USAARL Report No. 2011-17

Hypoxic Hypoxia at Moderate Altitudes: State of the Science

By Frank Petrassi Steven Gaydos John Ramiccio P. Lynne Walters

United States Army Aeromedical Research Laboratory

Warfighter Health Division

May 2011

Approved for public release, distribution unlimited.

Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

	REP	ORT DOCUM	ENTATION PAGE			Form Approved OMB No. 0704-0188		
The public reporting gathering and maint information, includir 1215 Jefferson Day penalty for failing to PLEASE DO NO	g burden for this colle aining the data needed ng suggestions for rec vis Highway, Suite 12 o comply with a collect DT RETURN YOU	ection of information d, and completing and ducing the burden, to 04, Arlington, VA 2 tion of information if i R FORM TO TH	is estimated to average 1 hou reviewing the collection of inf Department of Defense, Wash 2202-4302. Respondents sho t does not display a currently v IE ABOVE ADDRESS.	Ir per response, inc ormation. Send com ington Headquarters uld be aware that n alid OMB control nur	uding the tir ments regard Services, Di otwithstandir nber.	me for reviewing in ling this burden esti irectorate for Inform ng any other provisi	structions, searching existing data sources, mate or any other aspect of this collection of nation Operations and Reports (0704-0188), on of law, no person shall be subject to any	
1. REPORT DA 31	ТЕ <i>(DD-MM-YY</i> /05/2011	<i>YY)</i> 2. REPO	RT TYPE Final			3. DATES CO	OVERED (From - To)	
4. TITLE AND	SUBTITLE				5a. CO	NTRACT NUME	BER	
Hypoxic Hyp	oxia at Modera	te Altitudes: St	ate of the Science					
<i>J</i> 1 <i>J</i> 1					5h GR/			
					0.0.010			
					5c. PRC	OGRAM ELEME	NT NUMBER	
	1				5d DBC		2	
Frank Petrass	i i				Ju. Phe		1	
Steven Gavdo	1)S							
John Ramicci	0				5e. TAS	SK NUMBER		
P. Lynne Wal	ters							
-					5f. WO	RK UNIT NUME	BER	
7 050500040								
7. PERFORMIN	NG ORGANIZA H	ON NAME(S) AN	ID ADDRESS(ES)			8. PERFORMI REPORT N	UMBER	
U.S. Army Aeromedical Research Laboratory				-	USAARL 2011-17			
P.O. BOX 620 Fort Rucker	577 AI 36367							
Port Rucker, A	AL 30302							
9. SPONSORI	NG/MONITORING	GAGENCY NAM	E(S) AND ADDRESS(ES	5)		10. SPONSO	R/MONITOR'S ACRONYM(S)	
U.S. Armv M	edical Research	n and Materiel	Command			USAMRMC		
504 Scott Stre	eet							
Fort Detrick,	MD 21702					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
		TV OTATEMENI	-					
			1::					
Approved for	public release;	distribution un	limited.					
13. SUPPLEME	NTARY NOTES							
14. ABSTRACT	F							
A systematic	literature review	w of research of	n acute hypoxic hypox	kia within the	range of a	8,000 to 15,00	00 feet pressure altitude was	
conducted. T	he goal was to	evaluate the sta	te of the science rega	rding mild hyp	oxic imp	airment of me	ental functions, sensory	
deficits, and o	other pertinent f	indings that ma	the areas and librarian	The minimu	fence lee	chnical Inform	hation Center and Dialog	
searchers wer	e performed in	conjunction wi	th a research librarian	. The minimu	m altitud	e where hypo	xic deficits manifest remains	
more consiste	introve testing is	nitive deficits s	eem to be particularly	<i>i</i> difficult to a	inons, m	easurements (individual variability and	
lack of sensiti	ivity and/or spe	cificity of the c	ognitive test utilized	The manifest	ation of a	cute mild hyp	oxia at moderate altitude may	
not be solely	a function of pa	rtial pressure o	f oxygen but rather the	he halance of i	respirator	v gases nossi	ble disruption of	
oxygen-deper	dent neurotran	smitter syntheti	c pathways, and the i	nherent hypox	ia sensiti	vity of various	s neuron populations.	
		~	F				· · · · · · · · · · · · · · · · · · ·	
15. SUBJECT								
mental function	on, sensory defi	cit, aviation, co	oginuve testing, visioi	i, partiai press	ure of ox	ygen		
16. SECURITY	CLASSIFICATIO	N OF:	17. LIMITATION OF	18. NUMBER	19a. NAI	ME OF RESPON	ISIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF	Loraine	St. Onge, Ph	D	
UNCLAS	LINCLAS	UNCLAS	SAR	PAGES	19b. TEL	EPHONE NUM	BER (Include area code)	
UNCLAS	UNCLAS	UNCLAS		4 /		33	4-255-6906	
						Reset	Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18	

Acknowledgements

The authors would like to express their sincere gratitude to the following people for their contributions to this project: Ms. Diana Hemphill and Ms. Jean Southwell for their tireless efforts with the literature searches; Dr. Loraine St. Onge and Ms. Catherine Machen for their editorial assistance; and LTC Robert Wildzunas for his assistance and mentorship to MAJ Frank Petrassi.

Table of contents

Introduction	<u>Page</u> 1
Background	2
Military significance	6
Objectives	7
Methods	7
Results	
Discussion	
Conclusions	
Recommendations	
References	
Appendix A. List of articles	
Appendix B. Regulatory examples governing hypoxia in unpressurized aircraft	40

Introduction

The inherent danger of high altitude has been documented since the late 19th century. In 1875, Gaston Tissandier and his colleagues, Croce-Spinelli and Sivel, attempted a balloon ascent to 28,215 feet (ft) (8600 meters [m]). Only Tissandier survived this ascent. Despite having onboard oxygen (O₂) provided by Paul Bert (known as the "Father of Aviation Medicine"), this event marks the first two documented fatalities of hypobaric hypoxia. Hypobaric hypoxia is defined as the reduction of alveolar oxygen partial pressure (P_AO_2) resulting from the reduction in total atmospheric pressure that occurs with increasing altitude. Hypoxic hypoxia is the result of reduction in oxygen partial pressure in the arterial blood (P_aO₂), of which acute hypobaric hypoxia is one cause (Pandolf & Burr, 2001). In 1984, Ernsting stated, "The most important single hazard of flight at high altitude is hypoxia." The onset of hypoxia can be insidious and may easily result in an aircraft mishap if not quickly recognized and immediately corrected. It is well established that breathing ambient air at altitudes between 15,000 and 20,000 ft (4592 to 6096 m) produces gross physiological disturbances. Above 20,000 ft, mental and physical performance rapidly deteriorate leading to convulsions, unconsciousness, and death. The onset and severity of hypoxia depends on several factors. These factors include altitude attained, time at altitude, rate of ascent, physical activity, ambient temperature, acclimatization, and individual variability. For the purposes of this discussion, "moderate altitude" refers to the 8,000 to 15,000 ft range.

In comparison to altitudes above 15,000 ft, the onset and severity of the signs and symptoms of hypoxia at moderate altitude are relatively less well-characterized and difficult to objectively quantify. Previous studies have shown that breathing ambient air between 8,000 and 12,000 ft may result in hyperventilation, particularly during increased physical activity (Ernsting, 1984). Hyperventilation increases P_AO_2 , and subsequently, P_aO_2 . This increased rate and depth of breathing causes a reduction in partial pressure of arterial carbon dioxide (P_aCO_2). The resulting hypocapnia causes respiratory alkalosis and cerebral vasoconstriction, exacerbating cerebral hypoxia. It is important to remember that, at moderate altitude, physiological compensation may be adequate in most healthy individuals. Therefore, the manifestation of hypoxia may vary significantly from one individual to another, as will the scope and severity of physiological decrements. The severity of hypoxic signs and symptoms within this range of altitudes depends on individual respiratory response and compensatory capacity. Individual variability makes it difficult to establish one particular threshold altitude at which hypoxia signs and symptoms become measurable.

A literature review conducted by Tune (1964) concluded that perceptual motor performance becomes significantly degraded at 10,000 ft (3048 m). This altitude is now generally accepted as the upper boundary of the "physiological zone." Symptoms of hypoxia have been reported on several occasions at altitudes as low as 8000 ft (2439 m), and at even lower altitudes when combined with strenuous physical activity (Smith, 2005). The results of previous cognitive studies have been ambiguous, while other studies have not been able to replicate similar impairments at equivalent ranges of simulated altitudes. In this report, we present a systematic literature review of studies conducted at altitudes or simulated altitudes in the range of 8000 to 15,000 ft. The review evaluates the state of the science regarding mild hypoxic impairment of mental functions, sensory deficits, and other pertinent research findings that may affect aviationrelated duties at moderate altitudes. We specifically focus on studies of cognition, psychomotor performance, and visual degradation since the brain and retina are extremely O_2 -dependent. Finally, we examine the role of cerebral dysfunction in the manifestation of cognitive deficits resulting from acute mild hypoxia.

Background

Oxygen is a key component in aerobic metabolism, specifically in oxidative phosphorylation. Aerobic metabolism refers to the series of metabolic pathways by which cells produce energy in the form of adenosine triphosphate (ATP). In this process, molecular O_2 is reduced to water by electrons provided by the tricarboxylic acid cycle (TCA cycle). As the TCA cycle generates electron-carrying molecules for use in oxidative phosphorylation, carbon dioxide (CO₂) is also produced, and subsequently released from the cells as a waste product. The reduction of O_2 occurs with the concomitant production of ATP. ATP is used for a multitude of biochemical processes required to sustain life. Without adequate available ATP, cell death would occur rapidly. Hence, there is a strict dependence on constant adequate O_2 supply in order for ATP synthesis to occur. A severe deprivation of O_2 , i.e., hypoxia, leads to a severe deprivation of ATP, and ultimately, rapid deterioration of most physiological processes.

The manifestation of acute hypoxic hypoxia results in compensatory changes primarily in three physiological systems: the cardiovascular system, the respiratory system, and the central nervous system (CNS). The following is a short summary of general physiological compensatory mechanisms in response to acute hypoxia.

Cardiovascular compensation in acute hypoxia

In general, hypoxia causes vasodilation in most peripheral blood vessels. This is accompanied by regional redistribution of cardiac output, with increased blood flow to the heart and brain, while blood is shunted away from less vital organs. Heart rate begins to rise in resting individuals breathing ambient air at approximately 6000 to 8000 ft, and at 25,000 ft, heart rate is approximately doubled (Pandolf & Burr, 2001). In resting individuals, there is also a rate-driven increase in cardiac output, that is, stroke volume is largely unaffected. Systolic blood pressure increases; however, this is accompanied by a reduction in peripheral vascular resistance, and thus mean arterial pressure remains fairly constant. Coronary blood flow increases with the increase in cardiac output, but this is also accompanied with a reduction in cardiac reserve. Under these conditions, a steep fall in P_aO_2 can result in myocardial depression, which may, in certain individuals, elicit compensatory vasoconstriction and/or arrhythmias resulting in cardiac arrest.

Respiratory compensation in acute hypoxia

Ascent to altitude occurs with a non-linear decrease in ambient atmospheric pressure (P_B). With the reduction in P_B , the partial pressures of the atmospheric gases decrease proportionately. The reduction of the inspired partial pressure of oxygen (P_IO_2) results in the reduction of P_AO_2 , therefore, as altitude increases, P_AO_2 decreases. Furthermore, alveolar O_2 is also diluted by CO_2 , which is continuously released from pulmonary blood into the alveoli, and water that vaporizes

into inhaled air from respiratory surfaces. The table illustrates partial pressure of carbon dioxide (P_ACO_2) and P_AO_2 at different altitudes when breathing air and when breathing 100% O₂:

	Breathing Ambient Air							0% O ₂
Altitude (ft/m)	Barometric Pressure (mmHg)	PO2 in Air (mmHg)	P _A CO ₂ (mmHg)	P _A O ₂ (mmHg)	Arterial Oxygen Saturation (%)	P _A CO ₂ (mmHg)	P _A O ₂ (mmHg)	Arterial Oxygen Saturation (%)
0	760	159	40	104	97	40	673	100
10,000/3048	523	110	36	67	90	40	436	100
20,000/6096	349	73	24	40	73	40	262	100
30,000/9144	226	47	24	18	24	40	139	99
40,000/12,192	141	29				36	58	84
50,000/15,240	87	18				24	16	15

<u>Table.</u> Alveolar gas partial pressures and arterial oxygen saturation at various altitudes.

