

1

AUTONOMOUS MOTION PLANNING USING A PREDICTIVE TEMPORAL METHOD

By

ERIC L. THORN, JR.

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2009

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Autonomous Motion Planning Using a Predictive Temporal Method

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Florida,Department of Mechanical Engineering,Center for
Intelligent Machines and Robotics (CIMAR),Gainsville,FL,32611

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The introduction of moving obstacles into a robot?s environment presents added complexity to the motion
planning task. This dissertation examines the need for and development of a representation which
incorporates the dynamic nature of the environment and presents a novel motion planning method which
utilizes this representation to facilitate the generation of optimal trajectories among moving obstacles,
termed the predictive temporal motion planning (PTMP) method. This new method provides an advanced
approach to the problem of generating solution trajectories in dynamic environments by elegantly
connecting the tasks of obstacle detection and prediction, environment mapping and motion planning. The
dynamic environmental representation takes the form of a typical grid which is extended into the time
dimension by adding temporal layers to the grid structure. The layers of this temporal grid represent
distinct time-steps into the future. These time-steps are determined by considering how the motion
planning algorithm calculates its discrete control commands. Obstacle motion prediction is incorporated
into the temporal grid by estimating future positions of moving obstacles and displaying these estimates in
the layer of the temporal grid associated with the prediction times. The new motion planning method then
can use this predictive temporal grid to investigate potential control input sequences to generate an optimal
trajectory to achieve its goal. As the algorithm evaluates potential control commands at various time-steps
in the future, it does so by exploring the various temporal layers of the new grid structure corresponding to
these distinct control times. By considering the estimated future motions of any obstacles, the motion
planning algorithm can more intelligently calculate its control sequences to avoid these objects in an
efficient manner. The research presented covers the theory of this new method and a specific
implementation on an unmanned ground vehicle platform at the University of Florida?s Center for
Intelligent Machines and Robotics (CIMAR). Results from simulation have shown that the PTMP method
is viable and advantageous for the motion planning required by robotic systems in dynamic environments.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

169

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

© 2009 Eric L. Thorn, Jr.

3

To my parents

4

ACKNOWLEDGMENTS

I would like to begin by thanking my family for supporting me and being patient through

this long process that began almost 10 years ago as I came to the University of Florida as an

undergraduate. They never placed any undue expectations on me and kept me motivated by their

interest in the projects I worked on.

I would also like to express my gratitude to my advisor Dr. Carl Crane for his guidance

and support from the first day I set foot in CIMAR throughout my entire graduate education.

Likewise, I would like to thank my committee, Dr. Antonio Arroyo, Dr. Douglas Dankel, Dr.

John Schueller, and Dr. Gloria Wiens for their valuable input and guidance the past few years.

This research and all of CIMAR’s unmanned vehicle work was made possible by the support of

the Air Force Research Lab at Tyndall Air Force Base in Panama City, Florida, so I would like to

extend a special thanks to the staff that I was able to work with out there.

Finally, I would like to thank all of my co-workers, and more importantly, friends at

CIMAR. Nothing brings people together more than shared experiences, and we certainly shared

some experiences. Along with the interesting projects I was fortunate enough to have worked

on, it was them that made coming to work every day enjoyable.

5

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...4

page

LIST OF TABLES ...7

LIST OF FIGURES ...8

LIST OF ACRONYMS ...10

ABSTRACT ...12

CHAPTER

1 INTRODUCTION ..14

Background ...14
Focus ...17
Problem Statement ..19
Motivation ...19

2 REVIEW OF LITERATURE ...24

Path Planning in Dynamic Environments ...25
Replanning Algorithms ...25
Velocity Obstacles ...27
Dynamic Window ..28
Path-Velocity Decomposition ...30
Artificial Potential Fields ..32
Probabilistic Roadmaps ...33

Path Planning with Moving Obstacle Motion Prediction ...36
Regression Methods ..36
Bayesian Methods ...38
Markov Methods ...39
Neural Networks ..41

Dynamic Environment Representation ...42
State-Time Graph ..43
Temporal Geographical Information Systems ...45
Temporal Occupancy Grid ..46

Autonomous Target Interception ..48

3 THEORETICAL APPROACH ..50

Motion Planning Overview ...51
Temporal Grid ..54
Obstacle Motion Prediction ..57

6

Temporal Motion Planning ...60

4 IMPLEMENTATION DETAILS ...70

Urban NaviGator ..70
Architecture ...71
Hardware ...71
Software ...73

Traditional Traversability Grid ...74
Temporal Grid Creator ...77

Obstacle Position Data Collection ...78
Search Parameters ...79
Temporal Grid ...83
Moving Obstacle Prediction ..88

Temporal Motion Planner ...90
Target Interception Application ..93

5 TESTING AND RESULTS ..115

Test Plan ...115
Following Behavior ...116
Obstacle Field Behavior ..117
Target Interception ..118

Test Metrics ..119
Simulation ...121

Following Behavior ...121
Obstacle Field Behavior ..125
Target Interception ..128

Testing Summary ..130

6 CONCLUSIONS AND FUTURE WORK ...156

Future Work ..156
Conclusions...160

LIST OF REFERENCES ...162

BIOGRAPHICAL SKETCH ...169

7

LIST OF TABLES

Table

page

4-1 Temporal layer size parameters for . ..113

4-2 Distance horizon values for each temporal layer for initial temporal grid testing.113

4-3 Grid creation times (in seconds) for113

4-4 Grid cloning times (in seconds) for ...114

4-5 Memory requirements (in bytes) for . ..114

5-1 Following behavior test plan. ...152

5-2 Obstacle field behavior test plan. ...153

5-3 Target Interception test plan. ...154

5-4 Sample of predicted positions and velocities for following behavior testing.155

5-5 Sample of predicted positions and velocities for obstacle field behavior testing.155

5-6 Prediction times for three test scenarios at various temporal. ...155

8

LIST OF FIGURES

Figure

page

1-1 The Urban NaviGator: Team Gator Nation’s Urban Challenge entry.23

3-1 Breadth-first search state exploration order. ..65

3-2 Depth-first search state exploration order. ...65

3-3 Three-dimensional temporal grid structure. ...66

3-4 Temporal grid tree visualization. ...66

3-5 Sample output traversability grid from motion planning. ..67

3-6 Discrete exploration steps of motion planner with no obstacle interference.68

3-7 Discrete exploration steps of motion planner with obstacle interference.69

4-1 Urban NaviGator system architecture diagram..95

4-2 Traversability grid representation of robot’s environment. ...96

4-3 Formation of torus buffer ...97

4-4 Motion planning algorithm input traversability grid. ..98

4-5 Vehicle kinematic model geometry. ..99

4-6 Illustration of search algorithm node expansion showing key search parameters.99

4-7 Pyramidal-shaped optimized temporal grid structure. ...100

4-8 Optimized temporal grid layers showing static obstacle appearing.................................101

4-9 Formation of temporal torus buffer..102

4-10 Creation times for TG, full temporal TG and optimized temporal TG.103

4-11 Cloning times for TG, full temporal TG and optimized temporal TG.104

4-12 Memory requirements for TG, full temporal TG and optimized temporal TG.105

4-13 Prediction visualization showing polynomial curve fit and extrapolated data.106

4-14 Full temporal grid layers showing predicted positions of obstacle..................................107

4-15 Optimized temporal grid layers showing predicted positions of obstacle.108

9

4-16 Future predicted positions of obstacle in single traversability grid.109

4-17 Optimized temporal grid showing simple dilation of predicted obstacle positions.110

4-18 Full temporal grid layers showing expansion of search tree with obstacle.111

4-19 Optimized temporal grid layers showing expansion of search tree with obstacle.112

5-1 Gainesville Raceway pit area with points defining test areas. ...133

5-2 Straight road segment selected for following behavior test with defining waypoints.133

5-3 Open unstructured area with defining waypoints and perimeter points drawn.134

5-4 Sample following behavior control test results. ...135

5-5 Sample obstacle field behavior control test results. ...136

5-6 Sample full temporal grid layers with predicted position of followed object..................137

5-7 Sample optimized temporal layers of following behavior test temporal grid.138

5-8 Sample output temporal grid from following behavior. ..139

5-9 Number of expanded search nodes for following operating behavior tests.140

5-10 Solution trajectory costs for the following behavior tests. ..141

5-11 Steering commands for following behavior tests. ..142

5-12 Sample full temporal layers showing predicted positions of obstacle.143

5-13 Sample optimized temporal grid layers from obstacle field behavior test.......................144

5-14 Steering commands for obstacle field behavior tests. ..145

5-15 Sample output temporal grid of obstacle field behavior simulation.146

5-16 Path deviation results for obstacle field behavior tests. ...147

5-17 Sample full temporal grid layers showing progression of target object.148

5-18 Sample optimized temporal grid layers showing progression of target object.149

5-19 Sample full temporal grid output of motion planner during target interception test.150

5-20 Target and solution path heading angles for target interception test.151

10

LIST OF ACRONYMS

AFRL Air Force Research Lab

ANN Artificial neural network

APPE Adaptive prediction planning and execution

ARM Autoregressive Model

BOF Bayesian occupancy filter

CCD Charged couple device

CIMAR Center for Intelligent Machines and Robotics

CLF Control Lyapunov function

DARPA Defense Advanced Research Projects Agency

DPA Deterministic prediction algorithm

DUC DARPA Urban Challenge

FADPRM Flexible anytime dynamic A* probabilistic roadmap

GIS Geographic information system

GPOS Global position and orientation sensor

GPS Global positioning system

GSL GNU science library

HMM Hidden Markov model

KVM Keyboard-video-mouse

LADAR Laser detection and ranging

MDF Mission data file

MO Moving obstacle sensor

NFM North finding module

NLVO Nonlinear velocity obstacle

11

PD Primitive driver

PMP Partial motion planning/planner

POMDP Partially observable Markov decision process

PRM Probabilistic roadmap

PTMP Predictive temporal motion planning/planner

PVO Probabilistic velocity obstacle

RBFNN Radial-basis-function neural network

REDCAR Remote detection challenge and response

RHC Receding horizon control/controller

RNDF Route network definition file

RRF Reconfigurable random forest

RRT Rapidly-exploring random tree

SARB Smart Arbiter

SLAM Simultaneous localization and mapping

SSRMS Space station remote manipulator system

TG Traversability grid

TGC Temporal grid creator

THH Toyota Highlander Hybrid

TOG Temporal occupancy grid

UTM Universal Transverse Mercator

VO Velocity obstacle

12

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

AUTONOMOUS MOTION PLANNING USING A PREDICTIVE TEMPORAL METHOD

By

Eric L. Thorn, Jr.

December 2009

Chair: Carl Crane
Major: Mechanical Engineering

The introduction of moving obstacles into a robot’s environment presents added

complexity to the motion planning task. This dissertation examines the need for and

development of a representation which incorporates the dynamic nature of the environment and

presents a novel motion planning method which utilizes this representation to facilitate the

generation of optimal trajectories among moving obstacles, termed the predictive temporal

motion planning (PTMP) method. This new method provides an advanced approach to the

problem of generating solution trajectories in dynamic environments by elegantly connecting the

tasks of obstacle detection and prediction, environment mapping and motion planning.

