
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Efficient Effects-Based Military Planning Final Report

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

This research focused on developing a mathematical framework and the associated methods for effects-based

military plan modeling and evaluation. Specifically, we first introduced a unified probabilistic framework based

on the Dynamic Influence Diagram to systematically represent the causal relationships between actions and their

effects, their interactions, their uncertainties, and their dynamics. We then developed advanced machine learning

methods to automatically construct such a model for a given campagin and to learn the model parameters from both

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13-11-2010

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

Military Planning, Influence Diagrams, EBO

Qiang Ji

Rensselaer Polytechnic Institute

Office of Sponsored Research

Rensselaer Polytechnic Institute

Troy, NY 12180 -

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Final Report

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-06-1-0331

611102

Form Approved OMB NO. 0704-0188

48134-NS.1

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Qiang Ji

518-276-6440

3. DATES COVERED (From - To)

1-Aug-2006

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

- 31-Jul-2010

Efficient Effects-Based Military Planning Final Report

Report Title

ABSTRACT

This research focused on developing a mathematical framework and the associated methods for effects-based military plan modeling and

evaluation. Specifically, we first introduced a unified probabilistic framework based on the Dynamic Influence Diagram to systematically

represent the causal relationships between actions and their effects, their interactions, their uncertainties, and their dynamics. We then

developed advanced machine learning methods to automatically construct such a model for a given campagin and to learn the model

parameters from both the training data and the available qualitative domain knowledge. Given the framework, we developed efficient

inference methods to quickly evaluate each plan to identify the opimtal plan. This research also includes the development of a user-friendly

prototype software to evaluate the performance of the proposed methods for military plan modeling and evaluation. The software can

produce a model for a military campaign, automatically learn the model structure and parameters, evaluate various possible plans, and

identify the one that best meets the campaign objective. Further information is available at the project's website at

http://www.ecse.rpi.edu/~cvrl/EBO/ebo.htm

(a) Papers published in peer-reviewed journals (N/A for none)

1. Cassio de Campos and Qiang Ji, Efficient Structure Learning of Bayesian Networks using Constraints, accepted by Journal of Machine

Learning Research.

2. Yongmian Zhang and Qiang Ji, Efficient Sensor Selection for Active Information Fusion, IEEE Transactions on Systems, Man,

Cybernetics, Part B, Volume: 40 Issue 3, pages 719 - 728, June,

2010.

3. Wenhui Liao and Qiang Ji, Learning Bayesian Network Parameters Under Incomplete Data with Qualitative Domain Knowledge, Pattern

Recognition, Volume 42 , Issue 11, Pages 3046-3056, 2009

4. Wenhui Liao and Qiang Ji, Efficient Non-myopic Value-of-Information Computation for Influence Diagrams, International Journal on

Approximate Reasoning, vol. 49, no. 2, pp. 436-450, 2008

5. Weihong Zhang and Qiang Ji, A Factorization Approach To Evaluating Simultaneous Influence Diagrams, IEEE Transactions on

Systems, Man, and Cybernetics A, p746-754, Vol. 36, No. 4, July, 2006

List of papers submitted or published that acknowledge ARO support during this reporting

period. List the papers, including journal references, in the following categories:

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

 5.00Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

 0.00

Number of Presentations: 0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): 0

Peer-Reviewed Conference Proceeding publications (other than abstracts):

1. Cassio de Campos and Qiang Ji, Properties of Bayesian Dirichlet scores to learn Bayesian network structures, AAAI, 2010

2. Cassio de Campos, Zhi Zeng, Qiang Ji, An Improved Structural EM to Learn Dynamic Bayesian Nets,International Conference on Pattern

Recognition, 2010.

3. Yue Zhao and Qiang Ji, Non-myopic Active Learning with Mutual Information, IEEE International Conference on Automation and

Logistics August 16–20, Hong Kong, China, 2010.

4. Yue Zhao and Qiang Ji, An Active Learning Method under Very Limited Initial Labeled Data, IEEE International Conference on

Automation and Logistics August 16–20, Hong Kong, China, 2010.

5. Cassio de Campos, Zhi Zeng, and Qiang Ji, Structure Learning of Bayesian Networks using Constraints, International Conference on

Machine Learning (ICML), 2009.

6. Cassio de Campos and Qiang Ji, Strategy Selection in Influence Diagrams using Imprecise Probabilities, the 24th Conference on

Uncertainty in Artificial Intelligence (UAI), 2008.

7. Yan Tong and Qiang Ji, Learning Bayesian Networks with Qualitative Constraints, IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2008.

8. Cassio de Campos and Qiang Ji, Improving Bayesian Network Parameter Learning using Constraints, International Conference in Pattern

Recognition (ICPR), 2008.

9. Wenhui Liao and Qiang Ji, Exploiting Qualitative Domain Knowledge for Learning Bayesian Network Parameters with Incomplete Data,

International Conference in Pattern Recognition (ICPR), 2008.

1) Cassio P. de Campos and Qiang J, Learning Limited Memory In°uence Diagrams, Techncial Report ISL-EBO-2009-01, 2009.

2) Geng Li, Validation of Cassio’s software, Techncial Report, ISL-EBO-2008-01.

3) Qiang Ji, Modeling and Evaluating EBO-based Miltiary Planning using the Influence Diagram, Technical report,

ISL-EBO-2007-01,2007

4) Cassio P. de Campos, Learning Influence Diagram Parameters using

Convex Optimization for EBO-based Planning, Technical Report, ISL-EBO-2007-02, 2007.

5) Yue Zeng, Exploiting Qualitative Constraints for Learning

Bayesian Networks under Insufficient Data, Technical Report, ISL-EBO-2007-03, 2007.

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 9

Number of Manuscripts: 0.00

Patents Submitted

Patents Awarded

Awards

Research Excellence Award, School of Engineering, RPI, 2006

RPI Trustee’s Faculty Achievement Award, 2008, 2009

PI Inventor Award, 2008

First place award, Data analysis Competition, International Conference on Machine learning for Signal Processing, 2008.

Graduate Students

PERCENT_SUPPORTEDNAME

Geng Li 0.50

Wenhui Liao 0.50

 1.00FTE Equivalent:

 2Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

Cassio de Campos 1.00

Yonmian Zhang 1.00

Yue Zhao 0.50

 2.50FTE Equivalent:

 3Total Number:

Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME

Qiang Ji 0.15 No

 0.15FTE Equivalent:

 1Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 0.00

 0.00

 0.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: 0.00......

Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

NAME

Wenhui Liao

 1Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)

Journal of Machine Learning Research – (2010) – Submitted 05/10; Published –/–

Efficient Structure Learning of Bayesian Networks using
Constraints

Cassio P. de Campos cassiopc@acm.org
Dalle Molle Institute for Artificial Intelligence
Galleria 2, Manno 6928, Switzerland

Qiang Ji jiq@rpi.edu

Dept. of Electrical, Computer & Systems Engineering
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180, USA

Editor: David Maxwell Chickering

Running title: Efficient Structure Learning of Bayesian Nets

Abstract

This paper addresses the problem of learning Bayesian network structures from data based
on score functions that are decomposable. It describes properties that strongly reduce the
time and memory costs of many known methods without losing global optimality guaran-
tees. These properties are derived for different score criteria such as Minimum Description
Length (or Bayesian Information Criterion), Akaike Information Criterion and Bayesian
Dirichlet Criterion. Then a branch-and-bound algorithm is presented that integrates struc-
tural constraints with data in a way to guarantee global optimality. As an example, struc-
tural constraints are used to map the problem of structure learning in Dynamic Bayesian
networks into a corresponding augmented Bayesian network. Finally, we show empirically
that the new algorithm, as well as state-of-the-art methods, can handle larger data sets
with the use of the properties than those currently possible without them.

Keywords: Bayesian networks, structure learning, properties of decomposable scores,
structural constraints, branch-and-bound technique

1. Introduction

A Bayesian network is a probabilistic graphical model that relies on a structured depen-
dency among random variables to represent a joint probability distribution in a compact
and efficient manner. It is composed by a directed acyclic graph (DAG) where nodes are
associated to random variables and conditional probability distributions are defined for vari-
ables given their parents in the graph. Learning the graph (or structure) of these networks
from data is one of the most challenging problems, even if data are complete. The prob-
lem is known to be NP-hard (Chickering et al., 2004), and best exact known methods take
exponential time on the number of variables and are applicable to small settings (around
30 variables). Approximate procedures can handle larger networks, but usually they get
stuck in local maxima. Nevertheless, the quality of the structure plays a crucial role in

c©2010 Cassio P. de Campos and Qiang Ji.

de Campos and Ji

the accuracy of the model. If the dependency among variables is not properly learned, the
estimated distribution may be far from the correct one.

In general terms, the problem is to find the best structure (DAG) according to some score
function that depends on the data (Heckerman et al., 1995). There are methods based on
other (local) statistical analysis (Spirtes et al., 1993), but they follow a completely different
approach. The research on this topic is active (Chickering, 2002; Teyssier and Koller, 2005;
Tsamardinos et al., 2006; Silander and Myllymaki, 2006; Parviainen and Koivisto, 2009;
de Campos et al., 2009; Jaakkola et al., 2010), mostly focused on complete data. In this
case, best exact ideas (where it is guaranteed to find the global best scoring structure)
are based on dynamic programming (Koivisto and Sood, 2004; Singh and Moore, 2005;
Koivisto, 2006; Silander and Myllymaki, 2006; Parviainen and Koivisto, 2009), and they
spend time and memory proportional to n · 2n, where n is the number of variables. Such
complexity forbids the use of those methods to a couple of tens of variables, mainly because
of the memory consumption (even though time complexity is also a clear issue). Ott and
Miyano (2003) devise a faster algorithm when the complexity of the structure is limited
(for instance the maximum number of parents per node and the degree of connectivity of a
subjacent graph). Perrier et al. (2008) use structural constraints (creating a super-structure
from which the optimal must be a subgraph) to reduce the search space, showing that such
direction is promising when one wants to learn structures of large data sets. Kojima et al.
(2010) extend the same ideas with other types of constraints. Mostly these methods are
based on improving the dynamic programming method to work over reduced search spaces.
On a different front, Jaakkola et al. (2010) apply a linear programming relaxation to solve
the problem, together with a branch-and-bound search. Branch-and-bound methods can
be effective when good bounds and cuts are available. For example, this has happened
with certain success in the Traveling Salesman Problem (Applegate et al., 2006). We have
proposed an algorithm that also uses branch and bound, but employs a different technique
to find bounds (de Campos et al., 2009). It has been showed that branch and bound methods
can handle somewhat larger networks than the dynamic programming ideas. The method
is described in detail in Section 5.

In the first part of this paper, we present structural constraints as a way to reduce
the search space. We explore the use of constraints to devise methods to learn special-
ized versions of Bayesian networks (such as naive Bayes and Tree-augmented naive Bayes)
and generalized versions, such as Dynamic Bayesian networks (DBNs). DBNs are used to
model temporal processes. We describe a procedure to map the structural learning problem
of a DBN into a corresponding augmented Bayesian network through the use of further
constraints, so that the same exact algorithm we discuss for Bayesian networks can be
employed for DBNs.

In the second part, we present some properties of the problem that bring a considerable
improvement on many known methods. We build on our recent work (de Campos et al.,
2009) on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),
and present new results for the Bayesian Dirichlet (BD) criterion (Cooper and Herskovits,
1992) and some derivations under a few assumptions. We show that the search space of
possible structures can be reduced drastically without losing the global optimality guarantee
and that the memory requirements are very small in many practical cases.

2

Efficient Structure Learning of Bayesian Nets

As data sets with many variables cannot be efficiently handled (unless P=NP), a desired
property of a learning method is to produce an any-time solution, that is, the procedure, if
stopped at any moment, provides an approximate solution, while if run until it finishes, a
global optimum solution is found. However, the most efficient exact methods are not any-
time. We describe an any-time exact algorithm using a branch-and-bound (B&B) approach
with caches. Scores are pre-computed during an initialization step to save computational
time. Then we perform the search over the possible graphs iterating over arcs. Because of
the B&B properties, the algorithm can be stopped with a best current solution and an upper
bound to the global optimum, which gives a certificate to the answer and allows the user to
stop the computation when she/he believes that the current solution is good enough. For
example, such an algorithm can be integrated with a structural Expectation–Maximization
(EM) method without the huge computational expenses of other exact methods by using
the generalized EM (where finding an improving solution is enough), but still guaranteeing
that a global optimum is found if run until the end. Due to this property, the only source
of approximation would regard the EM method itself. It worth noting that using a B&B
method is not new for structure learning (Suzuki, 1996). Still, that previous idea does not
constitute a global exact algorithm, instead the search is conducted after a node ordering
is fixed. Our method does not rely on a predefined ordering and finds a global optimum
structure considering all possible orderings.

The paper is divided as follows. Section 2 describes the notation and introduces Bayesian
networks and the structure learning problem based on score functions. Section 3 presents
the structural constraints that are treated in this work, and shows examples on how they
can be used to learn different types of networks. Section 4 presents important properties of
the score functions that considerably reduce the memory and time costs of many methods.
Section 5 details our branch-and-bound algorithm, while Section 6 shows experimental
evaluations of the properties, the constraints and the exact method. Finally, Section 7
concludes the paper.

2. Bayesian networks

A Bayesian network represents a joint probability distribution over a collection of random
variables, which we assume to be categorical. It can be defined as a triple (G,X ,P), where
G .= (VG , EG) is a directed acyclic graph (DAG) with VG a collection of n nodes associated
to random variables X (a node per variable), and EG a collection of arcs; P is a collection
of conditional mass functions p(Xi|Πi) (one for each instantiation of Πi), where Πi denotes
the parents of Xi in the graph (Πi may be empty), respecting the relations of EG . In a
Bayesian network every variable is conditionally independent of its non-descendants given
its parents (Markov condition).

We use uppercase letters such as Xi, Xj to represent variables (or nodes of the graph,
which are used interchanged), and xi to represent a generic state of Xi, which has state
space ΩXi

.= {xi1, xi2, . . . , xiri}, where ri
.= |ΩXi | ≥ 2 is the number of (finite) categories of

Xi (|·| is the cardinality of a set or vector, and the notation .= is used to indicate a definition
instead of a mathematical equality). Bold letters are used to emphasize sets or vectors. For
example, x ∈ ΩX

.= ×X∈XΩX , for X ⊆ X , is an instantiation for all the variables in X.
Furthermore, rΠi

.= |ΩΠi | =
∏
Xt∈Πi

rt is the number of possible instantiations of the parent

3

de Campos and Ji

set Πi of Xi, and θ = (θijk)∀ijk is the entire vector of parameters such that the elements
are θijk = p(xik|πij), with i ∈ {1, . . . , n}, j ∈ {1, ..., rΠi}, k ∈ {1, ..., ri}, and πij ∈ ΩΠi .

Because of the Markov condition, the Bayesian network represents a joint probability
distribution by the expression p(x) = p(x1, . . . , xn) =

∏
i p(xi|πi), for every x ∈ ΩX , where

every xi and πi are consistent with x.
Given a complete data set D = {D1, . . . , DN} with N instances, where Du

.= xu ∈ ΩX
is an instantiation of all the variables, the goal of structure learning is to find a DAG G
that maximizes a given score function, that is, we look for G∗ = argmaxG∈G sD(G), with
G the set of all DAGs with nodes X , for a given score function sD (the dependency on
data is indicated by the subscript D).1 In this paper, we consider some well-known score
functions: the Bayesian Information Criterion (BIC) (Schwarz, 1978) (which is equivalent to
the Minimum Description Length), the Akaike Information Criterion (AIC) (Akaike, 1974),
and the Bayesian Dirichlet (BD) (Cooper and Herskovits, 1992), which has as subcases BDe
and BDeu (Buntine, 1991; Cooper and Herskovits, 1992; Heckerman et al., 1995). As done
before in the literature, we assume parameter independence and modularity (Heckerman
et al., 1995). The score functions based on BIC and AIC differ only in the weight that is
given to the penalty term:

BIC/AIC : sD(G) = max
θ

LG,D(θ)− t(G) · w,

where t(G) =
∑n

i=1(rΠi · (ri − 1)) is the number of free parameters, w = logN
2 for BIC and

w = 1 for AIC, LG,D is the log-likelihood function with respect to data D and graph G:

LG,D(θ) = log
n∏
i=1

rΠi∏
j=1

ri∏
k=1

θ
nijk

ijk , (1)

where nijk indicates how many elements of D contain both xik and πij . Note that the
values (nijk)∀ijk depend on the graph G (more specifically, they depend on the parent set
Πi of each Xi), so a more precise notation would be to use nΠi

ijk instead of nijk. We avoid
this heavy notation for simplicity unless necessary in the context. Moreover, we know that
θ∗ = (θ∗ijk)∀ijk = (nijk

nij
)∀ijk = argmaxθ LG,D(θ), with nij =

∑
k nijk.

2

In the case of the BD criterion, the idea is to compute a score based on the posterior
probability of the structure p(G|D). For that purpose, the following score function is used:

BD : sD(G) = log
(
p(G) ·

∫
p(D|G,θ) · p(θ|G)dθ

)
,

where the logarithmic is often used to simplify computations, p(θ|G) is the prior of θ for a
given graph G, assumed to be a Dirichlet with hyper-parameters α = (αijk)∀ijk (which are
assumed to be strictly positive):

p(θ|G) =
n∏
i=1

rΠi∏
j=1

Γ(αij)
ri∏
k=1

θ
αijk−1
ijk

Γ(αijk)
,

1. In case of many optimal DAGs, then we assume to have no preference and argmax returns one of them.
2. If nij = 0, then nijk = 0 and we assume the fraction

nijk

nij
to be equal to one.

4

Efficient Structure Learning of Bayesian Nets

where αij =
∑

k αijk. Hyper-parameters (αijk)∀ijk also depend on the graph G, and we
indicate it by αΠi

ijk if necessary in the context. From now on, we also omit the subscript D.
We assume that there is no preference for any graph, so p(G) is uniform and vanishes in the
computations. Under the assumptions, it has been shown (Cooper and Herskovits, 1992)
that for multinomial distributions,

s(G) = log
n∏
i=1

rΠi∏
j=1

Γ(αij)
Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)
Γ(αijk)

. (2)

The BDe score (Heckerman et al., 1995) assumes that αijk = α∗ · p(θijk|G), where α∗ is
the hyper-parameter known as the Equivalent Sample Size (ESS), and p(θijk|G) is the prior
probability for (xik ∧ πij) given G (or simply given Πi). The BDeu score (Buntine, 1991;
Cooper and Herskovits, 1992) assumes further that local priors are such that αijk becomes
α∗

rΠi
ri

and α∗ is the only free hyper-parameter.
An important property of all such criteria is that their functions are decomposable and

can be written in terms of the local nodes of the graph, that is, s(G) =
∑n

i=1 si(Πi), such
that

BIC/AIC : si(Πi) = max
θi

LΠi(θi)− ti(Πi) · w, (3)

where LΠi(θi) =
∑rΠi

j=1

∑ri
k=1 nijk log θijk, and ti(Πi) = rΠi · (ri − 1). And similarly,

BD : si(Πi) =
rΠi∑
j=1

(
log

Γ(αij)
Γ(αij + nij)

+
ri∑
k=1

log
Γ(αijk + nijk)

Γ(αijk)

)
. (4)

In the case of BIC and AIC, Equation (3) is used to compute the global score of a graph
using the local scores at each node, while Equation (4) is employed for BD, BDe and BDeu,
using the respective hyper-parameters α.

3. Structural Constraints

A way to reduce the space of possible DAGs is to consider some constraints provided by
experts. We work with structural constraints that specify where arcs may or may not be
included. These constraints help to reduce the search space and are available in many
situations. Moreover, we show examples in Sections 3.1 and 3.2 of how these constraints
can be used to learn structures of different types of networks, such as naive Bayes, tree-
augmented naive Bayes, and Dynamic Bayesian networks. We work with the following rules,
used to build up the structural constraints:

• indegree(Xj , k, op), where op ∈ {lt, eq} and k an integer, means that the node Xj

must have less than (when op = lt) or equal to (when op = eq) k parents.

• arc(Xi, Xj) indicates that the node Xi must be a parent of Xj .

• Operators or (∨) and not (¬) are used to form the rules. The and operator is not
explicitly used as we assume that each constraint is in disjunctive normal form.

5

de Campos and Ji

The structural constraints can be imposed locally as long as they involve just a single
node and its parents. In essence, parent sets of a node Xi that do violate a constraint are
never processed nor stored, and this can be checked locally when one is about to compute
the local score. On the other hand, constraints such as (arc(X1, X2)∨ arc(X2, X3)) cannot
be imposed locally, as it defines a non-local condition (the arcs go to distinct variables,
namely X2 and X3). In this work we assume that constraints are local. Besides constraints
devised by an expert, one might use constraints to force the learning procedure to obtain
specialized types of networks. The next two subsections describe (somewhat non-trivial)
examples of use of constraints to learn different types of networks. Specialized networks
tend to be easier to learn, because the search space is already reduced to the structures that
satisfy the underlying constraints. Notwithstanding, the readers who are only interested in
learning general Bayesian networks might want to skip the rest of this section and continue
from Section 4.

3.1 Learning Naive and TAN structures

For example, the constraints ∀i6=c,j 6=c ¬arc(Xi, Xj) and indegree(Xc, 0, eq) impose that
only arcs from node Xc to the others are possible, and that Xc is a root node, that is,
a Naive Bayes structure will be learned. A learning procedure would in fact act as a
feature selection procedure by letting some variables unlinked. Note that the symbol ∀
just employed is not part of the language but is used for easy of expose (in fact it is
necessary to write down every constraint defined by such construction). As another example,
the constraints ∀j 6=c indegree(Xj , 3, lt), indegree(Xc, 0, eq), and ∀j 6=c indegree(Xj , 0, eq) ∨
arc(Xc, Xj) ensure that all nodes have Xc as parent, or no parent at all. Besides Xc, each
node may have at most one other parent, and Xc is a root node. This learns the structure of
a Tree-augmented Naive (TAN) classifier, also performing a kind of feature selection (some
variables may end up unlinked). In fact, it learns a forest of trees, as we have not imposed
that all variables must be linked. In Section 6 we present some experimental results which
indicate that learning TANs is a much easier (still very important) practical situation.

We point out that learning structures of networks with the particular purpose of building
a classifier can be also tackled by other score functions that consider conditional distribu-
tions (Pernkopf and Bilmes, 2005). Here we present a way to learn TANs considering the
fit of the joint distribution, which can be done by constraints. Further discussions about
learning classifiers is not the aim of this work.

3.2 Learning Dynamic Bayesian Networks

A more sophisticated application of structural constraints is presented in this section,
where they are employed to translate the structure learning in Dynamic Bayesian Net-
works (DBNs) to a corresponding problem in Bayesian networks. While Bayesian networks
are not directly related to time, DBNs are used to model temporal processes. Assuming
Markovian and stationary properties, DBNs may be encoded in a very compact way and
inferences are executed quickly. They are built over a collection of sets of random vari-
ables {X 0,X 1, . . . ,X T } representing variables in different times 0, 1, . . . , T (we assume that
time is discrete). A Markovian property holds, which ensures that p(X t+1|X 0, . . .X t) =
p(X t+1|X t), for 0 ≤ t < T . Furthermore, because the process is assumed to be stationary,

6

Efficient Structure Learning of Bayesian Nets

we have that p(X t+1|X t) is independent of t, that is, p(X t+1|X t) = p(X t′+1|X t′) for any
0 ≤ t, t′ < T . This means that a DBN is just as a collection of Bayesian networks that
share the same structure and parameters (apart from the initial Bayesian network for time
zero). If Xt

i ∈ X t are the variables at time t, a DBN may have arcs between nodes Xt
i of

the same time t and arcs from nodes Xt−1
i (previous time) to nodes Xt

i of time t. Hence, a
DBN can be viewed as two-slice temporal Bayesian network, where at time zero, we have
a standard Bayesian network as in Section 2, which we denote Bo, and for slices 1 to T we
have another Bayesian network (called transitional Bayesian network and denoted simply
B) defined over the same variables but where nodes may have parents on two consecutive
slices, that is, B precisely defines the distributions p(X t+1|X t), for any 0 ≤ t < T .

To learn a DBN, we assume that many temporal sequences of data are available. Thus,
a complete data set D = {D1, . . . , DN} is composed of N sequences, where each Du is
composed of instances Dt

u
.= xt

u = {xtu,1, . . . , xtu,n}, for t = 0, . . . , T (where T is the total
number of slices/frames apart from the initial one). Note that there is an implicit order
among the elements of each Du. We denote by D0 .= {D0

u : 1 ≤ u ≤ N} the data of the first
slice, and by Dt .= {(Dt

u, D
t−1
u) : 1 ≤ u ≤ N}, with 1 ≤ t ≤ T , the data of a slice t (note that

the data of the slice t−1 is also included, because it is necessary for learning the transitions).
As the conditional probability distributions for time t > 0 share the same parameters, we
can unroll the DBN to obtain the factorization p(X 1:T) =

∏
i p

0(X0
i |Π0

i)
∏T
t=1

∏
i p(X

t
i |Πt

i),
where p0(X0

i |Π0
i) are the local conditional distributions of B0, Xt

i and Πt
i represent the

corresponding variables in time t, and p(Xt
i |Πt

i) are the local distributions of B.

Unfortunately learning a DBN is at least as hard as learning a Bayesian network, because
the former can be viewed as a generalization of the latter. Still, we show that the same
method used for Bayesian networks can be used to learn DBNs. With complete data,
learning parameters of DBNs is similar to learning parameters of Bayesian networks, but
we deal with counts nijk for both B0 and B. The counts related to B0 are obtained from the
first slice of each sequence, so there are N samples overall, while counts for B are obtained
from the whole time sequences, so there are N ·T elements to consider (supposing that each
sequence has the same length T , for ease of expose). The score function of a given structure
decomposes between the score function of B0 and the score function of B (because of the
decomposability of score functions), so we look for graphs such that

(G0∗,G′∗) = argmax
G0,G′

(
sD0(G0) + sD1:T (G′)

)
= (argmax

G0

sD0(G0), argmax
G′

sD1:T (G′)), (5)

where G0 is a graph over X 0 and G′ is a graph over variables X t,X t−1 of a generic slice t and
its predecessor t−1. Counts are obtained from data sets with time sequences separately for
the initial and the transitional Bayesian networks, and the problem reduces to the learning
problem in a Bayesian network with some constraints that force the arcs to respect the
DBN’s stationarity and Markovian characteristics (of course, it is necessary to obtain the
counts from the data in a particular way). We make use of the constraints defined in Section
3 to develop a simple transformation of the structure learning problem to a corresponding
structure learning problem in an augmented Bayesian network. The steps of this procedure
are as follows:

7

de Campos and Ji

1. Learn B0 using the data set D0. Note that this is already a standard Bayesian network
structure learning problem, so we obtain the graph G0 for the first maximization of
Equation (5).

2. Suppose there is a Bayesian network B′ = (G′,X ′,P ′) with twice as many nodes as B0.
Denote the nodes as (X1, . . . , Xn, X

′
1, . . . , X

′
n). Construct a new data set D′ that is

composed by N ·T elements {D1, . . . , DT }. Note that D′ is precisely a data set over 2n
variables, because it is formed of pairs (Dt−1

u , Dt
u), which are complete instantiations

for the variables of B′, containing the elements of two consecutive slices.

3. Include structural constraints as follows:

∀1≤i≤n arc(Xi, X
′
i) (6)

∀1≤i≤n indegree(Xi, 0, eq) (7)

Equation (6) forces the time relation between the same variable in consecutive time
slices (in fact this constraint might be discarded if someone does not want to enforce
each variable to be correlated to itself of the past slice). Equation (7) forces the
variables X1, . . . , Xn to have no parents (these are the variables that are simulating
the previous slice, while the variables X ′ are simulating the current slice).

4. Learn B′ using the data set D′ with an standard Bayesian network structure learning
procedure, capable of enforcing the structural constraints. Note that the parent sets
of X1, . . . , Xn are already fixed to be empty, so the output graph will maximize the
scores associated only to nodes X ′: argmaxG′ sD1:T (G′)) =

argmax
G′

(∑
i

si,D1:T (Πi) +
∑
i′

si′,D1:T (Π′i)

)
= argmax

G′

∑
i′

si′,D1:T (Π′i).

This holds because of the decomposability of the score function among nodes, so that
the scores of the nodes X1, . . . , Xn are fixed and can be disregarded in the maximiza-
tion (they are constant).

5. Finally, we take the subgraph of G′ corresponding to the variables X ′1, . . . , X
′
n to be

the graph of the transitional Bayesian network B. This subgraph has arcs among
X ′1, . . . , X

′
n (which are arcs correlating variables of the same time slice) as well as arcs

from the previous slice to the nodes X ′1, . . . , X
′
n.

Therefore, after applying this transformation, the structure learning problem in a DBN
can be performed by two calls to the method that solves the problem in a Bayesian net-
work. We point out that an expert may create her/his own constraints to be used during
the learning, besides those constraints introduced by the transformation, as long as such
constraints do not violate the DBN implicit constraints. This makes possible to learn DBNs
together with expert’s knowledge in the form of structural constraints.

8

Efficient Structure Learning of Bayesian Nets

4. Properties of the score functions

In this section we present mathematical properties that are useful when computing score
functions. Local scores need to be computed many times to evaluate the candidate graphs
when we look for the best graph. Because of decomposability, we can avoid to compute
such functions several times by creating a cache that contains si(Πi) for each Xi and each
parent set Πi. Note that this cache may have an exponential size on n, as there are 2n−1

subsets of {X1, . . . , Xn} \ {Xi} to be considered as parent sets. This gives a total space
and time of O(n · 2n · v) to build the cache, where v is the worse case asymptotic time to
compute the local score function at each node.3 Instead, we describe a collection of results
that are used to obtain much smaller caches in many practical cases.

First, Lemma 1 is quite simple but very useful to discard elements from the cache of
each node Xi. It holds for all score functions that we treat in this paper. It was previously
stated in Teyssier and Koller (2005) and de Campos et al. (2009), among others.

Lemma 1 Let Xi be a node of G′, a candidate DAG for a Bayesian network where the
parent set of Xi is Π′i. Suppose Πi ⊂ Π′i is such that si(Πi) > si(Π′i) (where s is one of
BIC, AIC, BD or derived criteria). Then Π′i is not the parent set of Xi in an optimal DAG
G∗.

Proof This fact comes straightforward from the decomposability of the score functions.
Take a graph G that differs from G′ only on the parent set of Xi, where it has Πi instead of
Π′i. Note that G is also a DAG (as G is a subgraph of G′ built from the removal of some arcs,
which cannot create cycles) and s(G) =

∑
j 6=i sj(Π

′
j)+si(Πi) >

∑
j 6=i sj(Π

′
j)+si(Π

′
i) = s(G′).

Any DAG G′ with parent set Π′i for Xi has a subgraph G with a better score than that of
G′, and thus Π′i is not the optimal parent configuration for Xi in G∗.

Unfortunately Lemma 1 does not tell us anything about supersets of Π′i, that is, we still
need to compute scores for all the possible parent sets and later verify which of them can
be removed. This would still leave us with n ·2n ·v asymptotic time and space requirements
(although the space would be reduced after applying the lemma). The next two subsections
present results to avoid all such computations. BIC and AIC are treated separately from
BD and derivatives (reasons for that will become clear in the derivations).

4.1 BIC and AIC score properties

Next theorems handle the issue of having to compute scores for all possible parent sets,
when one is using BIC or AIC criteria. BD scores are dealt later on.

Theorem 2 Using BIC or AIC as score function, suppose that Xi,Πi are such that rΠi >
N
w

logri
ri−1 . If Π′i is a proper superset of Πi, then Π′i is not the parent set of Xi in an optimal

structure.

3. Note that the time to compute a single local score might be large depending on the number of parents
but still asymptotically bounded by the data set size.

9

de Campos and Ji

Proof 4 We know that Π′i contains at least one additional node, that is, Π′i ⊇ Πi ∪ {Xe}
and Xe /∈ Πi. Because Πi ⊂ Π′i, Li(Π

′
i) is certainly greater than or equal to Li(Πi), and

ti(Π′i) will certainly be greater than the corresponding value ti(Πi) in G. The difference in
the scores is si(Π′i)− si(Πi), which equals to (see the explanations after the formulas):

max
θ′i

Li(Π′i)− ti(Π′i)− (max
θi

Li(Πi)− ti(Πi)) ≤

−max
θi

Li(Πi)− ti(Π′i) + ti(Πi) =

rΠi∑
j=1

nij

(
−

ri∑
i=1

nijk
nij

log
nijk
nij

)
− ti(Π′i) + ti(Πi) ≤

rΠi∑
j=1

nijH(θij)− ti(Π′i) + ti(Πi) ≤

rΠi∑
j=1

nij logri − rΠi · (re − 1) · (ri − 1) · w ≤

rΠi∑
j=1

nij logri − rΠi · (ri − 1) · w = N logri − rΠi · (ri − 1) · w.

The first step uses the fact that Li(Π′i) is negative, so we drop it, the second step uses the
fact that θ∗ijk = nijk

nij
, with nij =

∑ri
i=1 nijk, the third step uses the definition of entropy H(·)

of a discrete distribution, and the fourth step uses the fact that the entropy of a discrete
distribution is less than the log of its number of categories. Finally, the last equation is
negative if rΠi · (ri− 1) ·w > N logri, which is exactly the hypothesis of the theorem. Hence
si(Π′i) < si(Πi), and Lemma 1 guarantees that Π′i cannot be the parent set of Xi in an
optimal structure.

Corollary 3 Using BIC or AIC as criterion, the optimal graph G has at most O(logN)
parents per node.

Proof Assuming N > 4, we have logri
w(ri−1) < 1 (because w is either 1 or logN

2). Take a
variable Xi and a parent set Πi with exactly dlog2Ne elements. Because every variable has
at least two states, we know that rΠi ≥ 2|Πi| ≥ N > N

w
logri
ri−1 , and by Theorem 2 we know

that no proper superset of Πi can be an optimal parent set.

Theorem 2 and Corollary 3 ensures that the cache stores at most O(
(
n−1
logN

)
) elements for

each variable (all combinations up to dlog2Ne parents). Next lemma does not help us to
improve the theoretical size bound that is achieved by Corollary 3, but it is quite useful in
practice because it is applicable even in cases where Theorem 2 is not, implying that less
number of parent sets need to be inspected.

4. Another similar proof appears in Bouckaert (1994), but it leads directly to the conclusion of Corollary
3. The intermediate result is algorithmically important.

10

Efficient Structure Learning of Bayesian Nets

Theorem 4 Let BIC or AIC be the score criterion and let Xi be a node with Πi ⊂ Π′i two
possible parent sets such that ti(Π′i) + si(Πi) > 0. Then Π′i and all supersets Π′′i ⊃ Π′i are
not optimal parent configurations for Xi.

Proof We have that ti(Π′i) + si(Πi) > 0 ⇒ −ti(Π′i) − si(Πi) < 0, and because Li(·) is a
negative function, it implies

⇒ (Li(Π′i)− ti(Π′i))− si(Πi) < 0⇒ si(Π′i) < si(Πi).

Using Lemma 1, we have that Π′i is not the optimal parent set for Xi. The result also
follows for any Π′′i ⊃ Πi, as we know that ti(Π′′i) > ti(Π′i) and the same argument suffices.

Theorem 4 provides a bound to discard parent sets without even inspecting them. The
idea is to verify the assumptions of Theorem 4 every time the score of a parent set Πi of
Xi is about to be computed by taking the best score of any subset and testing it against
the theorem. Only subsets that have been checked against the structural constraints can
be used, that is, a subset with high score but that violates constraints cannot be used
as the “certificate” to discard its supersets (in fact, it is not a valid parent set at first).
This ensures that the results are valid even in the presence of constraints. Whenever the
theorem can be applied, Πi is discard and all its supersets are not even inspected. This
result allows us to stop computing scores earlier than the worst-case, reducing the number
of computations to build and store the cache. Πi is also checked against Lemma 1 (which
is stronger in the sense that instead of a bounding function, the actual scores are directly
compared). However Lemma 1 cannot help us to avoid analyzing the supersets of Πi.

4.2 BD score properties

First note that the BD scores can be rewritten as:

si(Πi) =
∑
j∈Ji

log
Γ(αij)

Γ(αij + nij)
+
∑
k∈Kij

log
Γ(αijk + nijk)

Γ(αijk)

 ,

where Ji
.= JΠi

i
.= {1 ≤ j ≤ rΠi : nij 6= 0}, because nij = 0 implies that all terms cancel

each other. In the same manner, nijk = 0 implies that the terms of the internal summation
cancel out, so let Kij

.= KΠi
ij

.= {1 ≤ k ≤ ri : nijk 6= 0} be the indices of the categories
of Xi such that nijk 6= 0. Let KΠi

i
.= ∪jKΠi

ij be a vector with all indices corresponding to
non-zero counts for Πi (note that the symbol ∪ must be seen as a concatenation of vectors,
as we allow KΠi

i to have repetitions). The counts nijk (and consequently nij =
∑

k nijk)
are completely defined if we know the parent set Πi. Rewrite the score as follows:

si(Πi) =
∑
j∈Ji

(f(Kij , (αijk)∀k) + g((nijk)∀k, (αijk)∀k)) ,

11

de Campos and Ji

with

f(Kij , (αijk)∀k) = log Γ(αij)−
∑
k∈Kij

log Γ(αijk),

g((nijk)∀k, (αijk)∀k) = − log Γ(αij + nij) +
∑
k∈Kij

log Γ(αijk + nijk).

We do not need Kij as argument of g(·) because the set of non-zero nijk is known from
the counts (nijk)∀k that are already available as arguments of g(·). To achieve the de-
sired theorem that will be able to reduce the computational time to build the cache, some
intermediate results are necessary.

Lemma 5 Let Πi be the parent set of Xi, (αijk)∀ijk > 0 be the hyper-parameters, and
integers (nijk)∀ijk ≥ 0 be counts obtained from data. We have that g((nijk)∀k, (αijk)∀k) ≤
− log Γ(v) ≈ 0.1214 if nij ≥ 1, where v = argmaxx>0− log Γ(x) ≈ 1.4616. Furthermore,
g((nijk)∀k, (αijk)∀k) ≤ − logαij + logαijk − f(Kij , (αijk)∀k) if |Kij | = 1.

Proof We use the relation Γ(x +
∑

k ak) ≥ Γ(x + 1)
∏
k Γ(ak), for x ≥ 0, ∀kak ≥ 1 and∑

k ak ≥ 1 (note that it is valid even if there is a single element in the summation). This
relation comes from the Beta function inequality:

Γ(x)Γ(y)
Γ(x+ y)

≤ x+ y

xy
=⇒ Γ(x+ 1)Γ(y + 1) ≤ Γ(x+ y + 1),

where x, y > 0. Applying the transformation y + 1 =
∑

t at (which is possible because∑
t at > 1 and thus y > 0), we obtain:

Γ(x+
∑
t

at) ≥ Γ(x+ 1)Γ(
∑
t

at) ≥ Γ(x+ 1)
∏
t

Γ(at), (8)

(the last step is due to at ≥ 1 for all t, so the same relation of the Beta function can be
overall applied, because Γ(x+ 1)Γ(y + 1) ≤ Γ(x+ y + 1) ≤ Γ(x+ 1 + y + 1)).

With the relation just devised in hands, we have

Γ(αij + nij)∏
k∈Kij

Γ(αijk + nijk)
=

Γ(
∑

1≤k≤ri(αijk + nijk))∏
k∈Kij

Γ(αijk + nijk)
=

=
Γ(
∑

k/∈Kij
αijk +

∑
k∈Kij

(αijk + nijk))∏
k∈Kij

Γ(αijk + nijk)
≥ Γ(1 +

∑
k/∈Kij

αijk),

obtained by renaming x =
∑

k/∈Kij
αijk and ak = αijk + nijk (we have that

∑
k∈Kij

(αijk +
nijk) ≥ nij ≥ 1 and each ak ≥ 1). Thus

g((nijk)∀k, (αijk)∀k) = − log
Γ(αij + nij)∏

k∈Kij
Γ(αijk + nijk)

≤ − log Γ(1 +
∑
k/∈Kij

αijk).

Because v = argmaxx>0− log Γ(x), we have − log Γ(1 +
∑

k/∈Kij
αijk) ≤ − log Γ(v).

12

Efficient Structure Learning of Bayesian Nets

Now, the second part of the lemma. If |Kij | = 1, then let Kij = {k}. We know that
nij ≥ 1 and thus

g((nijk)∀k, (αijk)∀k) = − log
Γ(αij + nij)
Γ(αijk + nij)

= − log

 Γ(αij)
Γ(αijk)

nij−1∏
t=0

(αij + t)
(αijk + t)

 =

= −f(Kij , (αijk)∀k)− log
αij
αijk
−
nij−1∑
t=1

log
(αij + t)
(αijk + t)

≤ − logαij + logαijk− f(Kij , (αijk)∀k),

because (αij+t)
(αijk+t) ≥ 1 for every t.

Lemma 6 Let Πi be the parent set of Xi, (αijk)∀ijk > 0 be the hyper-parameters, and
integers (nijk)∀ijk ≥ 0 be counts obtained from data. We have that g((nijk)∀k, (αijk)∀k) ≤ 0
if nij ≥ 2.

Proof If nij ≥ 2, we use the relation Γ(x+
∑

k ak) ≥ Γ(x+2)
∏
k Γ(ak), for x ≥ 0, ∀kak ≥ 1

and
∑

k ak ≥ 2. This inequality is obtained in the same way as in Lemma 5, but using a
tighter Beta function bound:

B(x, y) ≤ x+ y

xy

(
(x+ 1)(y + 1)
x+ y + 1

)−1

=⇒ Γ(x+ 2)Γ(y + 2) ≤ Γ(x+ y + 2),

and the relation follows by using y + 2 =
∑

t at and the same derivation as before. Now,

Γ(αij + nij)∏
k∈Kij

Γ(αijk + nijk)
=

Γ(
∑

1≤k≤ri(αijk + nijk))∏
k∈Kij

Γ(αijk + nijk)
=

=
Γ(
∑

k/∈Kij
αijk +

∑
k∈Kij

(αijk + nijk))∏
k∈Kij

Γ(αijk + nijk)
≥ Γ(2 +

∑
k/∈Kij

αijk),

obtained by renaming x =
∑

k/∈Kij
αijk and ak = αijk+nijk, as we know that

∑
k∈Kij

(αijk+
nijk) ≥ nij ≥ 2 and each ak ≥ 1. Finally,

g((nijk)∀k, (αijk)∀k) = − log
Γ(αij + nij)∏

k∈Kij
Γ(αijk + nijk)

≤ − log Γ(2 +
∑
k/∈Kij

αijk) ≤ 0,

because Γ(2 +
∑

k/∈Kij
αijk) ≥ 1.

Lemma 7 Given a BD score and two parent sets Π0
i and Πi for a node Xi such that

Π0
i ⊂ Πi, if

si(Π0
i) >

∑
j∈JΠi

i :

|KΠi
ij |≥2

f(KΠi
ij , (α

Πi
ijk)∀k) +

∑
j∈JΠi

i :

|KΠi
ij |=1

log
αΠi
ijk′

αΠi
ij

, (9)

then Πi is not the optimal parent set for Xi.

13

de Campos and Ji

Proof Using the results of Lemmas 5 and 6,

si(Πi) =
∑
j∈Ji

(
f(KΠi

ij , (α
Πi
ijk)∀k) + g((nΠi

ijk)∀k, (α
Πi
ijk)∀k)

)
≤

∑
j∈Ji: |K

Πi
ij |≥2

(
f(KΠi

ij , (α
Πi
ijk)∀k) + g((nΠi

ijk)∀k, (α
Πi
ijk)∀k)

)
+

+
∑

j∈JΠi
i : |KΠi

ij |=1

(
− logαΠi

ij + logαΠi
ijk′

)

≤
∑

j∈JΠi
i :|KΠi

ij |≥2

f(KΠi
ij , (α

Πi
ijk)∀k) +

∑
j∈JΠi

i :|KΠi
ij |=1

log
αΠi
ijk′

αΠi
ij

,

which by the assumption of this lemma, is less than si(Π0
i). Thus, we conclude that the

parent set Π0
i has better score than Πi, and the desired result follows from Lemma 1.

Lemma 8 Given the BDeu score, (αijk)∀ijk > 0, and integers (nijk)∀ijk ≥ 0 such that
αij ≤ 0.8349 and |Kij | ≥ 2 for a given j, then f(Kij , (αijk)∀k) ≤ −|Kij | · log ri.

Proof Using αijk ≤ αij ≤ 0.8349 (for all k), we have

f(Kij , (αijk)∀k) = log Γ(αij)− |Kij | log Γ(
αij
ri

)

= log Γ(αij)− |Kij | log Γ(
αij
ri

+ 1) + |Kij | log
αij
ri

= log Γ(αij)− |Kij | log
Γ(αij

ri
+ 1)

αij
− |Kij | log ri

= |Kij | log
Γ(αij)1/|Kij |αij

Γ(αij

ri
+ 1)

− |Kij | log ri.

Now, Γ(αij)1/|Kij |αij ≤ Γ(αij

ri
+ 1), because ri ≥ 2, |Kij | ≥ 2 and αij ≤ 0.8349 (this number

can be computed by numerically solving the inequality for ri = |Kij | = 2). We point out
that 0.8349 is a bound for αij that ensures this last inequality to hold when ri = |Kij | = 2,
which is the worst case scenario (greater values of ri and |Kij | make the left-hand side de-
crease and the right-hand side increase). Because ri of each node is known, tighter bounds
might be possible according to the node.

Theorem 9 Given the BDeu score and two parent sets Π0
i and Πi for a node Xi such that

Π0
i ⊂ Πi and αΠi

ij ≤ 0.8349 for every j, if si(Π0
i) > −|K

Πi
i | log ri then neither Πi nor any

superset Π′i ⊃ Πi are optimal parent sets for Xi.

Proof We have that

si(Π0
i) > −|K

Πi
i | log ri =

∑
j∈JΠi

i : |KΠi
ij |≥2

−|KΠi
ij | log ri +

∑
j∈JΠi

i : |KΠi
ij |=1

− log ri,

14

Efficient Structure Learning of Bayesian Nets

which by Lemma 8 is greater than or equal to∑
j∈JΠi

i : |KΠi
ij |≥2

f(KΠi
ij , (α

Πi
ijk)∀k) +

∑
j∈JΠi

i : |KΠi
ij |=1

− log ri.

Now, Lemma 7 suffices to show that Πi is not a optimal parent set, because − log ri =

log
α

Πi
ijk

α
Πi
ij

for any k. To show the result for any superset Π′i ⊃ Πi, we just have to note that

|KΠ′i
i | ≥ |K

Πi
i | (because the overall number of non-zero counts can only increase when we

include more parents), and αΠ′i
ij′ (for all j′) are all less than 0.8349 (because the αs can only

decrease when more parents are included), thus we can apply the very same reasoning to
all supersets.

Theorem 9 provides a bound to discard parent sets without even inspecting them because
of the non-increasing monotonicity of the employed bounding function when we increase the
number of parents. As done for the BIC and AIC criteria, the idea is to check the validity of
Theorem 9 every time the score of a parent set Πi of Xi is about to be computed by taking
the best score of any subset and testing it against the theorem (of course using only subsets
that satisfy the structural constraints). Whenever possible, we discard Πi and do not even
look into all its supersets. Note that the assertion αij ≤ 0.8349 required by the theorem
is not too restrictive, because as parent sets grow, as ESS is divided by larger numbers (it
is an exponential decrease of the αs). Hence, the values αij become quickly below such a
threshold. Furthermore, Πi is also checked against Lemma 1 (although it does not help
with the supersets). As we see later in the experiments, the practical size of the cache after
the application of the properties is small even for considerably large networks, and both
Lemma 1 and Theorem 9 help reducing the cache size, while Theorem 9 also help to reduce
computations. Finally, we point out that Singh and Moore (2005) have already worked
on bounds to reduce the number of parent sets that need to be inspected, but Theorem 9
provides a much tighter bound than their previous result, where the cut happens only after
all |KΠi

ij | go below two (or using previous terminology, when configurations are pure).

5. Constrained B&B algorithm

In this section we describe the branch-and-bound (B&B) algorithm used to find the best
structure of the Bayesian network and comment on its complexity and correctness. The
algorithm uses a B&B search where each case to be solved is a relaxation of a DAG, that
is, the cases may contain cycles. At each step, a graph is picked up from a priority queue,
and it is verified if it is a DAG. In such case, it is a feasible structure for the network and
we compare its score against the best score so far (which is updated if needed). Otherwise,
there must be a directed cycle in the graph, which is then broken into subcases by forcing
some arcs to be absent/present. Each subcase is put in the queue to be processed (these
subcases cover all possible subgraphs related to the original case, that is, they cover all
possible ways to break the cycle). The procedure stops when the queue is empty. Note
that every time we break a cycle, the subcases that are created are independent, that is,
their sets of graphs are disjoint. We obtain this fact by properly breaking the cycles to

15

de Campos and Ji

avoid overlapping among subcases (more details below). This is the same idea as in the
inclusion–exclusion principle of combinatorics employed over the set of arcs that formed the
cycle and ensures that we never process the same graph twice, and also ensures that all
subgraphs are covered.

The initialization of the algorithm is as follows:

• C : (Xi,Πi) → R is the cache with the scores for all the variables and their possible
parent configurations. This is constructed using a queue and analyzing parent sets
according to the properties of Section 4, which saves (in practice) a large amount of
space and time. All the structural constraints are considered in this construction so
that only valid parent sets are stored.

• G is the graph created by taking the best parent configuration for each node without
checking for acyclicity (so it is not necessarily a DAG), and s is the score of G. This
graph is used as an upper bound to the best possible graph, as it is clearly obtained
from a relaxation of the problem (the relaxation comes from allowing cycles).

• H is an initially empty matrix containing, for each possible arc between nodes, a
mark stating that the arc must be present, or is prohibited, or is free (may be present
or not). This matrix controls the search of the B&B procedure. Each branch of the
search has aH that specifies the graphs that still must be searched within that branch.

• Q is a priority queue of triples (G,H, s), ordered by s (initially it contains a single
triple with G, H and s as mentioned. The order is such that the peak contains always
the triple of greatest s.

• (Gbest, sbest) keeps at any moment the best DAG and score found so far (sbest is initial-
ized with −∞). In fact, this best solution can be initialized using any inner approx-
imation method. For instance, we use a procedure that guesses an ordering for the
variable, then computes the global best solution for that ordering, and finally runs a
hill climbing over the resulting structure. All these procedures are very fast (given the
small size of the pre-computed cache that we obtain in the previous steps). A good
initial solution may significantly reduce the search of the B&B procedure, because it
may give a lower bound closer to the upper bound defined by the relaxation (G,H, s).

The main loop of the B&B search is as follows:

• While Q is not empty, do

1. Remove the peak (Gcur,Hcur, scur) of Q. If scur ≤ sbest (worse than an already
known solution), then discard it and start the loop again.

2. If Gcur is a DAG (it certainly satisfies all structural constraints, because all the
elements in the cache do so), update (Gbest, sbest) with (Gcur, scur) and start the
loop again.

3. Take a cycle of Gcur (one must exist, otherwise we would have not reached this
step), namely v = (Xa1 → Xa2 → . . . → Xaq+1), with a1 = aq+1. This can be
computed by a single search in the graph.

16

Efficient Structure Learning of Bayesian Nets

4. For y = 1, . . . , q, do

– Mark on Hcur that the arc Xay → Xay+1 is prohibited. This implies that
the branch we are going to create will not have this cycle again.

– Recompute (G, s) from (Gcur, scur) such that the new parent set of Xay+1

in G complies with this new Hcur. This is done by searching in the cache
C(Xay+1 ,Πay+1) for the best parent set. If there is a parent set in the cache
that satisfies Hcur, then include the triple (G,Hcur, s) into Q.

– Mark onHcur that the arc Xay → Xay+1 must be present and that the sibling
arc Xay+1 → Xay is prohibited, and continue the loop of step 4. (This last
step forces the branches that we are creating to be disjoint among each other.)

There are two considerations to show the correctness of the method. First, we need to
guarantee that all the search space is considered, even though we do not search through all
of it. Second, we must ensure that the same part of the search space is not processed more
than once, so we do not lose time and know that the algorithm will finish with a best global
graph. The search is conducted over all possible graphs (not necessarily DAGs). The queue
Q contains the subspaces (of all possible graphs) to be analyzed. A triple (G,H, s) indicates,
through H, which is this subspace. H is a matrix containing an indicator for each possible
arc. It says if an arc is allowed (meaning it might or might not be present), prohibited (it
cannot be present), or demanded (it must be present) in the current subspace of graphs.
Thus, H completely defines the subspaces. G and s are respectively the best graph inside H
(note that G might have cycles) and its score value (which is an upper bound for the best
DAG in this subspace).

In the initialization step, Q begins with a triple where H indicates that every arc is
allowed,5 so all possible graphs are within the subspace of the initial H. The score s of G
is compared against the best known score. Note that as G is the graph with the greatest
score that respects H, any other graph within the subspace defined by H will have worse
score. Therefore, if s is less than the best known score, all this branch represented by H
may be discarded (this is the bound step). Certainly no graph in that subspace will be
worth, because their scores are less than s.

If G has score greater than sbest, then the graph G is checked for cycles, as it may or may
not be acyclic (all we know is that G is a relaxed solution within the subspace H). If it is
acyclic, then G is the best known graph and the best score is updated. If G is cyclic, then we
need to divide the space H into smaller subcases with the aim of removing the cycles of G
(this is the branch step). Two characteristics must be kept by the branch step: (i) H must
be fully represented in the subcases (so we do not miss any graph), and (ii) the subcases
must be disjoint (so we do not process the same graph more than once). A possible way to
achieve these two requirements is as follows: let the cycle v = (Xa1 → Xa2 → . . .→ Xaq+1)
be the one detected in G. We create q subcases such that

• The first subcase does not contain Xa1 → Xa2 (but may contain the other arcs of that
cycle, that is, we do not prohibit the others).

5. In fact, the implementation may be smarter and set H with possible known restrictions of arcs, that is,
those that are known to be demanded or prohibited by structural constraints may be included in the
initial H.

17

de Campos and Ji

• The second case certainly contains Xa1 → Xa2 , but Xa2 → Xa3 is prohibited (so they
are disjoint because of the difference in the presence of the first arc).

• (And so on such that) The y-th case certainly contains Xay′ → Xay′+1
for all y′ < y

and prohibits Xay → Xay+1 . This is done until the last element of the cycle.

This is the same idea as the inclusion–exclusion principle, but applied here to the arcs of
the cycle. It ensures that we never process the same graph twice, and also that we cover
all the graphs, as by the union of the mentioned sets we obtain the original H. Because of
that, the algorithm runs at most

∏
i |C(Xi)| steps, where |C(Xi)| is the size of the cache

for Xi (there are not more ways to combine parent sets than that number). In practice,
we expect the bound step to be effective in dropping parts of the search space in order to
reduce the total time cost.

B&B can be stopped at any time and the current best solution as well as an upper
bound for the global best score are available. This stopping criterion might be based on
the number of steps, time and/or memory consumption, percentage of error (difference
between the upper and lower bounds). This is an important property of this method. For
example, if we are just looking for an improving solution, we may include in the loop an
if to check if the current best solution is already better than some threshold, which would
save computational time. Still, if we run it until the end, we are ensured to have a global
optimum solution.

The algorithm can also be easily parallelized. We can split the content of the priority
queue into many different tasks. No shared memory needs to exist among tasks if each one
has its own version of the cache. The only data structure that needs consideration is the
queue, which from time to time must be balanced between tasks. With a message-passing
idea that avoids using process locks, the gain of parallelization is linear in the number of
tasks. If run until it ends, the proposed method gives a global optimum solution for the
structure learning problem.

Some particular cases of the algorithm are worth mentioning. If we fix an ordering for
the variables such that all the arcs must link a node towards another non-precedent in the
ordering (this is a common idea in many approximate methods), the proposed algorithm
does not perform any branch, as the ordering implies acyclicity, and so the initial solution is
already the best (for that ordering – the number of possible orderings is exponential in n).
The performance would be proportional to the time to create the cache. Another important
case is when one limits the maximum number of parents of a node. This is relevant for hard
problems with many variables, as it would imply in a bound on the cache size.

6. Experiments

We perform experiments to show the benefits of the reduced cache and search space. Later
we show some examples of the use of constraints.6 First, we use data sets available at the
UCI repository (Asuncion and Newman, 2007). Lines with missing data are removed and
continuous variables are discretized over the mean into binary variables. The data sets are:
adult (15 variables and 30162 instances), breast (10 variables and 683 instances), car (7
variables and 1728 instances) letter (17 variables and 20000 instances), lung (57 variables

6. The software is available online in the web address http://www.ecse.rpi.edu/∼cvrl/structlearning.html

18

Efficient Structure Learning of Bayesian Nets

ESS adult breast car letter lung mush nurse wdbc zoo
0.1 6.2 0.0 0.1 3.7 1699.6 7.5 0.9 221.2 0.4

Memory 1 6.2 0.0 0.1 3.7 1150.1 5.9 0.8 204.6 0.4
(in MB) 10 6.3 0.0 0.1 3.8 812.3 5.4 0.7 206.2 0.3

BIC 1.8 0.0 0.0 2.3 0.3 0.5 0.4 5.3 0.1
0.1 89.3 0.0 0.0 429.4 2056 357.9 0.7 2891 1.7

Time 1 91.6 0.0 0.0 440.4 1398 278.7 0.7 2692 1.7
(in sec.) 10 91.6 0.0 0.0 438.1 1098 268.9 0.7 2763 1.7

BIC 67.4 0.0 0.1 859.6 1.3 72.1 1.4 351 0.3
0.1 217.4 210.5 28.8 220.1 230.8 224.0 211.2 227.9 219.8

Number 1 217.4 210.5 28.8 220.1 230.2 223.6 211.2 227.8 219.7

of Steps 10 217.4 210.4 28.8 220.1 229.8 223.5 211.2 227.9 219.6

BIC 214.8 27.3 28.4 219.0 215.4 217.1 210.9 220.7 213.1

Worst-case 217.9 212.3 28.8 220.1 231.1 226.5 211.2 228.4 220.1

Table 1: Memory, time and number of steps (local score evaluations) used to build the
cache. Results for BIC and BDeu score with ESS varying from 0.1 to 10 are
presented.

and 27 instances), mushroom (23 variables and 1868 instances, denoted by mush), nursery
(9 variables and 12960 instances, denoted by nurse), Wisconsin Diagnostic Breast Cancer
(31 variables and 569 instances, denoted by wdbc), zoo (17 variables and 101 instances).
The number of categories per variables varies from 2 to dozens in some cases (we refer to
UCI for further details).

Table 1 presents the used memory in MB (first block), the time in seconds (second block)
and number of steps in local score evaluations (third block) for the cache construction, using
the properties of Section 4. Each column presents the results for a distinct data set. In
different lines we show results for BDeu with ESS equals to 0.1, 1, 10, and for BIC. The
line worst-case presents the number of steps to build the cache without using Theorems
4 (for BIC/AIC) and 9 (for BDeu), which are the theorems that allow the algorithm to
avoid computing every subset of parents. As we see through the log-scale in which they
are presented, the reduction in number of steps has not been exponential, but still saves
a good amount of computations (roughly half of the work). In the case of the BIC score,
the reduction is more significant. In terms of memory, the usage clearly increases with the
number of variables in the network (lung has 57 and wdbc has 31 variables).