Note: millimeters of mercury (mmHg). Adapted from <u>Textbook of Medical Physiology</u> (p. 528), by J. E. Hall, 2011, Philadelphia, PA: Saunders Elsevier. Copyright 2011 by Saunders Elsevier. Adapted with permission.

In terms of alveolar gases, an equation can be derived for P_B by considering that, at any given time, alveoli contain four gases. Therefore, P_B in the alveoli of the lungs is defined mathematically (ignoring the insignificant contribution of other gases) by Equation 1:

(1)
$$P_B = P_A N_2 + P_A C O_2 + P_A O_2 + P_A H_2 O_3$$

where P_AN_2 is the alveolar partial pressure of nitrogen, and P_AH_2O is the alveolar partial pressure of water vapor at 37 °C. Assuming body temperature remains constant, P_AH_2O remains constant (47 mmHg). Nitrogen is a physiologically inert gas. It is neither produced nor consumed by the body. At sea level, nitrogen diffuses from the alveoli into oxygenated blood. On ascent, nitrogen diffuses out of the tissues and into the alveoli. Upon reaching the final altitude, nitrogen diffusion reaches equilibrium and a new steady state is achieved. The difference between P_IO_2 and P_AO_2 arises from P_ACO_2 in the alveoli. P_ACO_2 depends on the amount of CO_2 production and the rate of alveolar ventilation. This ratio of CO_2 production to alveolar ventilation is independent of P_B . If the metabolic rate of an individual remains constant, this ratio will also remain constant on ascent up to approximately 10,000 ft for most healthy individuals (Pandolf & Burr, 2001). As P_AO_2 falls below 100 mmHg, arterial chemoreceptors increase their rate of discharge. This stimulates an increase in ventilation, which results in hyperventilation. Hyperventilation is defined as ventilation greater than what is required to eliminate metabolic CO_2 production. As hyperventilation removes CO_2 from the alveoli, the P_AO_2 rises. The steadystate relationship between P_AO_2 and P_ACO_2 is given by Equation 2:

(2)
$$P_AO_2 = P_IO_2 - P_ACO_2 (F_IO_2 + [1 - F_IO_2]/R),$$

where F_1O_2 is the fraction of O_2 in inspired air (0.21; the concentration of O_2 in ambient air is 21%), and R is the respiratory exchange ratio which represents rate of CO_2 output to the rate of O_2 uptake. If R = 1, then

$$P_AO_2 = P_IO_2 - P_ACO_2$$

Thus, if P_1O_2 is constant, then as P_AO_2 increases, P_ACO_2 decreases.

In the above situation, hyperventilation increases P_AO_2 at the expense of an excess loss of CO_2 , which leads to hypocapnia. Hypocapnia results in a respiratory alkalosis, a condition in which the normal physiological acid-base balance is disturbed. The most profound effects of this disturbance in flight, is its effect on cerebral circulation, discussed below. The increased ventilatory rate experienced during acute hypoxia rises to a maximum between 5 and 10 minutes (min), and then over the next 20 min partially declines back toward the normoxic level (Pandolf & Burr, 2001). This hypoxia-induced ventilatory depression occurs both at constant and variable PCO₂. Research has concentrated on the possibility that this hypoxic ventilatory depression is mediated by γ -aminobutyric acid (GABA), a central neurotransmitter released by inhibitory interneurons within the brain and spinal cord during hypoxia (Nilsson & Lutz, 1993).

In the pulmonary circulation, hypoxemia causes vasoconstriction in pulmonary vessels. This occurs under hypoxic conditions as a compensatory mechanism in an attempt to maintain ventilation to perfusion ratio. If blood oxygen saturation (S_aO_2) falls below 80% (Pandolf & Burr, 2001), however, general vasoconstriction occurs within the pulmonary vessels. This, along with the increased cardiac output associated with an ascent to altitude, results in increased pulmonary artery pressure.

At an altitude of 10,000 ft, the values for P_B , P_AO_2 , and P_aO_2 are approximately 523 mmHg, 74 mmHg, and 69 mmHg, respectively (Fox, 2006). At this P_AO_2 , S_aO_2 is approximately 87 to 90%. The significance of these values can be illustrated graphically by considering the oxyhemoglobin dissociation curve (figure). As altitude increases above 10,000 ft, P_AO_2 decreases, resulting in rapid desaturation of hemoglobin.

Figure. Oxyhemoglobin dissociation curve. From <u>Applied Aviation Physiology</u> (p. 65), by N. E. Villaire and R. W. Hansrote, 2006, Casper, WY: Endeavor Books-Mountain State Lithographing. Copyright 2005 by Endeavor Books-Mountain States Lithographing. Reprinted with permission.

The figure above depicts the curve graphed at different pH values. Clearly, a pH lower than 7.4 (physiological pH) shifts the curve to the right, and conversely, pH values higher than 7.4 shift the curve to the left. A shift of the curve to the right indicates greater O_2 unloading to the tissues; a shift to the left indicates less O_2 unloading, but slightly more O_2 loading in the lungs. Factors other than pH may shift the oxyhemoglobin curve to the left or right. Factors that shift the curve to the right include, increased PCO₂, an increase in body temperature, and increased concentrations of 2,3 bisphosphoglycerate (2,3-BPG) in the red blood cells. Increasing PCO₂ ultimately results in a decrease in plasma pH. The affinity of hemoglobin. Under hypoxic conditions, compensatory hyperventilation results in respiratory alkalosis, that is, a higher than normal pH. Therefore, hypocapnia causes the oxyhemoglobin curve to shift to the left. Non-pilot aircrew, such as loadmasters, are typically more physically active than pilots during flight. Depending on the level of physical activity, increased metabolic production of CO₂ and skeletal muscle lactic acid, and local increase of muscle temperature can all contribute to a right shift in the curve, indicating more O₂ unloading, leading to more rapid desaturation of hemoglobin.

Conditions such as anemia or high altitude, cause an increase of 2,3-BPG production. Red blood cells themselves cannot use O_2 for aerobic metabolism. They must rely strictly on anaerobic glycolysis for their own supply of ATP. Glycolysis in red blood cells produces the unique by-product 2,3-BPG. When oxyhemoglobin releases O_2 , production of 2,3-BPG increases. When 2,3-BPG combines with the increasing concentrations of deoxyhemoglobin (as O_2 is unloading), deoxyhemoglobin becomes stabilized, leading to more O_2 unloading. Therefore, an increase in 2,3-BPG results in more rapid hemoglobin desaturation.

Central nervous system disturbance in acute hypoxia

The CNS is exquisitely sensitive to changes in P_aO_2 . When P_aO_2 is 50 mmHg or greater, compensatory hyperventilation results in hypocapnia, which causes cerebral vasoconstriction, and consequently, a decrease in cerebral blood flow. This decrease in cerebral blood flow can exacerbate hypoxia in some areas of the brain. A decrease in P_aO_2 to approximately 35 mmHg and below results in cerebral vasodilation, which can increase cerebral blood flow between 50 to 100% (Pandolf & Burr, 2001).

The neurological effects of acute hypoxia can range from impairment of psychomotor and cognitive function and visual disturbances to loss of consciousness. With respect to neurological effects of acute hypoxia, there is great variability between individuals. Some of this variability seems to be related to the differences in respiratory responses among individuals. The severity of the neurological decrements depends on the degree of hypoxia and the degree of hypocapnia. As mentioned above, at very low cerebral P_aO_2 , the effect of hypocapnia is abolished and there is a net increase in cerebral blood flow. This increase in blood flow has been implicated in the development of high altitude cerebral edema in mountain climbers.

Military significance

The current military operating environments necessitate flights above 10,000 ft. In this environment, the crews of unpressurized aircraft are at risk of developing hypoxia during the mission. In general, aircrews typically associate hypoxia with altitudes significantly greater than 10,000 ft or with flights of long duration at 10,000 to 15,000 ft. Within this range of altitude, human physiological compensatory mechanisms may range from very effective in certain individuals to ineffective in others. Factors such as increased physical activity and ambient temperature can effectively lower the threshold altitude at which symptoms of hypoxia may appear. Given the insidious nature of hypoxia, the manifestation of mild hypoxia at moderate altitude can be very subtle and can go completely unrecognized.

The North Atlantic Treaty Organization (NATO) and Partners for Peace (PfP) allied forces have likewise recognized the potential aircrew hazards, performance decrements, and mission risks for operations at moderate altitudes in excess of 10,000 pressure altitude. Within the structure of the NATO Research and Technology Organization (RTO), the Human Factors and Medicine (HFM) Technical Panels provide a scientific base for decisions and standardization regarding human protection and military performance optimization in operational environments through information exchange, collaborative scientific experimentation, and shared subject matter expertise (North Atlantic Treaty Organization [NATO], 2006).

In January 2010, Research Task Group (RTG) HFM-190, "Oxygen requirements in unpressurized aircraft operating below 18,000 feet" was established as a vehicle to comprehensively address such concerns among participating nations (NATO, in press). Issues of human physiologic protection, regulatory standardization, aircrew training fidelity, and optimal equipment selection have all been cited as areas to be addressed under the panel's justification. The genesis of the current review coincided with the inception of this RTG.

Objectives

This review was conceived with three primary objectives.

a. Determine what is presently known about cognitive and visual decrements resulting from mild hypoxia occurring at moderate altitudes.

b. Assess the existing literature with respect to the physiological parameters studied, and the methods used in the execution of the current research.

c. Facilitate evidence-based decisions regarding use of supplemental O₂, regulatory controls, and informed training and mission planning for Commanders and aircrew.

Methods

We conducted a systematic literature search regarding the state of the science for mild hypoxic impairment of mental functions, sensory deficits, and any other pertinent research findings that may affect aviation-related duties. All searches were conducted in conjunction with a USAARL research librarian. The primary search engines employed were Defense Technical Information Center (DTIC) and Dialog, which searches the National Technical Information Service (NTIS), Medline, Embase, and PsychInfo. The search string was as follows: "hypoxia" and "moderate altitude" or "8,000 ft" or "9,000 ft" or "10,000 ft" or "11,000 ft" or "12,000 ft" or "13,000 ft" or "14,000 ft" or "15,000 ft" and "cognition" or "cognitive" or "vision" or "performance" or "impairment." Exclusionary criteria included publications related specifically to any type of mountain sickness, chronic hypoxia, hypoxic exposures at altitudes greater than 15,000 ft or lasting longer than 12 hours (hr), and cardiopulmonary pathophysiology. Molecular or cellular-level studies that were focused on elucidation of cellular-level events were generally excluded as well unless a particular study exhibited direct relevance to CNS dysfunction under hypoxic conditions.

The DTIC search yielded 248 articles of which 223 were excluded. The Dialog search yielded 32 articles, 5 technical reports, 1 master's thesis, 2 abstracts, and 2 manuals. Excluded from the Dialog search were 17 articles, 2 technical reports, and 2 manuals. Additionally, 52 articles, 1 master's thesis, and 16 abstracts were obtained for review from references of original search criteria. Of these 52 articles, 14 were subsequently excluded. The total publications included were 78 articles, 3 technical reports, 2 master's theses, and 18 abstracts.

<u>Results</u>

The following results are organized into three main sections. The first section presents results of selected cognitive and psychomotor studies. The next section presents results of visual studies. The last section presents a short review of the literature regarding CNS dysfunction resulting from mild hypoxia.