The dynamic environmental representation takes the form of a typical grid which is

extended into the time dimension by adding temporal layers to the grid structure. The layers of

this temporal grid represent distinct time-steps into the future. These time-steps are determined

by considering how the motion planning algorithm calculates its discrete control commands.

Obstacle motion prediction is incorporated into the temporal grid by estimating future positions

of moving obstacles and displaying these estimates in the layer of the temporal grid associated

with the prediction times.

13

The new motion planning method then can use this predictive temporal grid to investigate

potential control input sequences to generate an optimal trajectory to achieve its goal. As the

algorithm evaluates potential control commands at various time-steps in the future, it does so by

exploring the various temporal layers of the new grid structure corresponding to these distinct

control times. By considering the estimated future motions of any obstacles, the motion planning

algorithm can more intelligently calculate its control sequences to avoid these objects in an

efficient manner.

The research presented covers the theory of this new method and a specific implementation

on an unmanned ground vehicle platform at the University of Florida’s Center for Intelligent

Machines and Robotics (CIMAR). Results from simulation have shown that the PTMP method

is viable and advantageous for the motion planning required by robotic systems in dynamic

environments.

14

CHAPTER 1
INTRODUCTION

The field of robotics, while not so young anymore, is still experiencing rapid growth and

development. Advanced areas of research are being presented every year, and robots continue to

be utilized in new and novel ways. Unmanned vehicles are one specific area of robotics that is

receiving a lot of attention. These intelligent mobile platforms are highly attractive since they

can be placed in uncertain or even dangerous environments to accomplish missions that would be

unsafe for humans. Each new application of mobile robots typically involves increasingly

complex scenarios that require the robot to sense its environment and execute behaviors with

more precision and efficiency than before. For unmanned ground robots, navigation through

dynamic urban environments represents one of these increasingly complex scenarios. The

research presented in this document continues this ongoing trend of advancing the field,

specifically in dealing with this issue of navigating in areas with moving obstacles.

Background

Unmanned robots exist in many different shapes and sizes and varying degrees of

intelligence and capability. Unmanned ground vehicles can operate on rough and rugged terrain,

inside of buildings where hostile conditions may exist, and in tight spaces that would otherwise

be inaccessible for humans. Unmanned underwater vehicles can be deployed by the military to

sneak undetected under the surface if necessary, or can be used by scientists to analyze the ocean

floor mapping or drilling purposes. Unmanned aerial vehicles range from models with one foot

wingspans that can be used for urban search and rescue, to the full-sized Predators currently

deployed for reconnaissance and precision strikes in Iraq and Afghanistan.

Unmanned vehicles can be further classified as either teleoperated or fully autonomous

depending on the level of intelligence. Teleoperated vehicles require human input, but remotely

15

from a distance. They are regularly used by the military and bomb squads across the country to

deal with potential explosive devices. The robot can be remotely driven to a possible

unexploded ordinance, and then through the use of onboard mechanisms, can detonate or dispose

of the threat. They can also be driven through dangerous rubble to search for survivors of an

earthquake or missile attack. On the other hand, fully autonomous robots require no human

interaction aside from an initialization process. This type of vehicle is appealing to the military

because of the ability of the robot to make decisions and take action on its own keeps soldiers out

of harm’s way. These robots are incredibly complex and require hundreds or even thousands of

components working together flawlessly to be successful. The presented research focuses on

these autonomous unmanned vehicles, although it could potentially be used on teleoperated

vehicles and other types of robotic systems as well.

Fully autonomous vehicles require significant cognitive abilities. Given only some goal to

achieve, the robot must localize itself, put together a representation of its surroundings, plan a

course of action through its surroundings to achieve its goal, and then act upon this plan. The

problem of localization requires the robot to determine where it is and where its destination is in

a particular reference frame. One possible solution is the process known as simultaneous

localization and mapping, or SLAM (Leonard & Durrant-Whyte, 1990). SLAM involves

creating an environmental map based on sensor data, while concurrently keeping track of the

robot’s current position. Another common approach is through the use of the Global Positioning

System satellite network coupled with an inertial navigation system which can track the motion

of the robot in the absence of accurate data from the satellites. This localizes the robot in a

global frame of reference using latitudes, longitudes, and elevations, but can be transformed into

other frames of reference.

16

In addition to knowing its location in its reference frame, the robot must know what its

surrounding look like. There are a variety of sensors capable of putting together a representation

of the environment depending on the application, and usually, a collection of these sensors is

utilized. For underwater robotic vehicles, sonar might be the sensor of choice. Cameras and

laser scanners are just a few examples of hardware that can be used to classify the terrain in front

of and around a ground robot, and to locate and track static and dynamic obstacles near the

vehicle. And for unmanned aerial vehicles, radar and thermal cameras may be best suited to

provide the required information.

This raw sensor data must then be combined to create a representation that can be useful to

the robot. A common type of representation is a grid map, which rasterizes the surrounding

environment into cells and classifies each cell to some degree of occupancy according to the

sensor data associated with that cell. Vector representation is another way to describe the robot’s

surroundings. This method is more closely related to the raw data provided by the sensors in that

it describes the environment as a series of distances and angles. Regardless of the technique, this

knowledge of the surrounding area is crucial for the issue of maneuvering the robot from its

current position to the goal.

The determination of deliberative control inputs to accomplish this task of acquiring a goal

can be completed by a variety of means and is typically termed path planning or motion

planning. Planning algorithms include, but are not limited to, the rather simplistic vector driver

algorithms which compute the angle between the current vehicle heading and the heading to the

goal and relate it to a steering input to change the heading, complex model predictive control

methods which take the kinematics and dynamics of the vehicle into account, and heuristic

algorithms which efficiently estimate the optimal path and generate control inputs. Presently,

17

there are many algorithms in use that are capable of calculating trajectories that are optimal in

terms of travel time, travel distance, or some other metric that differentiates one potential path

from another. The work to be presented expands on an existing path planning method.

Finally, once a set of control is calculated, the inputs must be implemented through

actuation of the vehicle. Typically, the control inputs consist of steering commands to change

the heading of the vehicle and acceleration or deceleration commands to change the velocity of

the vehicle. These commands are usually implemented through mechanical or electrical means.

Steering commands may be instituted as changes in pressure for hydraulically driven vehicles, or

position changes of a motor connected to the steering column of an Ackerman-steered vehicle.

Velocity changes can be implemented by means of an electrical signal being sent to a computer

for vehicles with electronically controlled acceleration and deceleration, or by pushing or pulling

on a brake or throttle pedal using a motor.

This sequence of events must be repeatedly carried out as new information about the state

of the vehicle and the state of its surroundings changes. Depending on the type of vehicle and

application, this could require considerable computational resources to process all the incoming

data and run the algorithms necessary to generate the output commands. This brief summary

only begins to scratch the surface when describing the complexity required in operating

unmanned robotic vehicles.

Focus

Past research indicates many motion planning algorithms are adept at finding optimal paths

through static environments. However, the introduction of dynamic objects which have

uncertain motions into the environment complicates the planning process. While sensing

technology is fairly reliable in terms of detecting and mapping static objects, the issue of

detecting and tracking moving objects has only recently begun to be investigated. Furthermore,

18

the ability of an autonomous robot to plan a trajectory through an environment where dynamic

obstacles are present is a very young area of research.

One of the main issues that arise in such a situation is the modeling of a moving object in

the environmental representation through which the robot plans. In the case of a grid map, the

question of how to describe the motion of the object in the cells of the grid is important. Many

existing motion planners run their planning algorithms repeatedly at some regular time interval

and treat each instance of a grid as static. As new sensor data is received, the previous map is

updated for the next iteration of the algorithm. In this sense, the motion of moving objects can

be represented over a number of successive grids, with the objects being treated as static in each

individual grid. This will allow the motion planner to find a complete trajectory from the current

position to the goal position that avoids object for this instance in time, assuming a complete

trajectory is attainable. However, this can be misleading as the planner has no intuition as to

what the future motions of the moving object will be, and could lead to the robot planning a path

that would ultimately lead to a collision, or planning a highly suboptimal path to avoid the object

as time progresses.

The ability to predict the motion of dynamic objects could aid in solving this problem.

There are several prediction algorithms that could be used to describe the future states of a

moving object in the environment of the robot. If a motion planning algorithm could know how

an object’s position will change over some period of time in the future with a reasonable degree

of certainty, it could make more intelligent choices in terms of steering and velocity commands.

And even if the exact future position of the object cannot be precisely defined, a probability

distribution of future positions could still be useful.

19

Problem Statement

After the aforementioned discussion of predicting the future motions of moving obstacles,

the question of how to describe the predicted motion of a dynamic object in the representation of

the robot’s surroundings arises. The introduction of time-varying data in a data structure that

represents the robot’s environment brings new challenges and new possibilities to the robot

motion planning task. Additionally, the development of a motion planner that can plan a

trajectory through this type of temporal data structure is desirable. While the development of a

prediction algorithm is outside the scope of this study, the research presented in this document

addresses the issue of how to use this predicted data to plan an optimal path for an autonomous

robot by focusing on the development of a grid map which can take advantage of this data to

store occupancy information for a range of time, rather than for a single instant, and the

development of a motion planner which can plan an optimal trajectory for the robot using the

spatial and time-dependent data contained within this new grid. Even though the central aim of

this work was to develop a temporal motion planning algorithm for obstacle avoidance purposes,

it also has applications such as target interception, which will be presented, in which an obstacle

is treated as a goal to attain rather than an obstacle to avoid.

Motivation

The presented research advances the capabilities of autonomous ground robots that have

been developed at the Center for Intelligent Machines and Robotics (CIMAR) at the University

of Florida and at the Air Force Research Lab (AFRL) at Tyndall Air Force Base. CIMAR and

AFRL have been collaborating on projects for many years and have successfully automated

vehicles for such applications as clearing mine fields, detecting unexploded bombs and patrolling

the perimeters of military installations. Motion planning development is crucial toward the

success of this collaboration and the issue of dynamic obstacles is prevalent in current projects.

20

At Tyndall Air Force Base, research is conducted with the aim of using ground robots for

military base perimeter defense as part of the Remote Detection Challenge and Response

(REDCAR) project. A rugged mobile platform has been developed that can be used

autonomously or through teleoperation. Upon detection of an intruder while autonomously

patrolling a perimeter, the vehicle can switched into teleoperated mode and can be directed to

intercept the target and neutralize it by lethal or non-lethal means. With an advanced target

tracking system and a reliable target motion predictor coupled with the developed temporal

motion planner, the robot would be able to chase down and intercept a target without human

intervention. On the other hand, the planner would also avoid any other dynamic objects within

the environment that are not identified as a target.