The benefits of the application of these results imply in performance gain for many
algorithms in the literature to learn Bayesian network structures, as long as they only need
to work over the (already precomputed) small cache. In Table 2 we present the final cache
characteristics, where we find the most attractive results, for instance, the small cache sizes
when compared to the worst case. The first block contains the maximum number of parents
per node (averaged over the nodes, and the actual maximum between parenthesis). The
worst-case is the total number of nodes in the data set minus one, apart from lung (where
we have set a limit of at most six parents) and wdbc (with at most eight parents). The
second block shows the cache size for each data set and distinct values of ESS. We also
show the results of the BIC score and the worst-case values for comparison. We see that

19

de Campos and Ji

ESS adult breast car letter lung mush nurse wdbc zoo
Max. 0.1 2.1(4) 1.0(1) 0.7(1) 4.5(5) 0.1(2) 4.1(5) 1.2(3) 1.3(2) 1.4(3)
Number 1 2.4(4) 1.0(1) 1.0(2) 5.2(6) 0.4(2) 4.4(7) 1.7(3) 1.7(3) 1.9(4)
of Parents 10 3.3(5) 1.0(1) 1.9(2) 5.9(6) 3.0(4) 4.8(8) 2.1(3) 3.1(4) 3.4(4)

BIC 2.8(5) 1.0(1) 1.3(2) 6.3(7) 2.1(3) 4.1(4) 1.8(3) 2.7(3) 2.8(3)
Worst-case 14.0 9.0 6.0 16.0 6.0∗ 22.0 8.0 8.0∗ 16.0
Final Size 0.1 24.2 21.5 21.1 28.2 20.2 28.5 21.9 23.6 23.3

of the 1 24.8 21.9 21.6 29.0 20.8 28.9 22.4 24.9 24.4

Cache 10 26.3 23.3 23.0 210.5 210.7 29.8 23.5 212.1 28.9

BIC 29.3 24.7 24.5 215.3 211.5 213.0 25.6 212.9 210.9

Worst-case 217.9 212.3 28.8 220.1 231.1∗ 226.5 211.2 228.4∗ 220.1

Implied 0.1 254.1 213.3 26.3 2129.0 28.2 2175.7 211.6 290.3 239.3

Search 1 262.1 217.1 28.3 2144.8 233.1 2186.0 215.4 2132.7 260.3

Space 10 291.6 233.2 220.6 2176.1 2612.0 2221.8 227.3 2375.1 2150.7

(approx.) BIC 271 223 210 2188 2330 2180 217 2216 2111

Worst-case 2210 290 242 2272 21441∗ 2506 272 2727∗ 2272

Table 2: Final cache characteristics: maximum number of parents (average by node; be-
tween parenthesis is presented the actual maximum number), actual cache size,
and (approximate) search space implied by the cache. Worst-cases are presented
for comparison (those marked with a star are computed using the constraint on
the number of parents that was applied to lung and wdbc). Results of BIC and
BDeu with ESS from 0.1 to 10 are presented.

the actual cache size is smaller (in orders of magnitude) than the worst case situation. It is
also possible to analyze the search space reduction implied by these results by looking the
implications to the search space of structure learning. We must point out that by search
space we mean all the possible combinations of parent sets for all the nodes. Eventually
some of these combinations are not DAGs, but are still being counted. However, there are
two considerations: (i) the precise counting problem is harder to solve (in order to give the
exact search space size), and (ii) many structure learning algorithms run over more than
only DAGs, because they need to look at the graphs (and thus combinations of parents) to
decide if they are acyclic or not. In these cases, the actual search space is not simply the set
of possible DAGs, even though the final solution will be a DAG. Still, some algorithms might
do a better job by using other ideas of searching for the best structure instead of looking
to possible DAGs, which might imply in a smaller worst case complexity (for instance, the
dynamic programming method runs over subsets of variables, which are in number 2n).

An expected but important point to emphasize is the correlation of the prior with the
time and memory to build the cache. It would be expected that, as larger ESS (and thus
the prior towards the uniform) as slower and more memory consuming is the method. That
is because smoothing the different parent sets by the stronger prior makes harder to see
large differences in scores, and consequently the properties that would reduce the cache size
are less effective. However, this is not quite evident from the results, where the relation
between ESS and time/memory is not clear. Yet it must be noted that the two largest
data sets in terms of number of variables (lung and wdbc) were impossible to be processed
without setting up other limits such as maximum number of parents or maximum number

20

Efficient Structure Learning of Bayesian Nets

B&B DP OS HC
network Score gap time score time score time score time

B
IC

adult -286902.8 5.5% 150.3 0.0% 0.77 0.1% 0.17 0.5% 0.30
breast -8254.8 0.0% 0.01 0.0% 0.01 0.0% 0.01 0.0% 0.00
car -13100.5 0.0% 0.01 0.0% 0.01 0.0% 0.01 0.2% 0.00
letter -173716.2 8.1% 574.1 -0.6% 22.8 1.0% 0.75 3.7% 0.30
lung -1146.9 2.5% 907.1 Fail Fail 1.0% 0.13 0.7% 0.05
mushroom -12834.9 15.3% 239.8 Fail Fail 1.0% 0.12 4.8% 0.05
nursery -126283.2 0.0% 0.04 0.0% 0.04 0.0% 0.04 0.03% 0.06
wdbc -3053.1 13.6% 333.5 Fail Fail 0.8% 0.13 0.9% 0.02
zoo -773.4 0.0% 5.2 0.0% 3.5 1.0% 0.03 0.6% 0.00

E
SS

=
0.

1

adult -288591.2 0.0% 92.1 0.0% 0.75 0.1% 0.21 0.3% 0.32
breast -8635.1 0.0% 0.02 0.0% 0.01 0.0% 0.01 0.0% 0.00
car -13295.0 0.0% 0.01 0.0% 0.00 0.0% 0.00 0.1% 0.01
letter -181941.5 5.7% 375.75 -0.1% 7.6 0.1% 0.27 2.1% 0.27
lung -1731.9 0.0% 0.22 Fail Fail 0.0% 0.11 0.0% 0.05
mushroom -12564.2 14.7% 382.4 Fail Fail 0.2% 0.15 5.3% 0.05
nursery -126660.4 0.0% 0.06 0.0% 0.04 0.0% 0.04 0.1% 0.06
wdbc -3558.6 4.4% 494.1 Fail Fail 1.4% 0.05 1.3% 0.01
zoo -1024.5 0.0% 0.09 0.0% 3.1 0.8% 0.01 1.0% 0.00

E
SS

=
1

adult -286695.2 4.5% 203.0 0.0% 0.76 0.1% 0.22 0.3% 0.34
breast -8254.3 0.0% 0.02 0.0% 0.01 0.0% 0.01 0.0% 0.00
car -13145.3 0.0% 0.01 0.0% 0.00 0.0% 0.00 0.05% 0.00
letter -178635.2 6.7% 520.2 -0.7% 9.9 0.0% 0.34 2.1% 0.27
lung -1249.7 0.0% 0.61 Fail Fail 0.1% 0.12 0.1% 0.05
mushroom -12097.0 16.7% 381.5 Fail Fail 0.2% 0.19 4.2% 0.05
nursery -126212.7 0.0% 0.06 0.0% 0.04 0.0% 0.04 0.1% 0.05
wdbc -3175.9 11.2% 471.1 Fail Fail 0.7% 0.06 1.0% 0.02
zoo -794.1 0.0% 1.4 0.0% 3.4 1.1% 0.02 8.7% 0.00

E
SS

=
10

adult -285014.5 11.8% 213.8 -0.1% 0.88 0.04% 0.24 0.5% 0.33
breast -8130.2 0.0% 0.04 0.0% 0.01 0.0% 0.00 0.3% 0.00
car -13038.6 0.0% 0.03 0.0% 0.00 0.0% 0.00 0.03% 0.00
letter -174111.8 8.7% 1250 -0.4% 22.3 0.1% 0.84 1.8% 0.32
lung -957.2 11.7% 2118 Fail Fail 3.3% 1.38 2.3% 0.1
mushroom -11924.0 22.7% 587.8 Fail Fail 0.1% 0.43 2.4% 0.07
nursery -125846.5 0.0% 0.14 0.0% 0.04 0.0% 0.04 0.1% 0.06
wdbc -2986.2 22.2% 1938 Fail Fail 0.6% 2.8 1.4% 0.23
zoo -697.2 13.2% 367.7 -0.3% 5.0 1.4% 0.1 0.9% 0.00

Table 3: Comparison of scores among B&B, DP, OS and HC. Fail means that it could not
solve the problem within 10 million steps or because of memory limit (4GB). DP,
OS and HC scores are in percentage w.r.t. the score of B&B (positive means
worse than B&B and negative means better). Each entry with a 0.0% means that
the result, in that instance, was exactly equal to the B&B result (in terms of the
score). Times are given in seconds.

of free parameters in the node (we have not used any limit for the other data sets). We used
an upper limit of six parents per node for lung and eight for wdbc. This situation deserves

21

de Campos and Ji

further study so as to clarify whether it is possible to run these computations on large data
sets and large ESS. It might be necessary to find tighter bounds if at all possible, that
is, stronger results than Theorem 9 to discard unnecessary score evaluations earlier in the
computations. Nevertheless, the main goal of this present work is not to study the impact
of ESS on learning, but to present properties that improve the performance of learning
methods.

In Table 3, we show results of four distinct algorithms: the B&B described in Section 5,
the dynamic programming (DP) idea of Silander and Myllymaki (2006), the hill-climbing
(HC) method starting with an empty structure, and an algorithm that picks variable or-
derings randomly and then find the best structure such that all arcs link a node towards
another that is not precedent in the ordering. This algorithm (named OS) is similar to
K2 algorithm with random orderings, but it is always better because a global optimum is
found for each ordering. Note that OS performs better than HC in almost all test cases.
We have chosen to analyze the BIC scores (given that the properties have provided greater
reduction in the search space in this case) and BDeu with ESS equals to 0.1, 1 and 10. It
is clear from the results of ESS equals to 10 that the B&B procedure struggles with very
large search spaces, and the same might happen for even larger ESS.

The scores obtained by each algorithm (in percentage against the value obtained by
B&B) and the corresponding time are shown in Table 3 (excluding the cache construction).
A limit of ten million steps is given to each method (steps here are considered as the number
of queries to the cache). It is also presented the reduced space where B&B performs its
search, as well as the maximum gap of the solution. This gap is obtained by the relaxed
version of the problem. We can guarantee that the global optimal solution is within this
gap (even though the solution found by the B&B may already be the best, as it happens,
for example, in the first line of the table). With the reduced cache presented here, finding
the best structure for a given ordering is very fast, so it is possible to run OS over millions
of orderings in a short period of time. Some additional comments are worth. DP could
not solve wdbc or lung even without the limit in number of steps, because it has exhausted
16GB of memory. Hence, we cannot expect to obtain answers in larger cases. However, it
is clear that (in a worst case sense) the number of steps of DP is smaller than that of B&B,
and this behavior can be seen in data sets with small number of variables. Nevertheless,
B&B eventually bounds some regions without processing them, provides an upper bound
at each iteration, and does not suffer from memory exhaustion as DP. It is true that B&B
also uses memory increasingly if there are not good bounds, but this case can be tackled
by (automatically) switching between B&B and a depth-first search.7 This makes the
method applicable even to very large settings. When n is large (more than 35), DP will
not finish in reasonable time, and hence will not provide any solution, while B&B still
gives an approximation and a bound to the global optimum. About OS, if we sample even
more orderings, then its results improve and the global optimum is found also for adult and
mushroom sets. Still, OS provides no guarantee or estimation about how far is the global
optimum (here we know that the optimum has been achieved because of the solution of
the exact methods). It is worth noting that both DP and OS are also benefited by the

7. Our implementation is able to switch between breath-first and depth-first searches, but this behavior
was not used in the experiments of this paper.

22

Efficient Structure Learning of Bayesian Nets

smaller cache. Although we are discussing only four algorithms, performance gain from the
application of the properties in other algorithms is expected as well.

network time(s) cache size space
adult 0.26 114 239

car 0.01 14 26.2

letter 0.32 233 261

lung 0.26 136 251

mushroom 0.71 398 288

nursery 0.06 26 212

wdbc 361.64 361 299

zoo 8.4 1697 2111

Table 4: B&B procedure learning TANs using BIC. Time (in seconds) to find the global
optimum, cache size (number of stored scores) and (reduced) space for the B&B
search.

The last part of this section is dedicated to some test cases with constraints. Table
4 shows the results when we employ constraints to force the final network to be a Tree-
augmented Naive Bayes. Here the class variable is isolated in the data set and constraints
are included as described in Section 3. Note that the cache size, the search space and con-
sequently the time to solve the problems have substantially decreased. Finally, Table 5 has
results for random data sets with predefined number of nodes and instances using the BIC
score. A randomly created Bayesian network with at most 3n arcs (where n is the number
of nodes) is used to sample the data. Because of that, we are able to generate random struc-
tural constraints that are certainly valid for this true Bayesian network (approximately n
constraints for each case). The table contains the total time to run the problem and the
size of the cache, together with the results when using constraints. Note that the code was
run in parallel with a number of tasks equals to n, otherwise an increase by a factor of
n must be applied to the results in the table. Each line contains the mean and standard
deviation of ten executions (using random generated networks) for time and cache size with
and without constraints (using the same data sets in order to compare them). We can see
that the gain is recurrent in all cases. The B&B method was able to find a global optimal
solution in all but the cases with one hundred nodes, where it has achieved an approximate
solution with error always less than 0.1% (this amounts to 40% of the test cases with 100
nodes). We point out that the other exact method we have analyzed based on dynamic
programming cannot deal with such large networks because of both memory and time costs.
However, we are not considering the improvement in accuracy when using constraints, but
just the computational gain. It is not trivial to measure the quality of a learned structure,
because the target of the methods is the underlying probability distribution, and distinct
structures may lead to good results in fitting such distribution. For instance, comparing
number of matching arcs has only meaning if one is interested in the structure by itself,
and not in the fitness of the underlying distribution. This topic deserves attention, but it
would bring us far from the focus of this study.

23

de Campos and Ji

unconstrained constrained
nodes(n)/ time(sec) cache size time(sec) cache size
instances mean std.dev. mean std.dev. mean std.dev. mean std.dev.
30/100 0.07 0.02 49.6 9.1 0.04 0.01 44.3 8.98
30/500 3.70 1.18 75.6 16.6 2.33 0.73 61.4 17.7
50/100 0.31 0.08 77.9 9.6 0.20 0.04 66.1 6.71
50/500 37.1 10.8 102.5 23.0 23.2 6.86 83.0 17.7
70/100 1.91 0.82 127.5 18.1 0.97 0.32 108.3 13.6
70/500 293.3 99.5 137.3 22.2 176.3 62.6 111.8 14.5
100/100 85.0 29.3 253.4 27.7 4.44 1.06 199.5 21.1
100/500 2205.6 534.4 204.6 32.1 1414.8 419.2 168.0 21.3

Table 5: Results on ten data sets per line generated from random networks. Both mean and
standard deviation of time to solve (with an upper limit of 20 million steps) and
size of the cache (in number of scores) are presented for the normal unconstrained
case and for the constrained cases (over the same data sets).

7. Conclusions

This paper describes novel properties of decomposable score functions to learn Bayesian net-
work structure from data. Such properties allow the construction of a cache with all possible
local scores of nodes and their parents without large memory consumption, which can later
be used by searching algorithms. For instance, memory consumption was a bottleneck for
some algorithms in the literature, see for example Parviainen and Koivisto (2009). This
implies in a considerable reduction of the search space of graphs without losing the global
optimal structure, that is, it is ensured that the overall best graph remains in the reduced
space. In fact the reduced memory and search space potentially benefits many structure
learning methods in the literature, and we have conducted experiments with some of them.

An algorithm based on a branch-and-bound technique is described, which integrates
structural constraints with data. The procedure guarantees global optimality with respect
the score function. It is an any-time procedure in the sense that, if stopped early, it provides
the best current solution found so far and a maximum error of such solution. This is specially
important if one wants to integrate it with an expectation–maximization (EM) method to
treat incomplete data sets, and such characteristic is usually not present in other exact
structure learning methods. Inside the EM method, the global structure learning procedure
ensures that the maximization step is never trapped by a local solution, and the anytime
property allows the use of a generalized EM idea to reduce considerably the computational
cost.

Because of the properties and the characteristics of the B&B method, it is more efficient
than dynamic programming state-of-the-art exact methods for large domains. We show
through experiments with randomly generated data and public data sets that problems with
up to 70 nodes can be exactly processed in reasonable time, and problems with 100 nodes are
handled within a small worst case error. Dynamic programming methods are able to treat
less than 35 variables. Described ideas may also help to improve other approximate methods
and may have interesting practical applications. We show through experiments with public

24

Efficient Structure Learning of Bayesian Nets

data sets that requirements of memory are small, as well as the resulting reduced search
space. Of course we do not expect to exactly solve problems for considerably large networks,
still the paper makes a relevant step towards solving larger instances. We can summarize the
comparison with the dynamic programming idea as follows: if the problem has few variables,
dynamic programming is probably the fastest method (the branch-and-bound method will
also be reasonably fast); if the problem has medium size, the branch-and-bound method
might solve it exactly (dynamic programming will mostly fail to answer); finally, if the
problem is large, the branch-and-bound method will eventually give an approximation (and
its worst-case error), while the standard dynamic programming idea will fail.

There is certainly much further to be done. One important question is whether the
bounds of the theorems in Section 4 (more specifically Theorem 9) can be improved or
not. We are actively working on this question. Furthermore, the experimental analysis
can be extended to further clarify the understanding of the problem, for instance how the
ESS affects the results. It is clear that, for considerably large domains, none of the exact
methods are going to suffice by themselves. Besides developing ideas and algorithms for
dealing with large domains, the comparison of structures and what define them to be good is
an important topic. For example, accuracy of the generated networks can be evaluated with
real data. On the other hand, it does not ensure that we are finding the true links of the
underlying structure, but a somehow similar graph that produces a close joint distribution.
For that, one could use generated data and compare the structures against the one data
were generated from it. A study on how the properties may help fast approximate methods
is also a desired goal.

Acknowledgments

This work is supported in part by the grant W911NF-06-1-0331 from the U.S. Army Re-
search Office, and by the Computational Life Sciences (CLS) program phase II, canton
Ticino, Switzerland.

References

H. Akaike. A new look at the statistical model identification. Automatic Control, IEEE
Transactions on, 19(6):716–723, 1974.

D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton Univ. Press, 2006.

A. Asuncion and D. J. Newman. UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

R. Bouckaert. Properties of bayesian belief network learning algorithms. In 10th Conference
on Uncertainty in Artificial Intelligence, pages 102–109, San Francisco, CA, 1994. Morgan
Kaufmann.

W. Buntine. Theory refinement on Bayesian networks. In 7th Conference on Uncertainty
in Artificial Intelligence, pages 52–60, San Francisco, CA, 1991. Morgan Kaufmann.

25

de Campos and Ji

D. M. Chickering, D. Heckerman, and C. Meek. Large-Sample Learning of Bayesian Net-
works is NP-Hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2002.

G. F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9:309–347, 1992.

C. P. de Campos, Z. Zeng, and Q. Ji. Structure learning of Bayesian networks using con-
straints. In 26th International Conference on Machine Learning, pages 113–120, Montreal,
June 2009. Omnipress.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: the combi-
nation of knowledge and statistical data. Machine Learning, 20:197–243, 1995.

T. Jaakkola, D. Sontag, A. Globerson, and M. Meila. Learning Bayesian Network Structure
using LP Relaxations. In 13th International Conference on Artificial Intelligence and
Statistics, pages 358–365, 2010.

M. Koivisto. Advances in exact bayesian structure discovery in bayesian networks. In 22nd
Conference on Uncertainty in Artificial Intelligence, pages 241–248, AUAI Press, 2006.

M. Koivisto and K. Sood. Exact Bayesian Structure Discovery in Bayesian Networks.
Journal of Machine Learning Research, 5:549–573, 2004.

K. Kojima, E. Perrier, S. Imoto, and S. Miyano. Optimal search on clustered structural con-
straint for learning Bayesian network structure. Journal of Machine Learning Research,
11:285–310, 2010.

S. Ott and S. Miyano. Finding optimal gene networks using biological constraints. Genome
Informatics, 14:124–133, 2003.

P. Parviainen and M. Koivisto. Exact structure discovery in bayesian networks with less
space. In 25th Conference on Uncertainty in Artificial Intelligence, 2009.

F. Pernkopf and J. Bilmes. Discriminative versus generative parameter and structure learn-
ing of bayesian network classifiers. In 22nd international conference on Machine learning,
pages 657–664, New York, NY, 2005. ACM.

E. Perrier, S. Imoto, and S. Miyano. Finding optimal bayesian network given a super-
structure. Journal of Machine Learning Research, 9:2251–2286, 2008.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

T. Silander and P. Myllymaki. A simple approach for finding the globally optimal bayesian
network structure. In 22nd Conference on Uncertainty in Artificial Intelligence, pages
445–452, Arlington, Virginia, 2006. AUAI Press.

26

Efficient Structure Learning of Bayesian Nets

A. P. Singh and A. W. Moore. Finding optimal bayesian networks by dynamic programming.
Technical report, Carnegie Mellon University, 2005. CMU-CALD-05-106.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Springer-Verlag,
New York, 1993.

J. Suzuki. Learning bayesian belief networks based on the minimum description length prin-
ciple: An efficient algorithm using the B&B technique. In 13th International Conference
on Machine Learning, pages 462–470, 1996.

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for
learning bayesian networks. In 21st Conference on Uncertainty in Artificial Intelligence,
pages 584–590, 2005, AUAI Press.

I. Tsamardinos, L. E. Brown, and C. Aliferis. The max-min hill-climbing bayesian network
structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

27

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS 1

A Factorization Approach to Evaluating
Simultaneous Influence Diagrams

Weihong Zhang and Qiang Ji, Senior Member, IEEE

Abstract—Evaluating an influence diagram (ID) is a challeng-
ing problem because its complexity increases exponentially in
the number of decision nodes in the diagram. In this paper, we
examine the problem for a special class of IDs where multiple
decisions must be made simultaneously. We describe a brief theory
that factorizes out the computations common to all policies in
evaluating them. Our evaluation approach conducts these com-
putations once and uses them across all policies. We identify the
ID structures for which the approach can achieve savings. We
show that the approach can be used to efficiently recompute the
optimal policy of an ID when its structure or parameters change.
Finally, we demonstrate the superior performance of the approach
by simulation studies and a military planning example.

Index Terms—Algorithm, decision making under uncertainty,
graphical model, influence diagram (ID), military analysis.

I. INTRODUCTION

AN INFLUENCE diagram (ID) is a plausible graphical
model for decision making under uncertainty [1]. An ID

comprises of decision nodes, random nodes, value nodes, and
the probabilistic relations among these nodes. An ID is a more
compact representation of a decision tree, which is a simple tool
for decision analysis [2].

Given an ID, a policy prescribes an action choice for each
decision node. Evaluating a policy is to compute the expected
value of the ID under the policy. Evaluating an ID is to find
the optimal policy that maximizes the expected value of the
ID. A generic approach to evaluating an ID has to enumerate
all policies, compare the expected utilities under them, and
choose the optimal one. However, the number of policies grows
exponentially with the number of decision nodes. This renders
the approaches for general ID evaluation very inefficient and
infeasible for large IDs. Consequently, it is advisable to study
efficient algorithms for special IDs.

Most of the previous approaches assume that there exists a
linear ordering among the decision nodes. This ordering implies
that the choice of a decision node is known to the decision
maker when he/she chooses the actions for the successive
decision nodes (e.g., see [13]). For a decision node, this linear

Manuscript received February 19, 2004; revised July 20, 2004 and
December 22, 2004. The work was supported in part by the Air Force Office
of Scientific Research (AFOSR) under Grant F49620-03-1-0160. Part of the
work for this project was also supported by the Air Force Research Laboratory
(AFRL)/Rome summer visiting faculty program. This paper was recommended
by Associate Editor Yang.

The authors are with the Department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 USA.

Digital Object Identifier 10.1109/TSMCA.2005.855753

ordering usually can be exploited to decompose the ID into one
fraction prior to the node and the other fraction posterior to the
node. The choice for the decision node can be made using the
fraction posterior to the node. The procedure repeats for each
decision node.

In this paper, we examine the ID evaluation problem for a
special class of IDs in which decision nodes have no parents.
Essentially, an ID with this property assumes no precedence
relationship among decision nodes. In other words, one has to
determine the choices for all decision nodes simultaneously.
For this reason, such an ID is said to be simultaneous. The si-
multaneity assumption prevails in real-world problem domains.
For instance, a military planner must select among a number
of available actions to achieve his/her overall goal success; a
business owner must consider multiple elements in order to
maximize his/her monetary profit.

In evaluating a simultaneous ID, we exploit the assumption
and divide the ID into two fractions, calling them the upstream
and downstream. Roughly, the upstream consists of decision
nodes and their children nodes through which the decisions
propagate their impacts on the ID. Informally, these child
nodes are called interface nodes. The downstream consists of
the interface nodes and their succeeding nodes. We present
a representation theorem, showing that the expected value of
a value node under a policy can be represented as the sum
of some intermediate quantities weighted by the probabilities
determined by the policy. These intermediate quantities involve
only the downstream. The factorization approach we proposed
computes them once but uses them across all policies. The
computational gain brought by the approach depends on the
size of the downstream. Usually, larger downstream size im-
plies more savings.

We organize the paper as follows. In the next section, we
discuss related work to this research. We then introduce IDs
and the evaluation problem. In Section IV, we describe the
representation theorem and develop the factorization approach.
In Section V, we discuss two extensions of the approach: how
it can be adapted to network structure/parameter changes and
how it can be used in planning over time. We report empirical
results on simulation studies and a military planning example
in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Since IDs were introduced by Howard and Matheson [1],
a variety of approaches have been proposed to find the opti-
mal policy of a given ID. To mitigate the exponential growth

1083-4427/$20.00 © 2005 IEEE

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

problem of the policy number in the number of decision nodes,
researchers have studied several special ID classes and pro-
posed efficient approaches exploiting their specific problem
characteristics. We give a brief survey of these IDs and their
solutions.

A. Regular and No-Forgetting IDs

To some extent, most IDs that have been studied assume
a precedence ordering of the decision nodes. A regular ID
assumes that there is a directed path containing all decision
nodes; a no-forgetting ID assumes that each decision node and
its parents are also parents of the successive decision nodes; and
a stepwise decomposable ID assumes that the parents of each
decision node divide the ID into two separate fractions. These
assumptions are different from ours, which requires the actions
to be chosen simultaneously. There exist direct and indirect
approaches evaluating a regular no-forgetting ID. A direct
approach works on the ID and evaluates it directly. Shachter [3]
proposed an algorithm that evaluates an ID by applying a series
of value-preserving reductions. A value-preserving reduction is
an operation that can transform an ID into another one with
the same expected value. Specifically, Shachter identified the
following four reductions arc reversal, barren-node removal,
random-node removal, and decision-node removal. An indirect
approach first transforms an ID into an intermediate struc-
ture whose optimal policy (or value) remains the same as in
the original ID. It then evaluates the intermediate structure
and obtains the optimal policy. For instance, Howard and
Matheson discussed a way to transform an ID into a decision-
tree network and to compute an optimal policy from the deci-
sion tree. In transforming an ID into a decision-tree network, a
basic operation is arc reversal [1], [3]. Since a no-forgetting ID
must be stepwise decomposable, stepwise decomposability is
more general than no-forgetting.

In most ID evaluation approaches, the ordering of decision
nodes is an important information source in decision making
and therefore, is exploited to evaluate the optimal decision
for decision nodes [4]–[6]. A stepwise decomposable ID can
be evaluated by a divide-and-conquer approach. The approach
deals with one decision node at a time [7]. For each decision
node, its parental set separates an ID into two parts—a body and
a tail. The tail is a simple ID with only one decision node. The
body’s value node is a new value node whose value function
is obtained by evaluating the tail. In evaluating a stepwise
decomposable ID, the approach begins with a leaf decision
node and repeats the decomposition/evaluation procedure for
the preceding decision nodes. In evaluating the tail with only
one single decision node, the problem is reduced to that of
computing posterior probabilities in a Bayesian network.
Hence, the approach uses probabilistic inference techniques to
evaluate an ID. Cooper [8] initiated the research in this direc-
tion. He gave a recursive formula for computing the maximal
expected utilities and optimal policies of IDs. Shachter and
Peot [9] showed that the problem of ID evaluation can be
reduced to a series of probabilistic inferences. Zhang [13]
described an algorithm that induces much easier probabilistic
inferences than those in [8] and [9].

B. Partial IDs

There also exists research work that relaxed the regularity or
no-forgetting assumption. The specific ID types include partial
IDs, unconstrained IDs and limited memory ID (LIMID), which
is a compact representation of IDs. A partial ID is an ID that
allows a non-total ordering of decision nodes [10]. Because
the solution to a partial ID depends on the temporal ordering
of the decisions, it is of interest to find the conditions iden-
tifying a class of partial IDs whose solution is independent
of the legal evaluation ordering. Based on the concept of
d-connectivity, Nielsen and Jensen presented an algorithm de-
termining whether or not a partial ID represents well-defined
scenarios, and they also addressed the problem of whether all
admissible orderings yield the same optimal strategy.

An unconstrained ID is an ID where the order of decision
nodes and the observable random nodes is not determined
[11]. For an unconstrained ID, it is of interest to determine
the order of decision nodes and information on which set of
nodes is necessary for decision making in a decision node.
For this purpose, a set of rules have been developed in order
to determine the choice of the next decision node, given the
current information. Such a decision choice may be dependent
on the specific information from the past.

Another recently proposed ID is called LIMID, which
violates the no-forgetting assumption [12]. In contrast to the
regular and no-forgetting assumption, the assumption behind a
LIMID is that only requisite information for the computation
of optimal policies is depicted in the graphical representation.
Two properties pertaining to LIMIDs are: 1) any ID can be
converted to a LIMID; and 2) the converted LIMID is more
compact than the original ID in the sense that only requisite
information is depicted in the LIMID for computing an optimal
policy. By these properties, one may convert an ID to its
LIMID version and solve the LIMID instead of the original
ID. This optimal policy is also optimal in the original ID. The
algorithm solving a LIMID exploits the fact that the entire de-
cision problem can be partitioned into a set of smaller decision
problems, each of which has one decision node only. This is
analogous to the divide-and-conquer approach [13].

C. Simultaneous IDs

From its root definition, an ID does not impose a prece-
dence ordering of the decision nodes. As an example, there
are military applications that need to choose multiple actions
simultaneously. A simultaneous ID is suitable for this situation.
We exploit this assumption and divide a simultaneous ID into
the upstream and the downstream fractions. The decomposition
takes the random and value nodes as interface nodes between
the upstream and the downstream. The computations involv-
ing the downstream fraction can be precomputed and reused
across all policies in evaluating them. This computation-sharing
schema can greatly accelerate the procedure of finding the
optimal policy for a given ID, as indicated in our theoretical
and empirical analysis.

Technically, the factorization approach has some conceptual
similarities to the probabilistic inference-based algorithm [13].

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 3

Both algorithms divide the ID into two fractions. However,
there are apparent differences. In [13], the separation of an ID
relies on a single decision node. With respect to a decision node,
roughly, the body contains the predecessors of the decision
nodes, while the tail contains the successors. The choice of the
decision node is evaluated by the tail part. This is quite different
from our factorization approach, where the separation relies on
the set of interface nodes. The set of the interface nodes sepa-
rates an ID into two fractions: roughly, the upstream contains
the predecessors of all interface nodes, while the downstream
contains the successors. This difference in solution techniques
stems from the difference in assumption—the probabilistic
inference algorithm works with a regular ID that specifies a
linear order among decision nodes, whereas the factorization
algorithm works with a simultaneous ID that assumes no order-
ing among decision nodes.

III. INFLUENCE DIAGRAM

Mathematically, an ID I is a directed acyclic graph consist-
ing of three types of nodes and the links among these nodes [1].

1) Its node set is partitioned into a set of random nodes Y ,
a set of decision nodes X , and a set of value nodes U . A
value node cannot have children. The links characterize
the conditional dependence among the nodes in the ID.
Specifically, links to a random node indicate the proba-
bilistic dependence of the node on its parents; links to
a decision node indicate the information available to the
planner at the time the planner must choose a decision
for it; and links to a value node indicate the functional
dependencies.

We will adopt the following notational conventions.
We will use bold-typed letters such as Z to denote a set of
variables and capital letters such as Z to denote a variable
in the set. Each random or decision node Z is associated
with a set ΩZ , denoting the set of its possible states. The
set ΩZ is called the domain of node Z. An element in ΩZ

is denoted by a low-case letter z. For any node Z, we use
π(Z) to denote its parent set. For any subset Z′ ⊂ Y ∪ X ,
we use ΩZ′ to denote the Cartesian product ΠZ∈Z′ΩZ .
For convenience, we shall interchangeably use a node and
a variable. Without loss of generality, we assume that all
the nodes are binary throughout this paper.

2) For each decision or random node Z, given an assign-
ment of π(Z), the distribution P (Z|π(Z)) specifies the
probability of Z being in each state of the node Z. Such a
distribution is called a conditional probability table (CPT)
in the case that the domain of the variable Z is a finite set.

3) For each value node U , gU is a value function gU :
Ωπ(U) → R, where R denotes the set of the real numbers.

To avoid unnecessary notations, we define the (optimal)
policy concept only for a simultaneous ID.1 A policy, denoted
by δ, specifies one action choice for each decision node in X .
Hence, a policy δ can be denoted by (δ1, . . . , δn), where δi

belongs to the domain of Xi for each i.

1For general IDs, the definition of an (optimal) policy can be found in,
e.g., [6].

Given a policy δ, a probability Pδ can be defined over the
random nodes and decision nodes as follows:

Pδ(Y,X) = ΠY ∈YP (Y |π(Y)) Πn
i=1Pδ(Xi) (1)

where P (Y |π(Y)) is specified in the definition of I, while
Pδ(Xi) is equal to 1.0 if Xi = δi, and 0.0 otherwise.

The expectation of the value node U under policy δ, denoted
by Eδ[U], is defined as

Eδ[U] =
∑
π(U)

Pδ (π(U)) gU (π(U)) . (2)

The expected value Eδ of I under the policy δ is the sum
Eδ[U] over all value nodes U in U , i.e.,

Eδ =
∑
U∈U

Eδ[U]. (3)

For simplicity, Eδ is also called the expected value of policy δ.
Evaluating a policy δ means to compute its expected value. The
maximum of Eδ over all policies is the optimal (expected) value
of I. An optimal policy is the policy that achieves the optimal
expected value. To evaluate an ID is to find an optimal policy
and to compute its optimal expected value.

IV. THE FACTORIZATION APPROACH

In this section, we describe the representation theorem and
the factorization approach.

A. The Idea

From its definition, an ID is a network structure consisting
of decision nodes, random nodes, and value nodes. Among
them, in determining the expected value of the ID, a decision
node plays a different role from a random or a value node. The
choices of a decision node can affect the expected value of the
ID through changing the CPTs of its child random nodes, or
through changing the value functions of its child value nodes
(note that a decision node cannot have another decision node
as child in a simultaneous ID). In this sense, a node, if it is a
child of a decision node, serves as an interface through which
the choices of decision nodes may affect the value of the ID.
Such a node is called an interface node. All interface nodes
constitute an interface set. Collectively, an interface set serves
as an interface of an ID through which policies can affect the
expected value of the ID. Consequently, an ID can be divided
into two fractions: the upstream fraction, which includes the
interface nodes and the nodes “preceding” them, and the down-
stream fraction, which includes the interface nodes and the
nodes “succeeding” the interface nodes.

Example: We use the ID in Fig. 1 to informally illustrate
these concepts. The ID has two decision nodes {X1,X2}, five
random nodes {A,B,C,D,H}, and one value node U . The
interface set Yin is {A,C} since they have parental decision
nodes. The upstream is {X1,X2, A,B,C}, which consists of
two interface nodes A and C, node X1 preceding node A,
and nodes B and X2 preceding node C. The downstream is

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 1. ID to illustrate the representation theorem.

{A,C,H,D,U}, which consists of interface nodes A and C,
the nodes H , D, U succeeding to the interface nodes. �

Interestingly, corresponding to the structural separation that
an ID can be divided into two fractions, the expected value of
a value node under a policy breaks into two fractions, each of
which involving only the upstream or the downstream of the ID.

B. The Theorem

We formalize the above idea in this section. For the sake
of simplicity, throughout the paper, unless explicitly stated, we
assume that: 1) the ID has only one value node; and 2) the value
node has no decision node as its parent. We also note that our
results in this paper generalize to the IDs with multiple value
nodes and with value nodes having parental decision nodes. We
relax these assumptions at the end of this section.

We begin by defining several concepts. A random node Y
is an interface node if its parent set has at least one decision
variable, i.e., π(Y) ∩ χ �= ∅. The interface set of an ID is the
set of all interface nodes. Due to the above assumptions, the
interface set contains only random nodes; for this reason, we
denote the set by Yin. The upstream of the ID includes the
interface set and all ancestors of the nodes in the interface.
By this definition, in addition to the interface random nodes
and decision nodes, the upstream may contain the random-node
ancestors of the interface nodes. These ancestral nodes must be
included because they, together with decision nodes, determine
the CPTs of the interface nodes. These ancestral random nodes
form a set denoted by Y0.

Given an ID, we can efficiently identify its upstream using
a queuing mechanism. We initialize a queue to be the interface
set Yin (it can be readily built by checking whether there is
a parental decision node for every node in the ID) and the
upstream Iup to be empty. At each step, a node is removed
from the queue and added to Iup if it is not in Iup. The parents
of the node, if not present in Iup thus far, are added to the
queue. The procedure terminates when the queue is empty.
When it terminates, the set Iup becomes the upstream set. The
procedure must terminate after a finite number of steps because
an ID is a directed acyclic graph.

The upstream can be partitioned into three sets: the set X
of decision nodes, interface set Yin, and the set Y0 of random-
node ancestors of interface nodes. Given a policy δ, we define

a function fδ from ΩYin to the real line R. For notations, we
let m be the number of nodes in the set Yin, Y 1:m

in be a short
notation of {Y 1

in, . . . , Y m
in }, and y1:m

in be an assignment to all
interface variables, i.e., an element of ΩY 1:m

in

fδ

(
y1:m
in

)
=
∑

Y ∈Y0

ΠY ∈Y0∪YinPδ (Y |π(Y)) Πn
i=1Pδ(Xi) (4)

where ΠY ∈Y0∪YinPδ(Y |π(Y))Πn
i=1Pδ(Xi) is the joint proba-

bility distribution of the variables in X , Y0, and Yin, given
policy δ. Hence, fδ(Y 1:m

in) is the conditional probability that
the interface Y 1:m

in = y1:m
in occurs upon the policy δ. For con-

venience, we call them interface probabilities.
In contrast to the upstream, the downstream of an ID is the

set consisting of all the interface nodes and their descendants.
The downstream contains the value node, the interface nodes,
and the random nodes that do not belong to the upstream.
We use Y1 to denote the set of noninterface random nodes in
the downstream. Note that the random nodes in the interface
set belong to both the upstream and the downstream. For an
assignment y1:m

in of the set Y 1:m
in and the value node U , we can

define a function as follows;

fin,U

(
y1:m
in

)
=
∑

Y ∈Y1

ΠY ∈Y1Pδ (Y |π(Y)) gU (π(U)) . (5)

To see that fin,U is a function of Y 1:m
in , we note that the inter-

face variables may appear in π(Y) for Y ∈ Y1. Given an
assignment y1:m

in of Y 1:m
in , fin,U (y1:m

in) is the expected utility
conditioned on the assigned interface y1:m

in . These quantities
are called interface utilities for convenience. Since π(Y) for
Y in Y1 must belong to the downstream, Pδ(Y |π(Y)) is inde-
pendent of policy δ. Consequently, these utilities are inde-
pendent of policy δ.

Theorem 1: Given a policy δ and a value node U , the ex-
pected value of the node U under policy δ

Eδ[U] =
∑

y1:m
in ∈Ω

Y 1:m
in

fδ

(
y1:m
in

)
· fin,U

(
y1:m
in

)
. (6)

Proof: We show that Eδ[U] can be rewritten as the sum
of the interface utility fin,U weighted by the probability fδ over
all interfaces

Eδ[U] =
∑
π(U)

Pδ (π(U)) gU (π(U)) (a)

=
∑
π(U)


∑

Y
π(U)

ΠY ∈YP (Y |π(Y)) Πn
i=1Pδ(Xi)




× gU (π(U)) (b)

=
∑

Y ∈Yin

∑
Y ∈Y0

∑
Y ∈Y1

ΠY ∈Y0∪YinP (Y |π(Y))

× ΠY ∈Y1P (Y |π(Y)) Πn
i=1Pδ(Xi)gU (π(U)) (c)

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 5

=
∑

Y ∈Yin

[∑
Y ∈Y0

ΠY ∈Y0∪YinP (Y π(Y))

]

×
[∑

Y ∈Y1

ΠY ∈Y1P (Y |π(Y)) gU (π(U))

]
(d)

=
∑

y1:m
in ∈Ω

Y 1:m
in

fδ

(
y1:m
in

)
· fin,U

(
y1:m
in

)
. (e)

Step (a) is true by (2). At step (b), Y/π(U) is the
difference set of Y and π(U). This step is true by in-
serting (1) into (2). Step (c) follows from the fact that
{π(U),Y/π(U)} and {Y0,Yin,Y1} are two partitions of the set
Y . At step (d), we break the distribution ΠY ∈YP (Y |π(Y)) ×
Πn

i=1Pδ(Xi) into two fractions ΠY ∈Y0∪YinP (Y |π(Y)) and
ΠY ∈Y1

P (Y |π(Y))gU (π(U)). At step (e), we replace the
two fractions with the definitions of the interface utilities
and interface probabilities. �

By the theorem, given a policy δ and a value node U , the
expected value of the node under the policy can be represented
as the sum of the multiplications of the interface utilities and
corresponding interface probabilities.

Example (Continued): For the ID in Fig. 1, we show how to
represent Eδ[U] for the value node U and a given policy δ. Let
the policy δ be (δ1, δ2), where δi is the decision choice of Xi

for i = 1, 2. By definition

Eδ[U] =
∑
H

∑
ABCD

P (A|δ1δ2)P (B|A)P (C|Bδ2)

× P (D|C)P (H|AD)Π2
i=1Pδ(Xi)gU (H).

The two functions are defined as follows.

fδ(A,C) =
∑
B

P (A|δ1δ2)P (B|A)P (C|Bδ2)Π2
i=1Pδ(Xi)

fin,U (A,C) =
∑
HD

P (H|AD)P (D|C)gU (H).

It can be verified that Eδ[U]=
∑

A,C fδ(A,C)· fin,U (A,C).�
We examine the assumptions we made at the beginning of

this section. First, we have assumed that there is only one
value node. In case of multiple value nodes, we may apply the
representation theorem to each node. The expected value of a
policy is the additive sum of the expected values of all value
nodes under the policy.

Second, we have assumed that the value node has no decision
nodes as its parents. In the other case that the value node has a
decision node as its parents, the functions fδ,U and fin can be
defined as follows, such that the theorem holds

fδ,U

(
Y 1:m

in

)
=
∑

Y ∈Y0

ΠY ∈Y0∪YinPδ (Y |π(Y))

× Πn
i=1Pδ(Xi)gU (π(U))

fin

(
Y 1:m

in

)
=
∑

Y ∈Y1

ΠY ∈Y1Pδ (Y |π(Y)) .

TABLE I
FACTORIZATION APPROACH TO ID EVALUATION

Therefore, we can lift the assumption that the value node has
no decision node as parents. In this case, U is also called an
interface node, but it belongs to the upstream only. The reason
is that, by definition, a value node cannot have children and
therefore cannot produce impact on the downstream.2 Note
that fδ changes to fδ,U , since the value node is considered in
computing the quantities relevant to the upstream. Interestingly,
it can be proven that fin(= 1.0) is a constant. To see why, let
us assume that the size of Y1 be k. We enumerate the set Y1 as
{Y 1

1 , . . . , Y k
1 } such that a node’s parents appear after the node

in the set. In computing fin(Y 1:m
in), we can sequentially sum

out the variables in Y1 in the enumerated order. Ultimately, we
have fin = 1.0.

C. The Algorithm

By the representation theorem, the expected value of a policy
is represented as the sum of interface utilities weighted by the
corresponding interface probabilities. The interface utilities are
independent of the individual policies, whereas the interface
probabilities are dependent on the policies. Therefore, the in-
terface utilities can be factored out, i.e., they can be calculated
once and reused across all the policies.

This is the idea behind our factorization approach, which
is described in Table I. The factored-out computations are
calculated once at line 1. They are used for all policies at line
2.2. Note that the procedure generalizes to IDs with multiple
value nodes.

D. Complexity Analysis

It is of interest to compare the approach and the generic
brute-forced approach that evaluates a policy directly by com-
bining (1) and (2). Let n be the number of decision nodes.
Thus, the size of the policy space is 2n. Let the complexity of
evaluating one policy be C. The complexity C breaks into three
pieces: computing fδ , computing fin,U , and computing Eδ[U]
by (6). We denote them, respectively, by C1, C3, and C2. To
evaluate all policies, the generic approach has complexity 2nC,
i.e., 2n(C1 + C2 + C3). In contrast, since the factorization
approach computes fin,U only once but uses them 2n times, its
complexity is 2n(C1 + C2) + C3. A good measure to predict
the computational gain is the size of the downstream, i.e.,
the number of nodes in it. In one extreme, if the downstream
contains only the interface nodes and the value nodes (thus, C3

is a constant), the two approaches have the same complexity. In
the other extreme, if the downstream contains far more nodes

2Note that this is different from random nodes having parental decision
nodes. Such a random node belongs to both the upstream and the downstream.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 2. Dynamic ID model.

than the upstream (i.e., C3 � C1 + C2), the computational
gain is significant.

E. Bounding the Optimal Expected Value

We show that the interface utilities computed in the factor-
ization approach can be used to derive both an upper and a
lower bound of the optimal value of the ID. These bounds have
significant implications in practical planning.

We define f+
in,U and f−

in,U to be the largest and the smallest
one among all interface utilities, i.e.,

f+
in,U = max

y1:m
in ∈Ω

Y 1:m
in

fin,U

(
y1:m
in

)

f−
in,U = min

y1:m
in ∈Ω

Y 1:m
in

fin,U

(
y1:m
in

)

where the max and min are taken over the domain of the
variables in Y 1:m

in . From the theorem, we see that f+
in,U (f−

in,U)
is the upper (lower) bound of the optimal value of the ID. These
bounds have significant importance in practice. Suppose, for
instance, that these bounds are available to a planner. In one
extreme, if the planner expects a utility that is larger than the
upper bound, he never bothers to evaluate all the policies and
finds the optimal one because even the best policy provides less
than he expects. In this case, he needs to redesign the network
structure or parameters such that the performance of the ID
can be improved. In the other extreme, if the planner expects a
utility that is less than the lower bound, again he never bothers
to evaluate all the policies and chooses the optimal one because
any policy can provide more than he expects. In this case, he
can pick any policy and execute it.

We note that from the computational point of view, comput-
ing these bounds is easier than evaluating the ID. There are
two reasons. First, as discussed earlier, computing these bounds
involves only the downstream of the ID, whereas evaluating
an ID involves its entire structure. If the downstream contains
much fewer variables than the upstream, the interface utilities
(and also the bounds) can be obtained efficiently. Second,
computing these bounds avoid enumerating all the policies and
calculating their expected values.

Finally, the tightness of the bounds depends on the structure
of an ID, the CPTs of random nodes, and the value functions of
value nodes. It is difficult to characterize a general condition to
determine the tightness of the bounds. In our experiments, we

empirically show that these bounds are reasonably tight for the
tested problems.

V. EXTENSIONS TO THE FACTORIZATION APPROACH

In this section, we discuss two extensions to the factoriza-
tion approach. These extensions deal with reconstructing the
policies as the network structure/parameters undergo changes.
There are two perspectives. First, at one decision step, the
network might change such as more actions being available for
a planner’s choice, more value nodes needed consideration, and
so on. Second, the network might dynamically alter its structure
or parameters as time goes by. For example, if a subgoal is
successfully accomplished at one step, it can be removed from
the network in the subsequent steps.

A. Network Structure/Parameter Changes

The principle for the factorization approach to accommo-
date structure or parameter changes is as follows. First, if
the changes involve only the upstream of an ID, the inter-
face utilities do not need to be recomputed and can still be
shared in evaluating the ID. Specifically, these changes include
addition or removal of decision/random/value nodes and also
the alternation of CPTs and value functions in the upstream.
Second, if the changes involve only the downstream of the
ID, the approach needs to reconstruct the interface utilities.
Fortunately, the interface probabilities are preserved and the
calculations for them can be saved. Third, if the changes involve
not only the upstream but also the downstream, the approach
needs to recompute both the interface utilities and the interface
probabilities.

B. Planning Over Time

In realistic applications, network parameters may change
over time. In this case, we can use a dynamic ID to model
the conditional dependencies among nodes over time. In this
section, we show how the factorization approach can be used to
reconstruct the policies on a step-by-step basis for dynamic IDs.

To facilitate our discussions, we extend the example in Fig. 1
to a dynamic ID. We assume that the variable H evolves over
time and let Ht denote H at step t. The dynamic ID is drawn in
Fig. 2. In contrast, the ID in Fig. 1 is said to be static since the
multiple decisions are made at one time step.

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 7

The dynamic ID has two prominent features. First, at a single
step, the decision problem can be modeled as a static ID. In
addition to the nodes and links in Fig. 1, the node Ht+1 at
step t + 1 has one more parent node Ht. Second, the intertem-
poral link between two consecutive nodes carries the historic
information about the sequence of performed policies. For step
n + 1, the information can be summarized by a probability
distribution of Ht conditioned on the history [14].

For a dynamic ID, we are interested in optimal planning on
the step-by-step basis. The problem is formulated as: Given
an initial probability distribution P (H0), at step t + 1, how
to efficiently find the policy δ[= (δ1, . . . , δn) where n is the
number of decision nodes] that maximizes Eδ[UHt+1]? To solve
the problem, we show: 1) how to select the optimal policy at
step t + 1, given the probability distribution P (Ht); and 2) how
to sequentially update the probability distribution P (Ht+1)
from P (Ht), given a policy δ at the previous step. After these
two questions are settled, we may choose the optimal policy as
follows. At step t + 1, we first choose the optimal policy for
the step and then update the probability P (Ht+1) from P (Ht).
The procedure repeats at each step.

To answer the first question, we introduce the concept of
an augmented interface node and an augmented interface set.
We call the node Ht an augmented interface node of the ID at
step t + 1 since the node Ht can produce impact on the network
via altering its probability distribution. In this sense, it is an
interface node.3 The augmented interface set consists of Yin as
before and the node Ht. The downstream of the ID at step t + 1
remains the same as that of the static ID. Likewise, we may
define the two functions fδ and fin,UHt+1

. Therefore, we can
use the factorization approach to solve the planning problem
over time. The computations involving fin,UHt+1

are factored
out. Note that these interface utilities are shared for all policies
at each decision step. For the ID in Fig. 2, we can define the
following functions for the ID:

fδ(A,C,Ht)

= P (Ht)
∑
B

P (A|δ1δ2)P (B|A)P (C|Bδ2)Π2
i=1Pδ(Xi)

fin,UHt
(A,C,Ht)

=
∑

Ht+1D

P (Ht+1|ADHt)P (D|C)gU (Ht+1).

It can be verified that Eδ[UHt+1] =
∑

A,C,Ht
fδ(A,C,Ht) ·

fin,UHt
(A,C,Ht).

To answer the second question, we show how to efficiently
compute P (Ht+1), given a distribution P (Ht) and the policy
δ performed at step t. We introduce a technique such that the
procedure of computing P (Ht+1) can be conducted similar to
that of computing Eδ[UHt+1]. Suppose that Ht+1 can take on
two values h(true) and ¬h(false). We first show how to calculate

3Previously, we defined an interface node to be a node that has parental
decision nodes since the choices of decision nodes can affect its CPTs and
in turn, the expected value of the ID. In contrast, the node Ht is called an
augmented interface node since it can change its probability distribution and
thus, affect the expected value of the ID.

the probability of Ht+1 being true. Let V be a value node that
differs from UHt+1 only in its value function. Specifically, gV is
1.0 if its parent Ht+1 is true; it is 0.0 otherwise. For simplicity,
let Ht+1 = h(¬h) denote the event that the hypothesis Ht+1 is
true (false). We prove that Eδ[V] = Pδ(Ht+1 = h).

Proposition 1: Eδ[V] = Pδ(Ht+1 = h).
Proof:

Eδ[V] =
∑
Ht+1

Pδ(Ht+1)gV (Ht+1)

=Pδ(Ht+1 = h)gV (Ht+1 = h)
+ Pδ(Ht+1 = ¬h)gV (Ht+1 = ¬h)

=Pδ(Ht+1 = h).

In the last step, we use the definition of the value function gV .�
To calculate the probability of Ht+1 being false, we may

define gV as follows: It is 1.0 if its parent Ht+1 is false; it is
0.0 otherwise. If we define two functions fδ and fin,V , we see
that the computational steps for Eδ[V] are the same as those for
computing Eδ[UHt+1]. Hence, computing P (Ht+1) does not
add much overhead to ID evaluation.

It is interesting to compare the generic approach and the
factorization approach in the context of the dynamic ID. Let
the number of decision steps be T . Recall that the complexity
of computing fδ is C1, the complexity of computing fin,UHt+1

is C3, and the complexity of computing Eδ[UHt+1] is C2. Since
C1 takes constant time, it can be ignored. For one decision
step, the factorization approach has the complexity 2nC2 + C3

while the generic approach has the complexity 2n(C2 + C3).
For T steps, the complexity of the factorization approach is
2nTC2 + C3 [note that this does not include the overhead
of computing P (Ht+1)], while the complexity of the generic
approach is 2nT (C2 + C3). If C3 � C2, the factorization
approach can be extremely efficient.

VI. EXPERIMENTS

In this section, we report our experiments on both simulation
studies and a military planning example. In our experiments,
we wrote Matlab-V6.5 codes and ran them on a laptop with a
2.0-GHz central processing unit (CPU) under Windows XP. We
compare the factorization approach against the generic brute-
forced approach. We chose the generic approach because we
were not aware of specific algorithms for evaluating simulta-
neous IDs. For convenience, we refer to the two algorithms
as evalCS (named after computation sharing) and evalBF
(named after brute forced).

A. Simulation Studies

To thoroughly evaluate the performance of the factorization
approach, we conducted simulated studies on the ID in the
left chart of Fig. 3, which is similar to the military planning
examples in [15]. It is referred to as the static ID in the rest
of this section. The CPTs are randomly generated. The value
functions for value nodes are manually specified.

Specifically, our experiments are designed to: 1) evaluate
the performances of the factorization approach for static and

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 3. Test example is shown in the left chart, while the right is its variant for comparative studies.

Fig. 4. Performance comparison of evalBF and evalCS.

dynamic IDs; 2) show the tightness of bounds derived from
the interface utilities; 3) demonstrate how the computational
gain achieved by the approach varies with different network
structures; and 4) demonstrate the computational gain by
adapting the approach to account for newly added decisions
and value nodes.

1) Performances of the Factorization Approach: To see how
the performances of the algorithms vary with the number of
decision nodes, we fix the number of random nodes at each
level at four and vary the number of decision nodes. Thus, the
static ID with n decision nodes has additionally ten random
nodes and n + 1 value nodes. We ran evalBF and evalCS
for seven problems with n = 3, 5, . . . , 13. The timing data are
presented in the left chart of Fig. 4. The chart gives the total
CPU seconds that the algorithms took for each of the problems.
Note that the vertical direction is drawn in log scale. The
solid (dashed) curve is for evalCS (evalBF). It can be seen
that evalCS is considerably more efficient than evalBF. For
instance, from our data, for n = 9, to evaluate 512 policies,

evalCS took 3.51 s while evalBF, 646.74 s; for n = 13, to
evaluate 8192 policies, evalCS used 46.32 s while evalBF,
9284.05 s.

To quantitatively characterize how much savings the factor-
ization procedure can bring about, we use the timing results
of evalCS to predict the performance of evalBF. Recall
that the complexity of evaluating a policy breaks into three
fractions C1, C3, and C2. We ignore C1 since it is a constant.
For each problem, we estimate C3 by the actual seconds Ĉ3

of computing fin,UH
, and C2 by Ĉ2 as (the total CPU time −

Ĉ3)/(the number of policies). The complexity of evalBF is
predicted by 2n(Ĉ2 + Ĉ3). We found that these estimations are
almost the same as the actual timing results of evalBF. This
suggests the effectiveness of our complexity analysis.

We also tested the algorithms over the dynamic ID in Fig. 5,
which is an extension of the left chart of Fig. 3.

Initially, the probability of the node H being false is set to
1.0. Its probability is updated at each decision step. We ran
both algorithms for up to ten decision steps. We showed the

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 9

Fig. 5. Dynamic influence diagram.

total CPU time for the ID with nine decision nodes in the right
chart of Fig. 4. The chart gives the total CPU seconds for both
algorithms against the time steps. Note that again the vertical
direction is drawn in log scale. It can be seen that the CPU
time linearly increases with the elapsed time for evalBF while
its increase is negligible for evalCS. This is not a surprising
observation. In evalBF, all policies are evaluated at each step.
The time cost for all steps remains the same. Hence, the increase
is linear. From our data, evalBF uses about 1300 s to evaluate
all 512 (29) policies at each step. However, in evalCS, the
interface utilities are computed only once at the first step. So,
we observe that at the first step, evalCS takes about 2.66 s
to compute these utilities; thereafter, each step takes about only
10 s to evaluate all 512 policies. The increase is negligible when
compared against that in evalBF.

2) Tightness of Bounds: To show the tightness of the upper
and lower bounds of the optimal expected value, in Fig. 6, we
plot the optimal value (the middle curve) and these bounds
(the upper and lower curves) for the static IDs with 3, 5, . . .,13
decision nodes. We see that these bounds are reasonably tight
for the tested problems. For example, for n = 7, the optimal
value is 871.47 while the bounds are 722.91 and 936.637.
Although it is difficult to quantitatively analyze the properties
of these bounds, these experiments show they can be tight at
least for these tested problems.

3) Computational Gain Under Network-Structure Changes:
To demonstrate how the computational gain of evalCS varies
with different network structures, we run evalCS over the
static ID and a modified version of it. The modified ID is
obtained as follows: Every link from Xi to Y 1

j is redirected
to Y 2

j . The resulting ID is shown in the right chart of Fig. 3.
Its upstream is X ∪ Y 1

1:m1
∪ Y 2

1:m2
∪ U1:n, whereas its down-

stream is Y 3
1:m3

∪ {H} ∪ {UH}, where U1:n means the set
of value nodes, and Y i

1:mi
means the set of nodes Y i

j , i.e.,
Y i

1:mi
= {Y i

1 , . . . , Y i
mi

} for i = 1, 2, 3. Compared with that of

Fig. 6. Lower and upper bounds obtained from the interface utilities.

the static ID, the downstream of the modified ID contains fewer
random nodes. We expect: 1) evalCS is still more efficient
than evalBF in the modified ID, since its downstream contains
a number of random nodes; and 2) evalCS achieves less
savings in modified ID than it does in the original ID.

The experiments presented in Fig. 7 confirm these expecta-
tions. First, the left chart plots the CPU seconds (in log scale)
that evalCS and evalBF take for the modified IDs with a dif-
ferent number of decision variables. It can be seen that evalCS
is more efficient. Second, the right chart plots the magnitudes
of the savings brought by evalCS. For each approach, the
saving magnitude is measured by the quotient of the total time
of evalBF and that of evalCS. The magnitudes are drawn in
the vertical direction. For a modified ID, evalCS is about 14
times faster than evalBF. For the original IDs, the magnitudes
vary with the number of their decision nodes. We see that the
computational savings brought by evalCS are more significant
for IDs whose downstream contains more nodes.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

Fig. 7. Computational gains versus network structure.

Fig. 8. Replanning for added action/value nodes. In both charts, the curves from the top and bottom plot the total/replanning time for the generic approach, and
the total/replanning time for the factorization approach.

4) Computational Gain Under Network-Parameter
Changes: We also conducted experiments to show how
the factorization approach achieves computational savings as
the network changes. For this purpose, given the static ID,
we first evaluate it (the planning phase), then add more nodes
to the ID and reevaluate it (the replanning phase). We like
to compare both the replanning time and total time of the
factorization approach against that of the generic approach.

In one experiment, we first evaluate a static ID with n
decision nodes. We then add two decision nodes to the ID and
evaluate the modified ID. Every newly added node has a link
from itself to every Y 1

j node. The timing results in log scale
are presented in the left chart of Fig. 8. In the chart, the curve
corresponding to CS1 (BF1) depicts the replanning time for
the factorization (generic) approach, whereas the curve corre-
sponding to CS (BF) depicts the total time similarly. We see
that for the tested problems, the factorization approach achieves
considerable savings in replanning when more decision nodes
are added. For instance, for the ID with nine decision nodes,
the factorization and generic approach, respectively, takes 9.80
and 2313.94 s. These savings are achieved through sharing
the interface utilities computed during the evaluation of the
original ID. Since the factorization approach takes much less
time in both evaluating and reevaluating the ID, its total time is
considerably less than that used by the generic approach.

