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Abstract

The Air Force’s need for accurate navigation information is often met through

the combination of inertial and global positioning systems. However, the increased

use of smaller and smaller unmanned aerial systems opens the possibility of flight in

environments where satellite navigation signals are either significantly degraded or

unavailable entirely, such as indoors, in dense urban areas, and underground. Fortu-

nately, the intrinsic orthogonal structure of man-made environments can be exploited

to aid in determining a vehicle’s attitude when satellite signals are unavailable. This

research aims to obtain accurate and stable estimates of a vehicle’s attitude by cou-

pling consumer-grade inertial and optical sensors. This goal is pursued by first mod-

eling both inertial and optical sensors and then developing a technique for identifying

vanishing points in perspective images of a structured environment. The inertial

and optical processes are then coupled to enable each one to aid the other. The

vanishing point measurements are combined with the inertial data in an extended

Kalman filter to produce overall attitude estimates. This technique is experimentally

demonstrated in an indoor corridor setting using a motion profile designed to simu-

late flight. Through comparison with a tactical-grade inertial sensor, the combined

consumer-grade inertial and optical data are shown to produce a stable attitude solu-

tion accurate to within 1.5 degrees. A measurement bias is manifested which degrades

the accuracy by up to another 2.5 degrees.
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Coupling Vanishing Point Tracking

with Inertial Navigation to

Estimate Attitude in a Structured Environment

I. Introduction

The United States Air Force depends on precision navigation to accomplish its

mission. To help fulfill this need, many of the air vehicles used by the Air

Force are equipped with inertial navigation systems (INSs). While these inertial

systems provide useful information regarding position and attitude in the short term,

even the most advanced are subject to ever-increasing errors. Conventionally, these

errors are mitigated by augmenting the inertial system with information from another

source such as the global positioning system (GPS). Unfortunately, the absence of

an alternate technology for constraining inertial error growth induces a dependency

on the GPS. The Chief of Staff of the Air Force has addressed this dependency,

stating, “It seems critical to me that the Joint force should reduce its dependence

on GPS-aided precision navigation and timing, allowing it to ultimately become less

vulnerable, yet equally precise, and more resilient” [23].

1.1 Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs) are among the assortment of military assets

which have come to rely on the GPS for precision navigation. Such vehicles have

proven effective at providing tactical advantages in the recent conflicts on Iraq and

Afghanistan and will likely continue to be a critical part of the United States arsenal

for years to come. Some of these vehicles, such as the RQ-11 Raven, are small enough

to be carried and hand-launched by a single soldier. As smaller and smaller UAVs are

developed, they will become capable of flight in environments which have historically

been unopen to aerial vehicles, such as inside buildings or underground.

1



1.1.1 Quadrotors. Rotary-wing vehicles have certain advantages over fixed-

wing aircraft when it comes to operating in tight quarters. Specifically, slow flight

and hover capabilities eliminate the need to maintain forward velocity to produce lift.

One form of miniature rotary vehicle that has become more common for scientific

research in recent years is the quadrotor [16], [13]. These vehicles use four counter-

rotating fixed-pitch propellers to generate lift. Desired motion is obtained by simply

varying the propellers’ rotational speeds. Accurate attitude knowledge is requisite

to controlling a quadrotor, as any rotation is immediately converted to translational

motion by the vehicle’s dynamics.

To facilitate navigational research, the Advanced Navigation Technology (ANT)

Center at the Air Force Institute of Technology (AFIT) has developed several air

vehicle platforms, including quadrotors. One such vehicle is depicted in Figure 1.1.

This vehicle is equipped with a lightweight micro electro-mechanical systems (MEMS)

inertial measurement unit (IMU) and a commercial webcam which can be used to

augment the inertial data in the place of a GPS receiver.

IMUIMU

Camera

Figure 1.1: Quadrotor (bottom view). The quadrotor shown here was developed by
the ANT Center as a research platform for vision-based aerial navigation solutions.
It is equipped with both a MEMS inertial unit and commercial webcam.

2



1.2 Indoor Operation

The indoor operating environment poses distinct challenges to aerial vehicles.

Tight quarters provide little room for maneuvering, and obstructions abound. To add

to the difficulties, the GPS signal is substantially degraded indoors. This research aims

to provide an alternative to the GPS for augmenting inertial attitude estimates in an

indoor environment.

1.2.1 Manhattan World Assumption. Many man-made environments such

as dense urban or indoor settings have a consistent, orderly structure which can

be exploited to obtain attitude information from an optical sensor. The attitude

estimation technique described in this thesis is intended for use in such environments.

The following assumptions regarding the structure of the indoor environment in which

an aerial vehicle is to operate are used to enable the techniques described herein:

• All floors and ceilings are flat and level.

• All walls are flat and vertical.

• All rooms and corridors meet at right angles.

Structural features of such an environment will align to an orthogonal three-dimensional

(3-D) grid described as the “Manhattan world” in [7].

1.2.2 Vanishing Points. Most of the lines defining the edges and intersec-

tions of planar surfaces in the Manhattan world are aligned to one of three mutually

orthogonal directions, forming large groups of mutually parallel lines. All of the lines

in any of these groupings will appear to converge at a single point, called a vanishing

point, in perspective images of a Manhattan world scene. The positions of these van-

ishing points in an image are shown in [11] to be invariant to translational motion of

the camera, and only change when the camera is rotated.

3



1.3 Problem Formulation

The problem that we are trying to solve is this: attitude estimates provided

by the IMU aboard our vehicle are subject to drift, which leads to an unbounded

increase in attitude error. We wish to use inertial data to aid in finding vanishing

points in perspective images of a Manhattan world environment and, in turn, use

the positions of these vanishing points to constrain the long-term drift in the inertial

attitude estimates. This will be accomplished by combining the inertial and optical

data in an extended Kalman filter.

1.4 Research Contributions

The primary contribution of this research is a deeply coupled vanishing point

and inertial attitude estimation method. The tight coupling of the inertial and optical

sensors used for this research results in an overall attitude solution unattainable using

either sensor alone. Using the methods described herein, a drift-free attitude solution

accurate to within 1.5 degrees 1-� and biased by only 2 degrees is obtained using a

pair of small, inexpensive, light-weight, low-power sensors.

1.5 Outline

The remainder of this thesis is organized in the following manner. Chapter II

discusses the mathematical and topical backgrounds behind inertial navigation and

optical sensors, as well as other researchers’ key contributions related to them. Chap-

ter III outlines the manner in which the coupled inertial and optical attitude estima-

tion technique presented herein was developed and the experimental procedures used

to evaluate it. The experimental results are presented and analyzed in Chapter IV,

and conclusions are made with a few suggestions for future work in Chapter V.

4



II. Background

This chapter outlines the concepts one must understand in order to implement the

attitude estimation technique described in this thesis. The notational conven-

tions used herein are presented in Section 2.1, followed by basic concepts in terrestrial

navigation in Section 2.2. Next, inertial navigation techniques and their associated

limitations are described in Section 2.3. Computer vision techniques will be used to

aid the navigation solution provided by an inertial sensor, so concepts in digital imag-

ing and image processing are presented in Sections 2.4 and 2.5. Finally, methods for

combining data from multiple sources are described in Section 2.6. Other researchers’

contributions to the body of knowledge in these subject areas are also briefly discussed

throughout.

2.1 Notation

Certain conventions are used throughout the body of this work pertaining to

how variable quantities are represented. These conventions are intended to help the

reader understand the quantities expressed in the equations, figures, tables, and text

of this work, and are as follows:

Scalars: Scalars are represented by either upper or lowercase characters in italics,

e.g., a or A.

Vectors: Vector quantities are represented by lowercase characters in bold, e.g., a

or  . Unless specifically stated otherwise, all vectors should be interpreted as

column vectors.

Vector Components: The scalar components of a vector are represented with sub-

scripts indicating their corresponding axes, e.g., the x-component of the vector

a is represented as ax.

Homogeneous Vectors: Homogeneous vectors are defined to have a final compo-

nent equal to 1 and are represented with an underscore, e.g., a.

5



Skew-symmetric Matrices: The skew-symmetric matrix form of 3-vectors is some-

times useful for mathematical computations involving matrices and/or vector

cross products. Vectors represented in skew-symmetric matrix form are followed

by the “cross” character, e.g., a×. A vector a with components ax, ay, and az

is described in skew-symmetric matrix form as shown in Equation (2.1).

a× ≜
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −az ay

az 0 −ax
−ay ax 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.1)

Matrices: Matrices are represented by uppercase characters in bold, e.g., A or Ψ.

Estimated Variables: Variables which represent an estimate of a particular quan-

tity are represented with the “hat” character, e.g., â.

Corrupted Variables: Variables which are corrupted by errors are represented with

the “tilde” character, e.g., ã.

Relative Motion: When relative motion is specified, combined subscripts are added

to a vector to describe the motion, e.g., pab represents the relative position from

frame a to frame b.

A Priori and A Posteriori Estimates: Within a Kalman filter, it is necessary to

distinguish between two estimates of a random variable’s mean and uncertainty

which are held at the same instant in time–the a priori estimate that is deter-

mined without incorporating new information from a measurement update and

the a posteriori estimate which does incorporate the measurement information.

In such instances, a “minus” character superscript is added to the time variable

for a priori estimates, and a “plus” character superscript on the time variable

indicates a posteriori estimates, e.g., â(t−) or â(t+).
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2.2 Reference Frames

Navigation information is quantified using a defined reference frame. This ref-

erence frame is used to describe position relative to a point or surface and to give

a mathematical realization to vector quantities such as velocity, acceleration and

torque. A particular vector will have different mathematical realizations in different

coordinate systems, although the vector itself is unchanged. Throughout this text,

the reference frame in which a vector is expressed is denoted with a superscript. For

example, the vector y expressed in the Earth-centered, Earth-fixed (ECEF) refer-

ence frame would appear as ye. Common reference frames used in navigation and

computer vision include the following:

Earth-fixed inertial frame (i-frame) - The origin is fixed at the center of the

Earth, with the x and y-axes on the equatorial plane and the z-axis along the

Earth’s axis of rotation. The i-frame does not spin with the Earth but does

follow the Earth’s orbit around the sun. Though it is not a true inertial frame,

for the sake of terrestrial navigation it can be considered as such.

Earth-centered Earth-fixed frame (e-frame) - The origin is fixed at the center

of the Earth, with the x-axis on the equatorial plane pointing to the prime

meridian, z-axis parallel to the Earth’s axis of rotation, and y-axis located so as

to form a right-handed orthogonal triad. Unlike the i-frame, the e-frame spins

along with the Earth.

Earth-fixed Navigation frame (n-frame) - This is a locally defined reference frame

with its origin determined arbitrarily. The origin is typically fixed to the Earth’s

surface with the x-axis pointing north, y-axis pointing east and z-axis pointing

down. Often, it is also called the North-East-Down (NED) frame.

Body frame (b-frame) - The origin is usually either at the center of gravity (cg) of

a moving vehicle or at the center of a triad of inertial sensors. For aircraft, it

is typically defined with the x-axis out the nose, y-axis out the right wing, and

z-axis out the belly, as shown in Figure 2.2.
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Figure 2.1: Common coordinate systems. The Earth-fixed inertial, Earth-centered
Earth-fixed, and navigation frames are shown. The origins of the inertial and Earth
frames are at the Earth’s center of mass while the origin of the navigation frame is
fixed on the Earth’s surface. (Figure taken from [31])
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Figure 2.2: Body reference frame. For aircraft, the b-frame is oriented with the
x-axis out the nose, y-axis out the right wing and z-axis out the belly. (Figure taken
from [31])
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Camera frame (c-frame) - The origin is at the optical center of the camera, with

the x-axis pointed upward, y-axis to the right and z-axis out the lens, as shown

in Figure 2.3

xc

yc

zc

Figure 2.3: Camera reference frame. The x-axis is upward in the images captured,
y-axis to the right, and z-axis out the lens.

Image frame (pix-frame) - Unlike the other frames mentioned, the pix-frame has

only two dimensions. The origin is beyond the upper-left pixel of a digital image,

but multiple conventions exist throughout image processing literature for pixel

indexing and axis orientation. In this work, images are indexed according to

the matrix storage format used by The Mathworks, Inc.’s Matlab software, with

the upper left pixel indexed as (1,1), the x-axis down the left side and y-axis

across the top of the image.

The navigation described in this thesis will be defined with reference to a local level

Earth-fixed navigation frame with its origin on the floor of an indoor corridor centered

between the walls, the x-axis along the length of the corridor and the z-axis pointed

down as depicted in Figure 2.4.
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yn

Figure 2.4: Local level navigation frame. The local level navigation frame depicted
here is used as a reference for defining attitude throughout this research.

2.2.1 Coordinate Transformations. Often, it is necessary to convert vector

quantities from one coordinate system to another. This is accomplished by per-

forming a vector transformation. There are two possible ways in which right-hand

orthogonal reference frames may differ from one another at a particular instant in

time–translation and rotation.

2.2.1.1 Translation. If the origins of two reference frames are not

collocated, a position vector is used to describe the position of one with respect to

the other. In the case where two reference frames have principle axes parallel to

one another but with spatially separated origins, any vector in one frame will have

the same mathematical description in the other. The coordinates of a fixed point,

however, will differ between the two representations. The conversion of a particular

coordinate triad from one frame to the other is described by Equation (2.2), where pb

represents the position of P from the origin of frame b and pa represents its position

from the origin of frame a as depicted in Figure 2.5.

pb = pa − pab (2.2)
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Figure 2.5: Position vectors in two different but parallel coordinate systems. The
position of point P from the origin of the b-frame, pb, is equal to the position of
point P from the origin of the a-frame, pa, minus the relative position vector between
frames a and b, pab.

2.2.1.2 Rotation. If two reference frames are oriented such that one

or more of the principle axes are not co-directional, then there is a relative rotation

between them. There are several ways to represent the relative rotation between

reference frames. Two of those are direction cosine matrices (DCMs) and Euler angles.

