-based IDS called CAMNEP (as previously discussed). A layered defense approach offers the most
flexible strategy for end-to-end trust. In all cases, including [7], computational trust has been viewed as a
subjective metric driven by the operational security policies held within specific network environments.

In this paper we consider trust as a layered concept that has its core in Trusted Computing. In our model we
define trust in terms of entities representing hosts, instead of users in a virtual social environment as formalized
in [7]. We build off of the model created by Weth and Bohm applying it to network security, and simplifying
some of their definitions. In our model, trust of a entity; e.g., host, trustee, is a measure managed by a truster;
e.g., Enterprise (NAF). Context with the measurement of feedback is driven by network events and data as
input representing facts and/or knowledge about the entity; e.g., hosts. Recommendations come in the form of
trust derived from aggregated network behaviors measured in one or more locations by one or more sensors,
Feedback is closely associated with the network events and data received by sensors. We did not yet take into
account effort, in our measure of trust in feedback, nor the concept of facet as defined in [7]. We chose not
to incorporate the use of Internet reputation which can be made available from recommendations from systems
like McAfee TrustedSourceTM[13]. Our contribution to behavioral trust is a method used to derive it from
aggregated network behaviors.

RTO-MP-IST-091 28- 5
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2.2 Digital Provenance

Digital Provenance has been identified as one of the key game-changing ideas that could affect the cyber security
domain drastically over the next decade [3]. Cheney et al. give a hindsight perspective of provenance from a
futuristic view [14]. Although hypothetical in a nature, the suggestion is that provenance, if taken seriously, can
become ubiquitous. But such ubiquity will not come without a cost. Technology must adapt to allow provenance
to be recorded such that it will be considered as essential a resource as physical network components themselves.
Besides the technological implications of implementing provenance, there are many other subjective, objective,
and semantic issues that must be considered.

Yet the implementation of provenance provides a framework within which one could formulate a trust
model, creating trust-based security mechanisms [12]. This can help clarify the notion of human trust in spite
of its subjective nature [7]. Gray et al. (2003) provided an example of such a mechanism by applying small
world concepts to mobile ad hoc networks [15]. The small world concept “describes the tendency for each
entity in a large system to be separated from any other entity in the system by only a few steps”. One of the
main problems they address is how an entity can assign a trust value to another entity never before encountered.
By applying small world concepts, an entity is able to prompt already-encountered entities for their experience
with the current unknown entity, and thus derive a trust value based on the experience of others. We refer the
interested reader to the paper for more details. The main point here is that frameworks can be constructed
within which trust can be computed by a detection system and assigned to a host.

Rehak et al. provide a system that makes trust decisions from interactions between detection, aggregation,
and incident agents [10]. Trust in CAMNEP uses a “network flow’s identity and context to define a feature space
thats specific to each anomaly detection agent”. It is the detection agents that detect anomalies and compute
trust values based on their respective models, but it is important to note that the job of the aggregation agents
is to aggregate those trust values. Thus, a collective opinion is formed regarding the trustworthiness of network
flows. Our concern regarding trust aggregation is that the subjective nature of trust suggests that it should be
policy driven since network information systems are heterogeneous. There will be times when different policies
are driven by different member countries, but the behaviors remain the same. Haldar and Franz support this
view by stating that an entity’s authentication should “... include verifying or proving that its behavior conforms
to a required security policy” [4]. It is difficult to divorce trust from behavior. Hence, our aim is to leverage
the notion of Digital Provenance in deriving behavioral trust, because although we realize the need to consider
hardware and policies, we must also consider the past behavior of network entities when computing trust-based
attribution. Digital Provenance provides a framework within which a common semantic definition of digital
artifacts can be given, where such artifacts are used to measure risk to operations in near real time. Although
Haldar and Franzs work is limited to the behavioral aspects of programs, as we consider network entities such
as the end host, their work brings to mind the need to formalize past behaviors and interactions in an effort to
overcome fixed evaluations schemes (see also [7]).

Martin and Lyle argue for a synergistic relationship between digital provenance and trusted computing
[16]. They feel there is overlap between the two fields regarding “both the goals and technologies in achieving
them”. They present a notion of a trusted provenance and present an attestation-based provenance architecture.
This architecture provides a set of distributed services that process results and attest to a remote provenance
store. We would propose that behavioral trust derived from network behaviors can be layered within the trusted
provenance providing a complementary addition to a trusted provenance.