The most recent autonomous vehicle research at CIMAR has focused on a large-scale

autonomous vehicle for navigation in an urban environment. The motivation for this work was

entry into a robotics competition coordinated by the Defense Advanced Research Projects

Agency (DARPA) known as the DARPA Urban Challenge (DUC) and held in southern

California in November of 2007. This most recent contest built on the success of the previous

robotic challenges in 2004 and 2005. While the previous DARPA competitions were geared

toward off-road navigation, the Urban Challenge, as the name suggests, focused on autonomous

driving capabilities in urban environments in the presence of other moving vehicles, including

other robots. Robots were required to exhibit a long list of complex driving behaviors that are

commonplace when a human is driving a vehicle. Being that the competition was a race,

competitors had to balance the desire for speed with the necessity of obeying all traffic rules and

being safe. Some of the basic navigation and traffic requirements included: remaining within the

desired lane, obeying speed limits, maintaining a safe following distance, passing slow moving

21

or stopped cars, completing a U-turn, and obeying intersection precedence. Required behaviors

for advance navigation and traffic included: navigating an obstacle field, parking, merging with

moving traffic, and defensive driving.

CIMAR’s entry into the challenge was an automated 2007 Toyota Highlander Hybrid, as

seen in Figure 1-1. The vehicle was outfitted with a sensor network composed of global

positioning system (GPS) receivers coupled with an inertial navigation system, eight laser range

scanners, and four cameras. Motors were attached to the steering column and shifting

mechanism for autonomous steering and gear shifting. The existing drive-by-wire system for

throttle and brake was utilized for autonomous acceleration and deceleration. A custom built

computer rack was populated with twelve dual-core computers, of which ten were used.

The motion planner utilized by CIMAR for the DUC is a form of receding horizon

controller running a modified A* search algorithm to find the optimal path through a

traversability grid of fused sensor data (Crane et al., 2005). The A* algorithm creates a search

tree through the grid map, evaluates the cost of the nodes in the tree, and uses these costs

heuristically searches through the tree to find a least cost path to a predetermined goal. The

nodes of the tree are vehicle state representations which are expanded through a kinematic

vehicle model. The cost of a node depends on several factors, including distance from the node

to the center of the perceived lane, distance from the node to the goal, and the traversability

values associated with the cells between the node of interest and its predecessor node. Being a

best-first search algorithm, the A* algorithm keeps track of the costs of all nodes on the tree and

selects the lowest cost node for expansion (Hart, Nilsson, & Raphael, 1968).

Several of the requirements of the DUC have motivated the presented research topic. The

inevitability of the robot interacting with other moving obstacles, and potentially with other

22

intelligent vehicles, demonstrates the need for efficient and optimal motion planners that can take

the predicted motion of dynamic objects into consideration. The path planning algorithm

described previously is not sufficient to deal with dynamic objects in the robot’s environment.

For most behaviors developed for the DUC, moving obstacles were handled at a higher level in

the system. For example, for behaviors associated with road following, intersections, and

passing, any moving obstacles were simply removed from the grid map to avoid interfering with

the planning algorithm’s stability. Changes in velocity were instead commanded by other

components of the system to slow the robot to a stop if following too closely to a moving object,

or to speed up to pass a moving object. For behaviors associated with obstacle fields and parking

lots, the motion planner simply treated moving objects as static for each particular planning

instance. With the ability to represent the predicted motion of dynamic objects in a grid map,

and with the ability to plan motions through this type of grid, the trajectories planned by the

Urban NaviGator will be more optimal with regards to dealing with these moving obstacles. The

facilities and resources at CIMAR allowed an in depth study of this claim and improved the

chances of this type of technology coming to fruition.

This chapter provides an introduction and some background information to the task of

motion planning in dynamic environments that is investigated in this dissertation. It outlines the

problem statement in three main areas: generating a temporal representation of the environment,

incorporating predictive motion models of moving objects into this temporal representation, and

developing a temporal motion planning technique. Lastly, it provides specific motivation for

addressing this type of problem in the form of the requirements of autonomous ground vehicle

navigation in dynamic environments. The following chapter reviews previous research

conducted that deals with the three areas of the problem statement.

23

Figure 1-1. The Urban NaviGator: Team Gator Nation’s Urban Challenge entry.

24

CHAPTER 2
REVIEW OF LITERATURE

A review of published research was conducted to get an idea of how different areas of this

problem have been solved, thereby providing a means of comparing and contrasting the

presented work. While the issue of planning trajectories through dynamic environments is a

relatively new area of research in the field of autonomous robotics, several different approaches

were studied. The review began by investigating how others had approached motion planning in

the presence of moving obstacles. Many of the techniques regarded the world as static and

projected forbidden regions from the instantaneous location of the objects. Some of them

addressed the issue by planning in the velocity space and adjusting angular and linear velocities

rather than planning in a spatial domain. The addition of the time dimension into the vehicle’s

configuration space was also analyzed, but again, in a static representation. Several replanning

algorithms which maintain the previous solution path and only alter sections of the path that are

affected by changing arc costs due to objects moving in the environment were also studied.

Next, planning methods that utilized motion prediction of dynamic obstacles were

investigated. Many of these techniques were only capable of predicting the states of the objects

a short time in the future, which may be useful when the robot is close to any of these objects,

but it is desirable to know well ahead of time if any evasive action may be required to avoid

collisions. Several methods studied required a training period, where the motion patterns of

obstacles were observed for a time to aid the prediction algorithm. While this may be useful for

highly structured environments such as warehouses or factories where moving objects’ paths

tend to be repeated, this approach may be misleading or simply not useful when dealing with

objects with uncertain motion or other cognitive vehicles.

25

Time was taken to review ways of representing a robot’s environment to see how this

could be extended to save temporal data in addition to spatial data. Several methods created a

grid structure with a time dimension included, but this temporal dimension represented the

history of the environment being described rather than looking in the future. The state-time

space of a robot is another representation that was used in a variety of planning algorithms and

allows for temporal information to be stored.

Lastly, existing literature dealing with the issue of robotic interception problems was

investigated. Many applications of this problem relate to robotic manipulator arms attempting to

grasp a moving object where the trajectory of the object is straight-forward and can be easily

predicted. The complications associated with the end-effector of the manipulator matching the

position, velocity and orientation of the obstacle make this problem difficult to solve. Several

techniques associated with mobile ground robotics tracking and catching a moving target were

also studied.

Path Planning in Dynamic Environments

Replanning Algorithms

Some motion planning algorithms for autonomous robots are run over and over again at a

high rate, planning from scratch each time to take changes in the environment into account.

However, several types of algorithms make use of saving the previous solution trajectory from

the start point to the goal location and only make minor adjustments to the trajectory as arc costs

in the search tree change in the vicinity of the path.

In 1994, Stentz presented a search algorithm that was similar to the A* algorithm, but

allowed for arc cost parameters to change during the planning process (Stentz, 1994). The

algorithm used “raise states” and “lower states” on the list of nodes waiting for expansion to

propagate information about path cost increases and decreases, respectively. When one of these

26

states was expanded, it passed on the cost changes to its successor nodes. Experimental results

showed that the new algorithm, known as the D* algorithm, demonstrated significant speedup

compared to a general optimal replanner, and the speedup increased dramatically as the number

of cells in the grid increased.

Several extensions of the D* algorithm have been developed over the years. A focusing

heuristic was used to effectively narrow the propagation front of the “raise states” and “lower

states” in the Focussed D* algorithm, and thus, was shown to be more efficient in replanning

(Stentz, 1995). This narrowing occurred as a result of the inclusion of a cost to return to the

robot which penalized the wider edges of the propagation front. The modified algorithm proved

to be effective when run off-line, resulting in lower planning times than the basic D* algorithm,

but had higher planning times when used as an on-line planner.

The Delayed D* algorithm required approximately half the computation of the D*

algorithm by including a one-step look-ahead cost, but generated equivalent optimal paths

(Ferguson & Stentz, 2005). The look-ahead cost was defined as the minimum of the cost

estimates of the successor nodes to the goal. The algorithm was shown to be more efficient since

the propagation of some cost changes were ignored as long as possible, while more important

changes were propagated.

Finally, the Field D* algorithm addressed the issue of assuming straight-line trajectories

from a node to its neighbors (Ferguson & Stentz, 2007). This new algorithm used linear

interpolation to produce smoother paths. Simulated robotic experiments showed Field D*

generated solutions that were 96% as costly as the original D* algorithm and took 1.7 times as

long to calculate.

27

Velocity Obstacles

Planning in the velocity-space of a robot is a relatively new method of dealing with

dynamic obstacles. Just as a robot’s environment can be broken up into spatial states for the

motion planning algorithm to search through, it can also be discretized into a finite number of

linear and angular velocity pairs. But in doing so, the problem of how to facilitate reactive

obstacle avoidance during the path planning process arises.

The concept of Velocity Obstacles (VO) was discussed by Fiorini and Shiller as a potential

solution to this problem (Fiorini & Shiller, 1998). The process of constructing a VO began by

using the relative velocity between the robot and the obstacle to create a collision cone, which

was the set of relative velocities that would result in a collision at some time in the future. The

VO was then defined as the vector sum of this collision cone with the velocity vector of the

obstacle. The VO represented a region in the velocity space of the robot that would lead to a

collision with the obstacle within a time horizon. Obstacle avoidance was carried out by creating

a set of reachable avoidance velocities defined by the dynamic constraints of the vehicle.

The aforementioned process of creating velocity obstacles assumed the obstacle was

moving in a straight line, represented by a constant linear velocity with no angular velocity.

However if the obstacle was traveling along an arc, this method could have misrepresented the

set of velocities that would result in a collision. This could have led to falsely indicating a

collision would occur, when the current trajectory would actually be suitable to avoid the object.

This problem was addressed by developing the concept of Non-Linear Velocity Obstacles

(NLVO) (Shiller, Large, & Sekhavat, 2001). Again, the NLVO represented the set of robot

velocities that resulted in a collision with a particular obstacle, but they took the nonlinear

motion of these obstacles into account.

28

This concept was then implemented in a robot motion planning algorithm and used for

obstacle avoidance (Large, Laugier, & Shiller, 2005). As the NLVOs were generated, the

algorithm also calculated time-to-collision estimates for each of the NLVOs. An A* algorithm

was then run to search the velocity-space of the robot. The two criteria used for sorting and

evaluating the set of velocities for the search algorithm were the computed time-to-collision and

the time-to-goal.

In 2004, Kluge developed a Probabilistic Velocity Obstacle (PVO) method to take the

uncertainty of obstacle shapes and velocities into account (Kluge, 2003). Under the assumption

that the obstacles in the environment were also intelligent, a recursive modeling technique was

employed to attempt to model the decision making processes of the moving obstacles. With

these models, the predicted velocities could then be used to generate the PVOs rather than

requiring observation of obstacle velocities.

Dynamic Window

The dynamic window approach was another velocity space search method. It was first

developed to control the motion of a robot with a synchro-drive (Fox, Burgard, & Thrun, 1996).

The algorithm was well suited for dealing with velocity and acceleration constraints present in all

mobile robots. It strived to limit the velocity search space of the motion planner in three steps.

The first step reduced the space by allowing only circular trajectories defined by unique

translational and rotational velocity pairs. Of these pairs, the second step ensured that only safe

velocities were searched by limiting the space to admissible velocities. Specifically, these

admissible velocities were velocities that allowed the robot to stop before reaching the closest

obstacle on the current path. The last step reduced the space further by creating the dynamic

window, which represented the set of admissible velocities that could be reached in a time

interval defined by the limited acceleration or deceleration of the robot.