Cognitive and psychomotor

Cognitive and psychomotor deficits resulting from mild hypoxia appear to be most difficult to quantify and reproduce consistently. Several research groups report cognitive impairment, while others are unable to reproduce similar results. For example, Denison, Ledwith, and Poulton (1966) noted an increased reaction time on the Manikin test in exercising subjects at 8000 ft. Denison et al. attributed the increased reaction time to task novelty. Using the same experimental design as Denison et al., Fowler, Paul, Porlier, Elcombe, and Taylor (1985) could not demonstrate learning difficulties up to 12,000 ft. Rice et al. (2005) used the CogScreen®-HE to approximate the altitude at which cognitive deficit occurs. At a simulated altitude of 15,000 ft, they found that volunteers averaged 12 or more errors on the vigilance exam, but found no significant decrements at 12,000 and 10,000 ft. In a similar experiment using CogScreen®-HE, Hewett, Curry, Rath, and Collins (2009) could not reproduce the same results. These subjects demonstrated no significant cognitive deficits. Comparing the experimental designs of Rice et al. and Hewett et al., the notable differences were the final altitude and time at altitude, 15,000 ft for 60 min, and 14,000 ft for 45 min, respectively.

Several studies indicate that in measuring cognitive performance, visual perception plays an important role in the process. Fowler, Taylor, and Porlier (1987) reported a threshold estimate of 9750 ft for perceptual motor performance decrements due to hypoxia and cited disruption of vision as a factor influencing this decrement. In 1993, Fowler, Banner, and Pogue conducted an additive factors method experiment to determine whether preprocessing and identification stages of information processing are implicated in the slowing of reaction time (RT) by hypoxia. Their results indicate that visual slowing probably plays an important role in the disruption of these tasks while hypoxic, particularly under conditions of suboptimal lighting.

At moderate altitudes, it is not uncommon to find mixed reports of both increases and decreases in some performance parameters. For example, Schlaepfer, Bartsch, and Fisch (1992) found an increase in visual perception with mild hypoxia. Findings such as this one could possibly be due to hyperventilation and the resulting increase in P_AO_2 and hypocapnia. Several lines of research indicate that one must consider the balance of respiratory gases when evaluating visual performance under hypoxic conditions. Hypocapnia is known to increase visual sensitivity (Wald, Harper, Goodman, & Krieger, 1942) as well as to accelerate dark adaptation (Connolly & Hosking, 2006). The importance of the balance between O_2 and CO_2 in the manifestation of the signs and symptoms of hypoxia has also been demonstrated by Luna, French, Neville, Mitcha, and Storm (1994). A time-indexed, computerized Manikin test was conducted which measured several physiologic parameters, such as hemoglobin saturation (HbO₂), end-tidal P_AO_2 , and P_ACO_2 . The results indicated that the best overall correlation in assessing task performance was by using a hybrid relationship between HbO₂ and P_ACO_2 . This

implies that P_AO_2 in itself may not provide the best correlation with task performance. The importance of the contribution of PCO₂ fluctuation has also been reported by Karl, McMillan, Ward, Kissen, and Souder (1978). In a study with Rhesus monkeys, Karl et al. found that breathing supplemental 5% CO₂ at all levels of hypoxia induced in the study, maintained brain tissue PCO₂ at control levels and retarded the fall of brain tissue PO₂, and can reduce hypoxia-induced (8% O₂) performance decrement.

When attempting to assess aircrew performance, perhaps it may be more useful to measure performance based on flight-relevant tasks. Nesthus, Rush, and Wreggit (1997) utilized flight-relevant tasks in simulated flight performance by using a Multiple Attribute Task Battery to test cognition in a cross-country flight scenario. They found that significantly more procedural errors were committed by the hypoxia group during simulated cruise flight at 10,000 ft, both during the descent and approach phases from 10,000 ft, and during descent from 12,500 ft. In 2005, Smith conducted a retrospective survey of Australian Army helicopter aircrew who had operated at altitudes up to 10,000 ft. In this study, 53 surveys were returned, representing 25 loadmasters, 23 pilots, and 5 aircrewman technicians. The helicopter aircrew reported symptoms consistent with hypoxia at altitudes within the "physiological zone." Loadmasters reported more effects than pilots. This most likely reflects the increased physical activity, and consequently, a greater metabolic demand for O_2 than required by pilots. Overall, aircrew experienced potentially operationally significant symptoms at a mean altitude of 8426 ft.

Vision

Nervous tissue is highly O₂ dependent. In comparison with any other body system, the brain and the retina have the highest O₂ uptake per unit mass (Billings, 1973). This fact makes visual performance and sensitivity ideally suited for hypoxia studies. In 1939, McFarland and Evans reported a decrease in visual light sensitivity at 7400 ft. Mild hypoxia is also known to compromise threshold sensitivity during dark adaptation. Numerous subsequent studies and inflight observations confirm retinal sensitivity to hypoxia. Several studies also confirm that, when assessing visual sensitivity and dark adaptation, one must consider the physiological balance of respiratory gases as well. Alpern and Hendley (1952) demonstrated that hypocapnia enhances visual sensitivity and contrast discrimination. Wald et al. (1942) found that hypocapnia accelerates dark adaptation. The mechanism by which hypocapnia affects visual sensitivity is unknown, however respiratory alkalosis seems to be a requisite physiological condition. Wald et al. found that adding 2% CO₂ to breathing gas abolished the effect of hypocapnia. Other more recent studies indicate that both PO₂ and PCO₂ affect dark adaptation and visual sensitivity. Connolly and Hosking (2006) reported that early scotopic sensitivity was delayed by hypoxia and hastened by hypocapnia and hyperoxia. Their results also indicate that rod photoreceptors are functionally hypoxic when breathing air at one atmosphere. In 2008, Connolly, Barbur, Hosking, and Moorehead demonstrated that contrast sensitivity is degraded beyond the fovea in good viewing conditions at 10,000 ft. The outer retina has been shown to be more susceptible to hypoxia. Their results also indicate that changes in visual sensitivity persist for about 20 to 25 min after hypoxic exposure.

In light of current military operations, there has been considerable investigation on the effects of mild hypoxia on visual performance while using night vision goggles (NVG) (Leber, Roscoe,

& Southward, 1986). Supplemental O_2 significantly improved naked-eye but not NVGaugmented night resolution acuity up to a simulated altitude of 13,000 ft. Davis et al. (1995) found that visual acuity with NVGs was degraded slightly after 30 min of exposure to 14,107 ft, although less than what would be expected with unaided night vision under these conditions. Balldin et al. (2007) compared cognitive and visual performance at near ground level pressure altitude and at 10,000 ft over a 12-hr exposure to approximate the operational envelope and mission time flown by the special operations community. This study found that 12-hr exposure at 10,000 ft produced no significant negative impact on cognitive function, but minor negative effects on NVG performance under operational lighting (starlight) conditions.

CNS dysfunction

In contrast to severe hypoxia, brain levels of ATP are well-maintained during mild hypoxia (Gibson, Pulsinelli, Blass, & Duffy, 1981). Why then are cognitive and psychomotor impairments observed in mildly hypoxic individuals? One possible explanation could be cerebral vasoconstriction due to hypocapnia resulting from compensatory hyperventilation. This raises the possibility that some areas of the brain may be more than just mildly hypoxic even at moderate altitudes. Another question: What is the minimum altitude at which these decrements become apparent? Studies by Nelson (1982) indicate that the decisive altitude for changes in higher cognitive functioning lies between 13,123 and 16,404 ft. Pavlicek Schirlo, Nebel, Regard, Koller, and Brugger (2005) investigated the effects of hypoxia on subjects exposed to altitudes of 3500 to 4500 m (9842 to 14,764 ft, respectively) for 2 hr. Their results showed no significant changes in higher cognitive and emotional function tests at 14,764 ft. They concluded that selected cognitive and affective frontal lobe functions were preserved despite significant O₂ desaturation and drop in diastolic blood pressure, which indicates hypoxic impairment of the vasomotor center. This finding suggests that short-term adaptation mechanisms may lead to preservation of these functions. Though most neurons stop generating action potentials under hypoxic conditions, some populations of neurons are more resistant to hypoxia than others (Peña & Ramirez, 2005).

Gibson et al. (1981) proposed that the signs and symptoms of mild to moderate hypoxia result from altered turnover of several neurotransmitters. Turnover is defined as the overall rate at which whole amine store in a given tissue is replaced (Cooper, Floyd, & Roth, 1986). The rate of turnover is not necessarily equal to biosynthetic rate, but it can be used as an estimate of the functional state of a variety of catecholaminergic neurons. Hypoxia induces changes in concentrations of norepinephrine (NE). Acetylcholine (ACh) and serotonin (5-HT) concentrations are affected as well. For example, ACh synthesis is reduced as the rate of carbohydrate oxidation is reduced. ACh is known to be involved in the regulation of processes such as learning and memory. It should be noted that anticholinergic drugs, such as scopolamine, can produce deficits in memory. Tyrosine hydroxylase (TH), which catalyzes the rate-limiting step in the synthesis of catecholamines, is directly dependent on O₂. Rostrup et al. (2007) reported that TH activity may be severely limited by O₂ availability even at moderate hypoxic conditions.

Discussion

At pressure altitudes above 18,000 ft, CNS decrements are unequivocal, measurable, and are clearly attributed to acute hypoxia. This does not seem to be the case at altitudes between 8000 and 15,000 ft. Within this range of pressure altitude, individuals are in a compensatory mode, and some individuals compensate for the reduction in atmospheric pressure more rapidly than others. The predominant compensatory mechanisms include hyperventilation, which as previously mentioned, results in hypocapnia, leading to cerebral vasoconstriction. The compensatory mechanisms themselves create a more complex physiological environment, which includes an imbalance in respiratory gases and an increase in plasma pH. Thus, the degree of hypoxia and severity of the symptoms become quite variable. Environmental factors, such as temperature and physical activity further complicate a dynamic physiological picture. These factors possibly contribute to the variability of results obtained in studies of acute hypoxic hypoxia.

Cognitive and psychomotor

The results of this literature search suggest that cognitive and psychomotor testing during mild acute hypoxia may produce varying results. In a questionnaire-based study conducted by Smith (2008), cognitive and psychomotor impairment dominated the symptoms reported after acute hypoxia training, as well as the symptoms remembered from previous hypoxia training. Yet, cognitive testing is often not reproducible and several studies produced conflicting results. The difficulty in obtaining reproducible results in cognitive testing may be related to several factors. One factor is the degree of physiological variability from one individual to another, that is, the ability of an individual to compensate adequately under hypoxic conditions at a given altitude. Other sources of ambiguity may be related to instrumentation used in hypoxia testing and a lack of agreement on standardized metrics. Furthermore, some of the tests themselves lack sensitivity and/or specificity to the decrements under scrutiny. With this in mind, it may be of benefit if future studies investigating the effects of mild hypoxic hypoxia focused on standardization of agreed-upon common aviation-specific tasks. Such studies could be conducted in simulator-based hypoxic environment. When examining cognitive and psychomotor function, it is critical that tests of those functions with proven sensitivity and specificity are selected.

Vision

Studies of the visual consequences of acute hypoxia have produced more consistent results than cognitive and psychomotor testing. This is not entirely unexpected considering the extraordinary sensitivity of the retina to lack of O_2 . Recent research indicates that both cone and rod functions demonstrate a decrease in sensitivity during acute hypoxia (Connolly & Hosking, 2006). Furthermore, recovery of rod sensitivity has been shown to be delayed by several minutes under hypoxic conditions, suggesting hypoxia delays photochemical regeneration processes at the photoreceptor level. The finding that 100% O_2 delivered at sea level increases and hastens rod sensitivity may have significant tactical value. If rod recovery time is enhanced with O_2 , this may reduce the transition time between lighted and dark conditions (e.g. muzzle flash effects and transitions between NVG and unaided vision). Connolly and Hosking's study also demonstrated that early scotopic sensitivity is hastened by hypocapnia. This finding has important implications, particularly for acute hypoxia research conducted at moderate altitude. Within this altitude range, the compensatory onset of hyperventilation and subsequent hypocapnia with increasing altitude can potentially confound experimental results in hypoxia research efforts, both in visual and cognitive studies. Studies conducted by Fowler et al. (1985, 1987) demonstrated the effects of slowing of visual processing when measuring cognitive performance. Hypocapnia, respiratory gas balance, and plasma pH should all be taken into consideration when conducting acute hypoxia experiments at moderate altitude.