In the other experiment, we evaluate the ID and then add one
more value node for replanning. The added value node has a

link from every node Y 2
j for j = 1, . . . , 4. In computing the

expected value of the added value node, we still use the factor-
ization approach. In reevaluating an ID, we do not recompute
the expected value of the existing value node. The timing results
in log scale are collected in the right chart of Fig. 8. The legends
read similar to those in the left chart. It can be seen that the
factorization approach can achieve great savings in replanning.
The reason is obvious: The factorized computations are saved
in computing the expected value of the newly added value node.
By taking advantage of shared computations in evaluating two
value nodes, the total time used by the factorization approach is
considerably less than that by the generic approach.

B. A Military Planning Example

We applied the factorization approach to a hypothetical
military planning example, which is illustrated in Fig. 9.
The overall military goal is to win a war or to bring a
tyrant to justice. The goal is represented by a Hypothesis
node, which is on the top of the figure. There are 12 prim-
itive actions, namely destroy_C2, destroy_Radars,
. . ., operate_special_force, which are on the bottom
side. Performing an action has direct effects of specific pur-
pose. For instance, if the action destroy_Radars is
performed, the EW/GCIRadars is destroyed with a high
probability. These effects alter the overall goal through
altering the low-level subgoals. For instance, the status

ZHANG AND JI: A FACTORIZATION APPROACH TO EVALUATING SIMULTANEOUS INFLUENCE DIAGRAMS 11

Fig. 9. Static ID illustrating a military planning problem.

of C2 (command and control), EW/GCIRadars and
Communications facilities, and Air_strike determine
the workability of the integrated air defense system (IADS)
and the strength of the enemy air force. In turn, the
workability of IADS system and the strength of the en-
emy air force determine the loss of Air_superiority.
The Air_superiority, Territory_occupation, and
Commander_surrender are three subgoals determining
the overall goal success. Without loss of generality, we as-
sume all nodes are binary. In the example, each decision node
is associated with a value node encoding the cost of perform-
ing the action, and the hypothesis node is associated with a
value node encoding the utility of goal success. The optimal
policy needs to balance the utility of goal success and cost of
performing actions.

We designed a reasonable set of CPTs and value
functions. For the Hypothesis node, if all the subgoals
Air_superiority, Territory_occupation, and
Command_surrender are achieved, the overall goal
is successfully achieved. If one of the subgoals is to be
achieved, the probability of the overall success is decreased
by 0.3; however, if none of the subgoals is achieved, the
overall goal fails with certainty. Similarly, for the subgoal
Air_superiority, the two influencing factors are IADS
and Air_force. If the IADS system works well and
Air_force is strong, Air_superiority is true for the
enemy air force; if either the IADS system works poorly or
Air_force is weak, the probability of Air_superiority
being true is decreased by 0.5. Other CPTs for

Territory_occupation and Command_surrender
are set analogously to those for Air_superiority. A
similar strategy is used in parameterizing the nodes IADS,
Air_force, Artillery, Ground_force, Morale, and
Commander_in_custody. In determining the CPTs for
random nodes that are immediate children of the decision
nodes, we assume that an action achieves its intended effect
with probability 0.9. For example, a destroy_Radars
decision will destroy the EW/GCI radars with probability
0.9. To complete the ID definition, we also assigned value
functions. If the goal is successfully achieved, the reward is
1000; otherwise, the cost, i.e., a negative reward, is 500. For
other decision nodes, if a ground attack is launched, the cost
is 150; if the special force operation is performed, its cost is
100; if the commander decides to capture the bodyguards of
the tyrant, the operating cost is 80; if an air strike is launched,
the cost is 50; for any other actions, their operating cost is 20.

Our primary interest is in the performance of the factorization
algorithm. From our data, to evaluate the ID, the factorization
algorithm took 45 s, while the brute-forced algorithm took
9012 s. Hence, the computational saving is tremendous. We
can explain the performance difference by the ID structure—its
downstream contains a large number of nodes: all random
nodes and the value node associated with the goal. Since its
downstream contains far more random nodes than its upstream,
the approach is expected to be significantly more efficient.
Our secondary interest is concerned with the optimal policy.
The optimal policy is the one that performs only air strike
and special force operation. The expected value of the ID

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS

is 561.98, and the probability of goal success is 0.81. We note
that the optimal policy excludes “launching a ground attack,”
although it is the action that is most likely to lead to goal
success. One possible reason, as explained earlier, is that the
action is excluded due to the high operating cost of performing
the action.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied a special ID class, namely simul-
taneous IDs, where multiple decisions need to be made at
one time step. We intended to make two contributions. First,
we examined a simultaneous ID and studied its theoretical
properties. We showed that such an ID can be decomposed
into an upstream fraction and a downstream fraction, and that
the expected value of a value node under a policy can be
represented as the sum of interface utilities that involve only the
downstream fraction, weighted by the corresponding interface
probabilities that involve only the upstream fraction. The inter-
face utilities naturally provide an upper and lower bound of the
optimal value of the ID. Second, we proposed a novel factoriza-
tion algorithm to evaluate a simultaneous ID. The interface util-
ities are independent of the individual policies; therefore, they
can be calculated once but used across all policies in evaluating
them. We also extend the factorization approach to a dynamic
ID. The algorithm has been tested on simulation studies and
a military planning example. Our experiments showed that the
factorization algorithm is significantly more efficient than the
generic algorithm in evaluating a simultaneous ID.

To further speed up ID evaluating, one future direction is
to combine the factorization approach with the approaches
of reducing the search space. In this paper, we address one
difficulty in ID evaluation, i.e., evaluating individual policies.
Another difficulty in ID evaluation is that the policy space
contains exponentially many polices and one needs to evaluate
all of them in order to find the optimal one. The ID evaluation
process can be accelerated if the technique in this paper can be
integrated with the approaches of reducing the search space.

ACKNOWLEDGMENT

The authors would like to thank J. Lemmer, D. Gossink, and
J. Dussault from AFRL/Rome for introducing the problem to
us and for numerous technical exchanges on the related issues.
The authors are grateful to three anonymous reviewers for their
insightful comments in improving the paper. The authors are
also grateful to W. Liao and Z. Zhu for insightful discussions.

REFERENCES

[1] R. Howard and J. Matheson, “Influence diagrams,” in The Principles
and Applications of Decision Analysis, R. Howard and J. Matheson, Eds.
Menlo Park, CA: Strategic Decisions Group, 1984, pp. 719–762.

[2] H. Raiffa, Decision Analysis. Reading, MA: Addison-Wesley, 1968.
[3] R. D. Shachter, “Evaluating influence diagrams,” Oper. Res., vol. 34,

no. 6, pp. 871–882, 1986.
[4] P. P. Shenoy, “Valuation-based systems for Bayesian decision analysis,”

Oper. Res., vol. 40, no. 3, pp. 463–484, 1992.
[5] F. Jensen, F. V. Jensen, and S. L. Dittmer, “From influence diagram to

junction trees,” in Proc. 10th Conf. Uncertainty Artificial Intelligence,
Seattle, WA, 1994, pp. 367–373.

[6] R. Qi and D. Poole, “A new method for influence diagram evaluation,”
Comput. Intell., vol. 11, no. 1, pp. 1–34, 1995.

[7] N. L. Zhang and D. Poole, “Stepwise-decomposable influence dia-
gram,” in Proc. 3rd Int. Conf. Principles Knowledge Representation and
Reasoning, Cambridge, MA, 1992, pp. 141–152.

[8] G. F. Cooper, “A method for using belief networks as influence diagrams,”
in Proc. 4th Workshop Uncertainty Artificial Intelligence, St. Paul, MN,
1988, pp. 55–63.

[9] R. Shachter and M. Peot, “Decision making using probabilistic infer-
ence methods,” in Proc. 8th Annu. Conf. Uncertainty Artificial Intelli-
gence (UAI), Stanford, CA. San Mateo, CA: Morgan Kaufmann, 1992,
pp. 276–283.

[10] T. Nielsen and F. Jensen, “Well-defined decision scenarios,” in Proc.
15th Conf. Uncertainty Artificial Intelligence, Stockholm, Sweden, 1999,
pp. 502–511.

[11] F. Jensen and M. Vomlelova, “Unconstrained influence diagrams,” in
Proc. 18th Conf. Uncertainty Artificial Intelligence, Edmonton, AB,
Canada, 2002, pp. 234–241.

[12] S. L. Lauritzen and D. Nilsson, “Representing and solving decision
problems with limited information,” Manage. Sci., vol. 47, no. 9,
pp. 1238–1251, 2001.

[13] N. L. Zhang, “Probabilistic inferences in influence diagrams,” in Proc.
14th Conf. Uncertainty Artificial Intelligence, Madison, WI, 1998,
pp. 514–522.

[14] K. J. Aström, “Optimal control of Markov decision processes with incom-
plete state estimation,” J. Math. Anal. Appl., vol. 10, no. 3, pp. 174–205,
1965.

[15] U. Kuter, D. Nau, and J. F. Lemmer, “Interactive planning under un-
certainty with causal modeling and analysis,” Dept. Comput. Sci., Univ.
Maryland, College Park, Tech. Rep. CS-TR-4434, 2003.

Weihong Zhang received the Ph.D. degree in com-
puter science from The Hong Kong University of
Science and Technology, Kowloon, Hong Kong,
in 2001.

He then worked as a Postdoc Researcher with the
Department of Computer Science and Engineering,
Washington University, Saint Louis, MO. He is cur-
rently a Postdoc Researcher with the Department
of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY. He has
conducted research in artificial intelligence, proba-

bilistic inferences and decision making under uncertainty, graphical models and
their applications in sensor networks and human–computer interaction. He has
published more than 10 papers in peer-reviewed journals and conferences.

Qiang Ji (S’92–M’98–SM’04) received the Ph.D.
degree in electrical engineering from the University
of Washington in 1998.

He is currently an Associate Professor with the
Department of Electrical, Computer, and Systems
Engineering at Rensselaer Polytechnic Institute,
Troy, NY. His areas of research include computer
vision, probabilistic reasoning for decision mak-
ing and information fusion, pattern recognition, and
robotics. He has published more than 70 papers
in peer-reviewed journals and conferences. His re-

search has been funded by local and federal government agencies in-
cluding National Science Foundation (NSF), National Institutes of Health
(NIH), Air Force Office of Scientific Research (AFOSR), Office of Naval
Research (ONR), Defense Advanced Research Projects Agency (DARPA),
and Army Research Office (ARO) and by private companies including
Boeing and Honda. His latest research focuses on face detection and recog-
nition, facial-expression analysis, image segmentation, object tracking, user
affect modeling and recognition, and active information fusion for decision
making under uncertainty.

Efficient non-myopic value-of-information computation
for influence diagrams

Wenhui Liao a,*, Qiang Ji b

a Research & Development, Thomson-Reuters Corporation, 610 Opperman Drive, Eagan, MN 55123, USA
b Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

a r t i c l e i n f o

Article history:
Received 4 January 2007
Received in revised form 17 April 2008
Accepted 21 April 2008
Available online 29 April 2008

Keywords:
Value-of-information
Influence diagrams
Decision making
Central-limit theorem
Stress modeling

a b s t r a c t

In an influence diagram (ID), value-of-information (VOI) is defined as the difference
between the maximum expected utilities with and without knowing the outcome of an
uncertainty variable prior to making a decision. It is widely used as a sensitivity analysis
technique to rate the usefulness of various information sources, and to decide whether
pieces of evidence are worth acquisition before actually using them. However, due to the
exponential time complexity of exactly computing VOI of multiple information sources,
decision analysts and expert-system designers focus on the myopic VOI, which assumes
observing only one information source, even though several information sources are avail-
able. In this paper, we present an approximate algorithm to compute non-myopic VOI effi-
ciently by utilizing the central-limit theorem. The proposed method overcomes several
limitations in the existing work. In addition, a partitioning procedure based on the d-sep-
aration concept is proposed to further improve the computational complexity of the pro-
posed algorithm. Both the experiments with synthetic data and the experiments with
real data from a real-world application demonstrate that the proposed algorithm can
approximate the true non-myopic VOI well even with a small number of observations.
The accuracy and efficiency of the algorithm makes it feasible in various applications
where efficiently evaluating a large amount of information sources is necessary.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

In a wide range of decision-making problems, a common scenario is that a decision maker must decide whether some
information is worth collecting, and what information should be acquired first given several information sources available.
Each set of information sources is usually evaluated by value-of-information (VOI). VOI is a quantitative measure of the value
of knowing the outcome of the information source(s) prior to making a decision. In other words, it is quantified as the dif-
ference in value achievable with or without knowing the information sources in a decision-making problem.

Generally, VOI analysis is one of the most useful sensitivity analysis techniques for decision analysis [23,25]. VOI analysis
evaluates the benefit of collecting additional information in a specific decision-making context [27]. General VOI analyses
usually require three key elements: (1) A set of available actions and information collection strategies; (2) A model connect-
ing the actions and the related uncertainty variables within the context of the decision; and (3) values for the decision out-
comes. The methods of VOI analysis could be quite different when different models are used.

In this paper, we consider VOI analysis in decision problems modeled by influence diagrams. Influence diagrams were
introduced by Howard and Matheson in 1981 [13] and have been widely used as a knowledge representation framework

0888-613X/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.ijar.2008.04.003

* Corresponding author. Tel.: +1 5189610457.
E-mail addresses: wenhui.liao@thomsonreuters.com (W. Liao), jiq@rpi.edu (Q. Ji).

International Journal of Approximate Reasoning 49 (2008) 436–450

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier .com/locate / i jar

mailto:wenhui.liao@thomsonreuters.com
mailto:jiq@rpi.edu
http://www.sciencedirect.com/science/journal/0888613X
http://www.elsevier.com/locate/ijar

to facilitate decision making and probability inference under uncertainty. An ID uses a graphical representation to capture
the three diverse sources of knowledge in decision making: conditional relationships about how events influence each other
in the decision domain; informational relationships about what action sequences are feasible in any given set of circum-
stances; and functional relationships about how desirable the consequences are [21]. An ID can systematically model all
the relevant random variables and decision variables in a compact graphical model.

In the past several years, a few methods have been proposed to compute VOI in IDs. Ezawa [8] introduces some basic con-
cepts about VOI and evidence propagation in IDs. Dittmer and Jensen [7] present a method for calculating myopic VOI in IDs
based on the strong junction tree framework [15]. Shachter [25] further improves this method by enhancing the strong junc-
tion tree as well as developing methods for reusing the original tree in order to perform multiple VOI calculations. Zhang
et al. [28] present an algorithm to speed up the VOI computation by making use of the intermediate computation results,
which are obtained when computing the optimal expected value of the original ID without the observations from the infor-
mation sources. Instead of computing VOI directly, [22] describe a procedure to identify a partial order over variables in
terms of their VOIs based on the topological relationships among variables in the ID. However, all these papers only focus
on computing myopic VOI, which is based on two assumptions: (1) ‘‘No competition:” each information source is evaluated
in isolation, as if it were the only source available for the entire decision; (2) ‘‘One-step horizon:” the decision maker will act
immediately after consulting the source [21]. These assumptions result in a myopic policy: every time, the decision maker
evaluates the VOI of each information source one by one, and chooses the one with the largest VOI. Then the observations are
collected from the selected information sources, the probabilities are updated, and all the remaining information sources are
to be reevaluated again, and a similar procedure repeats.

Obviously, the assumptions are not always reasonable in some decision circumstances. Usually, the decision maker will
not act after acquiring only one information source. Also, although a single information source may have low VOI and is not
worth acquisition compared to its cost, several information sources used together may have high VOI compared to their
combined cost. In this case, by only evaluating myopic VOI, the conclusion will be not to collect such information, which
is not optimal since its usage together with other information sources can lead to high value for the decision maker. There-
fore, given these limitations in myopic VOI, it is necessary to compute non-myopic VOI.

Non-myopic VOI respects the fact that the decision maker may observe more than one piece of information before acting,
thus requires the consideration of any possible ordered sequence of observations given a set of information sources. Unfor-
tunately, the number of the sequences grows exponentially as the number of available information sources increases, and
thus it is usually too cumbersome to compute non-myopic VOI for any practical use, and this is why the before mentioned
work only focuses on myopic VOI. Given these facts, an approximate computation of non-myopic VOI is necessary to make it
feasible in practical applications. To the best of our knowledge, [11] are the only ones who proposed a solution to this prob-
lem. In their approach, the central-limit theorem is applied to approximately compute non-myopic VOI in a special type of ID
for the diagnosis problem, where only one decision node exists. Certain assumptions are required in their method: (1) all the
random nodes and decision nodes in the ID are required to be binary; (2) the information sources are conditionally indepen-
dent from each other given the hypothesis node, which is the node associated with the decision node and utility node.

Motivated by the method of Heckerman et al., we extend this method to more general cases1: (1) all the random nodes can
have multiple states and the decision node can have multiple rules (alternatives); (2) the information sources can be dependent
given the hypothesis node; and (3) the ID can have a more general structure. But same as Heckerman et al.’s method, we only
discuss the VOI computation in terms of IDs that have only one decision node. This decision node shares only one utility node
with another chance node. With the proposed algorithm, non-myopic VOI can be efficiently approximated. In order to validate
the performance of the proposed algorithm, we not only perform the experiments based on the synthetic data for various types
of IDs, but also provide a real-world application with real data.

Because of the efficiency and accuracy of the proposed method, we believe that it can be widely used to choose the opti-
mal set of available information sources for a wide range of applications. No matter what selection strategies people use to
choose an optimal set, such as greedy approaches, heuristic searching algorithms, or brute-force methods, the proposed
method can be utilized to evaluate any information set efficiently in order to speed up the selection procedure.

The following sections are organized as follows. Section 2 presents a brief introduction to influence diagrams. The detail of
the algorithm is described in Section 3. Section 4 discusses the experimental results based on synthetic data. And a real appli-
cation is demonstrated in Section 5. Finally, Section 6 gives the conclusion and some suggestions for future work.

2. Influence diagrams

An influence diagram (ID) is a graphical representation of a decision-making problem under uncertainty. Its knowledge
representation can be viewed through three hierarchical levels, namely, relational, functional, and numerical. At the rela-
tional level, an ID represents the relationships between different variables through an acyclic directed graph consisting of
various node types and directed arcs. The functional level specifies the interrelationships between various node types and
defines the corresponding conditional probability distributions. Finally, the numerical level specifies the actual numbers
associated with the probability distributions and utility values [6].

1 A brief version of this extension can be found in [18].

W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450 437

Specifically, an ID includes three types of nodes: decision, chance (random), and value (utility) nodes. Decision nodes,
usually drawn as rectangles, indicate the decisions to be made and their set of possible alternative values. Chance nodes,
usually drawn as circles/ellipses, represent uncertain variables that are relevant to the decision problem. They are similar
to the nodes in Bayesian networks [14], and are associated with conditional probability tables (CPTs). Value nodes, usually
drawn as diamonds, are associated with utility functions to represent the utility of each possible combination of the out-
comes of the parent node. The arcs connecting different types of nodes have different meanings. An arc between two chance
nodes represents probabilistic dependence, while an arc from a decision node to a chance node represents functional depen-
dence, which means the actions associated with the decision node affect the outcome of the chance node. An arc between
two decision nodes implies time precedence, while an arc from a chance node to a decision node is informational, i.e., it
shows which variable will be known to the decision maker before a decision is made [21]. An arc pointing to a utility node
represents value influence, which indicates that the parents of the utility node are those that directly affect its utility. Fig. 1
illustrates these arcs and gives corresponding interpretations.

Most IDs assume a precedence ordering of the decision nodes. A regular ID assumes that there is a directed path contain-
ing all decision nodes; a no-forgetting ID assumes that each decision node and its parents are also parents of the successive
decision nodes; and a stepwise decomposable ID assumes that the parents of each decision node divide the ID into two sep-
arate fractions. In this paper, we consider IDs that have only one decision node, i.e., ignoring all previous decisions. The goal
of ID modeling is to choose an optimal policy that maximizes the overall expected utility. A policy is a sequence of decision
rules where each rule corresponds to one decision node. Mathematically, if there is only one decision node in an ID and
assuming additive decomposition of the utility functions, the expected utility under a decision rule d given any available evi-
dence e, denoted by EUðdjeÞ, can be defined as follows:

EUðdjeÞ ¼
Xn

i¼1

X
Xi

pðXije; dÞuiðXi; dÞ; ð1Þ

where ui is the utility function over the domain Xi [fDg. For example, Xi could be the parents of the utility node that ui is
associated with. To evaluate an ID is to find an optimal policy as well as to compute its optimal expected utility [24,26]. More
detail about IDs can be found in [17,14].

Generally, the advantages of an ID can be summarized by its compact and intuitive formulation, its easy numerical assess-
ment, and its effective graphical representation of dependence between variables for modeling decision making under
uncertainty. These benefits make ID a widely used tool to model and solve complex decision problems in recent years.

3. Approximate VOI computation

3.1. Value of information

The VOI of a set of information sources is defined as the difference between the maximum expected utilities with and
without the information sources [17]. VOI can be used to rate the usefulness of various information sources and to decide
whether pieces of evidence are worth acquisition before actually using the information sources [21].

We discuss the VOI computation in terms of IDs that have only one decision node. This decision node shares only one
utility node with another chance node, as shown in Fig. 2. And the decision node and the chance node are assumed to be
independent. In the ID, the chance node H, named as hypothesis node, represents a mutually exclusive and exhaustive
set of possible hypotheses h1; h2; . . . ; hh; the decision node D represents a set of possible alternatives d1; d2; . . . ; dq; the utility
node U represents the utility of the decision maker, which depends on the outcome of H and D; and the chance nodes
O1; . . . ;On represent possible observations from all kinds of information sources about the true state of H. And each Oi

may have multiple states. Let O ¼ fO1; . . . ;Ong, the VOI of O, VOIðOÞ, w.r.t. the decision node D, can be defined as follows:

VOIðOÞ ¼ EUðOÞ � EUðOÞ; ð2Þ
EUðOÞ ¼

X
o2O

pðoÞmax
dj2D

X
hi2H

pðhijoÞuðhi; djÞ; ð3Þ

EUðOÞ ¼max
dj2D

X
hi2H

pðhiÞuðhi; djÞ; ð4Þ

Probabilistic
Dependence

Time
Precedence

Functional
Dependence

Informational

Value
Influence

Fig. 1. Interpretations of arcs in an ID, where circles represent chance (random) nodes, rectangles for decision nodes, and diamonds for value (utility) nodes.

438 W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450

where uðÞ denotes the utility function associated with the utility node U, EUðOÞ denotes the expected utility to the decision
maker if O were observed, while EUðOÞ denotes the expected utility to the decision maker without observing O. Here the cost
of collecting information from the information sources is not included; thus, the VOI can also be called perfect VOI [11]. The
net VOI is the difference between the perfect VOI and the cost of collecting information [12]. Since after calculating the per-
fect VOI, the computation of the net VOI is just a subtraction of cost, we focus on the perfect VOI in the subsequent sections.

As shown in Eq. (2), to compute VOIðOÞ, it is necessary to compute EUðOÞ and EUðOÞ respectively. Obviously, EUðOÞ is eas-
ier to compute, whereas directly computing EUðOÞ could be cumbersome. If the decision maker has the option to observe a
subset of observations fO1; . . . ;Ong and each Oi has m possible values, then there are mn possible instantiations of the obser-
vations in this set. Thus, to compute EUðOÞ, there are mn inferences to be performed. In other words, the time complexity of
computing VOI is exponential. It becomes infeasible to compute VOI(O) when n is not small.

The key to computing VOIðOÞ efficiently is to compute EUðOÞ, which can be rewritten as follows:

EUðOÞ ¼
X
o2O

pðoÞmax
dj2D

X
hi2H

pðhijoÞuðhi; djÞ ¼
X
o2O

max
dj2D

X
hi2H

pðoÞpðhijoÞuðhi; djÞ ¼
X
o2O

max
dj2D

X
hi2H

pðhiÞpðojhiÞuðhi; djÞ: ð5Þ

It is noticed that each instantiation of O corresponds to a specific optimal action for the decision node D. We define the deci-
sion function d : O! D, which maps an instantiation of O into a decision in D. For example, dðoÞ ¼ dk indicates when the
observation is o, the corresponding optimal decision is dk, dk ¼ arg maxdj2D

P
hi2HpðhijoÞuðhi; djÞ. Therefore we can divide all

the instantiations of O into several subsets, where the optimal action is the same for those instantiations in the same subset.
Specifically, if D has q decision rules, fd1; . . . ; dqg, all the instantiations of O can be divided into q subsets, od1 ; od2 ; . . . ; odq ,
where odk

¼ fo 2 OjdðoÞ ¼ dkg. Fig. 3 illustrates the relationships between each instantiation and the q subsets. Thus, from
Eq. (5), EU(O) can be further derived as follows:

EUðOÞ ¼
X
hi2H

pðhiÞ
Xq

k¼1

X
o2odk

pðojhiÞuðhi; dkÞ: ð6Þ

In the next several sections, we show how to compute EUðOÞ efficiently.

3.2. Decision boundaries

In Eq. (6), the difficult part is to compute
P

o2odk
pðojhiÞ because the size of the set odk

could be very large based on the
previous analysis. In order to compute it efficiently, it is necessary to know how to divide all the instantiations of O into
the q subsets. We first focus on the case that H has only two states, h1, h2, and then extend it to the general case in Section
3.4.

Based on the definition, the expected utility of taking the action dk is EUðdkÞ ¼ pðh1Þ � u1k þ pðh2Þ � u2k, where
u1k ¼ uðh1; dkÞ, and u2k ¼ uðh2; dkÞ. We can sort the index of all the decision rules based on the utility functions, such
that u1k > u1j and u2k < u2j for k < j. Fig. 4 gives an example of the utility function uðH;DÞ. As shown in the figure, as k
increases, u1k decreases and u2k increases. If there is an action di that cannot be sorted according to this criterion, it is either

D

U

On-1
O1

Oi

Oj

...

...

O2 On

θ

Fig. 2. An ID example for non-myopic VOI computation. H is the hypothesis node, D is the decision node, and U is the utility node. Oi represents possible
observations from an information source. There could be hidden nodes between H and Oi .

o1 o2 ... oi ... ox od1 od2 ... odq

a b
Fig. 3. (a) Each oi corresponds to an instantiation; (b) all the instantiations can be divided into q subsets, where each instantiation in the set odi

corresponds
to the optimal decision di .

W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450 439

dominated by another action, or it dominates another action. (If uðdi;HÞ is always larger than uðdj;HÞ, no matter what state
of H is, we say di dominates dj). Then the dominated action can be removed from the set of possible actions, without chang-
ing the optimal policy.

Proposition 1. Let rjk ¼
u2j�u2k

u1k�u1jþu2j�u2k
, p�kl ¼maxk<j6qrjk, and p�ku ¼min16j<krjk, then dk is the optimal action if and only if

p�kl 6 pðh1Þ 6 p�ku. In addition, p�ql ¼ 0 and p�1u ¼ 1. (Here k is the index of an action.)

Proof. see Appendix. h

Proposition 1 presents that if the probability of H being h1 is between p�kl and p�ku, dk is the optimal decision. From this, we
can further derive Proposition 2.

Proposition 2X
o2odk

pðoÞ ¼ pðp�kl 6 pðh1joÞ 6 p�kuÞ: ð7Þ

Proof. see Appendix. h

The Proof of Proposition 2 establishes Eq. (7) by showing that both sides of this equation express the probability that dk is
the optimal decision for h1. Based on Proposition 2, we can get the following corollary.

Corollary 1X
o2odk

pðojh1Þ ¼ pðp�kl 6 pðh1joÞ 6 p�kujh1Þ; ð8Þ

X
o2odk

pðojh2Þ ¼ pðp�kl 6 pðh1joÞ 6 p�kujh2Þ: ð9Þ

The equations in Corollary 1 indicate the probability that the decision maker will take the optimal decision dk after
observing new evidence, given the situation that the state of H is hi before collecting the evidence.

Based on Corollary 1, the problem of computing
P

o2odk
pðojhiÞ; i ¼ 1;2; (from Eq. (6)) transfers to the problem of comput-

ing pðp�kl 6 pðh1joÞ 6 p�kujhiÞ, which is the topic of the next section. We will focus on pðp�kl 6 pðh1joÞ 6 p�kujh1Þ only because the
procedure of computing pðp�kl 6 pðh1joÞ 6 p�kujh2Þ is similar.

3.3. Approximation with central-limit theorem

3.3.1. A partitioning procedure
To compute pðp�kl 6 pðh1joÞ 6 p�kujh1Þ, one way is to treat pðh1joÞ as a random variable. If the probability density function of

this variable is known, it will be easy to compute pðp�kl 6 pðh1joÞ 6 p�kujh1Þ. However, it is hard to get such a probability den-

sity function directly. But we notice that pðp�kl 6 pðh1joÞ 6 p�kujh1Þ ¼ p
p�

kl
1�p�

kl
6

pðh1 joÞ
pðh2 joÞ

6
p�

ku
1�p�

ku
jh1

� �
. Based on the transformation

property between a random variable and its function [2], it is straightforward that pðp�kl 6 pðh1joÞ 6 p�kujh1Þ
¼ p

p�
kl

1�p�
kl
6

pðh1 joÞ
pðh2 joÞ

6
p�

ku
1�p�

ku
jh1

� �
.

Let us take a closer look at pðh1 joÞ
pðh2 joÞ

because it is critical in the approximate algorithm.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

U
til

ity
u

1k

u
2k

Fig. 4. An example of the utility function UðH;DÞ.

440 W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450

If all the Oi nodes are conditionally independent from each other given H, based on the chain rule:

pðh1jOÞ
pðh2jOÞ

¼ pðO1jh1Þ
pðO1jh2Þ

� � � pðOnjh1Þ
pðOnjh2Þ

pðh1Þ
pðh2Þ

: ð10Þ

Usually some Ois may not be conditionally independent given H. We will show that pðh1 joÞ
pðh2 joÞ

is approximately distributed as a
log-normal random variable. However, in order to prove it, it is necessary to obtain a format similar to Eq. (10) even when Ois
are not conditionally independent. We thus propose a partitioning procedure to partition O into several groups based on the
principle of d-separation [21], where the nodes in one group are conditionally independent from the nodes in other groups.
This procedure consists of three steps.

(1) Decide whether two nodes, Oi, Oj, are conditionally independent given H by exploring the ID structure based on four
rules: (i) if there is a directed path between Oi and Oj without passing H, Oi and Oj are dependent; (ii) if both Oi and Oj

are the ancestors of H, Oi and Oj are dependent given H; (iii) after removing the links to and from H from the original
ID, if Oi and Oj have common ancestors, or Oi is Oj’s ancestor, or vice versa, then Oi and Oj are dependent; and (iv) in all
the other cases, Oi and Oj are conditionally independent given H.

(2) Build an undirected graph to model the relationships between the nodes. In such a graph, each vertex represents an Oi

node, and each edge between two vertices indicates that the two corresponding nodes are dependent according to the
rules in Step 1.

(3) Partition the graph into disjoint connected subgraphs. A depth first search (DFS) algorithm [4] is used to partition the
graph into several connected components (disjoint connected subgraphs) so that each component is disconnected from
other components. The nodes in each connected component are conditionally independent from the nodes in any
other connected components. Therefore, each connected component corresponds to one group.

For example, for the ID in Fig. 5a, with the partitioning procedure, the Oi nodes can be divided into five groups, fO1;O2g,
fO3;O4;O5g, fO6g, fO7g, and fO8;O9g. Fig. 5b shows the graph built by the partitioning procedure.

3.3.2. Central-limit theorem
Generally, with the partition procedure presented in the previous subsection, O can be automatically divided into several

sets, named Os1 ;Os2 ; . . . ;Osg , where g is the overall number of the groups. Thus, Eq. (10) can be modified as follows:

pðh1jOÞ
pðh2jOÞ

¼ pðOs1 jh1Þ
pðOs1 jh2Þ

� � � pðO
sg jh1Þ

pðOsg jh2Þ
pðh1Þ
pðh2Þ

) ln
pðh1jOÞ
pðh2jOÞ

¼
Xg

i¼1

ln
pðOsi jh1Þ
pðOsi jh2Þ

þ ln
pðh1Þ
pðh2Þ

) ln / ¼
Xg

i¼1

wi þ c;

where / ¼ pðh1jOÞ
pðh2jOÞ

; wi ¼ ln
pðOsi jh1Þ
pðOsi jh2Þ

; c ¼ ln
pðh1Þ
pðh2Þ

: ð11Þ

In the above equation, c can be regarded as a constant reflecting the state of H before any new observation is obtained and
any new decision is taken. Here, we assume pðh2jOÞ, pðOsi jh2Þ, and pðh2Þ are not equal to 0.

Let W ¼
Pg

i¼1wi be the sum of wi. Following [11], we use the cental-limit theorem to approximate W. The central-limit
theorem [9] states that the sum of independent variables approaches a Gaussian distribution when the number of variables
becomes large. Also, the expectation and variance of the sum is the sum of the expectation and variance of each individual
random variable. Thus, regarding each wi as an independent variable, W then follows a Gaussian distribution. Then, based on
Eq. (11), / will be a log-normal distribution. For a random variable X, if lnðXÞ has a Gaussian distribution, we say X has a log-
normal distribution. The probability density function is: pðxÞ ¼ 1

S
ffiffiffiffi
2p
p

x
e�ðln x�MÞ2=ð2S2Þ, denoted as X � LogNðM; S2Þ [5], where M

and S are the mean and standard deviation of the variable’s logarithm [1]. In order to assess the parameters (mean and var-

D

O1 O2

H1

O3 O4

H2

O7O6

H3

O5

O8 O9

O1

O2

O3

O4
O7O6O5

O8 O9

a b

θ

Fig. 5. (a) An ID example; (b) the graph built by the partitioning procedure.

W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450 441

iance) of the log-normal distribution, we need to compute the mean and the variance of each wi. The computational process
is shown as follows.

Assume Osi has ri instantiations, fosi
1 ; . . . ; osi

ri
g, where ri is the product of the number of the states for each node in the group

Osi , e.g., if Osi ¼ fO1;O2g, and both O1 and O2 have three states, then ri ¼ 3 � 3 ¼ 9. Table 1 gives the value and the probability
distribution for each wi:

Based on the table, the expected value l, and the variance r2 for each wi can be computed as follows:

lðwijh1Þ ¼
Xri

j¼1

pðosi
j jh1Þln

pðosi
j jh1Þ

pðosi
j jh2Þ

; ð12Þ

r2ðwijh1Þ ¼
Xri

j¼1

pðosi
j jh1Þln2 pðosi

j jh1Þ
pðosi

j jh2Þ
� l2ðwijh1Þ: ð13Þ

By the central-limit theorem, the expected value and the variance of W can be obtained by the following equations:

lðWjh1Þ ¼
Xg

i¼1

lðwijh1Þ; ð14Þ

r2ðWjh1Þ ¼
Xg

i¼1

r2ðwijh1Þ: ð15Þ

Therefore, based on Eq. (11), for W � NðlðWjh1Þ;r2ðWjh1ÞÞ, we have / � LogNðlðW jh1Þ þ c;r2ðW jh1ÞÞ, where LogN denotes
the log-normal distribution. After getting the probability distribution function and the function parameters for / in Eq. (11),
we are ready to assess the non-myopic VOI.

Before we go to the next section, we first analyze the computational steps involved in computing the parameters for the
log-normal distribution, which is the most time-consuming part in the algorithm. Based on Eqs. (12) and (14), the overall
number of the computational steps is 4

Pg
i¼1ri þ 2g. We will show that this number is much smaller than the overall number

of the computational steps in the exact computational method during the algorithm analysis in Section 3.5.

3.3.3. Approximate non-myopic value-of-information
Based on Proposition 1 in Section 3.2, we know that dk is the optimal action with the probability pðp�kl 6 pðh1joÞ 6 p�kuÞ,

which is equivalent to p
p�

kl
1�p�

kl
6 / 6

p�
ku

1�p�
ku

� �
as shown in Section 3.3.1. Let /�kl ¼

p�
kl

1�p�
kl
, and /�ku ¼

p�
ku

1�p�
ku

, thus, dk is the optimal deci-

sion if and only if /�kl 6 / 6 /�ku. Then, based on Corollary 1 in Section 3.2, the following equation stands:X
o2odk

pðojh1Þ ¼ pð/�kl 6 / 6 /�kujh1Þ: ð16Þ

Furthermore, from Section 3.3.2, we know that / � LogNðlðW jh1Þ þ c;r2ðW jh1ÞÞ, thus,

pð/�kl 6 / 6 /�kujh1Þ ¼
1

rðWjh1Þ
ffiffiffiffiffiffiffi
2p
p

x

Z /�ku

/�kl

e
�ðln x�lðW jh1 Þ�cÞ2

2r2 ðW jh1 Þ dx; ð17Þ

pð/�kl 6 / 6 /�kujh2Þ can be computed in the same way by replacing h1 with h2 in the previous equations.
Therefore, VOI can be approximated by combining Eqs. (2), (6), (16), and (17). Fig. 6 shows the key equations of the algo-

rithm when H has only two states. In summary, to approximate VOIðOÞ efficiently, the key is to compute EUðOÞ, which leads
to an approximation of

P
o2odk

pðojh1Þ with the log-normal distribution by exploiting the central-limit theorem and the deci-
sion boundaries.

3.4. Generalization

In the previous algorithm, the node H only allows two states, although the other random nodes and the decision node can
be multiple states. However, in real-world applications, H may have more than two states. In this section, we extend the
algorithm to the case that H can have several states too. Assume H has h states, h1; . . . ; hh, and still, d has q rules,
d1; . . . ; dq, similarly to Eq. (11), we have the following equations:

Table 1
The probability distribution of wi

wi pðwijh1Þ pðwijh2Þ

ln pðosi
1 jh1Þ

pðosi
1 jh2Þ

pðosi
1 jh1Þ pðosi

1 jh2Þ
.

ln
pðosi

ri
jh1Þ

pðosi
ri
jh2Þ

pðosi
ri
jh1Þ pðosi

ri
jh2Þ

442 W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450

pðhijOÞ
pðhhjOÞ

¼ pðOs1 jhiÞ
pðOs1 jhhÞ

� � � pðO
sg jhiÞ

pðOsg jhhÞ
pðhiÞ
pðhhÞ

; i 6¼ h) ln
pðhijOÞ
pðhhjOÞ

¼
Xg

k¼1

ln
pðOsk jhiÞ
pðOsk jhhÞ

þ ln
pðhiÞ
pðhhÞ

) ln /i

¼
Xg

k¼1

wi
k þ ci; where /i ¼

pðhijOÞ
pðhhjOÞ

; wi
k ¼ ln

pðOsk jhiÞ
pðOsk jhhÞ

; ci ¼ ln
pðhiÞ
pðhhÞ

: ð18Þ

Let Wi ¼
Pg

k¼1wi
k, i 6¼ h, Wi still has a Gaussian distribution. Here, we assume pðhhjOÞ, pðOsk jhhÞ, and pðhhÞ are not equal to 0.

The similar method in Section 3.3 can be used to compute the variance and the mean. Specifically, for the new defined wi
k in

the above equation, Table 1 can be modified as follows (see Table 2).
Thus, we get the following equations:

lðwi
kjhjÞ ¼

Xrk

l¼1

pðosk
l jhjÞ ln

pðosk
l jhiÞ

pðosk
l jhhÞ

; 1 6 i < h; 1 6 j 6 h; 1 6 k 6 g; ð19Þ

r2ðwi
kjhjÞ ¼

Xrk

l¼1

pðosk
l jhjÞln2 pðosk

l jhiÞ
pðosk

l jhhÞ
� l2ðwi

kjhjÞ: ð20Þ

Similar to Eq. (14), the expected value and the variance of Wi can be obtained as we see here:

lðWijhjÞ ¼
Xg

k¼1

lðwi
kjhjÞ; 1 6 i < h; 1 6 j 6 h; ð21Þ

r2ðWijhjÞ ¼
Xg

k¼1

r2ðwi
kjhjÞ: ð22Þ

Accordingly, /i follows the log-normal distribution with Sij ¼ rðWijhjÞ and Mij ¼ lðWijhjÞ þ ci. We denote the probability
density function of /i given hj as fhj

ð/iÞ. Eqs. (19) and (21) show that the overall number of the computational steps to assess
the parameters for the log-normal distributions is 4h

Pg
k¼1rk þ 2hðh� 1Þg when h > 2.

Even though fhj
ð/iÞ can be easily obtained, it is still necessary to get the decision boundaries for each optimal decision in

order to efficiently compute
P

o2odk
pðojhjÞ. Therefore, a set of linear inequality functions need to be solved when H has more

than two states. For example, if dk is the optimal action, EUðdkÞ must be larger than the expected utility of taking any other
action. Based on this, a set of linear inequality functions can be obtained:

Fig. 6. The key equations to approximate VOI when H has only two states, D has multiple rules, and the other nodes have multiple states.

Table 2
The probability distribution of wi

k

wi
k pðwi

kjh1Þ . . . pðwi
kjhhÞ

ln pðosk
1 jhiÞ

pðosk
1 jhhÞ

pðosk
1 jh1Þ . . . pðosk

1 jhhÞ
.

ln
pðosk

rk
jhiÞ

pðosk
rk
jhhÞ

pðosk
rk
jh1Þ . . . pðosk

rk
jhhÞ

W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450 443

pðh1Þu1k þ pðh2Þu2k þ � � � þ pðhhÞuhk P pðh1Þu1j þ � � � þ pðhhÞuhj

) u1k � u1j þ uhj � uhk

uhj � uhk
� pðh1Þ þ � � � þ

uðh�1Þk � uðh�1Þj þ uhj � uhk

uhj � uhk
� pðhh�1ÞP 1

) u1k � u1j

uhj � uhk
� pðh1Þ
pðhhÞ

þ � � � þ uðh�1Þk � uðh�1Þj

uhj � uhk
� pðhh�1Þ

pðhhÞ
P 1: ð23Þ

We assume uhj � uhk > 0; otherwise, ‘‘P” is changed to ‘‘6” in the last inequality.
Let Ak be the solution region of the above linear inequalities, then

X
o2odk

pðojhjÞ ¼
Z

Ak

fhj
ð/1Þ � � � fhj

ð/h�1ÞdAk; 1 6 j 6 h; 1 6 k 6 q: ð24Þ

The right side of Eq. (24) is an integral over the solution region Ak decided by the linear inequalities. We first demonstrate
how to solve the integral when H has three states, and then introduce the method for the case that H has more than three
states.

When H has three states, Eq. (23) can be simplified as follows:

pðh1Þu1k þ pðh2Þu2k þ pðh3Þu3k P pðh1Þu1j þ pðh2Þu2j þ pðh3Þu3j) a1kj �
pðh1Þ
pðh3Þ

þ a2kj �
pðh2Þ
pðh3Þ

P 1;

where a1kj ¼
u1k � u1j

u3j � u3k
and a2kj ¼

u2k � u2j

u3j � u3k
: ð25Þ

In the above, it is assumed that u3j > u3k; if u3j < u3k, then ‘‘P” is changed to ‘‘6” in the last inequality.
And Eq. (24) can be simplified as follows:

X
o2odk

pðojhjÞ ¼
Z

Ak

fhj
ð/1Þfhj

ð/2ÞdAk; 1 6 k 6 q; 1 6 j 6 3; ð26Þ

Ak is decided by ðq� 1Þ linear inequalities and each inequality has two variables /1 and /2 as defined in Eq. (25). We use the
following steps to solve this integral when Ak is a finite region.

1. Identify all the lines that define the inequalities and find all the intersection points between any two lines as well as the
intersection points between any line and the x (or y) axis.

2. Choose the intersection points that satisfy all the linear inequalities, and use them as vertices to form a polygon.
3. Divide the polygon into several simple regions:Specifically, for each vertex, we generate a line crossing this vertex and

parallel to the y-axis. The lines then divide the polygon into several simple regions.
4. Evaluate the integral in each simple region and sum the values together.

An example of the solution region is shown in Fig. 7. In this example, if a1kj > a1kjði 6¼ jÞ, then a2kj > a2kj too. Therefore, the
solution region can be decided by the intersection points of the lines that are defined by the linear inequalities and the axes.
For example, in Fig. 7, Ak is decided by a–d, which are selected from the intersection points fð1=a1kj;0Þ;
ð0;1=a2kjÞ; j ¼ 1; . . . ; q; j 6¼ kg. Based on [3], the time complexity of solving m linear inequalities with n variables (each
inequality only has two variables) is Oðmn log mþmn2log2nÞ. In this case, n is 2 and m is q� 1.

Fig. 7. A solution region of a group of linear inequalities.

444 W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450

When H has more than three states, the integral needs to be performed in a high-dimension space (dimension is larger
than 2). Therefore, we solve it with Quasi-Monte Carlo integration [10,16], which is a popular method to handle multiple
integral. Quasi-Monte Carlo integration picks points based on sequences of quasirandom numbers over some simple domain
A0k which is a superset of Ak, checks whether each point is within Ak, and estimates the area (n-dimensional content) of Ak as
the area of A0k multiplied by the fraction of points falling within Ak. Such a method is implemented by Mathematica [20],
which can automatically handle a multiple integral with a region implicitly defined by multiple inequality functions.

Fig. 8 shows the key equations of the algorithm when H has multiple states. The main equations are similar to those in
Fig. 6. However, since H has multiple states, it becomes more complex to obtain the parameters of the log-normal distribu-
tion and perform the integration.

3.5. Algorithm analysis

Now, we analyze the computational complexity of the proposed approximation algorithm compared to the exact compu-
tational method. For simplicity, assume that the number of the state of each Oi node is m, and there are n nodes in the set O.
Assume we only count the time used for computing expected utilities. Then the computational complexity of the exact VOI
computational method is approximately hmn, where h is the number of the state of the H node. With the approximation
algorithm, the computational complexity is reduced to hmk, where h is the number of the state of the H node, and k is
the number of Oi nodes in the maximum group among fOs1 ; . . . ;Osgg. In the best case, if all the Oi nodes are conditionally
independent given H, the time complexity is about linear with respect to m. In the worst case, if all the Oi nodes are depen-
dent, the time complexity is approximately mn. However, usually, in most real-world applications, k is less than n, thus, the
approximate algorithm is expected to be more efficient than the exact computational method, as will be shown in the exper-
iments. For example, for the ID in Fig. 5, n ¼ 9, m ¼ 4, h ¼ 3, and q ¼ 3. Then, for the exact computation, the number of com-
putations is around 3 � 49 ¼ 786432, while using the approximate algorithm, the number of computations is only around
3 � 43 ¼ 192.

However, in addition to the cost of computing expected utilities, the approximation algorithm also includes some extra
costs: sorting the utility functions (Section 3.2), partitioning the O set (Section 3.3.1), and deciding the decision boundaries
(Section 3.2) when H has two states, or performing the integral when H has more than two states (Section 3.4). These costs
are not included in the above analysis. In general, the extra time in these steps is much less than the time used for computing
expected utilities. For example, the time complexity of sorting is Oðq logðqÞÞ, the time complexity of the partition procedure
is OðjV j þ jEjÞ (V is the set of vertex, and E is the set of edges in an ID), and the time complexity in deciding the decision
boundaries when h has two states is Oðq2Þ. When h has more than two states, deciding the decision boundaries needs addi-
tional time. Empirically, it does not affect the overall speed, as will be shown in the experiments. In addition, most steps in
computing expected utilities involve performing inferences in an ID, which is usually NP-hard and thus consumes much
more time than a step in the procedures of sorting, partitioning, and integrating.

Fig. 8. The key equations to compute VOI when H has multiple states.

W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450 445

4. Experiments

The experiments are designed to demonstrate the performance of the proposed algorithm compared to the exact VOI
computation. We limit the ID test model with at most 5 layers2 and up to 11 information sources due to the exponential com-
putational time behind the exact computation. Ten different ID models are constructed, where in one of the IDs the O nodes are
conditionally independent given the H node. Table 3 describes the structures of these IDs. The IDs are parameterized with 150
sets of different conditional probability tables and utility functions, a process which yields 1500 test cases. In each the one-third
of them, H node has 2, 3, and 4 states, respectively. Without loss of generality, all the other random nodes and the decision node
have four states.

For each test case, the VOIs for different O subsets with the size from 3 to 11 are computed. The results from the approx-
imation algorithm are compared to the exact computation implemented with the brute-forth method. Let VOIt be the
ground-truth, and VOI be the value computed with the proposed algorithm. Assuming VOIt 6¼ 0, the error rate is defined
as follows:

Err ¼ jVOIt� VOIj
VOIt

:

The 1500 test cases described previously are divided into six groups, named as ID_indep: 2-state, ID_indep:3-state, ID_indep:4-
state, ID_dep:2-state, ID_dep: 3-state, and ID_dep:4-state. Table 4 describes the six groups.

Fig. 9 illustrates the results from the six groups of 1500 test cases. Chart (a) shows the average errors for each group, while
Chart (b) shows the VOIs for one specific case, which is randomly chosen from the test cases from ID_dep: 3-state. As the set
size of the Oi nodes increases, the error rate decreases. When the state number of H is the same, the error rates of the depen-
dent cases are larger than the error rates of the conditional independent cases. This can be explained by the reason that the
IDs in the dependent cases have fewer independent O subsets than the ID in the independent groups. Since the central-limit
theorem is the basis of our algorithm, it works better when the number of wi increases, which corresponds to the number of
independent O subsets. Even when the size of O set is as small as 6, the average error is less than or around 0.1 for all the
cases. We could run several larger IDs with much more Oi nodes, and the error curve would be progressively decreasing.
Here, we intend to show the trend and the capability of this algorithm.

Charts (c) and (d) show the average computational time with the exact computation and the approximation computation.
When the set size of the Oi nodes is small, the computational time is similar. However, as the size becomes larger, the com-
putational time of the exact computation increases exponentially, while the computational time of the approximation algo-
rithm increases much slower. Thus, the larger the O set size is, the more time the approximation algorithm can save.
Likewise, as the number of the state of each Oi node further increases, the computational saving would be more significant.
As the number of states of H increase, the computational time also slightly increases.

5. An illustrative application

We use a real-world application in human computer interaction to demonstrate the advantages of the proposed algo-
rithm. Fig. 10 shows an ID for user stress recognition and user assistance. The diagram consists of two portions. The upper
portion, from the top to the ‘‘stress” node, depicts the elements that can alter human stress. These elements include the
workload, the environmental context, specific character of the user such as his/her trait, and importance of the goal that

Table 3
ID structures

k 5 4 3 2 1
Number of IDs 2 3 3 1 1

k is the size of the biggest group after partitioning.

2 The length of the longest path starting from (or ending at) the hypothesis node is 5.

Table 4
Testing cases

ID_indep: 2-state 50 test cases, where Oi nodes are conditionally independent given H whose state is binary
ID_indep: 3-state 50 test cases, where Oi nodes are conditionally independent given H who has three states
ID_indep: 4-state 50 test cases, where Oi nodes are conditionally independent given H who has four states
ID_dep: 2-state 450 test cases, where Oi nodes are conditionally dependent given H whose state is binary
ID_dep: 3-state 450 test cases, where Oi nodes are conditionally dependent given H who has three states
ID_dep: 4-state 450 test cases, where Oi nodes are conditionally dependent given H who has four states

446 W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450

he/she is pursuing. This portion is called predictive portion. On the other hand, the lower portion of the diagram, from the
‘‘stress” node to the leaf nodes, depicts the observable features that reveal stress. These features include the quantifiable
measures on the user physical appearance, physiology, behaviors, and performance. This portion is called diagnostic portion.

3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

size of O set

A
ve

ra
ge

 E
rr

or
ID_indep:2state
ID_dep:2state
ID_indep:3state
ID_dep:3state
ID_indep:4state
ID_dep:4state

3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

Size of O Set

V
O

I

Exact
Approximate

a b

3 4 5 6 7 8 9 10 11
–3

–2

–1

0

1

2

3

4

5

6

7

size of O set

C
om

pu
ta

tio
na

l t
im

e
(lo

g,
 s

ec
on

ds
)

Exact Computation(ID_indep:2state)
Approximation (ID_indep:2state)
Exact Computation (ID_indep:3state)
Approximation (ID_indep:3state)
Exact Computation (ID_indep:4state)
Approximation (ID_indep:4state)

3 4 5 6 7 8 9 10 11
–3

–2

–1

0

1

2

3

4

5

6

7

size of O set

C
om

pu
ta

tio
na

l t
im

e(
lo

g,
 s

ec
on

ds
)

Exact Computation(ID_dep:2state)
Approximation (ID_dep:2state)
Exact Computation (ID_dep:3state)
Approximation (ID_dep:3state)
Exact Computation (ID_dep:4state)
Approximation (ID_dep:4state)

c d

Fig. 9. Results from the four groups of 1500 test cases: (a) average error rates with the approximation algorithm; (b) VOIt vs. VOI for one test case from
ID_dep: 3-state; (c) computational time (log(t), unit is second) for the groups of ID_indep:n-state, n ¼ 2;3;4; and (d) computational time (log(t), unit is
second) for the groups of ID_dep:n-state, n ¼ 2;3;4.

stress

context goaltrait

P
re

di
ct

iv
e

D
iagnostic

physical

eyelid
movement facial

expression

head
movement

E5

pupil

E3E2

S2

E1

physiological

GSR

S8

E6 E7 E8

S1 S3
S5

performance

S7

Usa

behavioral

mouse
movement

mouse
pressure

char. input
speed

E9
E10 E11

S6 S9
S10 S11

response

accuracy

S12

E12 E13

S13

U1 U6 U7 U8U2 U3 U5 U9 U10

heart
rate

temp.

Gaze

E4

S4

U4

assistance
workload

U11
U12

U13

Fig. 10. An influence diagram for recognizing human stress and providing user assistance. Ellipses denote chance nodes, rectangles denote decision nodes,
and diamonds denote utility nodes. All the chance nodes have three states.

W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450 447

The hybrid structure enables the ID to combine the predictive factors and observable evidence in user stress inference. For
more detail please refer to [19].

To provide timely and appropriate assistance to relieve stress, two types of decision nodes are embedded in the model to
achieve this goal. The first type is the assistance node associated with the stress node, which includes three types of assis-
tance that have different degrees of impact and intrusiveness to a user. Another type of decision nodes is the sensing action
node (Si node in Fig. 10). It decides whether to activate a sensor for collecting evidence or not. Through the ID, we decide the
sensing actions and the assistance action sequentially. In order to first determine the sensing actions (which sensors should
be turned on), VOI is computed for a set S consisting of Si. Using the notations defined before, we have
VOIðSÞ ¼ VOIðEÞ �

P
Si2SuiðSiÞ, where E is the set of observations corresponding to S and VOIðEÞ ¼ EUðEÞ � EUðEÞ.

Fig. 11 shows the experimental results for the stress model. We enumerate all the possible combinations of sensors and
then compute the value-of-information for each combination. Chart (a) illustrates the average VOI errors for different sensor
sets with the same size. And Chart (b) displays the Euclidean distance between the true and estimated probabilitiesP

o2odk
pðojhiÞ (Eq. (26)). Similarly to the simulation experiments, the error decreases as the size of O set increases, and the

computational time increases almost linearly in the approximation algorithm.

6. Conclusions and future work

As a concept commonly used in influence diagrams, VOI is widely used as a criterion to rate the usefulness of various
information sources, and to decide whether pieces of evidence are worth acquiring before actually using the information
sources. Due to the exponential time complexity of computing non-myopic VOI for multiple information sources, most
researchers focus on the myopic VOI, which requires the assumptions (‘‘No competition” and ‘‘One-step horizon”) that
may not meet the requirements of real-world applications.

We thus proposed an algorithm to approximately compute non-myopic VOI efficiently by utilizing the central-limit the-
orem. Although it is motivated by the method of [11], it overcomes the limitations of their method, and works for more gen-
eral cases, specifically, no binary-state assumption for all the nodes and no conditional-independence assumption for the

2 4 6 8 10 12 14
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Size of Sensor Set

A
ve

ra
ge

 E
rr

or

2 4 6 8 10 12 14
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Size of Sensor Set

E
uc

lid
ea

n
D

is
ta

nc
e

a b

2 4 6 8 10 12 14
–2

–1

0

1

2

3

4

5

Size of Sensor Set

C
om

pu
ta

tio
na

l t
im

e(
lo

g,
 s

ec
on

ds
)

Exact Computation
Approximation

2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

35

Size of Sensor Set

A
ve

ra
ge

 V
O

I

Exact VOI
Approximate VOI

c d

Fig. 11. Results for the stress modeling: (a) average errors with the approximation algorithm; (b) Euclidean distance between the true and approximatedP
o2odk

pðojhiÞ; (c) computational time (log(t), unit is second); (d) true VOI vs. approximated VOI.

448 W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450

information sources. Table 5 compares our method with the method in [11]. Due to the benefits of our method, it can be
applied to a much broader field. The experiments demonstrate that the proposed algorithm can approximate the true
non-myopic VOI well, even with a small number of observations. The efficiency of the algorithm makes it a feasible solution
in various applications when efficiently evaluating a lot of information sources is necessary.

Nevertheless, the proposed algorithm focuses on the influence diagrams with one decision node under certain assump-
tions. For example, currently, we assume the hypothesis node H and the decision node d are independent. If D and H are
dependent, but conditionally independent given the observation set O, Eqs. (5) and (6) will not be affected, so our algorithm
can still apply. However, if D and H are dependent given O, it may be difficult to directly apply our algorithm. Another sce-
nario is that when there are more than one hypothesis node and/or utility nodes. One possible solution is to group all these
hypotheses nodes into one. We would like to study these issues in the future.

Appendix

Proposition 1. Let rjk ¼
u2j�u2k

u1k�u1jþu2j�u2k
, p�kl ¼maxk<j6qrjk, and p�ku ¼min16j<krjk, then dk is the optimal action if and only if

p�kl 6 pðh1Þ 6 p�ku.

Proof of Proposition 1.) In this direction, we prove that if dk is the optimal action, pðh1ÞP maxk<j6qrjk and
pðh1Þ 6 min16j<krjk.

If dk is the optimal action, EUðdkÞ must be larger than or equal to the expected utility of any other action. Based on the
definition, the expected utility of taking the action dk is EUðdkÞ ¼ pðh1Þ � u1k þ pðh2Þ � u2k, where u1k ¼ uðh1; dkÞ, and
u2k ¼ uðh2; dkÞ. Therefore, we get the equations as follows:

EUðdkÞP EUðdjÞ 8j; j 6¼ k; ð27Þ
) pðh1Þ � u1k þ pðh2Þ � u2k P pðh1Þ � u1j þ pðh2Þ � u2j; ð28Þ

) pðh1ÞP
u2j � u2k

u1k � u1j þ u2j � u2k
¼ rjk if j > k; ð29Þ

pðh1Þ 6
u2j � u2k

u1k � u1j þ u2j � u2k
¼ rjk if j < k: ð30Þ

Thus, based on the above equations, pðh1ÞP maxk<j6qrjk and pðh1Þ 6min16j<krjk.
(In this direction, we prove that if pðh1ÞP maxk<j6qrjk and pðh1Þ 6 min16j<krjk, then dk is the optimal action.
If pðh1ÞP maxk<j6qrjk 8j; k < j 6 q, we get

pðh1ÞP rjk ¼
u2j � u2k

u1k � u1j þ u2j � u2k
; ð31Þ

) pðh1Þðu1k � u1j þ u2j � u2kÞP u2j � u2k; ð32Þ
) pðh1Þ � u1k þ ð1� pðh1ÞÞ � u2k P pðh1Þ � u1j þ ð1� pðh1ÞÞ � u2j; ð33Þ
) EUðdkÞP EUðdjÞ: ð34Þ

Similarly, for 8j;1 6 j < k, we can get EUðdkÞP EUðdjÞ. Therefore, dk has the maximal expected utility and thus is the optimal
decision.

Proposition 2.
P

o2odk
pðoÞ ¼ pðp�kl 6 pðh1joÞ 6 p�kuÞ.

Proof of Proposition 2. Based on Proposition 1, dk is the optimal decision if and only if the value of pðh1Þ is between p�kl and
p�ku. Therefore, given an instantiation o, the probability that dk is the optimal decision is equal to the probability that pðh1joÞ is
between p�kl and p�ku, i.e., pðp�kl 6 pðh1joÞ 6 p�kuÞ.

On the other hand, we know that odk
is a subset of instantiations, each of which corresponds to the optimal action dk.

Therefore, as long as o belongs to the set of odk
, dk will be the optimal decision. In other words, the probability of dk being the

optimal decision is the sum of the probability of each o 2 odk
, which is

P
o2odk

pðoÞ. Therefore,
P

o2odk
pðoÞ ¼

pðp�kl 6 pðh1joÞ 6 p�kuÞ.