2.2.1.2.1 Direction Cosine Matrices. To use a direction

cosine matrix to transform a vector from one frame to another, the vector is pre-

multiplied by the DCM. The symbol “C” is commonly used to represent a DCM,

with a subscript representing the originating coordinate system and a superscript

representing the destination coordinate system. As an example, the representation in

a reference frame b of a vector y could be determined from its representation in frame

a as shown in Equation (2.3).

yb =Cb
ay

a (2.3)

A DCM’s dynamics are described by the following differential equation:

Ċ
b

a =Cb
a[!aba×] (2.4)

One key property of DCMs is that the determinant is always equal to one. This

ensures that a vector’s magnitude is preserved when it is multiplied by the DCM.
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Since the determinant is nonzero, this property also ensures that an inverse DCM

exists. If the DCM to convert from one frame to another is known, the DCM to

convert back is simply the inverse of the first, as shown in Equation (2.5). Another

convenient property is that the inverse of a DCM is always its transpose, which greatly

simplifies the mathematics in computing inverse DCMs.

Ca
b = [Cb

a]−1 = [Cb
a]T (2.5)

2.2.1.2.2 Euler Angles. Another way that relative rotation

between reference frames can be expressed is through the use of Euler angles. These

angles represent the following three successive rotations:

1. A rotation through angle  about the originating reference frame’s z-axis

2. A rotation through angle � about the new intermediate reference frame’s y-axis,

y′

3. A rotation through angle � about the second intermediate reference frame’s

x-axis, x′′

To obtain an equivalent DCM from a set of Euler angles, the Euler angles are each

represented as a separate DCM, and the total rotation is the product of all three as

shown in Equation (2.6).

Cb
a =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 cos� sin�

0 − sin� cos�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos � 0 − sin �
0 1 0

sin � 0 cos �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos sin 0

− sin cos 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.6)

2.2.1.3 Transformation Matrices. Translation and rotation can be

performed simultaneously through the use of homogeneous vectors and a transforma-

tion matrix. Homogeneous vectors are constructed by augmenting a vector with an

additional element equal to one. For instance, the vector r with components rx, ry
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and rz would be converted to the homogeneous form r as shown in Equation (2.7).

r = [ rx ry rz ∣ 1 ]T (2.7)

If the rotation between a particular reference frame a and another reference frame b

is described by the DCM Cb
a and the translation from b to a is described by pba, then

the matrix T b
a used to transform a homogeneous vector from frame a to frame b is

given by Equation (2.8).

rb = T b
ar

a

T b
a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cb
a ∣ −pbab
− −

01×3 ∣ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.8)

2.3 Inertial Navigation

Inertial navigation relies on the concept that starting from a known position,

velocity, and attitude, a vehicle’s position and attitude can be determined by sensing

its motion, i.e., acceleration and rotational velocity. A typical IMU consists of at least

three accelerometers that measure specific force relative to the inertial frame and three

gyroscopes (or gyros) that measure either rotational acceleration or rotational velocity

relative to the inertial frame.

There are two general types of IMU–either platform or strapdown. A platform

INS has its sensors mounted on a platform that is gimbaled so as to always have the

vertical sensor aligned with local gravity, while a strapdown IMU is rigidly mounted

to the vehicle. The accelerometers and gyroscopes of a strapdown IMU are typically

mounted in an orthogonal triad with their input axes parallel to the b-frame’s principle

axes so as to provide outputs in the body frame. Vehicles like the quadrotor for which

the estimation method developed in this thesis is intended are commonly equipped
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with MEMS strapdown IMUs, due the small size, weight and power requirements of

such devices. Titterton and Weston thoroughly describe strapdown inertial navigation

in [29].

2.3.1 Inertial Attitude Dynamics. Since the focus of this thesis is attitude

estimation, inertial attitude calculations are described here. The quantity of interest

regarding attitude is the relative rotation between the vehicle body frame and the

navigation frame which can be captured by the DCM, Cn
b . Applying the relationship

from Equation (2.4) to this DCM gives:

Ċ
n

b =Cn
b [!bnb×] (2.9)

Because the strapdown IMU provides measurements of the rotation rate between the

inertial and body frames expressed in the body frame, !bib, an expression relating the

body-to-navigation frame DCM to this rotation rate is desired. Such an expression is

obtained by manipulating Equation (2.9).

The rotation rate between the n and b-frames is the difference between the

inertial-to-body frame rotation rate, the rotation rate between the n and e-frames,

and the Earth’s sidereal rate as shown in Equation (2.10).

!bnb = !bib −Cb
n!

n
en −Cb

nC
n
e!

e
ie (2.10)

Since the n-frame is fixed to the surface of the Earth, the rotation rate between the

n and e-frames is always zero. This simplifies Equation (2.10) to:

!bnb = !bib −Cb
nC

n
e!

e
ie (2.11)
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Finally, converting Equation (2.11) to skew-symmetric form and substituting into

Equation (2.9) yields the expression shown in Equation (2.12).

Ċ
n

b =Cn
b [!bib×] −Cn

e [!eie×]Ce
nC

n
b (2.12)

2.3.2 Inertial Attitude Errors. Inertial system rate gyros are subject to

errors stemming from various sources. Some of these include fixed and acceleration-

dependent biases, scale factor, sensor misalignment and measurement noise. All of

these effects can be combined in an overall rotation model in which the measured

rotation, !bibm , is a function of the true rotation, !bib, a measurement bias, bb and

zero-mean, additive, white, Gaussian noise, wb.

!bibm = !bib + bb +wb (2.13)

For the purposes of this research, the bias will be treated as a fixed, deterministic

quantity. Though the bias might be more accurately described as a first-order Gauss-

Markov process, the fixed deterministic model is justified considering the short time

between image measurement updates. The strength of the noise term is determined

experimentally by observing the error growth rates in multiple inertial-only attitude

computations.

Due to the additive nature of the noise and bias terms in Equation (2.13), the

attitude solution provided by an inertial system will drift over time. The longer

the inertial system operates unaided, the larger the errors will become. This slow

drift is often compensated for using an additional sensor with higher frequency error

properties such as in an embedded GPS/INS (EGI). In the case of an indoor setting

where GPS is unavailable, an alternative approach is required, such as the vision-

aiding described in this thesis.
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2.4 Digital Imaging

Digital imaging is the process by which an optical sensor converts luminous

energy (light) into an array of digital data. These data can then by interpreted by

a digital computer and displayed to an interested user as a photograph. In order

for a digital image to be produced, light must originate from a source, reflect off the

various elements of the subject, enter the aperture of an optical sensor and stimulate

the sensor’s photoelectric array. The output from the photoelectric array is then

amplified and sampled by an analog-to-digital (A/D) converter to produce the digital

image. This process is depicted in Figure 2.6.

SCENE

ILLUMINATION

OPTICS
DETECTOR

AMPLIFIER

A/D

DIGITAL

OUTPUT

SUBJECT

Figure 2.6: Imaging sensor diagram. The imaging sensor interprets light reflected
through the optics as a digital image. (Figure taken from [31])

2.4.1 Projective Geometry. The process of central projection renders a 3-D

subject as a two-dimensional (2-D) image. We wish to determine mathematically how

to transform the coordinates of a point expressed in the 3-D camera frame into the

2-D image frame. With such a model in place, the data provided by an imaging sensor

can be interpreted as it relates to the 3-D scene. This is done by modeling the effects

of central projection.

2.4.1.1 Pinhole Camera. One simple model of centralized projection

is represented by a pinhole camera. In this model, all incoming light passes through
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the central point, or optical center of the camera, and is projected onto a focal plane

positioned at a distance of one focal length f behind the center of projection. As shown

in Figure 2.6, the projection onto the focal plane is inverted by the imaging sensor’s

optics. The pinhole model can be further simplified to eliminate the inversion by

positioning a virtual image plane one focal length in front of the center of projection.

This modified pinhole camera model is shown in Figure 2.7.

S

Oc

sc
proj

zc

yc

xc

xpix

ypix
Opix

sc

f
sz

c

xproj
yproj

Figure 2.7: Modified pinhole camera. Light reflected from the subject crosses the
virtual image plane one focal length in front of the center of projection.

A point S in the world can be identified by a position vector sc originating at

the camera center of projection and terminating at S. The vector scproj that is co-

directional with sc but terminates at the intersection with the image plane is a scalar

multiple of sc. Because the vector scproj terminates at the image plane, its z-coordinate

must be equal to f . Using the method of similar triangles, we can then determine

that the scaling factor relating sc to scproj is f/scz, as shown in Equation (2.14)

scproj = fscz s
c (2.14)

Since the image frame has only two dimensions, the transformation from camera

coordinates to image coordinates must discard the z-component of the vector scproj,

reducing it to a two-vector. The 2-D representation of scproj is its projection onto

the image plane, sproj, which originates from the projection of the camera frame’s

origin onto the image plane, as shown in Figure 2.8. This reduction is performed
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mathematically by

sproj =
⎡⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎦
scproj (2.15)

Now that s has been expressed in a 2-D frame that is coplanar with the image frame,

the methods discussed in Section 2.2.1 can be applied to complete the transformation

into the image frame.
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Figure 2.8: Image plane. The image plane has physical dimensions of H ×W and
pixel dimensions of M ×N . The camera frame x and y-axes project onto the image
plane centered at the coordinates (M+1

2
, N+1

2
). (Figure taken from [31])

There is a relative rotation between the image frame and projected camera

frame which can be captured by a rotation matrix. Multiplying the x-coordinate by

-1 will rotate a vector from the projected camera frame to the image frame as shown

in Equation (2.16).

C
pix
proj =

⎡⎢⎢⎢⎢⎢⎣
−1 0

0 1

⎤⎥⎥⎥⎥⎥⎦
(2.16)
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There is also a relative scaling factor in each direction. The focal plane has a

vertical dimension of H in the camera frame and a vertical dimension of M in the

image frame. This leads to a scaling factor of M/H in the x-direction. Similarly the

focal plane has a horizontal dimension of W in the camera frame and a horizontal

dimension of N in the image frame. This leads to a scale factor of N/W in the y-

direction. These scale factors appear on the diagonal of the transformation matrix

shown in Equation (2.17).

Lastly, there is a relative translation between the image frame and the projected

camera frame. The origin of the camera frame projects onto the focal plane at the

coordinates (M+1
2
, N+1

2
) in the image frame, which give the relative translation between

the two frames. This projection of the optical center onto the focal plane is known

as the principal point. The transformation of scproj into the image frame is now given

by Equation (2.17)

spix =
⎡⎢⎢⎢⎢⎢⎣
−M
H

0 0

0 N
W

0

⎤⎥⎥⎥⎥⎥⎦
scproj +

⎡⎢⎢⎢⎢⎢⎣
M+1
2

N+1
2

⎤⎥⎥⎥⎥⎥⎦
(2.17)

Substituting the right hand side of Equation (2.14) into Equation (2.17) and using

homogeneous coordinates gives the total transformation from the camera frame to

the image frame.

spix = 1

scz
T pix
c s

c (2.18)

The transformation matrix, T pix
c , is given by:

T pix
c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−f M
H

0 M+1
2

0 f N
W

N+1
2

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.19)

and is known as the intrinsic camera matrix.

Since an imaging sensor is to be used to aid in determining attitude, an inverse

transformation is also needed. This inverse transformation converts a pair of pixel

coordinates in the image frame into a vector pointing from the center of the camera to
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that pixel in the camera frame. The loss of dimension that occurs when an image is

produced prevents the vector sc from being fully determined by the inverse transfor-

mation. Instead, pre-multiplying Equation (2.18) by the inverse of the transformation

matrix will only yield the homogeneous three-vector sc that is co-directional with sc

as shown in Equation (2.20).

sc = 1

scz
sc = T c

pixs
pix (2.20)

T c
pix = [T pix

c ]−1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− H
fM

0 H(M+1)
2fM

0 W
fN
−W (N+1)

2fN

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.21)

2.4.2 Camera Calibration. Beyond the simple pinhole camera model just

described, other nonlinear distortions are present in any imaging system. These dis-

tortions give rise to the need of a calibration procedure which compensates for their

effects. Such a procedure begins by modeling the distortion.

2.4.2.1 Radial Distortion. The most visible form of distortion is radial

distortion which causes the projections of straight lines to appear curved in images.

This distortion occurs when the sensor’s optics non-uniformly magnify the image.

In [4], Brown models this distortion as a power series of r, the Euclidean length of

sproj, as shown in Equation (2.22), where d(rad) is the radial distortion factor and ki

are constant coefficients.

d(rad) = (1 + k1r2 + k2r4 + k3r6) (2.22)

r2 = (sprojx )2 + (sprojy )2 (2.23)

2.4.2.2 Tangential Distortion. Tangential distortion causes the princi-

pal point c to be positioned away from the geometric center of the image plane. This

distortion arises from 1) imperfections in lens manufacture that cause the centers
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of curvature of the front and back surfaces to not be collinear and 2) misalignment

between the imaging sensor’s optics and photosensitive array. Brown models this dis-

tortion as the vector function of r, sprojx and s
proj
y shown in Equation (2.24), where

d(tan) is the tangential distortion vector and pi are constant coefficients.

d(tan) =
⎛⎜⎝
2p1(sprojx )(sprojy ) + p2 [r2 + 2(sprojx )2]
p1 [r2 + 2(sprojy )2 + 2p2(sprojx )(sprojy )]

⎞⎟⎠ (2.24)

2.4.2.3 Skew Factor. The skew factor, �c, refers to the orthogonality

of the pixel array’s x and y-axes and accounts for the possibility that the imaging

array is non-rectangular. For most cameras, the skew factor is nearly zero. The

greater the skew factor, the further from 90°the angle between the image frame’s x

and y-axes is. When present, the skew factor appears in the upper middle position of

the matrix T pix
c as shown in Equation (2.25).

spix = 1

scz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−f M
H
−�cf MH c

pix
x

0 f N
W

c
pix
y

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
sc (2.25)

2.4.2.4 Distorting Camera Model. Combining all of the effects dis-

cussed in the previous three sections yields a camera model that distorts the projec-

tion of sc onto the image plane and then converts the distorted projection into pixel

coordinates. This complete model is shown in Equation (2.26).

spix = 1

scz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−f M
H
−�cf MH c

pix
x

0 f N
W

c
pix
y

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d(rad) 0 d
(tan)
x

0 d(rad) d
(tan)
y

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
sc (2.26)

Unfortunately, an inverse map to get from distorted pixel coordinates to a camera-

frame line of sight vector cannot be determined in closed form. “Because of the

high degree distortion model, there exists no general algebraic expression for this in-
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verse map” [3]. Instead, the distortion removal is performed using iterative numerical

methods.