CNS dysfunction

The specific underlying mechanisms responsible for the observed neurological decrements during hypoxia are not completely understood. Rostrup and colleagues' findings (2008) that TH activity may be severely impaired under mildly hypoxic conditions, and a U.S. Army study on the beneficial effects of tyrosine (Banderet et al., 1985) supplementation, lend credibility to Gibson and colleagues' (1981) argument of altered turnover of key neurotransmitters. Recent neurophysiological studies indicate that various neuronal circuits within the brain express different responses to hypoxia. Physiological responses to hypoxia depend on the type of hypoxia (for example, acute versus chronic or intermittent versus continuous). Peña and Ramirez (2005) argue that neuronal responses to hypoxia are regulated in a heterogeneous fashion. The time course of physiological regulatory processes is quite different in acute hypoxia compared to chronic hypoxia. It has also been demonstrated that there are significant differences between types of neurons, and even between those located within the same brain region (Haddad & Jiang, 1993). For example, hypoxia causes hippocampal neurons to stop action potential generation, whereas some certain brain stem neurons involved in generation of respiratory rhythm are able to maintain cardiorespiratory functions during hypoxic episodes (Peña, Parkis, Tryba, & Ramirez, 2004). In their review article, Peña and Ramirez conclude that in order to understand how the nervous system responds to hypoxia, more studies integrating cellular and systems level approaches are needed.

Hypoxia recognition training

Most Hypoxia Recognition Training (HRT) is conducted either in a hypobaric chamber or under normobaric conditions using mixed gases to simulate an altitude of 25,000 ft. At this altitude, the symptoms of hypoxia are quite severe and develop rapidly. This is generally not the case when operating between 8000 and 15,000 ft. Aircrews that operate within the above altitude range will not experience the same symptoms with the same severity as during a 25,000 ft hypoxia demonstration. A 25,000 ft training scenario may not be realistic for this type of aircrew, and may lead to lack of recognition of insidious hypoxia in flight at moderate altitude.

Current HRT methods include hypobaric chamber training, normobaric devices using mixed gases, and Combined Altitude Depleted Oxygen (CADO), which is a hybrid method utilizing a hypobaric chamber and an O_2 -depleted gas mixture. The most well-known, traditional method of HRT is hypobaric or low-pressure training. In this method, air inside the chamber is evacuated via a vacuum pump, reducing the atmospheric pressure inside the chamber, thereby effectively creating a high-altitude environment. The reduction of ambient atmospheric pressure

results in a reduction of the P_AO_2 in the lungs of the subjects, which induces hypoxia. The typical altitude at which the hypoxia demonstration is given is 25,000 ft. While certainly very effective in producing hypoxia and demonstrating other physiological effects of a high-altitude environment, hypobaric chamber training poses the risk of decompression sickness. Consequently, there has been much interest in safer alternatives for HRT.

Over the past 10 years, normobaric methods have gained popularity for use in training aircrew. These systems generally employ hypoxic gas mixtures to induce hypoxia. One such method currently in use by the US military services is the Reduced Oxygen Breathing Device (ROBD), a closed-loop rebreather device that uses compressed air that is subsequently mixed with nitrogen, which dilutes the air, thereby reducing the concentration of O_2 in the inspired air. This allows the ROBD operator to simulate the PO₂ of the desired altitude. In US Navy studies, hypoxia induced by the ROBD has been found physiologically equivalent to that induced by the hypobaric chamber (Vacchiano, Vagedes, & Gonzalez, 2004). Non-rebreathing systems have also been studied and successfully used to demonstrate symptoms of hypoxia to aircrew.

In 2001, the Royal Australian Air Force developed CADO (Cable & Westerman, 2010). This hybrid method of HRT incorporates a hypobaric chamber ascent to 10,000 ft and a hypoxic exposure to a physiological altitude of 25,000 ft. Hypoxia is induced by breathing a depleted O_2 gas mixture. Canadian forces have also adopted this method of HRT. This method has the advantage of allowing the student to experience the pressure effects of ascent to altitude and a 25,000-ft hypoxia demonstration in a safer environment than a standard altitude chamber profile. Regardless of the method, most hypoxia demonstrations are traditionally conducted at a simulated altitude of 25,000 ft.

In an attempt to develop future aviation physiology training strategies for aircrew, Cable (2003) analyzed incidents of hypoxia reported to the Directorate of Flying Safety of the Australian Defence Force (DFS-ADF) during the period of 1990-2001. The results of this analysis indicated that majority of hypoxia symptoms occurred between 10,000 and 19,000 ft. He concluded that the current hypobaric chamber training methods should be reviewed for relevance to the most at-risk aircrew population, and recommended that methods simulating subtle incapacitation should be explored. In his analysis, Cable reported that 75.8% of the hypoxic episodes were recognized by the aircrew themselves. Clearly, this demonstrates the importance and effectiveness of HRT. The 25,000-ft hypobaric chamber profile and/or the normobaric mixed-gas equivalent training are effective methods of inducing hypoxia for recognition of one's personal symptoms of hypoxia. However, by themselves, these methods may not be the most realistic for aircrew commonly flying between 8000 and 15,000 ft. The onset of acute hypoxia at 25,000 ft is more rapid and the signs and symptoms are of greater severity than those appearing at moderate altitudes. Consequently, the first hypoxic episode at moderate altitude may go unrecognized because aircrew may be expecting signs and symptoms similar to 25,000 ft. HRT should be more applicable to aircrew operating at moderate altitudes.

Many physiologists are not convinced that hypobaric and normobaric hypoxic environments are physiologically equivalent. Recent research has demonstrated that the signs and symptoms associated with hypobaric hypoxia and normobaric hypoxia may not always be identical. Savourey, Launay, Besnard, Guinet, and Travers (2003) reported that, compared to normobaric

hypoxia, hypobaric hypoxia leads to greater hypoxemia, hypocapnia, alkalosis, and a lower S_aO_2 when subjected to an equivalent ambient PO₂. The Equivalent Air Altitude model states that different combinations of ambient atmospheric pressure (P_B) and inspired fraction of O_2 (F_IO_2) that produce the same P_IO₂ result in identical physiological responses. Recent evidence shows that different combinations of P_B and P_IO_2 may produce different responses to the same P_IO_2 (Conkin & Wessel, 2008). This finding would invalidate the Equivalent Air Altitude model as the ideal description of isohypoxia. Isohypoxia is defined as the same distribution of hypoxic signs and symptoms under any circumstances of equivalent hypoxic dose. Most recently, Self, Mandella, Prinzo, Forster, and Shaffstall (2010) evaluated the physiological equivalence of normobaric versus hypobaric hypoxia. In this study, 20 subjects were exposed to 5-min, 25,000ft equivalent environments in an altitude chamber and then in a ground-level portable reduced O₂ training enclosure. They found that the mean number of hypoxia symptoms between hypobaric and normobaric environments after 1 min were significant, but not at 3 and 4 min. Alveolar gas composition and arterial hemoglobin O₂ desaturation patterns differed as well between a groundlevel and hypobaric exposure. Based on these results, combined with similar patterns in symptom frequencies, they concluded that ground-level hypoxia training may be a sufficient alternative for altitude chamber training. Although normobaric and hypobaric hypoxia training at 25,000 ft seems to produce equivalent symptoms, there are clearly some physiological differences that warrant further investigation.

Conclusions

A specific altitude and duration at which cognitive deficits manifest remains unclear. However, trends suggest considerable evidence of impairment of varying degrees between 12,000 and 15,000 ft. All other variables being equal, physical activity accelerates the onset of signs and symptoms at a given pressure altitude.

The literature regarding hypoxic visual decrements is more consistent. The outer retina is more susceptible to hypoxia than the inner retina. When attempting to study the effects of hypoxia on vision, hyperventilation may confound experimental results, for example, the resulting respiratory alkalosis may enhance visual sensitivity and contrast discrimination, and accelerate dark adaptation. The effects of hypoxia persist well after descent to lower altitude. Visual degradation has been shown to occur at about 4000 to 5000 ft under scotopic conditions and at 10,000 ft under photopic conditions.

Nervous tissue is known to be highly O_2 dependent and susceptible to hypoxia. Neurological dysfunction is well-established above 15,000 ft. The possible causes of mild hypoxic dysfunction include poor individual physiologic compensation, disruption of several O_2 -dependent neurotransmitter synthetic pathways, and respiratory gas imbalance related to the degree of hyperventilation. Decrements may be subtle and variable from 8000 ft to 15,000 ft.

Recommendations

Given the totality of the literature reviewed, and the current state of the science, the authors recommend the following:

We have identified several areas where the current state of the science is lacking (see Results section). It is the opinion of the authors that near future research should engage the following topics: (1) augment validated neuropsychological metrics (surrogate investigational end points) with actual flight task metrics (desired end points of interest) under moderate hypoxic conditions, (2) determine efficacy of potential neuropsychological performance-enhancing agents (e.g. tyrosine supplementation) for both acute and chronic hypoxia, and (3) investigation of a mixed gas formulation with varying concentrations of CO_2 to investigate the contribution of hypocapnic effects on hypoxic performance at moderate altitudes.

The ability to compensate to hypoxic challenge varies not only between individuals, but also within the same individual, depending on one's physiological condition at the onset of hypoxia. However, in healthy individuals, all of these systems operate within a normal range of human variant. Yet we have different regulatory guidance regarding the use of supplemental O_2 between different nations, and even within the branches of the military. Selected examples of such guidance can be found in Appendix B.

There are significant differences between the U. S. Army regulations versus those of the U.S. Navy and the U.S. Air Force (as well as the Federal Aviation Administration and our allied services). One might argue that each branch of service has different mission requirements. Although this is true, all aircrew are human and all are susceptible to hypoxia, regardless of the mission. Furthermore, the armed forces fly many of the same platforms and mission profiles. Taking this into account, it may be worthwhile to investigate the possibility of suitable universal regulations regarding supplemental O_2 use in-flight.

Since there is no magic line at which everyone becomes hypoxic, we recommend that the potential for in-flight hypoxia at moderate altitude be addressed during mission planning. A case has also been made that HRT should be relevant and representative of true mission conditions. We recommend that hypobaric/normobaric training at a simulated altitude of 25,000 ft be augmented with a method that can produce subtle hypoxic impairment. The development of such a method should be explored.

References

- Acevedo, E. O. and Ekkekakis, P. 2001. The transactional psychobiological nature of cognitive appraisal during exercise in environmentally stressful conditions. <u>Psychology of Sport and Exercise</u>. 2: 47-67.
- Alpern, M. and Hendley, C. D. 1952. Visual functions as indices of physiological changes in the acid-base balance of the blood. <u>American Journal of Optometry and Archives of American Academy of Optometry</u>. 29(6): 301-314.
- Artino, A. R., Jr., Folga, R. V., and Vacchiano, C. 2009. Normobaric hypoxia training: the effects of breathing-gas flow rate on symptoms. <u>Aviation, Space, and Environmental</u> <u>Medicine</u>. 80(6): 547-552.
- Bahrke, M. S. and B. Shukitt-Hale, B. 1993. Effects of altitude on mood, behaviour and cognitive functioning: A review. <u>Sports Medicine</u>. 16(2): 97-125.
- Balldin, U. L. et al. 2007. Effects of 12 hours of low-grade hypoxia at 10,000 ft at night in special operations forces aircraft operations on cognition, night vision goggle vision and <u>subjective symptoms</u>. Brooks City Base, TX: Air Force Research Laboratory. AFRL-HE-BR-TR Technical Report No. 2007-0047.
- Banderet, L. E. et al. 1985. Development of a paradigm to assess nutritive and biochemical substances in humans: A preliminary report on the effects of tyrosine upon altitude- and cold-induced stress responses. <u>Advisory Group for Aerospace Research and Development</u> (AGARD) Conference Proceedings No. 415: Biochemical Enhancement of Performance, 3-1-3-10. North Atlantic Treaty Organization.
- Billings, C. E., Foley, M. F., and Huie, C. R. 1964. Physiological effects of induced hypoxia during instrument flying. <u>Aerospace Medicine</u>. 35: 550-553.
- Billings, C. E. 1973. Atmosphere. (pp. 35-63). In J. F. Parker and V. R. West (Eds.), <u>Bioastronautics data book (Scientific Paper NASA-SP-3006)</u>. Washington, DC: National Aeronautics and Space Administration.
- Brinchmann-Hansen, O. and Myhre, K. 1989. The effect of hypoxia upon macular recovery time in normal humans. <u>Aviation, Space, and Environmental Medicine</u>. 60(12): 1183-1186.
- Brinchmann-Hansen, O. and Myhre, K. 1990. Vascular response of retinal arteries and veins to acute hypoxia of 8,000, 10,000, 12,500, and 15,000 feet of simulated altitude. <u>Aviation, Space, and Environmental Medicine</u>. 61(2): 112-116.
- Burkett, P. R. and Perrin, W. F. 1976. Hypoxia and auditory thresholds. <u>Aviation, Space, and</u> <u>Environmental Medicine</u>. 47(6): 649-651.