Table 5
The proposed algorithm vs. the algorithm in [11]

Our algorithm Heckerman’s algorithm

Hypothesis node (H) can be multiple states H has to be binary
Decision node (D) can have multiple rules D has to be binary
Information sources nodes (Os) can be dependent from each other Os have to be conditionally independent from each other

W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450 449

References

[1] N. Balakrishnan, W.W.S. Chen, Handbook of Tables for Order Statistics from Log Normal Distributions with Applications, Kluwer, Amsterdam,
Netherlands, 1999.

[2] G. Casella, R. Berger, Statistical Inference, Brooks/Cole, 1990. pp. 45–46 (Chapter 2).
[3] E. Cohen, N. Megiddo, Improved algorithms for linear inequalities with two variables per inequality, SIAM Journal on Computing 23 (6) (1994) 1313–

1347.
[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT Press and McGraw-Hill, 2002.
[5] E. Crow, K. Shimizu, Lognormal Distributions: Theory and Applications, Dekker, New York, 1988.
[6] M. Diehl, Y. Haimes, Influence diagrams with multiple objectives and tradeoff analysis, IEEE Transactions on Systems, Man and Cybernetics, Part A 34

(3) (2004) 293–304.
[7] S. Dittmer, F. Jensen, Myopic value of information in influence diagrams, Proceedings of the Thirteenth Conference on Uncertainty in Artificial

Intelligence (1997) 142–149.
[8] K.J. Ezawa, Evidence propagation and value of evidence on influence diagrams, Operations Research 46 (1) (1998) 73–83.
[9] W. Feller, An Introduction to Probability Theory and Its Applications, third ed., vol. 2, Wiley, New York, 1971.

[10] J. Hammersley, Monte Carlo methods for solving multivariable problems, Annals of the New York Academy Sciences 86 (1960) 844–874.
[11] D. Heckerman, E. Horvitz, B. Middleton, An approximate nonmyopic computation for value of information, IEEE Transactions on Pattern Analysis and

Machine Intelligence 15 (3) (1993) 292–298.
[12] R. Howard, Value of information lotteries, IEEE Transactions of Systems Science and Cybernetics 3 (1) (1967) 54–60.
[13] R. Howard, J. Matheson, Influence diagrams, Readings on the Principles and Applications of Decision Analysis 2 (1981) 721–762.
[14] F. Jensen, Bayesian Networks and Decision Graphs, Springer-Verlag, New York, 2001.
[15] F. Jensen, F.V. Jensen, S. Dittmer, From influence diagrams to junction trees, (1994) 367–374.
[16] M. Kalos, P. Whitlock, Monte Carlo Methods, Wiley, New York, 1986.
[17] K.B. Korb, A.E. Nicholson, Bayesian Artificial Intelligence, Chapman and Hall/CRC, 2003.
[18] W. Liao, Q. Ji, Efficient active fusion for decision-making via VOI approximation. Twenty-first National Conference on Artificial Intelligence (AAAI),

2006.
[19] W. Liao, W. Zhang, Z. Zhu, Q. Ji, A decision theoretic model for stress recognition and user assistance, Twentieth National Conference on Artificial

Intelligence (AAAI) (2005) 529–534.
[20] Mathematica, 2006. <http://www.wolfram.com/products/mathematica/index.html>.
[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann Publishers, 1988.
[22] K.L. Poh, E. Horvitz, A graph–theoretic analysis of information value, Proceedings of the 12th Annual Conference on Uncertainty in Artificial

Intelligence (UAI-96) (1996) 427–435.
[23] H. Raiffa, Decision Analysis, Addison-Wesley, 1968.
[24] R. Shachter, Evaluating influence diagrams, Operations Research 34 (6) (1986) 871–882.
[25] R. Shachter, Efficient value of information computation, Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99)

(1999) 594–601.
[26] R. Shachter, P.M. Ndilikilikesha, Using potential influence diagrams for probabilistic inference and decision making, Proceedings of the Ninth Annual

Conference on Uncertainty in Artificial Intelligence (UAI-93) (1993) 383–390.
[27] F. Yokota, K.M. Thompson, Value of information analysis in environmental health risk management decisions: past, present, and future, Risk Analysis

24 (2004) 635–650.
[28] N.L. Zhang, R. Qi, D. Poole, Incremental computation of the value of perfect information in stepwise-decomposable influence diagrams, Proceedings of

the Ninth Conference on Uncertainty in Artificial Intelligence (1993) 400–410.

450 W. Liao, Q. Ji / International Journal of Approximate Reasoning 49 (2008) 436–450

http://www.wolfram.com/products/mathematica/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS 1

Efficient Sensor Selection for
Active Information Fusion

Yongmian Zhang, Member, IEEE, and Qiang Ji, Senior Member, IEEE

Abstract—In our previous paper, we formalized an active infor-
mation fusion framework based on dynamic Bayesian networks to
provide active information fusion. This paper focuses on a central
issue of active information fusion, i.e., the efficient identification of
a subset of sensors that are most decision relevant and cost effec-
tive. Determining the most informative and cost-effective sensors
requires an evaluation of all the possible subsets of sensors, which
is computationally intractable, particularly when information-
theoretic criterion such as mutual information is used. To over-
come this challenge, we propose a new quantitative measure
for sensor synergy based on which a sensor synergy graph is
constructed. Using the sensor synergy graph, we first introduce
an alternative measure to multisensor mutual information for
characterizing the sensor information gain. We then propose an
approximated nonmyopic sensor selection method that can effi-
ciently and near-optimally select a subset of sensors for active
fusion. The simulation study demonstrates both the performance
and the efficiency of the proposed sensor selection method.

Index Terms—Active information fusion, Bayesian networks
(BNs), sensor selection, situation awareness.

I. INTRODUCTION

INFORMATION fusion is playing an increasingly important
role in improving the performance of sensory systems for

various applications, including situation assessment, enemy
intent understanding and prediction, and threat assessment.
As sensors become ubiquitous, persistent, and pervasive, and
coupled with the ever increasing demand for less time and fewer
resources, it becomes critically important to perform selective
fusion so that decision can be made in a timely and efficient
manner. The need for sensor selection is further demonstrated
by the availability of an increasingly large volume of sensory
data and by the variability of sensor reliability over time and
over location. It is important to select the sensors not only to
reduce the amount of data to integrate but also to improve fusion
accuracy by selecting the most reliable sensors for a certain
location at a certain time, by selecting complementary sensors,
and by reducing sensor redundancy. Active fusion serves these
purposes well. Active fusion extends the paradigm of informa-

Manuscript received May 20, 2008; revised October 25, 2008, December 19,
2008, and March 11, 2009. This work was supported in part by the Air Force
Office of Scientific Research under Grant F49620-03-0160. This paper was
recommended by Associate Editor R. Lynch.

The authors are with the Department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:
zhangy@ecse.rpi.edu; qji@ecse.rpi.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2009.2021272

Fig. 1. BN is used for active information fusion, where Θ and Si are hypoth-
esis and sensors, respectively. Xi and Yi are the intermediate variables, and
they are needed to model the relationships among sensors and the hypothesis.
Sensor fusion is accomplished through probabilistic inference given the sensory
measurements.

tion fusion by being not only concerned with the methodology
of how to combine information but also concerned with the
fusion efficiency, timeliness, and accuracy. Active fusion can
be defined as the process of combining data with a control
mechanism that dynamically selects a subset of sensors to
minimize uncertainty in situation assessment and to maximize
the overall expected utility in decision making.

In our previous work [1], we formalized an information fu-
sion framework based on Bayesian networks (BNs) to provide
active and sufficing information fusion. BNs are used to model
a number of uncertain events, their spatial relationships, and
the sensor measurements. Given the sensory measurements,
information fusion is performed through probabilistic inference
using the BN. This can be accomplished through bottom-up
belief propagation, as illustrated in Fig. 1. Our previous work,
however, did not address the core issue in active fusion, i.e.,
efficient sensor selection. This is the focus of this paper.

Based on information theory [2], the more sensors1 we
use, the more information we can obtain. However, every
act of information gathering incurs cost. Sensor costs may
include physical costs, computational costs, maintenance costs,
and human costs (e.g., risk). Many applications are often
constrained by limited time and resources. An essential issue
for active information fusion is to select a subset of the most

1For generality, sensors could refer to any devices/means of acquiring
information. For example, they may be electromagnetic or acoustic devices or
they could also be direct observations of the world through reconnaissance and
intelligence gathering activities.

1083-4419/$26.00 © 2009 IEEE

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

synergetic sensors, which can maximally reduce the uncertainty
about the events of interest with minimum costs. Dynamically
determining the best set of sensors, given the uncertainty about
the state of the world, requires to enumerate all the possible
subsets of sensors, which is computationally intractable and
practically infeasible. This computational difficulty is twofold.
First, the computation of a sensor selection criterion such as
mutual information is exponential with respect to the number
of sensors. Second, searching for an optimal subset of sensors
is also NP-hard, since the sensor space exponentially increases
with the number of sensors. To address this computational
difficulty, a common practice is to use myopic analysis,
which assumes that only one observation will be available at
a time, even when there is an opportunity to make a set of
observations [3]–[6]. There is a vast literature on the problem
of single optimal sensor selection [7]–[9]. However, the myopic
approach cannot guarantee to obtain the best evidences that
most effectively reduce uncertainty and cost. To effectively
reduce uncertainty and cost, one should use nonmyopic
selection, which simultaneously considers several observations
before making a decision. The most common nonmyopic
method is the greedy approach. While efficient, it cannot
guarantee optimality with the selected sensors. Other works
try to overcome the limitations with the greedy approach, yet
with their own strong assumptions. In [10], Heckerman et al.
presented an approximate nonmyopic approach based on the
central-limit theorem in an influence diagram (ID) for effi-
ciently computing the value of information. Their method, how-
ever, assumes that the sensors are conditionally independent
of each other, given the decision variable, and that the decision
variable is binary. Krause and Guestrin [11], [12] presented
a randomized approximation algorithm for selecting a near-
optimal subset of observations for graphical models. Under
the assumptions that the sensors are conditionally independent
given the decision variables, the information gain is then
guaranteed to be a submodular function, and the theory of
submodular functions can then be applied to achieve a near-
optimal solution in selecting a subset of observations using a
greedy approach. Recently, Liao and Ji [13] have presented an
approximation algorithm for the nonmyopic computation of
the value of information in an ID. Their method extends the ap-
proach in [10] without requiring the sensors being conditionally
independent of each other and the decision node being binary.

This paper takes another avenue of approach to efficiently
select a subset of near-optimal sensors without the strong sensor
independence assumptions, as made in [10] and [12]. Specifi-
cally, we first introduce a new quantitative measure of sensor
synergy based on mutual information. Based on the synergy
measure, we then introduce a method to efficiently compute
the least upper bound (LUB) of mutual information for a set of
sensors. Experiments show that the LUB closely approximates
the mutual information in value, as shown in Figs. 5 and 6.
Hence, the computational difficulty with computing the exact
nonmyopic mutual information can, therefore, be circumvented
by computing its LUB instead. In addition, the synergy measure
can also be used to prune the sensor space, which, therefore,
reduces the search time for the best sensor set. A summary of
the mentioned work may be found in [14].

II. PROBLEM FORMULATION

The problem of sensor selection for active fusion can be
stated as follows: Assume that there are m sensors Si, i =
1, . . . , m, available that provide measurements of the world. Let
Θ be a set of hypothesis θk of the world situation k = 1, . . . , K.
Let S = {S1, . . . , Sn} be a subset of n sensors selected at time
t, where n ∈ {1, . . . , m}. Let C(S) be the cost to use the set of
sensors S. The objective of sensor selection at time t + 1 is to
select a subset of sensor S∗ to achieve the maximal utility, i.e.,

S∗ = arg max
S∈S

U(u1, u2) (1)

where u1 and u2 denote information gain (i.e., the mutual
information) and the sensor usage cost saving, respectively, S
represents all the possible subsets of sensors, and U(u1, u2)
is a utility function. Here, we use u2 = 1 − C(S) to convert
the sensor usage cost to the corresponding cost saving, which
makes u1 and u2 qualitatively equivalent. For simplicity, in
this paper, we assume that the cost is the same for all sensors.
Hence, we can ignore u2.

The major difficulty of using (1) for sensor selection is to
efficiently compute the information gain u1. From information
theory, the entropy of hypothesis Θ given a sensor Si measures
how much uncertainty exists in Θ given Si, i.e.,

H(Θ |Si) = −
∑
si

∑
Θ

P (θ, si) log P (θ | si) (2)

where si denotes a reading of sensor Si.2 Subtracting H(Θ |Si)
from the original uncertainty in Θ without Si, i.e., H(Θ), yields
the expected amount of information about Θ that Si is capable
of providing

I(Θ;Si) = H(Θ) − H(Θ |Si)
= −

∑
Θ

P (θ) log P (θ)

+
∑
Si

{
P (si)

∑
Θ

P (θ | si) log P (θ | si)

}

=
∑
Θ

∑
Si

P (θ, si) log
P (θ | si)

P (θ)
(3)

where I(Θ;Si) is referred to as the mutual information, which
characterizes the expected total uncertainty-reducing potential
of Θ due to Si. The mutual information for a sensor set S =
{S1, . . . , Sn} can be obtained by

I(Θ;S)
= H(Θ) − H(Θ |S)
= −

∑
Θ

P (θ) log P (θ)

+
∑
Θ

∑
S1

· · ·
∑
Sn

{P (θ, s1, . . . , sn) log P (θ | s1, . . . , sn)}

=
∑
Θ

∑
S1

· · ·
∑
Sn

{
P (θ, s1, . . . , sn) log

P (θ | s1, . . . , sn)
P (θ)

}
(4)

2Without loss of generality, here we assume discrete sensor measure-
ment. The theories can be straightforwardly extended to continuous sensor
measurements.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND JI: EFFICIENT SENSOR SELECTION FOR ACTIVE INFORMATION FUSION 3

where P (θ, s1, . . . , sn) and P (θ | s1, . . . , sn) at time t can
directly be obtained through BN inference. The mutual infor-
mation in (4) provides a sensor selection criterion in terms of
the uncertainty reduction potential, i.e., mutual information.

It is clear from (4) that when the number of sensors in S is
large or when the number of states for each sensor is large, it
becomes computationally impractical to simply implement this
information-theoretic criterion, because it generally requires
time exponential in the number of summations to exactly
compute the mutual information. The remainder of this paper
addresses this computational difficulty.

III. APPROXIMATION ALGORITHM

In this section, we give a graph-theoretic definition of sensor
synergy. We then present the theorems on which our algorithm
is based.

A. Sensor Synergy in Information Gain

Throughout this section, it is assumed that we have obtained
I(Θ;Si, Sj) and I(Θ;Si), i.e., the mutual information of all
pairs of sensors and individual sensors with respect to Θ,
respectively. We will introduce an efficient method to obtain
all I(Θ;Si, Sj) in Section III-C. We first define a synergy
coefficient to characterize the synergy between two sensors, and
then extend this definition to multiple sensors.

Definition 1 (Synergy Coefficient): A measure of the ex-
pected synergetic potential between two sensors Si and Sj in
reducing the uncertainty of hypothesis Θ is defined as

rij =
I(Θ;Si, Sj) − max(I (Θ;Si), I(Θ;Sj))

H(Θ)
. (5)

The denominator H(Θ) in (5) is to restrict rij to the interval
[0, 1]. It can easily be proved that rij ≥ 0 based on the “infor-
mation never hurts” principle [2], i.e., I(Θ;Si, Sj) ≥ I(Θ;Si),
and I(Θ;Si, Sj) ≥ I(Θ;Sj). This follows that Si and Sj taken
together are always more informative than when they are taken
alone. The larger rij is, the more synergetic the sensors Si

and Sj are. Obviously, r(·, ·) is symmetrical in Si and Sj , and
rij = 0 if i = j.

Definition 2 (Synergy Matrix): Let a sensor set be S =
{S1, . . . , Sn}. The sensor synergy matrix is an n × n matrix
defined as

R =

⎡
⎢⎣

0 r12 · · · r1n

r21 0 · · · r2n

· · · · · · · · · · · ·
rn1 rn2 · · · 0

⎤
⎥⎦ . (6)

R is an information measure of synergy among sensors that
is based on pairwise sensor synergy. With a synergy matrix, we
naturally define its graphical representation.

Definition 3 (Synergy Graph): Given a sensor synergy ma-
trix, a graph G = (S,E), where S’s are the nodes representing
the set of available sensors, and E’s are the links representing
the set of pairwise synergetic links weighted by synergy coeffi-
cients rij , is a sensor synergy graph.

Fig. 2. Example of synergy graph with five sensors.

Fig. 3. (a) Synergy chain {S1, S2, S3, S4} (highlighted) on a pruned synergy
graph. (b) Corresponding MSC.

We use the synergy graph to graphically represent the syn-
ergy among multiple sensors. By definition of the synergy, G is
a complete graph, i.e., there is a link between any two nodes in
the graph. Fig. 2 gives an example synergy graph consisting of
five sensors.

Definition 4 (Pruned Synergy Graph): A pruned synergy
graph is created from a synergy graph after removing some
links. A pruned synergy is, therefore, not a complete graph.

Fig. 3 shows an example of a pruned synergy graph. To
further exploit the theoretical properties of mutual information
I(Θ;S) for a set of sensors, we give the following definitions.

Definition 5 (Synergy Chain): Given a pruned synergy graph
G, if all the sensors in a subset on G are serially linked, then
this subset of sensors is referred to as a sensor synergy chain.
Note that while the sensors in a set S are generally order
independent, the sensors in a synergy chain are order dependent
and sequentially ordered.

Definition 6 (MSC): Given a synergy chain with n sen-
sors, for all i = 1, . . . , n − 1, if p(Si+1 |S1, S2, . . . , Si) =
p(Si+1 |Si), then the chain that describes the synergetic re-
lationship among {S1, . . . , Sn} is a Markov synergy chain
(MSC). An MSC is also ordered.

Fig. 3 graphically shows the above definitions about the
synergy chain in a pruned synergy graph. The MSC represents
an ideal synergetic relationship among sensors. The MSC rarely
exists in practice, but this does not prevent us from using it as a
basis for the graph-theoretic analysis of synergy among sensors.
In fact, as to be shown later, the concept of MSC is used to
define the upper bound for the mutual information of a set of
sensors. With the above definitions, we give the following two
theorems.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

Fig. 4. Illustration of a set of possible MSCs for a set unordered four sensors
in a pruned synergy graph.

Theorem 1 (MSC Rule): Given an MSC with a set of ordered
sensors S = {S1, . . . , Sn}, for any n, the joint mutual informa-
tion with respect to Θ for sensors on an MSC is

IM (Θ;S1, . . . , Sn)

= I(Θ;S1) +
n−1∑
i=1

(I(Θ;Si, Si+1) − I(Θ;Si)) . (7)

The proof of this theorem can be found in Appendix A. We
want to make note that the mutual information for an MSC is
sensor-order dependent due to the pairwise synergy definition.
The significance of Theorem 1 is that it allows us to efficiently
compute the joint mutual information for n (n > 2) ordered
sensors as a sum of mutual information of only singleton and
pairwise sensors if the set of sensors forms an MSC. In contrast
to (4), the computational cost of (7) is dramatically reduced.
Although (7) is particularly for an MSC, the theorem above has
some useful properties that can be used for the solution of our
sensor selection problem.

Theorem 2 (Synergy Upper Bound): For a set of unordered
sensors S = {S1, . . . , Sn}, its mutual information is upper
bounded by the mutual information of the corresponding
MSC, i.e.,

I(Θ;S1, . . . , Sn) ≤ IM (Θ;S1, . . . , Sn). (8)

The proof of this theorem is provided in Appendix B. Please
note that while I(Θ;S1, . . . , Sn) is sensor-order independent,
IM (Θ;S1, . . . , Sn) is sensor-order dependent. As a result, de-
pending on the order of sensors in S, different MSCs may be
produced. Let

IM
min = arg min

S

(
IM (Θ;S)

)
IM
max = arg max

S

(
IM (Θ;S)

)
(9)

where S denotes all the possible orders of a sensor
set {S1, . . . , Sn}. IM

min is referred to as the LUB of
I(Θ;S1, . . . , Sn), and IM

max is referred to as the greatest upper
bound (GUB) of I(Θ;S1, . . . , Sn). For example, in Fig. 4, the
sensor set S = {S1, S2, S3, S4} has multiple MSCs, as given in
this figure, and there exist a LUB and a GUB of I(Θ;S).

We are particularly interested in the LUB of I(Θ;S) due
to two reasons. First, it can be seen from Figs. 5 and 6 that
the LUBs of I(Θ;S) closely follow the trend of I(Θ;S) in
the entire space of sensor subsets. Second, the exact value of
I(Θ;S) and its LUB are quantitatively very close in value.
Thus, IM

min(Θ;S) provides a substitute measure for I(Θ;S)

Fig. 5. Bound of mutual information I(Θ, S) and its exact value from a six-
sensor BN model. The X-axis represents the indexes of 41 sensor subsets.
Labels 1–20 are the indexes of the three-sensor subsets; Labels 21–35 are the
indexes of the four-sensor subsets; and Labels 36–41 are the indexes of the
five-sensor subsets.

Fig. 6. Bound of mutual information I(Θ, S) and its exact value from a
ten-sensor BN model. The X-axis represents the indexes of sensor subsets.
For clarity, the figure only shows 66 subsets out of 627. Labels 1–18 are the
indexes of the five-sensor subsets; Labels 19–34 are the indexes of the six-
sensor subsets; Labels 35–51 are the indexes of the seven-sensor subsets; and
Labels 52–66 are the indexes of the eight-sensor subsets.

that can be used to evaluate an optimal sensor subset. Im-
portantly, the LUBs of I(Θ;S) can simply be written as the
sum of the mutual information of only pairwise sensors and
singleton sensors, as shown in (7), hence, with relatively very
low computational cost. Therefore, the computational difficulty
in exactly computing the higher-order mutual information can
be circumvented by only computing the LUBs of the mutual
information. This is the central strategy of our approach.

B. Pruning Synergy Graph

The synergy graph is a completely connected network due to
the weights of synergy graph rij ≥ 0. Some sensors are highly
synergetic, whereas others are not. Intuitively, sensors that

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND JI: EFFICIENT SENSOR SELECTION FOR ACTIVE INFORMATION FUSION 5

TABLE I
EXAMPLE OF SYNERGY COEFFICIENT WITHOUT PRUNING

cause a very small reduction in uncertainty of hypotheses are
those that give us the least additional information beyond what
we would obtain from other sensors. In such cases, rij is very
small. We prune the sensor synergy graph so that many weak
sensor combinations are eliminated while preserving the most
promising ones. This can significantly reduce the search space
in identifying the optimal sensor subset. We prune the synergy
matrix (the weights of the synergy graph) in (6) by using

rij =
{

1, rij > τ
0, otherwise

(10)

where τ is a pruning threshold. The selection of an appropriate
threshold τ is problem dependent. We want to note that
although there is no theoretical basis to determine a good
pruning threshold, our empirical tests, however, show that
using the arithmetic average of rij as the pruning threshold can
preserve most of the strong synergetic connections in the graph
while eliminating weak links. After pruning, a fully connected
synergy graph then becomes a sparse graph. Table I and

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 1 0
0 1 0 0 0 1 1

0 1 0 0 1 1
0 0 0 1 1

0 0 0 0
0 0 0

0 1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

are examples of the synergy coefficient before and after prun-
ing. Fig. 7 illustrates their corresponding synergy graph from a
completely connected network to a sparse graph after pruning.

C. Computing Pairwise Mutual Information

In the above sections, we assumed that we have known the
mutual information of the pairwise sensors I(Θ;Si, Sj). For
n sensors, there are (n(n − 1)/2) pairs of sensors. To obtain
the mutual information for one pair of sensors, it requires
four repetitions of inferences if the sensor state is binary.
Therefore, 2n(n − 1) repetitions of inference are needed for

Fig. 7. (a) Completely connected synergy graph and the links are weighted by
rij , as shown in Table I. (b) Pruned synergy graph and its corresponding matrix
as shown in (11). The pruning threshold is the average of rij , and it is 0.0161.

all pairs of sensors. Although this computation is manageable,
it still severely limits the performance as n becomes large.
Fortunately, there is an efficient way to compute the mutual
information for all pairs of sensors [15], [16].

Referring to Fig. 1, the joint probability of hypothesis Θ and
pairwise sensors {Si, Sj} may be written as in (12), shown
at the bottom of the next page, where π(x) represents the
parental nodes of node x. From (12), it can be observed that the
first factor P (Θ)

∏K
k=1 P (Xk |π(Xk))

∏M
m=1 P (Ym |π(Ym))

is related to the part of the BN structure that does not include
the sensors. The structure is, therefore, fixed, and so are its
probabilities. Hence, this term is constant, independent of the
pair of sensors used. On the other hand, the second factor
{
∑

S1,Sl,...,SN ,l �=i l �=j

∏N
n=1 P (Sn |π(Sn))} varies, depending

on the pair of sensors selected. Therefore, we do not need to
recalculate the unchanged part (the first factor) of (12) at each
time. Instead, we only need to compute it once for all pairs of
sensors, but use it over time so that the computation of pair-
wise mutual information can significantly be curtailed. Given
P (Θ, Si, Sj), it can then be substituted into (4) to compute
I(Θ;Si, Sj). Details of this method can be found in [15] and
[16]. Fig. 8 illustrates the comparative result of time saving in
computing (12) for all pairs of sensors by using our method
and by directly using two inference algorithms, namely, clique
tree propagation (CTP) [17], [18] and variable elimination (VE)
[19]. The evaluation is performed on a six-layer BN model with
10, 15, and 20 sensors.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

Fig. 8. Comparison of time saving among CTP, VE, and our method in
computing (12) for all pairs of sensors. It can be seen that our method can
significantly save time.

D. Approximation Algorithm

We are now ready to provide the complete algorithm. Let
S denote the current set of selected sensors, and let lub(Θ;S)
be the LUB of I(Θ;S). The approximation sensor selection
algorithm is given in Table II. Guided by the pruned synergy
graph, the algorithm starts with the best pair of sensors iden-
tified through an exhaustive search and then searches for the
next best sensor. The next best sensor is the one, when added
to the current sensor ensemble, that yields the highest utility,
which is computed from lub(Θ;S). This process repeats, with
one sensor added to the current sensor ensemble at a time, until
the newly added sensor does not yield an improvement in sensor
utility. Although the algorithm is greedy, the searching process
is guided by a synergy graph so that the selected sensor subset
is serially connected. This, therefore, ensures both the quality
and the speed of sensor selection.

IV. ALGORITHM EVALUATION

Since the main contribution of this paper is the introduction
of an alternative measure to mutual information for efficient
sensor selection, the experimental evaluation should focus on
the effectiveness of this measure for both sensor selection accu-
racy and efficiency. We want to emphasize that the alternative
measure, i.e., the LUB of mutual information, is an approxima-
tion of the mutual information only for the purpose of sensor
selection. As a result, the quality of this approximation should

TABLE II
PSEUDOCODE OF THE APPROXIMATION ALGORITHM

TO SELECT A SUBSET OF SENSORS

be evaluated against its performance in sensor selection. For
this, we propose to measure how close the sensor selection
results using the alternative measure are to those based on
mutual information. The closeness between a sensor subset
selected using the alternative measure and a sensor subset
selected based on mutual information is quantified by the rela-
tive difference in mutual information. Based on this criterion,
we will experimentally evaluate the proposed method under
different BN topologies, different BN model complexities, and
different number of sensors.

Given two different criteria (mutual information and its
LUB) for measuring sensor gain, sensor selection can be car-
ried out by using different methods. We will perform sensor
selection using the following methods: 1) brute-force method;
2) random method, which randomly chooses one sensor at a
time to form a sensor ensemble; and 3) the proposed method.
These experiments try to demonstrate the following: 1) The
proposed LUB criterion suboptimally works for different meth-
ods. 2) Given the same sensor selection criterion, the proposed
greedy approach outperforms the random sensor selection
method.

P (Θ, Si, Sj) =
∑

S1,Sl,...,Sn,l �=i l �=j

{
P (Θ)

K∏
k=1

P (Xk |π(Xk))
M∏

m=1

P (Ym |π(Ym))
N∏

n=1

P (Sn |π(Sn))

}

=P (Θ)
K∏

k=1

P (Xk |π(Xk))
M∏

m=1

P (Ym |π(Ym))

⎧⎨
⎩

∑
S1,Sl,...,Sn,l �=i l �=j

N∏
n=1

P (Sn |π(Sn))

⎫⎬
⎭ (12)

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND JI: EFFICIENT SENSOR SELECTION FOR ACTIVE INFORMATION FUSION 7

Fig. 9. Generic example of the BN network used for evaluation, where the
top layer is for the hypothesis, and the bottom layer is for the sensors. The
intermediate layers are arbitrarily and randomly connected.

We first compare the performance of the proposed sensor
selection method in Table II with the brute-force method.
The brute-force method exhaustively identifies the best sensor
subset by the exact mutual information. The study is done by
using different numbers of sensors and different BN topologies.
Fig. 9 shows a generic example of a BN used for the evaluation.

Due to the exponential time with the brute-force approach,
we limit our test models to up to five layers and up to ten
sensors or less. The exact number of layers, the connections
among nodes in the intermediate layers, and the number of
sensors are randomly generated so that ten different BNs with
different topologies are generated. For each randomly generated
BN topology, its parameters are randomly parameterized ten
times to produce ten differently parameterized BNs for each
selected topology. This yields a total of 100 test models. Fig. 10
shows two examples of BNs used for this paper.

The results averaged among 100 trials are shown in Table III,
where the closeness is defined as the relative difference in
mutual information between the solution from our approach and
the solution from the brute-force approach. It can be seen that
the solution with our method is close to the sensor selection
results using the brute-force method. For further comparison,
the run time of the two methods is measured on a 2.0-GHz com-
puter, and the run time averaged among ten trials is summarized
in Table III. Compared with the brute-force method, our method
significantly reduces the computation time with minimum loss
in sensor selection accuracy.

To demonstrate the improvement of the proposed method
over random sensor selection, the results of random sensor
selection are also included in Table III. For a fair comparison,
we first use our method to select a best subset and then use the
random method to select a subset of the same size using the
same criterion. To account for the random nature of random se-
lection, the results are averaged, and the averaged result is used
to compare against the result from our method. Compared with
the random sensor selection, our method shows a significant
improvement in sensor selection accuracy.

Finally, we want to note that the randomly generated BN
topologies (for example, the BNs in Figs. 9 and 10) may not

necessarily satisfy the assumption needed for Theorem 1 to
hold. Despite this, the selected sensors remain close (in mutual
information) to those selected by the brute-force method, as
demonstrated in Table III. We also repeat the above experiments
by using naive BNs. The parameters of BNs are randomly
generated. We selected k sensors from n sensors (k < n)
without considering sensor costs. The sensors selected by the
brute-force method and by our approach have no difference.

V. CONCLUSION

It is computationally difficult to identify an optimal sen-
sor subset with the information-theoretic criterion. To address
problem, we have presented an approximation method to find
a near-optimal sensor subset by utilizing the sensor pairwise
information to infer the synergy among sensors. Specifically,
this paper includes the following aspects: First, we propose to
use a BN to represent sensors, their dependencies, and their
relationships to other latent variables. In addition, the built-
in conditional independence assumptions with the BNs allow
factorizing the joint probabilities so that fusion can efficiently
be performed. Second, we introduce a statistical measure to
quantify the pairwise synergy among sensors. Based on the
synergy measure, a synergy graph is constructed, which is used
to infer synergy among multiple sensors, based on which we
can then eliminate many unpromising sensor combinations.
Finally, for the remaining sensor combinations, a greedy ap-
proach is introduced to identify the optimal sensor combination
based on the LUB of the joint mutual information. The use of
the LUB of the joint mutual information instead of the joint
mutual information itself significantly reduces the computation
time with minimum loss in accuracy. We demonstrate both the
optimality and the efficiency of the proposed method through
many random simulations under different numbers of sensors
and different relationships among sensors.

A major assumption of this paper is that the two sensors are
conditionally independent of each other, given another sensor
between the two sensors and the fusion result. This assumption
could limit the utility of this paper. As part of the future
research, we will study ways to overcome this assumption.
Another assumption we made in this paper is that all the
sensors have the same cost. Such an assumption is not realistic
for many applications. Overcoming this assumption, however,
requires incorporating the sensor cost into the proposed synergy
function, which is a nontrivial task. We will study this issue in
the future as well.

APPENDIX

In the following, we introduce our proof for Theorems 1 and 2.

A. Proof of Theorem 1

Before proving Theorem 1, we give the following lemma.
Lemma 1 (Chain Rule of Mutual Information): Letting X ,

Y1, . . . , Ym be random variables, then

I(X;Y1, . . . , Ym) = I(X;Y1) +
M∑
i=2

I(X;Yi |Y1, . . . , Yi−1).

(13)

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

Fig. 10. Two specific examples of BN structures with different numbers of sensors used for the evaluation.

TABLE III
COMPARISON OF THE PROPOSED METHOD AND THE BRUTE-FORCE METHOD

The proof of Lemma 1 is straightforward [2]. We now turn to
proving Theorem 1.

Proof: Based on Lemma 1, we have

I(Θ;S1, . . . , Sm)

= I(Θ;S1)+I(Θ;S2 |S1)+I(Θ;S3 |S1, S2)

+ I(Θ;S4 |S1, S2, S3)+· · ·+I(Θ;Sm |S1, . . . , Sm−1).

(14)

We start with an MSC containing four random variables
{Θ, S1, S2, S3}, then extend it to five variables, and finally
to a finite number of arbitrary random variables forming an
MSC. Notice that Θ is the hypothesis, and S1, S2, S3 are the
sensors.

Based on Definition 6 of MSC, S1 and S3 are conditionally
independent given S2, i.e., P (S3 |S1, S2) = P (S3 |S2). First,
we prove that the following equation holds when S1 and S3 are
conditionally independent given S2:

I(Θ;S3 |S2) = I(Θ;S3 |S1, S2) (15)

I(Θ;S3 |S1, S2)

=
∑

Θ,S1,S2,S3

p(θ, s1, s2, s3)
{

lg
p(θ, s3 | s1, s2)

p(θ | s1, s2)p(s3 | s1, s2)

}

=
∑

Θ,S1,S2,S3

p(θ, s1, s2, s3)
{

lg
p(θ, s3, s1, s2)

p(θ, s1, s2)p(s3 | s2)

}

=
∑

Θ,S1,S2,S3

p(θ, s1, s2, s3)
{

lg
p(s3 | θ, s1, s2)

p(s3 | s2)

}

=
∑

Θ,S1,S2,S3

p(θ, s1, s2, s3)
{

lg
p(s3 | θ, s2)
p(s3 | s2)

}

=
∑

Θ,S2,S3

p(θ, s2, s3)
{

lg
p(s3 | θ, s2)
p(s3 | s2)

}

=
∑

Θ,S2,S3

p(θ, s2, s3)
{

lg
p(s3, θ | s2)

p(θ | s2)p(s3 | s2)

}

= I(Θ;S3 |S2). (16)

Please note that for the derivations in (16), we assume that
p(S3 |Θ, S1, S2) = p(S3 |Θ, S2), i.e., S3 and S1 are condition-
ally independent given both Θ and S2, where Θ is a random
variable representing the fusion result, and Si is a sensor. The
typical relationships between Θ and Si are illustrated in Fig. 1,
where Θ is typically the root node, and Si’s are the leaf nodes in
the BN. Given this understanding, if the BN is such that the path
(undirected path) between two sensor nodes (e.g., S1 and S3)
goes through Θ node (e.g., the BN in Fig. 1), then following the
D-separation principle for BN, p(S3|Θ, S1, S2) = p(S3|Θ, S2)
holds. Please note that this assumption only holds for some
BNs, such as the one in Fig. 1 and the naive BN. It may not
hold for an arbitrary BN.

From the chain rule of mutual information, we have

I(Θ;S3, S2) = I(Θ;S2) + I(Θ;S3 |S2). (17)

Hence, combining (16) and (17) yields

I(Θ;S3 |S1, S2) = I(Θ;S2, S3) − I(Θ;S2). (18)

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND JI: EFFICIENT SENSOR SELECTION FOR ACTIVE INFORMATION FUSION 9

Now, we want to apply the similar algebraic process to prove
I(Θ;S4 |S1, S2, S3) = I(Θ;S4 |S3) in (19), shown at the
bottom of the page, given the Markov conditions that P (S4 |S2,
S3) = P (S4 |S3), P (S1 |S3, S2) = P (S1 |S2), P (S4 |S1,
S2) = P (S4 |S2), and P (S4 |S1, S3) = P (S4 |S3). By mutual
information chain rule, we have I(Θ;S3, S4) = I(Θ;S3) +
I(Θ;S4 |S3), i.e.,

I(Θ;S4 |S3) = I(Θ;S3, S4) − I(Θ;S3). (20)

Combining (19) and (20) produces

I(Θ;S4 |S1, S2, S3) = I(Θ;S4 |S3)

= I(Θ;S3, S4) − I(Θ;S3). (21)

Finally, we can generalize the above process to prove

I(Θ, Sm |S1, S2, . . . , Sm−1)

= I(Θ;Sm−1, Sm) − I(Θ;Sm−1). (22)

Substituting the results in (18), (21), and (22) into (14) yields

I(Θ;S1, S2, . . . , Sm)

= I(Θ;S1) + I(Θ;S2 |S1) + I(Θ;S3, S2)

− I(Θ;S2) + I(Θ;S3, S4) − I(Θ;S3) + · · ·
+ I(Θ;Sm−1, Sm) − I(Θ;Sm−1)

= I(Θ;S1) + I(Θ;S2, S1) − I(Θ;S1) + I(Θ;S3, S2)

− I(Θ;S2) + I(Θ;S3, S4) − I(Θ;S3) + · · ·
+ I(Θ;Sm−1, Sm) − I(Θ;Sm−1)

= I(Θ;S1) +
M∑
i=2

I(Θ;Sm−1, Sm) − I(Θ;Sm−1). (23)

This completes the proof for Theorem 1. �

B. Proof of Theorem 2

Proof: We want to prove

I(Θ;S1, . . . , Sm) ≤ IM (Θ;S1, . . . , Sm). (24)

From the mutual information chain rule, we have

I(Θ;S1, S2, . . . , Sm)

= I(Θ;S1) + I(Θ;S2 |S1)

+ I(Θ;S3 |S1, S2) + I(Θ;S4 |S1, S2, S3) + · · ·
+ I(Θ;Sm |S1, S2, . . . , Sm−1). (25)

By Theorem 1, we have

IM (Θ;S1, . . . , Sm)

= I(Θ;S1) + I(Θ;S2 |S1) + I(Θ;S3 |S2)

+ I(Θ;S4 |S3) + · · · + I(Θ, Sm |Sm−1). (26)

By the definition of mutual information, we have

I(Θ;S3;S2;S1) = I(Θ;S3;S2) − I(Θ;S3;S2 |S1) (27)

which readily leads to

I(Θ;S3;S2 |S1) = I(Θ;S3 |S2) − I(Θ;S3 |S2, S1). (28)

Hence

I(Θ;S3 |S2, S1) = I(Θ;S3 |S2) − I(Θ;S3;S2 |S1). (29)

Therefore

I(Θ;S3 |S2) ≥ I(Θ;S3 |S1, S2).

Please note that we assume here that I(Θ;S3;S2 |S1) > 0,
which is correct since for our application Θ (the hypothesis)

I(Θ;S4 |S1, S2, S3)

=
∑

Θ,S1,S2,S3,S4

p(θ, s1, s2, s3, s4)
{

lg
p(θ, s4|s1, s2, s3)

p(θ | s1, s2, s3)p(s4|s1, s2, s3)

}

=
∑

Θ,S1,S2,S3,S4

p(θ, s1, s2, s3, s4)
{

lg
p(θ, s4, s1, s2, s3)

p(θ, s1, s2, s3)p(s4|s3)

}

=
∑

Θ,S1,S2,S3,S4

p(θ, s1, s2, s3, s4)
{

lg
p(s4|θ, s1, s2, s3)

p(s4|s3)

}

=
∑

Θ,S1,S2,S3,S4

p(θ, s1, s2, s3, s4)
{

lg
p(s4|θ, s3)
p(s4|s3)

}

=
∑

Θ,S3,S4

p(θ, s3, s4)
{

lg
p(s4|θ, s3)
p(s4|s3)

}

=
∑

Θ,S2,S3

p(θ, s3, s4)
{

lg
p(s4, θ | s3)

p(θ | s3)p(s4|s3)

}
= I(S4; Θ |S3) = I(Θ;S4 |S3) (19)

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

and the other variables (sensors) are not independent of each
other.

Similarly, we have I(Θ;S4 |S3) ≥ I(Θ;S4 |S1, S2, S3) and
I(Θ;Sm |Sm−1) ≥ I(Sm |S1, S2, . . . , Sm−1).

Hence, (26) ≥ (25). The equality sign holds when the
Markov property between neighbor sensors is true.

Hence, this completes the proof for Theorem 2. �

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable and constructive comments, which help to
significantly improve this paper.

REFERENCES

[1] Y. Zhang and Q. Ji, “Active and dynamic information fusion for multisen-
sor systems with dynamic Bayesian networks,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 2, pp. 467–472, Apr. 2006.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory.
New York: Wiley, 1991.

[3] D. E. Hecherman, E. Horvitz, and B. N. Nathwani, “Toward normative
expert systems: Part I. The pathfinder project,” Methods Inf. Med., vol. 31,
no. 2, pp. 90–105, Jun. 1992.

[4] L. van der Gaag and M. Wessels, “Selective evidence gathering for diag-
nostic belief networks,” AISB Q., vol. 86, pp. 23–34, 1993.

[5] S. Dittmer and F. Jenson, “Myopic value of information in influence
diagrams,” in Uncertainty Artif. Intell., 1997, pp. 142–149.

[6] V. Bayer-Zubek, “Learning diagnostic policies from examples by system-
atic search,” in Uncertainty Artif. Intell., 2004, pp. 27–34.

[7] V. Krishnamurthy, “Algorithms for optimal scheduling and management
of hidden Markov model sensors,” IEEE Trans. Signal Process., vol. 50,
no. 6, pp. 1382–1397, Jun. 2002.

[8] E. Ertin, J. W. Fisher, and L. C. Potter, “Maximum mutual information
principle for dynamic sensor query problems,” in Proc. Inf. Process. Sens.
Netw., San Francisco, CA, 2003, pp. 405–416.

[9] H. Wang, K. Yao, G. Pottie, and D. Estrin, “Entropy-based sensor selec-
tion heuristic for target localization,” in Proc. Inf. Process. Sens. Netw.,
Berkeley, CA, 2004, pp. 36–45.

[10] D. Heckerman, E. Horvitz, and B. Middleton, “An approximate nonmy-
opic computation for value of information,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 15, no. 3, pp. 292–298, Mar. 1993.

[11] A. Krause and C. Guestrin, “Optimal nonmyopic value of information
in graphical models—Efficient algorithms and theoretical limits,” in Int.
Joint Conf. Artif. Intell., 2005, pp. 1339–1345.

[12] A. Krause and C. Guestrin, “Near-optimal nonmyopic value of informa-
tion in graphical models,” in Uncertainty Artif. Intell., 2005, pp. 324–333.

[13] W. Liao and Q. Ji, “Efficient active fusion for decision-making via voi
approximation,” in 21th Nat. Conf. Artif. Intell., 2006, pp. 1180–1185.

[14] Y. Zhang and Q. Ji, “Sensor selection for active information fusion,” in
20th Nat. Conf. Artif. Intell., 2005, pp. 1229–1234.

[15] W. Liao, W. Zhang, and Q. Ji, “A factor tree inference algorithm for
Bayesian networks and its application,” in Proc. 16th ICTAI, Boca Raton,
FL, 2004, pp. 652–656.

[16] W. Zhang and Q. Ji, “A factorization approach to evaluating simultaneous
influence diagrams,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 36, no. 4, pp. 746–757, Jul. 2006.

[17] J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, CA:
Morgan Kaufmann, 1988.

[18] F. V. Jensen and F. Jensen, “Optimal junction trees,” in Proc. 10th Conf.
Uncertainty AI, San Francisco, CA, 1994, pp. 360–366.

[19] R. Dechter, “Bucket elimination: A unifying framework for probabilistic
inference,” in Proc. 12th Conf. Uncertainty AI, San Francisco, CA, 1996,
pp. 211–219.

Yongmian Zhang (M’04) received the Ph.D. de-
gree in computer engineering from the University of
Nevada, Reno, in 2004.

He holds a research position with the Department
of Electrical, Computer and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY. His areas
of research include information fusion, computer
vision, and human–computer interactions.

Qiang Ji (SM’04) received the Ph.D. degree
in electrical engineering from the University of
Washington, Seattle.

He is currently a Professor with the Department of
Electrical, Computer, and Systems Engineering and
the Director of the Intelligent Systems Laboratory,
Rensselaer Polytechnic Institute, Troy, NY. He is
also a Program Director with the National Science
Foundation (NSF), Arlington, VA, where he is re-
sponsible for managing part of the NSF’s computer
vision and machine learning programs. He previ-

ously held teaching and research positions with Beckman Institute, University
of Illinois, Urbana; Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA; the Department of Computer Science, University of Nevada, Reno; and the
U.S. Air Force Research Laboratory. His research has been supported by major
governmental agencies, including the NSF, the National Institutes of Health, the
Defense Advanced Research Projects Agency, the Office of Naval Research, the
Army Research Office, and the Air Force Office of Scientific Research, as well
as by major companies, including Honda and Boeing. He has published more
than 150 papers in peer-reviewed journals and conference proceedings. He is
an Editor for several computer-vision- and pattern-recognition-related journals.

Prof. Ji has served as program committee member, area chair, and program
chair in numerous international conferences/workshops.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on December 22, 2009 at 14:45 from IEEE Xplore. Restrictions apply.

 Non-myopic Active Learning with Mutual Information

Yue Zhao Qiang Ji

Department of Automation Department of Electronical,Computer,and System
Engineering

Minzu University of China Rensselaer Polytechnic Institute
Beijing,100081, China Troy, New York 12180, USA

zhaoyueso@muc.edu.cn qji@ecse.rpi.edu

 Abstract - Active learning methods seek to reduce the
number of labeled instances needed to train an effective classifier.
Most current methods are myopic, i.e. select a single unlabelled
sample to label at a time. The batch-mode active learning
methods, on the other hand, typically select top N unlabeled
samples with maximum score. Such selected samples often cannot
guarantee the learner’s performance. In this paper, a non-myopic
active learning algorithm is presented based on mutual
information. Our algorithm selects a set of samples at each
iteration, and the objective function of the algorithm is proved to
be submodular, which guarantees to find the near-optimal
solution. Our experimental results on UCI data sets show that the
proposed algorithm outperforms myopic active learning.

 Index Terms - Non-myopic active learning, Mutual
information, Submodular function.

I. INTRODUCTION

 Most of the current study in active learning has focused
on selecting a single unlabeled sample in each iteration. In this
case, the classifier has to be retained after each selected
sample is labeled. These myopic approaches are also not
suited to the parallel labeling environment. By contrast, batch-
mode active learning methods select a set of unlabeled
samples at a time. They provide a solution to multiple
annotators and model with slow training procedures. A simple
strategy toward selecting a query batch is to myopically query
the top N queries according to a given query strategy. Methods
based on such a strategy do not work well, since they greedily
select the "best" unlabeled samples at each iteration in local
and fail to consider the overlap in information content among
the “best” instances [1].

To address this issue, a few improved batch-mode active
learning algorithms have been proposed. Brinker [2] considers
an approach for SVMs that explicitly incorporates diversity
among instances in the batch. Xu et al. [3] propose a similar
approach for SVM active learning, which also incorporates a
density measure. Specifically, they query cluster centroids for
instances that lie close to the decision boundary. Hoi et al. [4]
extend the Fisher information framework to the batch-mode
setting for binary logistic regression. But most of these
approaches still use greedy heuristics to ensure that instances
in the batch are both diverse and informative without a
guarantee of near-optimal solution.

In this paper, we present a non-myopic active learning
algorithm to query instances in groups. In active learning one
solution to decide which sample to label is based on its effect
on the remaining unlabeled data. So, our aim is to select a set

of unlabeled samples which, if labeled, can maximize the
confidence (certainty) on remaining unlabeled data. Based on
this idea, we exploit mutual information to construct the
objective function.

The objective function of our algorithm is proved to be
submodular, which guarantees the greedy method can find
near-optimal sets to be added into training data so that active
learner can improve in both accuracy and efficiency.

This paper is structured as follows. Section II gives the
description of the objective function of our non-myopic active
learning method and the proof of submodularity of the
objective function. Section III presents our algorithm. Section
IV contains experimental results on Chess database and Tic-
Toe-Tac Endgame database from the UCI Machine Learning
Repository. Section V summarizes the contributions made in
this paper.

II. THE OBJECTIVE FUNCTION AND ITS SUBMODULARITY

 The aim of our non-myopic active learning is to select a
subset of K unlabeled samples in each iteration, such that
when the samples are given true labels and added to the
training set D , the learner trained on the augmented training
set can result in the maximum classification uncertainty
reduction on the test set. So the objective function is as
follows,

,||..),(ˆmaxarg KAtsARA
UA

≤=
⊂

 (1)

where A is a subset of unlabelled training data, and U is the
unlabelled data pool. For a set A , the uncertainty reduction
function)(ˆ AR , i.e., the mutual information criterion between

A and U can be defined as

),|\(ˆ)(ˆ)(ˆ AAUHUHAR DD −= (2)

where (.)ˆ
DH is the entropy for measuring the classification

uncertainty on the remaining unlabelled data given a current
learner. Assuming the initial small set of labelled data D , a
large pool of unlabeled data },,,{ 21 MxxxU …= , and

Uxl ∈ , (.)ˆ
DH can be computed by

.))|(ˆlog)|(ˆ(
||

1)(ˆ ∑ ∑
∈ ∈

−=
Ux

llD
Yy

llDD
l l

xyPxyP
U

UH

 (3)

Let },,{ 1 mxxA …= be a subset of U and AUxk \∈ ,

)|\(ˆ AAUHD
is measuring the expected uncertainty on the

remaining data set AU \ after A is selected. Since before we
make the query for set A , myy ,,1 " , the true labels for

each mxx ,,1 " , are unknown, so the conditional

entropy)|\(ˆ AAUH D can be written as

.)),,,...,,|(ˆlog),,,...,,|(ˆ(
||

1
||

1)|\(ˆ
\

1111
1

∑ ∑ ∑∑
∈ ∈ ∈∈

−
−

=
AUx

kmmkD
Yy Yy

kmmkD
Yy

mD
k k m

xyxyxyPxyxyxyP
YAU

AAUH "

 (4)

 In Equation 4,),,,...,,|(ˆ
11 kmmkD xyxyxyP is the

estimated output distribution given D , kx and some possible

labels myy ,,1 " for mxx ,,1 " , i.e.,

).|(ˆ),,,...,,|(ˆ
},,...,,{11

11
kkyxyxDkmmkD xyPxyxyxyP

mm+
= (5)

In [5], it showed that, if the objective function F is
submodular, then a greedy algorithm, which starts with the
empty set Φ=A , and iteratively adds to A the element

)(maxarg* AFs
s

= until k elements have been selected, finds

a near-optimal set. Its result uses the concept of
submodularity, i.e., an intuitive diminishing returns property: a
new observation decreases our uncertainty more if we know
less. According to this conclusion, we give a proof of the
submodularity of R̂ as follows.

Proof of the submodularity of R̂ :
Let UBA ⊆⊂ and unselected samples AX ∉ , and if

R̂ is submodular, then it should hold that “diminishing
returns” property,

).(ˆ)(ˆ)(ˆ)(ˆ BRXBRARXAR −∪≥−∪ (6)

Since (.)ˆ
DH is the entropy of the learner’s posterior, it

holds the property of entropy, i.e., the ‘information never
hurts’ principle [6],

),(ˆ)|(ˆ XHAXH DD ≤ (7)

i.e., adding A with true labels cannot increase the entropy
[7]. Because the marginal increase of R̂ can be written as

).|(ˆ
)(ˆ)(ˆ

)(ˆ)(ˆ)(ˆ)(ˆ
)|\(ˆ)|\(ˆ

)|\(ˆ)(ˆ
)|\(ˆ)(ˆ

)(ˆ)(ˆ

AXH

AHXAH

XAHUHAHUH

XAXAUHAAUH

AAUHUH

XAXAUHUH

ARXAR

D

DD

DDDD

DD

DD

DD

=

−∪=

∪+−−=

∪∪−=

+−

∪∪−=

−∪

 (8)

In Equation 8, we used the chain rule of the joint entropy, i.e.

).(),()|(XHYXHXYH −= (9)

 Submodularity is simply a consequence of information
never hurts principle:

).(ˆ)(ˆ)|(ˆ)|(ˆ)(ˆ)(ˆ BRXBRBXHAXHARXAR DD −∪=≥=−∪

(10)

So we prove that R̂ is submodular.

III. A NON-MYOPIC ACTIVE LEARNING ALGORITHM

 The problem of maximizing submodular function is NP-
hard. The greedy algorithm is an efficient algorithm to reduce
the computation, and achieves near-optimal results if
submodularity property holds. We exploit the greedy
algorithm to iteratively find each sample for a batch A . In the
step of greedily finding A , selecting a sample will be stopped
when the current)|\(ˆ AAUHD is larger than the previous
one or when the number of selected samples is larger than K .
 After selecting a set A , the algorithm adds A with true
labels into the labeled training data. The learner is retrained on
new training set. If the prediction accuracy of current learner
is not satisfied, the process is repeated.

Algorithm:
Initialization: Randomly select a small set D from unlabeled
samples pool, then assign a class label to each of them, next
construct an initial training set. Train the classifier C using D .
While stopping criterion (here prediction accuracy) is not
satisfied
1. Greedily find A;
2. Add A with true labels to D to form 'D ;
3. Retrain the classifier C from 'D , and obtain its prediction

accuracy on test date set.

 Because the)(ˆ UHD is always the constant while iteratively

adding mx to A , we can get the unselected sample mx which

makes the minimum)|\(ˆ AAUHD in the process of finding
A . The process of Greedily find A is as follows.

 Greedily find A:

{}=A ;

While KA ≤||
Do

);|\(ˆminarg
\

* AAUHx DAUxm
m ∈

=

If)|\(ˆ}){|}{\(ˆ ** AAUHxAxAUH DmmD <∪∪

 };{ *
mxAA +=

 Else
 Break;
End

IV. EXPERIMENTAL RESULTS

Two benchmark data sets from UCI Machine Learning
Repository are used to evaluate the performance of our
algorithm. They are for binary classification task. We choose
the TAN classifier as a classification algorithm. In the step of
Greedily find A, let 3=K . To evaluate the performance of our
approach, we compare the results of our approach (non-
myopic) with the results from the expected log loss reduction
algorithm of myopic active learning and “N-best” batch
method.

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

0.9

1

number of selected samples

a
c
c
u
ra

c
y

Chess data set

non−myopic
myopic
Nbest

Fig. 1 The comparison results by running Chess data set.

The first data set is from chess (King-Rook vs King-

Pawn) database. The data set is randomly partitioned into
training set of 75 instances including 22 initially labeled
examples and 53 unlabeled examples. The independent test set
consists of 85 instances.

Figure 1 shows the resulting accuracy of three algorithms
as the function of number of selected samples. The maximum
possible accuracy is 98% after all the unlabeled data has been
labeled. It can be seen that after a few queries (6 queries) our
algorithm (non-myopic) can have a higher accuracy than
myopic active learning and N-best samples methods. And after
8 iterations our non-myopic active learning gets 98% accuracy

with the classifier is retrained eight times. However myopic
active learning needs to retrain the classifier 23 times for 97%
accuracy. Our non-myopic active learning is more efficient
and accurate than myopic active learning and N-best methods.

The second data set for our experiment is from Tic- Toe-
Tac database. The data set is randomly partitioned into
training set of 203 instances, in which 59 labeled examples
and 144 unlabeled examples are included, and independent
test set of 172 instances.

0 5 10 15 20 25 30 35 40 45
0.4

0.5

0.6

0.7

0.8

0.9

1

number of selected samples
ac

cu
ra

cy

Tic−Toe−Tac

nonmyopic
myopic
Nbest

Fig. 2 The comparison results by running tic-toe-tac data set.

The comparison results are given in Figure 2. The

maximum possible accuracy is 97% after all the queries. After
10 iterations, our algorithm reaches 97% accuracy. However
myopic active learning needs to retrain the classifier 39 times
for 97% accuracy. Again, the results show that non-myopic
active learning approach outperforms myopic active learning
approach and N-best method.

V. CONCLUSION

Most current methods for active learning myopically
select the ‘best’ sample or ‘N-best’ samples in local to label.
These methods cannot achieve the near-optimal results, and
does not work well. By contrast, non-myopic active learning
can query samples in groups at each iteration. If the objective
function is submodular, then it can find near-optimal sets and
has a better performance than myopic active learning.
Meanwhile it is efficient in training model and suited to
parallel labeling environment. In this paper we proposed a
non-myopic active learning based on the mutual information,
and proved the objective function is submodular. So the
experimental results show that it outperforms myopic active
learning.

REFERENCES
[1] B. Settles, “Active Learning Literature Survey,” Computer Sciences

Technical Report 1648, University of Wisconsin-Madison, January 9,
2009.

[2] K. Brinker, “Incorporating diversity in active learning with support vector
machines,” In Proceedings of the International Conference on Machine
Learning (ICML), pages 59–66. AAAI Press, 2003.

[3] Z. Xu, R. Akella, and Y. Zhang, “Incorporating diversity and density in
active learning for relevance feedback,” In Proceedings of the European
Conference on IR Research (ECIR), pages 246–257. Springer-Verlag,
2007.

[4] S.C.H. Hoi, R. Jin, and M.R. Lyu, “Large-scale text categorization by
batch mode active learning,” In Proceedings of the International
Conference on the World Wide Web, pages 633–642. ACM Press, 2006a.

[5] C. Guestrin, A. Krause and A. Singh, “Near-optimal sensor placements in
Gaussian processes,” ICML, pages 265 – 272, 2005.

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley
Interscience, 1991.

[7] C. Guestrin, A. Krause, and A. Singh, “Near-optimal sensor placements in
gaussian processes,” ICML, 2005.

An Active Learning Method under Very Limited Initial
Labeled Data

Yue Zhao Qiang Ji

Department of Automation Department of Electronical,Computer,and System
Engineering

Minzu University of China Rensselaer Polytechnic Institute
Beijing,100081, China Troy, New York 12180, USA

zhaoyueso@muc.edu.cn qji@ecse.rpi.edu

 Abstract - Active learning methods seek to reduce the
number of labeled instances needed to train an effective classifier.
Most current methods assume the availability of some
reasonable amount of initially labeled training data so that the
learners can be trained with sufficient quality. However,
for many applications, the amount of initial training data is
often limited, this will affect the quality of the initial
learners, which, in turn, affect the performance of the active
learning methods. In this paper, we introduce a new non-
parametric active learning strategy that can perform well even
under very limited initial training data. Our method selects the
query instance that simultaneously maximizes its label
uncertainty and the classification accuracy on the unlabelled
test data. Our method hence avoids selecting outliers and does
not require good initial learner. The experimental results with
benchmark datasets show that our method outperforms state of
the art methods especially when the amount of the initially
labeled data is small or when the quality of the initially labeled
data is poor.

 Index Terms - Active learning. Minimal total entropy
reduction. Limited initial labeled data.

I. INTRODUCTION

Active learning aims to achieve greater accuracy with
fewer labeled training instances by selecting the most
informative data to label [1]. Active learning selects unlabeled
examples for labeling if the predicted label is highly uncertain.
Based on this view, some existing works in active learning
have concentrated on two approaches: Uncertainty-based
method [3], [4], [5] and committee-based method [6]. The
former estimates sample uncertainty using one classifier while
the latter does so by a committee of classifiers. Both
approaches examine each unlabeled sample one at a time,
often independent of the remaining unlabeled samples.
Although both approaches can get to the classification
boundary fast, they are also susceptible to outliers since
outliers are also often uncertain. In fact, studies show that both
uncertainty sampling and the committee-based methods often
fail by selecting outliers [7], [8].