2.4.2.5 Calibration. With a distortion model defined, the camera can

be calibrated to determine the distortion parameters. These parameters include the

radial distortion coefficients, ki, the tangential distortion coefficients, pj, the pixel

coordinates of the principal point, (cpixx , c
pix
y ) and the skew factor, �c. They are deter-

mined by photographing a subject containing features with known coordinates, such

as the calibration board shown in Figure 2.9, in varying orientations and observing

the difference between the actual projections of the features onto the image plane

from those predicted by the pinhole camera model. The calibration is only valid for

a particular focal length and zoom setting. Bouguet’s Camera Calibration Toolbox

for Matlab is one tool that can be used to determine the distortion parameters [3].

Besides the distortion parameters already mentioned, the toolbox also provides values

for the focal length measured in both vertical and horizontal pixels (in case the pixels

are not square) which appear in the upper left and center positions, respectively, of

the matrix T pix
c .

2.5 Digital Image Processing

Now that a camera model has been developed which describes how images are

produced, techniques used to process the data the images provide will be presented.

Methods of edge and line detection are presented, followed by their application to-

wards the detection of vanishing points. Lastly, methods of determining camera atti-

tude relative to a scene based on the projections of vanishing points onto the image

plane are presented.

2.5.1 Edge Detection. One common preprocessing step in analyzing digital

images is to find edges, i.e., points where the magnitude of the gradient is high in

one direction as compared with the rest of the image. Pixels where this gradient

magnitude is above a particular threshold are identified as edges, or edgels.
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Figure 2.9: Calibration image. A calibration board such as this is used to determine
a camera’s distortion parameters. The effects of radial distortion are apparent in the
upper right corner where the rightmost column of squares appears to curve inward.

Rather than actually computing a derivative of the image, often the gradient

is approximated by evaluating the convolution of the image with a small kernel or

“mask”. Common convolution kernels used for this task include those proposed by

Roberts [25], Prewitt [24], and Sobel [28] shown in Figure 2.10. Convolution of the

digital image with the first mask of each pair produces the gradient in the vertical

direction, GV , and convolution with the second mask produces the gradient in the

horizontal direction, GH .

-1 0 0 -1

0 1 1 0

(a) Roberts masks

-1 -1 -1 -1 0 1

0 0 0 -1 0 1

1 1 1 -1 0 1

(b) Prewitt masks

-1 -2 -1 -1 0 1

0 0 0 -2 0 2

1 2 1 -1 0 1

(c) Sobel masks

Figure 2.10: Common gradient operators. Convolution kernels such as these are
commonly used to approximate the derivative of digital images. The 2s in the center
column and row of the Sobel kernels provide a smoothing effect which is helpful in
suppressing noise.
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As Gonzalez and Woods [10] observed, 2×2 masks are simple computationally,

but the symmetry about a center point offered by odd-dimensioned masks is more

useful for determining edge directions. Larger masks provide more accurate approx-

imations of the derivative, since they incorporate more information into each calcu-

lation. However, larger masks also require many more computations, since for a pair

of N×N masks, 2N2 products and 2(N2 − 1) sums must be performed for each pixel.

The true gradient magnitude is determined by evaluating the Euclidean norm

of the vertical and horizontal gradients for each pixel, but the less computationally

expensive method of simply adding their absolute values as shown in Equation (2.27)

is commonly used when constrained by data processing capacity.

∣∣G(i, j)∣∣ ≈ ∣GV (i, j)∣ + ∣GH(i, j)∣ (2.27)

In [6], Canny proposed that strong and weak edges be determined by establishing

both upper and lower gradient thresholds. Strong edges occur where the magnitude of

the image gradient is above the upper threshold. Weak edges occur where the gradient

is between the upper and lower thresholds. Only weak edges which are adjacent to

strong edges are declared as edgels in the final edge image.

Regardless of the method used, the end result of an edge detection operation

is a binary image, where ones represent pixels that are declared as edges and zeros

represent all other pixels. Figure 2.11 shows the result of performing the Canny edge

detection operation on an image of a hallway.

2.5.2 Line Detection. The problem of identifying straight lines in digital

images has been investigated by many researchers and a plenitude of methods have

been developed. However, most methods are at least loosely based on either the

Hough transform from [12] or Burns’ line extractor from [5].
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(a) Hallway image (b) Canny edge image

Figure 2.11: Canny edge image. (a) An image of a hallway. (b) This binary image
results from performing Canny edge detection on the image shown in (a).

2.5.2.1 Hough Transform Methods. The Hough transform was devel-

oped and patented by Paul Hough in 1962 as a means for identifying complex patterns.

The method involves establishing an n-parameter representation of the pattern be-

ing sought, and then generating an n-dimensional accumulator space for determining

how many observations support the presence of the pattern. The accumulator space

is essentially a histogram, in which peaks appear that support likely instances of the

pattern being sought.

In order to use the Hough transform to find lines in digital images, an appropri-

ate parameterization of a line must be selected. Lines in two-dimensional image space

have only two degrees of freedom, so only two parameters are required to describe

them. Often, lines are represented by a slope, m, and y-intercept, b, as shown in

Equation (2.28).

y =mx + b; (2.28)

However, this parameterization presents difficulties when the Hough transform is ap-

plied, because the slope parameter is unbounded, as manifest by the infinite slope of

vertical lines.
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Duda and Hart proposed the polar representation of a line given in Equa-

tion (2.29), which provides a fully bounded parameter space [8].

� = x cos � + y sin � (2.29)

The parameters � and � represent the length and angular distance from the x-axis

of the shortest line segment joining the origin of a digital image to the line being

observed, as shown in Figure 2.12. The parameter, �, can vary between ±90○, and

ρ

θ

x

y

Figure 2.12: Hough line parameters. The parameters � and � represent the length
and angular distance from the x-axis of the shortest line segment joining the origin of
a digital image to the line being observed.

the parameter, �, can vary between ±d, where d is the diagonal of the image frame in

pixels.

An edgel with coordinates (x, y) supports the presence of every line whose pa-

rameters satisfy Equation (2.29). Thus, points in the image are represented by si-

nusoidal curves in the Hough parameter space, as shown in Figure 2.13. Conversely,

points in Hough parameter space represent lines in the image. When many collinear

edgels are present in an image, their representations in Hough parameter space stack

on top of one another in the accumulator. Peaks in the accumulator correspond to

pairs of parameter values representing lines in the original image, as shown in Fig-

ure 2.14.
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(a) Subset of lines supported by an edgel

 
!

(b) Hough parameter space for a single edgel

Figure 2.13: Hough transform of a single edgel. (a) A small subset of the lines
supported by a single edgel are displayed. (b) The edgel shown in (a) is represented
by the curve shown here in Hough parameter space.

x
y

(a) Collinear edgels

 

!

(b) Hough parameter space of multiple
edgels

Figure 2.14: Hough transform of multiple collinear edgels. (a) All edgels shown
here are collinear. (b) The edgels shown in (a) are represented by these curves in
Hough parameter space. The individual curves all overlap at the point corresponding
to the parameters of the line passing through the edgels in (a).
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Several variations of the Hough transform have been developed, including the

probabilistic Hough transform presented in [18]. Kiryati et al.’s method involves

selecting a random subset of the collection of edgels in the image and performing the

Hough transform on only those points. Since strong instances of a particular pattern

in an image will be represented by large peaks in the Hough parameter space, the

smaller subset will still identify these instances with high likelihood. This sampling

method reduces the number of computations required without significantly impacting

the performance in terms of pattern detection.

2.5.2.2 Gradient Orientation and Connected Component Methods.

In [5], Burns, Hanson and Riseman demonstrate that edge orientation carries impor-

tant information about the presence of lines, and can be exploited for line identifica-

tion. They observed that lines are characterized by neighboring pixels whose gradient

orientations are roughly orthogonal to the line. The Burns line extractor uses this

characteristic to fit lines to regions of neighboring pixels with similar gradient direc-

tions. All gradient orientation line detection algorithms follow the following basic

steps:

1. Group pixels by common gradient direction

2. Find collections of neighboring pixels within each grouping. These are called

“line support regions.”

3. Fit a line to each line support region.

Burns et al.’s method begins by using convolution kernels such as those discussed

in Section 2.5.1 to calculate the image gradient. The direction of the gradient at each

pixel is determined by Equation (2.30) with the output of the arctangent function

corrected by quadrant.

�j = tan−1 GVj

GHj

(2.30)

Once a gradient direction is determined for each pixel, the pixels are sorted by gra-

dient direction into groups representing coarsely partitioned regions of the interval
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[0,2�) as shown in Figure 2.15. The number of divisions and boundary locations

are determined arbitrarily, with some researchers recommending overlapping regions

to prevent fragmentation of lines whose orientations may coincide with the division

boundaries. Next, a connected components algorithm is used to find groupings of
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Figure 2.15: Circle divisions. Pixels are grouped by similar gradient orientation
into one of the regions shown.

pixels with similar gradient orientation that are also neighbors. Each collection of

connected pixels with similar gradient orientation is declared a line support region

from which a straight line may be extracted.

Researchers have demonstrated different methods for fitting lines to line support

regions. Burns et al. fit a plane to the intensity surface underlying each line support

region [5]. They then determined lines by intersecting the intensity surface plane with

a horizontal plane at the mean region intensity value. This method gives good results

in terms of identifying straight lines in images and also facilitates the computation

of various line characteristics such as length, contrast, width, location, orientation

and straightness. Others have modified the method to enable faster image processing

when computational limitations are encountered [14].

30



In [14], Kahn, Kitchen and Riseman developed a line extraction algorithm they

call the “fast line finder” (FLF) which fits lines to line support regions by finding

the major axis of an ellipse fit to the region. Their method was motivated by a

need to guide a land-based robot along a path using visual cues. It is intended to

be implemented on-board the mobile platform to primarily identify the edges of the

path the robot is to follow.

For a line support region, Ri, composed of N individual pixels, a scatter matrix,

Ai, is determined by Equation (2.31)

Ai =
⎡⎢⎢⎢⎢⎢⎣
ai bi

bi ci

⎤⎥⎥⎥⎥⎥⎦
(2.31)

where the matrix elements ai, bi and ci are given by Equation (2.32).

ai =
N∑
j=1

wjx
2

j −
(∑Nj=1wjxj)2
∑Nj=1wj

bi =
N∑
j=1

wjxjyj −
(∑Nj=1wjxj) (∑Nj=1wjyj)

∑Nj=1wj (2.32)

ci =
N∑
j=1

wjy
2

j −
(∑Nj=1wjyj)2
∑Nj=1wj

The coordinates (xj, yj) give the position of each member of the line support region,

and each weighting factor, wj, is equal to the gradient magnitude of the j-th pixel.

Kahn et al. opted for the standard alternative form for determining the scatter matrix

shown here because it does not require the independent calculation of a region centroid

prior to accumulating the partial sums.

The scatter matrix has two eigenvalues, �L and �S, with their corresponding

eigenvectors, eL and eS. One of the eigenvalues, �L, is most likely much larger than

the other. In fact, the ratio of �S/�L can be used as a metric to describe how line-like

the line support region is. The smaller the ratio, the longer and narrower the ellipse

that is fit to the region.
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The eigenvectors of the scatter matrix give the directions of the major and minor

axes for an ellipse fit to the line support region, with eL describing the major axis.

The line, li, fit to line support region, Ri, is fully described by the vector passing

through the centroid of the line support region whose orientation is described by

Equation (2.33) with the arctangent function corrected by quadrant.

�i = tan−1 (�Si − ai
bi

) (2.33)

Endpoints of the line are determined by finding the intersections of li with the bound-

aries of the line support region.

In [19], Košecká and Zhang modified the line-fitting process further by omitting

the weighting factors used in computing the scatter matrix. Their method more closely

resembles the standard form for calculating a covariance matrix from the coordinates

of the pixels comprising each line support region. First, a mean coordinate pair,

(x̄i, ȳi) is calculated from the coordinates of each pixel in the line support region.

Then, the elements of the scatter matrix are determined using Equation (2.34).

ai =
N∑
j=1

(xj − x̄i)2

bi =
N∑
j=1

(xj − x̄i)(yj − ȳi) (2.34)

ci =
N∑
j=1

(yj − ȳi)2

Again, the eigenvalues and eigenvectors of the scatter matrix are used to determine

the orientation of li, but Košecká and Zhang’s method uses the relation shown in

Equation (2.35) corrected by quadrant.

�i = tan−1 eLx
eSy

(2.35)
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Each line is then described using the � − � parameterization from Section 2.5.2.1 by

using the coordinates of the centroid of each line support region, (x̄i, ȳi) and the

orientation, �i as the inputs to Equation (2.29).

2.5.2.3 Method Comparison. In [17], Kessler et al. compare the

speed of various line detection methods. Each of four different methods including

the Hough transform discussed in Section 2.5.2.1 and Košecká and Zhang’s connected

components algorithm discussed in Section 2.5.2.2 are implemented on a 2.5 GHz

computer using Matlab. Their results show that Košecká and Zhang’s method of

line detection is 35% faster than the Hough transform when processing a 1024×768
resolution image and 40% faster when processing a 512×384 resolution image.

2.5.2.4 Representing Image Lines in 3-Space. In [1], Barnard describes

how every line in an image can be imagined to represent a plane in 3-space which is

defined by any two points on the line and the optical center of the camera. This plane,

called an interpretation plane, can be described mathematically by a unit normal

vector li as shown in Figure 2.16. The normal vector is determined by calculating

the normalized cross product of the vectors pointing to the two points on the line as

shown in Equation (2.36).

lci =
sc
1
× sc

2∣∣sc
1
× sc

2
∣∣ (2.36)

Line in scene

Camera focal plane

Optical center of 

camera

Line in 

image s1

s2
li

Figure 2.16: Planar representation of an image line. Lines in images can be de-
scribed by unit normals of planes in 3-space.
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p

l1
l2

Figure 2.17: Intersection of parallel image lines. The intersection of any pair of
lines in an image is expressed as the cross product of their planar normals.