- Butler, W. P. 2008. The flight environment and tissue oxygen delivery (DO₂) [Abstract]. Aviation, Space, and Environmental Medicine. 79(3): 240.
- Cable, G. G. 2003. In-flight hypoxia incidents in military aircraft: causes and implications for training. <u>Aviation, Space, and Environmental Medicine</u>. 74(2): 169-174.
- Cable, G. G. and Westerman, R. 2010. Hypoxia recognition training in civilian aviation: A neglected area of safety. Journal of the Australian Society of Aerospace Medicine. 5(1): 4-6.
- Chevion, S. et al. 2007. Reactive oxygen species production in exposure to hypoxia in healthy males [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 78(3): 399.
- Chiles, W. D., Iampietro, P. F. and Higgins, E. A. 1971. Combined effects of altitude and high temperature on complex performance. <u>Human Factors</u>. 14(2): 161-172.
- Christensen, C. L., Gliner, J. A., Horvath, S. M., and Wagner, J. A. 1977. Effects of three kinds of hypoxias on vigilance performance. <u>Aviation, Space, and Environmental Medicine</u>. 48(6): 491-496.
- Conkin, J. and Wessel, J. H., III. 2008. Critique of the equivalent air altitude model. <u>Aviation</u>, <u>Space</u>, and <u>Environmental Medicine</u>. 79(10): 975-782.
- Connolly, D. M., Barbur, J. L., Hosking, S. L., and Moorehead, I. R. 2008. Mild hypoxia impairs chromatic sensitivity in the mesopic range. <u>Investigative Ophthalmology and Visual Science</u>. 49(2): 820-827.
- Connolly, D. M. and Hosking, S. L. 2006. Aviation-related respiratory gas disturbances affect dark adaptation: A reappraisal. <u>Vision Research</u>. 46(11): 1784-1793.
- Connolly, D. M. and Hosking, S. L. 2007a. Quantitative correlation of hyperventilation with flicker sensitivity. <u>Optometry and Vision Science</u>. 84(6): 529-534.
- Connolly, D. M. and Hosking, S. L. 2007b. Oxygenation and gender effects on photopic frequency-doubled contrast sensitivity. <u>Vision Research</u>. 48(2): 281-288.
- Connolly, D. M. and Hosking, S. L. 2009. Oxygenation state and mesopic sensitivity to dynamic contrast stimuli. <u>Optometry and Vision Science</u>. 86(12): 1368-1375.
- Cooper, J. R., Floyd, B. E., and Roth, R. H. 1986. <u>The Biochemical Basis of</u> <u>Neuropharmacology</u>. 5th ed. (p. 232). New York, NY: Oxford University Press.
- Crow, T. J. and Kelman, G. R. 1971. Effect of mild acute hypoxia on human short-term memory. <u>British Journal of Anaesthesia</u>. 43(6): 548-552.
- Crow, T. J. and Kelman, G. R. 1973. Psychological effects of mild acute hypoxia. <u>British</u> Journal of Anaesthesia. 45(4): 335-337.

- Davis, H. Q. et al. 1995. Visual performance with the Aviator Night Vision Imaging System (ANVIS) at a simulated altitude of 4300 meters. <u>Aviation, Space, and Environmental Medicine</u>. 66: 430-434.
- Delgado-Esteban, M., Almeida, A., and Medina, J. M. 2002. Tetrahydrobiopterin deficiency increases neuronal vulnerability to hypoxia. Journal of Neurochemistry. 82(5): 1148-1159.
- Denison, D. M., Ledwith, F., and Poulton, E. C. 1966. Complex reaction times at simulated cabin altitudes of 5,000 feet and 8,000 feet. <u>Aerospace Medicine</u>. 37(10): 1010-1013.
- Department of the Air Force. 2010. <u>Flying operations: General flight rules</u>. (pp. 41-42). Washington, DC: Secretary of the Air Force, Department of the Air Force. Air Force Instruction (AFI) 11-202V3_AACSUP_I, Air Force Materiel Command (AFMC) Supplement I.
- Department of the Army. 2008. <u>Aviation flight regulations</u>. (p. 43). Washington, DC: Headquarters, Department of the Army. AR 95-1.
- Department of the Navy. 2009. <u>Naval air training and operating procedures standardization</u> (NATOPS): General flight and operating instructions. (p. 8-10). Washington, DC: Office of the Chief of Naval Operations (OPNAV), Department of the Navy. OPNAV Instruction 3710.7U.
- DeVilbiss, C. A. 1998. <u>Altitude and night vision goggles</u>. Brooks City Base, TX: Air Force Research Laboratory. AFRL-HE-BR-TR Technical Report No. 1998-001.
- Dhar, T., Dogra, M., and Sinha, A. 2006. Effects of normobaric hypoxia on G-tolerance [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 77(3): 289.
- Du, J. Y., Li, X. Y., Zhuang, Y., Wu, X. Y., and Wang, T. 1999. Effects of acute mild and moderate hypoxia on human short memory [Abstract]. <u>Space Medicine and Medical</u> <u>Engineering (Beijing)</u>. 12(4): 270-273.
- Ernsting, J. 1973. Hypoxia in the aviation environment. <u>Proceedings of the Royal Society of Medicine</u>. 66(6): 523-527.
- Ernsting, J. 1978. Prevention of hypoxia-Acceptable compromises. <u>Aviation, Space, and</u> <u>Environmental Medicine</u>. 49(3): 495-502.
- Ernsting, J. 1984. Mild hypoxia and the use of oxygen in flight. <u>Aviation, Space, and</u> <u>Environmental Medicine</u>. 55(5): 407-410.
- Fowler, B., Banner, J., and Pogue, J. 1993. The slowing of visual processing by hypoxia. <u>Ergonomics</u>. 36(6): 727-735.

- Fowler, B., Paul, M., Porlier, G., Elcombe, D. D., and Taylor, M. A. 1985. Re-evaluation of the minimum altitude at which hypoxic performance decrements can be detected. <u>Ergonomics</u>. 28(5): 781-791.
- Fowler, B., Taylor, M., and Porlier, G. 1987. The effects of hypoxia on reaction time and movement time components of a perceptual-motor task. <u>Ergonomics</u>. 30(10): 1475-1485.

Fox, S. I. 2006. Human Physiology. (p. 539). New York, NY: McGraw-Hill.

- Fraser, W. D., Eastman, D. E., Paul, M. A., and Porlier, J. A. 1987. Decrement in postural control during mild hypobaric hypoxia. <u>Aviation, Space, and Environmental Medicine</u>. 58(8): 768-772.
- Fulco, C. S. and Cymerman, A. 1987. <u>Chapter 12: Human performance and acute hypoxia</u>. Natick, MA: U.S. Army Research Institute of Environmental Medicine. DTIC No. ADA192604.
- Gibson, G. E., Pulsinelli, W., Blass, J. P., and Duffy, T. E. 1981. Brain dysfunction in mild to moderate hypoxia. <u>American Journal of Medicine</u>. 70(6): 1247-1254.
- Gibson, T. M. 1978. Effects of hypocapnia on psychomotor and intellectual performance. Aviation, Space, and Environmental Medicine. 49(8): 943-946.
- Gold, R. E. and Kulak, L. L. 1972. Effect of hypoxia on aircraft pilot performance. <u>Aerospace</u> <u>Medicine</u>. 43(2): 180-183.
- Green, R. G. and Morgan, D. R. 1985. The effects of mild hypoxia on a logical reasoning task. <u>Aviation, Space, and Environmental Medicine</u>. 56(10): 1004-1008.
- Hackworth, C. A., Peterson, L. M., Jack, D. G, Williams, C. A., and Hodges, B. E. 2003.
 <u>Examining hypoxia: A survey of pilots' experiences and perspectives on altitude training</u>.
 Washington, DC: U.S. Department of Transportation/Federal Aviation Administration/Office of Aerospace Medicine. DOT/FAA/AM Report No. 03/10.
- Haddad, G. G. and Jiang, C. 1993. O₂ deprivation in the central nervous system: On mechanisms of neuronal response, differential sensitivity and injury. <u>Progress in</u> <u>Neurobiology</u>. 40: 277-318.
- Hall, F. G. 1953. <u>The role of carbon dioxide in altitude tolerance</u>. Washington, DC: U.S. Air Force Wright Air Development Center. WADC Technical Report 53-57.
- Hall, J. E. 2011. <u>Textbook of Medical Physiology</u>. (p. 528). Philadelphia, PA: Saunders Elsevier.
- Hampson, G. 2007. Hypobaric training downunder; Where to from here [Abstract]. <u>Aviation</u>, <u>Space</u>, and <u>Environmental Medicine</u>. 78(3): 233.

- Hayashi, F. and Fukuda, Y. 2000. Neuronal mechanisms mediating the integration of respiratory responses to hypoxia. Japanese Journal of Physiology. 50(1): 15-24.
- Hewett, K. J., Curry, I. P., Rath, E., and Collins, S. M. 2009. <u>Subtle cognitive effects of mild</u> <u>hypoxia</u>. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Technical Report No. 2009-17.
- Hornbein, T. F. 2001. The high-altitude brain. Journal of Experimental Biology. 204(18): 3129-3132.
- Hudson, C. M., Higginbotham, K. D., and Harvis, L. H. 2010. Functionality of the CV-22 OBOGS to support high altitude operations [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 81(3): 240.
- Karakucuk, S., Oner, A. O., Goktas, S., Siki, E., and Kose, O. 2004. Color vision changes in young subjects acutely exposed to 3,000 m altitude. <u>Aviation, Space, and Environmental Medicine</u>. 75(4): 364-366.
- Karl, A. A., McMillan, G. R., Ward, S. L., Kissen, A. T., and Souder, M. E. 1978. Effects of increased ambient CO2 on brain tissue oxygenation and performance in the hypoxic rhesus. Aviation, Space, and Environmental Medicine. 49(8): 984-989.
- Kellogg, R. H. 1977. Oxygen and carbon dioxide in the regulation of respiration. <u>Federal</u> <u>Proceedings</u>. 36(5): 1658-1663.
- Kelman, G. R. and Crow, T. J. 1969. Impairment of mental performance at a simulated altitude of 8,000 feet. <u>Aerospace Medicine</u>. 40(9): 981-982.
- Knudtzon, J., Owe, J. O., and Aars, H. 1991. Baroreflex responsiveness during hypobaric hypoxia. <u>Aviation, Space, and Environmental Medicine</u>. 62(5): 397-402
- Kobrick, J. L. 1975. Effects of hypoxia on peripheral visual response to dim stimuli. <u>Perceptual</u> <u>and Motor Skills</u>. 41(2): 467-474
- Kobrick, J. L. 1976. Mathematical analysis of peripheral visual response time and associated effects of hypoxia. Natick, MA: U. S. Army Research Institute for Environmental Medicine. USARIEM-M-7/7T.
- Leber, L. L. 1985. Mild hypoxia and visual performance with night vision goggles [Thesis]. Air Force Institute of Technology. Wright-Patterson Air Force Base, OH. Available from DTIC. DTIC No. ADA156969.
- Leber, L. L., Roscoe, S. N., and Southward, G. M. 1986. Mild hypoxia and visual performance with night vision goggles. <u>Aviation, Space, and Environmental Medicine</u>. 57: 318-324.