29

This planning method was then extended in a number of studies to improve its

performance. A priori maps of the environment were used to aid in avoiding undetectable

obstacles that were represented in the maps (Fox, Burgard, Thrun, & Cremers, 1998). Known as

the model-based dynamic window approach, this form of the algorithm used metric Markov

localization to estimate the robot’s position within the map. The reduced dynamic window

approach took advantage of the fact that 95% of the time, the highest admissible velocity was

selected by only calculating the dynamic window for this speed (Arras, Persson, Tomatis, &

Siegwart, 2002). This further diminished the size of the velocity search space, and thus

increased the speed and efficiency of the search algorithm. Ogren and Leonard combined the

dynamic window approach with Lyapunov nonlinear control theory to generate a convergent

dynamic window method (Ogren & Leonard, 2002). A model predictive control law and a

control Lyapunov function (CLF) were chosen such that the constrained optimal control problem

was satisfied for a short time horizon. This study overcame shortcomings of other dynamic

window approaches such as the potential for the solution to diverge or get stuck in a limit cycle.

An elegant combination of the dynamic window approach with the previously discussed

Focused D* algorithm was recently developed that generated admissible trajectories for a mobile

robot (Seder, Macek, & Petrovic, 2005). This algorithm was implemented on a real mobile robot

outfitted with a laser range finder to detect moving obstacles. This method was further extended

in such a way that guaranteed solution trajectories that avoided collisions with moving obstacles

(Seder & Petrovic, 2007). The concept of “moving cells” was introduced to represent the motion

of dynamic objects in the grid map. For each newly occupied grid cell, a motion heading and

velocity vector were estimated by some means. A series of potential trajectories were then

generated starting at this “moving cell” much in the same way candidate trajectories were

30

generated for the robot. These “moving cell” trajectories were then checked against the dynamic

window trajectories for the robot for collisions.

Path-Velocity Decomposition

The path-velocity decomposition method attempted to solve the motion planning problem

in dynamic environments by breaking it down into two sub-problems (Kant & Zucker, 1986).

The first sub-problem could be thought of as a traditional path planning process attempting to

avoid static obstacles, while ignoring the dynamic ones. The second sub-problem then planned

the velocity profile along the solution path of the first sub-problem to deal with moving objects.

The path planning process was solved by creating a graph defined by the set of vertices of the

static polygonal obstacles and the set of edges among nodes that did not intersect any of the

static objects. To find the velocities along this path, moving objects were represented as

hyper-volumes that were swept out in space-time. The velocity planner then checked for

intersections of these volumes with the path output from the planning problem. Any

intersections provided time-varying constraints on the robot’s position along the path and allow

for a velocity to be selected.

The aforementioned study decomposed the problem to a global path and velocity planner,

with no means to consider changes in the environment. Kant and Zucker then extended this

concept into a hierarchical planner by adding a local avoidance planner that reacted to changes in

the environment detected by sensors (Kant & Zucker, 1988). The constraints resulting from the

volumes swept by detected obstacles effectively formed forbidden regions in the path-time space

of the robot. The low-level avoidance planner overlaid a repulsive acceleration on the path

generated by the global planner that moved the robot away from a detected obstacle.

Simulations were run with perfect and imperfect estimation of obstacle velocities and showed

31

that this hierarchical form of path-velocity decomposition allowed for local avoidance of moving

obstacles.

Fraichard and Laugier further developed the method by adding the generation of “adjacent

paths” into the path planning process which dealt with cases where a dynamic object followed

the robot’s nominal path or stopped on top of it (Fraichard & Laugier, 1993). The first step of

the path-velocity decomposition algorithm now found a nominal path and calculated a set of

paths, which were reachable from the nominal path. These “adjacent paths” were not necessarily

collision free with respect to stationary objects. They, therefore, required being checked for

collisions, which resulted in a set of “forbidden” intervals along the paths. The second step of

the path planning process, denoted as trajectory planning, determined the motion of the robot

among the nominal paths and “adjacent paths.” The velocity planning stage was carried out in

the same manner described above.

While the previous study focused on the spatial planning stage of the path-velocity

decomposition, a recent study alternatively focused on the velocity planning stage in a shared

workspace where multiple robots may have travelled (Hwang & Ju, 2002). The method

classified the moving objects in the environment as controllable or uncontrollable. It was

assumed that the global planning problem had been solved for all the controllable robots without

any static obstacles interfering with the path. The global path was then decomposed into a series

of subtasks, each of which contained a desired goal position and a desired arrival time.

Space-time graphs were then generated for each of the subtasks. These space-time graphs were

essentially a local mapping of forbidden regions for the controllable objects. An interface

propagation method was then used to calculate velocity profiles for the controllable objects to

avoid entering forbidden regions.

32

Artificial Potential Fields

The use of time-varying potential field functions for motion planning was first introduced

as an obstacle avoidance technique for robotic manipulators and mobile robots (Khatib, 1986).

The method created a virtual force field for the robot to plan through with goal positions being

represented by an attractive force and obstacles to be avoided represented as repulsive forces. A

resultant force was calculated for the robot with the direction of the force being the desired

heading direction for the robot and the magnitude of the force being equivalent to the desired

speed. While this original study dealt solely with static obstacles, it was extended to incorporate

dynamic ones.

Ko and Lee defined the “avoidability measure” as a way of describing the possibility that

the robot collided with an obstacle (Ko & Lee, 1996). This measure was a function of the

distance between the robot and the object and the speed of the object relative to the robot. The

avoidance measure was inversely proportional to the possibility that the robot and the dynamic

obstacle experienced a collision, so it increased as the distance and relative velocity decreased.

This study used a virtual distance function, which emphasized the distance metric over the speed,

as its “avoidability measure.” This function could be tuned so that the robot began avoiding

obstacles closer or further away. It was then mapped to a potential force to be used with the

traditional potential field method.

This method was extended to account for moving obstacles and moving targets in a

number of studies. Ge and Cui defined an attractive potential for the target that took the relative

position and velocity of the target with respect to the robot into account (Ge & Cui, 2002).

Therefore, as the distance between the robot and target increased, or the target started

accelerating away from the robot, the attractive force of the target increased. On the other hand,

each moving obstacle was given a repulsive potential that was inversely proportional to the

33

relative positions and velocities among these obstacles and the robot. This study also addressed

local minima issues that arose when an obstacle was between the robot and the target and was

moving in the same direction as the two, and when the robot was approaching the goal, but could

not reach it because an obstacle was close. Computer simulations and experiments on real

mobile robots showed this method to be effective in avoiding moving obstacles while

intercepting the target. Another study addressed moving obstacles and targets in a robotic soccer

scenario by defining the relative threat function (Cao, Huang, & Zhou, 2006). This threat

function was again derived by examining the relative positions and velocities between the robot,

target, and moving obstacles. When the robot was within a region of influence of a particular

obstacle, the repulsive potential of that particular object acted against the robot. Otherwise, if it is

outside the region of influence, the robot ignored the effects of that dynamic obstacle.

Several other methods have been developed to use the potential field method with motion

planning among moving obstacles. Poty, Melchior, and Oustaloup used a fractional potential to

generate a fractional road to take the danger of each moving object into account (Poty, Melchior,

& Oustaloup, 2004). The use of the fractional potential ensured a continuous flow of potential

among isolated sources. It then used the method in (Ge & Cui, 2002) to extend the use of

fractional potential for motion planning in dynamic environments.

Probabilistic Roadmaps

The concept of probabilistic roadmaps (PRM) was developed by Svestka and Overmars for

single car-like robots in a static environment (Svestka & Overmars, 1994) and was later applied

to multiple robots (Svestka & Overmars, 1995). An undirected graph was built incrementally by

adding random free configurations of the robot to the set of nodes and trying to connect those

newly added nodes to a number of chosen nodes already in the existing set. The map was then

checked for intersections with known obstacles. Once the roadmap had been generated, it could

34

be used to solve motion planning problems, referred to as “queries.” For the multi-robot

situation, a “super-graph” was built from the individual roadmaps of the robots. The areas swept

by the robots when moving along a particular edge in their map were checked against each other

and disallowed if they intersected. This method was shown to be probabilistically complete,

meaning that, given enough time, the planner found a solution to any query if a solution existed.

It is important to note that the previously described studies dealt strictly with static

environments and with roadmaps that were generated off-line. This method was extended to

dynamic environments, however, by building small roadmaps on-the-fly that connected some

initial and final state (Kindel, Hsu, Latombe, & Rock, 2000). This study introduced the use of

PRMs in the state-time space of the robot. It also assumed the trajectories of the moving

obstacles were known a priori. Another study that assumed the motions of the obstacles were

known ahead of time used a hierarchical method to search through the roadmap (van den Berg &

Overmars, 2005). An A* algorithm was used on the global level to find a trajectory to pass on to

the local planner, which used a depth-first search to investigate the edges of the roadmap in

state-time space. A geometric property denoted as “expansiveness” was introduced in (Hsu,

Kindel, Latombe, & Rock, 2002) and used to show that the probability that this type of planner

failed to find a solution trajectory when one existed quickly converged to zero as the number of

collision-free samplings of the workspace increased.

An incremental learning approach to the roadmap problem was presented in (Koenig &

Likhachev, 2002) to allow on-line management of the roadmap for every planning query. This

method differed from traditional probabilistic roadmap methods in that it used a

Rapidly-exploring Random Tree (RRT) structure to grow the map. While a traditional RRT

algorithm may grow a new RRT for every planning problem, this variation took advantage of

35

previously “learned” trees for future planning problems. The map structure then became a

“forest” of RRTs, termed the Reconfigurable Random Forest (RRF). As multiple planning

queries were solved, the algorithm managed the forest by invalidating sections that were affected

by moving obstacles and trimming away unnecessary nodes.

A recent study addressed the issue of PRM-based planners spending most of their time

checking for collisions when constructing the roadmap (Jaillet & Simeon, 2004). This study

took advantage of the fact that moving objects only partially changed the workspace of the robot.

It limited the area of the roadmap that was updated to portions that were important to obtaining a

solution. If an important area of the roadmap was broken by a moving obstacle, the algorithm

employed an RRT planner to attempt to locally reconnect the endpoints of the blocked edges. If

this local reconnection solution failed, extra nodes were placed in the map near the broken edges

and then connected to allow for more options. This algorithm also stored past positions of

moving objects to reduce the number of collision checks required for a particular edge in the

map.

A method utilizing a Flexible Anytime Dynamic A* PRM (FADPRM) algorithm was

implemented in (Belghith, Kabanza, Hartman, & Nkambou, 2006), allowing the planner to use a

roadmap to provide a sub-optimal path quickly. The robot’s workspace was divided into zones

based on the different degrees of desirability of traversal. The algorithm then incrementally

improved the quality of the solution path if extra time was available. Experiments were

conducted by simulating the Space Station Remote Manipulator System (SSRMS). The results

of these simulations showed that the FADPRM algorithm initially required more time to replan,

but quickly and significantly reduced that amount of time when compared with a traditional

PRM replanner.

36

Path Planning with Moving Obstacle Motion Prediction

The shortcomings of the discussed motion planning algorithms leave much to be desired.