This planar representation of image lines gives rise to the following three axioms:

1. The line l joining two points p1 and p2 is given by:

l = p1 × p2∣∣p1 × p2∣∣ (2.37)

2. The point p where two lines l1 and l2 cross is given by:

p = l1 × l2∣∣l1 × l2∣∣ (2.38)

3. Any point p on line l must satisfy:

pT l = 0 (2.39)

It is worth noting that the relationship shown in item 2 is true of any pair of lines

in the image, including those that are parallel on the image plane. Such a case is

illustrated in Figure 2.17. Item 3 provides a useful metric for determining how close

a point is to a particular line. The greater the magnitude of their inner product, the

further p is from l.

34



2.5.3 Vanishing Points. The projections of lines which are parallel in the

world appear to converge at a fixed point in perspective images. This phenomenon

is particularly visible in photographs of long corridors such as the one shown in Fig-

ure 2.11(a). The point at which parallel lines appear to intersect is known as a

vanishing point, and represents the projection of a point infinitely distant from the

camera onto the image plane. The projection of a vanishing point onto the image

plane is invariant with relative translation, and is only affected by relative rotation

between the camera and scene [11]. This property makes vanishing point detection

and tracking an effective means of determining the camera’s attitude with respect to

a scene containing many parallel lines.

2.5.3.1 Vanishing Point Detection. A vanishing point (VP) is the

point at which the projections of parallel lines in a structured scene appear to con-

verge. Thus, the detection of vanishing points in images of structured environments

is reduced to finding points where many lines intersect. To accomplish this task,

Barnard proposes a method similar to the Hough transform. First an accumulator

representing the Gaussian sphere, i.e., a sphere centered at the camera’s optical cen-

ter with radius equal to one, is constructed. The sphere is parameterized by azimuth

angle, � ranging from 0 to 2� radians, and elevation angle, �, ranging from -�
2
to �

2

radians. Each element of the array represents a particular range of azimuth and ele-

vation angles. Because these elements represent uniform angular spacing, they do not

represent equal portions of the sphere’s surface. Every line in the image is projected

onto the Gaussian sphere by intersecting its interpretation plane with the sphere.

These intersections form great circles on the sphere’s surface. The accumulator is

populated by incrementing the elements which satisfy Equation (2.40). (For cases

where ly is very small, an alternate form exists expressing � as a function of � with

lx in the denominator.)

� = tan−1 −lx sin� − lz cos�
ly

(2.40)
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Peaks in the accumulator give the azimuth and elevation of points where many lines

intersect, which are likely vanishing points. Limitations of this method include the

uneven spacing of accumulator elements on the sphere’s surface and the ambiguous

azimuth angle of vectors pointing to either pole.

In [20], Magee and Aggarwal use a similar approach, but rather than tracing

circles in a discretization of the Gaussian sphere, they calculate an (�,�) pair for the

intersection of each possible pairing of image lines using Equations (2.41) and (2.42).

� = tan−1 (py
px
) (2.41)

and

� = tan−1 ⎛⎝
pz√
p2x + p2y

⎞
⎠ (2.42)

Then, groupings of intersections with an arc distance between them that is below a

threshold are formed. If a large enough group is found, the associated (�,�) pair is

declared a vanishing point, the lines associated with that grouping are removed from

the set of image lines, and the process repeats. This method overcomes the problem

stemming from the discretization of the sphere into unevenly sized segments, but still

is subject to ambiguous azimuth at the poles. Both Barnard’s and Magee and Aggar-

wal’s methods also are somewhat computationally burdensome with the requirement

to either trace circles on the sphere for every line or compute NC2 intersections.

2.5.3.2 Random Sample Consensus. In [9], Fischler and Bolles intro-

duce the Random Sample Consensus (ransac) algorithm as part of their method for

determining the position of a camera based on an image of landmarks with known

locations. The method provides a way to robustly fit a model to a set of data con-

taining a certain proportion of outliers using a statistically driven guess and check

scheme. When applied to the task of finding vanishing points in images, it enables

the detection of clusters of mutually intersecting lines without requiring that every
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possible intersection be explicitly calculated. The method is described here in general

terms and applied to the detection of vanishing points in Chapter III.

Unlike conventional algorithms for fitting a model to experimental data that

can be influenced by what Fischler and Boles call “gross deviations,” the ransac

algorithm is robust to such outlying data. “Rather than using as much of the data

as possible to obtain an initial solution and then attempting to eliminate the invalid

data points, ransac uses as small an initial data set as feasible and enlarges this set

with consistent data when possible.” [9] The process for establishing a model from a

set S of datum points that is known to contain a proportion � of outliers follows the

basic steps outlined below.

1. Randomly select a minimum subset s from S and instantiate the model with s.

2. Determine the set of points Si that is within a threshold t of the model estab-

lished by s. The set Si is the consensus set of S.

3. If the size of Si is greater than a threshold T , re-estimate the model based on

all the points in Si and terminate.

4. If the size of Si is less than T and fewer than N trials have been performed,

select a new random minimum subset s and repeat steps 2 through 4.

5. After N trials, re-estimate the model with the largest consensus set Si and

terminate.

There are three unspecified parameters used in implementing the ransacmodel

estimation algorithm, specifically the threshold t for declaring data as either inliers or

outliers, the threshold T which determines how many data should fit the model before

terminating, and the maximum number N of random minimum subsets to examine

before terminating the process.

The threshold value t used for declaring data as either inliers or outliers is often

determined empirically. Alternately, by assuming measurement errors are zero-mean

with a known standard deviation, t can be computed from a �2 distribution. The size
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threshold T for determining what is an adequately large consensus set is determined

from the expected number of outliers as in Equation (2.43).

T = (1 − �)S (2.43)

Lastly, the minimum number of iterations N required to be assured with probability

p that at least one minimum subset s is free from outliers is determined by Equa-

tion (2.44)

N = log(1 − p)
log (1 − (1 − �)s) (2.44)

where � is the proportion of outliers expected to be found in S. Naturally, p is

preferred to be very nearly equal to 1, with 0.99 frequently used in practice.

In many practical applications, �may not be known. Under these circumstances,

the threshold T of inliers needed to end the loop cannot be determined. Instead, only

the minimum number of iterations is used for deciding when to terminate the process.

In order to calculate the minimum number of iterations to perform, a worst case value

can be used initially, and both � and N can be recomputed in subsequent iterations.

If one random minimum subset s produces a proportion of outliers smaller than the

current value of �, N is recomputed from Equation (2.44) using the new, smaller �.

In the case where N is found to be smaller than the number of iterations that have

already been performed, the algorithm terminates and the largest consensus set is

used to estimate the model.

2.5.3.3 Determining Attitude From Vanishing Points. Various re-

searchers have used vanishing points to determine camera orientation with respect to

the scene. In [27], Schuster et al. describe the use of vanishing points to determine

the heading of a ground-based robotic vehicle. Their camera is pitched upward so as

to view the grid of rectangular ceiling tiles inside a building. The desired direction of

travel is parallel to the short axis of the tiles, so the corresponding vanishing point

is used to determine heading and make corrections in a feedback controller. Their
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algorithm is limited in its scope, since only one attitude angle is determined. Also, if

the image plane is parallel to the vanishing direction, a finite vanishing point cannot

be found using their method.

In [13] Johnson demonstrates the use of vanishing points to find the attitude

of a quadrotor unmanned vehicle within an indoor corridor. His method uses the

vanishing point along the length of the corridor to directly calculate pitch � and yaw

 with the relationships shown in Equations (2.45) and (2.46)

 = tan−1 (
x
f
) (2.45)

� = tan−1 (
y
f
) cos (2.46)

where 
x and 
y are the distance in the camera frame’s x and y directions, respectively,

of the vanishing point from the principal point on the image plane. The vanishing

point in the downward direction � is used to calculate the roll angle as shown in

Equation (2.47).

� = − tan−1 (�y
�x
) (2.47)

These attitude angles are then combined with the solution from an inertial sensor in a

Kalman filter. The locations of the vanishing points in one image are used as starting

points to look for vanishing points in the next image. Though a Kalman filter is used

to combine the state estimates, the inertial data are not used to aid the vision routine.

In [2], Borkowski and Veth illustrate the benefits of using inertial data to predict

where the vanishing point will appear in the Hough accumulator space and windowing

about that point. The windowed Hough space is deemed the “predictive Hough space”

and peaks corresponding to lines supporting the vanishing point are sought within

it. This method is compared with inertial-only and non-predictive Hough transform

methods and shown to be superior in terms of reducing attitude errors.
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2.6 Kalman Filtering

With inertial and imaging methods now described, a method for merging mea-

surements from both types of sensor is required. This combination is performed inside

of a Kalman filter.

In 1960, Rudolf Kalman published his method for linear estimation in the Jour-

nal of Basic Engineering [15]. This method, which has come to be known as the

Kalman filter, uses Bayesian statistics to optimally combine a dynamics model and

sensor measurements to produce a minimal-uncertainty estimate of quantities of inter-

est. An outline of Kalman’s method follows, based primarily on Dr. Peter Maybeck’s

presentation of the topic in [21] and [22]. Though an equivalent continuous-time algo-

rithm also exists, the Kalman filter is presented here as a discrete-time method, since

it will ultimately be implemented on a digital computer.

2.6.1 Linear Kalman Filter. Some physical systems are adequately modeled

in linear stochastic differential equation form as:

ẋ(t) = Fx(t) +Bu(t) +Gw(t) (2.48)

where x is a vector of state variables, u is a vector of control inputs, and w is a vector

of zero-mean, white, Gaussian noise sources with autocorrelation:

E [w(t)w(t + �)] =Q�(�) (2.49)

The matrices F , B, and G are populated with constant coefficients, and �(�) is the
Dirac delta function. Sensor measurements for such a system may also be modeled

by:

z(ti) =Hx(ti) + v(ti) (2.50)
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where z is a vector of measurements, H is a matrix of constant coefficients, and v is

a vector of zero-mean, white, Gaussian noise sources with autocorrelation:

E [v(ti)v(tj)] =R�ij (2.51)

The symbol �ij represents Kronecker’s delta function. For such a linear system, the

standard Kalman filter is the optimal algorithm for estimating the random state

vector, x , in terms of minimizing uncertainty in a least squares sense.

The Kalman filter provides a Gaussian probability density function (pdf) for

the random vector, x , at each instant in discrete time conditioned on the uncertain

measurements provided by the sensors. Beginning with initial conditions, the state

estimate, x̂, and covariance, P xx, are propagated from one instant in discrete time to

the next using a state transition matrix, Φ, which is determined by:

Φ = eFΔt (2.52)

where Δt is the time step between discrete time instants. The propagation is given

by:

x̂(t−i+1) =Φx̂(t+i ) +Bu(ti) (2.53)

P xx(t−i+1) =ΦP xx(t+i )ΦT +Qd (2.54)

where Qd is the discrete-time process noise strength matrix. The calculation of Qd is

not as simple as determining Φ, but can be accomplished using the process proposed

by Van Loan in [30].

At discrete instants in which measurements are available, these measurements

are used to update the state estimate and covariance by optimally combining the

dynamics model estimate and uncertain measurements through the use of the Kalman

gain matrix, K, which is given by:

K(ti) = P xx(t−i )HT [HP xx(t−i )HT +R]−1 (2.55)
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The dynamics model prediction and measurements are combined to produce a

new state estimate and covariance using the following relationships:

x̂(t+i ) = x̂(t−i ) +K(ti) [z(ti) −Hx̂(t−i )] (2.56)

P xx(t+i ) = P xx(t−i ) −K(ti)HP xx(t−i ) (2.57)

The quantity z(ti)−Hx̂(t−i ) which appears in Equation (2.56) is known as the “resid-

ual,” and represents the difference between the measurement realization and the mea-

surement prediction from the dynamics model. The expressionHP xx(t−i )HT +R that

appears in the Kalman gain equation (2.55) is the residual covariance. The Kalman

gain serves as a weighting factor to give the appropriate amount of preference to

either the dynamics model prediction or the measurement based on their respective

uncertainties.

2.6.2 Extended Kalman Filtering. For systems which are not adequately

modeled by Equation (2.48), the filter which has just been described will not optimally

estimate the states and their uncertainties. In such a case, an extended Kalman

filter (EKF) can be used to obtain more accurate estimates. The basic stochastic

differential equation form of such a nonlinear system is:

ẋ(t) = f [x(t),u(t), t] +G(t)w(t) (2.58)

where f is a vector of functions, fj, at least one of which is nonlinear. The measure-

ment equation for such a system may also be nonlinear of the form:

z(ti) = h [x(ti), ti] + v(ti) (2.59)

where h is also a vector of functions, ℎk, at least one of which is nonlinear.

An alternative for overcoming the linear filter’s shortfall is to linearize about

the state estimates and define a vector of perturbation states. The perturbation
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state vector, �x, represents the difference between the true state and estimated state

vectors.

�x(t) ≜ x(t) − x̂(t) (2.60)

The EKF produces a nominal state trajectory for each measurement interval by start-

ing from the most recent state estimate and integrating the nonlinear state functions

as shown in Equation (2.61).

x̂(t−i+1) = ∫ ti+1

ti

f [x̂(t),u(t), t]dt + x̂(t+i ) (2.61)

The estimated perturbation state vector, �x̂, is set to zero at the beginning of a

filter cycle, updated during the measurement update phase, added to the nominal

trajectory to correct the total state estimate, and reset to zero before beginning the

next recursion.

The state transition matrix used to propagate the covariance is found by first

linearizing the state functions about the most recent state estimate to obtain the

matrix F as shown in Equation (2.62).

F (ti) = ∂f
∂x
∣
x̂(t+

i
)

(2.62)

This linearized state matrix is then input into Equation (2.52) to obtain Φ(ti), and
the uncertainty is propagated with Equation (2.54).