- Lewis, R. B. and Haymaker, W. 1948. High altitude hypoxia; observations at autopsy in 75 cases and an analysis of the causes of the hypoxia. Journal of Aviation Medicine. 19(5): 306-336.
- Loeppky, J. A., Scotto, P., and Roach, R. C., 1996. Acute ventilatory response to simulated altitude, normobaric hypoxia, and hypobaria. <u>Aviation, Space, and Environmental Medicine</u>. 67: 1019-1022.
- Loeppky, J. A., Scotto, P., Chick, T. W., and Luft, U. C. 1990. Effects of acute hypoxia on cardiopulmonary responses to head-down tilt. <u>Aviation, Space, and Environmental Medicine</u>. 61(9): 785-794.
- Loeppky, J. A., Scotto, P., and Roach, R. C. 1996. Acute ventilatory response to simulated altitude, normobaric hypoxia, and hypobaria. <u>Aviation, Space, and Environmental Medicine</u>. 67(11): 1019-1022.
- Li, X. Y., Wu, X. Y., Shen, X. F., Yang, C. B., and Wu, Y. H. 2000. Effects of acute exposure to mild or moderate hypoxia on human psychomotor performance and visual reaction time [Abstract]. <u>Space Medicine and Medical Engineering (Beijing)</u>. 13(4): 235-239.
- Luna, H. T., French, J., Neville, K., Mitcha, J., and Storm, W. F. 1994. Deepening hypoxia in humans: Which physiological measures correlate best with deteriorating task performance? [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 65(5): 467.
- Mahoney, C. R., Castellani, J., Kramer, F. M., Young, A., and Lieberman, H. R. 2007. Tyrosine supplementation mitigates working memory decrements during cold exposure. <u>Physiology and Behavior</u>. 92(4): 575-582.
- McFarland, R. A. and Evans, J. N. 1939. Alterations in dark adaptation under reduced oxygen tensions. <u>American Journal of Physiology</u>. 127: 37-50.
- McFarland, R. A. and Halperin, M. H. 1940. The relation between foveal visual acuity and illumination under reduced oxygen tension. Journal of General Physiology. 23(5): 613-630.
- Nesthus, T. E., Rush, L. L., Garner, R. P., and Mills, S. H. 1997. Effects of simulated general aviation altitude hypoxia on smokers and nonsmokers. Washington, DC: U. S. Department of Transportation/Federal Aviation Administration/Office of Aviation Medicine. DOT/FAA/AM Report No. 97/7.
- Nesthus, T. E., Rush, L. L., and Wreggit, S. S. 1997. Effects of mild hypoxia on pilot performances at general aviation altitudes. Washington, DC: U. S. Department of Transportation/Federal Aviation Administration/Office of Aviation Medicine. DOT/FAA/AM Report No. 97/9.
- Nelson, M. 1982. Psychological testing at high altitudes. <u>Aviation, Space, and Environmental</u> <u>Medicine</u>. 53: 122-126.

- Nilsson, G. E. and Lutz, P. L. 1993. Role of GABA in hypoxia tolerance, metabolic depression, and hibernation: Possible links to neurotransmitter evolution. <u>Comparative Biochemistry and</u> <u>Physiology- Part C: Toxicology and Pharmacology</u>. 105: 329-336.
- Nordahl, S., Aasen, T., Risberg, J., Owe, J. O., and Molvaer, O. 2002. Postural control and venous gas bubble formation during hypobaric exposure [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 73(3): 184-190.
- North Atlantic Treaty Organization Research and Technology Organization. 2006. <u>Human</u> <u>Factors and Medicine</u>. Retrieved 21 December 2010 from http://www.rta.nato.int/panel.asp?panel=HFM.
- North Atlantic Treaty Organization Research and Technology Organization. In press. Oxygen Requirements in Unpressurized Aircraft Operating below 18,000 feet. Technical Activity, Research Task Group HFM-190.
- Obminski, Z., Golec, L., Stupnicki, R., and Hackney, A. C. 1997. Effects of hypobaric-hypoxia on the salivary cortisol levels of aircraft pilots. <u>Aviation, Space, and Environmental Medicine</u>. 68(3): 183-186.
- Pandolf, K. B. and Burr, R. E. 2001. <u>Medical Aspects of Harsh Environments</u>. Washington, D.C: Office of the Surgeon General, Department of the Army, United States of America.
- Paul, M. A. and Fraser, W. D. 1994. Performance during mild acute hypoxia. <u>Aviation, Space</u>, and Environmental Medicine. 65(10, Pt 1): 891-899.
- Pavlicek, V., Schirlo, C., Nebel, A., Regard, M., Koller, E. A., and Brugger, P. 2005. Cognitive and emotional processing at high altitude. <u>Aviation, Space, and Environmental Medicine</u>. 76 (1): 28-33.
- Peña, F., Parkis, M. A., Tryba, A. K., and Ramirez, J. M. 2004. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. <u>Neuron</u>. 43: 105-117.
- Peña, F. and Ramirez, J. M. 2005. Hypoxia-induced changes in neuronal network properties. Molecular Neurobiology. 32: 251-283.
- Rahn, H., Otis, A. B., and Fenn, W. O. 1947. Alveolar gas changes during breath holding. <u>Federation Proceedings</u>. 6(1 Pt 2): 183.
- Replogle, C. R., Holden, F. M., Gold, R. E., Kulak, L. L., Jonas, F., and Potor, G. 1971. <u>Human</u> <u>operator performance in hypoxic stress</u>. Wright-Patterson Air Force Base, OH: Aerospace Medical Research Laboratory. Paper No. 31.

- Rice, G. M., Moore, J. L., Jernigan, C., Moore, J. L., Clemons, E., Rife, C., and Kay, G. C. 2005. Cognitive performance at simulated altitudes of 10,000, 12,000, & 15,000 ft. utilizing the CogScreen-Hypoxia Edition (CogScreen-HE) [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 76(3): 231.
- Rickards, C. A. and Newman, D. G. 2002. The effect of low-level normobaric hypoxia on orthostatic responses. <u>Aviation, Space, and Environmental Medicine</u>. 73(5): 460-465.
- Rostrup, M., Fossbakk, A., Hauge, A., Kleppe, R., Gnaiger, E., and Haavik, J. 2008. Oxygen dependence of tyrosine hydroxylase. <u>Amino Acids</u>. 34(3): 455-464.
- Saul, G. D., Lukina, W. J., Brakebush, S. C., Wilmot, D. E., and Tammelin, B. R. 2002. Voluntary hyperventilation into a simple mixing chamber relieves high altitude hypoxia. <u>Aviation, Space, and Environmental Medicine</u>. 73(4): 404-407.
- Sausen, K. et al. 2001. The reduced oxygen breathing paradigm for hypoxia training: physiological, cognitive, and subjective effects. <u>Aviation, Space, and Environmental Medicine</u>. 72(6): 539-545.
- Savourey, G., Launay, J-C, Besnard, Y., Guinet, A., and Travers, S. 2003. Normo- and hypobaric hypoxia: are there any physiological differences? <u>European Journal of Applied</u> <u>Physiology</u>. 89: 122–126.
- Scano, A., Mazza, G., and Caporale, R. 1966. Influence of mild hypoxia on visual perception during post-rotatory optical nystagmus. In <u>AGARD Conference Proceedings No. 14:</u> <u>Assessment of Skill and Performance in Flying</u>, 115-127. North Atlantic Treaty Organization. DTIC No. AD661165.
- Schlaepfer, T. E., Bartsch, P., and Fisch, H. U. 1992. Paradoxical effects of mild hypoxia and moderate altitude on human visual perception. <u>Clinical Science (London)</u>. 83(5): 633-636.
- Self, D. A., Mandella, J., Prinzo, O. V. Forster, E. M., and Shaffstall, R. M. 2010.
 <u>Physiological Equivalence of normobaric and hypobaric exposures of humans to 25,000 feet</u>.
 Washington, DC: U.S. Department of Transportation/Federal Aviation Administration/Office of Aviation Medicine. DOT/FAA/AM Report No. 10/20.
- Smith, A. M. 2005. Hypoxia symptoms reported during helicopter operations below 10,000 feet: A retrospective survey. <u>Aviation, Space, and Environmental Medicine</u>. 76: 794-798.
- Smith, A. M. 2006. The impact of short-duration light and moderate physical activity at 7,000 ft and 9,000 ft on the development of hypoxia [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 77: 274.
- Smith, A. M. 2008. Hypoxia symptoms in military aircrew: long-term recall vs. acute experience in training. [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 79(1): 54-57.

- Strand, T. and Owe, J. 2008. Oxygen saturation in helicopter aircrew during hypoxia training at 16,000 ft [Abstract]. Aviation, Space, and Environmental Medicine. 79(3): 230.
- Takagi, M. and Watanabe, S. 1999. Two different components of contingent negative variation (CNV) and their relation to changes in reaction time under hypobaric hypoxic conditions. Aviation, Space, and Environmental Medicine. 70(1): 30-34.
- Temme, L., Still, D. L., Reeves, D., and Browning, R. 2010. The use of the reduced oxygen breathing device (ROBD) in a general civilian sample: pulse oximetry means and ranges [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 81(3): 240.
- Terry, L. C. 2001. Actual and perceived cognitive performance during acute altitude exposure [Thesis]. Air Force Institute of Technology. Wright-Patterson Air Force Base, OH. Available from DTIC. DTIC No. ADA399422.
- Tsarouchas, N., Benedek, K., Bezerianos, A., Benedek, G., and Keri, S. 2008. Effects of moderate hypobaric hypoxia on evoked categorical visuocognitive responses. <u>Clinical</u> <u>Neurophysiology</u>. 119(7): 1475-1485.
- Tune, G. S. 1964. Psychological effects of hypoxia: Review of certain literature from the period 1950 to 1963. <u>Perceptual and Motor Skills</u>. 19: 551-562.
- Tutt, R., Balldin, U., Pilmanis, A., and Sundstrom, J. 2006. Night vision goggle vision during simulated night flying at lower altitudes without cabin pressurization [Abstract]. <u>Aviation</u>, <u>Space</u>, and Environmental Medicine. 77(3): 274.
- Vacchiano, C. A., Vagedes, K., and Gonzales, D. 2004. Comparison of the physiological, cognitive, and subjective effects of sea level and altitude-induced hypoxia [Abstract]. Aviation, Space, and Environmental Medicine. 75(4): B56.
- Vaernes, R. J., Owe, J. O., and Myking, O. 1984. Central nervous reactions to a 6.5-hour altitude exposure to 3048 meters [Abstract]. <u>Aviation, Space, and Environmental Medicine</u>. 55(10): 921-926.
- van der Post, J., Noordzij, L. A., de Kam, M. L., Blauw, G. J., Cohen, A. F., and van Gerven, J. M. 2002. Evaluation of tests of central nervous system performance after hypoxemia for a model for cognitive impairment. Journal Psychopharmacology. 16(4): 337-343.
- Villaire, N. E. and Hansrote, R. W. 2006. <u>Applied Aviation Physiology</u>. (p. 65). Casper, WY: Endeavor Books-Mountain State Lithographing.
- Vingrys, A. J. and Garner, L. F. 1987. The effect of a moderate level of hypoxia on human color vision. <u>Documenta Ophthalmologica</u>. 66(2): 171-185.
- Wald, G., Harper, P. V., Goodman, H. C., and Krieger, H. P. 1942. Respiratory effects upon the visual threshold. <u>The Journal of General Physiology</u>. 25(6): 891-903.