To alleviate this problem, one solution to decide which
sample to label is not only based on the properties of selected
sample but also on its effect on the remaining unlabeled data.
So, from a different perspective, if the instance to

be labeled can maximize the confidence (certainty), i.e.
makes the current learner to have a good generalization error
over the unlabeled data, the instance with true label to be
added into labeled data set can improve the performance of the
classifier. Based on this idea, Roy and McCallum first
proposed the estimated log loss reduction (ELLR) framework
for text classification using naive Bayes [7]. Zhu et al.
combined this framework with a semi-supervised learning
approach, resulting in a dramatic improvement over random or
uncertainty sampling [8]. Guo and Greiner employ an
“optimistic” variant [9], but their formulation is, in fact,
equivalent to minimizing the expected future log loss. The
ELLR framework has the dual advantage of being near
optimal and not dependent on the model class. While
effectively addressing the outlier issue, these methods suffer
one major limitation. They typically require a reasonably good
initial learner to start with since their methods use the

),|(DxyP m determined by labeled data to weight the log
loss. This makes the performance of the estimated error
reduction further depended on the quality of initial model [10].
These methods perform poorly for cases that have a very small
amount of initial labeled training data.

To overcome the limitations of the above methods, we
propose to combine the uncertainty based method with the
generalization error method. The selected sample by our
method considers both its own uncertainty and its potential to
reduce the classification uncertainties on unlabelled data. In
our method, the instance to be labeled possesses high
uncertainty on its label and at the same time should maximize
the classification confidence (certainty) on unlabelled data.
The uncertainty of each sample can be characterized by its
entropy and its effect on the reduction of the uncertainty of the
unlabeled data can be characterized by its Minimal Total
Entropy Reduction (MTER).

The main benefit of our algorithm, compared with the
ELLR used by Roy et al [7], is that it decreases the influence
of using the current learner to approximate the label
distribution for weighting the log loss, which is very sensitive
to the number of labeled training samples and their quality. In
addition, the minimum total entropy criterion is more
conservative and strict than the log loss, therefore leading to
improved performance. In paper [2] a similar active learning
method, Mm+M, is proposed, and it employs ’most
uncertainty’ approach to change the selection rule based on

minimum total entropy when it encounters an unexpected
label. In fact, this method still selects a sample by using either
generalization error method or uncertainty-base method but
not using both criteria at the same time. Experiments show
that our active learning can quickly achieve the considerable
accuracy with fewer labeled samples than the state-of-the-art
methods, such as ELLR, uncertainty-based, Mm+M, in
particular when the quality of the initial labeled data is poor or
the number of the initial training data is small. In the sections
to follow, we describe our method in pool-based active
learning, and its performance.

II. ACTIVE LEARNING WITH POOL-BASED SAMPLE

 Pool-based active learning is an interactive learning
technique designed to reduce the labour cost of labeling in
which the learning algorithm can freely assign the unlabeled
data to the training set. Active learning starts from an initial
labeled examples and lets the learner iteratively update its
training set while learning at each step from the new
knowledge gain provided by newly labeled examples. An
overview of pool based active learning can be seen in Figure
1. The classifier)(⋅C is trained by the labeled examples L ,

and then a selection function)(⋅fS selects the most

appropriate examples S from an unlabeled data pool U
given the knowledge already acquired by the learner.

Fig. 1 An overview of pool-based active learning.

III. A NEW QUERY STRATEGY

Our active learning approach is based on actively
identifying and annotating the samples which will result in
maximum uncertainty on its label and in the meantime yields
the maximum certainty on class labels of the remaining
unlabeled data. Pool-based active learning typically includes a
small set of labeled data)},(,),,{(11 kk yxyxL = and a

large pool of unlabeled data },,,,{ 1 Nmk xxxU += .

Assume we select mx from U for the next instance of
human labelling. Our objective function is

),(maxarg*
mUxm xMx

m ∈
= (1)

where)(mxM is the sum of two terms: the generalization
error reduction on the unlabeled data and the label uncertainty
of the selected sample. It is defined as

).,|()()(LxYHxRxM mmmm += (2)

In Equation 2,)(mxR is to measure the error reduction of
a candidate sample xm over remaining unlabeled samples,
and it can be defined as

).,,,|(),|()(LyxXYELXYExR mmUUUUm −= (3)

(.)E is a generalization error function. Since the first term

in Equation 3 does not depend on the instance mx selected,
so we can rewrite Equation 3 as

),,,,|()(LyxXYExR mmUUm −= (4)

and Equation 2 as

)5(.),|(),,,|()(LxYHLyxXYExM mmmmUUm +−=

First, for evaluating the classification performance on the
unlabeled data, i.e. generalization error, the learner is initially
trained on the labeled data L . Once trained, given an input

nx from U , it produces a probability distribution on its

label ny , based on which ny can be determined. Given mx , its

label my and the existing labeled data, we can construct a
classifier that can estimate the probability distribution of label

ny for each unlabeled data nx , i.e.,

),,,),,(,),,(),,(|(2211, nmmkknmn xyxyxyxyxyPP = (6)

where Nnmk ≤< , and mn ≠ . The error (uncertainty) of

estimated label ny for input nx can be characterized by its
entropy

 ∑

∈
−=

Yy
mnmnmn

n

PPH ,log ,,, (7)

where Y is all possible outcome labels. Then, the total entropy
for all remaining unlabeled data in the pool
given),(mm yx can be computed as

 ∑
≠

+=

=
N

mn
kn

mnmmUU HLyxXYE
1

, .),,,|((8)

Thus one criterion of our active learning approach is to

select a query, mx , such that when the query is given true

label my and added to the training set, the learner trained on

the resulting set)),((mm yxL + results in the maximum
reduction on the uncertainty of the labels of the remaining
unlabeled samples in the pool, i.e. the smaller entropy for all
remaining unlabeled data. Meanwhile, before we make the
query, my , the true label for mx , is unknown. Thus, Equation
8 can be approximated by computing the minimum estimated
uncertainty for mx over each possible label mŷ , i.e.

∑ ∑
≠

+= ∈∈
−=

N

mn
kn Yy

mnmnYymmUU
n

m

PPLyxXYE
1

,,ˆ
)).ˆlogˆ((min),ˆ,,|(ˆ (9)

mx is the next sample to be selected for labeling, which is

added into L . The learner is then retrained on L , and the
process repeats until the stopping criterion is satisfied.
Equation 9 is the minimum total entropy, which is different
from the expected entropy used in [7]. Computing the
expected entropy requires the current learner to estimate the

current classifier’s posterior),|(ˆ LxyP mm for a candidate to
compute the weight for each label. In the case of small number

of initial labeled samples,),|(ˆ LxyP mm cannot be estimated
accurately and the expected log loss reduction computed in

this case will not be accurate either. However,),|(ˆ LxyP mm
is not needed in evaluating the generalization error, our query
strategy hence is less dependent on both the quality and
quantity of initial labeled data set.

On the other hand, the selected sample should possess high
uncertainty on its own label. Hence, the second criterion in
Equation 5 can be computed by the entropy base on current
learner, i.e.,

)).,|(ˆlog),|(ˆ(),|(LxyPLxyPLxYH mm
Yy

mmmm
m

∑
∈

−=

 (10)

Our objective function considers both the uncertainty of a
candidate and its potential to reduce the uncertainties of the
unlabelled data. So it selects the unlabeled sample with the
maximum uncertainty and maximum classification error
reduction on the unlabelled data. This therefore leads to
improved performance under very limited initial labeled data
as will be demonstrated in our experiments. The algorithm is
summarized in Table I.

The above algorithm is computationally intensive. Several
methods can be used to improve the algorithm efficiency
including sampling and clustering the unlabelled data pool so
that only seeds are considered for labeling. Another alternative

to speedup the algorithm is to use an incremental learning
mechanism to learn the classifier as the labeled data is
gradually made. As our focus is on the learning method, we
will not discuss this issue in this paper.

IV. EXPERIMENTAL RESULTS

Two benchmark data sets from UCI Machine Learning
Repository are used to evaluate the performance of our
method. One is for binary classification task and the other is
for multiple classification task. We choose the TAN classifier
as a classification algorithm. To evaluate the performance of
our approach, we compare the results of our approach
(UNMTER) with the results from the expected log loss
reduction algorithm (ELLR) in [7], Mm+M in [2] and most
uncertainty method.

TABLE I
UN-MTER ALGORITHM

1: Initialization: Randomly select a small set of samples from unlabeled
sample poolU , assign a class to each sample of them, then construct an
initial training set L . Train the classifier C using L .

2: While stopping criterion (here prediction accuracy) is not satisfied

3: Compute),ˆ,,|(ˆ LyxXYE mmUU
for each mx from U using

Equation 9;

4: Compute),|(LxYH mm for each mx from U using Equation 10;

5: Compute)(mxM for each mx fromU using Equation 5;

6: Select
*
mx with the maximum)(mxM ;

7: Add
*
mx with true label

*
my to L to form *

mL , where

),(***
mm yxLL +=+ ;

8: Retrain classifier C from *
+L , and obtain predication accuracy.

The first data set is from Tic-Tac-Toe Endgame database,

which consists of 958 instances. The data set is randomly
partitioned into training set of 203 instances including 10
initially labeled examples and 193 unlabeled examples. The
independent test set consists of 172 instances.

Figure 2 shows the resulting accuracy of four algorithms
as the function of number of selected samples. The maximum
possible accuracy is 97% after all the unlabeled data has been
labeled. In this experiment, each of active learners
sequentially selects 45 instances from unlabeled pool and adds
to the labeled set. It can be seen that after 21 queries our
algorithm (UN-MTER) and Mm+M reach 65%. In contrast,
the ELLR reaches 54%. After 23 queries our algorithm keeps
getting the higher accuracy than Mm+M and ELLR.
Meanwhile it is showed that the most uncertainty method
(UN) has the worst performance. The result demonstrates that,
our approach outperforms Mm+M, ELLR and the most
uncertainty under very limited initial labeled data set.
However, ELLR can match UN-MTER as the labeled data set
contains a substantial number of samples. Nevertheless, our
method is practically useful for some application domains in
which the availability of initially labeled data is restricted.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of selected samples

ac
cu

ra
cy

Tic−Tac−Toe dataset

UN−MTER
Mm+M
ELLR
UN

Fig. 2 The comparison results by running Tic-Tac-Toe data set.

The second data set for our experiment is from Nursery

database. The data set is randomly partitioned into training set
of 182 instances, in which 16 labeled examples and 166
unlabeled examples are included, and independent test set of
282 instances. This data set is for a multiple classification task
with 5 class attributes.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of selected samples

ac
cu

ra
cy

Nursery data set

UN−MTER
Mm+M
ELLR
UN

Fig. 3 The comparison results by running Nursery data set.

The comparison results are given in Figure 3. The

maximum possible accuracy is 66% after all the queries. After
20 queries, our algorithm reaches 51%. ELLR and Mm+M, on
the other hand, only reached 35% and 33% respectively. Since
then, UN-MTER has faster speedup than other methods.
Again, the results show that our approach outperforms ELLR,
Mm+M and UN when the number of initial labeled data is
very limited.

V. CONCLUSION

Most current methods for active learning assume the
availability of some reasonable amount of initially labeled
training data with sufficient quality. However, in many
applications, the amount and the quality of initial training data
are often limited. This will affect the quality of the initial
learners, which, in turn, affect the performance of the active
learning methods. To address this issue, we introduce the
method based on maximizing the minimum total entropy
reduction on the unlabeled data and maximum uncertainty of a
sample on the current learner. The experimental results with
benchmark datasets show that our method outperforms the
state-of-the-art methods especially when the amount of the
initially labeled data is small or when the quality of the
initially labeled data is poor.

REFERENCES
[1] B. Settles, “Active Learning Literature Survey,” Computer Sciences

Technical Report 1648, University of Wisconsin-Madison, January 9,
2009.

[2] W.M.Hu, W. Hu, N.H. Xie, and S. Maybank, “Unsupervised Active
Learning Based on Hierarchical Graph-Theoretic Clustering,” IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART B:
CYBERNETICS, VOL. 39, NO. 5, OCTOBER 2009.

[3] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden Markov models
for information extraction,” In Proceedings of the International
Conference on Advances in Intelligent Data Analysis (CAIDA), pages
309-318, Springer-Verlag, 2001.

[4] A. Culotta and A. McCallum, “Reducing labeling effort for structured
prediction tasks,” In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 746-751, AAAI Press, 2005.

[5] S. Kim, Y. Song, K. Kim, J.W. Cha, and G.G. Lee, “MMR-based active
machine learning for bio named entity recognition,” In Proceedings of
Human Language Technology and the North American Association for
Computational Linguistics (HLT- AACL), pages 69-72, ACL Press, 2006.

[6] I. Dagan and S. Engelson, “Committee-based sampling for training
probabilistic classifiers,” In Proceedings of the International Conference
on Machine Learning (ICML), pages 150-157, Morgan Kaufmann, 1995.

[7] N. Roy and A. McCallum, “Toward optimal active learning through
sampling estimation of error reduction,” In Proceedings of the
International Conference on Machine Learning (ICML), pages 441-448,
Morgan Kaufmann, 2001.

[8] X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining active learning and
semi-supervised learning using gaussian fields and harmonic functions,”
In Proceedings of the ICML Workshop on the Continuum from Labeled to
Unlabeled Data, pages 58-65, 2003.

[9] Y. Guo and R. Greiner, “Optimistic active learning using mutual
information,” In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), pages 823-829, AAAI Press, 2007.

[10] A. I. Schein and L.H. Ungar, “A-Optimality for Active Learning of
Logistic Regression Classifiers,” The University of Pennsylvania
Department of Computer and Information Science Technical Report, No.
MS-CIS-04-07.

Improving Bayesian Network Parameter Learning using Constraints

Cassio P. de Campos
Rensselaer Polytechnic Institute

decamc@rpi.edu

Qiang Ji
Rensselaer Polytechnic Institute

jiq@rpi.edu

Abstract

This paper describes a new approach to unify con-
straints on parameters with training data to perform
parameter estimation in Bayesian networks of known
structure. The method is general in the sense that any
convex constraint is allowed, which includes many pro-
posals in the literature. Driven by a maximum entropy
criterion and the Imprecise Dirichlet Model, we present
a constrained convex optimization formulation to com-
bine priors, constraints and data. Experiments indicate
benefits of this framework.

1 Introduction

Bayesian Networks (BNs) encode a joint probabil-
ity distribution for a set of random variables in a com-
pact graph structure. The problem of parameter learning
concerns the estimation of probability measures of con-
ditional probability distributions, given the graph struc-
ture of the BN. Many techniques depend heavily on
training data. Ideally, with enough data, it is possible
to learn parameters by standard statistical analysis like
maximum likelihood (ML) estimation. However, data
may be insufficient, leading to inaccurate estimations.

This paper proposes a framework for the parame-
ter learning problem that combines data and domain
knowledge in the form of constraints. There are two
types of constraints:soft constraintson priors andhard
constraintson estimations. Driven by the Imprecise
Dirichlet Model [17], prior beliefs are encoded using
a set of Dirichlet distributions. Combined with data and
constraints on estimations, the result is a set of estima-
tions, on which we apply the maximum entropy prin-
ciple to obtain a single estimation. Constraints on esti-
mations are viewed ashard constraints and assumed to
be correct. Thus only general and certainly valid con-
straints shall be used. On the other hand, constraints on
priors aresoftbecause estimations are adapted and cor-
rected by training data even if somesoftconstraints are

wrongly stated. Altogether, we can encode constraints
that are certain as well as less reliable constraints.

There are many approaches to parameter learning of
BNs using constraints. For instance, penalty functions
can be employed [1], but global optimality is not al-
ways guaranteed. Isotonic regression is also applicable,
but its complexity is high [7]. Non-convex optimiza-
tion also leads to high complexities [5]. Closed-form
solutions were investigated [9, 10], but they do not al-
low overlap of constraints (the same parameters may not
appear in different constraints). Because of that, many
types of constraints can not be represented. The frame-
work presented here tries to overcome such limitations.

2 Problem definition

A Bayesian network is a triple(G,X ,P), where
G is a directed acyclic graph withn nodes associated
to discrete random variablesX (a variable per node),
andP is a collection of parametersθijk = p(xk

i |paj
i),

with
∑

k θijk = 1, wherexk
i is a value or state ofXi

andpaj
i a complete instantiation for the parentsPAi of

Xi in G (it represents a set of states forPAi). In a
BN every variable is conditionally independent of its
non-descendants given its parents (Markov condition).
Thus the joint probability distribution is obtained by
p(X1, . . . , Xn) =

∏
i p(Xi|PAi). We focus on param-

eter learning in a BN where its structure is known in
advance. Given a data setD where each element is a
sample of the BN variables, the goal of parameter learn-
ing is to find the most probable values for the vector
θ, which can be quantified by the log likelihood func-
tion LD(θ) = log(p(D|θ)). Assuming that samples are
drawn independently from the underlying distribution,
we need to maximizeLD(θ) = log

∏
ijk θ

nijk

ijk , where
nijk indicates how many elements ofD contain bothxk

i

andpaj
i . Maximum likelihood estimation has its opti-

mum atθijk =
nijk

P

k nijk
.

Another usual parameter learning technique is the
Dirichlet model, where one starts by assuming that an

expert has specified a prior BN, denoted byNp, that
conveys her prior beliefs. The goal is to learn the pa-
rameters of multinomial distributions onθij using both
Np and data. The Dirichlet distribution is a natural para-
metric model forp(θij), because it is conjugate with the
multinomial distribution. A possible parametrization is
p(θij) ∝

∏
k θ

sτijk−1
ijk for s ≥ 0 and

∑
k τijk = 1,

where the hyper-parameters controls dispersion and
hyper-parametersτijk control location [17]. The pa-
rameters is often interpreted as thesizeof a database
encoding the same prior beliefs as the Dirichlet distri-
bution. We assume thatNp is associated with a single
positive numbers that encodes thequality of the prior
BN, and that parameters ofNp defineτ such thatτijk

corresponds toθijk in the prior. Then, using expectation
as estimator, the optimal estimateθijk is the posterior
expected value:θijk =

sτijk+nijk

s+
P

k nijk
.

Standard estimation methods are usually enough
when there are enough data. However, when a small
amount of data is available, they may produce unre-
liable estimations. A way to improve estimations is
through the use of constraints. LetθA be a sequence of
parameters,αA a corresponding sequence of constant
numbers andα also a constant. Alinear relationship
constraintis defined as∑

θijk∈θA,αijk∈αA

αijk · θijk ≤ α, (1)

that is, any linear constraint over parameters can be
expressed as alinear relationship constraint. For in-
stance, qualitative influences and synergies [18] can be
expressed by linear constraints. SupposeX1, X2, X3

are random variables that assume values in{x1
i , x

2
i },

with x2
i greater thanx1

i , such thatX1 is the child ofX2

andX3. It is said thatX2 has a positive influence on
X1 if p(x2

1|x
2
2, x

1
3) ≥ p(x2

1|x
1
2, x

1
3)

1 andp(x2
1|x

2
2, x

2
3) ≥

p(x2
1|x

1
2, x

2
3), that is, a greater value ofX2 increases

the probability of a greater value ofX1 (for both values
of X3). A positive synergy of two parents in a com-
mon child happens when the parents influence the child
together, for example,p(x2

1|x
1
2, x

1
3) + p(x2

1|x
2
2, x

2
3) ≥

p(x2
1|x

1
2, x

2
3) + p(x2

1|x
2
2, x

1
3). This means that a greater

value of the child is more likely when the parents have
the same value. In fact these are just simple (but impor-
tant) examples of constraints that are allowed. Other ex-
amples are sum of parameters, range, relationship, and
ratio constraints [9], weak and strong, monotonic and
non-monotonic influences and synergies [11], among
many others. Our assumption about constraints is even
more general: they must define a (possibly non-linear)

1We use a probability notation for ease of expose, as each param-
eterθijk is a probability value of the network.

convex parameter space, that is, any constraint in the
form h(θ) ≤ 0, whereh is convex, is allowed. Most of
recent literature in this topic can be expressed by con-
vex constraints [9, 10, 11, 18]. Such flexibility allows
for a better description of the knowledge, as we have
no restriction regarding the number of times a parame-
ter appear in constraints or whether constraints involve
distinct distributions of the BN.

3 Parameter learning using convex opti-
mization

If we only have constraints onθ, ML can be solved
by convex programming, as a maximization of a con-
cave log-likelihood function must be solved. There are
optimization algorithms to solve convex programming
in polynomial time [2, 4]. They can be as fast as lin-
ear programming solvers. Convex programming has
the attractive property that any local optimum is also
a global optimum [4]. This idea of constrained ML is
rather intuitive in its interpretation and in the method to
solve it. However ML does not allow us to define prior
assessments (probabilities cannot be directly taken as
constraints because if they are fixed at this stage, the
empirical data cannot change them). The interpretation
of constraints only ashardconstraints on estimations is
eventually too inflexible, and in some cases it is more
profitable to interpret expert’s belief as apartial assess-
ment of a prior distribution.

Besides constraints on parametersθijk, we allow
constraints on hyper-parametersτijk . The idea is to
work with both constraints onθ and constraints onτ .
So, assume that an expert has specified two sets of con-
straints denoted byCp and C, that conveys her prior
beliefs and some knowledge about parameters, respec-
tively. The content ofCp is viewed as the set ofcon-
straints on the hyper-parametersτijk of Dirichlet dis-
tributions for a fixed value ofs, while C is the set of
hard constraints on estimations. Constraints onCp are
constraints on the prior, not in the probability values
themselves. The only assumption for constraints onCp

is that they must be convex constraints onτ (this is same
assumption as forC). If the expert is certain, she defines
a constraint overθ. Otherwise, a similar constraint, but
now overτ , may be used. In summary, constraints of
Cp andC can be specified similarly. The former defines
restrictions on parametersτ , while the latter defines re-
strictions forθ. This formulation is based on theIm-
precise Dirichlet Model[17], which has received great
attention recently [5, 14].

The result is a set of distributions that must satisfy

C(θ), Cp(τ) and equations

θijk =
sτijk + nijk

s +
∑

k nijk

, (2)

wherenijk are the counts from the data set (simplex
constraints∀ij

∑
k θijk = 1 and∀ij

∑
k τijk = 1 are

assumed to be inC(θ) andCp(τ)). Equation (2) is the
gluebetweenC(θ) andCp(τ). This formulation has sev-
eral attractive features. First, it deals with qualitative
and numerical aspects in a uniform manner. Second,
it uses constraints on priors and on estimations, mak-
ing possible to the expert to state bothhard and soft
constraints. As any convex constraint is allowed, it is
possible to specify precise probability measures as well
as vacuous beliefs (the specification of a single prior is
also possible as it is a sub-case). Third, a single hyper-
parameters must be elicited to capture the quality of
the prior. Fourth, computations are efficient as all con-
straints are convex. Still, all these constraints define a
set of distributions. Then we employ the maximum en-
tropy principle, locally applied to each conditional dis-
tribution, to select one distribution from this set. Distri-
butions of maximum entropy are conservative and tend
to agree with frequencies [16]. So, the framework can
be summarized as the following optimization problem:

max
θ

−
∑
ijk

θijk log θijk, (3)

subject to Equations (2), convex constraintsCp(τ) and
convex constraintsC(θ). This formulation can be poly-
nomially solved by convex programming, as Equation
(3) is the maximization of a concave function [8] subject
to convex constraints. The resultingθ is our estimation.

Finally, we point out that Equations (2) tend the val-
ues ofθijk to be close to nijk

P

k nijk
(the frequencies of

θijk in the data set), while constraints onθijk defined by
the expert might (or might not) impose another different
value. As we assume that hard constraints specified by
the expert are correct, a penalty optimization variable is
introduced in Equation (2) to guarantee that preference
is given to the hard constraints defined by the expert
and that the problem will not be infeasible (as long as
expert’s constraints are not already infeasible, in which
case the expert should update her beliefs).

4 Experiments

We perform experiments using data sets with 10, 100
and 1000 samples. Three well–known networks are
evaluated: Asia (Lauritzen and Spiegelhalter), Alarm
(Beinlich et al.), and Insurance network (Binder et al.).
For each network, we take one given parametrization

as our true model and generate samples from it. Then
Kullback–Leibler (KL) divergence is performed to mea-
sure the difference from distributions of estimated net-
works to distributions of true networks. Random lin-
ear (convex) constraints are generated from 1 to 5 pa-
rameters each. The constraints are created over the true
network (so they are certainly correct) in number equal
to the number of conditional distributions in the cor-
responding network. For each configuration, we work
with 30 random sets of data and constraints. Averages
of KL divergence are presented in Table 1. Columns
have results of standard ML, Constrained ML and Con-
strained Maximum Entropy (CME).

Results indicate a strong decrease in the diver-
gence when working with constraints (second and third
columns of each block). Moreover, benefits are more
significant with larger networks. We note that re-
sults with constraints using only 10 samples are bet-
ter than results using 100 or even 1000 samples with-
out constraints, which indicate a relevant decrease in
the amount of data that would be necessary for achiev-
ing the same accuracy. The third column of each block
shows results for the combination of constraints on pri-
ors and estimations using the maximum entropy idea.
It is interesting to note the advantages when compared
to the second column, because CML already uses con-
straints on estimations.

We also consider the problem of recognizing facial
action units from real image data. Based on the Facial
Action Coding System [6], facial behaviors can be de-
composed into a set of Action Units (AUs). We work
with a BN with 28 nodes to recognize 14 common oc-
curring AUs (there are a hidden and a measurement
node for each AU). The structure of the BN is learned as
described in Tong et al. [13]. We define 42 simple linear
constraints, mainly describing influences among AUs.
The 8000 images from Cohn and Kanade’s DFAT-504
database are used. Testing is performed over20% of
the data (not chosen for training). We consider training
data sets with 100 and 1000 samples (as constraints are
more relevant when insufficient data are available), cho-
sen randomly from the training database. Results are
shown in Table 2. CME obtains an overall recognition
rate (percentage of correctly classified cases) of93.1%,
which is similar to current state-of-the-art results. For
instance, Tong et at. [13] report93.3%, Bartlett et al.
[3] report93.6%, and other methods have results with
slight variance [12, 15].

5 Conclusion

This paper presents a framework for parameter learn-
ing when domain knowledge is available in the form

10 samples 100 samples 1000 samples
Network Nodes Distr Dimension ML CML CME ML CML CME ML CML CME
Asia 9 21 21 1.22 0.61 0.25 0.27 0.14 0.11 0.05 0.03 0.03
Alarm 37 243 509 3.26 1.80 0.61 2.51 1.19 0.47 1.12 0.58 0.26
Insurance 27 411 1008 3.62 1.56 0.63 2.24 0.92 0.44 0.96 0.40 0.20

Table 1. Average KL divergence using random samples and constraints.

100 samples 1000 samples
Rate ML CME ML CME
Positive 65.6% 75.7% 73.2% 83.9%
Negative 95.8% 97.7% 95.9% 97.0%

Table 2. Positive and negative rates for AU
recognition.

of convex constraints. We have introduced a new idea
based on the Imprecise Dirichlet Model and the max-
imum entropy criterion that is able to deal with con-
straints on priors and on estimations. The framework
is fast and guarantees to find the global optimum solu-
tion. Through experiments with well-known networks,
we show that both constraints on priors and estimations
are important to improve parameter learning accuracy.

The main contribution of this work is to allow an
expert to specify her knowledge usinghard constraints
on estimations andsoft constraints on priors, with no
restrictions on the format of constraints besides con-
vexity. As far as we know, no previous methods were
able to handle such general situation. The idea can
also be embedded into an iterative procedure to treat in-
complete data, similar to the Expectation-Maximization
(EM) method. This discussion is left for the future, but
we anticipate that the benefits are similar to those of
complete data. We believe that the application of these
ideas to real domains is promising and we intend to pur-
sue that in a future work, as well as an investigation
about the effect of wrong constraints.

Acknowledgments

This work is supported in part by a grant from
the U.S. Army Research Office under grant number
W911NF-06-1-0331.

References

[1] E. Altendorf, A. C. Restificar, and T. G. Dietterich.
Learning from sparse data by exploiting monotonicity
constraints. InUAI, p. 18–26, 2005.

[2] E. D. Andersen, B. Jensen, R. Sandvik, and U. Wor-
soe. The improvements in mosek version 5. Technical
report, Mosek Aps, 2007.

[3] M. S. Bartlett, G. C. Littlewort, M. G. Frank, C. Lain-
scsek, I. Fasel, J. R. Movellan. Automatic Recognition
of Facial Actions in Spontaneous Expressions.Journal
of Multimedia, 1(6):22–35, 2006.

[4] A. Ben-Tal and A. Nemirovski. Lectures on Modern
Convex Optimization: Analysis, Algorithms, and Engi-
neering Applications. MPS/SIAM Series, 2001.

[5] C. P. de Campos and F. G. Cozman. Belief updating
and learning in semi-qualitative probabilistic networks.
In UAI, p. 153–160, 2005.

[6] P. Ekman and W. V. Friesen.Facial action coding sys-
tem: A technique for the measurement of facial move-
ment. Consulting Psychologists Press, 1978.

[7] A. Feelders. A new parameter learning method for
bayesian networks with qualitative influences. InUAI,
p. 117–124, 2007.

[8] E. H. Lieb. Some convexity and subadditivity properties
of entropy.B. of the American Math. Soc., 81(1), 1975.

[9] R. S. Niculescu.Exploiting Parameter Domain Knowl-
edge for Learning in Bayesian Networks. PhD thesis,
Carnegie Mellon, 2005. CMU-CS-05-147.

[10] R. S. Niculescu, T. Mitchell, and B. Rao. Bayesian net-
work learning with parameter constraints.J. of Machine
Learning Research, 7(Jul):1357–1383, 2006.

[11] S. Renooij, L. C. van der Gaag, and S. Parsons.
Context-specific sign-propagation in qualitative proba-
bilistic networks.Artif. Intell., 140(1-2):207–230, 2002.

[12] Y. Tian, T. Kanade, and J. Cohn. Recognizing action
units for facial expression analysis.IEEE Trans. on
PAMI, 23(2):97–115, 2001.

[13] Y. Tong, W. Liao, and Q. Ji. Facial action unit recogni-
tion by exploiting their dynamic and semantic relation-
ships.IEEE Trans. on PAMI, p. 1683–1699, 2007.

[14] L. Utkin and T. Augustin. Decision making under in-
complete data using the imprecise dirichlet model.Int.
J. of Approximate Reasoning, 44(3):322–338, 2007.

[15] M. F. Valstar, I. Patras, and M. Pantic. Facial action unit
detection using probabilistic actively learned support
vector machines on tracked facial point data. InCVPR,
W. Vision for Human-Computer Interaction, 2005.

[16] P. Walley. Statistical Reasoning with Imprecise Proba-
bilities. Chapman and Hall, London, 1991.

[17] P. Walley. Inferences from multinomial data: Learning
about a bag of marbles.J. Royal Statistical Society B,
58(1):3–57, 1996.

[18] M. P. Wellman. Fundamental concepts of qualitative
probabilistic networks.Artif. Intell. 44:257–303, 1990.

Strategy Selection in Influence Diagrams using Imprecise
Probabilities

Cassio P. de Campos
Electrical, Computer and Systems Eng. Dept.

Rensselaer Polytechnic Institute
Troy, NY, USA
decamc@rpi.edu

Qiang Ji
Electrical, Computer and Systems Eng. Dept.

Rensselaer Polytechnic Institute
Troy, NY, USA

jiq@rpi.edu

Abstract

This paper describes a new algorithm to
solve the decision making problem in In-
fluence Diagrams based on algorithms for
credal networks. Decision nodes are asso-
ciated to imprecise probability distributions
and a reformulation is introduced that finds
the global maximum strategy with respect
to the expected utility. We work with Lim-
ited Memory Influence Diagrams, which gen-
eralize most Influence Diagram proposals and
handle simultaneous decisions. Besides the
global optimum method, we explore an any-
time approximate solution with a guaran-
teed maximum error and show that imprecise
probabilities are handled in a straightforward
way. Complexity issues and experiments
with random diagrams and an effects-based
military planning problem are discussed.

1 INTRODUCTION

An influence diagram is a graphical model for deci-
sion making under uncertainty [13]. It is composed
by a directed graph where utility nodes are associated
to profits and costs of actions, chance nodes represent
uncertainties and dependencies in the domain and de-
cision nodes represent actions to be taken. Given an
influence diagram, a strategy defines which decision to
take at each node, given the information available at
that moment. Each strategy has a corresponding ex-
pected utility. One of the most important problems in
influence diagrams is strategy selection, where we need
to find the strategy with maximum expected utility.
A simple approach is to evaluate each possible strat-
egy and compare their expected utilities. However, the
number of strategies grows exponentially in the num-
ber of decision to be taken.

In this paper, we propose a new idea to find the best

strategy based on a reformulation of the problem as
an inference in a credal network [4]. We show through
experiments that this approach can handle small and
medium diagrams exactly, and provides an anytime
approximation in case we stop the process early. Our
idea works with a very general class of influence di-
agrams, named Limited Memory Influence Diagrams
(LIMIDs) [15]. Limited Memory means that the as-
sumption of no-forgetting usually employed in Influ-
ence Diagrams (that is, values of observed variables
and decisions that have been taken are remembered at
all later times) is relaxed. This class of diagrams is
interesting because most other influence diagram pro-
posals can be efficiently converted into LIMIDs.

To solve strategy selection, many approaches work on
special cases of influence diagrams, exploiting their
characteristics to improve performance. In many
cases, it is assumed that there is an ordering on which
the decisions are to be taken and the no-forgetting rule,
so as previous decisions are assumed to be known in
the moment of the current decision [14, 18, 19, 20, 21].
The ordering of decision nodes is exploited to eval-
uate the optimal strategy. There are also proposals
in the class of simultaneous influence diagrams, where
decisions are assumed to have no antecedents. This
assumption reduces the number of possible strategies
and allows for factorization ideas [22]. LIMIDs do not
have assumptions about no-forgetting and ordering for
decisions, even though it is possible to convert dia-
grams that have such assumptions into LIMIDs.

In order to test our method, we generate a data set
of random influence diagrams. Empirical results indi-
cate that the accuracy of our method is better than
other approaches’. We also apply our idea to solve
an Effects-based operations (EBO) military planning.
The EBO approach seeks for a campaign objective by
considering direct, indirect and cascading effects of
military, diplomatic, psychological and economic ac-
tions [6, 11]. We use an influence diagram to model an
EBO hypothetical problem.

Section 2 introduces our notation for influence dia-
grams and the problem of strategy selection. Section 3
describes the framework of credal networks and the in-
ference problem on such networks. Section 4 presents
how we solve strategy selection through a reformula-
tion of the problem as an inference in credal networks.
Section 5 presents some experiments, including the
EBO military planning problem, and finally Section
6 concludes the paper and indicates future work.

2 INFLUENCE DIAGRAMS

A Limited Memory Influence Diagram I is composed
by a directed acyclic graph (V , E) where nodes are
partitioned in three types: chance, decision and utility
nodes. Let C, D and U be the set of chance, decision
and utility nodes, respectively, and let X = C ∪ D.
Links of E characterize dependencies among nodes.
Explicitly, links toward a chance node indicate prob-
abilistic dependence of the node on its parents; links
toward a decision node indicate which information is
available to take such decision, and links toward utility
nodes represent that an utility for those parents is to
be considered (utility nodes may not have children).
Associated to each node, there are some parameters:

1. A chance node has an associated categorical ran-
dom variable C with finite domain ΩC and con-
ditional probability distributions p(C|πj(C)), for
each configuration πj(C) of its parents π(C) in
the graph. j is used to indicate a configuration of
the parents of C, that is, πj(C) ∈ Ωπ(C), where
the notation ΩV′ = ×V ∈V′ ΩV , for any V ′ ⊆ V .

2. A decision node D is associated to a finite set of
mutually exclusive alternatives ΩD. Parents of D

describe the information that is available at the
moment on which decision D has to be taken.

3. An utility node U is associated to a rational func-
tion fU : Ωπ(U) → Q. The value corresponding to
a parent configuration is the profit (cost is viewed
as negative profit) of such parent configuration.
Utility nodes have no children.

A simple example is depicted in Figure 1. De-
cision nodes are represented by rectangles, chance
nodes by ellipses and utility nodes by diamonds.
do ground attack has an associated cost, which is de-
picted by the corresponding utility node. The same is
modeled for bomb bridge. The goal is to achieve ter-
ritory occupation, which also has an utility (the profit
of the goal). ground attack and bridge condition repre-
sent the uncertain outcomes of the corresponding ac-
tions. Note that there is no known ordering on which

cost_of
attack

ground_attack

territory_occupation
profit
of_goal

do_ground_attack

bridge_condition

bomb_bridge

bombing
cost_of

Figure 1: Simple Influence Diagram example.

decisions must be taken. Although decision nodes have
no parents in this example, there is no such restriction.

A policy δD for the decision node D is a function
δD : ΩD∪π(D) → [0, 1] defined for each alternative
of D and each configuration of π(D) such that, for
each πj(D) ∈ Ωπ(D) we have

∑
d∈ΩD

δD(d, πj(D)) = 1.
A pure policy is a policy such that its image is inte-
ger (δD : ΩD∪π(D) → {0, 1}), and thus specifies with
certainty which action (alternative of D) is taken for
each parent configuration (in a pure policy, only one
δD(d, πj(D)) for each πj(D) will be non-zero as they
sum 1). A strategy ∆ is a set of policies {δD : D ∈ D},
one for each decision node of the diagram. A pure
strategy is composed only by pure policies.

The expected utility EU(∆) of a strategy ∆ is evalu-
ated through the following equation:

∑
x∈ΩX

(∏
C

p(xC |πj(C))
∏
D

δD(xD)
∑
U

fU (πj′ (U))

)
,

(1)
where xC , πj(C), xD and πj′ (U) are respectively the
projections of x in ΩC , Ωπ(C), ΩD∪π(D) and Ωπ(U).
This equation means that, given a strategy, its ex-
pected utility is the sum of the utility values weighted
by the probability of each diagram configuration (for
all configurations). The maximum expected utility is
obtained over all possible strategies:

MEU = max
∆

EU(∆).

The problem of strategy selection is to obtain the
strategy that maximizes its expected utility, that is,
argmaxmax∆ EU(∆).

3 CREDAL NETWORKS

We need some concepts of credal networks before pre-
senting the reformulation to solve strategy selection.
A convex set of probability distributions is called a

credal set [4]. A credal set for X is denoted by K(X);
we assume that every random variable is categori-
cal and that every credal set has a finite number of
vertices. Given a credal set K(X) and an event A,
the upper and lower probability of A are respectively
maxp(X)∈K(X) p(A) and minp(X)∈K(X) p(A). A condi-
tional credal set is a set of conditional distributions,
obtained by applying Bayes rule to each distribution
in a credal set of joint distributions.

A (separately specified) credal network N = (G, X, K)
is composed by a directed acyclic graph G = (V, E)
where each node of V is associated with a random
variable Xi ∈ X and with a collection of conditional
credal sets K(Xi|π(Xi)) ∈ K, where π(Xi) denotes
the parents of Xi in the graph. Note that we have a
conditional credal set related to Xi for each configura-
tion πj(Xi) ∈ Ωπ(Xi). A root node is associated with
a single marginal credal set. We take that in a credal
network every random variable is independent of its
non-descendants non-parents given its parents; this is
the Markov condition on the network. In this paper
we adopt the concept of strong independence1: two
random variables Xi and Xj are strongly independent
when every extreme point of K(Xi, Xj) satisfies stan-
dard stochastic independence of Xi and Xj (that is,
p(Xi|Xj) = p(Xi) and p(Xj|Xi) = p(Xj)) [4]. Strong
independence is the most commonly adopted concept
of independence for credal sets, probably due to its
connection with standard stochastic independence.

Given a credal network, its extension is any joint credal
set that satisfies all constraints encoded in the net-
work. The strong extension K of a credal network is
the largest joint credal set such that every variable
is strongly independent of its non-descendants non-
parents given its parents. The strong extension of a
credal network is the joint credal set that contains ev-
ery possible combination of vertices for all credal sets
in the network [5]; that is, each vertex of a strong ex-
tension factorizes as follows:

p(X1, . . . , Xn) =
∏

i

p(Xi|π(Xi)) . (2)

Thus, a credal network can be viewed as a represen-
tation for a set of Bayesian networks with distinct pa-
rameters but sharing the same graph.

3.1 INFERENCE

A marginal inference in a credal network is the com-
putation of upper (or lower) probabilities in an exten-
sion of the network. If Xq is a query variable, then a
marginal inference is the computation of tight bounds

1We note that other concepts of independence are found
in the literature [3, 10].

for p(xq) for one or more categories xq of Xq. For in-
ferences in strong extensions, it is known that distribu-
tions that maximize p(xq) belong to the set of vertices
of the extension [12]. So, an inference can be produced
by combinatorial optimization, as we must find a ver-
tex for each local credal set K(Xi|π(Xi)) so that Ex-
pression (2) leads to a maximum of p(xq). In general,
inference offers tremendous computational challenges,
and exact inference algorithms based on enumeration
of all potential vertices face serious difficulties [4].

A different way to solve the problem is to recognize
that an upper (or lower) value for p(xq) may be ob-
tained by the optimization of a multilinear polynomial
over probability values, subject to constraints. This
idea is discussed in the literature and different methods
to reformulate the inference problem were proposed
[7, 9]. Empirical results suggest that this is the most
effective way for exact inferences. In the next section,
we describe an idea based on bilinear programming
[9] to perform inferences in credal networks and show
how it can be employed to solve the strategy selection
problem of influence diagrams.

4 STRATEGY SELECTION AS A

CREDAL NET INFERENCE

Suppose we want to find the strategy ∆opt that max-
imizes the expected utility in an influence diagram I,
that is, ∆opt = argmaxMEU. Let f and f be the
minimum and maximum utility values specified in the
diagram for all possible utility nodes and parent con-
figurations, that is,

f = min
U,πj(U)

fU (πj(U)), f = max
U,πj(U)

fU (πj(U)).

We create an identical influence diagram I ′ except that
the utility function f ′

U (for each node U) is defined as

∀πj(U) f ′

U (πj(U)) =
fU (πj(U)) − f

f − f
.

The denominator is positive because f < f (if f =

f , then the influence diagram is trivial as all utility
values are equal). We note that this transformation is
similar to that proposed by Cooper [2]. It is not hard
to see that argmaxMEU = argmaxMEU’ (just take
the terms out of summations in Equation (1)), and

max
∆

EU’(∆) =
max∆ EU(∆) − |U|f

f − f
.

This implies that strategy selection in I is the same as
strategy selection in I ′. Now, we translate the selec-
tion problem of I ′ to a credal network inference. Sup-
pose we define a credal network with a similar graph
as I ′ such that:

• Chance nodes are directly translated as nodes of
the credal network (parents are the same as in I ′).

• Utility nodes are translated to binary random
nodes. Let U be an utility node with function fU .
In the credal network, U becomes a binary node
(with the same parents as before) and categories
u and ¬u such that: p(u|πj(U)) = fU (πj(U)) and
p(¬u|πj(U)) = 1 − p(u|πj(U)) [2].

• Decision nodes are translated to probabilistic
nodes with imprecise distributions such that poli-
cies become probability distributions (in fact, ac-
cording to our definition of policy, they are al-
ready greater than zero and sum 1). Thus,
p(d|πj(D)) = δD(d, πj(D)) for all d and πj(D).
Note that p(D|πj(D)), for each πj(D), is a dis-
tribution with unknown probability values (this
interpretation of decision nodes as imprecise prob-
ability nodes is discussed by Antonucci and Zaf-
falon, see e.g. [1]).

Using this credal network formulation, the expected
utility of a strategy ∆ can be written as

EU’(∆) =
∑

x∈ΩX

(∏
X

p∆(x|πj(X))
∑
U

p(u|πj′(U))

)
,

where x, πj(X) and πj′ (U) are projections of x into
the corresponding domains, X ranges on all nodes cor-
responding to chance and decision nodes of the influ-
ence diagram, and p∆ represents the distribution in-
duced by the strategy ∆, that is, when the strategy is
chosen, p∆ is a known probability distribution.

With some simple manipulations, we have:

EU’(∆) =
∑

x∈ΩX

(
p∆(x)

∑
U

p(u|πj′(U))

)
,

EU’(∆) =
∑

x∈ΩX

(∑
U

p(u|πj′ (U))p∆(x)

)
,

EU’(∆) =
∑
U

∑
x∈ΩX

p∆(u,x) =
∑
U

p∆(u),

and then

MEU’ = max
∆

∑
U

p∆(u) = max
p∈K

∑
U

p(u),

where p ∈ K means that we select a distribution p in
the extension of the credal network. In fact the only
places p may vary are related to the imprecise proba-
bilities of the former decision nodes. When we select
p, we get a precise distribution that has a correspond-
ing strategy ∆. So, we have a credal network and
need to find a distribution p that maximizes the sum
of marginal probabilities of the U nodes.

4.1 INFERENCE AS AN OPTIMIZATION
PROBLEM

The sum of marginal inferences in the credal network
can be formulated as a multilinear programming prob-
lem. The goal is to maximize the expression

∑
U

p(u) =
∑
U

∑
x∈ΩX

(
p(u|πj′(U))

∏
X

p(x|πj(X))

)
,

(3)
where x, πj′ (U) and πj(X) are the projections of x in
the corresponding domains, and where some distribu-
tions p(X |πj(X)) are precisely known and others are
imprecise. In this formulation we must deal with a
large number of multilinear terms. To avoid them, we
briefly describe the bilinear transformation procedure
proposed by de Campos and Cozman [9] to replace
the large Expression (3) by simple bilinear expressions.
We refer to [9] for additional details.

The idea is based on a precedence ordering of the net-
work variables, which is an ordering where all ances-
tors of a given variable in the network’s graph appear
before it in the ordering. The bilinear transformation
algorithm processes the network variables top-down:
at each step some constraints are generated that de-
fine the relationship between the query and the cur-
rent variable being processed. A variable may be pro-
cessed only if all its ancestors have already been pro-
cessed. The active nodes at each step form a path-
decomposition of the network’s graph.

To better explain the method, we take the exam-
ple of Figure 1. For simplicity, assume that vari-
ables are binary2 (with categories b and ¬b) re-
named as follows: do ground attack is D1, bomb bridge
is D2, cost of attack is U1, cost of bombing is U2,
ground attack is C1, bridge condition is C2, terri-
tory occupation is C3, and finally profit of goal is U3.

After the translation of the utility functions into prob-
ability distributions and the replacement of decision
nodes by nodes with imprecise probabilities (as previ-
ously described), we have a credal network and need to
maximize the sum of the marginal probabilities of the
U nodes. In fact this is an extension of the standard
query in a credal network, because we have a summa-
tion instead of a single probability to maximize. So
the objective function is max p(u1) + p(u2) + p(u3)
(there are three utility nodes in the example) sub-
ject to constraints that define each marginal proba-
bility p(u1), p(u2) and p(u3). To create these con-
straints, we run a symbolic inference based on the
precedence ordering for each of the marginal proba-
bilities. The constraints for p(u1) and p(u2) are very

2The method works on non-binary variables as well.
The assumption is made here for ease of expose.

simple: p(u1) = p(u1|d1)p(d1) + p(u1|¬d1)p(¬d1) and
p(u2) = p(u2|d2)p(d2)+p(u2|¬d2)p(¬d2), because they
only depend on one other variable. Note that p(d1),
p(¬d1), p(d2), and p(¬d2) that appear in these con-
straints are unknown and thus become optimization
variables in the bilinear problem.

To write the constraints for p(u3), we need to choose
a precedence ordering. We will use the ordering
D2, C2, D1, C1, C3, U3 (variables U1 and U2 do not ap-
pear in the order as they are not relevant to evaluate
the marginal p(u3)). Hence, the first variable to be
processed is D2. We write a constraint that relates
the query u3 and probabilities p(D2) (which are de-
fined in the network specification):

p(u3) =
∑

d∈{d2,¬d2}

p(d) · p(u3|d).

D2 now appears in the conditional part of p(u3|d),
which may be viewed as an artificial term in the opti-
mization, as it does not appear in the network. Be-
cause of that, we must create constraints to define
p(u3|d) in terms of network parameters (for all cat-
egories d ∈ D2). According to our chosen ordering,
the current variable to be processed is C2. Thus,

p(u3|d2) =
∑

c∈{c2,¬c2}

p(c|d2) · p(u3|c),

p(u3|¬d2) =
∑

c∈{c2,¬c2}

p(c|¬d2) · p(u3|c).

Note that p(u3|c) = p(u3|c, d) (for any d), so we use
the simpler. At this stage, our query is conditioned on
C2. Following the same idea, we process D1, obtaining

p(u3|c2) =
∑

d∈{d1,¬d1}

p(d) · p(u3|c2, d),

p(u3|¬c2) =
∑

d∈{d1,¬d1}

p(d) · p(u3|¬c2, d).

Now the current variable to be treated is C1, and our
query is conditioned on C2, D1, that is, we must de-
fine how to evaluate p(u3|C2, D1) for all configurations.
Thus, for all c ∈ {c2,¬c2} and d ∈ {d1,¬d1}:

p(u3|c, d) =
∑

c′∈{c1,¬c1}

p(c′|c, d) · p(u3|c, c
′).

At this moment, u3 is conditioned on C1, C2 in the
artificial term p(u3|c, c′) (D1 is not present in the ar-
tificial term as C1, C2 separate u3 from D1). Now we
process C3: for all c′ ∈ {c1,¬c1} and c ∈ {c2,¬c2}

p(u3|c, c
′) =

∑
c′′∈{c3,¬c3}

p(c′′|c, c′) · p(u3|c
′′).

Note that, as p(u3|c′′) is specified in the network, we
can stop. All artificial terms are related (through con-
straints) to parameters of the network. Besides all
these constraints, we also include simplex constraints
to ensure that probabilities sum 1.

Hence, we have a collection of linear and bilinear con-
straints on which non-linear programming can be em-
ployed [7]. It is also possible to use linear integer pro-
gramming [9]. The steps to achieve a linear integer
programming formulation are simple, because the only
non-linear terms of the problem have the format b · t,
where b ∈ {0, 1} and t ∈ [0, 1]. b is an unknown proba-
bility value of the credal network (which is zero or one
because the solution we look for lies on extreme points
of credal sets [12]) and t is a constant or an artificial
term created in the procedure just described. To lin-
earize the problem, b · t is replaced by an additional
artificial optimization variable y and the following con-
straints are inserted: 0 ≤ y ≤ b and t − 1 + b ≤ y ≤ t.
After replacing all non-linear terms using this idea, the
problem becomes a linear integer programming prob-
lem, where a solution is also a solution for the strategy
selection in the initial influence diagram.

We emphasize that, as we are translating the strat-
egy selection problem into a credal network inference,
it is straightforward to use imprecise probabilities in
the chance nodes of the influence diagram. Intervals
or sets of probabilities may be used. The translation
works in the same way, but the generated problem will
have more imprecise probabilities to optimize.

The following theorem shows that, when reformulat-
ing the strategy selection problem as a modified credal
network inference, we are not making use of “more ef-
fort” than necessary, that is, strategy selection has the
same complexity as inference in credal networks.

Theorem 1 Let I be a LIMID and k a rational. De-
ciding whether there is a strategy ∆ such that MEU
is greater than k is NP-Complete when I has bounded
induced width,3 and NPPP-Complete in general.

Proof sketch: Pertinence for the bounded induced
width case is achieved because (given a strategy) we
can compute MEU and verify if it is greater than k

in polynomial time (using the reformulation and the
sum of marginal queries, each marginal query takes
polynomial time in a bounded induced width Bayesian
network); in the general case, we can perform this ver-
ification using a PP oracle. Hardness for the bounded
induced width case is obtained with the same reduc-

3The maximum clique and the maximum degree in the
moral graph are bounded by a logarithmic function in the
size of the input needed to specify the problem, which for
instance includes polytrees.

tion as in [8] from the MAXSAT problem (replacing
the credal nodes with decision nodes and introducing
a single utility node). In the general case, the same re-
duction as in [17] from E-MAJSAT can be used (MAP
nodes are replaced by decision nodes). �

5 EXPERIMENTS

We conduct two experiments with the procedure.
First, we use random generated influence diagrams
to compare the solutions obtained by our procedure
(which we call CR for credal reformulation) against the
Single Policy Updating (SPU) of Lauritzen and Nils-
son [15]. Later we work with a practical EBO military
planning problem and compare the method against the
factorization of Zhang and Ji [22].4

Concerning random influence diagrams, we have gen-
erated a data set based on the total number of nodes
and the number of decision nodes. The configurations
chosen are presented in the first two columns of Table
1. We have from 10 to 120 nodes, where 3 to 35 are
decision nodes. The number of utility nodes is cho-
sen equal to the number of decision nodes. Each line
in Table 1 contains the average result for 30 random
generated diagrams within that configuration. The
third column of the table shows the approximate aver-
age number of distinct strategies in the diagrams that
would need to be evaluated by a brute force method.

The three columns of the CR method show the time
spent to solve the problem, the number of nodes evalu-
ated in the branch-and-bound tree of the optimization
procedure (which is significantly smaller than the total
number of strategies in brute force) and the maximum
error of the solution (all numbers are averages). Af-
ter the reformulation, the CPLEX solver [16] is used,
which includes a heuristic search before starting the
branch-and-bound procedure. The evaluations of this
heuristic search are not counted in the fifth column of
Table 1. Note that the first five rows are separated
from the last three because they strongly differ on the
size of the search space (exact solutions were found
only for the former). The maximum error of each so-
lution is obtained straightforward from the relaxation
of the linear integer problem. The last two columns
of Table 1 show the time and maximum error of the
SPU approximate procedure. Although very fast, the
SPU procedure has worse accuracy than the “approxi-
mate” CR (solution was approximate in last three rows
because we have imposed a time-limit of ten minutes
for each run). Furthermore, SPU does not provide an
upper bound for the best possible expected utility, as
obtained by CR. Still, a possible improvement is to use

4The factorization idea only works on simultaneous in-
fluence diagrams, so it was not used in the other test cases.

SPU to provide an initial guess to the optimization.

5.1 EBO MILITARY PLANNING

In this section we describe the performance of our
method in an hypothetical Effects-based Operations
planning problem [11]. An influence diagram similar
to the model described by Zhang and Ji [22] is
employed. Its graph is shown in Figure 2. The goal is
to win a war, which is represented by the Hypothesis
node (on top of Figure 2). Just below there are the
subgoals Air superiority, Territory occupation, and
Commander surrender, which are directly related
to the main goal. There are eleven decision nodes
(represented by rectangles): destroy C2 (C2 stands
for Command and Control), destroy Radars, de-
stroy Communications, launch air strike, destroy RD,
destroy storage, destroy assembly, launch ground
attack, launch broadcasting, capture bodyguard,
use special force. Just above decision nodes, we have
chance nodes representing the outcomes of performing
such actions (they indicate the workability of such
systems), and below we have utility nodes (diamond-
shaped nodes) describing the cost of each action.
Furthermore, we have six chance nodes (in the center
of the figure) indicating general workability of IADS
(Integrated Air Defense System), Air force, Artillery,
Ground force, Morale and Commander in custody
with respect to enemy forces. The overall profit of
winning is given by the node UH , child of Hypothesis.

As this is an hypothetical example, we define utility
functions and probability distributions as follows:

• Probability of Hypothesis is one given that all
subgoals are achieved. If one of subgoals is not
achieved, then the probability of Hypothesis is
60%; if two of them are not achieved, then the
probability of success is 30%; if none of subgoals
is achieved, then we certainly fail in the campaign.

• For the subgoals Air superiority, Terri-
tory occupation, and Commander surrender,
we define that the subgoal is accomplished
with probability one when both children were
achieved, 50% when only one child is achieved,
and zero when none is achieved.

• For the probabilities of IADS, Air force, Ar-
tillery, Ground force, Morale and Comman-
der in custody, we define a decrease of 50% for
each unaccomplished child (with a minimum of
zero, of course). Any node has probability zero if
two or more of its children are not achieved.

• The outcomes of actions (chance nodes above de-
cision nodes) have 90% of success. For exam-

Nodes Approx.# of CR SPU
Total Decision Strategies Time(sec) Evals (B&B) Max.Error(%) Time(sec) Max.Error(%)
10 3 217 0.66 5 0.000 0.10 0.740
20 6 234 1.73 125 0.000 0.39 2.788
50 10 251 30.42 4048 0.000 1.62 2.837
60 15 252 29.77 2937 0.000 2.99 1.964
70 20 254 125.06 7132 0.000 5.52 3.448
120 25 2102 254.80 15626 0.544 11.58 2.193
120 30 2116 403.13 5617 4.639 13.79 7.281
120 35 2120 578.99 9307 5.983 16.87 11.584

Table 1: Average results on 30 random influence diagrams of different sizes for the CR and SPU methods.

ple, destroy Radars will have EW/GCI radars de-
stroyed with 90% of odds (EW/GCI means Early
Warning/Ground Control Interception).

• The reward of achieving the main goal is 1000,
while not achieving it costs 500.

• Costs of actions are as follows: ground attack is
150, use special force is 100, capture bodyguard is
80, air strike is 50, and other actions cost 20 each.

For this problem, the best strategy found by SPU
has expected utility of −55.2825, and suggests to
take all action except destroy RD, destroy storage, de-
stroy assembly and launch ground attack. The global
optimum strategy is found in less than 5 seconds with
our method and has expected utility equal to 156.4051
(all actions are taken). This is much faster than the
solution reported by [22] (around 45 seconds).

6 CONCLUSION

We discuss in this paper a new idea for strategy selec-
tion in Influence Diagrams. We work with the Limited
Memory Influence Diagram, as it generalizes many of
the influence diagram proposals. The main contribu-
tion is the reformulation of the problem as a credal
network inference, which makes possible to find the
global maximum strategy for small- and medium-sized
influence diagrams. Experiments indicate that many
instances can be treated exactly. As far as we know,
no deep investigation of exact procedures for this class
of diagrams has been conducted.

Because of the characteristics of our procedure, an
anytime approximate solution with a maximum guar-
anteed error is available during computations. It is
clear that large diagrams must be treated approxi-
mately. Nevertheless, in the conducted experiments,
our method produced results that surpass existing al-
gorithms. Although spending more time, many sit-
uations require a solution to be as good as possible,

while time is a secondary issue. The ability of our ap-
proach to provide an upper bound for the result is also
valuable, which is not available with the SPU method.

We also discuss the theoretical complexity of the prob-
lem, which is derived from the known properties of
MAP problems in Bayesian networks and belief up-
dating inferences in credal networks. The complex-
ity results show that the proposed idea is not making
use of a harder problem to solve a simpler one, as
the complexity of strategy selection is the same as the
complexity of inferences in credal networks.

Because strategy selection in influence diagrams and
inferences in credal networks are related, improve-
ments on algorithms of credal networks can be directly
applied to influence diagram problems. The applica-
tion of other approximate techniques based on credal
networks seems a natural path for investigation. We
also intend to explore other optimization criteria for
influence diagrams with imprecise probabilities, be-
sides expected utility. Proposals in the theory of im-
precise probabilities might be applied to this setting.

Acknowledgements

The work described in this paper is supported
in part by the U.S. Army Research Office grant
W911NF0610331.

References

[1] A. Antonucci and M. Zaffalon. Decision-theoretic
specification of credal networks: A unified
language for uncertain modeling with sets of
Bayesian networks. Int. J. Approx. Reason., in
press, doi:10.1016/j.ijar.2008.02.005, 2008.

[2] G. F. Cooper. A method for using belief updating
as influence diagrams. In Conf. on Uncertainty in
Artif. Intelligence, p. 55–63, Minneapolis, 1988.

destroy_C2

Hypothesis

Territory_occupationAir_superiority

Artillery Ground_force

ground_attackassemblyfacilitystoragefacilityRDfacility

Air_forceIADS

EW/CGI Communications Air_strike C2

destroy_Radars destroy_Communications launch_air_strike destroy_assembly

U U U U U U U U

U

1 2 3 4 5 6 7 8

H

launch_broadcasting capture_bodyguard use_special_force

Propaganda body_guard special_force_operat

Commander_surrender

Commander_in_custodyMorale

U U U
9 1110

launch_ground_attackdestroy_storagedestroyRD

Figure 2: Influence Diagram for an hypothetical EBO-based planning problem.

[3] I. Couso, S. Moral, and P. Walley. A survey of
concepts of independence for imprecise probabili-
ties. Risk, Decision and Policy, 5:165–181, 2000.

[4] F. G. Cozman. Credal networks. Artif. Intelli-
gence, 120:199–233, 2000.

[5] F. G. Cozman. Separation properties of sets of
probabilities. In Conf. on Uncertainty in Artif.
Intelligence, p. 107–115, San Francisco, 2000.

[6] P. Davis. Effects-based operations: a grand chal-
lenge for the analytical community. Technical re-
port, Rand corp., 2003. MR1477.