Treating dynamic objects as instantaneously static may simplify the motion planning procedure

and allow for rudimentary obstacle avoidance; however, when dealing with large autonomous

robots moving at fairly high velocity, as was the case during the DUC, rudimentary obstacle

avoidance is not sufficient. Avoiding collisions was of the utmost importance and, therefore,

requires a more elegant solution. The ability to predict the likely motion of any dynamic

obstacles in the environment would allow for motion planners to more effectively find a solution

path that would safely and smoothly avoid these obstacles.

Regression Methods

Autoregressive modeling (ARM) is one method of predicting future states of time series

data. This form of prediction was implemented in (Kehtarnavaz & Li, 1988) to aid in generating

a collision-free path for a simulated robot. This model was a function of a difference equation

between successive position measurements and a prediction error estimation term. Accelerations

for the obstacles were modeled in a similar fashion. The coefficients of this model were then

solved for and used in the prediction function. Several sets of simulations results presented

showed that this method was feasible for predicting obstacle positions one time-step in the future

for obstacle avoidance purposes.

Another study fused a steering behavior generated from an ARM-based obstacle motion

prediction with obstacle avoidance and goal-seeking behaviors to control mobile robot in an

environment with dynamic objects (Yung & Ye, 1998). A least squares method was used to

form the ARM from previous measurements of an obstacle’s positions. The predicted positions

coming from the ARM and the current position of the obstacles were then used to form a

collision zone, which was used to define fuzzy representations of allowed and disallowed

37

steering angles. Fuzzy control actions were also generated in an obstacle avoidance behavior

and goal-seeking behavior and then fused with the control actions from the predictor.

Elnagar and Gupta used the conditional maximum likelihood technique to estimate the

parameters for an ARM for motion prediction of moving obstacles (Elnagar & Gupta, 1998).

The study also extended the aforementioned ARMs in that it predicted both translational and

rotational motion. The same simulations were carried out as in (Kehtarnavaz & Li, 1988), but

the maximum likelihood method produced much more accurate predictions of the obstacle

movement. Elnagar further extended this work by considering variable time-steps for

predictions (Elnagar & Hussein, 2003). This method also used a quaternion representation rather

than an Euler representation. The ARM utilized was almost the same as in other methods

mentioned, but the prediction process was performed with variable time-steps. If a prediction

was deemed accurate, the time interval was increased before the next reading. This adaptive

time-interval feature allowed the algorithm to outperform other ARM methods in terms of

computational cost.

Another interesting robotic application of an ARM for object motion prediction deals with

robotic manipulators attempting to grasp moving targets. Houshangi began developing this

concept using visual feedback of the manipulator and the target object (Houshangi, 1990).

Because of the inherent delay in the estimating the current location of the target and the

manipulator end-effector, the prediction model was used to control the manipulator arm. The

trajectories generated by the planner were implemented by a self-tuning controller to allow the

end-effector to track and grasp the target object.

Several other variations of motion planning algorithms which use ARMs to predict future

obstacle positions have been developed. Zhuang used an ARM predictor in a polar-coordinate

38

space based planner (Zhuang, Du, & Wu, 2006), and Yu and Su used an Adapted Regression

model based on a polynomial regression coupled with a new method which classified obstacles

as triangular, convex, or convex (Yu & Su, 2003). Motion planning in a situation with multiple,

cooperative robots was also considered by Pereira (Pereira, Campos, & Aguirre, 2000).

A recent study carried out in CIMAR used a polynomial regression to track and predict the

motion of moving obstacles (Kent, 2007). The method presented by Kent first fit a high order

polynomial to a time series of position data for an obstacle. The algorithm then ran a statistical

analysis of variance to determine which coefficients of the polynomial were irrelevant and

disregarded these terms from the model. It repeated the entire procedure until a lowest order

polynomial predictor was settled upon. This lowest order polynomial was then used to predict

obstacle position, velocity, and heading for time steps of one, three and five seconds in the

future. The algorithm also provided an upper and lower confidence interval to account for

uncertainty in the model.

Bayesian Methods

Because of their usefulness when dealing with modeling systems based on uncertain data,

prediction algorithms utilizing Bayesian probability theory are well suited for solving the

presented problem. One such method, known as the Bayesian Occupancy Filter (BOF), was

developed for short-term motion prediction. This method draws heavily from the development

of Bayesian programming described in (Coue, Fraichard, Bessiere, & Mazer, 2003), which broke

the problem down into two complementary stages run recursively. The estimation stage sought

to approximate the probability of occupancy for each cell in the described grid by recursively

using the sensor observations. The prediction stage then developed an a priori description of the

occupancy of a particular cell in the grid for the next time step.

39

The BOF was used as a potential solution to the problems of occlusion and consistent

detection of moving obstacles in (Laugier et al., 2005). It was applied to the cells in a

four-dimensional occupancy grid which included the velocity dimension. This study in

particular applied a wavelet-based model for the BOF. A partial motion planning algorithm

(PMP) was then used with the predictions to navigate through the dynamic environment by

generating a set of “inevitable collision states,” which were robot states which, regardless of the

avoidance control input applied, would result in a collision with an obstacle. The PMP searched

through the grid and returned the best plan, which may not have reached the final goal point, but

which avoided these collision states.

A dynamic Bayesian network was used to model the motions of moving objects in

(Rennekamp, Homeier, & Kroeger, 2006). The mapping of this Bayesian network matched that

of a planar Voronoi graph. The transition models of the trajectories of the moving objects were

learned during a training phase. These models were then projected onto the graph and used to

predict the motions of the obstacles. This system was implemented using a vision system to

track the motions of humans in an office-type environment.

Markov Methods

Several modeling methods have been attributed to Russian mathematician Andrey Markov.

Hidden Markov models (HMM) describe stochastic processes that cannot be observed directly,

but rather are observed through sequences of observations generated by another set of stochastic

processes (Rabiner & Juang, 1986). Three problems must be solved for an HMM to be useful.

The evaluation problem deals with proving a model generated a particular set of observations.

The second problem addresses the issue of figuring out the state sequence, which is the hidden

part of an HMM. And finally, the training problem attempts to optimize the parameters of the

model.

40

A hidden Markov model was used to predict moving obstacle’s motions by Zhu for a

visually controlled robot in (Zhu, 1990). The study considered three types of obstacle models.

The constant velocity model assumed zero acceleration and served as a basis for more

complicated models. The random motion model used a probability distribution function to

describe the changes of the obstacles state. Lastly, the intentional motion model considered that

the obstacle may have had some predetermined objective or route, which could not simply be

described by a probability distribution, but rather required some a priori knowledge of the

obstacle’s intent. The current position and future model-predicted position of the obstacle were

used to create “forbidden regions” in the robot’s grid. A trajectory-guided motion planning

algorithm was used to evaluate a finite set of potential paths which took the HMM’s probabilistic

evaluations into account. This work was later compared to a deterministic prediction algorithm

(DPA) in (Zhu, 1991). It was shown that the HMM method led to a lower collision rate with

moving obstacles than did the DPA. However, it also had a higher computation time than the

DPA and deviated more from the global path.

Markov chains are the simplest form of hidden Markov models and deal with how the

outcome of one process affects the outcome of a subsequent instance of that process. More

specifically, given a set of states, Markov chains seek to estimate transition probabilities to

predict what the next set of states will be (Grinstead & Snell, 1997). Using Markov chains

allows the next state to be predicted based solely on the current state, and not based on previous

states.

The dynamics of moving humans were abstracted to Markov chains in (Rohrmuller,

Althoff, Wollherr, & Buss, 2008) and used to generate time-dependent occupancy grids for robot

navigation. A velocity model and an acceleration model were studied. A set of probabilistic

41

reachable states, defined as the set of all states that a human can reach from an initial state for all

possible control inputs, was generated and was projected in a potential field for the motion

planning algorithm. Experimental results showed this method was effective in navigating

through areas populated by humans. The results also showed that use of the velocity model

allowed for quicker replanning than did use of the acceleration model.

Neural Networks

Development of artificial neural networks (ANN) is growing rapidly due to their many

applications. Chang and Song devised a model-free ANN for single time-step prediction of

moving obstacles for mobile robot navigation (Chang & Song, 1996). For this early study,

obstacles were assumed to follow a rectilinear path with constant velocity. Past sensor readings

were the inputs to the ANN and the outputs were the predicted reading at the next time instant

for that particular sensor. It was found that the two most recent sensor readings were enough to

predict the next one. The ANN was trained off-line by means of back-propagation. This

predictor was coupled with a virtual force guidance navigation scheme. The repulsive forces

generated by the moving obstacle were generated by a deceleration and push-away layer

surrounding the obstacle position. The algorithm was later tested on a mobile robot with human

obstacles (Chang & Song, 1997). Because of several shortcomings of the ultrasonic transducers

used in (Chang & Song, 1996) and (Chang & Song, 1997), Song and Chang also tested the

feasibility of a CCD camera added to the sensor network (Song & Chang, 1999).

An ANN was used to solve the navigation problem in a study which utilized a hierarchical

partially observable Markov decision process (POMDP) in (Foka & Trahanias, 2002). The

POMDP, which in effect modeled the decision process of the robot, took a state representation of

the environment as input and output the optimal control actions. For large search spaces,

hierarchical POMDP’s are computationally more efficient since they decompose the problem

42

into multiple linked POMDP’s, each with a smaller state space to search. A polynomial ANN

was used for short-term prediction and was integrated into the reward function of the POMDP.

The coefficients of the polynomial were calculated by training the ANN off-line with an

evolutionary method.

A moving obstacle avoidance algorithm was developed by coupling a radial-basis-function

neural network (RBFNN) with a rolling planning method in (Li, Li, & Song, 2008). A camera

attached to the robot was used to capture the motions of the dynamic obstacles for training the

ANN. A rolling window was generated to shrink the search space to the sensor’s viewing area.

If it was determined in the rolling planning process that the predicted position of a moving

obstacle would obstruct the robot, the obstacle was treated as static at that predicted position and

an obstacle avoidance maneuver was generated.

Dynamic Environment Representation

Typically, a robot’s environment is represented in two spatial dimensions. A common

approach to creating this representation is to generate a discretized grid. Each cell in this grid is

assigned a value which describes the occupancy of that particular cell. This concept was first

introduced for mobile robots by Elfes (Elfes, 1989). The most basic occupancy grids are binary

in nature and can only label cells in the grid as “occupied” or “free.” Sometimes a more variable

representation of the occupancy is desired, such as a probability of occupancy. One method

similar to a probabilistic representation was created by CIMAR with the development of the

concept of “traversability” and the traversability grid (Crane et al., 2005). This type of grid still

can describe cells as “occupied” or “free,” but also allows for varying degrees of “traversability”

to distinguish areas of the grid that may be more desirable to traverse than others.

These types of grids, coupled with advanced motion planning algorithms have been

utilized by many robotics systems in recent history. However, they allow for a strictly static

43

representation of the environment at any instant in time. Therefore, a moving obstacle is actually

represented as a static obstacle in a single occupancy grid. For dynamic environments, it would

be advantageous to be able to have a spatial and temporal representation of the surroundings. A

few studies have attempted to address this issue, but much room is left for improvement.