For the measurement update stage of the filter, first a measurement prediction,

zpred, is determined by evaluating the nonlinear measurement function at the most

recent state estimate.

zpred(ti) = h [x̂(t−i ), ti] (2.63)

A measurement perturbation, �z, is also defined, which represents the difference

between the actual measurements and measurement prediction as shown in Equa-
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tion (2.64).

�z(ti) ≜ z(ti) − zpred(ti) (2.64)

Since zpred was obtained using the nonlinear measurement equations, �z is equivalent

to the residual in the linear Kalman filter.

In order to calculate a Kalman gain matrix and residual covariance, a linearized

matrix, H(ti), must be found in much the same way that F (ti) was. The matrix

H(ti) is obtained by evaluating the derivative of the measurement equations with re-

spect to the state vector at the most recent state estimate as shown in Equation (2.65).

H(ti) = ∂h
∂x
∣
x̂(t−

i
)

(2.65)

The linearized matrix H(ti) is then used in Equation (2.55) to calculate the Kalman

gain. With the Kalman gain matrix determined, Equation (2.56) can be used to

update the estimated perturbation state vector, �x̂. Since the a priori estimate of the

perturbation state vector is zero, and the measurement perturbation is the residual,

this step reduces to the form shown in Equation (2.66).

�x̂(t+i+1) =K(ti+1)�z(ti+1) (2.66)

Finally, the perturbation state estimate is added to the nominal state trajectory to

update the total state estimate as shown in Equation (2.67), and then reset to zero

for the next iteration.

x̂(t+i+1) = x̂(t−i+1) + �x̂(t+i+1) (2.67)

Often, a certain level of pseudonoise must be added to the system to account

for additional uncertainty which results from the linearization process. This is part

of tuning the filter, and is typically combined with simulation to verify filter perfor-

mance. Also, EKFs are somewhat sensitive to initialization errors which can prevent
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effective state estimation, particularly if there is limited observability between the

measurements and states.

2.7 Summary

This chapter has put in place the foundation upon which the attitude estimation

methods used in this thesis are built. Topics in nomenclature, inertial navigation,

digital imaging, and Kalman filtering have been presented. The next chapter describes

how these concepts are used to develop a method for combining inertial and optical

information to estimate attitude.
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III. Methodology

This chapter describes the methods and procedures used to approach a solution

to the indoor aerial attitude estimation problem, as well as the experimental

approach used to evaluate this solution. These topics are divided into two main

sections–algorithm development and experimental methods. Algorithm development

is presented in Section 3.1, and experimental methods are discussed in Section 3.2.

3.1 Algorithm Development

The method presented in this thesis for estimating attitude using inertial and

optical data follows the basic steps shown on the flowchart in Figure 3.1. These steps

Initial 

Attitude

Propagate

Inertial Solution

Image

Available?

Detect

Edges

Detect

Lines

Predict Next

VP

Hide

Distant

Lines

Search for VP VP Found?
Tried all 3 

VPs?
No

Update

Perturbation

States

Remove

Inlier Lines

Update
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Estimate

No

Yes

Yes
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No
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Perturbation

States

Image

Processing

Steps

Figure 3.1: Image-aiding algorithm flow chart. The process of combining inertial
and image data follows the basic steps shown here. The steps inside the shaded region
comprise the measurement stage of an EKF.
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parallel the general outline of an EKF presented in Section 2.6.2, and each will be

thoroughly described in the subsequent portions of this section. In order to implement

such a Kalman filter, a state vector must be defined and both a dynamics model and

a measurement model must be established.

3.1.1 State Vector. Attitude is expressed as the DCM which transforms

vectors represented in the vehicle body frame into their equivalent representation in

the navigation frame, Cn
b . Essentially, the true body-to-navigation frame DCM is the

product of a corrupted estimate of the DCM, Cñ
b , and another DCM of errors, Cn

ñ, as

shown in Equation (3.1).

Cn
b =Cn

ñC
ñ
b (3.1)

The quantity we wish to estimate is the DCM of errors. Assuming the errors are

small, they can be expressed as a 3-vector,  , whose elements represent the rotation

angles required to correct the corrupted body-to-navigation frame DCM,C ñ
b , to truth.

This vector is the vector of perturbation states estimated by the extended Kalman

filter. Its corresponding DCM can be expressed as the matrix exponential of the

skew-symmetric representation of  .

Cn
ñ = e × (3.2)

Since the angles contained in  are assumed to be small, the matrix exponential can

be approximated as a matrix power series with higher than first order terms neglected.

Substituting this approximation into Equation (3.1) yields the following relationship:

Cn
b ≈ [I + ×]C ñ

b (3.3)

3.1.2 System Dynamics Model. With the state vector defined, the system

dynamics model can be established. This model is taken from the differential equation
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governing the dynamics of Cn
b shown in Equation (2.12), which is repeated here.

Ċ
n

b =Cn
b [!bib×] −Cn

e [!eie×]Ce
nC

n
b (3.4)

Neglecting the Earth’s turn rate and solving the differential equation over one discrete

time-step gives the relationship shown in Equation (3.5), where Δt represents the step

size between instants in discrete time.

Cn
b (ti+1) ≈Cn

b (ti) exp ([!bib(ti)Δt]×) (3.5)

The Earth’s turn rate is omitted because the update rate for this particular im-

plementation is approximately three hertz and the error introduced by the Earth’s

rotation over a period of one third of a second is negligible relative to the precision

of a MEMS-grade IMU. Substituting the measured body rotation rate, !bibm , for !
b
ib

and the estimated body-to-navigation frame DCM, C ñ
b , for C

n
b gives the expression

shown in Equation (3.6).

C ñ
b (t−i+1) =C ñ

b (t+i ) exp ([!bibm(ti)Δt]×) (3.6)

Equation (2.13) shows that the measured body rotation rate is the sum of the true

body rotation rate, a vector of gyro biases, and zero-mean, Gaussian noise. If the

vector of biases is subtracted from the measured rotation rates, a more accurate

inertial solution can be obtained than the solution which results if this subtraction is

not performed. Equation (3.7) shows the results of substituting the difference between

the measured body rotation rate and gyro bias vector into Equation (3.6).

C ñ
b (t−i+1) =C ñ

b (t+i ) exp [([!bibm(ti) − bb]Δt)×] (3.7)
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This is the nonlinear equation used to propagate C ñ
b from one instant in discrete time

to the next. The propagation of the perturbation state uncertainty matrix, P   , will

be described next.

3.1.2.1 System Model Linearization. Before the process uncertainty

can be propagated, a linearized dynamics matrix must be found from which a state

transition matrix can be determined. The first step in finding this linearized dynamics

matrix is to differentiate Equation (3.3) with respect to time.

Ċn
b = [ ̇×]C ñ

b + [I + ×]Ċ ñ

b (3.8)

From here, the DCM derivatives, Ċn
b and Ċ

ñ

b , are replaced with their corresponding

equivalent products as described by Equation (2.4).

Cn
b [!bnb×] = [ ̇×]C ñ

b + [I + ×]C ñ
b [!bñb×] (3.9)

Substituting Equation (3.3) for Cn
b and solving for [ ̇×] yields:

[ ̇×] = −[I + ×]C ñ
b [!bñb×]Cb

ñ + [I + ×]C ñ
b [!bnb×]Cb

ñ (3.10)

Now, a replacement expression for !bnb will be described, starting with the following

relationship:

!bnb = !bibm −Cb
nC

n
e!

e
ie (3.11)

Substituting Equations (2.13) and (3.3) into (3.11) gives:

!bnb = !bib + bb +wb −Cb
ñ[I − ×]Cn

e!
e
ie (3.12)

Distributing the product in the last term and rearranging yields:

!bnb = !bib −Cb
ñC

n
e!

e
ie + bb +wb +Cb

ñ[ ×]Cn
e!

e
ie (3.13)

49



Combining the first two terms on the right hand side of the equation gives:

!bnb = !bñb + bb +wb +Cb
ñ[ ×]Cn

e!
e
ie (3.14)

The expression found in Equation (3.14) can now be substituted into Equation (3.10)

to obtain:

[ ̇×] = −[I + ×]C ñ
b [!bñb×]Cb

ñ + (3.15)

[I + ×]C ñ
b ([!bñb×] + [bb×] + [wb×] + [(Cb

ñ[ ×]Cn
e!

e
ie)×] )Cb

ñ

Eliminating like terms from this expression gives:

[ ̇×] = [I + ×]C ñ
b ([bb×] + [wb×] + [(Cb

ñ[ ×]Cn
e!

e
ie)×] )Cb

ñ (3.16)

Finally, removing second-order terms, neglecting the Earth’s turn rate and collapsing

the skew-symmetric forms yields:

 ̇ =C ñ
b b

b +C ñ
bw

b (3.17)

This equation shows that the perturbation angles’ rates of change are simply the sum

of a vector of biases and white, Gaussian noise. This, then, gives rise to a linearized

state matrix that is populated with all zeros and a state transition matrix equal to

identity. The error matrix, P   , is then propagated from one instant in discrete time

to the next by:

P   (t−i+1) = P   (t+i ) +Qd (3.18)

Together, Equations (3.6) and (3.18) comprise the “Propagate Inertial Solution” step

depicted on the flowchart shown in Figure 3.1.

3.1.3 Measurement Model. Along with a system dynamics model, an EKF

also requires a measurement model. In this case, the measurement model begins
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with the assumptions regarding the structure of the environment enumerated in Sec-

tion 1.2.1. Such an environment will have three mutually orthogonal primary van-

ishing directions that coincide with the three principal axes of the Earth-fixed local

level navigation frame. Mathematically, this means that there will be three vanishing

points, v1, v2 and v3, which can be expressed as the following unit pointing vectors:

vn1 =
⎛⎜⎜⎜⎜⎝

1

0

0

⎞⎟⎟⎟⎟⎠
vn
2
=
⎛⎜⎜⎜⎜⎝

0

1

0

⎞⎟⎟⎟⎟⎠
vn3 =

⎛⎜⎜⎜⎜⎝

0

0

1

⎞⎟⎟⎟⎟⎠
(3.19)

Because there are three vanishing points inherent in the structure of the en-

vironment, there are three measurements for each image. Inside the Kalman filter,

these are treated as consecutive updates to the vector of perturbation states where the

a posteriori estimate of  ̂ determined from one vanishing point becomes the a priori

estimate for the next. Once the last update to the perturbation state vector has been

performed, C ñ
b is corrected using the following relationship:

C ñ
b (t+i ) = exp ([ ̂(t+i )×])C ñ

b (t−i ),  ̂(t+i )→ 03×1 (3.20)

This corresponds to the “Update Attitude Estimate” and “Reset Perturbation States”

steps shown on the flowchart in Figure 3.1. The DCM, C ñ
b , is not updated between

the three vanishing point measurements in a single image, so that each of the three

measurement predictions utilizes the same a priori information and all three mea-

surements remain mutually independent.

The measurement function describing the vanishing points’ representations in

the camera frame is shown in Equation (3.21),

vck =Cc
bC

b
nv

n
k + vk ∀ k ∈ [1,3] (3.21)

51



where vk represents the measurement noise vector corresponding to the k-th vanishing

point. Substituting Equation (3.3) into Equation (3.21) yields the following expression

relating the observed vanishing point vector in the camera frame to the vector of

perturbation states:

vck =Cc
bC

b
ñ[I − ×]vnk + vk ∀ k ∈ [1,3] (3.22)

This is the nonlinear measurement function which must be linearized in order to

compute a Kalman gain for use in the update step of the Kalman filter.

3.1.3.1 Measurement Model Linearization. Before the nonlinear mea-

surement function is differentiated, it is manipulated algebraically into a more conve-

nient form. Distributing the matrix product on the right hand side of Equation (3.22)

yields:

vck =Cc
bC

b
ñv

n
k −Cc

bC
b
ñ[ ×]vnk + vk ∀ k ∈ [1,3] (3.23)

The product, [ ×]vnk , appearing on the right of Equation (3.23) represents a vector

cross product. The order of multiplication can be reversed, so long as the product is

multiplied by a factor of -1 as shown in Equation (3.24).

vck =Cc
bC

b
ñv

n
k +Cc

bC
b
ñ[vnk×] + vk ∀ k ∈ [1,3] (3.24)

Differentiating Equation (3.24) with respect to  yields an expression for the lin-

earized measurement matrices, Hk.

Hk(ti) = Cc
bC

b
ñ(t−i )[vnk×] ∀ k ∈ [1,3] (3.25)

3.1.3.2 Measurement Noise Strength. In order to obtain the Kalman

gain matrices that are used to incorporate the measurements into the estimated state

vector, the strengths of the measurement noise vectors must also be known. For this
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work, the measurement noises are characterized as zero-mean, white and Gaussian

with autocorrelations given by:

E[vk(ti)vTk (tj)] = Rk�ij ∀ k ∈ [1,3] (3.26)

where

Rk =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.01 0 0

0 0.01 0

0 0 0.01

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∀ k ∈ [1,3] (3.27)

This equates to a standard deviation of 0.1 in each of the measured unit pointing

vectors’ Cartesian coordinates.

With the linearized measurement matrices, Hk(ti), and measurement noise

strength matrices, Rk, defined, Kalman gains for each measurement can be com-

puted using Equation (2.55). These Kalman gains are then used in Equation (2.66)

to update perturbation state estimate for each of the three orthogonal vanishing di-

rections.

3.1.4 Obtaining Vanishing Point Measurements. Now that a dynamics

model and a measurement model have been established and the method for incor-

porating measurements into the attitude estimate is in place, all we lack are the

actual measurements themselves. This section describes how measurements of each

vanishing point are obtained from a digital image.

3.1.4.1 Edge Detection Method Selection. The first step in processing

an image to find vanishing points is to extract edges. As discussed in Section 2.5.1,

there are various methods for performing this step. Each of the four edge detection

methods presented in Section 2.5.1 were performed on several hallway images to de-

termine which would be the preferable method to use. An image of a hallway taken

with the host vehicle’s camera and the results of performing all four methods of edge
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detection are shown in Figure 3.2. Because the canny edge detector returned more

edges, in particular useful edges such as the borders of the ceiling tiles, the canny

edge detector was chosen for processing the images collected during experiments.