[7] C. P. de Campos and F. G. Cozman. Inference in
credal networks using multilinear programming.
In Second Starting AI Researcher Symposium, p.
50–61, Valencia, 2004. IOS Press.

[8] C. P. de Campos and F. G. Cozman. The inferen-
tial complexity of Bayesian and credal networks.
In Int. Joint Conf. on Artif. Intelligence, p. 1313–
1318, 2005.

[9] C. P. de Campos and F. G. Cozman. Inference
in credal networks through integer programming.
In Int. Symp. on Imprecise Probability: Theories
and Applications, p. 145–154, 2007.

[10] L. de Campos and S. Moral. Independence con-
cepts for convex sets of probabilities. In Conf.
on Uncertainty in Artif. Intelligence, p. 108–115,
San Francisco, 1995.

[11] D. A. Deptula. Effects-based operations: change
in the nature of warfare. Defense and Airpower
Series, p. 3–6, 2001.

[12] E. Fagiuoli and M. Zaffalon. 2U: An exact interval
propagation algorithm for polytrees with binary
variables. Artif. Intelligence, 106(1):77–107, 1998.

[13] R. A. Howard and J. E. Matheson. Influence dia-
grams, volume II, p. 719–762. Strategic Decisions
Group, Menlo Park, 1984.

[14] F. Jensen, F. V. Jensen, and S. L. Dittmer. From
influence diagrams to junction trees. In Conf. on
Uncertainty in Artif. Intelligence, p. 367–373, San
Francisco, 1994.

[15] S. Lauritzen and D. Nilsson. Representing and
solving decision problems with limited informa-
tion. Management Science, 47:1238–1251, 2001.

[16] Ilog Optimization. Cplex documentation.
http://www.ilog.com, 1990.

[17] J. D. Park and A. Darwiche. Complexity results
and approximation strategies for MAP explana-
tions. Journal of Artif. Intelligence Research,
21:101–133, 2004.

[18] R. Qi and D. Poole. A new method for influence
diagram evaluation. Computational Intelligence,
11:1:1–34, 1995.

[19] R. D. Shachter. Evaluating influence diagrams.
Operations Research, 34:871–882, 1986.

[20] N. L. Zhang. Probabilistic inferences in influence
diagrams. In Conf. on Uncertainty in Artif. In-
telligence, p. 514–522, Madison, 1998.

[21] N. L. Zhang and D. Poole. Stepwise-
decomposable influence diagram. In Int. Conf.
on Principles of Knowledge Representation and
Reasoning, p. 141–152, Cambridge, 1992.

[22] W. Zhang and Q. Ji. A factorization approach
to evaluating simultaneous influence diagrams.
IEEE Transactions on Systems, Man and Cyber-
netics A, 36(4):746–757, 2006.

Structure Learning of Bayesian Networks using Constraints

Cassio P. de Campos cassio@idsia.ch

Dalle Molle Institute for Artificial Intelligence (IDSIA), Galleria 2, Manno 6928, Switzerland

Zhi Zeng zengz@rpi.edu
Qiang Ji jiq@rpi.edu

Rensselaer Polytechnic Institute (RPI), 110 8th St., Troy NY 12180, USA

Abstract

This paper addresses exact learning of
Bayesian network structure from data and
expert’s knowledge based on score functions
that are decomposable. First, it describes
useful properties that strongly reduce the
time and memory costs of many known meth-
ods such as hill-climbing, dynamic program-
ming and sampling variable orderings. Sec-
ondly, a branch and bound algorithm is pre-
sented that integrates parameter and struc-
tural constraints with data in a way to guar-
antee global optimality with respect to the
score function. It is an any-time procedure
because, if stopped, it provides the best cur-
rent solution and an estimation about how
far it is from the global solution. We show
empirically the advantages of the properties
and the constraints, and the applicability of
the algorithm to large data sets (up to one
hundred variables) that cannot be handled
by other current methods (limited to around
30 variables).

1. Introduction

A Bayesian network (BN) is a probabilistic graphical
model that relies on a structured dependency among
random variables to represent a joint probability dis-
tribution in a compact and efficient manner. It is
composed by a directed acyclic graph (DAG) where
nodes are associated to random variables and condi-
tional probability distributions are defined for vari-
ables given their parents in the graph. Learning the
graph (or structure) of a BN from data is one of the

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

most challenging problems in such models. Best exact
known methods take exponential time on the num-
ber of variables and are applicable to small settings
(around 30 variables). Approximate procedures can
handle larger networks, but usually they get stuck in
local maxima. Nevertheless, the quality of the struc-
ture plays a crucial role in the accuracy of the model.
If the dependency among variables is not properly
learned, the estimated distribution may be far from
the correct one. In general terms, the problem is to
find the best structure (DAG) according to some score
function that depends on the data (Heckerman et al.,
1995). There are other approaches to learn a struc-
ture that are not based on scoring (for example taking
some statistical similarity among variables), but we
do not discuss them in this paper. The research on
this topic is active, e.g. (Chickering, 2002; Teyssier &
Koller, 2005; Tsamardinos et al., 2006). Best exact
ideas (where it is guaranteed to find the global best
scoring structure) are based on dynamic programming
(Koivisto et al., 2004; Singh & Moore, 2005; Koivisto,
2006; Silander & Myllymaki, 2006), and they spend
time and memory proportional to n · 2n, where n is
the number of variables. Such complexity forbids the
use of those methods to a couple of tens of variables,
mostly because of memory consumption.

In the first part of this paper, we present some proper-
ties of the problem that bring a considerable improve-
ment on many known methods. We perform the anal-
ysis over some well known criteria: Akaike Informa-
tion Criterion (AIC), and the Minimum Description
Length (MDL), which is equivalent to the Bayesian In-
formation Criterion (BIC). However, results extrapo-
late to the Bayesian Dirichlet (BD) scoring (Cooper &
Herskovits, 1992) and some derivations under a few as-
sumptions. We show that the search space of possible
structures can be reduced drastically without losing
the global optimality guarantee and that the memory
requirements are very small in many practical cases

Structure Learning of Bayesian Networks using Constraints

(we show empirically that only a few thousand scores
are stored for a problem with 50 variables and one
thousand instances).

As data sets with many variables cannot be efficiently
handled (unless P=NP, as the problem is known to be
NP-hard (Chickering et al., 2003)), a desired property
of a method is to produce an any-time solution, that
is, the procedure, if stopped at any moment, provides
an approximate solution, while if run until it finishes, a
global optimum solution is found. However, the most
efficient exact methods are not any-time. We propose
a new any-time exact algorithm using a branch-and-
bound (B&B) approach with caches. Scores are com-
puted during the initialization and a poll is built. Then
we perform the search over the possible graphs iter-
ating over arcs. Although iterating over orderings is
probably faster, iterating over arcs allows us to work
with constraints in a straightforward way. Because of
the B&B properties, the algorithm can be stopped at
any-time with a best current solution found so far and
an upper bound to the global optimum, which gives a
kind of certificate to the answer and allows the user
to stop the computation when she believes that the
current solution is good enough. (Suzuki, 1996) has
proposed a B&B method, but it is not a global exact
algorithm, instead the search is conducted after a node
ordering is fixed. Our method does not rely on a pre-
defined ordering and finds a global optimum structure
considering all possible orderings.

2. Bayesian networks

A BN represents a single joint probability density over
a collection of random variables. It can be defined
as a triple (G,X ,P), where G = (VG , EG) is a DAG
with VG a collection of n nodes associated to random
variables X (a node per variable), and EG a collec-
tion of arcs; P is a collection of conditional proba-
bility densities p(Xi|PAi) where PAi denotes the par-
ents of Xi in the graph (PAi may be empty), respect-
ing the relations of EG . We assume throughout that
variables are categorical. In a BN every variable is
conditionally independent of its non-descendants given
its parents (Markov condition). This structure in-
duces a joint probability distribution by the expression
p(X1, . . . , Xn) =

∏
i p(Xi|PAi). Before proceeding, we

define some notations. Let ri ≥ 2 be the number of
discrete categories of Xi, qi the number of elements
in ΩPAi (the number of configurations of the parent
set, that is, qi =

∏
Xt∈PAi

rt) and θ be the entire
vector of parameters such as θijk = p(xki |paji), where
i ∈ {1, . . . , n}, j ∈ {1, ..., qi}, k ∈ {1, ..., ri} (hence
xki ∈ ΩXi and paji ∈ ΩPAi).

Given a complete data set D = {D1, . . . , DN} of with
N instances, with Dt = {xk11,t, . . . , x

kn
n,t} a instance of

all variables, the goal of structure learning is to find
a G that maximizes a score function such as MDL or
AIC.

max
G

sD(G) = max
θ

(LD(θ)− t ·W),

where θ represents all parameters of the model (and
thus depends on the graph G), t =

∑n
i=1(qi ·(ri−1)) is

the number of free parameters, W is criterion-specific
(W = logN

2 in MDL and W = 1 in AIC), and LD is
the log-likelihood function:

LD(θ) = log
n∏
i=1

qi∏
j=1

ri∏
k=1

θ
nijk

ijk , (1)

where nijk indicates how many elements of D con-
tain both xki and paji . This function can be writ-
ten as LD(θ) =

∑n
i=1 LD,i(θi), where LD,i(θi) =∑qi

j=1

∑ri

k=1 nijk log θijk. From now on, the subscript
D is omitted for simplicity.

An important property of such criteria is that they
are decomposable, that is, they can be applied to each
node Xi separately: maxG s(G) = maxG

∑n
i=1 si(PAi),

where si(PAi) = Li(PAi)−ti(PAi)·W , with Li(PAi) =
maxθi

Li(θi) (θi is the parameter vector related to Xi,
so it depends on the choice of PAi), and ti(PAi) =
qi ·(ri−1). Because of this property and to avoid com-
puting such functions several times, we create a cache
that contains si(PAi) for each Xi and each parent set
PAi. Note that this cache may have an exponential size
on n, as there are 2n−1 subsets of {X1, . . . , Xn}\{Xi}
to be considered as parent sets. This gives a total
space and time of O(n · 2n) to build the cache. In-
stead, the following results show that this number is
much smaller in many practical cases.

Lemma 1 Let Xi be a node of G′, a DAG for a BN
where PAi = J ′. Suppose J ⊂ J ′ is such that si(J) >
si(J ′). Then J ′ is not the parent set of Xi in the
optimal DAG.

Proof. Take a graph G that differs from G′ only
on PAi = J , which is also a DAG (as the removal
of some arcs does not create cycles) and s(G) =∑
j 6=i sj(PAj)+si(J) >

∑
j 6=i sj(PAj)+si(J ′) = s(G′).

Hence any DAG G′ such that PAi = J ′ has a subgraph
G with a better score than G′, and thus J ′ is not the
optimal parent configuration for Xi. �

Lemma 1 is quite simple but very useful to discard
elements from the cache of Xi. However, it does not
tell anything about supersets of J ′, that is, we still
need to compute all the possible parent configurations

Structure Learning of Bayesian Networks using Constraints

and later verify which of them can be removed. Next
theorems handle this issue.

Theorem 1 Using MDL or AIC as score function
and assuming N ≥ 4, take G and G′ DAGs such that G
is a subgraph of G′. If G is such that

∏
j∈PAi

rj ≥ N ,
for some Xi, and Xi has a proper superset of parents
in G′ w.r.t. G, then G′ is not an optimal structure.

Proof.1 Take a DAG G such that J = PAi for a node
Xi, and take G′ equal to G except that it contains
an extra node in Jnew = PAi, that is, in G′ we have
Jnew = J∪{Xe}. Note that the difference in the scores
of the two graphs are restricted to si(·). In the graph
G′, Li(Jnew) will certainly not decrease and ti(Jnew)
will increase, both with respect to the values for G.
The difference in the scores will be si(Jnew) − si(J),
which equals to

Li(Jnew)− ti(Jnew)− (Li(J)− ti(J)) ≤

−
qi∑
j=1

ri∑
i=1

nijk log θijk − ti(Jnew) + ti(J) ≤

qi∑
j=1

nij

(
−

ri∑
i=1

nijk
nij

log
nijk
nij

)
− ti(Jnew) + ti(J) ≤

qi∑
j=1

nijH(θij)− ti(Jnew) + ti(J) ≤

qi∑
j=1

nij log ri − qi · (re − 1) · (ri − 1) ·W

The first step uses the fact that Li(Jnew) is negative,
the second step uses that fact that θ̂ijk = nijk

nij
, with

nij =
∑ri

i=1 nijk, is the value that maximizes Li(·),
and the last step uses the fact that the entropy of a
discrete distribution is less than the log of its number
of categories. Finally, G is a better graph than G′
if the last equation is negative, which happens if qi ·
(re − 1) · (ri − 1) ·W ≥ N log ri. Because ri ≥ 2 ⇒
ri − 1 ≥ log ri, and N ≥ 4⇒ logN

2 ≥ 1 (the W of the
MDL case), we have that qi =

∏
j∈J rj ≥ N ensures

that si(Jnew) < si(J), which implies that the graph
G′ cannot be optimal. �

Corollary 1 In the optimal structure G, each node
has at most O(logN) parents.

Proof. It follows directly from Theorem 1 and the
fact that ri ≥ 2, for all Xi. �

Theorem 1 and Corollary 1 ensures that the cache
stores at most O(

(
n−1
logN

)
) elements for each variable

1Another similar proof appears in (Bouckaert, 1994),
but it leads directly to the conclusion of Corollary 1. The
intermediate result is algorithmically important.

(all combinations up to logN parents). Although it
does not help us to improve the theoretical size bound,
Lemma 2 gives us even less elements.

Lemma 2 Let Xi be a node with J ⊂ J ′ two possible
parent sets such that ti(J ′) + si(J) > 0. Then J ′ and
all supersets J ′′ ⊃ J ′ are not optimal parent configu-
rations for Xi.

Proof. Because Li(·) is a negative function, ti(J ′) +
si(J) > 0⇒ −ti(J ′)− si(J) < 0⇒ (Li(J ′)− ti(J ′))−
si(J) < 0 ⇒ si(J ′) < si(J). Using Lemma 1, we
have that J ′ is not the optimal parent set for Xi. The
result also follows for any J ′′ ⊃ J , as we know that
ti(J ′′) > ti(J ′). �

Thus, the idea is to check the validity of Lemma 2 ev-
ery time the score of a parent set J ′ of Xi is about
to be computed, discarding J ′ and all supersets when-
ever possible. This result allows us to stop computing
scores for J ′ and all its supersets. Lemma 1 is stronger,
but regards a comparison between exactly two parent
configuration. Nevertheless, Lemma 1 can be applied
to the final cache to remove all certainly useless parent
configurations. As we see in Section 5, the practical
size of the cache after these properties is small even
for large networks. Lemma 1 is also valid for other de-
composable functions, including BD and derivations
(e.g. BDe, BDeu), so the benefits shall apply to those
scores too, and the memory requirements will be re-
duced. The other theorems need assumptions about
the initial N and the choice of priors. Further discus-
sion is left for future work because of lack of space.

3. Constraints

An additional way to reduce the space of possible
DAGs is to consider some constraints provided by ex-
perts. We work with two main types of constraints:
constraints on parameters that define rules about the
probability values inside the local distributions of the
network, and structural constraints that specify where
arcs may or may not be included.

3.1. Parameter Constraints

We work with a general definition of parameter con-
straint, where any convex constraint is allowed. If
θi,PAi

is the parameter vector of the node Xi with
parent set PAi, then a convex constraint is defined as
h(θi,PAi

) ≤ 0, where h : Ωθi,PAi
→ R is a convex func-

tion over θi,PAi . This definition includes many well
known constraints, for example from Qualitative Prob-
abilistic Networks (QPN) (Wellman, 1990): qualitative
influences define some knowledge about the state of

Structure Learning of Bayesian Networks using Constraints

a variable given the state of another, which roughly
means that observing a greater state for a parent Xa of
a variable Xb makes more likely to have greater states
in Xb (for any parent configuration except for Xa). For
example, θbj22 ≥ θbj12, where jk

.= {xka, paj∗b } and j∗ is
an index ranging over all parent configurations except
for Xa. In this case, observing x2

a makes more likely to
have x2

b . A negative influence is obtained by replacing
the inequality operator ≥ by ≤, and a zero influence is
obtained by changing inequality to an equality. Other
constraints such as synergies (Wellman, 1990) are also
linear and local to a single node.

Although we allow the parameter constraints that are
general, we have the following restriction about them:
if a constraint is specified for a node Xi and a set
of parents J , then the actual parent set PAi has to
be a superset of J . Furthermore, we have a pecu-
liar interpretation for each constraint C as follows: if
J ⊂ PAi (proper subset), then the parameter con-
straint must hold for all configurations of the parents
of Xi that do not belong to J . For example, sup-
pose X1 has X2 and X3 as parents (all of them bi-
nary), and the following constraint h was defined on
X1: p(x2

1|x2
2x

2
3) + 2 · p(x2

1|x2
2x

1
3) ≤ 1. If a new node X4

is included as parent of X1, the constraint h becomes
the two following constraints:

p(x2
1|x2

2x
2
3x

1
4) + 2 · p(x2

1|x2
2x

1
3x

1
4) ≤ 1,

p(x2
1|x2

2x
2
3x

2
4) + 2 · p(x2

1|x2
2x

1
3x

2
4) ≤ 1,

that is, h holds for each state of X4. For example
if another parent X5 is included, then four constraints
would be enforced with all possible combinations. This
interpretation for constraints is in line with the defi-
nition of qualitative constraints of QPNs, and most
importantly, it allows us to treat the constraints in a
principled way for each set of parents. It means that
the constraint must hold for all configurations of par-
ents not involved in the constraint, which can be also
interpreted as other parents are not relevant and the
constraint is valid for each one of their configurations.

3.2. Structural constraints

Besides probabilistic constraints, we work with struc-
tural constraints on the possible graphs. These con-
straints help to reduce the search space and are avail-
able in many situations. We work with the following
rules:

• indegree(Xj , k, op), where op ∈ {lt, eq} and k an
integer, means that the node Xj must have less
than (when op = lt) or equal to (when op = eq) k
parents.

• arc(Xi, Xj) indicates that the node Xi must be a
parent of Xj .

• Operators or (∨) and not (¬) are used to form the
rules. The and operator is not explicitly used as
we assume that each constraint is in disjunctive
normal form.

For example, the constraints ∀i6=c,j 6=c ¬arc(Xi, Xj)
and indegree(Xc, 0, eq) impose that only arcs from
node Xc to the others are possible, and that Xc is
a root node, that is, a Naive Bayes structure will be
learned. The procedure will also act as a feature se-
lection procedure by letting some variables unlinked.
Note that the symbol ∀ just employed is not part of
the language but is used for easy of expose (in fact
it is necessary to write down every constraint defined
by such construction). As another example, the con-
straints ∀j 6=c indegree(Xj , 3, lt), indegree(Xc, 0, eq),
and ∀j 6=c indegree(Xj , 0, eq)∨arc(Xc, Xj) ensure that
all nodes have Xc as parent, or no parent at all. Be-
sides Xc, each node may have at most one other par-
ent, and Xc is a root node. This learns the structure
of a Tree-augmented Naive (TAN) classifier, also per-
forming a kind of feature selection (some variables may
end up unlinked). In fact, it learns a forest of trees, as
we have not imposed that all variables must be linked.

3.3. Dealing with constraints

All constraints in previous examples can be imposed
during the construction of the cache, because they in-
volve just a single node each. In essence, parent sets
of a node Xi that do violate some constraint are not
stored in the cache, and this can be checked during the
cache construction. On the other hand, constraints
such as arc(X1, X2)∨ arc(X2, X3) cannot be imposed
in that stage, as they impose a non-local condition (the
arcs go to distinct variables, namely X2 and X3), be-
cause the cache construction is essentially a local pro-
cedure with respect to each variable. Such constraints
that involve distinct nodes can be verified during the
B&B phase, so they are addressed later.

Regarding parameter constraints, we compute the
scores using a constrained optimization problem, i.e.
maximize the score function subject to simplex equal-
ity constraints and all parameter constraints defined
by the user.

max
θi

Li(θi)− ti(PAi)

subject to ∀j=1...qi gij(θij) = 0, (2)
∀z=1...mhi

hiz(θi) ≤ 0,

where gij(θij) = −1+
∑ri

k=1 θijk imposes that distribu-
tions defined for each variable given a parent configura-

Structure Learning of Bayesian Networks using Constraints

tion sum one over all variable states, and the mhi con-
vex constraints hiz define the space of feasible param-
eters for the node Xi. This is possible because: (1) we
have assumed that a constraint over p(xki |x

k1
i1
, . . . , xkt

it
)

forces Xi1 , . . . , Xit ⊆ PAi, that is, when a parame-
ter constraint is imposed, the parent set of the node
must contain at least the variables involved in the con-
straint; (2) the optimization is computed for every pos-
sible parent set, that is, PAi is known in the moment to
write down the optimization problem, which is solved
for each Xi and each set PAi. We use the optimization
package of (Birgin et al., 2000).

Theorem 2 Using MDL or AIC as score function
and assuming N ≥ 4, take G and G′ as DAGs such
that G is a subgraph of G′. Suppose that both G and G′
respect the same set of parameter and structural con-
straints. If G is such that

∏
j∈PAi

rj ≥ N , for some
Xi, and Xi has a proper superset of parents in G′ w.r.t.
G, then G′ is not an optimal structure.

Proof. Just note that all derivations in Theorem 1
are also valid in the case of constraints. The only dif-
ference that deserves a comment is θ̂ijk = nijk

nij
, which

may be an unfeasible point for the optimization (2),
because the latter contains parameter constraints that
might reduce the parameter space (besides the normal
constraints of the maximum log-likelihood problem).
As θ̂ijk is just used as an upper value for the log-
likelihood function, and the constrained version can
just obtain smaller objective values than the uncon-
strained version, nijk

nij
is an upper bound also for the

constrained case. Thus, the derivation of Theorem 1
is valid even with constraints. �

Corollary 1 and Lemmas 1 and 2 are also valid in this
setting. The proof of Corollary 1 is straightforward, as
it only depends on Theorem 1, while for Lemmas 1 and
2 we need just to ensure that all the parent configura-
tions that are discussed there respect the constraints.

4. Constrained B&B algorithm

In this section we describe the B&B algorithm used
to find the best structure of the BN and comment on
its complexity, correctness, and some extensions and
particular cases. The notation (and initialization of
the algorithm) is as follows: C : (Xi,PAi)→ R is the
cache with the scores for all the variables and their
possible parent configurations (using Theorem 1 and
Lemmas 1 and 2 to have a reduced size); G is the
graph created taking the best parent configuration for
each node without checking for acyclicity (so it is not
necessarily a DAG), and s is the score of G; H is an
initially empty matrix containing, for each possible arc

between nodes, a mark stating that the arc must be
present, or is prohibited, or is free (may be present or
not); Q is a priority queue of triples (G,H, s), ordered
by s (initially it contains a single triple with G, H and
s just mentioned; and finally (Gbest, sbest) is the best
DAG and score found so far (sbest is initialized with
−∞). The main loop is as follows:

While Q is not empty, do

1. Remove the peek (Gcur,Hcur, scur) of Q. If s ≤
sbest (worst than an already known solution), then
start the loop again. If Gcur is a DAG and satis-
fies all structural constraints, update (Gbest, sbest)
with (Gcur, scur) and start the loop again.

2. Take v = (Xa1 → Xa2 → . . . → Xaq+1), with
a1 = aq+1, is a directed cycle of Gcur.

3. For y = 1, . . . , q, do

• Mark on Hcur that the arc Xay
→ Xay+1 is

prohibited.
• Recompute (G, s) from (Gcur, scur) such that

the parents of Xay+1 in G comply with
this restriction and with Hcur. Further-
more, the subgraph of G formed by arcs
that are demanded by Hcur (those that have
a mark must exist) must comply with the
structural constraints (it might be impossi-
ble to get such graph. In such case, go
to the last bullet). Use the values in the
cache C(Xay+1 ,PAay+1) to avoid recomput-
ing scores.

• Include the triple (G,Hcur, s) into Q.
• Mark on Hcur that the arc Xay

→ Xay+1

must be present and that the sibling arc
Xay+1 → Xay

is prohibited, and continue.

The algorithm uses a B&B search where each case to
be solved is a relaxation of a DAG, that is, they may
contain cycles. At each step, a graph is picked up from
a priority queue, and it is verified if it is a DAG. In such
case, it is a feasible structure for the network and we
compare its score against the best score so far (which
is updated if needed). Otherwise, there must be a
directed cycle in the graph, which is then broken into
subcases by forcing some arcs to be absent/present.
Each subcase is put in the queue to be processed. The
procedure stops when the queue is empty. Note that
every time we break a cycle, the subcases that are
created are independent, that is, the sets of graphs
that respectH for each subcase are disjoint. We obtain
this fact by properly breaking the cycles: when v =
(Xa1 → Xa2 → . . . → Xaq+1) is detected, we create q

Structure Learning of Bayesian Networks using Constraints

subcases such that the first does not contain Xa1 →
Xa2 (but may contain the other arcs of that cycle),
the second case certainly contains Xa1 → Xa2 , but
Xa2 → Xa3 is prohibited (so they are disjoint because
of the difference in the presence of the first arc), and so
on such that the y-th case certainly contains Xay′ →
Xay′+1

for all y′ < y and prohibits Xay
→ Xay+1 .

This idea ensures that we never process the same graph
twice. So the algorithm runs at most

∏
i |C(Xi)| steps,

where |C(Xi)| is the size of the cache for Xi.

B&B can be stopped at any time and the current best
solution as well as an upper bound for the global best
score are available. This stopping criterion might be
based on the number of steps, time and/or memory
consumption. Moreover, the algorithm can be easily
parallelized. We can split the content of the priority
queue into many different tasks. No shared memory
needs to exist among tasks if each one has its own ver-
sion of the cache. The only data structure that needs
consideration is the queue, which from time to time
must be balanced between tasks. With a message-
passing idea that avoids using process locks, the gain
of parallelization is linear in the number of tasks. As
far as we know, best known exact methods are not
easily parallelized, they do not deal with constraints,
and they do not provide lower and upper estimates of
the best structure if stopped early. If run until it ends,
the proposed method gives a global optimum solution
for the structure learning problem.

Some particular cases of the algorithm are worth men-
tioning. If we fix an ordering for the variables such
that all the arcs must link a node towards another
non-precedent in the ordering (this is a common idea in
many approximate methods), the proposed algorithm
does not perform any branch, as the ordering implies
acyclicity, and so the initial solution is already the
best. The performance would be proportional to the
time to create the cache. On the other hand, bounding
the maximum number of parents of a node is relevant
only for hardest inputs, as it would imply a bound on
the cache size, which is already empirically small.

5. Experiments

We perform experiments to show the benefits of the
reduced cache and search space and the gains of con-
straints.2 First, we use data sets available at the UCI
repository (Asuncion & Newman, 2007). Lines with
missing data are removed and continuous variables are
discretized over the mean into binary variables. The

2The software is available online through the web ad-
dress http://www.ecse.rpi.edu/∼cvrl/structlearning.html

data sets are: adult (15 variables and 30162 instances),
car (7 variables and 1728 instances) letter (17 variables
and 20000 instances), lung (57 variables and 27 in-
stances), mushroom (23 variables and 1868 instances),
nursery (9 variables and 12960 instances), Wisconsin
Diagnostic Breast Cancer or wdbc (31 variables and
569 instances), zoo (17 variables and 101 instances).
No constraints are employed in this phase as we intend
to show the benefits of the properties earlier discussed.

Table 1 presents the cache construction results, ap-
plying Theorem 1 and Lemmas 1 and 2. Its columns
show the data set name, the number of steps the proce-
dure spends to build the cache (a step equals to a call
to the score function for a single variable and a par-
ent configuration), the time in seconds, the size of the
generated cache (number of scores stored, the mem-
ory consumption is actually O(n) times that number),
and finally the size of the cache if all scores were com-
puted. Note that the reduction is huge. Although in
the next we are going to discuss three distinct algo-
rithms, the benefits of the application of these results
imply in performance gain for other algorithms in the
literature to learn BN structures. It is also possible
to analyze the search space reduction implied by these
results by looking columns 2 and 3 of Table 2.

Table 1. Cache sizes (number of stored scores) and time (in
seconds) to build them for many networks and data sizes.
Steps represent the number of local (single node given a
parent set) score evaluations.

name steps time(s) size n2n

adult 30058 182.09 672 217.9

car 335 0.09 24 28.8

letter 534230 2321.46 41562 220.1

lung 43592 1.33 3753 261.8

mushroom 140694 72.13 8217 226.5

nursery 1905 3.94 49 211.2

wdbc 1692158 351.04 7482 235

zoo 9118 0.31 1875 220.1

In Table 2, we show results of three distinct algorithms:
the B&B described in Section 4, the dynamic program-
ming (DP) idea of (Silander & Myllymaki, 2006), and
an algorithm that picks variable orderings randomly
and then find the best structure such that all arcs link
a node towards another that is not precedent in the or-
dering. This last algorithm (named OS) is similar to
K2 algorithm with random orderings, but it is always
better because a global optimum is found for each or-
dering.3 The scores obtained by each algorithm (in
percentage against the value obtained by B&B) and

3We have run a hill-climbing approach (which is also
benefited by ideas presented in this paper), but its accuracy
was worse than OS. We omit it because of lack of space.

Structure Learning of Bayesian Networks using Constraints

Table 2. Comparison of MDL scores among B&B, dynamic programming (DP), and ordering sampling (one thousand
times). Fail means that it could not solve the problem within 10 million steps. DP and OS scores are in percentage w.r.t.
the score of B&B (positive percentage means worse than B&B and negative percentage means better).

search reduced B&B DP OS
network space space score gap time(s) score time(s) score time(s)
adult 2210 271 -286902.8 5.5% 150.3 0.0% 0.77 0.1% 0.17
car 242 210 -13100.5 0.0% 0.01 0.0% 0.01 0.0% 0.01
letter 2272 2188 -173716.2 8.1% 574.1 -0.6% 22.8 1.0% 0.75
lung 23192 2330 -1146.9 2.5% 907.1 Fail Fail 1.0% 0.13
mushroom 2506 2180 -12834.9 15.3% 239.8 Fail Fail 1.0% 0.12
nursery 272 217 -126283.2 0.0% 0.04 0.0% 0.04 0.0% 0.04
wdbc 2930 2216 -3053.1 13.6% 333.5 Fail Fail 0.8% 0.13
zoo 2272 2111 -773.4 0.0% 5.2 0.0% 3.5 1.0% 0.03

the corresponding spent time are presented (excluding
the cache construction). A limit of ten million steps is
given to each method (steps here are considered as the
number of queries to the cache). It is also presented
the reduced space where B&B performs its search, as
well as the maximum gap of the solution. This gap
is obtained by the relaxed version of the problem. So
we can guarantee that the global optimal solution is
within this gap (even though the solution found by the
B&B may already be the best, as shown in the first
line of the table). With the reduced cache presented
here, finding the best structure for a given ordering is
very fast, so it is possible to run OS over millions of
orderings in a short period of time.

Table 3. B&B procedure learning TANs. Time (in seconds)
to find the global optimum, cache size (number of stored
scores) and (reduced) space for B&B search.

network time(s) cache size space
adult 0.26 114 239

car 0.01 14 26.2

letter 0.32 233 261

lung 0.26 136 251

mushroom 0.71 398 288

nursery 0.06 26 212

wdbc 361.64 361 299

Some additional comments are worth. DP can solve
the mushroom set in less than 10 minutes if we drop
the limit of steps. The expectation for wdbc is around
four days. Hence, we cannot expect to obtain an an-
swer in larger cases, such as lung. It is clear that, in
worst case, the number of steps of DP is smaller than
that of B&B. Nevertheless, B&B eventually bounds
some regions without processing them, provides an up-
per bound at each iteration, and does not suffer from
memory exhaustion as DP. This makes the method ap-
plicable even to very large settings. Still, DP seems a
good choice for small n. When n is large (more than
35), DP will not finish in reasonable time, and hence

will not provide any solution, while B&B still gives an
approximation and a bound to the global optimum.
About OS, if we sample one million times instead of
one thousand as done before, its results improve and
the global optimum is found also for adult and mush-
room sets. Still, OS provides no guarantee or estima-
tion about how far is the global optimum (here we
know it has achieved the optimum because of the ex-
act methods). It is worth noting that both DP and
OS are benefited by the smaller cache.

Table 3 shows the results when we employ constraints
to force the final network to be a Tree-augmented
Naive Bayes (zoo was run, but it is not included be-
cause the unconstrained learned network was already
TAN). Here the class is isolated in the data set and
constraints are included as described in Section 3.2.
Note that the cache size, the search space and con-
sequently the time to solve the problems have all de-
creased. Finally, Table 4 has results for random data
sets with predefined number of nodes and instances. A
randomly created BN with at most 3n arcs is used to
sample the data. Because of that, we are able to gener-
ate random parameter and structural constraints that
are certainly valid for this true BN (approximately n/2
constraints for each case). The table contains the to-
tal time to run the problem and the size of the cache,
together with the percentage of gain when using con-
straints. Note that the code was run in parallel with
a number of tasks equals to n, otherwise an increase
by a factor of n must be applied to the results in the
table. We can see that the gain is recurrent in all cases
(the constrained version has also less gap in all cases,
although such number is not shown).

6. Conclusions

This paper describes a novel algorithm for learning
BN structure from data and expert’s knowledge. It
integrates structural and parameter constraints with

Structure Learning of Bayesian Networks using Constraints

Table 4. Results on random data sets generated from ran-
dom networks. Time to solve (10 million steps) and size of
the cache are presented for the normal unconstrained case
and the percentage of gain when using constraints.

nodes(n)/ unconstrained constrained gain
instances gap time(s) cache time cache
30/100 0% 0.06 125 67% 11.6%
30/500 0% 2.7 143 47.5% 26.5%
50/100 0% 0.26 310 31.4% 16.1%
50/500 0% 20.66 231 57.2% 29.8%
70/100 0% 4.58 1205 36.9% 18.8%
70/500 1.1% 356.9 666 38.4% 21.9%
100/100 0.5% 9.05 2201 47.5% 23.5%
100/500 1.4% 1370.4 726 50.2% 33.0%

data through a B&B procedure that guarantees global
optimality with respect a decomposable score function.
It is an any-time procedure in the sense that, if stopped
early, it provides the best current solution found so far
and a maximum error of such solution. The software
is available as described in the experiments.

We also describe properties of the structure learning
problem based on scoring DAGs that enable the B&B
procedure presented here as well as other methods to
work over a reduced search space and memory. Such
properties allow the construction of a cache with all
possible local scores of nodes and their parents without
large memory consumption.

Because of the properties and the characteristics of
the B&B method, even without constraints the B&B
is more efficient than state-of-the-art exact methods
for large domains. We show through experiments with
randomly generated data and public data sets that
problems with up to 70 nodes can be exactly processed
in reasonable time, and problems with 100 nodes are
handled within a small worst case error. These results
surpass by far current methods, and may also help
to improve other approximate methods and may have
interesting practical applications, which we will pursue
in future work.

Acknowledgments

This work is supported in part by the grant W911NF-
06-1-0331 from the U.S. Army Research Office. The
first author thanks also the project Ticino in Rete.

References

Asuncion, A., & Newman, D. (2007). UCI ma-
chine learning repository. http://www.ics.uci.
edu/~mlearn/MLRepository.html.

Birgin, E. G., Mart́ınez, J. M., & Raydan, M. (2000).

Nonmonotone spectral projected gradient methods
on convex sets. SIAM J. on Optimiz., 10, 1196–1211.

Bouckaert, R. (1994). Properties of bayesian belief net-
work learning algorithms. Conf. on Uncertainty in
Artificial Intelligence (pp. 102–109). M. Kaufmann.

Chickering, D., Meek, C., & Heckerman, D. (2003).
Large-sample learning of bayesian networks is np-
hard. Conf. on Uncertainty in Artificial Intelligence
(pp. 124–13). M. Kaufmann.

Chickering, D. M. (2002). Optimal structure identifi-
cation with greedy search. J. of Machine Learning
Research, 3, 507–554.

Cooper, G., & Herskovits, E. (1992). A bayesian
method for the induction of probabilistic networks
from data. Mach. Learning, 9, 309–347.

Heckerman, D., Geiger, D., & Chickering, D. M.
(1995). Learning bayesian networks: The combina-
tion of knowledge and statistical data. Mach. Learn-
ing, 20, 197–243.

Koivisto, M. (2006). Advances in exact bayesian
structure discovery in bayesian networks. Conf. on
Uncertainty in Artificial Intelligence (pp. 241–248)
AUAI Press.

Koivisto, M., Sood, K., & Chickering, M. (2004). Ex-
act bayesian structure discovery in bayesian net-
works. J. of Machine Learning Research, 5, 2004.

Silander, T., & Myllymaki, P. (2006). A simple ap-
proach for finding the globally optimal bayesian net-
work structure. Conf. on Uncertainty in Artificial
Intelligence. (pp. 445–452) AUAI Press.

Singh, A. P., & Moore, A. W. (2005). Finding optimal
bayesian networks by dynamic programming (Tech-
nical Report). Carnegie Mellon Univ. CALD-05-106.

Suzuki, J. (1996). Learning bayesian belief networks
based on the minimum description length principle:
An efficient algorithm using the B&B technique. Int.
Conf. on Machine Learning (pp. 462–470).

Teyssier, M., & Koller, D. (2005). Ordering-based
search: A simple and effective algorithm for learning
bayesian networks. Conf. on Uncertainty in Artifi-
cial Intelligence. (pp. 584–590) AUAI Press.

Tsamardinos, I., Brown, L. E., & Aliferis, C. (2006).
The max-min hill-climbing bayesian network struc-
ture learning algorithm. Mach. Learning, 65, 31–78.

Wellman, M. P. (1990). Fundamental concepts of qual-
itative probabilistic networks. Artificial Intelligence,
44, 257–303.

Learning Limited Memory Influence Diagrams

Cassio P. de Campos and Qiang Ji

September 1, 2009

1 Introduction

An influence diagram is a graphical model for decision making under uncertainty
[7]. It is composed by a directed graph where utility nodes are associated to
profits and costs of actions, chance nodes represent uncertainties and dependen-
cies in the domain and decision nodes represent actions to be taken. Given an
influence diagram, a strategy defines which decision to take at each node, given
the information available at that moment. Each strategy has a corresponding
expected utility. One important problem in influence diagrams is learning the
model, which includes the elicitation of probability distributions for the chance
nodes and utility functions for the utility nodes. The direct elicitation of such
values using expert knowledge may be replaced by an automatic learning pro-
cedure when a data set of past events is available.

In this paper, we propose new ideas to learn the parameters of a Limited
Memory Influence Diagram, or simply LIMID. LIMIDs represent a very general
class of influence diagrams, and include the most traditional case (introduced
initially by [7]) as subcase [8]. Limited Memory means that the assumption of
no-forgetting usually employed in standard Influence Diagrams (that is, values
of observed variables and decisions that have been taken are remembered at all
later times) is relaxed. Because LIMIDs are general and do not have assump-
tions about no-forgetting and ordering for decisions, it is possible to efficiently
convert diagrams that have such assumptions into LIMIDs. Hence, LIMIDs are
more powerful (in the sense of expressiveness) than other influence diagrams.
The benefits of having a more expressive model come with the additional compu-
tational cost. Thus, specialized algorithms that exploit LIMID’s characteristics
are needed.

We describe a learning procedure for LIMIDs that is motivated by previous
work on the traditional influence diagram [10, 9, 1]. We assume that the decision
maker takes rational decisions, which leads to the maximization of the expected
utility. This model requires two types of information: the probabilities and the
utilities of all possible outcomes of the decision problem. Probability values are
obtained by standard learning procedures, usually borrowed from the theory of
Bayesian networks.

The estimation of the utility function can be addressed by elicitation from
experts, which need to answer a sequence of questions about their preferences,

1

or by automatic procedures that receive as input the past behavior of experts
through a data set of cases. Dealing with the experts may be difficult and gen-
erate errors, as previously reported [6]. On the other hand, the data set of past
cases cam be used to create a set of constraints on the space of possible utility
functions, from where later a conservative (e.g. by using a maximin approach)
or a more aggressive (e.g. by taking any admissible function inside the set)
utility function is drawn. In the literature, we find heuristics [9] and probabilis-
tic approaches [1]. Here we assume that a database of past events, decisions
and rewards is available to train the influence diagram, which is a reasonable
assumption in military problems, and we use this database to learn both the
probability values and the utility functions. The behavior of the experts, en-
coded in the database, is employed to create constraints on the utility function
of the problem. Such constraints are integrated in the strategy selection process
using the ideas we have developed [5].

2 LIMIDs: Limited Memory Influence Diagrams

A Limited Memory Influence Diagram I is composed by a directed acyclic graph
(V, E) where nodes are partitioned in three types: chance, decision and utility
nodes. Let C, D and U be the set of chance, decision and utility nodes, re-
spectively, and let X = C ∪ D. Links of E characterize dependencies among
nodes. Explicitly, links toward a chance node indicate probabilistic dependence
of the node on its parents; links toward a decision node indicate which informa-
tion is available to take such decision, and links toward utility nodes represent
that an utility for those parents is to be considered (utility nodes may not have
children). Associated to each node, there are some parameters:

1. A chance node has an associated categorical random variable C with finite
domain ΩC and conditional probability distributions p(C|πj(C)), for each
configuration πj(C) of its parents π(C) in the graph. j is used to indicate
a configuration of the parents of C, that is, πj(C) ∈ Ωπ(C), where the
notation ΩV′ = ×V ∈V′ ΩV , for any V ′ ⊆ V.

2. A decision node D is associated to a finite set of mutually exclusive alter-
natives ΩD. Parents of D describe the information that is available at the
moment on which decision D has to be taken.

3. An utility node U is associated to a rational function fU : Ωπ(U) → Q. The
value corresponding to a parent configuration is the profit (cost is viewed
as negative profit) of such parent configuration. Utility nodes have no
children.

A simple example is depicted in Figure 1. Decision nodes are represented by
rectangles, chance nodes by ellipses and utility nodes by diamonds. do ground attack
has an associated cost, which is depicted by the corresponding utility node. The
same is modeled for bomb bridge. The goal is to achieve territory occupation,
which also has an utility (the profit of the goal). ground attack and bridge condition

2

cost_of
attack

ground_attack

territory_occupation
profit
of_goal

do_ground_attack

bridge_condition

bomb_bridge

bombing
cost_of

Figure 1: Simple Influence Diagram example.

represent the uncertain outcomes of the corresponding actions. To simplify no-
tation, we denote the nodes by their initial letters as follows: do ground attack is
denoted by DGA, bomb bridge by BB, territory occupation by TO, ground attack
by GA, and so on.

Note that it is not assumed to exist a known ordering (among decision nodes)
on which decisions must be taken, as it is done in simpler versions of influence
diagrams. Although decision nodes have no parents in the example of Figure 1,
this is not a restriction of the model.

A policy δD for the decision node D is a function δD : ΩD∪π(D) → [0, 1]
defined for each alternative of D and each configuration of π(D) such that, for
each πj(D) ∈ Ωπ(D) we have

∑
d∈ΩD

δD(d, πj(D)) = 1. A pure policy is a policy
such that its image is integer (δD : ΩD∪π(D) → {0, 1}), and thus specifies with
certainty which action (alternative of D) is taken for each parent configuration
(in a pure policy, only one δD(d, πj(D)) for each πj(D) will be non-zero as they
sum 1). A strategy ∆ is a set of policies {δD : D ∈ D}, one for each decision
node of the diagram. A pure strategy is composed only by pure policies.

The expected utility EU(∆) of a strategy ∆ is evaluated through the follow-
ing equation:

∑

x∈ΩX

(∏

C

p(xC |πj(C))
∏

D

δD(xD)
∑

U

fU (πj′(U))

)
, (1)

where xC , πj(C), xD and πj′(U) are respectively the projections of x in ΩC ,
Ωπ(C), ΩD∪π(D) and Ωπ(U). This equation means that, given a strategy, its
expected utility is the sum of the utility values weighted by the probability of
each diagram configuration (for all configurations). The maximum expected
utility is obtained over all possible strategies:

MEU = max
∆

EU(∆).

3

Chances Decisions
TO GA BC DGA BB
1 1 1 1 0
1 1 1 0 1
0 1 1 0 1
0 0 1 1 1
...

Table 1: Example of database for LIMID of Figure 1 where outcomes of the
chance and decision nodes are available.

Optimal strategy Utilities
DGA BB COA COB POG

1 1 -100 -50 200
? 1 0 -60 180
1 0 -80 0 -30
0 0 0 0 -50
...

Table 2: Example of database for LIMID of Figure 1 where local utility rewards
are available when the optimal strategy is used.

The problem of strategy selection is to obtain the strategy that maximizes its
expected utility, that is, argmaxmax∆ EU(∆).

Algorithms to solve the strategy selection problem assume that all parame-
ters of chance nodes and utility nodes are known and fixed. However, eliciting
all such parameters from experts is a hard task, and usually can be done in
small sized LIMIDs. Next section address this problem, providing an approach
to learn parameters from past experience.

3 Learning LIMIDs

As discussed, we use a database containing past experience to learn the parame-
ters of the LIMID. The data are divided into two parts: DBC is a set of samples
of the chance and decision nodes (note that in these data, the decisions do not
necessarily represent optimal decisions); DBD is a set of samples containing an
optimal strategy (which is defined by a set of optimal decisions) and the utility
values obtained at each utility node when the optimal strategy is employed. Us-
ing the LIMID of Figure 1, examples of data that would be available to learn its
parameters are presented in Tables 1 and 2 (the nodes of Figure 1 are denoted
by their initial letters, as explained before). True is denoted by a one, and false
is indicated by a zero.

Using the database of chance and decision variables, standard techniques
can be employed to find the most probable values for the parameters of the
chance nodes, denoted P = {p(C|πj(C))}∀C . One way to quantify the result

4

is by the log likelihood function log(p(DBC |P)). Because utility nodes have no
children, chance nodes can only have other chance nodes and/or decision nodes
as parents. Assuming that samples are drawn independently from the under-
lying distribution, we can use the decomposition property of the log likelihood
function to maximize log

∏
ijk p(xik|πij)nijk , where xik ∈ ΩCi

, nijk indicates
how many elements of DBC contain both xik and πij , where πij ∈ ΩπCi

is
a joint configuration of the parents of Ci and can involve chance and decision
nodes. Maximum likelihood estimation has its optimum at p(xik|πij) = nijk∑

k nijk
.

One may also use a Bayesian Dirichlet model instead of maximum likelihood
estimation, just as it is done in Bayesian networks.

3.1 Learning utility functions

Our goal here is to estimate utility function fU : Ωπ(U) → Q for each utility
node U , based on past optimal decisions. Note that our database DBD contains
only optimal strategies and their utilities at that moment. If we assume that
DBD contains a wide range (in the sense of covering all the utility space) of
decisions and corresponding utility values, an estimation based on expectation
suffices. For instance, we take the average of the utility values that appear in
DBD, for each configuration πj(U) ∈ Ωπ(U), and construct a set of constraints
that relate the utility values for distinct elements πj(U) as follows:

• For each sample l = (lD, lU) in DBD, let lU (for each U ∈ U) be the
observed utility value of node U and lD the decision values of sample l.
Build the constraint:

∀U : E[lU |lD] =
∑

x∈Ωπ(U)\D
fU (x ∪ lD) · p(x|lD), (2)

where p(x|lD) is calculated a priori given that all elements of P are already
known, and E[lU |lD] accounts for the expectation of lU over the samples
l that are compatible with lD.

This way we have a set of linear constraints to define the utility function of
each node U . Note that if a utility node has only decision nodes as parents
(no chance node as parent), then Equation (2) simplifies to an equality without
summation. For example, if we take the first line of Table 2, it implies the
following constraints:

−90 = E[lCOA|DGA=1] = fCOA(DGA=1),

−55 = E[lCOB|BB=1] = fCOB(BB=1). (3)

The situation becomes more difficult when the optimal strategy is only par-
tially observed, that is, missing values may appear in the optimal decisions of
a sample in DBD. In this case, we proceed in a similar way, but considering
all possible completions of the data [11]. Such approach leads to the following
constraints:

5

• For each sample l = (lD, lU) in DBD, let lD = loD∪l′D, with loD the observed
part and l′D the missing part. Build the constraint:

∀U, lD : E[lU |lD] ≤

∑

x∈Ωπ(U)\D




∑

l∈Ωl′D

Il′D (l) · fU (x ∪ loD ∪ l) · p(x|loD ∪ l)


 ≤ E[lU |lD], (4)

where Il′D (·) is an indicator function that is one only when l is the com-
pletion of l′, and E[lU |lD], E[lU |lD] are computed as the minimum and
maximum values of the expectation of lU considering all possible com-
pletions. We treat Il′D (·) as additional boolean variables of the problem,
which are going to be assigned later by the strategy selection procedure.
Note that

∑
l Il′D (l) = 1.

It is possible to use such idea with additional boolean variables because we
resort to the procedures we have developed for strategy selection [5], where the
problem is tackled by integer programming techniques (and thus the boolean
variables are trivially included in the optimization problem). As an example,
take the second line of Table 2 with respect to the node DGA. As it is missing,
we have the following constraints:

−90 ≤
∑

v∈{0,1}
IlDGA(v) · fCOA(DGA=v) ≤ −60,

0 ≤
∑

v∈{0,1}
IlDGA(v) · fCOA(DGA=v) ≤ 0. (5)

where IlDGA is treat as a boolean variable, that is, depending on the value
assigned to it, the data is completed in a different way. This completion is auto-
matically conducted by the optimization of Equation (1) subject to Equations
(2) and (4), so the same algorithm we have developed before [5] is used to select
the best strategy over this now learned LIMID.

3.2 The optimization problem of the EBO example

To illustrate, we write down the optimization problem of the example in Figure
1. The utility functions are divided by the largest value in the database so they
certainly belong to the interval [0, 1]. This division does not affect the choice of
the optimal strategy [5]. Decision nodes are replaced by nodes with imprecise
probabilities, and we obtain a credal network where we maximize the sum of
the marginal probabilities of the utility nodes. The objective function is

max p(COA) + p(COB) + p(POG)

(here we use the notation p(·) instead of f(·) because we are treating the utility
nodes after translating them into probability nodes) subject to constraints that

6

define each marginal probability p(COA), p(COB) and p(POG). To create
these constraints, we run a symbolic Bayesian network inference for each of
them. The constraints for p(COA) and p(COB) are very simple:

p(COA) = p(COA|DGA=1)p(DGA=1) + p(COA|DGA=0)p(DGA=0),

p(COB) = p(COB|BB=1)p(BB=1) + p(COB|BB=0)p(BB=0),

because they only depend on one other variable. Note that p(DGA=1), p(DGA=0),
p(BB=1), and p(BB=0) that appear in these constraints are unknown and thus
become optimization variables in the bilinear problem.

To write the constraints for p(POG), we need to choose a precedence or-
dering. We will use the ordering BB, BC,DGA, GA, TO, POG (variables COA
and COB do not appear in the order as they are not relevant to evaluate the
marginal p(POG)). Hence, the first variable to be processed is BB. We write
a constraint that relates the query POG and probabilities p(BB) (which are
defined in the network specification):

p(POG) =
∑

d∈{0,1}
p(BB = d) · p(POG|BB = d).

BB now appears in the conditional part of p(POG|d), which may be viewed
as an artificial term in the optimization, as it does not appear in the network.
Because of that, we must create constraints to define p(POG|d) in terms of net-
work parameters (for all categories d ∈ BB). According to our chosen ordering,
the current variable to be processed is BC. Thus,

p(POG|BB=1) =
∑

c∈{0,1}
p(BC = c|BB=1) · p(POG|BC = c),

p(POG|BB=0) =
∑

c∈{0,1}
p(BC = c|BB=0) · p(POG|BC = c).

Note that p(POG|c) = p(POG|c, d) (for any d), so we use the simpler. At this
stage, our query is conditioned on BC. Following the same idea, we process
DGA, obtaining

p(POG|BC=1) =
∑

d∈{0,1}
p(DGA = d) · p(POG|BC=1, DGA = d),

p(POG|BC=0) =
∑

d∈{0,1}
p(DGA = d) · p(POG|BC=0, DGA = d).

Now the current variable to be treated is GA, and our query is conditioned on
BC,DGA, that is, we must define how to evaluate p(POG|BC,DGA) for all
configurations. Thus, for all c ∈ {0, 1} and d ∈ {0, 1}:

p(POG|BC = c,DGA = d) =
∑

c′∈{0,1}
p(GA = c′|BC = c,DGA = d) · p(POG|BC = c,GA = c′).

7

At this moment, POG is conditioned on GA,BC in the artificial term p(POG|BC =
c,GA = c′) (DGA is not present in the artificial term as GA,BC separate POG
from DGA). Now we process TO: for all c′ ∈ {0, 1} and c ∈ {0, 1}

p(POG|BC = c,GA = c′) =
∑

c′′∈{0,1}
p(TO = c′′|BC = c,GA = c′) · p(POG|TO = c′′).

Note that, as p(POG|TO = c′′) equals the utility function of POG given TO,
which is specified in the network, we can stop the symbolic elimination. All
artificial terms are related (through constraints) to parameters of the network.
Besides all these constraints, we also include simplex constraints to ensure that
probabilities sum 1. Finally, we need to include the constraints of Equations
(3) and (5) (and other utility constraints that we omitted for easy of expose, as
explained in Section 3.1). To illustrate using the same notation, we rewrite the
Equations (5) here:

−90 ≤ IlDGA(1) · r · p(COA|DGA = 1) + IlDGA(0) · r · p(COA|DGA = 0) ≤ −60,

0 ≤ IlDGA(1) · r · p(COA|DGA = 1) + IlDGA(0) · r · p(COA|DGA = 0) ≤ 0,

and
IlDGA(1) + IlDGA(0) = 1,

where r is the maximum utility value that appears in the whole database.
Because we have a collection of linear and bilinear constraints, non-linear

programming can be employed [3]. It is also possible to use linear integer pro-
gramming [4] after an additional manipulation of the constraints.

4 Conclusion

In this work we have presented a complete learning procedure for LIMIDs. To
deal with chance nodes, a standard technique from machine learning is em-
ployed. To estimate utility functions, we make use of a database containing
past decisions and rewards, which avoids the necessity of interviews with ex-
perts to elict the utilities. With this approach, it is expected that the model
represents the corresponding domain with more precision. The procedure cre-
ates a set of constraints that define the plausible utility functions, which can
be later processed by the strategy selection method. Hence, this work provides
a learning procedure to be integrated with the inference methods that we have
developed in the previous years. Altogether, they provide a concise solution
for military planning using the general Limited Memory Influence Diagrams as
basis.

Future work include the full integration of the learning procedure described
here with the inference procedures already developed, extension of these ideas
to structure discovery of utilities [2], and the exploration of new learning and

8

strategy methods. For instance, it is known that both learning and inference
methods can be performed very efficiently (polynomial time) in tree-shaped dia-
grams. We have already started to study a broader version of influence diagrams
that extends the trees but are more restricted than LIMIDs. It is mainly a type
of LIMID where decision nodes are related by a tree structure, while chance
nodes are free to happen anywhere. The advantages of such intermediate model
is the possibility of keeping the computations tractable (we have proved that
LIMIDs can be processed up to a couple of hundreds of nodes, but even larger
domains are much more time consuming and need efficient algorithms).

References

[1] U. Chajewska and D. Koller and D. Ormoneit. Learning an Agent’s Utility
Function by Observing Behavior. In International Conference on Machine
Learning, 35–42, 2001.

[2] U. Chajewska and D. Koller. Utilities as random variables: Density esti-
mation and structure discovery. In Conference on Uncertainty in Artificial
Intelligence, 63–71, 2000.

[3] C. P. de Campos and F. G. Cozman. Inference in credal networks using
multilinear programming. In Second Starting AI Researcher Symposium,
p. 50–61, Valencia, 2004. IOS Press.

[4] C. P. de Campos and F. G. Cozman. Inference in credal networks through
integer programming. In Int. Symp. on Imprecise Probability: Theories and
Applications, p. 145–154, 2007.

[5] C. P. de Campos and Q. Ji. Strategy Selection in Influence Diagrams
using Imprecise Probabilities. In Conference on Uncertainty in Artificial
Intelligence, 121–128, 2008.

[6] D. G. Fromberg and R. L. Kane. Methodology for measuring health-state
preferences – II: Scaling methods Journal of Clinical Epidemiology, 42:459–
471, 1989.

[7] R. A. Howard and J. E. Matheson. Influence diagrams, volume II, p. 719–
762. Strategic Decisions Group, Menlo Park, 1984.

[8] S. Lauritzen and D. Nilsson. Representing and solving decision problems
with limited information. Management Science, 47:1238–1251, 2001.

[9] A. Y. Ng and S. Russell. Algorithms for Inverse Reinforcement Learning.
In International Conference on Machine Learning, 663–670, 2000.

[10] T. D. Nielsen and F. V. Jensen. Learning a decision maker’s utility function
from (possibly) inconsistent behavior. Artificial Intelligence, 160(1-2), 53–
78, 2004.

9

[11] M. Zaffalon. Conservative rules for predictive inference with incomplete
data. In International Symposium on Imprecise Probabilities and Their
Applications, 406-415, 2005.

10

Validation of Cassio’s software

Geng Li

1. Introduction

In this first part of this report, I provided three test examples used for the validation of Cassio’s

software. The first example is randomly created from the reality, the second example comes from

the high cited paper “Representing and Solving Decision Problems with Limited Information” and

the third example is a small EBO net from the project.

In the second part of this report, I implemented Brutal Force method based on BNT to enumerate

all possible strategies in Cassio’s example and computed the expected utility for all the strategies

accordingly. Then I compared the results to the outcomes by SPU and CR. All tests proved that

Cassio’s method will converge to global maximum solution, and SPU will only converge to local

maximum.

2. Validation of the Implementation of the software

For Cassio’s software, it right now could deal with LIMIDs version of the diagram. For the GeNIe(A

software developed by University of Pittsburgh), it could handle the traditional ID. So the reason

why Cassio’s example could not be validated in GeNIe is that the order of decision nodes in the

example is not specified. Additionally, if we want to test Cassio’s example in GeNIe, we have to

explicitly make arcs from predecessors of decision nodes. It will create too many links in the large

networks and it is not operable in reality. So we could not use GeNIe that could only handle

traditional ordered IDs to handle Cassio’s EBO example which is a LIMIDs with no specified order.

But we could test a certain LIMIDs that has specified order and explicit links. Because by explicitly

making arcs, a certain diagram could be viewed as either a tradition influence diagram or a

LIMIDs. They would get the same result. This is what I did in the previous report. The three

examples are showed in details as follows:

(1) Example 1

EX1: John now is close to graduate. Now he has two choices, one is to continue his postdoc

research and the other is job‐hunting. But before making his decisions, he wants to refer to the

economical situation and thus consult to the specialist. The consulting fee is about 10 dollars. If

the economical situation is good, the probability that the specialist makes a promising prediction

is 0.9 and if bad, the probability that the specialist makes a promising prediction is 0.1. The

benefit of continuing postdoc is 1000 dollars no matter what current situation is. However, if the

economical situation is good, the average benefit of getting a job is 5000 dollars and if the

economical situation is bad, the average benefit of getting a job is only 100 dollars.

The CPDs for the example are displayed in Figure 1, and the diagrams established by Cassio’s

software and GeNIe are showed in Figure 2 and Figure 3 respectively:

Figure 1 CPDs for example 1

Figure 2 The diagram created by Cassio’s software

Figure 3 The diagram created by GeNIe

(i)Software validation

The calculated MEU in both softwares are showed in Figure 4, we see that both softwares get the

same MEU 1269(also in Cassio’s software, two methods SPU and CR got the same result). In

Figure 5, the optimal strategies selected in two softwares are the same as well. Note that in

GeNIe, the bold‐faced numbers denotes the optimal action to take given its configuration of

parents. In Cassio’s software, the green rectangle denotes the optimal policy to take.

Figure 4 The upper result is from GeNIe, and the lower result is from Cassio’s software

Figure 5 The optimal strategies from the two softwares

(ii)Manual Calculation

Now I shall manually calculate the above example and validate the software. The expected utility

of the whole diagram is calculated using:

_ _
cos 2 _ _() max () (| ,){ () (,)

P or J
C C t C P or JDR ES

EU D P ES P R ES D U D U ES D= +∑ ∑

The main of the SPU is that keeping all other policies unchanged and we only calculate one policy

each time to get a new MEU. Then we replace the new optimal policy with the original one.