28- 6 RTO-MP-IST-091
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2.3 Behavioral Analysis

There exist two broad categories of network defense technologies: misuse detection [17, 18] and anomaly
detection systems (AD) [19]. In the past decade, misuse-based detection systems have been a mainstay for
organizations to secure their network infrastructure. The effectiveness of misuse-based technologies is im-
pacted greatly by the fast rate at which cyber threats modify both their structural and behavioral characteristics.
These systems cannot keep up with adaptations in malware. AD offers the ability to accelerate creation and
propagation of signatures in misuse detection systems.

AD systems are driven by the use of various heuristics in developing an understanding of normal network
behavior and using this model to detect anomalies. It is this ability to baseline normal behavioral patterns that
allows such systems to adapt to emergent threat behaviors. NBA provides capabilities that focus on network
behaviors and the structural properties of threats.

Traditionally, both of these perimeter-based technologies derive events from a single ingress point of an
enterprise’s network. In order to scale to the needs of complex threats realized on open systems such as NAF,
distributed defense capabilities are needed to bring together alerts that define threatening behaviors derived from
multiple ingress points. Different enabling technologies are needed to manage the volumes of data originating
from large enterprises and to break through the privacy barriers of multiple organizations, preserving privacy,
all while fusing network events and data.

One such enabling technology is aggregated behavioral analysis. Some work on the detection of botnets
discusses this approach [20]. Data is fused from multiple sensors, after which a feature characteristic is mapped
to each network object. The feature characteristics are then projected into multiple hyperplanes where an analyst
can decide which hyperplane division is best suited to the problem at hand – in this case, botnet behavior
detection. Once the appropriate division is constructed, a correlation function is responsible for assigning a
score to each network object. Within a controlled environment, the authors demonstrate that a division and
correlation can be found that identifies bot-like behaviors. Thus, an analyst can consider various behaviors of
a network object, but also consider aggregating such behaviors to describe and detect more complex behaviors
that may vary over time and space. Normal aggregated behaviors are visualized and highlighted in Figure 2.
These behaviors are aggregated over a monthly timeframe and contained in a behavioral feature space.

Consistent behavioral patterns have also been discovered upon the inspection of live data sets over long
time periods and across different data sets (Figure 2). Aggregated behavioral analysis provides an enabling
technology through which weak-signal threat detection and over-the-horizon cyber-defense solutions can be
created.

Soldo et al. have used behavioral analysis for attack forcasting and predictive blacklisting using aggregated
network data sets [21]. In that work, a Dshield dataset is analyzed for temporal changes in behaviors that can
be used to identify patterns then used for blacklisting.

As mentioned in Section 2.1, Rehak et al. introduced a behavioral analysis system called CAMNEP [10].
The system aggregates trust scores produced by several anomaly detectors. Even though this type of system can
be hindered in its ability for real-time detection due to leveraging the volumes of both current and historic traffic
during analysis, it takes a step in the right direction towards combining computational trust with behavioral
analysis.

These approaches have implications when considering the amount of network data that needs to be stored
since we are considering aggregated behaviors as opposed to classifying raw flows. It also has implications in
the privacy domain since we discuss behaviors as opposed to discussing identities. One of the challenges of the
current state of anomaly detection is the inability to “... mitigate slow, stealthy and sophisticated attacks” [11].

RTO-MP-IST-091 28- 7
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Figure 1: Clusters of normal network patterns

The work done in [20] is an example of how behavioral analysis can detect such threats, and then drill into in
the raw network data to further analyze the threat patterns. More work needs to be done in the sharing of such
behaviors to determine whether mitigation can be achieved in a reasonable time.

2.4 Digital Self-Nonself for the Enterprise

Forrest et al. have inspired self-nonself concepts by studying Biological Immune Systems (BIS) and by first
applying them to the detection of abnormal Unix processes on a host [22, 23]. Dasgupta has studied immune
signaling mechanisms and modeled their application to cyber defense technology [24]. These mechanisms
have been used in a two-signal view of self-nonself in immunological systems [25]. In the context of immune
signaling mechanisms, BIS can be realized as an adaptive mutli-layered defense system.