3.1.4.2 Line Detection Method Selection. After edges have been found

in an image, the next step towards identifying the vanishing points is to extract

straight lines. To this end, two of the line detection methods discussed in Section 2.5.2

were evaluated to determine which is better suited for this particular application.

While the Hough transform is a widely-used method for extracting straight lines

in images, the comparison presented by Kessler, et al. in [17] shows moderately re-

duced computation time in using a connected-components method to accomplish this

task. Because the microcomputer on board the host vehicle has limited capacity for

image processing, a fast line finding technique can provide distinct advantages over

other, slower methods. In light of this information, a connected components line

detection process as described by Košecká and Zhang [19] was implemented and com-

pared with the Hough transform method to determine which is faster. Both methods

were executed using Matlab R2009b software on a 2.5 GHz Windows R○ computer.

The resolution of the Hough accumulator was set at one pixel for � and one degree

for �, and sixteen equally-spaced gradient direction regions were used for the con-

nected components algorithm. The running times of each line detection method for

four different images captured from the quadrotor’s onboard camera are shown in

Table 3.1.

Table 3.1: Line detection times. Two different methods’ processing times for de-
tecting lines in several images captured with the host vehicle’s camera are shown
here.

Image Connected Components Hough Transform
Image 1 0.26s 0.37s
Image 2 0.27s 0.26s
Image 3 0.26s 0.29s
Image 4 0.28s 0.11s
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(a) Hallway image

(b) Roberts (c) Prewitt

(d) Sobel (e) Canny

Figure 3.2: Edge detection comparison. The four indicated edge detection methods
were used to produce subfigures (b) through (e) from the image in subfigure (a). The
canny edge detection method returns more edges than the others.
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The images used in this comparison are a different resolution than the ones used

by Kessler et al., and the specific implementation of each method is likely different as

well. These two factors account for the differing results obtained here. Though nei-

ther method is always faster than the other, the Hough transform was chosen as the

line detection method for this research because both the Matlab and OpenCV soft-

ware packages contain functions for implementing it within their respective libraries.

With the line detection method selected, the vanishing point detection process can

be developed.

3.1.4.3 Expressing Lines with Unit Normals. In order to find a vanish-

ing point from the lines detected by the Hough transform, each line is first represented

with a unit normal vector as explained in Section 2.5.2.4. This representation is ob-

tained by removing the distortion from the pixel coordinates of each line’s endpoints,

converting the undistorted pixel coordinates to camera frame line-of-sight vectors

with the T c
pix matrix, and performing the cross product of each resulting pair. Each

cross product is then divided by its magnitude to obtain a unit vector as shown in

Equation (2.37).

3.1.4.4 Incorporating Prior Knowledge. Vanishing points are found

by searching for places where many lines mutually intersect. Not every line in the

image passes through, or even near, a particular vanishing point, so lines that are

distant from where the vanishing point is likely to lie need not be included in the

search for that vanishing point. To determine a likely area for finding a vanishing

point, an initial prediction is made using Equation (3.28).

vcpred(ti) =Cc
bC

b
ñ(t−i )vn (3.28)

Only lines that are near this prediction are used to find the measured vanishing point.

Since the magnitude of the dot product between a line and a point indicates

how close the two are to one another, only lines whose dot product with the predicted
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vanishing point has a magnitude less than a statistically-determined threshold are

considered to correspond to the vanishing point of interest. The dot product of two

unit vectors is equivalent to the cosine of the angle between them, and a point that

lies on a particular line will be perpendicular to that line’s unit normal vector. This

means that, by definition, the angle between a line’s unit normal and any point on the

line is 90 degrees. Thresholding on the magnitude of the dot product then amounts

to determining a maximum angular deviation from 90 degrees between the predicted

vanishing point and each line’s unit normal. The angular threshold chosen for this

work is 5 degrees, which corresponds to a maximum dot product magnitude of 0.087.

Figure 3.3 shows on an artificial edge image which lines are within 5 degrees of a

particular point. The lines within the dot product threshold are called “support

Image lines

Support lines

Predicted vanishing point

Figure 3.3: Lines near a point. The lines shown in blue are within 5 degrees of the
marked point.

lines” for that particular vanishing point. With the set of support lines determined,

a vanishing point can be found from its contents.
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The linearized measurement equation (3.25) and measurement prediction equa-

tion (3.28) both require that a body-to-camera frame DCM, Cc
b, be known before they

can be evaluated. No actual air vehicle was used to carry the test camera during this

research, so the camera itself is treated as the vehicle. As described in Section 2.2, the

x-axis of the vehicle body reference frame is typically oriented towards the direction of

travel, which would be out the lens of the camera in this case. The z-axis of the cam-

era reference frame is typically oriented out the lens as well. To maintain consistency

with these conventions, the body-to-camera frame DCM simply performs a 90-degree

rotation about the body-frame’s y-axis. This DCM is shown in Equation (3.29).

Cc
b =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1
0 1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.29)

3.1.4.5 RANSAC for Vanishing Point Detection. Recall that the

ransac algorithm uses a random minimum subset of experimental data to build a

model and then finds how much more of the data fit this model. After a statistically

determined number of random subsets have been examined, the one with the largest

consensus set is declared the best fit to the data and the model is refined using only

members of this consensus set, i.e., inliers.

A vanishing point is a point where many lines mutually intersect. The smallest

minimum subset to model such a point is the intersection of only two lines. Therefore,

two of the support lines are selected at random, and their intersection calculated by

evaluating the normalized cross product of their unit normal vectors as shown in

Equation (2.38). This intersection is then compared to the complete set of support

lines to find how many other lines pass near it. Once again, the dot product is used

to make this comparison. The magnitude of the dot product between the initial

intersection point and the remaining support lines is calculated and those below a

threshold are added to the inliers of that consensus set. In this comparison, only lines

58



whose planar normals are within 0.5 degrees of 90 degrees from the intersection are

considered inliers to that candidate intersection. This angular threshold corresponds

to a maximum dot product magnitude of 0.0087. Figure 3.4 shows which lines in an

artificial edge image are within 0.5 degrees of an initial candidate intersection.

Image lines

Predicted vanishing point

Support lines

Candidate intersection

Inliers

Figure 3.4: Inlier lines. The lines shown in red are inliers to the intersection marked
with the green circle.

Since the proportion of inliers is not known from the outset, the iterative ap-

proach for determining the minimum number of random pairings to examine described

at the end of Section 2.5.3.2 must be used. An initial estimate of 1 is used for the

proportion of outliers, �. This results in an initial value of infinity for the minimum

number of random pairings to try, but the number is quickly reduced as larger con-

sensus sets are found.

In some instances, there may not be a single largest consensus set, i.e., multiple

candidate intersections may have the same number of inliers. For such cases, a tie-
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breaking criterion is necessary to determine the best consensus set. How close the

inliers are to their corresponding candidate intersection provides this criterion. The

set with the tightest grouping as determined by the sum of the dot products between

each line and the candidate intersection is chosen as the better consensus set.

In other instances, the largest consensus set determined from the set of support

lines may only contain the original two lines used to find the candidate intersection.

In this case, the algorithm ends in failure and no vanishing point is declared in that

particular direction for that image.

3.1.4.6 Vanishing Point Estimate Refinement. If a consensus set is

found, the final step in finding the vanishing point is to find the point that best fits

the consensus set of lines. This is accomplished using static optimization techniques.

Such techniques begin with the definition of a cost function. The best estimate of the

vanishing point from a group of lines is the point which minimizes the dot product

with each of the lines in the consensus set. This can be expressed mathematically as:

Jk =
Nk

∑
i=1

(lTi vk)2 ∀ k ∈ [1,3] (3.30)

where Nk is the number of lines in the consensus set for the k-th vanishing point and

Jk is the total cost associated with vk. Unfortunately, minimizing the cost function

shown in Equation (3.30) will always lead to the trivial solution, vk = 03×1. While this

solution does, in fact, minimize Jk, it does not reveal the direction of the vanishing

point. The trivial solution can only be avoided by adding a constraint to the cost

function through the use of a Lagrange multiplier, �. The constraint to be added in

this case is to require that vk must be of unit length. Equation (3.31) shows the new,

constrained cost function.

Jk =
Nk

∑
i=1

(lTi vkx)2 + �(v2kx + v2ky + v2kz − 1) ∀ k ∈ [1,3] (3.31)
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The optimized solution is then found by implementing a gradient descent technique

to solve for the values of vk and � which satisfy:

∇
vk,�Jk = 04×1 ∀ k ∈ [1,3] (3.32)

The candidate intersection is used as the starting point for the iterative process of

determining the value of vk that minimizes Jk. This solution is the measurement

realization that is used to update the Kalman filter.

Once a vanishing point is found, the inlier lines associated with it are removed

from the total set of lines in the image before moving on to search for the next van-

ishing point. This is done to reduce the amount of extraneous information presented

to the vanishing point detection process in subsequent directions and is valid because

the only line which would legitimately pass through two vanishing points is a horizon

line. Since the host vehicle is assumed to be operating indoors, the horizon will not

be in the camera’s view.

3.1.4.7 Direction Disambiguation. Every pair of lines in an image in-

tersects in exactly two places, one 180 degrees offset from the other. This is evidenced

by the effect of reversing the order of the cross product in Equation (2.38). Due to the

random nature of the initial pairing of image lines performed by the ransac method,

it is possible for the algorithm to converge on a vanishing point that is opposite the

one being sought. To obtain the correct measurement under these circumstances and

prevent degrading the overall attitude estimate, each measurement is compared with

the measurement prediction to confirm that it is in the same hemisphere. If the com-

ponent of the predicted vanishing point with the largest magnitude does not have

the same sign as its corresponding component in the measured vanishing point, the

measured vanishing point is flipped by multiplying it by a factor of -1. This ensures

that the predicted and measured vanishing points are always in the same hemisphere.
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3.1.4.8 Residual Monitoring. Occasionally, it is possible for the van-

ishing point detection algorithm to commit large errors. For instance, measurement

noise may cause the camera’s perception of a tight group of lines that are horizon-

tally parallel in the world to appear to cross on the image plane. In such a case, the

z-component of the horizontal vanishing point will be found to be nearly equal to 1

when the true vanishing point has a z-component nearly equal to 0. This presents a

very large measurement residual and the measurement should be ignored. The diag-

onals of the residual covariance matrix, Hk(ti)P   (t−i )HT
k (ti) +Rk, can be used to

filter out such erroneous measurements. A measurement that yields a residual whose

magnitude in any of its components is larger than 3-� can be safely ignored with

99.6% probability. Stated another way, discarding measurements which lie further

than 3-� from the prediction will only eliminate a valid measurement 0.4% of the

time.

3.2 Experimental Methods

This section presents the experimental methods used to evaluate the attitude

estimation technique described in Section 3.1. The topics presented here include a

description of the test equipment and an outline of the procedures used to acquire

test data.

3.2.1 Equipment. A variety of test equipment was used to collect data

for evaluating the attitude estimation method presented in Section 3.1. The system

under test consists primarily of the same models of MEMS IMU and camera with

which the proposed host vehicle is equipped. These sensors and their associated

circuitry are housed inside an approximately 80 mm × 60 mm × 160 mm plastic box

as shown in Figure 3.5. This sensor box serves as a mock-up of the quadrotor for

which the attitude estimation algorithm is intended. Additionally, a tactical-grade

IMU was used to provide more accurate attitude data than the estimates provided by

the Kalman filter for later comparison.
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IMU

CameraCamera

Figure 3.5: System under test. The system under test consists of the IMU and
camera shown here housed inside a plastic box.
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3.2.1.1 MEMS IMU. The MEMS IMU used onboard the proposed

host vehicle is the ADIS 16355 produced by Analog Devices, Inc. It is a complete

triple-axis inertial unit contained inside an approximately 23 mm × 23 mm × 23 mm

cube. Its small size, light weight and low power requirement make it an attractive

option for applications such as the one in this thesis.

3.2.1.2 Tactical-Grade IMU. The tactical-grade IMU used to compare

performance with the attitude estimation technique is the HG1700-AG58 manufac-

tured by Honeywell. This is a much higher performance device than the MEMS IMU,

as it is equipped with ring laser gyroscopes. While it provides much more accurate

angular rate measurements than the MEMS IMU, it is also much larger, heavier and

requires significantly more power. The specifications of both the MEMS and tacti-

cal IMUs as published by their respective manufacturers are shown in Table 3.2 for

side-by-side comparison.

Table 3.2: IMU specifications
Parameter (units) MEMS IMU Tactical IMU
Sample rate (Hz) ≤ 819 100
Input range (deg/s) ±300 ±1000
Gyro rate bias (deg/hr) 54 1

Angular random walk (deg/
√
hr) 4.2 0.125

Dimensions (mm) 23 × 23 × 23 168 × 196 × 146
Weight (g) 16 4500
Power required (W) ≤ 0.3 ∼8

3.2.1.3 Camera. The camera used onboard the proposed host vehicle

is the Webcam Pro 9000 produced by Logitech. It is equipped with a two megapixel

sensing array and the associated optics. There is also a dynamic autofocus feature,

but for this application, the autofocus was disabled. While disabling the autofocus

sometimes results in blurred images, it ensures that the focal length remains constant.

The constant focal length facilitates the use of a single set of calibration parameters
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for the image processing tasks. The camera was used to capture 640 × 480 resolution

grayscale images for the optical-aiding portion of the Kalman filter.

3.2.1.4 Peripherals. In addition to the primary test equipment already

described, various pieces of secondary equipment were also requisite in performing

this research. Power to both the tactical IMU and inertial-optical sensor box was

provided by a standard 12V car battery connected to an 800-Watt power inverter.