We initially assume that the original strategies are consult and postdoc. According to SPU

algorithm, for the decision node “Postdoc_or_Job_hunting”:

_ _

cos _ _

(' ' | ' ', ' sin ')

() (' sin ' | , ' '){ (' ') (, ' ')}

0.1*0.9*{ 10 5000} 0.9*0.1*{ 10 100}
457.2

P or J C

C t C Benefit P or J
ES

EU D Job D consult R promi g

P ES P R promi g ES D consult U D consult U ES D Job

= = =

= = = = + =

= − + + − +
=

∑

Similarly, we calculated other expected utility of the decision node “Post_or_job” considering

each of its parent’s configurations:

_ _

_ _

(' ' | ' ', ' ') 121.9

(' ' | ' ', ' _ ')
P or J C

P or J C

EU D Job D consult R desperate

EU D Job D consult R no idea impossible

= = = =

= = = =

_ _

cos _ _

_ _

(' ' | ' ', ' sin ')

() (' sin ' | , ' '){ (' ') (, ' ')}

0.1*0.9*{ 10 1000} 0.9*0.1*{ 10 1000}
178.2

(' ' |

P or J C

C t C Benefit P or J
ES

P or J C

EU D Post D consult R promi g

P ES P R promi g ES D consult U D consult U ES D Post

EU D Post D

= = =

= = = = + =

= − + + − +
=

= =

∑

_ _

' ', ' ') 811.8

(' ' | ' ', ' _ ')P or J C

consult R desperate

EU D Post D consult R no idea impossible

= =

= = = =

Because if _ _ ' 'P or JD Post= no matter what the result of R is, the EU of the strategies is

178.2 811.8 990.0+ = , which is less than 457.2 811.8 1269.0+ = . Thus given the decision

consult for the decision node “Consult”, if the “Report” is promising, the policy for the node

“Post_or_job” is to go and find a job. Otherwise, the policy for the node “Post_or_job” will

remain unchanged. We update our policy and now we could use this result to calculate the

expected utility of the decision node “Consult”.

_ _
cos 2 _ _

(' ')
max () (| ,){ () (,)

457.2 811.8 1269.0
P or J

C

C t C P or JDR ES

EU D Consult
P ES P R ES D U D U ES D

=

= +

= + =

∑ ∑

Similarly,

(' _ ') 0.1*1*(0 1000) 0.9*1*(0 1000) 1000CEU D not Consult= = + + + =

Thus the optimal policy for CD remains unchanged, that is, to consult. For the second round

calculation using SPU method, the strategies would not change because EU will no longer change.

Therefore, max () 1269.0
C

cD
MEU EU D= =

From above, we calculated the MEU for the decision node “Consult”, which is also the MEU for

the whole diagram, is 1269.0. Thus, we see that Cassio’s method got the correct result.

(2) Example 2

Ex 2. Another example comes from the paper “Representing and Solving Decision Problems with

Limited Information” by Steffen L. Lauritzen and Dennis Nilsson in 2001. Due to the example

already mentioned in my previous report, I will only present the graph model and the calculated

result here.

Figure 6 shows the graph created by Cassio’s software. Here I replaced the original code by the

updated version from the latest Cassio’s email. The calculated MEU by SPU and CR is shown is

figure 7 and we see that Cassio’s method gets the same result with the paper “Representing and

Solving Decision Problems with Limited Information” in Figure 8.

Figure 6 The Pigs model created using Cassio’s software

Figure 7 The calculated MEU from Cassio’s software

Figure 8 The result from the cited paper

(3) Example 3

Ex3. In Figure 9, I manually created a median‐size network which is similar to Cassio’s example of

EBO net. The reason why I created the median network because this free software, Hugin, has

the limitation of the number of the nodes. But anyway, the two software got the same MEU

result. Figure 10 shows the calculated MEU is 790.89 by using Cassio’s software from SPU and CR

methods and Figure 11 shows the same result, that is, MEU equals to 790.89.

Figure 9 The diagram created by Hugin

Figure 10 The diagram created by Cassio’s software

Figure 11 MEU calculated using Cassio’s software

Figure 12 MEU calculated using Hugin

3. Comparison of SPU CR

In this part, I implemented a Brutal Force method which enumerates all possible strategies and

got all the EU results.

(1)Original example

In Cassio’s example in Figure 13, there are totally 11 decision nodes. Each node has two choices,

that is, “take” and “do not take”. So the number of all possible strategies is 112 2048= . My

program will traverse all these 2048 strategies and selected the largest ten MEU.

Figure 13 Military example

In the original example provided by Cassio and already specified parameters, the largest ten EU

calculated by brutal force method are shown in Table 1. Also I ran the software and the MEU

calculated by CR and SPU are 156.4 and ‐55.28 respectively that are shown in Figure 14 and

Figure 15. From the table, we clearly see that the result of CR method is exactly the same with

the first item of the table. This proves that in this example CR method converged to the global

maximum. Also the result of SPU matches the ninth item of the table which denotes that SPU will

only converge to the local maximum.

NO. 1 2 3 4 5 6 7 8 9 10

MEU 156.4 68.97 55.26 12.89 ‐7.11 ‐20.59 ‐34.21 ‐51.26 ‐55.28 ‐61.03

Table 1 The largest ten EU in Cassio’s example

Figure 14 SPU result

Figure 15 CR result

(2) Change the utility value of the node “CostDestroyC2”

In the second test, I changed the utility value of the node “CostDestroyC2” from [‐20, 0] to [‐2000,

0]. This is shown in Figure 16.

Figure 16 The utility value of the node “CostDestroyC2”

Then I conducted brutal force method for this example and the largest ten EU results are in

shown in table 2. Note that different strategies could lead to the same MEU. The result by SPU

and CR are shown in Figure 17. This time they both got the same result, MEU ‐232.11. Referring

to table 2, this is reasonable because both of them converge to the global maximum.

NO. 1 2 3 4 5 6 7 8 9 10

MEU ‐232.1 ‐252.1 ‐252.1 ‐252.1 ‐272.1 ‐272.1 ‐278.8 ‐292.1 ‐306.1 ‐312.3

Table 2 The largest ten EU

Figure 17 the result of SPU and CR

(3) Change CPT of the chance node “Hypothesis”

In the third test, the CPTs of the chance node “Hypothesis” before and after the change are

shown in Figure 18 and Figure 19.

Figure 18 The CPT of “Hypothesis” before the change

Figure 19 The CPT of “Hypothesis” after the change

Using Brutal Force algorithm, the calculated ten largest MEU are shown in table 3. The calculated

MEU by SPU and CR method are shown in Figure 20 and Figure 21. CR method got the largest

MEU 298.3 and SPU only got MEU 253.4. From the result, we see that again CR method will

converge to the global maximum and SPU will only converge to the local maximum.

NO. 1 2 3 4 5 6 7 8 9 10

MEU 298.3 278.3 278.3 278.3 258.3 258.3 253.4 248.3 233.4 233.4

Table 3 The largest ten EU

Figure 20 SPU method

Figure 21 CR method

4. Conclusion

In the first part of this report I created three examples and used them to validate Cassio’s

software. The calculated results are compared to the existing software and the paper. We

conclude that Cassio’s implementation got all the correct results.

In the second part of the report, we conclude that CR performs better than SPU because it will

converge to the global maximum solution. But, SPU is a good approximate method and for many

networks, it is expected that it will achieve the global optimal solution as well. But it is not always

the case, just as shown in the first and third test of this part. SPU is some kind of like Nash

Equilibrium, which means that all its policies are local maximum. Here, a strategy is a local

maximum strategy means that the expected utility does not increase by changing only one of its

policies. Thus, SPU will only guarantee to converge to the local maximum solution.

Learning Influence Diagram Parameters using
Convex Optimization for EBO-based Planning

ISL
Rensselaer Polytechnic Institute

Troy, NY

December 21, 2007

Abstract

An Influence Diagram is an interesting probabilistic graphical framework
for modeling effects-based operations (EBO), as they provide a compact rep-
resentation of the domain and useful properties for decision making. It is
known that accuracy of decisions relies on the quality of Influence Diagram
parameters. On the one hand, learning reliable parameters of such models of-
ten requires a relative large amount of quantitative training data, which may
not exist, may be hard to acquire and/or may contain missing values. On the
other hand, qualitative knowledge information is usually available, and incor-
porating such knowledge can improve parameter estimation and the accuracy
of decisions. This report describes a framework based on convex optimiza-
tion to incorporate many types of qualitative relations about parameters with
quantitative training data to perform parameter estimation in an Influence
Diagram for the EBO planning problem. Experiments and examples using
synthetic data indicate the benefits of this framework.

1 Introduction

The Effects-based operations (EBO) approach for military planning seeks for a
campaign objective by considering direct, indirect and cascading effects of mili-
tary, diplomatic, psychological and economic actions [6, 9]. Graphical models such
as Influence Diagrams are specially interesting while modeling such a domain, as
we can specify many actions and factors, uncertainties and their dependencies. We
employed a graphical model called Influence Diagram, which comprises decision,
uncertainty and utility information in a compact graphical structure for decision
making [11, 19, 23].

1

Influence Diagrams are described through graphs where value nodes are re-
lated to profits and costs of actions, chance nodes represent uncertainties and de-
pendencies in the domain and decision nodes represent actions to be taken. After
parametrization, this model can be used to evaluate plans (expected utility) and
strategy decisions (choice of which action to take). Parameter learning is the prob-
lem of estimating probability measures of conditional probability distributions re-
lated to the chance nodes, given the graph structure.

Many parameter learning techniques depend heavily on training data. Ideally,
with sufficient data, it is possible to learn parameters by standard statistical analy-
sis like maximum likelihood estimation. In many real-world cases, however, data
are either incomplete or sparse, which can cause inaccurate parameter estimation.
Incompleteness means that some parameter values are missing in the data, while
sparseness means that the amount of training data is small. EBO military planning
is a domain with such characteristics, as the world history has not too many mil-
itary campaigns. Furthermore, data about these conflicts may be sensitive/secret
and may not be available.

Even with incomplete and sparse data, general qualitative knowledge about the
domain is usually available, and such knowledge might be employed to improve
parameter estimations. While the previous report [12] has focused mainly on model
evaluation and has supposed that parameters were known in advance, we propose
here a framework based on non-linear convex optimization to solve probabilistic
parameter learning problem by combining quantitative data and domain knowledge
in the form of qualitative constraints. Hence, this report is complementary to [12]
in the sense that parameter learning is the main focus.

Many types of qualitative constraints are discussed, including range and re-
lationship constraints [16], influences and synergies [25, 26], non-monotonic con-
straints [24], weak and strong qualitative constraints [4, 20]. They are applied to an
EBO-based planning problem and experiments indicate that qualitative constraints
can strongly reduce the amount of data necessary for effective parameter learning.

Section2 comments on some related work about parameter learning with qual-
itative knowledge. Section3 introduces our notation for Influence Diagrams and
the problem of probabilistic parameter learning. Section4 details a collection of
qualitative constraints that can guide the learning process. Then we describe a pro-
cedure to solve parameter learning by reformulating the problem as a constrained
convex optimization problem (Section5). Section6 presents some experiments
with synthetic data, and finally section7 concludes the report and indicates future
work.

2

2 Related Work

Domain knowledge can be classified as quantitative and qualitative, which de-
scribes the explicit quantification of parameters and approximate characterizations,
respectively. Both are useful for parameter learning, but quantitative knowledge
has been widely used while qualitative relations among parameters have not been
fully exploited. We focus our attention on related work about qualitative relations.
Parameter learning in general is a well explored topic and we suggest Jordan’s book
[13] as a starting point for a broader review.

Concerning the use of qualitative relations, Wittig et al. [27] present a method
to integrate qualitative constraints into two learning algorithms (APN and EM)
by introducing violation functions as penalty terms to the log likelihood function.
They show that domain knowledge in the form of constraints can improve learn-
ing accuracy. However, weights for the penalty functions often need be manually
tuned, which strongly rely on human knowledge about such weights. Altendorf et
al. [1] describe a method to incorporate monotonicity constraintsinto the learn-
ing algorithm. It is based on the assumption that states of discrete random vari-
ables can be totally ordered, as we also do. Additionally, it uses penalty functions,
which suffer from the same problem as [27]. Feelders and Van der Gaag [10] in-
corporate some simple inequality constraints in the learning process. They assume
that all the variables are binary. Moreover, the constraints used in all above meth-
ods [1, 10, 27] are too restrictive, because constraints can not involve parameters
among many distributions and parameters can not appear in as many constraints as
we desire.

de Campos and Cozman [7] formulate the learning problem as a constrained
optimization problem. However, they are restricted to complete datasets and apply
non-convex optimization. Niculescu et al. [16, 17] also solve the learning problem
by optimization techniques. They derive closed form solutions for the maximum
likelihood estimation supposing some predefined types of constraints, much like
the work presented here. However, there are two main limitations of their meth-
ods: there is no overlaping between parameters of different constraints in general,
that is, parameters are restricted to appear in only one constraint at all and con-
straints are restricted to single distributions. There are very restricted cases where
parameters and constraints can involve distinct distributions. We describe a general
learning procedure where such limitations do not exist.

Similar ideas are proposed by Xue and Ji [29]. They derive closed form so-
lutions for the maximum likelihood estimation and the EM algorithm supposing
some predefined types of constraints. We emphasize that the work presented here
is more general, because we allow potentially any convex constraint among pa-
rameters to be included in the model and we guarantee convergence to a global

3

Value 3

Action 1 Action 2

X 3X 1

X 2

Value 1 Value 2

Figure 1: Simple Influence Diagram example.

optimum of the problem. Such properties were not obtained before.

3 Problem definition

An Influence Diagram is a directed acyclic graph where nodes may have three dis-
tinct types: chance, decision and value nodes. Links between nodes characterize
conditional dependencies among them. Explicitly, links toward a chance node in-
dicate probabilistic dependency of the node on its parents; links to a decision node
indicate what information is available to take the decision, and links to value nodes
represent a utility for the parents (value nodes cannot have children). Associated
to each node, there are parameters:

1. Chance nodes: for each such node, there is an associated discrete random
variableXi with domainΩXi

= x1
i
, . . . , x

ri

i
and conditional probability dis-

tributionsp(Xi|π(Xi)), whereπ(Xi) are the parents ofXi in the graph. In
fact there must exist one distribution for eachπj(Xi), wherej is viewed as
a shortcut for a complete configuration of the parents ofXi, that is,πj(Xi)
defines a set(xk1

i1
, x

k2
i2

, . . . , xkt

it
), where t = |π(Xi)|, Xia ∈ π(Xi) and

ka ∈ {1, . . . , ria} for a = 1, . . . , t. If a variable has no parents, then we de-
fine j equals to zero. Whenever necessary and for ease of expose, we use an

4

extended notationj
.
= (xk1

i1
, x

k2
i2

, . . . , xkt

it
). Therefore,xk

i
represents thekth

state of random variableXi, andπj(Xi) is thejth parent configuration of
it. Furthermore, letX = {X1, . . . ,Xn} be the set of chance nodes/random
variables (we use them interchanged if no confusion arises) andqi the num-
ber of distinct configuration ofπ(Xi) (that is,qi =

∏
Xt∈π(Xi)

rt).

2. Decision nodes: for each such node, there is a decision variableYi with do-
mainΩYi

= y1
i
, . . . , y

si

i
. Besides that, the configuration ofπ(Yi) is available

at the time of the decision. Apolicy for Yi, denotedδi, specifies the action to
take, that is,δi ∈ ΩYi

. We denote byY the set of decision nodes, and byδ a
set of policiesδi, one for each decision nodeYi (this is also calledstrategy).

3. Value nodes: for each such node, there is a functiongUi
: Ωπ(Ui) → Q,

whereΩπ(Ui) is the set of all possible configuration ofπ(Ui) andQ are the
rational numbers.gUi

defines the utility for each configuration of the parents.
We defineU as the set of all value nodes.

A simple example is depicted in Figure1. Decision nodes are represented by
rectangles, chance nodes by ellipses and value nodes by diamonds.

Example 1 Using the Influence Diagram of Figure1, we can modelAction 1as a
ground attack to enemy positions,Action 2 as bombing such positions,Value 1as
the cost of a ground attack, andValue 2as the cost of bombing.X2 is our goal, for
instance to achieve territory occupation, whileValue 3is the profit of the goal.X1

andX3 represent the uncertain outcome ofAction 1andAction 2, respectively.

Given an strategyδ and a complete configuration for the random variablesx =
(xk1

1 , . . . , xkn
n), we can compute the joint probability as follows

pδ(x) =

n∏
i=1

p(xki

i
|πj(Xi))I(xk

i ∪ πj(Xi) ⊆ x ∪ δ),

whereI is an indicator function determining thatxk
i

andπj(Xi) must cope with the
configuration ofx andδ. If we seeδ as evidence, then this formula is just similar
to the joint probability of well-known Bayesian networks. Marginal probabilities
can be obtained summing over the undesired variables, that is, ifx′ ⊂ x, then

pδ(x′) =
∑

x′′∈Ω
x\x′

pδ(x).

For a given strategy, the main inference in an Influence Diagram is to evaluate
its expected utility, which is obtained using a weighted sum of corresponding utility

5

functions:
Eδ =

∑
U∈U

∑
j

pδ(π
j(U))gU (πj(U)),

wherej ranges in all possible parent configurations ofU .
Note that inferences in Influence Diagrams rely on the quality of the proba-

bilistic parameters to weight the utility functions. This report focuses on learning
of such parameters. Hence, the graph structure and the utility functions are sup-
posed to be known in advance. To ease of expose, we defineθ as the entire vector
of probabilistic parameters, whereθijk = p(xk

i
|πj(Xi)). Moreover, we need to

specify an order for the states of each random variable, that is, for eachXi, we

define an orderxk1
i

< xk2
i

< . . . < x
kri

i
, where{k1, . . . , kri

} ⊆ {1, . . . , ri}.
Without loss of generality, we suppose thatks = s for all s ∈ {1, . . . , ri} (if nec-
essary, we could exchange the position of some states to comply with this rule).
Thus we havex1

i
< x2

i
< . . . < x

ri

i
for all Xi.

3.1 Learning probabilistic parameters

Given a datasetD = {D1, . . . ,DN}, with Dt = (xk1
1,t

, . . . , xkn

n,t
, δ) a sample of

the chance and decision nodes, the goal of parameter learning is to find the most
probable values forθ. These values best explain the datasetD, which can be
quantified by the log likelihood functionlog(p(D|θ)), denotedLD(θ). Assuming
that samples are drawn independently from the underlying distribution, we have

LD(θ) = log

n∏
i=1

qi∏
j=1

ri∏
k=1

θ
nijk

ijk , (1)

wherenijk indicates how many elements ofD contain bothxk
i

andπj(Xi).
If the datasetD is complete, Maximum Likelihood (ML) estimation method

can be described as a constrained optimization problem, i.e. maximize Equation
(1), subject to simplex equality constrains:

max LD(θ)

s.t. ∀i=1,...n∀j=1...qi
gij(θ) =

∑ri

k=1 θijk − 1 = 0 (2)

wheregij(θ) = 0 imposes that distributions defined for each variable given a
parent configuration sums one over all variable states. This problem has its global
optimum solution atθijk =

nijk

nij
, wherenij =

∑
k=1,...,ri

nijk.

4 Qualitative Constraints

Standard likelihood estimations are usually enough if we have enough data, re-
gardless one uses prior knowledge or not. However, when small amount of data

6

is available, the likelihood function may not produce reliable estimations for the
parameters.

Example 2 Suppose we are working with the chance nodesX1,X2,X3 of Ex-
ample1, and they are associated to binary random variables (with categoriesx1

i

meaning true andx2
i

meaning false). Suppose further that we have the dataset
D = (D1,D2), with D1 = (x1

1, x
1
2, x

1
3) andD2 = (x2

1, x
2
2, x

2
3). Using the ML esti-

mation, we have the posterior probabilitiesθ101 = θ102 = θ301 = θ302 = 0.5 and
θ2j11 = θ2j22 = 1, with j1

.
= (x1

1, x
1
3), j2

.
= (x2

1, x
2
3), j3

.
= (x2

1, x
1
3), j4

.
= (x1

1, x
2
3).

Posterior probability distributionsθ2j3k andθ2j4k can not be estimated as no data
about such configurations are available.

Situations like in Example2 could be alleviated by inserting quantitative prior
distributions for the parameters. However, acquiring such quantitative prior infor-
mation may not be an easy task. An incorrect quantitative prior might lead to bad
estimation results. For example, standard methods apply quantitative uniform pri-
ors. In this case, if no data are present for a given parameter, then the answer would
be0.5, which may be far from the correct value.

A path to overcome this situation is through qualitative information. Qualita-
tive knowledge is likely to be available even when quantitative knowledge is not,
and tends to be more reliable. For example, someone hardly will make a mis-
take about the qualitative relation between sizes of the Earth and the Sun; almost
everyone will fail to specify a quantitative ratio (even approximate).

Example 3 Suppose, in addition to Example2, that the following two constraints
are known: θ302 + θ2j31 ≤ 0.7 and θ2j11 ≤ θ2j42. With this knowledge, we can
state thatθ2j31 ≤ 0.2 and θ2j42 = 1, reducing the space of possible parameters
and alleviating the problem with sparse quantitative data.

We start by describing constraints that appear in Qualitative Probabilistic Net-
works [25]. The most common type of qualitative constraints is calledinfluence.
Qualitative influences define some knowledge about the state of a variable given
the state of another. For example, the probability of achieving territory occupation
given that a successful ground attack was employed is greater than when it was not.

Definition 1 Let Xa,Xb be variables such thatXa ∈ π(Xb). We say thatXa

influencesXb positively if

∀ka>k′
a,kb=1,...,rb−1

∑
k>kb

θbjkak ≥
∑
k>kb

θbjk′a
k + δ, (3)

7

wherejk

.
= (xk

a, π
j∗(Xb)) andj∗ is an index ranging over all parent configurations

except forXa, that is,πj∗(Xb) = (xki

i
: Xi ∈ π(Xb) ∧ i 6= a ∧ ki ∈ {1, . . . , ri}),

and δ ≥ 0 is a constant.

This roughly means that observing a greater state forXa makes more likely
to have greater states inXb. The definition makes use of cumulative probability
values, so it works even for non-binary variables. When applied to binary variables,
summations of Equation (3) disappear and we have a more natural formulation:
θbj22 ≥ θbj12 + δ, with jk as in Definition1. In this case, the greater state is 2, and
observingx2

a makes more likely to havex2
b
.

If constraints of Definition1 hold for δ > 0, the influence is saidstrongwith
thresholdδ [20]. Otherwise, it is saidweakfor δ. A negative influence is obtained
by replacing the inequality operator≥ by ≤ and the sign of theδ term to negative
in Equation (3). A zero influence is obtained by changing inequality to an equality.

We now define a conjugate influence from two parents to a common child,
called additive synergy [25]. Synergies are influences from two parents acting
to influence the child. For example, suppose we bomb an area and/or perform a
ground attack. Both actions contribute to the goal. But the probability of success
given that we do both or neither is lesser than the probability of success given that
we do only one of them (bombing an area under ground attack could kill our own
infantry). So, the actions together have a negative influence on achieving the goal.

Definition 2 Let Xa andXc be parents ofXb. We say thatXa andXc impose a
negative additive synergy onXb if

∀kb=1,...,rb−1∑
k>kb

∑
ka=kc

θbjka,kck ≤
∑
k>kb

∑
ka 6=kc

θbjka,kck − δ (4)

wherejka,kc

.
= (xka

a , xkc
c , πj∗(Xb)) and j∗ ranges over all parent configurations

not includingXa nor Xc, andδ ≥ 0 is a constant.

This means that observing the same configuration for the parentsXa andXc

makes less likely to have a greater state inXb. Again the case over binary variables
is simpler:θbj1,12 + θbj2,22 ≤ θbj1,22 + θbj2,12 − δ, wherejka,kc

is as in Definition
2, which enforces the sum of parameters with equal configurations forXa andXc

to be lesser than the sum of parameters with distinct configurations. If these con-
straints hold forδ > 0, this synergy is saidstrongwith thresholdδ [20]. Otherwise
it is saidweakfor δ. When omitted,δ is assumed to be zero. Positive and zero
additive synergies are obtained analogously.

Non-monotonic influences and synergies happen when constraints hold only
for some configurations of inactive parents (regarding that constraint) [21]. For

8

example, suppose three binary variables such thatX1 hasX2 andX3 as parents
and thatθ1(x2

2,x1
3)2

≥ θ1(x1
2,x1

3)2
holds, butθ1(x2

2,x2
3)2

≥ θ1(x1
2,x2

3)2
can not be stated.

Hence we do not have a positive influence ofX2 on X1, because it would be nec-
essary to have both constraints valid to ensure that influence. In fact we might
realize that the state ofX3 (the inactive parent concerning this influence) is im-
portant in the constraint. Then, we may state a non-monotonic influence ofX2

on X1 that holds whenX3 is x1
3 but not when it isx2

3. Situational signs [4] and
context-specific signs [22] are special cases of such non-monotonic constraints. To
include all such situations, we define a very general constraint: alinear relation-
ship constraintdefines a linear relative relationship between sets of parameters and
numerical bounds.

Definition 3 LetθA be a sequence of parameters,αA a corresponding sequence of
constant numbers andα also a constant. Alinear relationship constraintis defined
as ∑

θijk∈θA

αijk · θijk ≤ α, (5)

that is, any linear constraint over parameters can be expressed as alinear relation-
ship constraint. It is worth to mention some special cases: ifθA has only one pa-
rameterθijk andαijk = 1, the constraint becomes a upper bound constraint forθijk

(we can obtain a lower bound using negativeαijk andα). These bounds are also
known asrange constraints[16]. If all parameters involved in a linear relationship
constraint share the same node indexi and parent configurationj, the constraint
is called intra-relationship constraint. Otherwise, it is ainter-relationship con-
straint. We indicate this difference because usuallyinter-relationship constraints
lead to hard learning procedures [16]. Here, as we will discuss, there is no im-
portant distinction between them regarding complexity. We note thatlinear rela-
tionship constraintsgeneralize influences and additive synergies and correspond-
ing non-monotonic relations, as all of them are linear constraints over parameters.
However we decided to keep such definitions separately given their importance in
the literature.

5 Learning through convex optimization

The definitions of previous section show many types of qualitative constraints that
can be used to describe our knowledge. In this section we present an optimization
idea to solve the learning problem using a great variety of constraints. The main
achievements are

• It is possible to mix different types of constraints in a straightforward way.

9

• Parameters of the network can appear as many times as desired.

• There is no distinction about creating a qualitative constraint within a single
probability distribution or among parameters in many distributions.

• Many types of qualitative relations can be handled (any convex constraint),
including usual relations defined in the literature [4, 16, 17, 18, 22, 25].

We describe how constraints and the log likelihood function can be formulated
as a convex constraint of a convex optimization program. Such a program can be
specified as [3]:

min
θ

f(θ) (6)

s.t. ∀i=1,...,m gi(θ) ≤ 0

whereθ is the vector of optimization variables,m is the number of constraints and
f andgi (for all i) are continuous convex functions over the parameter space.

First note that our objective function is concave becauselog is concave and
a positive linear combination of concave functions is also concave (eachnijk is
positive, known from the dataset. Ifnijk = 0, the term is simply discarded). Thus

max
θ


log

n∏
i=1

qi∏
j=1

ri∏
k=1

θ
nijk

ijk


 = min

θ

−
∑
i,j,k

nijk · log θijk,

where the right-hand side is a minimization of a convex function (-f is convex
whenf is concave), as required in Equation (6). Regarding constraints, any linear
function is convex. Simple manipulations can lead them to the form of Equation
(6) (a constrainth(θ) ≥ 0 just need to be multiplied by−1, while an equality can
be viewed as two inequalities). All constraints defined in Section4 are convex and
can be directly inserted into the convex program.

To solve convex programming, there are many optimization algorithms. We
can use specialized interior point solvers [2] or even some general optimization
ideas [15], because convex programming has the attractive property that any local
optimum is also a global optimum. Furthermore, such global optimum can be
found in polynomial time in the size of input [3].

5.1 Incomplete data

Incomplete data means that some fields of the dataset are unknown. If the dataset is
D = {D1, . . . ,DN}, then eachDt ⊆ (xk1

1,t
, . . . , xkn

n,t
) is a sample of some nodes.

We say thatut is the missing part in tuplet, that is,ut ∩ Dt = ∅ and ut ∪ Dt is a

10

complete instantiation for the nodes. LetU be the set of all missing data. In this
case, the likelihood functionlog(p(D|θ)) is not a simple product anymore, and the
corresponding optimization program is not convex.

A common method to overcome this situation is standard EM algorithm [8],
which starts from some initial guess, and then iteratively takes two types of steps
(E-steps and M-steps) to get a local maximum of the likelihood function. Partic-
ularly for discrete nodes, E-step computes the expected counts for all parameters,
and M-step estimates the parameters by maximizing log likelihood function, given
the counts from E-step, just like would be done with a complete dataset. EM algo-
rithm converges to a local maximum under very few assumptions [28].

Assumeθ0 is an initial guess for the parameters, andθt denotes the estimation
after t iterations,t = 1, 2, Then, each iteration of EM can be summarized as
follows:

• E-step:compute expectation of the log likelihood given observed dataD and
current estimation of parametersθt: Q(θ|θt) = Eθt [log p(U ∪ D|θ)|θt,D].

• M-step:find new parameterθt+1, which maximizes expected log likelihood
computed in E-step:θt+1 = argmax

θ

Q(θ|θt).

We propose to extend EM with the convex optimization program of Section5,
that is, the M-step is performed using convex programming. The value ofθt+1 is
argmax

θ

Q(θ|θt) subject to qualitative constraints of the problem, and a polynomial

time algorithm can be employed to solve this convex program (also described in
Section5). In this context, qualitative constraints may help EM to avoid poor local
maxima and improve the overall solution. Furthermore, because the parameter
space is convex and the enhanced M-step produces a global optimum solution for
the current parameter counts, this modified EM shares convergence and optimality
properties of the standard EM algorithm [5, 28]. Although the modified EM is
more time expensive than the standard EM as each M-step requires the solution
of a convex optimization program (standard EM may use closed form solution for
ML), we argue that, just as in standard EM where an improving solution is enough
instead of an optimum one (calledGeneralized EM), we might stop the convex
programming as soon as an improving solution is found.

6 Experiments

In order to test the performance of our method against standard ML estimation and
standard EM algorithm given sparse and incomplete data, we use a similar Influ-
ence Diagram as described by Zhang and Ji [30] for an hypothetical EBO-based

11

Hypothesis

Territory_occupationAir_superiority

Artillery Ground_force

ground_attackassemblyfacilitystoragefacilityRDfacility

Air_forceIADS

EW/CGI Communications Air_strike C2

destroy_Radars destroy_Communications launch_air_strike destroy_C2 launch_ground_attackdestroy_assemblydestroy_storagedestroyRD

U U U U U U U U

U

1 2 3 4 5 6 7 8

H

Figure 2: Influence Diagram for an hypothetical EBO-based planning problem.

military planning problem. It is shown in Figure2. The goal is to win a war and
it is represented by theHypothesisnode (on top of Figure2). Just below there
are the subgoalsAir superiority andTerritory occupation, which are directly re-
lated to the main goal. There are eight decision nodes (represented by rectangles,
while chance nodes are ellipses):destroyC2 (C2 stands forCommand and Con-
trol). destroyRadars, destroyCommunications, launch air strike, destroyRD,
destroystorage, destroyassembly, launch ground attack. Just above decision
nodes, we have chance nodes representing the outcomes of performing such ac-
tions (they indicate the workability of such systems), and below we have value
nodes (diamond-shaped nodes) describing the cost of each action. Furthermore, we
have four chance nodes (in the center of the figure) indicating general workability
of IADS(Integrated Air Defense System),Air force, Artillery andGround forceof
the enemy. The overall profit of winning is given by the value nodeUH , child of
Hypothesis.

As this is an hypothetical example, we define utility functions and probability
distributions as follows:

• Probability ofHypothesisis one given that all subgoals are achieved. If one
of subgoals is not achieved, then the probability ofHypothesisis 60%, and
if none of subgoals is achieved, then we certainly fail in the campaign.

• For the subgoalsAir superiorityandTerritory occupation, we define them
as accomplished with probability one when both children were achieved,
50% when only one child is achieved, and zero when none is achieved.

• For the probabilities ofIADS, Air force, Artillery andGround force, we de-

12

fine a decrease of 30% for each unaccomplished child (with a minimum of
zero, of course). For instance,IADShas probability 40% if two of its four
children are achieved, andArtillery has probability zero when at least four
of its children are unaccomplished.

• The probability of the outcomes of actions (chance nodes just above deci-
sion nodes), we define a rate of 90% of success. For example, the deci-
siondestroyRadarswill have EW/GCI radarsdestroyed with 90% of odds
(EW/GCI meansEarly Warning/Ground Control Interception).

• The reward of achieving the main goal is1000, while not achieving it costs
500.

• Costs of actions are as follows:ground attack is 150, air strike is 50, and
other actions cost20 each.

Using this Influence Diagram as our “truth” for the parametrization, we gen-
erate samples from it. After training the model with distinct amounts of data, we
apply the Kullback-Leibler (KL) divergence criterion [14] to measure the differ-
ence between joint probability distributions induced by generated diagrams and
distributions of the “truth” diagram. For probability distributionsP1 andP2 over
discrete variables, whereP1 is considered the “truth”, the KL divergence is

KL(P1, P2) =
∑

i

P1(i) log
P1(i)

P2(i)
,

wherei ranges over all possible configurations of the discrete variables andPj(i)
means the probability value for the configurationi. We have chosen to use such
criterion because the problem is hypothetical and no real data is available. Thus,
it would not be significant to compare maximum expected utilities of the diagrams
generated with each approach, because we could obtain a great expected utility
even using wrong parameters. Such result would be unreliable, as we desire to
obtain parameters that best describe a real situation, and those parameters could
not lead to good results. So, using the KL divergence, we measure how much
improvement the qualitative knowledge obtains for parameter learning towards the
correct values.

We conduct experiments for datasets with 10, 100 and 1000 samples, without
and with qualitative constraints. When employed, the qualitative constraints state
that each chance or decision node has a positive influence on its children, that
is, achieving the parent makes more likely to accomplish the children. We use
the following constraints. Although they are hypothetical, we tried to create as
meaningful constraints as possible.

13

• Air superiorityhas a strong positive influence onHypothesis, as well asTer-
ritory occupation, which means that the probability of success onHypoth-
esisgiven that we have achievedAir superiority is much greater than the
the probability of success onHypothesisgiven that we have not achieved
Air superiority, as subgoals contribute to the main goal. Analogously, the
probability of Hypothesisgiven we have success onTerritory occupation
is much greater than the probability ofHypothesisgiven failure onTerri-
tory occupation.

• IADSandAir forcehave strong positive influences onAir superiority, which
means that the probability ofAir superioritygiven each one of those achieve-
ments is much greater than when we do not obtain them. Again,IADSand
Air force are important steps to achieveAir superiority, so they contribute
positively to it.

• Artillery andGround forcehave positive influence onTerritory occupation,
so the probability of the latter is greater whenArtillery and/orGround force
are accomplished.

• DestroyedEW/GCI radarshas negative influence onIADSandAir forceof
the enemy, as well as inoperableCommunicationsand C2 and performed
Air strike.

• DestroyedRDfacility has negative influence onArtillery andGround force
of the enemy, as well as inoperableC2, storagefacility, assemblyfacilityand
performedground attack.

• Probability ofAir superioritygiven success onIADSandAir forceis greater
than the probability ofTerritory occupationgivenArtillery andGround force,
because we consider (in this example) that it is easier to control the airspace
than to control the surface.

For each amount of data (10, 100 and 1000 samples), we work with 20 random
sets of data and qualitative constraints. Mean and variance are presented in first
three lines of Table1 for complete data. The last three lines of the table show
results for datasets with missing fields (chosen at random in number equal to three
times the number of samples). In such cases, EM and constrained EM methods are
employed.

Table1 indicates a decrease in the divergence when working with qualitative
constraints, which shows that such constraints were actively used during the learn-
ing process. For sparse data, the divergence was substantially reduced so as harder

14

Mean Variance
Amount of data Unconstrained Constrained Unconstrained Constrained

10 8.4 2.39 0.35 0.64
100 2.25 0.32 0.09 0.03
1000 0.06 0.08 0.0005 0.00004

10 (I) 8.12 2.46 0.15 0.1
100 (I) 2.33 0.36 0.15 0.02
1000 (I) 0.08 0.08 0.0004 0.0001

Table 1: KL divergence for 20 runs of the learning procedure using random sam-
ples and constraints. Unconstrained results are the standard case (ML / EM ideas)
while Constrained indicate the use of qualitative relations during learning (Con-
strained ML / Constrained EM). Rows marked with (I) were executed with incom-
plete datasets.

problems are most benefited. Besides that, results show a somewhat expected sit-
uation: when enough data is available, qualitative constraints become less useful.
We can even see a case where the average result with qualitative constraints was
sightly worse than without constraints (1000 samples without missing data). That
situation eventually happens when enough data is available and there exist quali-
tative constraints that are not precise with respect to the ground truth. Thus, we
emphasize that problems like EBO-based planning may have strong benefits from
qualitative knowledge, as usually there are not enough data, while problems where
enough data are available may not have the same benefits.

Figures3 and 4 show the difference in the KL divergence between the un-
constrained learning (standard case) and the constrained learning with qualitative
relations for each node of the Influence Diagram. Black bars are for 10-sample
cases and white bars for 100-sample cases. Node numbers in these graphs are
defined from 1 to 23 according to the following order: (1)C2, (2) EW/GCI, (3)
Communications, (4) Air strike, (5) IADS, (6) Air force, (7) Air superiority, (8)
RDfacility, (9) storagefacility, (10) assemblyfacility, (11) ground attack, (12) Ar-
tillery, (13)Ground force, (14)Territory occupation, (15)Hypothesis. We can see
that most benefits of qualitative constraints appear in nodes that are hard to learn,
for instanceHypothesis, its two childrenAir superiorityandTerritory occupation,
and their children. We can verify that advantages with complete and incomplete
datasets were very similar to each other, which shows that even with incomplete
data the qualitative constraints help to guide the learning process.

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

Node

A
bs

ol
ut

 d
iff

er
en

ce

KL divergence for complete data

10 samples (Unconstr’d minus Constr’d)
100 samples (Unconstr’d minus Constr’d)

Figure 3: Difference in KL divergence between unconstrained (standard) learning
and constrained learning for complete data. Positive bars mean that the constrained
version performed better than the unconstrained one.

7 Conclusion

This report describes a framework for parameter learning of Influence Diagrams
when qualitative knowledge is available, which is specially important for training
with sparse data. Even with enough data, qualitative constraints may help to guide
the learning procedures.

For complete data, we directly apply convex optimization to obtain a global
optimum of the constrained maximum likelihood estimation, while for incomplete
data, we extend the EM method by introducing a constrained maximization in the
M-step. We apply our method to synthetic Influence Diagrams based on EBO
military planning. Experimental results demonstrate that our method can fully
exploit the qualitative knowledge to improve parameter learning accuracy. With
sparse data and constraints, it is possible to obtain results similar to those of using
expressively more data without constraints.

For future research, we intend to apply the ideas on harder planning prob-
lems where only sparse data is available. We plan to explore other applications of
qualitative constraints, such as strategy evaluation (trying to reduce the time for
each evaluation) and planning (constraints may guide the search for the best strat-
egy). Furthermore, qualitative constrains presented here can be viewed as hard

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

Node

A
bs

ol
ut

 d
iff

er
en

ce

KL divergence for incomplete data

10 samples (Unconstr’d minus Constr’d)
100 samples (Unconstr’d minus Constr’d)

Figure 4: Difference in KL divergence between unconstrained (standard) learning
and constrained learning for incomplete data. Positive bars mean that the con-
strained version performed better than the unconstrained one.

constraints, since they must be satisfied during the learning. We intend to explore,
together with hard constraints, some soft qualitative constrains in the sense that
estimations may eventually not comply with them (to avoid possible “imprecise”
constraints).

References

[1] E. Altendorf, A. C. Restificar, and T. G. Dietterich. Learning from sparse data by
exploiting monotonicity constraints. InUAI, pages 18–26, 2005.3

[2] E. D. Andersen, B. Jensen, R. Sandvik, and U. Worsoe. The improvements in mosek
version 5. Technical report, Mosek Aps, 2007.10

[3] A. Ben-Tal and A. Nemirovski.Lectures on Modern Convex Optimization: Analy-
sis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization.
SIAM, 2001.10

[4] J. H. Bolt, L. C. van der Gaag, and S. Renooij. Introducing situational influences in
QPNs. InECSQARU, pages 113–124, 2003.2, 9, 10

[5] R. A. Boyles. On the convergence of the EM algorithm.Journal of the Royal Statis-
tical Society, Series B (Methodological), 45(1):47–50, 1983.11

17

[6] P. Davis. Effects-based operations: a grand challenge for the analytical community.
Technical report, Rand corp., 2003. MR1477.1

[7] C. P. de Campos and F. G. Cozman. Belief updating and learning in semi-qualitative
probabilistic networks. InUAI, pages 153–160, 2005.3

[8] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the EM algorithm.Journal of the Royal Statistical Society, Series B, 39(1):1–38,
1977.11

[9] D. A. Deptula. Effects-based operations: change in the nature of warfare.Defense
and Airpower Series, pages 3–6, 2001.1

[10] A. Feelders and L. C. van der Gaag. Learning Bayesian network parameters under
order constraints.International Journal of Approximate Reasoning, 42(1-2):37–53,
2006.3

[11] R. A. Howard and J. E. Matheson.Influence diagrams, volume II. Strategic Decisions
Group, Menlo Park, CA, 1984.1

[12] Qiang Ji. Modeling and evaluating ebo-based miltiary planning using the influence
diagram. Technical report, Rensselaer Polytechnic Institute, Troy, NY, 2007. ARO
TR 2007-01.2

[13] M. Jordan, editor.Learning Graphical Models. The MIT Press, 1998.3

[14] J. Lin. Divergence measures based on the shannon entropy. IEEE Trans. on Informa-
tion Theory, 37(1):145–151, 1991.13

[15] B. A. Murtagh and M. A. Saunders. Minos 5.4 user’s guide. Technical report, Sys-
tems Optimization Laboratory, Stanford University, 1995.10

[16] R. S. Niculescu.Exploiting Parameter Domain Knowledge for Learning in Bayesian
Networks. PhD thesis, Carnegie Mellon, 2005. CMU-CS-05-147.2, 3, 9, 10

[17] R. S. Niculescu, T. Mitchell, and B. Rao. Bayesian network learning with parameter
constraints.Journal of Machine Learning Research, 7(Jul):1357–1383, 2006.3, 10

[18] R. S. Niculescu, T. M. Mitchell, and R. B. Rao. A theoretical framework for learning
bayesian networks with parameter inequality constraints. InIJCAI, pages 155–160,
2007.10

[19] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, San Mateo, California, 1988.1

[20] S. Renooij and L. C. van der Gaag. Enhancing QPNs for trade-off resolution. InUAI,
pages 559–566, 1999.2, 8

[21] S. Renooij and L. C. van der Gaag. Exploiting non-monotonic influences in qualita-
tive belief networks. InIPMU, pages 1285–1290, Madrid, Spain, 2000.8

[22] S. Renooij, L. C. van der Gaag, and S. Parsons. Context-specific sign-propagation
in qualitative probabilistic networks.Artificial Intelligence, 140(1-2):207–230, 2002.
9, 10

18

[23] R. D. Shachter. Evaluating influence diagrams.Operations Research, 34:871–882,
1986.1

[24] L. C. van der Gaag, H. L. Bodlaender, and A. Feelders. Monotonicity in Bayesian
networks. InUAI, pages 569–576. AUAI Press, 2004.2

[25] M. P. Wellman. Fundamental concepts of qualitative probabilistic networks.Artificial
Intelligence, 44(3):257–303, 1990.2, 7, 8, 10

[26] M. P. Wellman and M. Henrion. Explaining ‘explaining away’ . IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(3):287–307, 1993.2

[27] F. Wittig and A. Jameson. Exploiting qualitative knowledge in the learning of condi-
tional probabilities of Bayesian networks. InUAI, pages 644–652, 2000.3

[28] C. F. Jeff Wu. On the convergence properties of the EM algorithm. The Annals of
Statistics, 11(1):95–103, Mar 1983.11

[29] Zheng Xue and Qiang Ji. Exploiting qualitative constraints for learning bayesian
networks under insufficient data. Technical report, Rensselaer Polytechnic Institute,
Troy, NY, 2007.3

[30] W. Zhang and Q. Ji. A factorization approach to evaluating simultaneous influence
diagrams.IEEE Transactions on Systems, Man and Cybernetics A, 36(4):746–757,
2006.11

19

Exploiting Qualitative Constraints for Learning
Bayesian Networks under Insufficient Data

Zheng Xue and Qiang Ji
Rensselaer Polytechnic Institute

Abstract

Graphical models (GMs) such as Bayesian Networks (BN) or the Influence Di-
agrams (ID) are being increasingly applied to many different applications. One
bottleneck in using GMs is that learning the GM model parameters often requires
a relative large amount of training data. However, in real life and for many applica-
tions, training data is often incomplete or sparse, which can cause low learning ac-
curacy. Incorporating domain knowledge can help alleviate this problem. Instead
of using quantitative prior knowledge as used by most of the existing methods,
this paper introduces a novel learning method based on systematically combining
the training data with some qualitative knowledge.

To validate our method, we compare it with the Maximum Likelihood (ML) es-
timation method under sparse data and with the Expectation Maximization (EM)
algorithm under incomplete data respectively. The experimental results show that
our method improves the parameter learning accuracy significantly compared with
both ML and EM algorithms.

1 Introduction

Among all the issues of graphical models, parameter learning is one of the main challenges. Pa-
rameter learning is to estimate the entries of the conditional probability distributions (CPDs) given
the structure of a model. Many learning techniques rely heavily on training data [7]. Ideally, with
sufficient data, it is possible to learn the parameters by standard statistical analysis like maximum
likelihood (ML) estimation. In many real-world cases, however, the data are either incomplete or
sparse, which can cause inaccurate parameter estimation. Data incompleteness is defined as missing
of data for some parameters, while data sparseness means the amount of training data is limited.

When data are incomplete, Expectation-Maximization (EM) [3] algorithm is often used. Most
EM-based methods work under the assumption that data are missing at random (MAR), which means
the missing values can be estimated by the observed ones in some way. However, when data are
missing completely at random (MCAR), e.g data of hidden nodes, the learned parameters could be
far from the ground truth. The reason is that the missing data do not even depend on the observed
ones, and there is no way to estimate the missing data only from the observed ones.

In our paper, we propose a framework to solve the parameter learning problem by combining
quantitative data and domain knowledge in the form of qualitative constraints. Two kinds of qual-
itative constraints are defined: range constraints which are applied to individual parameters; and
relationship constraints which are applied to pairs of parameters. For sparse but complete data, we
solve the learning task by reformulating the problem as a constrained ML (CML) problem. For
incomplete data, we introduce the constrained EM (CEM) by adding constraints to the M step, and
iteratively solve the learning problem. In addition, we provide closed form solutions to both CML
and CEM.

1

2 Related Work

We have already discussed that one of the shortcomings of EM algorithms is that it can easily be
trapped in a local maximum when data are MCAR. Till now, there are many different methods
to help EM to escape from the local maximum, such as the information-bottleneck EM algorithm
[4], data perturbing method [5], and AI&M procedure [8]. These methods focus on improving the
machine learning techniques, but ignoring the useful domain knowledge.

Domain knowledge can be classified as quantitative and qualitative knowledge, which describe
the explicit quantification of parameters, and approximate characterizations of parameters respec-
tively. Both kinds of domain knowledge are useful for parameter learning. While the quantitative
knowledge has been widely used in the form of prior probability distributions, qualitative constraints
have not been fully exploited in parameter learning yet.

Wittig et al. [12] present a method to integrate qualitative constraints into two learning al-
gorithms, APN [9] and EM, by adding violation functions as a penalty term to the log likelihood
function. They show that domain knowledge in the form of constraints can improve learning accu-
racy. However, this penalty-based method cannot guarantee to find the global maximum. Besides,
the weights for the penalty functions often need be manually tuned, depending on applications. Al-
tendorf et al. [1] describes a method to incorporate monotonicity constraints into learning algorithm.
It is based on the assumption that the values of the variables can be totally ordered. Additionally, it
also uses the penalty functions, which suffers from the same problem as [12]. Feelders and Van der
Gaag [6] incorporate some simple inequality constraints in the learning process. They assume that
all the variables are binary. The constraints used in the above methods [1, 12, 6] are restrictive, as
each constraint has to involve all parameters in a conditional probability table (CPT).

Campos and Cozman [2] formulate the learning problem as a constrained optimization problem.
However, they do not provide a specific method to solve the optimization problem. Niculescu et
al. [11] also solve the learning problem by optimization techniques. They derive the closed form
solutions with ML estimation for two kinds of constraints: inequalities between sums of parameters
and upper bounds on sum of parameters within a CPT. There are two main limitations of their
method: First, they assume one parameter can and only can have one constraint, and there is no
overlap between parameters of different constraints. Second, their method cannot handle constraints
from different CPTs. We improve their method by deriving the closed form solution for range
constraints, which contain both upper bound and lower bound constraints for the same parameters.
In addition, the relationship constraints defined in our paper can either be within or between CPTs.

3 Problem Definition and Approach

3.1 Basic Parameter Learning Theory

We focus on parameter learning in a Bayesian Networks with all discrete nodes, where the structure
is known in advance. The method can be extended to other graphical models including the IDs. The
notations are defined as follows. Assume a BN with n nodes, θ is the entire vector of parameters,
and θijk denotes one of the parameters. θijk = p(xk

i |paj
i), where i (i = 1, ..., n) ranges over

all the variables in the BN, j (j = 1, ..., qi) ranges over all the possible parent configurations of
node (variable) Xi, and k (k = 1, ..., ri) ranges over all the possible states of Xi. Therefore, xk

i

represents the kth state of node Xi, and paj
i is the jth parent configuration of node X i.

Given a dataset D = {D1, ..., DN}, which consists of samples of the BN nodes, the goal of
parameter learning is to find the most probable values θ̂ for θ that can best explain the dataset D,
which is usually quantified by the log likelihood function log(p(D|θ)), denoted as L D(θ). Assuming
that the examples are drawn independently from the underlying distribution, based on the conditional
independence assumptions in BNs, we have the log likelihood function in Eq.(1), where n ijk is the
count for the case that node i has the state k, with the state configuration j for its parent nodes.

LD(θ) = log
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
nijk

ijk (1)

2

If the dataset D is complete, ML estimation method can be described as a constrained optimiza-
tion problem, i.e. maximize (Eq.(2)), subject to n equality constrains (Eq.(3)).

Max LD(θ) (2)

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0 (3)

where gij imposes the constraint that each parameter sums to 1 over all its state, 1 ≤ i ≤ n and 1 ≤
j ≤ qi.

If dataset D is incomplete, ML estimation cannot be applied directly. A common method is
standard EM algorithm [3], which starts from some initial point, and then iteratively takes E step
and M step to get a local maximum of the likelihood function. Particularly for discrete nodes,
E step computes the expected counts for all parameters, and M step estimates the parameters by
maximizing log likelihood function, given the counts from E step. EM algorithm can guarantee to
converge to a local maximum. However, depending on different initializations, it may converge to
different local maxima. When there are a large number of missing data, which means there are many
local maxima, EM algorithm can get stuck in a local maximum far away from the global one.

3.2 Qualitative Constraints

We introduce two kinds of qualitative constraints, which can be easily specified by domain experts.
They are range and relationship constraints.

Range constraint defines the upper bound and lower bound of some parameters. Assuming α ijk

and βijk are the upper bound and lower bound for parameter θ ijk , then the range constraints can be
defined as follows:

βijk ≤ θijk ≤ αijk (4)

where 0 < αijk ≤ 1 and 0 ≤ βijk < 1

Relationship constraint defines the relative relationship between a pair of parameters. If both of
the two parameters in a relationship constraint share the same node index i, and parent configuration
j, the constraint is called intra-relationship constraint, which can be represented as follows:

θijk ≤ θijk′ where k �= k′ (5)

If the two parameters in a relative relationship constraint do not satisfy the requirement of an intra-
relationship constraint, the constraint is called inter-relationship constraint. It can be described as
follows:

θijk ≤ θi′j′k′ where i �= i′ or j �= j′ (6)

3.3 Overview of Our Approach

We aim to solve the learning problem by reformulating the problem as a constrained based opti-
mization problem, i.e.,

Max LD(θ) (7)

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0, 1 ≤ i ≤ n, and 1 ≤ j ≤ qi

hp(θ) ≤ 0, 1 ≤ p ≤ S

where hp(x) ≤ 0 denotes the inequality constraints, and S is the total number of inequality con-
straints. Using the Lagrange multipliers λij and µp, the objective function to be maximized can be
incorporated with the constraints, producing the following augmented objective function

f(θ) = LD(θ) −
n∑

i=1

qi∑
j=1

λijgij(θ) −
S∑

k=1

µphp(θ) (8)

Given Eq.(8), for sparse but complete data, we can directly apply the CML method by maxi-
mizing Eq.(8) to estimate the parameters. For incomplete data, we can replace the M step of EM
algorithm by the solution to Eq.(8), and iteratively obtain the estimation of the parameters. In the
section to follow, we introduce our solution to Eq.(8).

3

4 Parameter Learning With Qualitative Constraints

In this section, we derive the closed form solutions for maximizing Eq.(8) under different types
of constraints. Because of the decomposability of the log likelihood function, we can deal with
small independent optimization subproblems on independent parameter sets separately instead of
dealing with all parameters simultaneously. For this, we define two kinds of parameter sets: one is
the baseline set, which contains parameters with the same node and the same parent configuration;
the other is the combined set, which contains several baseline sets. We first separate parameters into
baseline sets, and then if there is a constraint on parameters from different baseline sets, we combine
those baseline sets into one new combined set. This process continues until there is no constraint
on parameters from different sets. After decomposition of parameters, we solve the constrained
optimization subproblems set by set independently.

Specifically, let Q denote a parameter set. Since parameters from one baseline set share the
same node i and the same parent configuration j, we use 〈i, j〉 to denote the index of a baseline
set. A baseline set can be denoted as Q = {〈i, j〉}, while a combined set, which consists of several
baseline sets, can be denoted as Q = {〈i, j〉, 〈i′, j′〉, ...}.

The parameter learning problem can be decomposed into subproblems, one for each set of
parameters. A subproblem can be formulated as follows:

Max lD(θ) = log
∏

〈i,j〉∈Q

∏ri

k=1 θ
nijk

ijk

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0 for 〈i, j〉 ∈ Q

hp(θ) ≤ 0 for 1 ≤ p ≤ SQ (9)

where gij represents an equality constraint, hp represents an inequality constraint, SQ is the number
of inequality constraints in set Q.

Since the log likelihood function is concave, and the qualitative constraints are linear, Karush-
Kuhn-Tucker (KKT) conditions [10] become sufficient to determine the solution to Eq.(9). The
KKT conditions for the problem described in Eq.(9) are:

∇θ[lD(θ) −
∑

〈i,j〉∈Q

λijgij(θ) −
SQ∑
p=1

µphp(θ)] = 0, (10)

gij(θ) = 0, for 〈i, j〉 ∈ Q
hp(θ) ≤ 0, for 1 ≤ p ≤ SQ

µp ≥ 0, for 1 ≤ p ≤ SQ

µp ∗ hp(θ) = 0, for 1 ≤ p ≤ SQ

(11)

In optimization, an inequality constraint hp ≤ 0 is active if hp = 0, or inactive if hp < 0. Based on
this definition, we will derive closed form solutions for each type of constraints.

4.1 Range Constraints

Since range constraints (Eq.(4)) are applied to every individual parameters, we can solve the sub-
problems with range constraints within baseline sets. There are two constraints for each parameter
θijk in a baseline set Q = {〈i, j〉}: hα

k (θ) = θijk − αijk ≤ 0 (upper bound constraint), and
hβ

k (θ) = βijk − θijk ≤ 0 (lower bound constraint).

As the objective function is concave and the range constraints are linear, the maximum solution
either lies inside the feasible region defined by all constraints, when no constraint is active, or on
the boundary defined by the active constrains, when some of the constraints are active. Assuming
Kβ

Q and Kα
Q are the sets of active constraints for lower bound and upper bound of parameters in Q

respectively, and KQ = Kβ
Q ∪ Kα

Q represents the set for all active constraints of parameters in Q,
then the closed form solution for θijk is as follows:

θijk =




βijk if k ∈ Kβ
Q

αijk if k ∈ Kα
Q

(1 −
∑

k∈Kβ
Q

βijk −
∑

k∈Kα
Q

αijk)
nijk∑

k/∈KQ
nijk

otherwise
(12)

4

Table 1: Search algorithm for finding active range constraints
Step 1: Check the consistency of the range constraints:

0 < αijk ≤ 1, 0 ≤ βijk < 1, αijk > βijk ,∑ri

k=1 βijk ≤ 1, and
∑ri

k=1 αijk ≥ 1 for 1 ≤ k ≤
ri. If satisfied, continue; else change constraints.

Step 2: If
∑ri

k=1 αijk = 1, all the upper bound constraints
should be active; else if

∑ri

k=1 βijk = 1, all the
lower bound constraints should be active. Else,
continue.

Step 3: Perform the ML estimation of parameters without
constraints. Check the constraints with the esti-
mated parameters θ∗

ijk = nijk

Nij
. If no constraint

is violated, then there is no active range constraint.
Else, continue.

Step 4: List all possible combinations of active constraints,
and remove the combination if it contains more
than ri − 1 active constraints or

∑
k∈Kβ

Q
βijk +∑

k∈Kα
Q

αijk ≥ 1.

Step 5: For each of the remaining combination, compute
λij , until finding a λij satisfying the criteria in
Eq.(13).

The derivation is as follows. From the first equation of KKT conditions (Eq.(11)), we obtain
θijk = nijk

λij−µα
k
+µβ

k

. Because θijk cannot be greater than αijk and less than βijk at the same time, at

most one of the upper bound constraint hα
k and lower bound constraint hβ

k for a parameter θijk can
be active at a time. Based on whether there is an active constraint for θ ijk , two cases are considered.

• Case 1: If one of the upper bound and lower bound constraints is active, then θ ijk = αijk ,
when hα

k (θ) = 0; and θijk = βijk , when hβ
k (θ) = 0.

• Case 2: If range constraints are not active, then hα
k (θ) < 0, hβ

k(θ) < 0 and µα
k = µβ

k = 0.
Hence θijk = nijk

λij
. Summing up over all parameters whose constraints are not active,

we get: (1 −
∑

k∈Kβ
Q

βijk −
∑

k∈Kα
Q

αijk) =
∑

k/∈KQ
θijk =

∑
k/∈KQ

nijk

λij
. Thus,

we can obtain λij =

∑
k/∈KQ

nijk

1−
∑

k∈K
β
Q

βijk−
∑

k∈Kα
Q

αijk
, and θijk = (1 −

∑
k∈Kβ

Q
βijk −∑

k∈Kα
Q

αijk) nijk∑
k/∈KQ

nijk
, as shown in Eq.(12).

In this way, we derive the closed form solution for range constraints. To obtain solution in Eq.(12),
we need to identify active constraints. Table 1 summarizes the algorithm to find active range con-
straints. The main idea of this algorithm is to search for the active constraints using the criteria in
Eq.(13). Due to the page limit, we do not provide the proof for this equation.


λij ≤ nijk

αijk
k ∈ Kα

Q

λij ≥ nijk

βijk
k ∈ Kβ

Q

λij ≥ nijk

αijk
, λij ≤ nijk

βijk
otherwise

(13)

4.2 Intra-Relationship Constraints

An Intra-relationship constraint defines the relationship between two parameters within one baseline
set. Assuming parameters within one baseline set Q = {〈i, j〉} are θij1, ...θijri , which can be
partitioned into Q = A ∪ B ∪ C, where A = {ap|p = 1, 2, ..., SQ}, B = {bp|p = 1, 2, ..., SQ},

5

such that hp(θ) = θijap − θijbp ≤ 0, for 1 ≤ p ≤ SQ, and C is the set of parameters without
intra-relationship constraints, the closed form solution for parameter θ ijkis as follows:

θijk =

{
nijap +nijbp

2Nij
if k = ap or bp and nijap ≥ nijbp

nijk

Nij
Otherwise

(14)

where Nij =
∑ri

k=1 nijk . The derivation is similar to the one in Niculescu et al. [11].