Dasgupta states that “...in the immune system, signal diffusion and dialogue are noticeable as two kinds
of communication schemes” [24]. He defines signal diffusion as the message (e.g., a “recommendation” [7])
that is passed between immune system components, where dialog represents a continuous exchange of signals
between these components. What is important with respect to trust and trustworthiness is the consideration

28- 8 RTO-MP-IST-091
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Figure 2: Consistent behaviors exhibited over monthly time intervals

of context when determining immune sensitivity, since the deriving of trustworthiness should also consider
context (e.g., network policies) [7].

Instead of comparing the human body’s BIS as an analog to a single host, we can view the human body as a
set of independent, although related, entities (e.g., cells coming together to form self). The digital analog of BIS
can then be the application of self-nonself to a complex network of devices in a pervasive environment, where
signaling is not only found within the device (e.g., host, smartphone) but also across devices within a network.
In this case, self is understood not only by the identification and authorization of self via cryptographic means,
but also by the systematic classification of both structural and behavioral patterns perceived over the network.

Trust, from the perspective of the Enterprise, can then be seen as a metric used to determine self and nonself,
where each are derived from various types of signaling within a multi-layered, distributed system, and where
signaling, in the context of trust models, is a form of two shared behavioral types: “feedback” and “recommen-
dations” [7]. In our system, we have investigated behavioral self in terms of aggregated host behaviors that are
captured over multiple time periods, and then observing a consistency within an enterprise (see Figure 2). In the
Conclusion section, we identity the future need to focus more on the systematic classification and identification
of behavioral primitives in the form of an Ontology, which would then foster the creation of narratives [26] that

RTO-MP-IST-091 28- 9
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describe threats.

2.5 IdM/CKM Architectures Capable of Supporting Digital Provenance

In the introduction we stated that behavioural analysis extends a static assertion checking model with history. In
distributed, decentralised, net-centric information systems, it is not possible (or necessarily desirable) for every
device/process to maintain history on the behaviour of identities that it has interacted with. It seems natural
to explore if the historical behaviour of an identity could be synergistically integrated with the infrastructure
providing assertions regarding identity.

As previously mentioned, modern X.500 based PKI IdM/CKM systems were originally designed as pre-
dominantly offline systems for the purpose of making static identity assertions and enabling authenticated/secured
communications. These offline architectures do not inherently suggest an obvious scalable method for achiev-
ing online behavioural trust assertions/queries. Furthermore, when we take a closer look at the specifications
of the X.509 architecture, we find that the civilian PKIX architecture cannot guarantee the unique assignment
of a public identifier such as a website address or email account to one certificate/individual/party. Today’s
civilian PKI has 20+ autonomous Root Certificate Authorities, each of which are a system-wide single point
of trust failure for identities on the Internet [27–29]. According to a recent 2007 survey, approximately 86%
of fraud happens by management level staff against their own organization [30]. Part of the identified problem
is that senior management are often able to circumvent the internal security mechanisms intended to prevent
fraud. It is simply not clear what level of confidence can be assign to assertions made by civilian PKIX systems.
Today, no standard mechanism exists by which multiple organisations can attest to an identity to increase our
confidence on the static assertions that we are validating.

In 2009, NIST stated that “numerous problems have been identified in current key management method-
ologies”. Summarising the content of various statements made by senior U.S. NIST staff at the NIST CKM
Workshop [5], there exists a gap between today’s CKM/public key infrastructure and the requirements needed
to vastly improve ICT security. According to NIST staff, such designs should be highly available, fault tolerant,
secure against destructive attacks, scalable to billions of users/devices, be secure against quantum computer
attacks and not use public key technologies. Additionally they must support accountability, auditing policy
management [5] which we observe are requirements leaning towards behavioral trust.

Online IdM/CKM systems require the service provider(s) to maintain state so they can store pair-wise
unique symmetric key material and make positive real-time assertions concerning the validity of an identifier.
The presence of state in online IdM/CKM architectures that can be queried by a remote user suggests that these
designs can be extended to support behavioural trust capabilities, both internally and as a clearing house for
external assertions regarding credibility.

We point to them-1 secure symmetric key distribution protocol proposed in 1976 that exploitsm key distri-
bution centers [31] and Synaptics IdM/CKM proposal which extends that result [6]. We agree with the Synaptic
authors and assert that new IdM/CKM architectures should distribute the execution of each provisioned service
across m autonomously owned/managed service providers to mitigate insider fraud/attacks, where 2 < m < 7.
As the Synaptic authors also point out, these architectures permit the principles of separation of powers and
checks and balances to be embodied for services provisioned to the community [32].