Novatel, Inc.’s synchronized position, attitude and navigation (SPAN™) combined

global navigation satellite system/inertial navigation system (GNSS/INS) receiver

was used to interface with the tactical IMU. Also, two laptop computers were used

to record the data generated by the two sensor platforms. A wheeled cart enabled

mobility of the entire configuration for dynamic test events. Lastly, pieces of 8020

aluminum were used to construct a rigid frame to mount the sensor box and tactical

IMU together and also to provide a structure from which this joint apparatus could

be suspended. The combined testing rig is shown in Figure 3.6.

3.2.2 Procedures. The experimental procedures for collecting the data used

to evaluate the attitude estimation technique consisted primarily of two main tasks–

camera calibration and motion profile development. These tasks were performed to

enable an evaluation of the attitude estimation method.

3.2.2.1 Camera Calibration. Before any of the steps beyond line de-

tection in the image aiding process can be implemented, an intrinsic camera matrix

and optical distortion parameters must be known. These are found by performing a

calibration of the test camera. Multiple images of a camera calibration board were

captured at varying range and orientation and then processed using Bouget’s Camera

Calibration Toolbox for Matlab [3] to extract the desired parameters. The results are

shown in Table 3.3.
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Battery

Power Inverter

Tactical IMU

Camera + MEMS IMU

SPAN Receiver

Figure 3.6: Test rig. The equipment shown here were used to collect data for
evaluating the attitude estimation method described in this thesis.

Table 3.3: Camera calibration parameters. Uncertainties express 3-� boundaries.
Parameter (Units) Value
Focal length (pixels) [528.6, 528.6] ± [0.3, 0.3]
Principal point (pixels) [307.8, 224.1] ± [0.5, 0.5]
Skew factor 3.5 × 10−4 ± 1.6 × 10−4
Radial distortion coefficients [0.043, − 0.17, 0.075] ± [0.0026, 0.01, 0.012]
Tangential distortion coefficients [−9 × 10−5, 7.3 × 10−4] ± [2.3 × 10−4, 2.1 × 10−4]
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3.2.2.2 Motion Profile. Since the attitude estimation algorithm is

intended for use on a flying vehicle, a test profile was developed to mimic the motion

of flight. The combined sensor box and HG1700 IMU apparatus was used to represent

the vehicle. A rectangle was marked on the floor with electrician’s tape outlining

the apparatus’s starting position so that it could be returned to roughly the same

orientation for each of 15 sample runs. Approximately 60 seconds of static data were

collected at the beginning of each sample run before the mock vehicle was lifted off

the floor and hung from the wheeled cart as shown in Figure 3.6. Then, the cart was

pushed through one hallway towards an intersection with another, clockwise around

the corner, and through the second hallway, stopping approximately 4.5 meters shy

of its end. This approximate trajectory is depicted in Figure 3.7. After any swinging

motion in the mock vehicle had subsided, another 60 seconds of static data were

collected at the end of each run.

Start

Stop

Path

xn

Path
yn

Figure 3.7: Pathway through halls. The test apparatus began at the origin of the
Earth-fixed navigation frame and approximately followed the indicated path through
the hallways.
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3.3 Summary

This chapter has discussed the development of the attitude estimation algorithm

and the experimental procedures used to evaluate it. With these tasks performed, the

test data can be processed and the results presented and analyzed in the next chapter.
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IV. Results and Analysis

This chapter discusses the results of implementing the coupled vanishing point

and inertial attitude estimation technique on the data that were collected during

experimentation. The methods used to process the experimental data are presented

in Section 4.1, the results of the vanishing point detection procedure are presented

and analyzed in Section 4.2 and the attitude estimates are presented and discussed

in Section 4.3.

4.1 Data Processing

After the experiments described in Chapter III were performed, the data col-

lected were postprocessed using The Mathworks, Inc.’s Matlab software. The data

processing procedures include calculating the gyro biases, generating attitude profiles

from the unaided MEMS inertial, vision-aided MEMS inertial, and unaided tactical

inertial data, and determining the errors in the estimated attitude profiles.

4.1.1 Gyro Bias Calculation. Equation (2.13) expresses the gyroscope mea-

surements as the sum of the true relative rotation rate between the inertial and body

reference frames, the vector of gyro biases, and zero-mean, white, Gaussian noise.

During the initial static portion of each data run, the test apparatus is known to be

at rest. Thus, because the Earth’s rotation rate can be neglected, the gyro biases can

be directly estimated. The initial static portion of each run has a total duration of

approximately 60 seconds, in which time the Earth will have rotated approximately

0.25 degrees. This total rotation is within the expected margin of error for the esti-

mation technique, so neglecting the Earth rate is justified. Assuming an Earth turn

rate equal to zero and a stationary inertial sensor means that the true rotation rate

can also be assumed to equal zero. Therefore, the bias is the only factor that will

contribute to the mean of the gyro measurements during the initial stationary por-

tion of each data run. As was discussed in Section 2.3.2, the bias will be treated as

a fixed, deterministic quantity for the duration of a single test run. This means that

the vector of gyro biases for a particular run can be determined by calculating the
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mean of the first minute’s worth of inertial measurements.

bb = 1

60 ∫
60

0

!bibm(t)dt (4.1)

Figure 4.1 shows the biases that were determined from each of the 15 test runs.

The largest biases are in the measured rotation rate about the mock vehicle’s pitch,

i.e., the body frame’s y, axis. These correspond to an average measured rotation

rate of approximately 4 degrees per second obtained while the IMU was held station-

ary. Clearly, these biases can degrade the overall attitude estimate if they are not

compensated for.
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Figure 4.1: Gyro biases. The biases in each of the 3 MEMS gyros calculated from
each of the 15 test runs are shown here.

4.1.2 Unaided Inertial Attitude Profile Generation. Once the gyro biases

are known, unaided inertial attitude profiles can be calculated. Beginning from an

initial attitude estimate, unaided attitude profiles based on measurements taken from

either the MEMS or tactical IMU are generated using Equation (3.7). The attitude

profiles originating from the tactical inertial data are the most accurate available for
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comparison with attitude estimates from other sources. The HG1700 IMU used to

obtain these measurements has a drift rate of only 1 degree per hour, and a test run

has a duration of only approximately 3.5 minutes. In this time, the tactical inertial

solution will have drifted only 0.06 degrees. Therefore, the tactical inertial attitudes

will be assumed to be equivalent to truth for the purpose of calculating attitude

errors. An example of one unaided MEMS inertial profile and the corresponding

tactical inertial profile are shown in Figure 4.2. These attitude profiles are expressed

in terms of Euler angles. Note the drift in the unaided MEMS inertial profile. It is

this drift that we wish to constrain through the use of the vision-aiding Kalman filter.

4.1.3 Error Calculation. A method for determining attitude errors is nec-

essary to be able to evaluate the accuracy of any of the attitude profiles developed

during this research. Equations (3.1) and (3.2) can be combined to facilitate error

calculation as:

Cn
b = e ×C ñ

b (4.2)

Solving this equation for the vector of error angles,  , yields:

 × = ln (Cn
bC

b
ñ) (4.3)

The body-to-navigation frame DCM calculated from the tactical inertial data is sub-

stituted for Cn
b before calculating the matrix logarithm on the right side of Equa-

tion (4.3). Finally, collapsing the skew-symmetric matrix gives the vector of errors,

 .

Figure 4.3 shows the results of applying this error calculation method to the

unaided inertial profile shown in Figure 4.2. Again, the unbounded drift in the unaided

attitude profile is clearly evident. The abrupt change in all three components of the

error vector at about 100 seconds corresponds to when the simulated vehicle turned

the corner from one hallway to another. This phenomenon is present in all of the 15

test runs.
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Figure 4.2: Unaided inertial attitude profile. The unaided MEMS inertial attitude
profile shown here drifts unbounded due to additive inertial measurement noise.
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Figure 4.3: Unaided MEMS inertial errors. The errors in the unaided MEMS
inertial profile shown in Figure 4.2 are displayed here.
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4.1.4 Process Noise Characterization. With an error calculation method

in place, the discrete-time process noise strength, Qd, can be determined. This is

accomplished by performing an analysis of the ensemble of errors in the complete set

of unaided MEMS inertial attitude solutions. The method described in Section 4.1.3

is used to find the errors in the unaided MEMS inertial solutions from each of the test

runs, and the resulting ensemble of errors is used to calculate standard deviations for

the full set of test data. Figure 4.4 shows the ensemble of unaided MEMS inertial

errors for all 3 gyroscopes and all 15 data runs along with the calculated ensemble

standard deviations. The time segment shown begins after the initial 60 second static

period over which the gyro measurements have been averaged to determine the gyro

biases.
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Figure 4.4: Unaided MEMS inertial ensemble errors. The errors present in the
unaided MEMS inertial solutions in all 3 axes from all 15 test runs and the calculated
ensemble standard deviations are shown here.

The process noise strength can be determined by finding a linear fit to the

ensemble variances. The first-order coefficient of a linear fit to these variances reveals

the rate at which the uncertainty in the attitude estimates increases when the MEMS

inertial data are unaided. The linear fit to the unaided MEMS inertial ensemble
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variances from 60 to 120 seconds is shown in Figure 4.5. The variances over this

interval increase at a rate of approximately 0.63 deg2/s. Multiplying this rate by the

time-step between MEMS inertial measurements (4.9 milliseconds) yields the following

value for the discrete-time process noise strength:

Qd =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.1 × 10−3 0 0

0 3.1 × 10−3 0

0 0 3.1 × 10−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
deg2 (4.4)
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Figure 4.5: Unaided MEMS inertial variances. The process noise strength is de-
termined from the first-order coefficient of the linear fit to the unaided inertial error
variances.

4.2 Vanishing Point Detection

With the gyro biases and process noise strength determined, the attitude esti-

mation technique described in Section 3.1 can be implemented on the data that were

collected during the test runs. The vanishing points found in the images captured by

the camera will be used to constrain the drift in the MEMS inertial solutions. There-
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fore, the effectiveness of the vanishing point detection algorithm is discussed in this

section before presenting the vision-aided attitude profiles and errors in the section

that follows.

Figure 4.6 shows an image that was captured approximately 82 seconds into one

of the test runs. In this example, all three vanishing points have been identified, and

lines which have been declared by the ransac algorithm to be inliers to any of the

three principal vanishing directions are highlighted. Note that some lines returned

by the Hough transform have been rejected as outliers. Also, the predicted vanishing

point in the direction down the hall and the corresponding vanishing point found in

the image are close to one another, resulting in a small measurement residual.

Figure 4.6: Vanishing points found in a sample image. All three vanishing points
have been identified in this image. The magenta circle is where v1 was predicted to
be, and the red square is where v1 was found. The blue lines are inliers to v1, the
green lines are inliers to v2, the red lines are inliers to v3, and the cyan lines are
outliers.

4.2.1 Measurement Susceptibility to Noise. Unfortunately, the ransac

vanishing point detection scheme does not always return the type of result shown in

Figure 4.6. An example of an image in which v2 is found to be only a few degrees from
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v1 is given in Figure 4.7. Of course, v2 actually lies in a direction nearly parallel to the

image plane. The three lines identified as inliers to this spurious measurement pass

close enough to the prediction of v2 that they meet the criteria for being classified as

support lines. However, the glancing angle at which the camera views the horizontal

stripe on the floor introduces significant uncertainty into the locations of the lines

defined by the edges of the stripe. This imprecision is what makes the lines appear

to intersect on the image plane.

Figure 4.7: Spurious vanishing point measurement. The intersection of the inliers
to v2 is found on the image plane when the true vanishing point clearly lies far from
this measurement.

4.2.2 Measurement Residuals. The sequence of residuals in the Kalman

filter shows how close the measurements are to their respective predictions. This

information can reveal how often spurious measurements such as the one discussed

in Section 4.2.1 occur. The residual monitoring process described in Section 3.1.4.8

prevents these spurious measurements from unduly influencing the attitude estimates.

Recall that if any component of a residual is found to lie outside of three standard

deviations from zero, the corresponding measurement is ignored by the Kalman filter

and treated as if no measurement were obtained for that vanishing point.
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Figure 4.8 shows the sequences of residuals and their corresponding 3-� bound-

aries from one of the test runs. The numeral subscript on a residual indicates the

vanishing point to which the residual corresponds, e.g., �z1 is the residual corre-

sponding to the measurement of v1. In the example shown in the figure, spurious

measurements of v2 frequently occur at the beginning of the test run while the mock

vehicle is resting on the ground. The intersection of the green lines in Figure 4.7 is an

example of one such measurement. After the mock vehicle has been lifted off the floor

at approximately 65 seconds into the test run, the residuals for v2 are much smaller.

Another observation that can be made from the residuals is with respect to

the uncertainty in the z-components of the vanishing point measurements. When

the camera is looking away from a particular vanishing point, there is much greater

uncertainty in the z-component of the corresponding measurement than when the

camera is pointed toward the vanishing point. Looking again at Figure 4.8, there is

much greater variability in the z-component of �z2 before the mock vehicle turns the

corner approximately 100 seconds into the run than after. After the corner, the camera

is peering in the direction of v2, and the fluctuations in the z-component of �z2 are no

longer observed. Now, however, the z-component of �z1 varies much more widely than

it had before. The z-component of �z3 exhibits a greater degree of variability than the

x or y-components for the duration of the test run, because the camera is never looking

in the direction of v3, i.e., straight up or straight down. These observations provide

evidence that when the camera is pointed toward a particular vanishing direction,

the uncertainty in the z-component of the corresponding vanishing point is much

smaller than the z-components of the other two vanishing points. The 3-� boundaries

may seem large somewhat large, particularly over portions in the test run where the

residuals are consistently small. However, it will be shown that the filter’s calculated

uncertainties closely match the test runs’ ensemble variances.

Lastly, the residuals show that in this test run there were few reliable updates

to the roll estimate while the mock vehicle was resting on the floor. When the camera

is peering in the direction of v1, the roll axis is not observable using measurements
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Figure 4.8: Measurement residuals. The residuals in the x, y and z-components of all three vanishing point measurements
for a single test run are shown here with their respective 3-� covariance boundaries. Any measurements outside of the 3-�
threshold are rejected and are not incorporated into the attitude estimates.
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of that vanishing point, so those measurements do not influence the roll estimates.