State-Time Graph

The concept of adding the time dimension to a robot’s state space was first considered by

Fujimura and Samet in (Fujimura & Samet, 1989). Moving objects were represented as swept

volumes in state-time space. A hierarchical quadtree structure was used to represent this three

dimensional space. The state-time space was repeatedly divided until each cell satisfies one of a

set of conditions. Vertex cells contained part of a trajectory of a vertex of an obstacle, edge cells

contained part of a trajectory of an edge of an obstacle, empty cells did not contain any part of

any trajectory, and full cells were completely contained in a trajectory. Cells were then

decomposed into L-points associated with the two spatial dimensions and T-points associated

with the time dimension. The set of L and T-points were then searched by a heuristic algorithm

to find the time-optimal trajectory for the robot.

State-time space was later used for the motion planning problem of a mobile robot

following specified lanes in (Fraichard & Laugier, 1992). Points in this state-time space were

represented as tuples consisting of the current lane, position, velocity, and time instant.

Neighboring points were reached by applying acceleration to the robot for a time-step. This

process generated a directed graph in the state-time space for the robot to search through. An A*

algorithm was used to facilitate this search to find the time-optimal trajectory for the robot to

follow.

The authors further extended this study to take constraints imposed by the dynamics of the

robot and moving obstacles into account (Fraichard & Laugier, 1993). A dynamic model of the

44

robot was presented and constraints associated with engine force, sliding, velocity, and

acceleration were considered. Dynamic obstacles were again represented as swept volumes in

the robot’s state-time space. These volumes, along with the regions represented in the dynamic

constraints models, were used to create “forbidden regions” of the state-time space of the robot.

The same A* algorithm was then used to search the state-time space of the robot and

successfully avoided these “forbidden regions” in simulation.

Rude investigated the issue of collision avoidance for two cooperative robots in state-time

space in (Rude, 1997) by means of a space-time “collision vector.” These two robots were

constantly transmitting their planned trajectory through the joint state-time space to each other,

so each knew the intended path of the other. The “collision vector” was then calculated as the

shortest magnitude vector between the two planned trajectories. If the magnitude of this vector

was less than a distance equivalent to the radii of the two robots, a collision was possible and

needed to be avoided. This avoidance maneuver was generated by constructing a displacement

vector that would alter the trajectory of one of the robots enough such that the magnitude of the

resulting “collision vector” was large enough to evade the collision. Simulations and

experiments on robots confirmed that this method was successful in avoiding collisions.

The interface propagation method, a modified form of the path-velocity decomposition,

was used for velocity planning through a state-time graph in (Hwang & Ju, 1999). In this case,

the state-time graph was two-dimensional, consisting of the time dimension and a single distance

dimension to represent the distance traveled along an existing global plan. Forbidden regions

were again used to represent the motion of obstacles in the state-time graph. A maximum

distance and time interval were calculated for these regions to approximately quantify a potential

collision. A “speed zone cone” was created to modify the state-time graph based on the

45

maximum and minimum speed of the robot, as the two-dimensional graph could equivalently

represent a speed graph. The velocity profile was then calculated based on the interface

propagation algorithm. This profile facilitated avoiding the “forbidden region” representations

of the moving obstacles in the environment.

Temporal Geographical Information Systems

Geographic information systems (GIS) keep track of objects and events and where these

objects and events occur or exist (Longley, Goodchild, Maguire, & Rhind, 2001). In addition to

these spatial descriptions, it may be desirable to capture and store temporal information about

these objects and events, which gives rise to the concept of temporal GIS. This new form of GIS

seeks to record historical geographic states, pick out changes and patterns in spatio-temporal

data, and predict the future properties of these geographic states.

This multi-dimensional framework gives rise to the potential for one dimension

dominating another, which results in the clustering of data being very attractive as discussed in

(Langran, 1990). One example of a structure that may experience this dimensional dominance is

the temporal grid, which is a common geographic data structure, and can be clustered in a variety

of ways. A space-dominated approach provides individual snapshots of the grid over time as

described in (Armstrong, 1988) and is fittingly known as the Snapshot Model. Conversely, a

time-dominated approach could group values contained within an individual cell over all time-

steps, while a spatiotemporal approach, where both the time and space dimensions are weighted

approximately equal, could cluster small cubes in space-time. In addition to the Snapshot

Model, Langran and Chrisman developed the Space-Time Composite method (Langran &

Chrisman, 1988) which builds a view of a geographic area by beginning with a base map, which

becomes a temporal composite by considering the accumulated geometric changes in the area.

This essentially decomposes the map into smaller pieces as time passes.

46

Temporal GIS has previously been applied to several different robotic applications.

Hatayama and Matsuno describe the use of temporal GIS by robots examining damaged

buildings after disasters in (Hatayama & Matsuno, 2008). The KIWI+ format developed in this

study allows spatiotemporal objects to be managed by using both the aforementioned Snapshot

Model and Space-Time Approach model described in (Worboys, 1994). Trajectories of

spatiotemporal objects can be described either as a polyline or polygon with N points and only

one temporal factor or as a polyline or polygon where each point has its own instant temporal

factor. Using the same format, temporal GIS is used to aid in recognizing vehicles on a road

which may be parking in (Ishikawa et al., 2005). “Change regions” are built from the difference

between reference GIS data and a proposed omni-directional motion stereo vision system. This

method was successfully used to recognize a truck, sedan, and station wagon in the field.

Temporal Occupancy Grid

A recent extension to the traditional occupancy grid added the time dimension and has led

to the concept of the Temporal Occupancy Grid (TOG) (Arbuckle, Howard, & Mataric, 2002).

This new type of grid allowed for occupancy to be estimated for a number of different

time-scales. The grid consisted of a matrix made up of two spatial dimensions, one time

dimension, and additional dimensions for the number of time-scales used. Rather than each cell

in the grid having one occupancy value, each cell had several different occupancy values

corresponding to the different time scales specified. Each cell was further classified based on

these numerous occupancy values. Cells containing static obstacles would likely have high

probabilities of being occupied on all time scales. On the other hand, cells which had moving

obstacles passing through them would have high probabilities of occupancy on short time scales,

but low probabilities on long time scales. The time dimension of the TOG could then be

collapsed by considering these classifications. Experiments were conducted to validate the

47

method for static and dynamic environments, and showed that a TOG could effectively estimate

historic occupancy of an environment.

While they did not refer to it explicitly as a temporal occupancy grid, Biber and Duckett

used a grid which stored occupancy values for multiple time scales in an attempt to map dynamic

environments for mobile service robots (Biber & Duckett, 2005) . Each level of the grid

associated with a specific time scale was built from a set of sensor samples taken from the

previous scale to that particular scale. The levels of the map were updated by randomly

removing a number of samples and replacing them with an equivalent number of randomly

selected samples from the new sample set. To use the map at a specific time, a normal

distribution was estimated from the samples. Experiments were carried out using this method

with five time scales in a busy office setting to obtain a short-term and long-term memory map.

The results of these experiments showed that this method could effectively describe areas of the

environment that are likely static or dynamic.

Another TOG algorithm was developed for mobile robot environment mapping by Mitsou

and Tzafestas in (Mitsou & Tzafestas, 2007). In this method, the traditional occupancy grid was

again extended through the time dimension. The time dimension was represented by time

intervals, and a time index, in the form of a B+ tree, was assigned to each cell in the grid. The

probability of occupancy of the cell for a particular time step was stored in these indices. The

standard deviation of the various occupancy probabilities for each cell was then used to describe

the dynamics of that cell. Cells containing static objects exhibited little to no dynamic activity

and had high occupancy probabilities. Dynamic objects were classified as either low dynamic

objects or high dynamic objects. Low dynamic objects appeared only in a limited number of

places, while high dynamic objects moved arbitrarily and could be found in many places. The

48

time indices of each cell were searched to aid in detecting the different types of objects. For

experimentation, a simulated robot was outfitted with a simulated laser range finder and tasked

with mapping an environment with doors that can be opened or closed and humans moving

around.

Autonomous Target Interception

The concept of using motion prediction to aid in allowing a robot to navigate to a

particular state to intercept some sort of object or target has been explored for a number of

applications. Hujic, Croft, Fenton, Mills, and Benhabib developed a strategy entitled Adaptive

Prediction Planning and Execution (APPE) in (Hujic et al., 1995) to guide a robotic manipulator

arm to a rendezvous point to grasp an object. Once a trajectory was predicted for the target, a

one-dimensional search was conducted of the predicted trajectory to find rendezvous-points

where the target and manipulator end-effector arrived at the same time and with the same

velocity. The minimum time rendezvous point was selected and the joint trajectories were then

determined for the manipulator. This strategy was then extended to on-line replanning in another

study (Croft, Fenton, & Benhabib, 1998).

A rendezvous-guidance technique was coupled with the velocity obstacle concept in

(Kunwar & Benhabib, 2006) to autonomously navigate a mobile robot to intercept a moving

target among other moving obstacles. A vision sensing system was used to collect position and

velocity data on both the target and all other dynamic objects in the environment. Velocity

obstacles were then generated for all objects within a defined time horizon for obstacle

avoidance. A parallel-navigation law was then used to guide the robot to the target’s location

and to match the velocity of the target. This law stated that if the relative velocity between the

robot and the target remained parallel to the position vector between the two, the distance

49

between them would decrease until they “collide.” Simulation and robotic experiments were

used to test the method with multiple moving obstacles and a single target.

An interception problem for a robotic manipulator on an orbiting spacecraft attempting to

grasp free-floating objects was discussed by Robert in (Robert & Sharf, 2007). A Kalman filter

was used to propagate the target dynamics to predict the future states. The interception

technique was broken down into the approach to the rendezvous point and the capture of the

target. The approach trajectory was generated by finding the time-optimal interception point.

This optimal trajectory was recalculated as needed when the predicted trajectory of the target

changed, thus changing the optimal interception point. For the capture phase, a finer tracking

algorithm was used to adjust the manipulator end-effector velocity and twist to match that of the

target. Numerical simulations were executed to compare this technique to a more traditional

visual-servoing method and showed that the predictive technique resulted in almost negligible

joint angle error and a lower interception time.

This chapter provides an overview of many of the common techniques previously studied

to address the key elements of the problem statement for the research presented. Specifically, it

has focused on motion planning methods for dynamic environments, motion prediction for

moving objects in dynamic environments, and dynamic environment representation. The

following chapter describes the newly developed predictive temporal motion planning method

from a theoretical standpoint.

50

CHAPTER 3
THEORETICAL APPROACH

Navigating dynamic environments is a complex problem for a robot that requires a

coordinated effort among several elements of the system. This dissertation presents a novel

approach to this task, which considers how the robot’s surroundings changes with time. A

predictive temporal motion planning method was developed that utilized the coupling of moving

obstacle detection and prediction with the occupancy grid concept to generate a representation of

the changing environment, which the motion planning algorithm then used to more intelligently

generate motions which avoided any objects in its vicinity. This chapter strives to break this

process down into its key components. The first of those components considers the generation of

the temporal grid, followed by the inclusion of obstacle prediction information into the temporal

grid, and finally, the exploration of the temporal grid by a motion planning algorithm to build

optimal trajectories for the robot.