3.0 A DETECTION MODEL INCORPORATING TRUST

This paper focuses on the derivation of behavioral trust based on aggregated network behaviors calculated from
network flow. This trust model is based on the detection model described in [20]. The components of this
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model are captured in Table 1. This model is driven by a behavioral-based fusion architecture presented in
Figure 3. The architecture uses behavioral analysis functions that process and fuse network flow data creating
a n-dimensional behavioral feature space.

Figure 3: Overview of a Behavioral Analysis Architecture

The detection model processes network data and events, dO, using network sensors, S, grouping the data
by network objects, O, e.g., hosts. Instead of being an alert-centric model, this model focuses on identifying
threats, and threat behaviors in terms of higher-grained network objects; e.g., hosts. Note, that in the case of
network flow, the network data represents a tuple where tupled = 〈d1, d2, . . . , dn〉. Network data from sensors
is inherently non-numeric and must be transformed into numerical form represented by tdO and their tuples
tupletd = 〈td1, td2, . . . , tdn〉.

Various behavioral analysis functions, bfanalysis, operate over the transformed data, tupletd, creating an
n-tuple of behavioral features values, νbf , associated with each object processed, O. The behavioral feature
value, νbf , represents feedback in the overall model, where,

bfanalysis(tupletd) = 〈νbf1, νbf2, . . . , νbfn〉 = tupleνbf (5)

These behavioral value tuples, tupleνbf , are then input into a shared sample space or behavioral feature
space, FSνbf . Behavioral values can represent the results of simple heuristics such as statistically determining
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if network flows associated with a host are incoming outgoing. In the future, they also can represent a metric
resulting from a distance measure. A distance measure may be a good measure when tight clusters of behaviors
are exhibited like the AOL cluster in Figure 1. A distance measure of the host, Ohost from a centriod of a
region, cregion, of the behavioral feature space, FSνbf , can be calculated where,√

(x1 − x2)2 + (y1 − y2)2. (6)

If Ohost = (hνbf1, hνbf2, . . . , hνbfn) and cregion = (cνbf1, cνbf2, . . . , cνbfn), then formula 6 can be gen-
eralized by defining the Euclidean distance from a to b as

d(Ohost, cregion) =
√

(c1 − h1)2 + (c2 − h2)2 + · · ·+ (cn − hn)2. (7)

Classifiers are tuned to view the features space using different sets of features or feature-tuples. Within
those views behavioral regions are defined and a distance measure is used to score a host within a region based
on the centroid of that region. In this context, classification is determined from a set of behavioral features
values, νbf , calculated using various types of methods including: simple statistical based heuristics and distance
measurements from known regions.

In the first instantiation of our framework, our basic network object is a host in the internal network. For
each host, we post-process any raw data that is available through the sensors to distill a feature characteristic
that includes the following as shown in Table 2.

The proposed detection model is used to analyze various behavioral and structural characteristics of network
objects, O; e.g., hosts, hostgroups, and subnets. The analysis of these objects involves collecting sensor events
and network flow data R from a number of different network sensors; e.g., network flow, NIDS, honeypots, and
creating a behavioral sample space, S. The sample space for a specific object O is denoted by SO. The trust
of each behavior, bt, is computed during the analysis. Lastly, the overall trust of a network object is computed
(TO). The framework employs the following major components as described in Table 1.

In our model, an object’s trust, TO, is derived from behavioral trust associated with network behaviors of
an object. Each individual behavioral trust value can then be measured from the various network sensors made
available in the enterprise. In order to utilize the behavioral feature values, a subjective notion of trust must be
collected and applied to the values. These recommendations are in the form of behavioral trust measurements
as defined in Table 1. This model is not as complete in the unifying model formalized in [7] where we do not
take into account the notion of reputation.