This means that information influencing the roll axis must come from either v2 or

v3. However, many of the measurements of v2 were discarded because they exhibited

large residuals, and few measurements of v3 were obtained. Nonetheless, even under

these adverse conditions, the roll estimates will be shown to remain within a few

degrees of the tactical inertial roll profile.

4.3 Kalman Filter Attitude Estimates

Now that the vanishing point detection method has been evaluated, the attitude

profiles obtained by coupling the MEMS inertial data and vanishing point measure-

ments will be presented and discussed. Examples of an attitude profile generated by

the Kalman filter and the corresponding attitude profiles calculated from the tactical

and unaided MEMS inertial measurements are shown in Figure 4.9. As was discussed

in Section 4.2.2, the roll estimate is degraded during the initial static portion of the

test run due to infrequent and inaccurate measurements of vanishing points v2 and

v3. However, in the long term, the attitude estimates in all three axes are significantly

more accurate than the unaided MEMS inertial estimates.

Performing the error calculation procedure discussed in Section 4.1.3 on both

the unaided MEMS inertial and Kalman filter data from this test run yields the

results shown in Figure 4.10. Again, the Kalman filter provides greater accuracy

and stability in the long term. However, another phenomenon can also be seen in

these error profiles. There is an overall bias in each of the Kalman filter’s attitude

estimates about which the solutions vary. This bias will be discussed in greater detail

in Section 4.3.2.

4.3.1 Kalman Filter Ensemble Errors. One test run alone cannot charac-

terize the nature of the errors in the Kalman filter’s attitude solutions. To help in

understanding the filter’s performance, the ensemble of errors in the Kalman filter’s

attitude estimates for all fifteen test runs and the corresponding means and standard
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Figure 4.9: Kalman filter and unaided MEMS inertial attitude profiles from 1 run.
The attitude profiles calculated from the Kalman filter, and both tactical and MEMS
raw inertial data are shown here. Note the unbounded long-term drift present in the
attitude profiles from the unaided MEMS inertial solution has been constrained in
the Kalman filter attitude solution.
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Figure 4.10: Kalman filter and unaided MEMS inertial errors from 1 run. In the
long term, the errors in the Kalman filter solution are much smaller than the errors
in the unaided MEMS inertial solution.
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deviations are shown in Figure 4.11. Comparing the ensemble errors in the Kalman

filter’s attitude solution shown in Figure 4.11 with the unaided MEMS inertial en-

semble errors shown in Figure 4.4 shows that the long-term improvement exhibited

by the single test case discussed earlier is present in all of the test runs. The unaided

MEMS solutions have a standard deviation of approximately 26.4 degrees after 3.5

minutes which will only continue to grow over time. The vision-aided solutions, on the

other hand, have standard deviations of approximately 1.5 degrees in the pitch and

roll axes, and approximately 0.9 degrees in the yaw axis which are stable long-term.

Respectively, these represent 94% and 96% reductions in the attitude uncertainties.

Furthermore, the long-term stability of the Kalman filter’s attitude estimates has

entirely eliminated the unaided MEMS inertial solutions’ drift rate of 0.63 deg2/s.

Another interesting comparison to make is between the uncertainties calculated

by the Kalman filter and the ensemble standard deviations. Both of these sequences

are shown together in Figure 4.12 to facilitate this comparison. The Kalman filter

uncertainty profile from only one test case is displayed, for clarity, but the uncertain-

ties from the others converge to nearly the same steady state as the one shown. The

standard deviation calculated by the Kalman filter matches the ensemble standard

deviation within one degree for most of the time segment with a peak difference of

about 2 degrees observed in the yaw axis.

While the level of accuracy provided by the Kalman filter demonstrates a vast

improvement over the unaided inertial solution, it would likely only partially meet the

requirements for indoor flight. An inner control loop for a rotary vehicle will require

accuracy to within a degree or two in the roll and pitch axes to control lateral motion.

The combined effects of the 1.5 degree standard deviation in the errors and overall bias

do not provide for a solution accurate to within two degrees consistently. However,

there would be a larger tolerance for errors in the yaw axis, as precise heading is less

important than relative position when operating indoors. Also, the Kalman filter’s

yaw solution has been shown to be more accurate than the pitch and roll solutions.
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Figure 4.11: Kalman filter ensemble errors. The ensemble of errors in the atti-
tudes estimated by the Kalman filter are shown here with their means and standard
deviations.
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Figure 4.12: Ensemble and Kalman filer standard deviations. The steady-state
standard deviations calculated by the Kalman filter and ensemble standard deviations
are close to one another over the entire time segment.
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A less stringent requirement and slightly more accurate estimates in the yaw axis

indicate that the yaw solution may be sufficiently accurate for such an application.

4.3.2 Measurement Bias. As mentioned before, there is a bias present in the

Kalman filter’s attitude estimates. This is evidenced by the non-zero ensemble means

that can be clearly seen in Figure 4.11. Each of the two sensors used to provide data

to the Kalman filter is a possible source of the corruption in the attitude estimates.

However, the MEMS inertial sensor’s influence can be removed by running the Kalman

filter using the tactical inertial measurements without changing the process noise

strength matrix, Q. Essentially, this amounts to supplying the filter with as close to

a perfect set of inertial measurements as is available, while still allowing the vanishing

point measurements to influence the attitude estimates in the same way they had

with the MEMS inertial data.

Figure 4.13 shows the ensemble of errors that are obtained when the tactical

inertial measurements are used in the Kalman filter. The solutions obtained when

using the tactical inertial data in the filter exhibit the same bias that is evident in the

filter’s solutions using the MEMS inertial measurements. This eliminates the MEMS

inertial sensor as the source of the bias, leaving only the optical measurements to

blame.

With the the vanishing point measurements pinpointed as the source of the

biases, the next step in isolating the cause is to try to find measurements that consis-

tently err in the same direction and with the same magnitude. This was accomplished

by visually observing the vanishing point measurements projected onto the images to

determine whether erroneous measurements could be identified. The vanishing points

affecting the roll estimates cannot be projected onto the image for most of the dura-

tion of a test run because they are usually oriented nearly parallel to the image plane,

so they were not considered under this review. The largest, sustained bias observed

in either the pitch or yaw axes for any one test run is 3 degrees exhibited downward

direction of the pitch axis. If vanishing point identified by the detection algorithm

86



0 50 100 150 200 250
-10

-5

0

5

10

 
x
 (

d
e
g
)

0 50 100 150 200 250
-10

-5

0

5

10

 
y
 (

d
e
g
)

0 50 100 150 200 250
-10

-5

0

5

10

 
z
 (

d
e
g
)

Time (s)

Attitude Error

Ensemble Mean

!
  

Figure 4.13: Kalman filter ensemble errors using tactical inertial measurements.
The ensemble statistics exhibit the same bias that is present in the solutions obtained
from the combined MEMS inertial and optical measurements.
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were 3 degrees below where the edges of the hallways appear to intersect, it would be

noticeable to a human observer examining the image. The processed images with the

inlier lines highlighted as in Figures 4.6 and 4.7 from the test run with the 3 degree

pitch bias were reviewed and no such measurements were observed.

Time limitations and resource availability did not facilitate any further inves-

tigation into the source of the measurement biases. However, other possible causes

may include non-orthogonality of the walls, ceilings and floors and straight but non-

parallel elements in the environment. Such phenomena violate the assumption that

the environment consists primarily of mutually-orthogonal planes and could introduce

error into the vanishing point detection and/or attitude estimation process.

4.4 Summary

Shortcomings notwithstanding, the coupling of vanishing point tracking with

inertial measurements has been shown to vastly improve vehicle attitude estimates.

By joining two inexpensive, lightweight, low-power sensors, a drift-free attitude de-

termination method that is accurate to within a few degrees is attainable.
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V. Conclusions and Future Work

This chapter summarizes the information presented earlier in this thesis and

provides a few suggestions for how this work could be continued and improved.

5.1 Conclusions

Inertial sensors have been used for decades to provide position and attitude

information to various users. Unfortunately, even the most advanced inertial sensors

are subject to boundless error growth. The primary objective of this research has

been to demonstrate a method for constraining the errors in the attitude solution

from a commercial MEMS inertial sensor through the use of computer vision. The

two sensors are used in harmony, with the inertial data aiding the vision process and

the vision data aiding the inertial process.

The combined visual/inertial attitude estimation method was developed by de-

signing an extended Kalman filter for this purpose. The filter’s dynamics model was

established using inertial navigation theory. The filter’s measurement model was es-

tablished beginning with the Manhattan world assumption from [7]. A Manhattan

world scene contains three primary groupings of parallel lines aligned to the Man-

hattan grid. The projections of these parallel lines onto the image plane intersect

at one of three vanishing points. The directions of the vanishing points reveal the

camera’s orientation with respect to the scene, and are used to update the Kalman

filter’s attitude estimates.

A unique method for detecting vanishing points was established which yields

unit-length Cartesian 3-vectors indicating each vanishing direction expressed in the

camera reference frame. This process utilizes the ransac concept from [9] to avoid

having to find every possible intersection of image lines. The method is effective at

finding vanishing points in many conditions that adhere to the Manhattan world as-

sumption, but some line geometries and measurement noise can give rise to erroneous

measurements. Monitoring the measurement residuals and ignoring gross outliers

prevents such spurious measurements from influencing the attitude estimates.
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An experiment was developed to evaluate the extended Kalman filter’s attitude

estimates. For this experiment, an indoor motion profile mimicking flight was se-

lected along which a MEMS-grade inertial sensor, tactical-grade inertial sensor, and

a commercial webcam were transported. This profile guides the sensors through one

hallway towards in intersection, clockwise around the corner, and down to the end

of a second hallway. Data collected from the MEMS-grade inertial sensor and we-

bcam during fifteen test runs following this profile were post-processed through the

extended Kalman filter, and the filter’s solutions were compared with the solutions

from the tactical inertial sensor to determine their accuracy.

The attitude estimates from the Kalman filter show dramatic improvement over

the attitude estimates from the MEMS inertial sensor alone. After only 3.5 minutes

of operation, the unaided MEMS inertial estimates have a standard deviation of 26.4

degrees, while the Kalman filter’s estimates have standard deviations of 1.5 degrees

in the body reference frame’s x and y-axes and only 0.9 degrees in the z-axis. Fur-

thermore, the drift rate of 0.63 deg2/sec in the unaided MEMS estimates is absent

from the Kalman filter’s solutions.

There is a consistent bias in the Kalman filter’s attitude estimates from each

of the fifteen test runs. The MEMS inertial sensor was eliminated as a possible

cause, leading to the conclusion that the bias originates from the vanishing point

measurements. This bias has the greatest magnitude (∼2.5 degrees) in the vehicle

body reference frame’s y-axis.

5.2 Future Work

There are various ways in which the work that has been presented could be

extended or improved. Some of these are related to improving or modifying the van-

ishing point detection process, and others involve extending the attitude estimation

research and preparing for on-vehicle implementation.
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5.2.1 Vanishing Point Orthogonality. The attitude estimation technique

described in this thesis relies on the assumption that the environment in which a host

vehicle is operating consists primarily of many planes and lines oriented in one of three

mutually orthogonal directions. The approach to vanishing point detection presented

herein consists of looking for the vanishing point in each of the three principal direc-

tions individually. However, it may prove effective to search for the complete triad of

vanishing points all at once instead of each one in sequence. In [26], Rother presents a

computationally intensive approach to finding all three vanishing directions simulta-

neously in which every possible intersection of two lines from the image is examined.

Combining Rother’s approach with the ransac method presented herein may prove

effective at rapidly obtaining all three vanishing directions in an image.

5.2.2 Vanishing Point Detection Robustness. During one of the test runs

that were performed, a pedestrian entered the camera’s field of view, walking from

behind the camera to the end of the hall and turning the corner. This person’s pres-

ence in 34 consecutive images appeared to have no impact on the vanishing point

measurements obtained from them, even though, when closest to the camera, he or

she obstructed approximately 10% of the camera’s view. This one example is not

sufficient to demonstrate the vanishing point detection method’s robustness to such

disturbances, nor was making such a determination an objective of this research. How-

ever, an investigation into the impact of different amounts and types of obstructions

on the vanishing point detection process could be insightful.

5.2.3 Motion Profiles. This research explored only a single motion pro-

file through a pair of hallways which included a single, 90-degree clockwise change

in heading. Additional profiles were not examined due to time and resource limi-

tations. However, investigating other profiles including counter-clockwise turns and

entering/exiting rooms adjacent to the hallway could further demonstrate the utility

of this attitude estimation method. Furthermore, additional profiles may provide more

insight into the cause and nature of the measurement bias discussed in Section 4.3.2.
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5.2.4 Real-time Implementation. The attitude estimates generated during

this research effort were all obtained by post-processing the optical and inertial data,

but in order to be implemented aboard an aerial vehicle, this task must be accom-

plished in real time. The microcomputer onboard the intended quadrotor host vehicle

has limited computational capability and runs a different operating system than the

computer used to process the data. Real-time implementation of the attitude estima-

tion method presented in this thesis would likely require that the Matlab code used

to implement the Kalman filter be optimized for faster processing and ported to the

C computing language for on-vehicle use. Once these tasks were accomplished, an

investigation into the latency in processing images in real time could help determine

the feasibility of onboard attitude estimation using the methods presented in this

thesis.

5.2.5 Non-Manhattan World. The attitude estimation method presented in

this thesis has been founded on the Manhattan world assumption. While some man-

made environments conform to this model, most scenes do not contain many parallel

planar surfaces. While images of these non-Manhattan scenes will not contain groups

of parallel lines, the concept of a vanishing point is still valid. Identifying the vanishing

directions for a non-Manhattan world scene is a much more difficult task, since the

intersections of straight lines cannot be used. However, if the vanishing directions

were identified, this information could still be combined with inertial measurements

to obtain accurate attitude estimates.

5.3 Closing

This research has presented one way in which inertial and optical sensors can

be combined to provide improved navigation information. As this technology contin-

ues to be developed, an equally-precise alternative to satellite-based navigation may

ultimately be achieved. Only time will tell where this field of science will lead.
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