First, an overview of common control techniques and graph search methods is provided to

divulge the important parameters that intimately link the motion planning algorithm and the

temporal grid concept. The next section then focuses on the construction of the temporal grid

itself, followed by a description of the process of predicting the motions of obstacles and the

integration of these predictions into the temporal grid. Lastly, the temporal motion planning

algorithm is outlined to draw all of the elements presented in the previous sections together. The

information in these sections is provided in a generic sense to emphasize that this predictive

temporal method is applicable to a variety of robotic systems, including robotic manipulators in

addition to unmanned air, ground, and underwater vehicles. The next chapter narrows down the

description to an implementation on an unmanned ground vehicle.

51

Motion Planning Overview

Before outlining the fundamental theory of the temporal grid, it is prudent to discuss the

influence of the motion planning algorithm on the creation of the grid. Therefore, a brief

overview of discrete-time control methods for robot navigation is provided. The ultimate goal of

robot planning is to generate a continuous motion from a start configuration to a goal

configuration contained within the robot’s configuration space while avoiding all obstacles.

Before this process can even begin, sensors must examine the surrounding environment to

produce a mapping displaying the areas that are both safe and unsafe for the robot to navigate to

reach its goal.

A common approach to this mapping is the generation of a grid map, which decomposes

the robot’s environment into a series of spatially-defined cells. Each cell in the grid represents a

region of the surrounding environment that can be classified as being free and accessible to the

robot, or closed due to being currently occupied by an object. These classifications can then be

used by a motion planning algorithm to evaluate the grid to determine a sequence of

configurations that will successfully move the robot from its initial position and orientation to its

goal position and orientation.

The first technique of interest considers the various grid-based or graph-based search

methods. These methods overlay the grid map on the systems configuration space, therefore,

considering each grid point as a potential configuration, or state. These methods include

uninformed techniques, such as breadth-first and depth-first search. Uninformed search methods

operate with no special knowledge of the problem other than the start state and the goal state and,

therefore, have no information to focus the direction of the search. Instead, they use a brute-

force approach to search as many nodes on the graph as possible in hopes of finding a solution

trajectory (Nilsson, 1998).

52

Breadth-first search considers applying all possible operators to a state, followed by

applying all possible operators to the successors of that state, and so on. Conversely, depth-first

search expands and explores the successors of a single state at a time. Once a successor is

generated, one of its own successors is generated, and so on. A depth bound is defined such that

a particular branch of the search does not continually expand states without allowing for different

branches to be explored. Figures 3-1 and 3-2 display simple representations of breadth-first

search and depth-first search state exploration, respectively.

Informed search methods include best-first techniques such as greedy search and A*

search. Best-first search algorithms explore a graph by always expanding the most promising

state. This is realized by using a rule, or heuristic, to rank states and determine which is best for

the next expansion. Heuristics can range from simple functions, such as the Euclidean distance

between a state and the goal to more complex evaluations based on a number of different

parameters and they serve to estimate the distance, or cost, from a particular state to the goal.

Admissible heuristics are required to not overestimate cost to the goal such that:

 (3-1)

where is the estimate of the cost from a state on the optimal solution path and is the

actual cost from that same state to the goal. Each time a state is explored and evaluated, it is

placed on a priority queue, where the first state on the queue is the most promising.

Receding horizon control (RHC) is another commonly used motion-control strategy that

utilizes a discrete set of configuration or state changes that are subject to the dynamics of the

system, given simply as:

 (3-2)

53

where is the set of potential future states that are obtainable from the current state,

is the dynamics function, is the current state, and is the current control input. This

sequence of state changes is determined by an associated sequence of open-loop plant input

commands that are generated out to a finite time horizon . This sequence is optimized and

given as:

 (3-3)

where are the discrete optimal inputs and is the finite time horizon. The initial input in

the optimal sequence is selected as the commanded control input sent to the plant such that:

. (3-4)

At this point, the control is implemented and the optimization repeats to determine the next

control input for the state change from the new current state to a specific future state

 considering updated vehicle and environmental state information. As evidenced in

Equations 3-2 and 3-3 the discrete control inputs and state changes occur at distinct distance-

steps or time-steps, as was the case with the grid-search method. Each successive state-change

results in a potential configuration that could describe the system at a distinct time in the future.

At each of these future-times, it is possible that the composition of the surrounding environment

could have changed dramatically, including the location, orientation, and velocity of any

obstacles present. It is this capricious nature of a robot’s environment that was one of the main

factors in the development of the presented temporal motion planning method. The work

presented in this dissertation showed that the ability to incorporate information about how the

environment changes into a motion planning algorithm that utilizes a strategy such as RHC can

improve stability and performance of the system.

54

The description of these methods, which use discrete state changes, gives rise to essential

parameters required for the development of a temporal grid structure. For the graph-search

techniques, the exploration of adjacent states represented discrete steps through the configuration

space while attempting to reach the goal state. Each of these steps has some physical meaning

depending on the state representation, such as a distance or a time-step for example. Likewise,

the RHC approach utilized a sequence of optimized control inputs separated by similar time-

steps as evident in Equation 3-3. The number of inputs in the optimal sequence was determined

by the step-size associated with each state change and the finite time horizon. The time-step

among adjacent states is hereafter denoted as and the time horizon is denoted as . These

two key parameters played an important role in determining the number of temporal layers to be

included in the temporal grid structure. They were also used in determining the appropriate

future-times to estimate the positions and velocities of any obstacle present in the robot’s

environment. The details of these applications are provided in ensuing sections of this chapter.

Temporal Grid

A particularly novel aspect of the presented research was the concept of a predictive

temporal grid map that represents a robot’s environment at the current time and at distinct times

in the future up to a time horizon discussed in the previous section. This section focuses on the

temporal aspect of the grid map, while the predictive aspect is discussed in the next section. The

novel temporal grid map was an extension of the traditional occupancy grid that is commonly

used for robotic environment mapping. Occupancy grid maps, as defined by Thrun in (Thrun,

Burgard, & Fox, 2005) seek to rasterize an environment such that:

 (3-5)

55

where is the map itself and represents the individual cells that make up the map. The

index is associated with a particular row and column within the grid structure. This value is

determined for a distinct row-column pair as:

 (3-6)

where is the total number of columns in the grid map. This convention can be applied

regardless of the origin of the grid, as long as it is located in one of the corners. Each cell of

must be assigned an occupancy value based on accumulated sensor data for the region of the

environment represented by that cell and the motion of the robot. This value can be estimated

for an individual cell as the probably function:

 (3-7)

where is the set of all sensor measurements up to time and is the sequence of positions

of the robot up to time . This calculation attempts to estimate the likelihood that a cell is

occupied by some object at a given instant in time given the accompanying sensor data for that

cell. Similarly, this posterior distribution can be built up for an entire map as the product of the

individual cells as:

. (3-8)

The development of the temporal grid required a similar procedure for the assignment of

occupancy for all of its cells as well. The structure of the temporal grid differed as subsequent

temporal layers were added. This spatio-temporal grid structure can be viewed in Figure 3-3 as

essentially a three-dimensional array of grid cells with two spatial dimensions and the single time

dimension. The inclusion of the time dimension in the grid allowed it to contain information

depicting how the environment changed as time progresses. A specific grid cell may, therefore,

be thought of as possessing multiple occupancy values, each associated with a time that is farther

56

in the future than the last. Figure 3-4 shows another visualization of these temporal layers of a

group of grid cells. This image shows a representation of a single row of grid cells with several

attached temporal branches. Each branch coming from the original cell represents that same cell

spatially, but at a distinct time in the future. The identifier for each cell takes the form

.

By adding this temporal dimension to the grid structure, the indexing procedure for

accessing a particular cell changed slightly. Whereas the index for a cell in the spatial grid relied

only on the row and column value of the cell as in Equation 3-5, this index term must now

account for the temporal layer in which the cell of interest resides. The new indexing scheme

for a row-column-time triple can be shown as:

 (3-9)

where is the temporal layer in which the cell resides, and are the total numbers of

rows and columns in a layer of the grid, and and are the row and column value of cell .

Referring to the previous section on motion planning algorithms, the values of discrete

control time-step and finite time horizon were described as crucial components of the

construction of the temporal grid structure. The time-step determined the instants in time

represented in each of the successive temporal layers of the grid and, along with the time

horizon, determined the total number of temporal layers in the grid to be generated. The number

of layers was calculated simply as:

. (3-10)

This calculation assumed that the time-step and time-horizon were both constant values, which is

shown to not necessarily be true in the next chapter. An optimization scheme is also presented in

the next chapter which succeeded in reducing the resources necessary to build the temporal grid

57

structure. This method also altered the indexing scheme presented in Equation 3-9. Now that

the basic theory behind the temporal grid structure has been presented, the inclusion of obstacle

motion prediction information in the grid is discussed.

Obstacle Motion Prediction

The introduction of moving obstacles into the robot’s environment presents additional

challenges to the motion planning problem. The use of an existing occupancy grid described in

the previous section requires the motion planner to generate its sequence of control inputs out to

the time horizon at the edge of the grid while assuming all objects are static during that time.

Figure 3-5 shows a form of occupancy grid that was modified to show the output of a motion

planning algorithm of an unmanned ground vehicle that was attempting to generate its sequence

of controls. Detected obstacles are painted yellow and remained in the same position in the grid,

even though they may have been moving. This provides a good example of how a motion

planning algorithm expands out its potential future states all the way to the time horizon at the

edge of the grid, which may represent ten to fifteen seconds or more in the future, while all the

detected obstacles remain in the same position, regardless of whether they are stationary or

moving.

Using a planning strategy such as RHC described previously, if one of the obstacles

displayed were actually moving along a trajectory that would cross the robot’s desired path in the

future, the robot would not be able to react until the object actually obstructed its path and

affected the control input evaluation. This could ultimately be fatal if the robot did not have

enough time to stop or plan a path that avoids the obstacle. On the other hand, if the obstacle

were crossing the robot’s desired path, but would be well out of the way by the time the robot

reached that position, the planning algorithm would have no reason to attempt to react to

navigate around the obstacle. However, using the described methods, the motion planner could

58

incorrectly determine that it was necessary to alter its trajectory to avoid the obstacle. For these

reasons, it was helpful to be able to estimate the position of the obstacle in the future and to be

able to represent these predicted future positions in the grid. To accomplish this, a prediction

algorithm was required to provide this information for both the position and velocity of all

obstacles detected in the robot’s vicinity. A general prediction method is first discussed to

estimate the future positions and velocities, and is followed by a description of how these

estimates were represented in the grid.

To facilitate this estimation, any of a number of prediction algorithms such as a polynomial

regression predictor, similar to the one discussed in (Kent, 2007), can be used. This algorithm

sought to fit curves to time-series of position and velocity data for each obstacle provided by a

laser-based moving obstacle sensor. It accomplished this by tracking the global position of an

obstacle and maintaining a recorded data set of size as:

. (3-11)

For a given data set such as in Equation 3-11, a polynomial was fit to the data that possesses the

form:

 (3-12)

where is the maximum order of the polynomial. Therefore, the creation of this prediction

model depended on solving for the coefficients of the polynomial. The polynomial can also be

represented in matrix form as:

 (3-13)

59

where: .