The first way to assign object trust, TO, based solely on behavioral feature values, would be to take into
account the subjective weights associated with each measured network behavior. These weights are determined
by the security policy of any given institution. We would then look at calculating a behavior trust value and
then summing across all behavioral feature values. This would provide a baseline notional object trust and is
formally defined as follows:

TO(1)[0, 1] =
∑

0,n:νbt

wtP (S) (8)

where object trust is a value in the range from 0 to 1. Trust is then measured form the summation runs over all
behavioral trust values νbt. Nevertheless, the first degree score fails to factor in the identity of a certain host.
This is taken into account in the second degree notion of the object trust:

TO(2)[0, 1] =
∑

wtP (S) · identity(O,P ) (9)
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Table 1: Model Components

Element Description
Sensor (S) A device providing observables in the form of raw network

data and/or network events.
Network Object (O) An object being tracked, representing either a host, host

group, or subnet.
Network Object Data (dO) Raw data consisting of sensor events and network flow

data.
Transformed Network Object Data (tdO) Network data and events are usually non-numerical in na-

ture and must be transformed into a numerical format
for processing; e.g., average incoming network bytes per
flow. This data is used by the behavioral analysis functions
(bfanalysis).

Behavioral Analysis Function (bfanalysis) A function that operates over the sample space to create a
behavioral feature value (νbf ) for a network object (O).

Behavioral Feature Value(νbf ) A single behavioral feature produced by (bfanalysis). This
represents a single classification primitive.

Behavioral Feature Space(FSνbf ) The feature space used by classifiers and correlaters.

Behavioral Feature N-Tuple (tbf ) A set of features (in the form of a record of label-value
pairs) describing a network object O. The feature charac-
teristic of a host, for example, may list inter-packet arrival
time, outgoing packet size, work-weight ratio, etc.

Behavioral Trust Function (bftrust) A function that operates over the behavioral feature to com-
pute the behavioral trust bt for a network object (O).

Behavioral Trust Value(νbt) A single behavioral trust value produced by (bftrust). This
represents a single behavioral trust recommendation pro-
duced by a sensor; e.g., entity. primitive.

Overall Trust TO The overall trust of a network object (O) derived from each
of its behavioral trust bt values .

where the summation runs over all pairs identity and TO both contain object O respectively.

The wtP weight function determines the significance of a particular behavioral feature in the final trust
calculation. Note that the weight function takes as input the labeled partition of network objects that was
produced by the behavioral trust function as the weight should be placed appropriately depending on the label
if it exists.

In this section we summarized our detection model built upon a technique we call aggregated behavioral
analysis, that is used to derive a subjective notion of behavioral trust. This trust is driven by the security needs
of enterprise which are realized as weighted functions applied to behavioral features values. We later visualize
trust in Figure 5 providing a descriptive analysis of our results.
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Table 2: Behavioral Features (from [20])

Feature Description
Port Scatter Number of unique destination ports
Source Data Transfer Ratio of total bytes of traffic originating from

the host to the total bytes of traffic
Source Data Transfer Ratio of total bytes of traffic going to the host

to the total bytes of traffic
Source Packets Number of packets origination percentage of

the total traffic to incoming
Sink Packets Number of packets origination percentage of

the total traffic to incoming
TCP, UDP, ICMP Bytes Number of incoming and outgoing bytes (by

protocol)
TCP, UDP, ICMP Packets Number of incoming and outgoing packets

(by protocol)
TCP Work Load Index Ratio of the number of TCP bytes transmitted

or received to the number of TCP flows
Social Index Number of unique hosts a computer talks to
Packet Inter-arrival Time Total and average packet inter-arrival time

4.0 APPROACH

In this section, we review the approach we taken in the application of behavioral analysis on network flow data
captured with the SiLK 3, and the derivation of behavioral trust with qualitative analysis of some of our results.

4.1 Behavioral Aggregation

Aggregated behavioral analysis provides a natural way by which the volume of network data can be reduced,
and it provides insight into views of network behaviors over multiple time scales. Behavioral analysis is used
to drive the measurement of various layers of trust using a model we have created (described below). We differ
from CAMNEP since we aggregate all behaviors, instead of just anomalies, thus separating trust from the use
of clustering strategies on anomalies [10]. Another major difference between the systems is that we initially
aggregate at the IP Address level. Aggregating at the host level offers the ability to track behavioral changes in
a specific host; e.g., a botnet, and to cluster them based on similar behaviors or behavioral changes. Another
benefit of IP Address behavioral aggregation is the further reduction of data which allows the detection system
to recognize patterns over multiple time scales. Similar to CAMNEP, we leverage the use of trust to further
classify the hosts, but, we do not aggregate trust, nor share trust. In the context of our model, trust is a subjective
measure and intertwined with the the security policies environment through which it is measured.