- Wagner, L., Oakley, S., Vang, P., Barrs, D., Cevette, M., and Stepanek, J. P. 2010. Hypoxia induced changes in standing balance [Abstract]. <u>Aviation, Space, and Environmental</u> <u>Medicine</u>. 81(3): 221.
- Wangsa-Wirawan, N. D., and Linsenmeier, R. A. 2003. Retinal oxygen: Fundamental and clinical aspects. <u>Archives of Ophthalmology</u>. 121(4): 547-557.
- Watson, D. B., Martin, R. L., McAnally, K. I., Smith, S. E., and Emonson, D. L. 2000. Effect of normobaric hypoxia on auditory sensitivity. <u>Aviation, Space, and Environmental Medicine</u>. 71(8): 791-797.
- Wientjes, C. J., Deijen, J. B., and Vullinghs, H. F. M. 1999. The effects of tyrosine on cognitive functions during sustained operations (pp. 7-1 to 7-8). <u>Proceedings of the North Atlantic</u> <u>Treaty Organization RTO MP-31, Individual Differences in the Adaptability to Irregular Rest-Work Rhythms/Status of the Use of Drugs in Sleep-Wakefulness Management</u>. Neuilly-Sur-Seine Cedex, France: RTO-MP-31 AC/323(HFM)TP/11.
- Wu, X., Li, X., Wang, T., and Wei, Y. 1998. Effects of acute moderate hypoxia on human performance of arithmetic [Abstract]. <u>Space Medicine and Medical Engineering (Beijing)</u>. 11(6): 391-395.
- Yusfin, A. I., Francen, B. S., and Rautian, G. N. 1953. Influence of hypoxia on color vision. <u>Proceedings of the Russian Academy of Sciences (Doklady Akademii Nauk SSSR)</u>. 92(6): 1153-1156.

Appendix A.

List of articles.

Author(s) (Year)	Altitude (ft or m)/O ₂ Concentration	Method (hypobaric [H]/normobaric [N])	Sample	Major Results
Acevedo & Ekkekakis (2001)	N/A	Literature review	N/A	Further investigation into the psychophysical and the affective responses to exercise in adverse environmental conditions can be facilitated through the utilization of a proposed transactional psychobiological model.
Artino et al. (2009)	N/A	Retrospective survey (N)	156 ROBD: 50 121 ROBD: 30	Findings suggest breathing- gas flow rate contributes to air hunger; may impact training fidelity
Banderet et al. (1985)	4200 and 4700 m	Н	27	Tyrosine enhanced performance and reduced subjective symptoms; mood states were also improved
Balldin et al. (2007)	10,000 ft	Н	30	No significant negative impact on cognitive function; but minor negative effects on NVG performance under operational lighting (starlight) conditions
Bahrke and Shukitt- Hale (1993)	N/A	Review paper	N/A	N/A
Billings et al. (1964)	7000, 10,000, and 13,000 ft	In-flight/mixed gas	20	Ventilation and respiratory exchange ratios increased as tracheal O ₂ tension was reduced; alterations were due to mild hypoxia

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Brinchmann-Hansen	8000, 10,000, 12,500,	Н	10	Vasodilating effect of hypobaric
and Myhre (1990)	and 15,000 ft			hypoxia was nonlinear from sea
				level to 15,000 ft; variability of
				hypoxic vascular response within
				different parts of individual
				retinas and between different
				retinas
Brinchmann-Hansen	8000, 15,000, and	Н	30	Study established a critical level
and Myhre (1989)	18,000 ft			of hypoxia where complete
				recovery of macular sensitivity is
				not achieved
Burkett and Perrin	15,000 and 20,000 ft	Н	8	Hypoxia does not cause
(1976)				significant deterioration of
				hearing for pure tones
Butler (2008)	N/A	Conference presentation	N/A	Tissue O_2 delivery can be
				impaired at 8000 ft cabin altitude
				during aeromedical evacuation
Cable (2003)	N/A	Retrospective study	N/A	Hypoxia incidents most
				commonly occur at altitudes less
				than 19,000 ft
Chevion et al. (2007)	Not specified	Н	11	Study demonstrated that hypoxia-
				reoxygenation injury, tested in
				animal and tissue studies, is
				applicable to acute exposure to
	14,000 &	11	0	Altitude algorith a mana normarful
Chiles et al. (19/1)	14,000 It	Н	9	Altitude clearly a more powerful
				then temperature
Christenson et al	21 and 80/ O	N	10	Statistically significant shange in
(1077)	21 and 8% O_2	IN	10	statistically significant change in
(1977)	$(\text{ppm}) CO/17\% O_{1}$			hetween control and low Q :
	$(ppin) CO/17% O_2$			between control and low O_2 ;
				performance under CO and
				combination of CO and low O_2
			1	was not different from control

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Conkin and Wessel	N/A	Review paper	N/A	Results of literature review
(2008)				provide evidence for an
				independent effect of
				barometric pressure on
				hypoxia and AMS, and thereby
				invalidate Equivalent Air
				Altitude model as an ideal
				model of isohypoxia.
Connolly and Hosking	10,000 and 15, 000 ft	Н	5	Early scotopic sensitivity delayed
(2006)				by hypoxia and hastened by
				hypocapnia and hyperoxia; rod
				photoreceptors functionally
				hypoxic when breathing air at one
			10	atmosphere
Connolly and Hosking	14.1 and 100% O_2	N	12	Contrast sensitivity degraded
(20076)				beyond the lovea in good viewing
				in visual sensitivity persist for
				about 20 to 25 min after hypoxic
				exposure
Connolly et al. (2008)	14.1% O ₂	N	12	In the mesopic range, mild
• • • •				hypoxia impairs chromatic
				sensitivity progressively with
		1		reducing luminance
Connolly and Hosking	14.1 and 100% O ₂	N	12	Outer retina may be susceptible to
(2009)			10	hypoxia under twilight viewing
Connolly and Hosking	$21\% O_2$	N	12	Results support a close
(2007a)				relationship between the
				CO and flicker consistivity
Crow and Kalman	2000 8000 and 12 000	Ч	86	Short-term memory seems to be
	2000, 8000, and 12,000	11	00	Short-term memory seems to be

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Crow and Kelman	2000 and 12,000 ft	Н	49	No evidence of impairment in
(1973)				12,000 ft
Davis et al. (1995)	4300 m	Н	17	Visual acuity with ANVIS is
				exposure to 4300 m, but less than
				expected with unaided night
				vision under these conditions
Delgado-Esteban et	95%N ₂ /5% CO ₂	Ν	Cerebral cortical	Tetrahydrobiopterin (BH ₄)
al. (2002)			neurons	deficiency increases neuronal
				witherability to hypoxia-induced
Denison et al. (1966)	5000 to 8000 ft	H/N	Experiment 1: 8	Mild hypoxia affects performance
(_,)			Experiment 2: 28	of a novel task
DeVilbiss (1998)	5000, 10,000, 15,000,	Н	15	NVG performance at 10,000 ft
	18,000, and 20,000 ft			altitude was degraded without
				supplemental O_2 as compared to
				both 100% and normal
Dhan at al. (2006)	2000 ft (crown d laval)	N	10	Supplemental settings
Dhar et al. (2000)	5000 ft (ground level)	IN I	10	accentuated the ischemic effects
				of $+Gz$ acceleration in the retina:
				possible implication in relaxed
				rapid onset rate +Gz tolerance
Du et al. (1999)	2800, 3600, and 4400 m	Н	18	Performance of short-term
				memory decreased after exposure
				to acute mild and moderate
Equation (1072)		D :		nypoxia for 1 nr
Ernsting (1973)	N/A	Review paper	IN/A	N/A
Ernsting (1978)	N/A	Review paper	N/A	N/A
Ernsting (1984)	N/A	Symposium	N/A	N/A
Fowler et al. (1985)	11 to 16% O ₂	N	Experiment 1: 32	No learning impairment up to
			Experiment 2: 20	12,000 ft

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Fowler et al. (1987)	9.5 to 14.5% O ₂	N	6	Threshold estimate of 9750 ft for performance decrements due to hypoxia; disruption of vision influences this decrement
Fowler et al. (1993)	8 to 13% O ₂	N	14	Visual slowing probably played an important role in the disruption of perceptual-motor tasks by hypoxia
Fraser et al. (1987)	5000, 8000, 10,000, and 12,000 ft	Н	39	Effects of mild hypoxia on the postural control system examined by measuring the postural sway; total sway increased at all altitudes above ground level controls, but no change seen at 12,000 ft
Fulco and Cymerman (1987)	N/A	Book chapter	N/A	N/A
Gibson (1981)	N/A	Seminar	N/A	N/A
Gibson (1978)	Sea level hyperventilation	N	9	Hypocapnic hyperventilation to a P_ACO_2 of 15 Torr caused a marked decrement in motor performance; no effect on intellectual performance as measured by the manikin and verbal transformation tasks
Gold and Kulak (1972)	12,300 and 15,000 ft	N	7	Supplemental O_2 is needed at or above 12,000 ft for any crewmember involved in a complex task

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Green and Morgan (1985)	2440, 3050, and 3660 m	Н	150	A significant difference was found between the group tested at
				for error rate but not for speed of
				work; No effect of altitude on the way in which the task was
				learned could be demonstrated
Hackworth et al.	N/A	Survey	67	General agreement that pilots
(2003)				hypoxia training, recurrent
				hypoxia training, and altitude chamber training
Haddad and Jiang (1993)	N/A	Review paper	N/A	N/A
Hall (1953)	25,000 ft/variable gas	Н	10	Hypoxic and CO_2 stimuli to
	$\frac{1}{10000000000000000000000000000000000$			altitude; adding CO_2 to O_2
				breathed by men at altitude seems
				elimination of nitrogen
Hampson (2007)	N/A	N/A	N/A	Report on Royal Australian Air
Havashi and Fukuda	N/A	Review paper	N/A	N/A
(2000)	11/11		1.0/1.1	11/11
Hewett et al. (2009)	8000 to 14,000 ft	N	50	No significant cognitive deficits
Hornbein (2001)	N/A	Review paper	N/A	N/A
Hudson et al. (2010)	N/A	Survey	32	CV-22 Osprey flights at higher altitudes were six times more likely to experience low-O ₂
				caution than flights at lower
				altitudes; no single parameter
				caused low- O_2 cautions with the CV-22 OBOGS system.

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Karakucuk et al. (2004)	3000 m	Н	16	Moderate altitude adversely affected the total number of errors on FM-100 Hue color vision testing in a photopic environment; Deterioriation was significant in the blue-yellow range
Karl et al. (1978)	21, 12, 10, and 8% O ₂ ; 5% CO ₂	N	8 Rhesus monkeys	With addition of 5% CO_2 to the inspired atmospheres, cerebral PO_2 relatively elevated, but declined as hypoxia intensified; Cerebral PCO ₂ and avoidance task performance sustained at near baseline values with inspired 5% CO_2 .
Kellogg (1977)	N/A	Review paper	N/A	N/A
Kelman and Crow (1969)	2000 and 8000 ft	Н	22	Failed to confirm the decrement in psychomotor performance found by others using an orientation test at 8000 feet
Knudtzon et al. (1991)	15,000 ft	Н	5	Reduced ambient pressure per se has no influence on the carotid baroreflex control of heart rate
Kobrick (1975)	13,000, 15,000, and 17,000 ft	Н	9	Response times to flash stimuli were impaired in direct relation to hypoxic exposure severity
Kobrick (1976)	N/A	Polynomial regression analysis	43	The main effect of hypoxic exposure was elevation of the response time impairment in direct relation to severity

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Leber (1985)	Sea level, 7000, 10,000, and 13,000 ft	Ν	6	Supplemental oxygen significantly improved naked-eye but not NVG-augmented night resolution acuity up to an altitude of 13,000 feet above sea level (ASL)
Leber et al. (1986)	7000, 10,000, and 13,000 ft	N	4	Supplemental O_2 did significantly improve naked-eye but not NVG- augmented night resolution acuity up to a simulated altitude of 13,000 ft
Lewis and Haymaker (1948)	N/A	Retrospective	75 autopsy cases	N/A
Li et al. (2000)	2800, 3600, and 4400 m	Н	18	No measurable impairment of visual reaction time and psychomotor performance up to 2800 m; adverse effects on psychomotor performance at 3600 m and above
Loeppky and Roach (1996)	15,100 ft	H/N	6	Ventilation and chemosensitivity are about the same after 30 min of altitude and equivalent hypoxia; however when the drop in inspired O_2 is not synchronous with the drop in ambient pressure, like at altitude, ventilation values may be altered
Loeppky et al. (1990)	14,828 ft	Ν	6	Tissue oxygenation and cardiopulmonary function were not notably effected by head- down tilt during hypoxia
Luna et al. (1994)	12,000, 15,000, 18,000, and 21,000 ft	Н	8	Alveolar PO ₂ in itself may not provide the best correlation with task performance