4.3 Inter-Relationship Constraints

An Inter-relationship constraint defines the constraint applied on two parameters θ i′j′a and θi′′j′′b
from different baseline sets QA and QB , thus the subproblem for parameters with an inter-
relationship constraint is applied on a combined parameter set Q = QA ∪ QB , where baseline
set QA = {〈i′, j′〉} and baseline set QB = {〈i′′, j′′〉}, such that h(θ) = θi′j′a − θi′′j′′b ≤ 0. Let
NA =

∑
〈i,j〉∈QA

nijk , NB =
∑

〈i,j〉∈QB
nijk , na = ni′j′a, and nb = ni′j′b. The closed form

solution for parameters with inter-relationship constraint is as follows. If n aNB − NAnb ≥ 0

θijk =




na+nb

NA+NB
ijk = i′j′a or i′′j′′b

(1 − na+nb

NA+NB
) nijk

NA−na
〈i, j〉 ∈ QA and k �= a

(1 − na+nb

NA+NB
) nijk

NB−nb
〈i, j〉 ∈ QB and k �= b

(15)

Else

θijk =
{ nijk

NA
〈i, j〉 ∈ QA

nijk

NB
〈i, j〉 ∈ QB

(16)

The brief derivation of the solution is as follows. The KKT conditions are:

∇θ[lD(θ) − λAgA(θ) − λBgB(θ) − µh(θ)] = 0 (17)

gA(θ) = 0 gB(θ) = 0
h(θ) ≤ 0 µ ≥ 0 µ ∗ h(θ) = 0 (18)

From the first equation of KKT conditions (Eq.(18)), we can obtain:

θijk =




nijk

λA+µ ijk = i′j′a
nijk

λB−µ ijk = i′′j′′b
nijk

λA
〈i, j〉 ∈ QA and k �= a

nijk

λB
〈i, j〉 ∈ QB and k �= b

(19)

Two cases are considered, depending on whether the inter-relationship constraint is active or not:

• Case 1:h(θ) = 0 and µ ≥ 0
We can solve λA, λB , and µ with the following equations:


na

λA+µ = nb

λB−µ = na+nb

λA+λB
na

λA+µ + NA−na

λA
= 1

nb

λB−µ + NB−nb

λB
= 1

(20)

The first equation is h(θ) = 0, the second and the third are from gA(θ) = 0, and gB(θ) =
0. Also, from µ ≥ 0, we can get naNB − NAnb ≥ 0. In this way, we obtain the first part
of closed form solution (Eq.(16)).

• Case 2: h(θ) < 0 and µ = 0
It is equivalent to the case that no inequality constraints are applied. From gA(θ) = 0, we
can get λA =

∑
〈i,j〉∈QA

nijk = NA. Similarly, we can get λB = NB. Plug them into
Eq.(18), we can obtain the second part of closed form solution(Eq.(16)). From h(θ) < 0,
we get naNB − NAnb < 0.

6

5 Evaluation with Synthetic Data

In order to test the performance of our method against ML estimation and the standard EM algorithm
given sparse data and incomplete data respectively, we test the algorithms on multiple BNs with the
same number of nodes of 20, but different randomly generated initial parameters and structures. For
one specific BN structure, 11 BNs with different initializations of parameters are generated. One of
them is treated as the ground truth, and 10 others as different initializations for parameter learning.
For the case of sparse data, 700 samples are generated from the ground truth BN, 200 for testing data
and the remaining 500 for training. For the case of incomplete data, 400 samples are drawn from the
ground truth BN, half for training, half for testing, and all training data associated with hidden nodes
are removed. To produce the needed constraints, for the case of sparse data, we randomly choose
a subset of parameters from all parameters, and impose constraints on the selected parameters. For
the case of incomplete data, we randomly choose parameters from only parameters for the hidden
nodes, and impose constraints on them. The number of constraints in a CPT is no more than 2. For
performance characterization, the Kullback-Leibler (K-L) divergence is used, which measures the
distance between the learned parameters and the ground truth.

With complete but sparse data, we compare the learning performance of ML estimation with
our method with range constraints, intra-relationship constraints and inter-relationship constraints
respectively, as shown in Figure 1. We can see that CML is better than ML estimation in both
mean and standard deviation of KL-divergence. More specifically, the mean K-L divergence for ML
estimation is 0.2087, which decreases to 0.0786 for CML with range constraints, 0.1763 for CML
with intra-relationship constraints, and 0.1546 for CML with inter-relationship constraints.

2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Node Index

K
L−

di
ve

rg
en

ce

Range Constraints

ML
CML

2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Node Index

K
L−

di
ve

rg
en

ce

Intra Relationship Constraints

ML
CML

2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Node Index

K
L−

di
ve

rg
en

ce

Inter Relationship Constraints

ML
CML

(a.1) (b.1) (c.1)

Figure 1: Sparse Data Learning Results Comparisons w.r.t K-L divergence: ML estimation vs. CML.
(a) range constraints; (b) intra-relationship constraints; (c) inter-relationship constraints.

With incomplete data, we compare the learning performance of our method with standard EM
method as shown in Figure 2. The average K-L divergence of hidden nodes decreases from 0.6437
for EM to 0.2361 for CEM with range constraints, 0.3830 for CEM with intra-relationship con-
straints, and 0.4864 for CEM with inter-relationship constraints. The improvements are especially
significant for the hidden nodes (nodes 13 to 20).

5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

Node Index

KL
−d

iv
er

ge
nc

e

Range Constraints

EM
CEM

5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

Node Index

KL
−d

iv
er

ge
nc

e

Intra Relationship Constraints

EM
CEM

5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

Node Index

KL
−d

iv
er

ge
nc

e

Inter Relationship Constraints

EM
CEM

(a.1) (b.1) (c.1)

Figure 2: Incomplete Data Learning Results Comparisons using w.r.t K-L divergence: EM vs. CEM.
(a) range constraints; (b) intra-relationship constraints; (c) inter-relationship constraints.

7

6 Conclusion

Qualitative domain knowledge generally exists in applications. We define two types of constraints
to represent the qualitative domain knowledge, and derive closed form solution for the maximum
likelihood parameter estimator with the two types of constraints respectively. For the case of sparse
data, we directly apply our constrained maximum likelihood estimator, while for incomplete data,
we extend EM method by replacing M step with our constrained maximum likelihood estimator. The
experimental results from synthetic data demonstrate that our method can fully exploit the domain
knowledge to improve parameter learning accuracy.

References

[1] Eric E. Altendorf, Angelo C. Restificar, and Thomas G. Dietterich. Learning from sparse data
by exploiting monotonicity constraints. In UAI, pages 18–26, 2005.

[2] Cassio Polpo de Campos and Fabio Gagliardi Cozman. Belief updating and learning in semi-
qualitative probabilistic networks. UAI, 2005.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the em algorithm. The Royal Statistical Society Series B, 39:1–38, 1977.

[4] G. Elidan and N. Friedman. The information bottleneck em algorithm. UAI, pages 200–209,
2003.

[5] G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans. Data perturbation for escaping local
maxima in learning. AAAI, pages 132–139, 2002.

[6] Ad Feelders and Linda van der Gaag. Learning bayesian network parameters under order
constraints. International Journal of Approximate Reasoning, pages 37–53, 2006.

[7] David Heckerman. A tutorial on learning with bayesian networks. M. Jordan, editor, learning
in Graphic Models. MIT Press, Cambridge, MA, 1999.

[8] M. Jaeger. The ai&m procedure for learning from incomplete data. UAI, pages 225–232, 2006.

[9] J.Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden
variables. Machine Learning, pages 213–244, 1997.

[10] H. W. Kuhn and A. W. Tucker. Nonlinear programming. Proc. of the second Berkeley Sympo-
sium on Mathematical Statistics and Probability, pages 481–492.

[11] Radu Stefan Niculescu, Tom M. Mitchell, and R. Bharat Rao. A theoretical framework for
learning bayesian networks with parameter inequality constraints. IJCAI, 2007.

[12] F. Wittig and A. Jameson. Exploiting qualitative knowledge in the learning of conditional
probabilities of bayesian networks. UAI, pages 644–652, 2000.

8

Modeling and Evaluating EBO-based
Miltiary Planning using the Influence

Diagram

Qiang Ji
Department of Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
jiq@rpi.edu

ARO Technical Report 2007-01
Intelligent Systems Laboratory

Dept. of Electrical, Computer, and Systems Eng.
Rensselaer Polytechnic Institute

August, 2007

Abstract

This report summarizes the preliminary work we have done to
evaluate the effectivness of modeling and evaluating an EBO-based
military planning using the Influence Diagram (ID). It includes con-
struction of an ID model, its parameterization, and evaluation of the
model using different action-selection strategies.

1 Introduction

A military plan includes various military actions, the effects of these actions,
as well as sensory observations that assess the effectiveness of the actions.
In addition, a miliary plan also includes its goal as well as subgoals that are
needed to achieve the goal. For effects-based military planning, we need a
model that can model different factors, their uncertainties, and their depen-
dencies. In addition, the model should have a mechanism that can propagate
the action effects, their uncertainties, and their dynamics. To meet these
requirements, a probabilistic framework based on the dynamic Influence Di-
agram (DID) is used.

An Influence Diagram(ID) is a directed acyclic graph which consists of
random nodes, decision nodes, and the value (utility) nodes. Here, the sen-
sors and the actions are represented by the decision nodes. The action effects,
the goal and subgoals, and the observations are represented by the random
nodes. The utility of a sensor or an action is represented by the utility nodes.
Figure 1 shows a generic ID for EBO-based planing modeling. Figure 2 shows
the application of the model to a specific military planning problem.

2 Model Description

2.1 Structure of the Model

Figure 3 shows an example ID structure for a generic military planning prob-
lem. The planning problem consists of 4 military actions, a goal, and several
subgoals. In total, there are 33 nodes in this ID, and all the random nodes
and decision nodes are binary. Specifically, circular nodes represent the ran-
dom variables, rectangular nodes are the decision variables, and the diamond
nodes are the utility variables. G node depicts the goal of the military plan

2

Figure 1: A generic influence diagram for EBO modeling

to achieve. G0 node is the goal node in the last time slice. SG and SSG rep-
resent the sub-goal and sub-subgoal that are needed to achieve the goal. The
action effects are represented by the E nodes. The A nodes represents the
military actions, the sensing operations that assess the miliary action effects
are represented by the S nodes. The sensory observations resulted from the
sensing operations are represented by the O nodes. Finally, the diamond U
nodes represent the action utilities.

2.2 Parameters of the Model

Given the topology of the model, the next task it to parameterize the model.
Model parametrization requires to specify the conditional probabilities of
each node given each configuration of its parents. Model parametrization

3

Figure 2: An example DID for EBO-based military plan modeling and as-
sessment, where the circular nodes at the bottom represent various actions
and the rectangular nodes the action effects.

can be done automatically through a learning method or manually by a
domain expert. Here, we manually set the parameters.

Specifically, Table 1 summarizes the conditional probability tables (CPTs)
of the model shown in Fig. 3. Table 1 (a) provides the CPTs for the effect
nodes E, table 1 (b) provides the CPTs for the observation nodes O, and
table 1 (c) consists of the CPTs for the goal node. Each node has two val-
ues, with 1 being false and 2 being true. In addition, a random number r
between -0.05 and 0.05 is added to the probabilities to vary the effects of
different actions.

We also need specify the parameters for the utility nodes. Table 2 shows
the utility functions associated with the action and sensor nodes. The utility

4

E4
E1E1E1

SG1

O1 O2 O3
O4

SSG1 SSG2 SSG3
SSG4

G0

SG2

G

A1 A4A3A2

UA1 UA4UA3UA2

UG

S1 S4S3S2

US1 US4US3US2

Figure 3: A Dynamic Influence Diagram model for a generic military plan-
ning.

of a military action is measured by its contribution to achieving the military
goal or subgoal while the utility of a sensing action is measured by the tradeoff
between its cost and its contribution to understanding the effect of an action.
These utility values vary from action to action and they also vary over time.
For this study, their values are randomly assigned.

The parameters of all the nodes are assigned based on the following heuris-
tic rules:

1. If there is no action, then there is no effect. Thus, when an A node
equals to false, the probability of the corresponding E node being True
is zero.

2. We assume that the sensors can effectively detect the effect of an action,

5

which means that if there is an effect, the probability of observation
being true is 0.7.

3. With the accomplishment of both subgoals, the chance of goal node
equals to true is also high. On the other hand, if either of the subgoals
is achieved, the chance of goal node being true is low. As the two sub-
goals may be of different importance in accomplishing the goal, the
probability of goal given each subgoal is, therefore, different.

4. After every time slice, the probability of the goal node at next time
slice will be initialized as the value of G0 node. At the initial time
slice, the probability of G0 node being true is 0.5.

3 Model Evaluation

Figure 4 provides the flowchart that we use to evaluate the model. Basically,
the process repeats like this. At first, we initialize the prior probability of
goal attainment to be 0.5, and then begin to iteratively choose the best plan
until the probability of achieving the goal is high enough or the net expected
utility of the selected plan is too low. The two thresholds can be set according
to the real conditions.

During each iteration, if the probability of achieving the goal is below a
threshold, we proceed to identify a military plan that can maximally improve
the chance of the goal attainment. Once the plan is identified, the actions
of the plan are executed, and the action effects are propagated. This is
then followed by activating the corresponding sensory operations to assess
the effects the actions. The acquired sensory observations are propagated
through the model to update its joint probabilities. This propagation also
updates the probability of the goal node. The process then repeats. In
summary, the process includes the following steps:

• The first step is to infer probability of goal node to decide whether to
take further actions or to stop.

• If in the first step, we did not stop, we identify the best plan, execute
its constituent actions, and propagate their effects.

6

Table 1: Conditional Probability Tables: (a) effect nodes; (b) observation
nodes; (c) the goal node

P (Ei|Ai)(i = 1, 2, 3, 4) Ei = 1 Ei = 2
Ai = 1 1 0
Ai = 2 1 − P (Ei = 2|Ai = 2) 0.7+r

(a)

P (O|E) O=1 O=2
E=1 0.8 0.2
E=2 0.3 0.7

(b)

P (G = 2|SG1, SG2, G0)
(2,2,2) 0.99
(1,2,1) 0.65
(2,1,2) 0.97
(2,1,1) 0.58
(1,1,2) 0.89
(2,2,1) 0.81
(1,2,2) 0.92
(1,1,1) 0.01

(c)

Table 2: Utility functions: (a)and (b) action utilties with respect to goal; (c)
costs of sensing operations.

U
G=1 0
G=2 10

U(Ai)
Ai = 1(i = 1, 2, 3, 4) 0
Ai = 2(i = 1, 2, 3, 4) rand(0,1)

U(Si)
Si = 1(i = 1, 2, 3, 4) 0
Si = 2(i = 1, 2, 3, 4) rand(0,1)

(a) (b) (c)

7

Input

Output1

Initialize

Estim ate
A Plan (Ac tions)

Y

N

Pro p o g ate
Ob s erv atio n

Effects

Ac quire
Observations

Propogate
Plan Effec ts

T em poral
Propogation

P(G=2)>T1

?

A d d Co s ts to th e
A ctio n s with

Po s itiv e
Ob s erv atio n s

Net Expected
Utility<T2?

N

Y

Figure 4: Flowchart of the algorithm

8

• The third step is to obtain the observations, which provides an assess-
ment of the results of action effects, and to propagate the observations
to update the goal attainment probability.

4 Action Selection Methods

To form a military plan, we need identify its constituent actions. There are
three kinds of criteria, on which actions are selected.

1. Only one action is chosen each time. Two algorithms are implemented
here. Algorithm brute force 1 chooses the best action which maximizes
the net expected utility(i.e.,Eδ(U) in Eq. 1). Algorithm random 1
randomly chooses one action each time.

2. Obtain a plan consisting of a set of actions, that maximizes the net
expected utility without considering action costs. Three algorithms
are implemented here: brute force, greedy, and random selection.

3. Obtain a plan to maximize the net expected utility while the cost of the
plan is under a given budget limit. Three algorithms are implemented
here: brute force, simple selection, and the random selection. All are
subject to an upper budget limit.

The expected utility of a plan is defined as

Eδ = Eδ(U) − Σn
i=1U(Ai) (1)

where the first item represents the net expected utility (Eq. 2) of the plan
δ, which consists of a series of actions. The second item is the cost of the
plan, which consists of costs of all the actions involved in the plan. n is the
number of actions that can be chosen in a plan.

Eδ(U) =
2∑

i=1

P (G = i|δ) ∗ U(G = i) (2)

4.1 One Action for Each Plan

4.1.1 Brute Force 1

Brute force 1 finds the best action based on the net expected utility. Table
3 summarizes the algorithm.

9

Table 3: Brute Force Action Selection Method

Step 1: List all the candidate actions.
Step 2: Compute the net expected utility for each action.
Step 3: Find the best action which maximizes Eδ(U).

4.1.2 Random 1

Random 1 randomly selects an action from the candidate actions every time.

4.2 Multiple Actions for Each Plan: No Cost

4.2.1 Brute Force

Brute force can find the optimal plan with the largest net expected utility.
There is no limit on the number of actions in a plan. The algorithm is
described in Table 4.

Table 4: Brute Force Action Selection Method

Step 1: List all the possible plans (combinations of actions).
Step 2: Compute the net expected utility for each combination.
Step 3: Find the best plan which maximizes Eδ(U)

4.2.2 Multiple Actions for Each Plan: Greedy Method

For a large model with many action nodes, it will take much time to find the
global optimal plan using a brute force method. Greedy method, which costs
less time, is an alternative to brute force method to find a local optimal plan
efficiently. Table 5 summarizes the greedy action selection algorithm.

10

Table 5: Greedy Action Selection Method

Step 1: Compute the net expected utility for each solo action.
Step 2: Find the best action which maximizes the net expected utility, and add

it to a plan.
Step 3: Find an action in the remaining actions which can maximize the net

expected utility, when combined with the chosen actions as a new plan
Step 4: This process repeats until the net expected utility of the plan peaks.

4.2.3 Multiple Actions for Each Plan: Random Selection

To compare with the brute force and the greedy method, we also implement
the random selection method. For the random selection method, we confine
the maximum number of actions selected by the random algorithm to the
maximum number of actions selected by the brute force algorithm. Table 6
summarizes the process of random selection.

Table 6: Random Action Selection Method

Step 1: Identify the number of actions selected by the bruce force method.
Step 2: Randomly choose the same number of actions to form a plan.

4.3 Multiple Actions for Each Plan with a Budget limit

4.3.1 Brute Force with a budget limit

Brute force with a budge limit, which is described in Table 7, finds a plan to
maximize the net expected utility subject to a budget limit.

4.3.2 Simple Method with a budget limit

Simple method with a budget limit simply chooses the first several actions
whose total cost is under the given budget limit. The algorithm is summa-

11

Table 7: Brute Force Action Selection Method

Step 1: List all the possible plans (combinations of actions).
Step 2: Compute the cost of all the plans respectively. If the cost of a plan is

beyond the given budget limit, remove it from the possible plans.
Step 2: Compute the net expected utility for the remaining plans respectively.
Step 3: Find the best plan which maximizes the net expected utility.

rized in Table 8.

Table 8: Simple Action Selection Method with a Budget Limit

Step 1: Compute the net expected utility for each solo action, and sort the
actions in descending order.

Step 2: Choose the first several actions whose sum of costs is under the given
budget limit.

4.3.3 Random Selection with a budget limit

Random selection with a budget limit randomly selects a plan whose cost is
under the budget limit. The algorithm is summarized in Table 9.

Table 9: Random Action Selection Method

Step 1: Randomly choose several actions as a plan.
Step 2: Check whether the cost of the plan is beyond the budget limit. If so,

go to step 1. Otherwise terminate the program and output the plan.

12

5 Experiment Results

To test the various action selection methods mentioned above, we conducted
three experiments. All the experiments are based on the model shown in Fig.
3. Since the observation nodes are instantiated randomly, the probability of
goal attainment also varies. Hence, we perform each experiment 20 times to
obtain the average.

5.1 Experiment 1: one action for each plan

In the first experiment, one action is chosen every time. The experiment
results are shown in Fig. 5. Figure 5 (a) is the net expected utility of the
selected plan in each time slice, and (b) is the corresponding probability of
goal attainment. The median of each bar is the mean value, and the height
of the bar is the standard deviation, which is obtained from 20 experimental
results.

The algorithm marked by ‘best1’ is brute force 1 algorithm, which chooses
one best action based on the net expected utility criterion, and the algorithm
marked by ‘random1’ chooses one action randomly. We can see from the
figures that the mean of the net expected utility of brute force 1 is greater
than random 1 in each time slice except for the start point, when they are
equal.

5.2 Experiment 2: Multiple Actions without Cost

In this experiment, we test the algorithm brute force, greedy and random
action selection. The first two algorithms choose actions based on the net
expected utility. The random selection selects actions randomly. We confine
the maximum number of actions selected by the random algorithm to be
the same as the maximum number of actions selected by the brute force
algorithm.

Figure 6 shows the experiment results. Figure 6 (a) is the net expected
utility in each time slice, and (b) is the corresponding probability of goal
attainment. We can see from the figures that the mean net expected utility
of the plan using the brute force and greedy methods is greater than that
of the random method in each time slice except for the starting point, when
they are all the same. The experiment result of brute force is close to that

13

0 2 4 6 8 10
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

time slice

E
xp

ec
te

d
U

til
ity

One action once

best1
random1

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

time slice

P
ro

ba
bi

lit
y

of
 W

in

One action once

best1
random1
threshold

(a) (b)

Figure 5: Experiment 1 Results: (a) Expected utility of the selected plan
at each time instant; (b) Probability of goal attainment after executing the
selected plan at each time instant.

14

of greedy algorithm, while in some time slice, it is a little better than the
greedy method. Computationally however, the greedy method is much faster
than the brute force method. Finally, the height of the error bar, which
represents the standard derivation, shows the impact of observation variation
on the experimental results. If the observations are false, it may decrease the
value of a plan, and on the other hand, if they are true, it may increase the
performance of a plan.

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

time slice

E
xp

ec
te

d
U

til
ity

Criterion: Net Expected Utility

bf
gd
rm

0 5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

time slice
P

ro
ba

bi
lit

y
of

 W
in

Criterion: Net Expected Utility

bf
gd
rm
threshold

(a) (b)

Figure 6: Experiment 2 Results: (a) Expected utility of the selected plan,
(b) Probability of goal attainment after executing the selected plan at each
time instant.

5.3 Experiment 3: Multiple Actions with Cost

In this experiment, we test the brute force, simple method and random action
selection methods, all under a budget limit on cost of the selected plan. The
fist two algorithms choose actions to maximize the net expected utility given
a budget limit. The random selection randomly selects a plan under the
given budget limit. Figure 7 shows the experiment results. Similar to the
experiment results above, Figure 7 (a) is the net expected utility of the

15

selected plan for each time slice, and (b) is the corresponding probability of
goal attainment.

To maximize the expected utility, we are to maximize the probability of
goal attainment. We can see from (b) that both simple method and brute
force perform are much better than the random method in goal attainment.
Brute force with a budget limit achieves the threshold most quickly, followed
by the simple method. Random method with a budget limit takes the longest
time to reach the threshold, and sometimes it never achieves it. The simple
method, compared with the brute force method, is computationally much
more efficient.

Table 10 shows the steps taken by the three algorithms respectively in one
experiment. Index is the number of time slice. Index 0 is the initial point.
Actions are the index of actions chosen in the time slice. Observations are
the observation results. 0 means no observation, 1 means false and 2 means
true.

0 2 4 6 8 10
1

2

3

4

5

6

7

8

time slice

E
xp

ec
te

d
U

til
ity

Criterion: Expected Utility with a Budget limit

bf
gd
rm

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

time slice

P
ro

ba
bi

lit
y

of
 W

in

Criterion: Expected Utility with a Budeget limit

bf
gd
rm
threshold

(a) (b)

Figure 7: Experiment 3 Results: (a) Expected utility of the selected plan;
(b) Probability of goal attainment

16

Table 10: Budge limit cases: (a) Brute force method; (b) Simple method; (c)
Random selection method

Index Actions Observations P (G = 2)
0 [] [0 0 0 0] 0.532
1 [1 3 4] [1 0 1 2] 0.805
2 [1 2 3] [2 2 1 0] 0.900

(a)
Index Actions Observations P (G = 2)

0 [] [0 0 0 0] 0.532
1 [1 4 2] [1 2 0 2] 0.8284
2 [1 3] [1 0 1 0] 0.8476
3 [1 3] [1 0 2 0] 0.8826

(b)
Index Actions Observations P (G = 2)

0 [] [0 0 0 0] 0.532
1 [2 3] [0 1 2 0] 0.7505
2 [2 4] [0 2 0 1] 0.8456
3 [4] [0 0 0 2] 0.849
4 [4] [0 0 0 2] 0.8495
5 [2] [0 1 0 0] 0.8315
6 [1] [2 0 0 0] 0.8531

(c)

17

5.4 Conclusion

This preliminary study demonstrates the promise of the influence diagram
for EBO-based miliary modeling and assessment. Specifically, for modeling,
an ID can effectively represent actions, their effects, their relationships, and
their uncertainties. In addition, through belief propagation, action effects
and their uncertainties can be systematically propagated through the model.

For plan assessment, we perform three experiments to evaluate the perfor-
mance of three different action selection strategies in terms of their optimality
and efficiency in action selection. Specifically, in the first two experiments,
net expected utility is used as the criterion, so the experiment results show
that the action selection methods, such as brute force and greedy method,
are better than the random algorithm in net expected utility in each time
slice. But their performance with respect to the goal attainment appear to be
comparable. This needs to be further investigated. In the third experiment,
the net expected utility is used with a budget limit. As the utility function
for the goal never changes over time, the probability of goal attainment is
maximized with the maximization of the expected utility. From the exper-
iment 3 results, we can conclude that that both brute force with a budget
limit and simple method perform better than random selection with a budget
limit, helping achieving the plan goal faster.

While the experiments identify a few issues, the experimental results re-
main preliminary, and further studies and analysis will be needed.

6 Appendix: An efficient method for com-

puting the expected utility

In this section, we try to find a method to improve computational complexity
of the action selection algorithm. Regardless of the action selection method
we use (except for the random method), we need the probability of goal
attainment to compute the expected utility or the net expected utility. In
the action selection methods described above, we need to perform inference
in every time slice to obtain the probability of goal attainment. But if we can
find a more efficient way to compute the probability of goal attainment, we
may decrease the computational complexity of the action selection method.

A general ID for military models is shown in Figure 8. There are n actions

18

and m subgoals in the model. The structure of model inside the dotted lines
can be arbitrary, which means we will not consider the specific number of
nodes or lines in the region.

EnE1E1E1

SG1

O1 O2 O3
On

SSG1 SSG2 SSG3
SSGj

G0

SG2

G

A1 AnA3A2

UA 1 UA nUA 3UA 2

UG

S1 SnS3S2

US1 USnUS3US2

SGm
... ...

... ...

... ...

... ...

Figure 8: A general ID for military plan modeling

As we can see from the general military model above, the only parameter
that changes over time is the probability of goal in last time slice. As the
structure and other parameters remain the same over time, we may factorize
the constant coefficients for the fixed structure so that they only need be
computed once.

Specifically, given the structure described in Figure 8, we can derive the
probability of goal attainment as follows:

19

P (G = 2|A) =
2∑

G0=1

P (G|G0, A)P (G0|A)

=
2∑

G0=1

P (G|G0, A)P (G0)

=
2∑

G0=1

∑
SG

P (G|G0, SG)P (G0)P (SG|A)

= x ∗
∑
SG

P (G|G0 = 2, SG) ∗ P (SG|A)

+ (1 − x) ∗
∑
SG

P (G|G0 = 1, SG) ∗ P (SG|A) (3)

where,

A = {A1, ..., An}
SG = {SG1, ..., SGm}

x = P (G0 = 2)

where A represents all the action variables. SG represents all the subgoals
connected to the goal. n and m are the total number of actions and the
number of subgoals respectively.

Based on the equations above, we can see that the probability of goal
attainment given different actions only depends on x, because other factors
in the equation are constant, which will not change over time. We can only
compute each combination of the constant factor once when we first use
them, and use them again later without recomputing them again. This will
lead to computational saving.

20

A Factorization Approach for E�cient
EBO�based Military Plan Assessment

Qiang Ji� Ph� D
Department of Electrical� Computer� and Systems Engineering

Rensselaer Polytechnic Institute
jiq�rpi�edu

ARO Technical Report �������
Intelligent Systems Laboratory

Dept� of Electrical� Computer� and Systems Eng�
Rensselaer Polytechnic Institute

May� ����

� Introduction

An important issue in e�ects�based operation �EBO	 is evaluation of the e�ects of a military
plan� A military plan consists of a set of selected actions and their execution timings� For
each available action� a planner must decide whether to include it in the plan� In making
these choices� the planner
s objective is to identify a plan that maximizes the probability of
achieving the military objectives while minimizing the associated costs� As the number of
possible plans increases exponentially with the number of actions� determining the optimal
plan via an exhaustive search of the plan space becomes computationally intractable and
practically infeasible� We propose a factorization procedure to signi�cantly reduce the evalu�
ation time for each plan by exploiting the common computations associated with evaluating
each plan� Experimental study of our method shows that it can often reduce the evalua�
tion time by orders of magnitude� In addition� the proposed method o�ers exact solution�
therefore avoiding the convergence problem plaguing the commonly employed approximate
inference methods such as logic sampling�

� Proposed Solution

We model the military planning problem using an In�uence Diagram �ID	 as shown in Figure

� Di�erent from causal model in �
�� an in�uence diagram explicitly includes the action
nodes and the value nodes� The primary military actions are represented by the rectangular
nodes Xi �i � f
� � � � � ng	 while the top node H represents the military goal� Each action
node Xi is associated with a value node Ui� encoding the cost of performing the action� The
cost for an action includes physical cost� collateral damages� political cost� etc�� The goal
node H is also associated with a value node U� encoding the value of goal attainment� In
general� the actions do not in�uence the overall goal directly� instead their consequences
propagate through a set of intermediate subgoals�tasks whose realization lead to the goal
success� In an ID� these subgoals�tasks are represented by the intermediate circular nodes
Y i
j �j � f
� � � � �mig	� which represents the j�th subgoal at level i � The links in an ID specify

three classes of probabilistic relations� the relation between the action nodes and lowest�level
subgoals� the relation among the many subgoals� and the relation between the highest�level
subgoals and the overall goal�

Given such an ID� for each action node Xi� a plan � prescribes an action choice ��Xi	 of
ai or �ai� where ai stands for the selection of action Xi and �ai represents otherwise� Thus�
a plan � can be denoted by � � f��X�	� � � � � ��Xn	g� Let g�Uij��Xi		 and g�U jH	 be the cost
of performing action Xi and the value of goal attainment respectively� then the expected net
utility of executing a plan � is

E� � E��U ��
nX
i��

g�Uij��Xi		� �
	

where the �rst term� E��U � �
P

H P �Hj�	g�U jH	� represents the expected utility of the goal
and the second term is the combined cost of executing the selected actions� The optimal
plan �� is the one that maximizes E� over all plans� i�e��

�For simplicity� we assume that the subgoal nodes are structured in three levels� although our factorization
approach generalizes to arbitrary levels�

�

Y1 Y

Y

Y Y

Y

Y

2

2
1

2
2

1 2 m

...

...

... Y

Y2
m2

1

3

1

3

1

3

XnXn-1X2X1 ...

...U 1
U 2 Un-1

1

3m

H

U

Un

Figure
� A casual in�uence diagram modeling the military planning problem� where squares
are action nodes� circles represent subgoals�tasks and the goal� and diamonds are value nodes�

�� � arg max
�

E� ��	

The brute�force approach requires to evaluate all �n plans for n actions to identify the
optimal plan� In this report� we present an approach that can signi�cantly reduce the
evaluation time for each plan�

� A Factorization Approach to E�cient Plan Evalua�

tion

We propose a factorization procedure that allows to e�ciently evaluate each plan by exploit�
ing the common computations in the network� The method allows a plan to be evaluated
often in orders of magnitude time less than the normal evaluation� Speci�cally� with respect
to the ID in Figure
� E��U � can be computed as

E��U � �
X
H

X
Y �

��m�

X
Y �

��m�

X
Y �

��m�

�m�

j���
P �Y �

j�
j�	�m�

j���
P �Y �

j�
jY �

��m�
	�m�

j���
P �Y �

j�
jY �

��m�
� Y �

j�
	P �HjY �

��m�
	g�U jH	�

where Y i
��mi

denotes fY i
�
� � � � � Y i

mi
g for the nodes at the i�th level�

Exchanging the summing order among variables� we have

E��U � �
P

Y �

��m�

�P
H

P
Y �

��m�

P
Y �

��m�

�m�

j���
P �Y �

j�
jY �

��m�
	�m�

j���
P �Y �

j�
jY �

��m�
� Y �

j�
	P �HjY �

��m�
	g�U jH	

�
h
�m�

j���
P �Y �

j�
j�	
i ��	

Let us de�ne two functions fU and f� corresponding to the terms within the two brackets�

fU �
P

H

P
Y �

��m�

P
Y �

��m�

�m�

j���
P �Y �

j�
jY �

��m�
	�m�

j���
P �Y �

j�
jY �

��m�
� Y �

j�
	P �HjY �

��m�
	g�U jH	

f� � �m�

j���
P �Y �

j�
j�	

��	

�

With these two functions� we rewrite E��U � in Equation ��	 as

E��U � �
X

Y �

�
�����Y �

m�

fUf�� ��	

It can be seen that the function fU is independent of the plan � while the function f� is
dependent on the plan �� In other words� the computations for fU need to be computed
only once but can be used across all plans� These computations can be factored out� The
factorization plan evaluation can be implemented as follows

� Pre�compute the quantities fU for all plans
�� For each plan �

compute f� for each assignment of Y �

��m�

compute E��U � by Equation ��	
�� Return the plan �� that maximizes E��U �

Table
� The factorization approach to ID evaluation

� Experiments

We have conducted experiments to evaluate the performance of the factorization approach�
In our experiments� we use the IDs in Figure
 as the test example� The CPTs are ran�
domly generated� The value functions for value nodes are manually speci�ed� The code is
written in Matlab V��� and runs in a laptop with a ��� GHz CPU under Windows XP� In
our experiments� we compare the factorization approach against the generic brute�forced ap�
proach� For convenience� we refer to them respectively as evalCS �named after Computation
Sharing	 and evalBF �named after Brute�Forced	�

To see how the performance of the algorithms vary with the number of action nodes� we
�x the number of subgoal nodes at each level at four and vary the number of action nodes�
Thus the static ID with n action nodes has additionally
� random nodes and n�
 value
nodes� We ran evalBF and evalCS for seven problems with n � �� �� ����
�� The timing
data are presented in left chart of Figure �� The chart gives the total CPU seconds that the
algorithms took for each of the problems� Note that the vertical axis is drawn in log�scale�
The solid �dashed	 curve is for evalCS�evalBF	� It can be seen that evalCS is considerably
more e�cient than evaBF� For instance� by our collected data� for n � �� to evaluate �
�
plans� evalCS took ���
 seconds while evalBF ������ seconds� for n �
�� to evaluate �
��
plans� evalCS used ����� seconds while evalBF ������� seconds�

� Conclusions and Future Work

In this report� we proposed a factorization approach to signi�cantly reduce the time for the
evaluation of a military plan� Our approach identi�es the common computations used by all

�

3 4 5 6 7 8 9 10 11 12 13 14

10
1

10
2

10
3

10
4

10
5

Number of action variables

T
ot

al
 C

P
U

 ti
m

e
(lo

gs
ca

le
) evalCS

evalBF

1 2 3 4 5 6 7 8 9 10

10
2

10
3

10
4

10
5

Time steps for problem n=9

T
ot

al
 C

P
U

 ti
m

e(
lo

gs
ca

le
) evalCS

evalBF

Figure �� Performance comparison of evalBF and evalCS

plans and factors these computations out so that they only need be computed once� This
has resulted in a signi�cant computational saving� often by several orders of magnitude�
Experimental results validate our method�

Despite these successes� there remains work to do for the factorization procedure� So far�
our method is only applied to static ID� Further investigations� theoretical developments�
and experimental validations are necessary to extend our method to handle dynamic net�
work� network with evidences� and other complex network structures including those highly
non�layered networks and those with utilities attached to the intermediate nodes� In addi�
tion� we need develop the theories for analytically determining the upper and lower bound
performance for a given network� without explicitly evaluating any plan� This allows the
planner to commence plan evaluation to identify the best one only if the upper bound and
lower bound performance exceeds his�her expectation�

References
��� U� Kuter� D� Nau� and J� F� Lemmer� Interactive planning under uncertainty with causal modeling and

abalysis� Technical Report CS�TR������ Department of Computer Science� University of Marryland�
�		��

�

Exploiting Qualitative Constraints for Learning
Bayesian Networks under Insufficient Data

Zheng Xue and Qiang Ji
Rensselaer Polytechnic Institute

Abstract

Graphical models (GMs) such as Bayesian Networks (BN) or the Influence Di-
agrams (ID) are being increasingly applied to many different applications. One
bottleneck in using GMs is that learning the GM model parameters often requires
a relative large amount of training data. However, in real life and for many applica-
tions, training data is often incomplete or sparse, which can cause low learning ac-
curacy. Incorporating domain knowledge can help alleviate this problem. Instead
of using quantitative prior knowledge as used by most of the existing methods,
this paper introduces a novel learning method based on systematically combining
the training data with some qualitative knowledge.

To validate our method, we compare it with the Maximum Likelihood (ML) es-
timation method under sparse data and with the Expectation Maximization (EM)
algorithm under incomplete data respectively. The experimental results show that
our method improves the parameter learning accuracy significantly compared with
both ML and EM algorithms.

1 Introduction

Among all the issues of graphical models, parameter learning is one of the main challenges. Pa-
rameter learning is to estimate the entries of the conditional probability distributions (CPDs) given
the structure of a model. Many learning techniques rely heavily on training data [7]. Ideally, with
sufficient data, it is possible to learn the parameters by standard statistical analysis like maximum
likelihood (ML) estimation. In many real-world cases, however, the data are either incomplete or
sparse, which can cause inaccurate parameter estimation. Data incompleteness is defined as missing
of data for some parameters, while data sparseness means the amount of training data is limited.

When data are incomplete, Expectation-Maximization (EM) [3] algorithm is often used. Most
EM-based methods work under the assumption that data are missing at random (MAR), which means
the missing values can be estimated by the observed ones in some way. However, when data are
missing completely at random (MCAR), e.g data of hidden nodes, the learned parameters could be
far from the ground truth. The reason is that the missing data do not even depend on the observed
ones, and there is no way to estimate the missing data only from the observed ones.

In our paper, we propose a framework to solve the parameter learning problem by combining
quantitative data and domain knowledge in the form of qualitative constraints. Two kinds of qual-
itative constraints are defined: range constraints which are applied to individual parameters; and
relationship constraints which are applied to pairs of parameters. For sparse but complete data, we
solve the learning task by reformulating the problem as a constrained ML (CML) problem. For
incomplete data, we introduce the constrained EM (CEM) by adding constraints to the M step, and
iteratively solve the learning problem. In addition, we provide closed form solutions to both CML
and CEM.

1

2 Related Work

We have already discussed that one of the shortcomings of EM algorithms is that it can easily be
trapped in a local maximum when data are MCAR. Till now, there are many different methods
to help EM to escape from the local maximum, such as the information-bottleneck EM algorithm
[4], data perturbing method [5], and AI&M procedure [8]. These methods focus on improving the
machine learning techniques, but ignoring the useful domain knowledge.

Domain knowledge can be classified as quantitative and qualitative knowledge, which describe
the explicit quantification of parameters, and approximate characterizations of parameters respec-
tively. Both kinds of domain knowledge are useful for parameter learning. While the quantitative
knowledge has been widely used in the form of prior probability distributions, qualitative constraints
have not been fully exploited in parameter learning yet.

Wittig et al. [12] present a method to integrate qualitative constraints into two learning al-
gorithms, APN [9] and EM, by adding violation functions as a penalty term to the log likelihood
function. They show that domain knowledge in the form of constraints can improve learning accu-
racy. However, this penalty-based method cannot guarantee to find the global maximum. Besides,
the weights for the penalty functions often need be manually tuned, depending on applications. Al-
tendorf et al. [1] describes a method to incorporate monotonicity constraints into learning algorithm.
It is based on the assumption that the values of the variables can be totally ordered. Additionally, it
also uses the penalty functions, which suffers from the same problem as [12]. Feelders and Van der
Gaag [6] incorporate some simple inequality constraints in the learning process. They assume that
all the variables are binary. The constraints used in the above methods [1, 12, 6] are restrictive, as
each constraint has to involve all parameters in a conditional probability table (CPT).

Campos and Cozman [2] formulate the learning problem as a constrained optimization problem.
However, they do not provide a specific method to solve the optimization problem. Niculescu et
al. [11] also solve the learning problem by optimization techniques. They derive the closed form
solutions with ML estimation for two kinds of constraints: inequalities between sums of parameters
and upper bounds on sum of parameters within a CPT. There are two main limitations of their
method: First, they assume one parameter can and only can have one constraint, and there is no
overlap between parameters of different constraints. Second, their method cannot handle constraints
from different CPTs. We improve their method by deriving the closed form solution for range
constraints, which contain both upper bound and lower bound constraints for the same parameters.
In addition, the relationship constraints defined in our paper can either be within or between CPTs.

3 Problem Definition and Approach

3.1 Basic Parameter Learning Theory

We focus on parameter learning in a Bayesian Networks with all discrete nodes, where the structure
is known in advance. The method can be extended to other graphical models including the IDs. The
notations are defined as follows. Assume a BN with n nodes, θ is the entire vector of parameters,
and θijk denotes one of the parameters. θijk = p(xk

i |paj
i), where i (i = 1, ..., n) ranges over

all the variables in the BN, j (j = 1, ..., qi) ranges over all the possible parent configurations of
node (variable) Xi, and k (k = 1, ..., ri) ranges over all the possible states of Xi. Therefore, xk

i

represents the kth state of node Xi, and paj
i is the jth parent configuration of node X i.

Given a dataset D = {D1, ..., DN}, which consists of samples of the BN nodes, the goal of
parameter learning is to find the most probable values θ̂ for θ that can best explain the dataset D,
which is usually quantified by the log likelihood function log(p(D|θ)), denoted as L D(θ). Assuming
that the examples are drawn independently from the underlying distribution, based on the conditional
independence assumptions in BNs, we have the log likelihood function in Eq.(1), where n ijk is the
count for the case that node i has the state k, with the state configuration j for its parent nodes.

LD(θ) = log
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
nijk

ijk (1)

2

If the dataset D is complete, ML estimation method can be described as a constrained optimiza-
tion problem, i.e. maximize (Eq.(2)), subject to n equality constrains (Eq.(3)).

Max LD(θ) (2)

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0 (3)

where gij imposes the constraint that each parameter sums to 1 over all its state, 1 ≤ i ≤ n and 1 ≤
j ≤ qi.

If dataset D is incomplete, ML estimation cannot be applied directly. A common method is
standard EM algorithm [3], which starts from some initial point, and then iteratively takes E step
and M step to get a local maximum of the likelihood function. Particularly for discrete nodes,
E step computes the expected counts for all parameters, and M step estimates the parameters by
maximizing log likelihood function, given the counts from E step. EM algorithm can guarantee to
converge to a local maximum. However, depending on different initializations, it may converge to
different local maxima. When there are a large number of missing data, which means there are many
local maxima, EM algorithm can get stuck in a local maximum far away from the global one.

3.2 Qualitative Constraints

We introduce two kinds of qualitative constraints, which can be easily specified by domain experts.
They are range and relationship constraints.

Range constraint defines the upper bound and lower bound of some parameters. Assuming α ijk

and βijk are the upper bound and lower bound for parameter θ ijk , then the range constraints can be
defined as follows:

βijk ≤ θijk ≤ αijk (4)

where 0 < αijk ≤ 1 and 0 ≤ βijk < 1

Relationship constraint defines the relative relationship between a pair of parameters. If both of
the two parameters in a relationship constraint share the same node index i, and parent configuration
j, the constraint is called intra-relationship constraint, which can be represented as follows:

θijk ≤ θijk′ where k �= k′ (5)

If the two parameters in a relative relationship constraint do not satisfy the requirement of an intra-
relationship constraint, the constraint is called inter-relationship constraint. It can be described as
follows:

θijk ≤ θi′j′k′ where i �= i′ or j �= j′ (6)

3.3 Overview of Our Approach

We aim to solve the learning problem by reformulating the problem as a constrained based opti-
mization problem, i.e.,

Max LD(θ) (7)

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0, 1 ≤ i ≤ n, and 1 ≤ j ≤ qi

hp(θ) ≤ 0, 1 ≤ p ≤ S

where hp(x) ≤ 0 denotes the inequality constraints, and S is the total number of inequality con-
straints. Using the Lagrange multipliers λij and µp, the objective function to be maximized can be
incorporated with the constraints, producing the following augmented objective function

f(θ) = LD(θ) −
n∑

i=1

qi∑
j=1

λijgij(θ) −
S∑

k=1

µphp(θ) (8)

Given Eq.(8), for sparse but complete data, we can directly apply the CML method by maxi-
mizing Eq.(8) to estimate the parameters. For incomplete data, we can replace the M step of EM
algorithm by the solution to Eq.(8), and iteratively obtain the estimation of the parameters. In the
section to follow, we introduce our solution to Eq.(8).

3

4 Parameter Learning With Qualitative Constraints

In this section, we derive the closed form solutions for maximizing Eq.(8) under different types
of constraints. Because of the decomposability of the log likelihood function, we can deal with
small independent optimization subproblems on independent parameter sets separately instead of
dealing with all parameters simultaneously. For this, we define two kinds of parameter sets: one is
the baseline set, which contains parameters with the same node and the same parent configuration;
the other is the combined set, which contains several baseline sets. We first separate parameters into
baseline sets, and then if there is a constraint on parameters from different baseline sets, we combine
those baseline sets into one new combined set. This process continues until there is no constraint
on parameters from different sets. After decomposition of parameters, we solve the constrained
optimization subproblems set by set independently.

Specifically, let Q denote a parameter set. Since parameters from one baseline set share the
same node i and the same parent configuration j, we use 〈i, j〉 to denote the index of a baseline
set. A baseline set can be denoted as Q = {〈i, j〉}, while a combined set, which consists of several
baseline sets, can be denoted as Q = {〈i, j〉, 〈i′, j′〉, ...}.

The parameter learning problem can be decomposed into subproblems, one for each set of
parameters. A subproblem can be formulated as follows:

Max lD(θ) = log
∏

〈i,j〉∈Q

∏ri

k=1 θ
nijk

ijk

S.T. gij(θ) =
∑ri

k=1 θijk − 1 = 0 for 〈i, j〉 ∈ Q

hp(θ) ≤ 0 for 1 ≤ p ≤ SQ (9)

where gij represents an equality constraint, hp represents an inequality constraint, SQ is the number
of inequality constraints in set Q.

Since the log likelihood function is concave, and the qualitative constraints are linear, Karush-
Kuhn-Tucker (KKT) conditions [10] become sufficient to determine the solution to Eq.(9). The
KKT conditions for the problem described in Eq.(9) are:

∇θ[lD(θ) −
∑

〈i,j〉∈Q

λijgij(θ) −
SQ∑
p=1

µphp(θ)] = 0, (10)

gij(θ) = 0, for 〈i, j〉 ∈ Q
hp(θ) ≤ 0, for 1 ≤ p ≤ SQ

µp ≥ 0, for 1 ≤ p ≤ SQ

µp ∗ hp(θ) = 0, for 1 ≤ p ≤ SQ

(11)

In optimization, an inequality constraint hp ≤ 0 is active if hp = 0, or inactive if hp < 0. Based on
this definition, we will derive closed form solutions for each type of constraints.

4.1 Range Constraints

Since range constraints (Eq.(4)) are applied to every individual parameters, we can solve the sub-
problems with range constraints within baseline sets. There are two constraints for each parameter
θijk in a baseline set Q = {〈i, j〉}: hα

k (θ) = θijk − αijk ≤ 0 (upper bound constraint), and
hβ

k (θ) = βijk − θijk ≤ 0 (lower bound constraint).

As the objective function is concave and the range constraints are linear, the maximum solution
either lies inside the feasible region defined by all constraints, when no constraint is active, or on
the boundary defined by the active constrains, when some of the constraints are active. Assuming
Kβ

Q and Kα
Q are the sets of active constraints for lower bound and upper bound of parameters in Q

respectively, and KQ = Kβ
Q ∪ Kα

Q represents the set for all active constraints of parameters in Q,
then the closed form solution for θijk is as follows:

θijk =




βijk if k ∈ Kβ
Q

αijk if k ∈ Kα
Q

(1 −
∑

k∈Kβ
Q

βijk −
∑

k∈Kα
Q

αijk)
nijk∑

k/∈KQ
nijk

otherwise
(12)

4

Table 1: Search algorithm for finding active range constraints
Step 1: Check the consistency of the range constraints:

0 < αijk ≤ 1, 0 ≤ βijk < 1, αijk > βijk ,∑ri

k=1 βijk ≤ 1, and
∑ri

k=1 αijk ≥ 1 for 1 ≤ k ≤
ri. If satisfied, continue; else change constraints.

Step 2: If
∑ri

k=1 αijk = 1, all the upper bound constraints
should be active; else if

∑ri

k=1 βijk = 1, all the
lower bound constraints should be active. Else,
continue.

Step 3: Perform the ML estimation of parameters without
constraints. Check the constraints with the esti-
mated parameters θ∗

ijk = nijk

Nij
. If no constraint

is violated, then there is no active range constraint.
Else, continue.

Step 4: List all possible combinations of active constraints,
and remove the combination if it contains more
than ri − 1 active constraints or

∑
k∈Kβ

Q
βijk +∑

k∈Kα
Q

αijk ≥ 1.

Step 5: For each of the remaining combination, compute
λij , until finding a λij satisfying the criteria in
Eq.(13).

The derivation is as follows. From the first equation of KKT conditions (Eq.(11)), we obtain
θijk = nijk

λij−µα
k
+µβ

k

. Because θijk cannot be greater than αijk and less than βijk at the same time, at

most one of the upper bound constraint hα
k and lower bound constraint hβ

k for a parameter θijk can
be active at a time. Based on whether there is an active constraint for θ ijk , two cases are considered.

• Case 1: If one of the upper bound and lower bound constraints is active, then θ ijk = αijk ,
when hα

k (θ) = 0; and θijk = βijk , when hβ
k (θ) = 0.

• Case 2: If range constraints are not active, then hα
k (θ) < 0, hβ

k(θ) < 0 and µα
k = µβ

k = 0.
Hence θijk = nijk

λij
. Summing up over all parameters whose constraints are not active,

we get: (1 −
∑

k∈Kβ
Q

βijk −
∑

k∈Kα
Q

αijk) =
∑

k/∈KQ
θijk =

∑
k/∈KQ

nijk

λij
. Thus,

we can obtain λij =

∑
k/∈KQ

nijk

1−
∑

k∈K
β
Q

βijk−
∑

k∈Kα
Q

αijk
, and θijk = (1 −

∑
k∈Kβ

Q
βijk −∑

k∈Kα
Q

αijk) nijk∑
k/∈KQ

nijk
, as shown in Eq.(12).

In this way, we derive the closed form solution for range constraints. To obtain solution in Eq.(12),
we need to identify active constraints. Table 1 summarizes the algorithm to find active range con-
straints. The main idea of this algorithm is to search for the active constraints using the criteria in
Eq.(13). Due to the page limit, we do not provide the proof for this equation.


λij ≤ nijk

αijk
k ∈ Kα

Q

λij ≥ nijk

βijk
k ∈ Kβ

Q

λij ≥ nijk

αijk
, λij ≤ nijk

βijk
otherwise

(13)

4.2 Intra-Relationship Constraints

An Intra-relationship constraint defines the relationship between two parameters within one baseline
set. Assuming parameters within one baseline set Q = {〈i, j〉} are θij1, ...θijri , which can be
partitioned into Q = A ∪ B ∪ C, where A = {ap|p = 1, 2, ..., SQ}, B = {bp|p = 1, 2, ..., SQ},

5

such that hp(θ) = θijap − θijbp ≤ 0, for 1 ≤ p ≤ SQ, and C is the set of parameters without
intra-relationship constraints, the closed form solution for parameter θ ijkis as follows:

θijk =

{
nijap +nijbp

2Nij
if k = ap or bp and nijap ≥ nijbp

nijk

Nij
Otherwise

(14)

where Nij =
∑ri

k=1 nijk . The derivation is similar to the one in Niculescu et al. [11].

4.3 Inter-Relationship Constraints

An Inter-relationship constraint defines the constraint applied on two parameters θ i′j′a and θi′′j′′b
from different baseline sets QA and QB , thus the subproblem for parameters with an inter-
relationship constraint is applied on a combined parameter set Q = QA ∪ QB , where baseline
set QA = {〈i′, j′〉} and baseline set QB = {〈i′′, j′′〉}, such that h(θ) = θi′j′a − θi′′j′′b ≤ 0. Let
NA =

∑
〈i,j〉∈QA

nijk , NB =
∑

〈i,j〉∈QB
nijk , na = ni′j′a, and nb = ni′j′b. The closed form

solution for parameters with inter-relationship constraint is as follows. If n aNB − NAnb ≥ 0

θijk =




na+nb

NA+NB
ijk = i′j′a or i′′j′′b

(1 − na+nb

NA+NB
) nijk

NA−na
〈i, j〉 ∈ QA and k �= a

(1 − na+nb

NA+NB
) nijk

NB−nb
〈i, j〉 ∈ QB and k �= b

(15)

Else

θijk =
{ nijk

NA
〈i, j〉 ∈ QA

nijk

NB
〈i, j〉 ∈ QB

(16)

The brief derivation of the solution is as follows. The KKT conditions are:

∇θ[lD(θ) − λAgA(θ) − λBgB(θ) − µh(θ)] = 0 (17)

gA(θ) = 0 gB(θ) = 0
h(θ) ≤ 0 µ ≥ 0 µ ∗ h(θ) = 0 (18)

From the first equation of KKT conditions (Eq.(18)), we can obtain:

θijk =




nijk

λA+µ ijk = i′j′a
nijk

λB−µ ijk = i′′j′′b
nijk

λA
〈i, j〉 ∈ QA and k �= a

nijk

λB
〈i, j〉 ∈ QB and k �= b

(19)

Two cases are considered, depending on whether the inter-relationship constraint is active or not:

• Case 1:h(θ) = 0 and µ ≥ 0
We can solve λA, λB , and µ with the following equations:


na

λA+µ = nb

λB−µ = na+nb

λA+λB
na

λA+µ + NA−na

λA
= 1

nb

λB−µ + NB−nb

λB
= 1

(20)

The first equation is h(θ) = 0, the second and the third are from gA(θ) = 0, and gB(θ) =
0. Also, from µ ≥ 0, we can get naNB − NAnb ≥ 0. In this way, we obtain the first part
of closed form solution (Eq.(16)).

• Case 2: h(θ) < 0 and µ = 0
It is equivalent to the case that no inequality constraints are applied. From gA(θ) = 0, we
can get λA =

∑
〈i,j〉∈QA

nijk = NA. Similarly, we can get λB = NB. Plug them into
Eq.(18), we can obtain the second part of closed form solution(Eq.(16)). From h(θ) < 0,
we get naNB − NAnb < 0.

6

5 Evaluation with Synthetic Data

In order to test the performance of our method against ML estimation and the standard EM algorithm
given sparse data and incomplete data respectively, we test the algorithms on multiple BNs with the
same number of nodes of 20, but different randomly generated initial parameters and structures. For
one specific BN structure, 11 BNs with different initializations of parameters are generated. One of
them is treated as the ground truth, and 10 others as different initializations for parameter learning.
For the case of sparse data, 700 samples are generated from the ground truth BN, 200 for testing data
and the remaining 500 for training. For the case of incomplete data, 400 samples are drawn from the
ground truth BN, half for training, half for testing, and all training data associated with hidden nodes
are removed. To produce the needed constraints, for the case of sparse data, we randomly choose
a subset of parameters from all parameters, and impose constraints on the selected parameters. For
the case of incomplete data, we randomly choose parameters from only parameters for the hidden
nodes, and impose constraints on them. The number of constraints in a CPT is no more than 2. For
performance characterization, the Kullback-Leibler (K-L) divergence is used, which measures the
distance between the learned parameters and the ground truth.

With complete but sparse data, we compare the learning performance of ML estimation with
our method with range constraints, intra-relationship constraints and inter-relationship constraints
respectively, as shown in Figure 1. We can see that CML is better than ML estimation in both
mean and standard deviation of KL-divergence. More specifically, the mean K-L divergence for ML
estimation is 0.2087, which decreases to 0.0786 for CML with range constraints, 0.1763 for CML
with intra-relationship constraints, and 0.1546 for CML with inter-relationship constraints.

2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Node Index

K
L−

di
ve

rg
en

ce

Range Constraints

ML
CML

2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Node Index

K
L−

di
ve

rg
en

ce

Intra Relationship Constraints

ML
CML

2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Node Index

K
L−

di
ve

rg
en

ce

Inter Relationship Constraints

ML
CML

(a.1) (b.1) (c.1)

Figure 1: Sparse Data Learning Results Comparisons w.r.t K-L divergence: ML estimation vs. CML.
(a) range constraints; (b) intra-relationship constraints; (c) inter-relationship constraints.

With incomplete data, we compare the learning performance of our method with standard EM
method as shown in Figure 2. The average K-L divergence of hidden nodes decreases from 0.6437
for EM to 0.2361 for CEM with range constraints, 0.3830 for CEM with intra-relationship con-
straints, and 0.4864 for CEM with inter-relationship constraints. The improvements are especially
significant for the hidden nodes (nodes 13 to 20).

5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

Node Index

KL
−d

iv
er

ge
nc

e

Range Constraints

EM
CEM

5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

Node Index

KL
−d

iv
er

ge
nc

e

Intra Relationship Constraints

EM
CEM

5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

Node Index

KL
−d

iv
er

ge
nc

e

Inter Relationship Constraints

EM
CEM

(a.1) (b.1) (c.1)

Figure 2: Incomplete Data Learning Results Comparisons using w.r.t K-L divergence: EM vs. CEM.
(a) range constraints; (b) intra-relationship constraints; (c) inter-relationship constraints.

7

6 Conclusion

Qualitative domain knowledge generally exists in applications. We define two types of constraints
to represent the qualitative domain knowledge, and derive closed form solution for the maximum
likelihood parameter estimator with the two types of constraints respectively. For the case of sparse
data, we directly apply our constrained maximum likelihood estimator, while for incomplete data,
we extend EM method by replacing M step with our constrained maximum likelihood estimator. The
experimental results from synthetic data demonstrate that our method can fully exploit the domain
knowledge to improve parameter learning accuracy.

References

[1] Eric E. Altendorf, Angelo C. Restificar, and Thomas G. Dietterich. Learning from sparse data
by exploiting monotonicity constraints. In UAI, pages 18–26, 2005.

[2] Cassio Polpo de Campos and Fabio Gagliardi Cozman. Belief updating and learning in semi-
qualitative probabilistic networks. UAI, 2005.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the em algorithm. The Royal Statistical Society Series B, 39:1–38, 1977.

[4] G. Elidan and N. Friedman. The information bottleneck em algorithm. UAI, pages 200–209,
2003.

[5] G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans. Data perturbation for escaping local
maxima in learning. AAAI, pages 132–139, 2002.

[6] Ad Feelders and Linda van der Gaag. Learning bayesian network parameters under order
constraints. International Journal of Approximate Reasoning, pages 37–53, 2006.

[7] David Heckerman. A tutorial on learning with bayesian networks. M. Jordan, editor, learning
in Graphic Models. MIT Press, Cambridge, MA, 1999.

[8] M. Jaeger. The ai&m procedure for learning from incomplete data. UAI, pages 225–232, 2006.

[9] J.Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden
variables. Machine Learning, pages 213–244, 1997.

[10] H. W. Kuhn and A. W. Tucker. Nonlinear programming. Proc. of the second Berkeley Sympo-
sium on Mathematical Statistics and Probability, pages 481–492.

[11] Radu Stefan Niculescu, Tom M. Mitchell, and R. Bharat Rao. A theoretical framework for
learning bayesian networks with parameter inequality constraints. IJCAI, 2007.

[12] F. Wittig and A. Jameson. Exploiting qualitative knowledge in the learning of conditional
probabilities of bayesian networks. UAI, pages 644–652, 2000.

8