In our approach we employ two independent (but related) metrics, i.e., behavioral and trust metrics. Behavioral
analysis metrics provide indicators of known behaviors: both normal and anomalistic. Ultimately, the trust of

3http://tools.netsa.cert.org/silk
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Figure 4: Data exfiltration captured by our system

these behaviors is driven by their context. Examples of trust metrics include source/sink trust; e.g., data exfil-
tration to specific regions is trusted less, incoming and outgoing byte/packet usage trust; e.g., low packet per
flow, small byte payloads scan behavior, incoming and outgoing protocol usage trust; e.g., IP Address using
multiple protocols, and regional communication trust.

The overall detection model is made of the following elements: sensors, raw data, and network objects,
hosts, features, behavioral functions, aggregated behaviors, classification strategies, classifiers, correlation
strategies, correlators, behavioral trust, and trust. Our detection model is based on the Tadda cyber data fusion
model [33]. In this model, formal relationships exist between various elements. Sensors provide observables
to the fusion engine in the form of network data and events. We have ingestors for network flow, Snort IDS,
and Honeytrap, although we are currently focusing on network flow (more specifically SiLK flow data). The
model uses the raw data to extract network objects; e.g., hosts, that are used to track aggregated behaviors.
Features are extracted into shared memory consisting of an n-dimensional feature space. Behavioral analysis
functions are applied to the feature space to measure behaviors and calculate behavioral trust. Classification
strategies employ multiple behavioral analyzers to classify a host based on its behaviors. Correlation strategies
are employed on the aggregated behaviors and behavioral score to cluster hosts. The overall network object
trust uses a maximum likelihood classification mechanism over the results from behavioral trust, classification,
and correlation results to produce the overall trust of the object.
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Figure 5: Trust visualized with network behaviors

4.2 Trust

Computational trust provides a metric that can be used to derive risk from the raw data being analyzed [12],
and is calculated by the weighted summation of behavioral trust scores derived from the behavioral analysis
functions. This behavioral trust is driven by the security policies employed within an agency e.g. NATO.

Object trust is then a function of the summation of all of the behavioral trusts, where the trust model weights
each behavioral trust score. In this model, normal and behavioral anomalies are represented using a number
of techniques, including clustering and support vector machines. Once these behavioral patterns have been
established, they can be used to drive the trust score of network objects being followed by the fusion engine.

The results of our approach have provided qualitative visualizations and quantitative metrics associated with
botnet detection using a hyperplane approach [20]. We have applied the system to live data and found weak
signal data exfiltration behaviors (not detected by conventional tools) by leveraging regional aspects of the IP
address space (Figure 4). We found significant bidirectional UDP traffic after discovering outgoing flows to
China via port 9000.

Some of the views into the feature space provide insight into normal network usage (Figure 1). We per-
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formed network forensics on a data set and found the use of file transfer being done on a compromised machine
(Figure 4). By using trust as a metric, the system is able to provide an abstract means through which threats
can be identified and information can be shared between various sensors and detection systems. The trust
model allows for the measurement of trust through a set of concurrent behavioral analysis strategies. Trust
measurements can help the analyst focus attention on threats that are important to specific needs, and reduce
the inundation of meaningless alerts and data.

5.0 CONCLUSIONS

It is this fundamental ubiquitous nature of our future networks, like NAF, that should drive our notions of
trust creating technology and operations that provide end-to-end security. Such needs push past single vender
solutions requirements standards to drive the development of open and layered architectures supporting trust-
worthiness.

Objective trust, defined objectively through a cryptographic means, provides a core component of trust
focused on the management of identity. Identity alone does not provide the detail of trust needed today’s
ubiquitous and dynamic systems. A layer of behavioral trust is needed to augment the trustworthiness of devices
within our enterprises, providing a subjective view into trust driven by the security policies of a distributed and
complex network.

In 2009, NIST stated that “numerous problems have been identified in current key management method-
ologies” [5]. In this paper we have explored how NIST’s call for IdM/CKM designers to move away from
public key technologies suggests a possible re-emergence of online IdM/CKM systems and the opportunity to
integrate behavioural trust with objective trust.

Biological Immune Systems concepts have been applied to intrusion detection systems [24]. In this paper
we focused on the establishment of digital self non-self for the enterprise being driven by trust as a core metric.
That is does a ubiquitous system trust the identify of a device, or that devices behavior within the network
environment.