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Mahoney et al. (2007)	N/A	N/A	19	Cold exposure degrades cognitive
				with tyrosine alleviates working
				memory decrements
McFarland and Evans	7400, 11,000, and	N	20	Decrease in light sensitivity at
(1939)	15,000 ft			7400 ft
McFarland and	10,000 and 18,000 ft	N	11	Hypoxia results in a large
Halperin (1940)				decrease of visual acuity at low
				illuminations; It is important
				pilots use O ₂ during night flights
				than during daylight flights
Nelson (1982)	Sea level, 3810 and	Н	20	Critical altitude for psychological
	5000 m			changes lies between 4000 to
				5000 m, as virtually no
				significant variations were noted
				at 3810 m
Nesthus et al. (1997)	8000, 10,000, and	In-flight/mixed gases	20	Significantly more procedural
	12,5000 ft			errors committed by the hypoxia
				group during simulated cruise
				flight at 10,000 ft, both during the
				from 10 000 ft, and during
				from 10,000 It, and during
Northug at al. (1007)	5000 8000 and 12 500	N	10	Smoker group exhibited higher
Nestitus et al. (1997)	5000, 8000, and 12,500	IN	10	arror rate on Multi Attribute Task
	It			Battery
Nordahl et al. (2002)	Profile 1: 8000 14 000	Ц	12	Changes in postural control at
(2002)	18 000 and 25 000 ft	11	12	altitudes up to 18 000 ft probably
	Profile 2: 14 000 ft			due to hypoxia: venous gas
	1101110 2. 1 1,000 It			emboli may form during acute
				exposure to 14,000 ft

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Obminski et al. (1997)	5,000 m	Н	53	No single consistent change in salivary cortisol level occurred among the different subjects in response to the level and duration of hypobaric hypoxia studied
Paul and Fraser (1994)	5000, 8000, 10,000, and 15,000 ft	Н	144	Results indicated the ability to learn new tasks not impaired by mild hypoxia up to 12,000 ft
Pavlicek et al. (2005)	3000 m and 4500 m	Н	21	No significant changes in higher cognitive and emotional function tests; Selected cognitive and affective frontal lobe functions preserved despite significant O ₂ desaturation and drop in diastolic blood pressure
Peña and Ramirez (2005)	N/A	Review paper	N/A	N/A
Rahn, Otis, & Fenn (1947)	12,000, 16,000 (6% CO ₂), 18,000, 20,000, and 22,000 ft	Н	8	Hand steadiness showed a barely significant change at 12,000 feet, worse with increasing altitude; Addition of 6% CO ₂ to the inspired air at 16,000 feet increased the alveolar PCO ₂ to 10 mm and the PO ₂ 4 mm
Replogle et al. (1971)	12,000 and 22,000 ft	N	6	Adaptive tracking tasks significantly sensitive to hypoxic stress
Rice et al. (2005)	15,000 ft	N	60	Volunteers averaged 12 or more errors on the vigilance exam

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Rickards and Newman (2002)	3,775,500 and 11,000 ft	Ν	14	No significant changes in the blood pressure response to
				orthostasis with hypoxia; Heart
				rate (HR) changes suggest the
				ability to modulate HR under
				orthostatic stress is reduced
				with exposure to low-level
				normobaric hypoxia
Rostrup et al. (2008)	N/A	N/A	Cell cultures	TH activity may be severely
				limited by O ₂ availability at
				moderate hypoxic conditions
Saul et al. (2002)	10,000 to 24,000 ft	In-flight/mixed gases	1	Voluntary hyperventilation
				may result in overventilation
				and severe hypocapnia;
				Subject breathing into a
				mixing chamber was able to
				maintain an S_aO_2 of 90% at
				20,000 ft
Sausen et al. (2001)	6.20/93.80, 7.00/93.00,	N	12	Data consistent with those
	and 7.85%/92.15%			expected from hypoxic states;
	O_2/N_2			Supported the validity of the
				reduced O_2 breathing paradigm
				for hypoxia training
Savourey et al. (2003)	4500 m	H/N	18	Compared to normobaric
				hypoxia, hypobaric hypoxia led to
				greater hypoxemia, hypocaphia,
				arterial saturation
				blood alkalosis, and lower O_2 arterial saturation

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Scano et al. (1966)	11% O ₂	N	30	Perception and recognition of
				visual information of indicators
				and instruments are, in most
				subjects, considerably hindered
				by the combined action of
				nystagmus and hypoxia
Schlaepfer et al. (1992)	3450 m	H/N	10	Mild hypoxia increased visual
				perception above normal
Smith (2005)	10,000 ft	Retrospective survey	53	Aircrew experienced potentially
				operationally significant
				symptoms at a mean altitude of
			-	8426 ft
Smith (2006)	Sea level, 2000, and	H	6	Physical activity below 10,000 ft
	7000, 9000 ft		101	can produce hypoxemia
Strand & Owe (2008)	8000 and 16,000 ft	H	131	SpO_2 fell within first 5 to 8 min
				after acute exposure to 16,000 ft;
				critically low SpO_2 demonstrated
Talaasi ay 1 Watayah a	<u>(000 m</u>	11	10	alter 8 to 9 min
Takagi and watanabe	6000 m	Н	10	with inter-stimulus intervals of 2
(1999)				seconds, acute hypoxia served to
				the early and late components of
				contingent negative variation
				(CNV): CNV may be regarded as
				good indices of higher cerebral
				function under hypoxic
				conditions
Temme et al (2010)	8000, 12,000, and	N	72	Variability of pulse-oximetry data
	14,000 ft			cautions usual practice of using
				Reduced Oxygen Breathing
				Device (ROBD) altitude as
				experiment's independent
				variable

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Terry (2001)	10,000 and 14,000 ft	Н	10	Cognitive performance was better at 10,000 ft as compared to ground level and 14,000 ft a rest; post-exercise scores were significantly greater than pre- exercise scores regardless of altitude
Tsarouchas et al. (2008)	15,000 ft	Н	10	Evoked brain responses allowed for early detection of subtle electrophysiological modulations coupled to cognitive-behavioral alterations, assessment of 'functional' hypobaric hypoxic sensitivity thresholds, and reveal the susceptibilities of complex visuocognitive processes even to moderate hypoxic insults
Tutt et al. (2006)	5,000, 8,000, 12,000 ft	Н	92	Study indicated statistically insignificant influence of low- grade hypoxia on NVG vision at exposure conditions of this study
van der Post et al. (2002)	Manipulation of SPO ₂ to 90 and 80%	Ν	12	Cognitive performance was decreased by an SPO ₂ of 80% and increased by an SPO ₂ of 90%
Vacchiano et al. (2004)	25,000 ft	H/N	70	Objective and subjective effects of decreasing tissue oxygenation were the same regardless of whether this decrease was produced at sea level or at altitude

Author(s) (Year)	Altitude (ft or m)/O ₂	Method	Sample	Major Results
	Concentration	(hypobaric [H]/normobaric [N])		
Vaernes et al. (1984)	3048 m	Н	7	No relationship between impaired
				performance and duration of
				exposure found; mild hypoxia
				yielded varying degrees of
				impairment of cognitive functions
Vingrys and Garner	12,000 ft	Н	2	Found a generalized loss of color
(1987)				vision affecting both red-green
				and blue-yellow discrimination at
W	7000 0000 110 000		10	an altitude of 12,000 ft
Wagner et al. (2010)	5000, 8000, and 10,000	N	13	Balance performance on
	It			Computerized Dynamic
				Posturography (CDP) showed
				degradation of performance under
XX7 XX7' 1				hypoxic conditions.
Wangsa-Wirawan and	N/A	Review paper	N/A	N/A
Linsenmeier (2003)	1200 2400 12700		4	
watson et al. (2000)	1200, 2400, and 3700 m	N	4	Auditory sensitivity for
				frequencies up to 16 kilohertz is
W' (1 (1000)			11	unaffected by hypoxia
wientjes et al. (1999)	N/A	N/A	11	Tyrosine supplementation can be
				degradation in highly degrading
				degradation in highly demanding
$W_{-} = (-1)(1000)$	2600 4400 and 5000 m	11	16	military operational environments
wu et al. (1998)	3600, 4400, and 5000 m	Н	10	Error rate on continuous
				calculation test and reaction time
				on addition-subtraction test
				avposure to 2600 m
Vusfin at al. (1052)	5000 to 7000 m	LI LI	25	Ovugon inholation at high
1 usilli et al. (1955)	5000 to 7000 III	п	25	oltitudos restoros color
				discrimination to all three
				recentors, almost to the initial
				level
1				level

Appendix B.

Regulatory examples governing hypoxia in unpressurized aircraft.

U.S. Army Flight Regulations (Army Regulation [AR] 95-1) (2008):

a. Unpressurized aircraft. Oxygen will be used by aircraft crews and occupants for flights, as shown below:

(1) Aircraft crews.

(a) On flights above 10,000 feet pressure altitude for more than 1 hour.

(b) On flights above 12,000 feet pressure altitude for more than 30 minutes.

(2) Aircraft crews and all other occupants.

(a) On flights above 14,000 feet pressure altitude for any period of time.

(b) For flights above 18,000 feet pressure altitude, oxygen prebreathing will be accomplished by aircrewmembers. Prebreathing may utilize either 100 percent gaseous aviator's oxygen from a high pressure source, or an onboard oxygen generating system (OBOGS) that supplies at least 90 percent oxygen. Prebreathing will be for not less than 30 minutes at ground level and will continue while en route to altitude. In those extraordinary cases where mission requirements dictate rapid ascent, commanders may authorize shorter prebreathing times on a case-by-case basis, with the realization that such practice increases the risk for developing altitude decompression illness. Return to NORMAL OXYGEN (pressure demand regulator, gaseous oxygen-equipped aircraft) is authorized on descent below 18,000 feet pressure altitude, provided continued flight will not exceed this altitude. (p. 43)

U.S. Navy (OPNAVINST 3710.7U) (2009):

8.2.4.1 Unpressurized Aircraft

In unpressurized aircraft with oxygen systems, the pilot at the controls and aircrew participating in physical activity (loadmasters) shall use supplemental oxygen continuously when cabin altitude exceeds 10,000 feet. When oxygen is not available to other occupants, flight between 10,000 and 13,000 feet shall not exceed 3 hours duration, and flight above 13,000 feet is prohibited. In aircraft where oxygen systems are not available (such as helicopters), it must be determined that it is mission essential for flight altitude to exceed 10,000 feet. Time above 10,000 feet shall not exceed 1 hour and altitude shall not exceed 12,000 feet. (pp. 8-10)

U.S. Air Force (Instruction 11-202V3_ACCSUP_I) (2010):

6.4. Oxygen Requirements. (N/A for UAS ground control stations) The PIC shall ensure sufficient oxygen for the planned mission (including contingencies) is available to all occupants

before takeoff. Normally, aircrew will use supplemental oxygen anytime the cabin altitude exceeds 10,000 ft MSL.

6.4.1. Unpressurized Operations. When mission essential, aircrew trained IAW AFI 11-403, Aerospace Physiological Training Program, may operate aircraft unpressurized above 10,000 ft. MSL without supplemental oxygen IAW MAJCOM guidance and the following restrictions: 6.4.1.1. Total flight time (without supplemental oxygen) above 10,000 ft. MSL shall not exceed 1 hour if any portion of the flight above 10,000 ft. MSL is in IMC, at night, or when using NVGs, employing weapons, conducting airdrop or air-refueling, or performing high-g maneuvers.

6.4.1.2. Maximum of 30 minutes (without supplemental oxygen) between 12,500 and 14,000 ft. MSL.

6.4.1.3. Supplemental oxygen must be used by all persons while above 14,000 ft. MSL.

6.4.1.4. Any occupant, not trained IAW AFI 11-403, limits the cabin altitude to:

6.4.1.4.1. 10,000 ft. to 13,000 ft. MSL for three hours without supplemental oxygen.

6.4.1.4.2. 13,000 ft. MSL without supplemental oxygen.

6.4.1.5. FL 250 shall not be exceeded even if occupants have oxygen. (pp. 41-42)

Department of the Army U.S. Army Aeromedical Research Laboratory Fort Rucker, Alabama, 36362-0577 www.usaarl.army.mil

U.S. Army Medical Research and Materiel Command