We defined trust as a layered concept that moves from objective trust defined as identify of the object to
subjective trust defined by the objects behaviors. We highlighted the challenge in creating a distributed con-
cept of trust that is a combination of multiple dynamic layers rooted in both objective and subjective models.
We briefly mentioned Synaptic Laboratory’s global IdM/CKM proposal which distributes the execution of pro-
visioned services across m autonomously owned/managed service providers to mitigate insider fraud/attacks.
We propose that behavioral trust derived from network behaviors can be layered within the trusted provenance
providing a complementary addition to a trusted provenance.

Our contribution in the evolution of computational trust is the need to formalize a model that can be lay-
ered with existing concepts of identity management. Global identity management is both “objective”, and
“subjective”. For example, a passport from a third world country may make an objective assertion, however
as a UK/AU/US Government, do I trust that objective assertion is correct? This is where we perhaps use
multiple-attested identities to increase our confidence on the static assertions that we are validating. We view
behaviorally derived trust as being subjective and managed locally based on the security policies within the
environment. This is in contrast to notions of global identity management which is rooted in a more objective
way. Another contribution we make in the area of behavioral analysis and trust is distinguishing behavioral
analysis from profiling. We propose that profiling implies analysis of an identity, where behavioral analysis
is done independent of identity. Thus, behavioral analysis, when done without identity, enables the sharing of
actionable information without infringing upon the privacy of individuals or the community. This can someday
foster system-level collaboration of threat behaviors when other enabling technologies bridge the semantic gap
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allowing systems to share meaningful information and knowledge.

5.1 Future Work

A formal notion of a network behavior can facilitate systematic description of threats, and the sharing of action-
able information between systems. Each behavioral feature can be represented as a primitive, what we define
as a neteme, used to assemble a narrative used to identity threats.

An example of the use of primitives for threat detection can be used to discover bots using a distributed
defense strategy. For example, a single bot in a botnet has a known lifecycle that can be broken down into [34]:

1. Establish C2; e.g., P2P, Master/Slave, Hybrid and Layered, encrypted traffic,
2. Scan for vulnerable machines:,
3. Compromise the machine,
4. Recovery and configuration of compromised host; e.g., disable virus protection software.
5. Reinforcement with new bot code after compromise,
6. Idle; e.g., until notification, or with time-bomb.

Each phase in the lifecycle can be represented by sets of behavioral primitives used to classify the botnet of
long time intervals.

This style of classification has been applied to Optical Character Recognition (OCR) in the early 1990’s
with the omni-font character recognition systems based on a structural classifiers moving away from pixel
matching. These types of classifiers decomposed characters into simpler components, called primitives, and
then arranging these primitives using various topological attributes [35] . Essentially, combining the primitives
into a structural narrative of the character itself; e.g., the character ‘P’ is made of a vertical line, and an arc
connecting on the right side of the line. Aggregated behavioral analysis provides the same constructs as omni-
font character recognition systems, differentiating itself from previous classification methodologies based on
structural aspects of malware. Our approach treats behaviors as netemes, and uses them to define a pattern, or
threat, as omni-font would a letter.

Figure 6: Notional Threat Ontology Promoting the Establishment of Behavioral Primitives

Another area of work lies in the establishment of a common semantic understanding of network behaviors,
leading to the development of a behavioral Ontology. There has been much attention given to vulnerability anal-
ysis and the establishment of Common Vulnerability Exposure (CVE). We can perhaps flip this viewpoint and
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focus more on the source of the threat, rather on the sink, enabling the creation of technologies that formalize
the descriptions of behaviors used to establish of common vocabulary through which systems share behavioral
descriptions of threats; e.g., narratives, in real-time.

We see an exciting new field opening up in the area of online global IdM/CKM architectures that sup-
port policy driven behavioural assertions for internal enterprise, business to business and global communities.
Synaptic anticipates that the core IdM/CKM proposal can be finalised and deployed within a few years with an
appropriate level of support. Our excitement in this field is shared by others. For example, Synaptic was invited
to the ’closed’ US NITRD National Cyber Leap Year Summit (August 2009) and several proposals related to
Synaptic’s global IdM/CKM were accepted and taken forward. Also, there are already approximately twenty
corporations including NATO contractors, interested to collaborate in the development of this system.
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