In this matrix form, the coefficient vector was solved for by pre-multiplying Equation 3-13 by

and solving the modified equation as:

 (3-14)

Similarly, a polynomial of the form:

 (3-15)

can be fit and evaluated for the estimation of future positions by solving for an equivalent

coefficients vector

Upon solving for the coefficients of the polynomials as in Equation 3-14, future estimates

for and can be calculated for various values of . Referring to the previous section on the

creation of the temporal grid structure, each temporal layer was separated from adjacent layers

by a distinct time-step determined by the motion planning algorithm time-step parameter .

These distinct time-steps between temporal layers were used to determine the time values for

which the future positions of all obstacles needed to be predicted. A new predicted position was

required for each successive group of potential state changes investigated by the motion planning

algorithm, where the time-step associated with the group of state changes was calculated as:

. (3-16)

These values of were then used in Equations 3-12 and 3-15 to solve for the estimated future

values of and .

After estimating the future positions of any detected obstacles at the distinct times

presented in Equation 3-16, it was necessary to convert these positions into the temporal grid

60

frame of reference, namely row and column values, to be represented in their respective temporal

layer. The row and column values for a particular temporal layer were calculated from the

predicted x and y positions at that same future-time value as follows:

 (3-17)

 (3-18)

where and are the predicted x and y positions of an obstacle at time , GSM is the grid

size (length in units equal to that of and), and is the resolution of each grid cell (in the

same units). At this point, the occupancy of these row-column pairs was set as occupied in the

appropriate temporal layer to represent where the obstacle would likely be at that future time.

Temporal Motion Planning

With the inclusion of obstacle motion prediction information in the temporal grid structure,

the motion planning algorithm used this predictive temporal grid to consider how its

environment changes as time progresses and to more intelligently generate its sequence of

control commands according to these changes. As outlined in the previous sections covering the

creation of the predictive temporal grid, each temporal layer corresponded to a representation of

the environment at a distinct time-step in the future. These time-steps coincided with the future

times at which the planning algorithm was attempting to determine the appropriate control to

institute the desired change in state.

The robot motion planning problem can generally be viewed in its optimal control problem

formulation, which can be given as:

 (3-19)

61

where is the performance measure used to evaluate the possible trajectories the robot can

follow, is the endpoint cost associated with the final state of the robot, is the

intermediate cost functional associated with each of the intermediate states along a trajectory,

 is a state of the robot at time , is the control instituted at time , and and are the

initial and final time of the motion, respectively. The constraints placed upon the system include

the dynamics function , the endpoint constraints defining where the system must begin

and end its motion , and the path constraints of the environment defining physical

constraints that may limit the possible trajectories . The second element of Equation 3-19,

representing the sum of the intermediate state costs, can be split up by discretizing the time

interval between and such as

. (3-20)

where the important motion planning parameters discussed previously can be related as

 (3-21)

.

By utilizing this method, this discrete set of evaluation times coincided with the distinct time-

steps associated with the temporal layers of the temporal grid described previously. Therefore,

the temporal layer associated with each of these intermediate times was used in the calculation of

each of the intermediate costs defined by the evaluation functional .

The intermediate cost function can take many forms, but ultimately will consider the

conditions of the physical region of the environment which coincides with the potential state to

be evaluated. Using an occupancy grid map as an example representation of the environment,

this would be equivalent to using the occupancy value of a cell in which a potential state resides

to evaluate the appeal of that state. To expand on this idea, consider the motion planning

62

algorithm evaluating its first set of potential state changes, occurring at time-step . Jumping

ahead a few steps in the evaluation process, perhaps a grid cell that will contain a future potential

state at time is unoccupied and available for the robot to traverse. Now consider the situation

that, in the time between evaluating the first set of potential states and evaluating the future state

in the cell at time , the cell becomes occupied by an object. It is then likely that the motion

planning algorithm will incorrectly evaluate that state by believing that cell to still be

unoccupied. This error could lead to this state being selected to determine the control input

sequence defined in Equation 3-3 and could ultimately lead to the robot colliding with the

obstacle.

By replacing the occupancy grid in the previous example with the new predictive temporal

grid map described in this chapter, the intermediate cost evaluation function did not simply use

the spatially-defined region of the environment to evaluate a particular state, but also considered

the estimated future conditions of that region on a time-dependent basis. Returning to the

previous example, if the prediction algorithm correctly estimated the future states of the obstacle,

the cells in the grid that contain this estimated future obstacle state were correctly modified from

being considered free to being considered occupied on the time-scale associated with that step in

the state-evaluation process. Therefore, as the motion planning algorithm evaluated that time-

dependent state, it correctly assessed that the state was not feasible as it could lead to a collision

with the object.

Figure 3-6 displays a series of successive steps in the proposed temporal motion planning

process showing the coarse exploration of potential states as the predicted positions of a moving

object pass in front of the vehicle. Each black circle represents a potential future vehicle state,

with the connecting arcs and straight lines representing the trajectory taken between these

63

various potential states. The goal state is represented by a green circle and the associated goal

region is shown as a dashed circle around the goal state. Figure 3-6(a) represents the initial

exploration step which uses the information in the initial temporal layer of the grid for

evaluation. Successive generations step further out in time as the motion planner accesses their

associated layers of the temporal grid, which also step further out in time out until it reaches the

goal as in Figure 3-6(f). These images depict a case where the object passes before the robot

would reach the crossing point of the objects path with its own desired path. Figure 3-7 displays

a similar series of images representing a case where the motion planner is required to divert from

its nominal path to avoid the object at its predicted position in shown in Figure 3-7(b).

This chapter has provided a general overview of the predictive temporal motion planning

method. It has presented the concept in a fashion that could lead to the method being

implemented on a variety of robotic applications. The description of this new approach has been

broken into its main components, those being the temporal grid, the inclusion of obstacle motion

prediction, and the temporal motion planner. Each of these components was intimately related

by the temporal elements of the discrete nature of common motion planning algorithms. The

next chapter outlines the specific implementation of this new motion planning method that was

developed and analyzed for the presented research.

This chapter outlines the new predictive temporal motion planning method in terms of the

theory of the key parameters used in common discrete motion planning techniques, the temporal

grid concept, motion prediction models, and temporal motion planning. These concepts

addressed the main elements of the problem statement provided in Chapter 1. The following

chapter details the specific implementation of these concepts for a large unmanned ground

64

vehicle which was the basis for this study. It focuses on the important software components that

previously existed and those that were created for this research.

65

Figure 3-1. Breadth-first search state exploration order.

Figure 3-2. Depth-first search state exploration order.

66

Figure 3-3. Three-dimensional temporal grid structure.

Figure 3-4. Temporal grid tree visualization.

67

Figure 3-5. Sample output traversability grid from motion planning.

68

Figure 3-6. Discrete exploration steps of motion planner with no obstacle interference.

69

Figure 3-7. Discrete exploration steps of motion planner with obstacle interference.

70

CHAPTER 4
IMPLEMENTATION DETAILS

This chapter outlines the technical details of the existing implementation of the various

components of the PTMP method used for the research presented in this dissertation. The

ultimate objective of the presented research was the actualization of the temporal method on a

real autonomous robot. The resources present at CIMAR made this goal a reality in terms of

software development and the ability to test the method on a reliable robotic test platform.

Firstly, one of the robotic ground vehicle platforms designed and built at CIMAR, the Urban

NaviGator is described, followed by a brief background of the traversability grid (TG) developed

by CIMAR in (Crane et al., 2005) as a starting point from which the temporal grid was built.

Next, the software component responsible for the generation of the predictive temporal grid is

discussed in detail. The temporal motion planning algorithm is then outlined in detail to show

how the temporal grid was used to effectively generate trajectories for the robotic vehicle.

Lastly, a unique application of the PTMP method is presented that allowed a robot to

autonomously follow and intercept a target object.

Urban NaviGator

The Urban NaviGator, shown in Figure 1-1, is a fully-autonomous sport utility vehicle that

was designed and developed at CIMAR for the 2007 DARPA Urban Challenge robotics

competition and served as the robotic test-platform for the implementation and testing of the

PTMP method presented in the previous chapter. The robot was built on a 2006 Toyota

Highlander Hybrid (THH) chassis that was heavily modified to meet the requirements of

autonomous navigation. The hybrid nature of the vehicle allows it to run on its internal electric

power train and/or its internal combustion engine. The relevant hardware present on the vehicle

71

is now described, followed by an overview of the system architecture. Lastly, the software

components of the architecture that are critical to the PTMP method are outlined.

Architecture

The system architecture of the Urban NaviGator is outlined in Figure 4-1 and was

comprised of four main elements. The Perception Element contained all the sensor hardware and

software components that provided data about the surrounding environment to the rest of the

system. This included a network of three GPS units, eight laser range finders, four color

cameras, and a variety of software components that use the aforementioned hardware to carry out

such tasks as line-finding, moving obstacle detection, and terrain estimation. The Planning

Element was responsible for using a Mission Data File (MDF), which defined the locations the

robot was required to visit and the order in which the robot was required to visit them, to plan

high-level and mid-level trajectories through the Route Network Definition File (RNDF), which

defined the entire drivable environment as a set of GPS-based waypoints and checkpoints. The

mid-level plans were provided to the low-level motion planning algorithm to calculate the goal

point to which it generated its trajectory. The Intelligence Element sought to collect and analyze

information about the vehicle, the environment, the status of the mission, and the available

operating behaviors to best choose the next course of action for the vehicle. Lastly, the Control

Element was responsible for executing low-level motion planning, which generated the control

inputs implemented by the vehicle to navigate through its environment and avoid static and

dynamic obstacles.

Hardware

The Urban NaviGator possessed a comprehensive sensor package used for localization,

terrain estimation, and obstacle detection. This package included six SICK LMS-291 LADAR

sensors and two SICK LD-LRS1000 long range LADAR sensors used for obstacle detection and

72

terrain classification. Also included were four Matrix Vision BlueFox USB color cameras,

which were used for lane line detection and path-finding. Three GPS units were combined with

a GE Aviation North-finding-module (NFM) for vehicle localization. The NFM maintained

Kalman filter estimates of the position and orientation of the vehicle in its global frame of

reference.

A distributed computing package replaced the rear row of seats in the Urban NaviGator for

all data processing needs. The vehicle supported up to twelve ATX motherboards, of which ten

were populated. The motherboards contained AMD X2 4600 processors and storage resources

included four gigabyte compact flash cards and eighty gigabyte hard drives. The computers ran

multiple operating systems including Ubuntu 8.04 Linux and Windows XP. Two gigabit

Ethernet network switches were available for high-speed data transfer among the various

computers on the robot. Lastly, in-car development was facilitated by means of a dual-head

keyboard-video-mouse (KVM) switch, which allowed access to any of the ten populated

computers from either of two rear-seat workstations.

Actuation of the Urban NaviGator was facilitated by a variety of means. For steering

automation, an Animatics SmartMotor was attached to the steering column and received position

commands that were associated with the steering commands coming from the motion planning

algorithm. Throttle and brake automation was enabled through use of the existing drive-by-wire

system already implemented on the vehicle. A custom controller was designed and incorporated

to pass throttle and brake commands to the vehicle when it was in an autonomous state. This

autonomous state was reached through a multiple-step process, at which point the vehicle was

remotely activated to begin a mission.

73

Software

All of the various elements making up the system architecture described in the previous

section were supported by multiple software components that were responsible for the various

tasks associated with each architecture element. Two of the components that are critical to the

success of the implemented PTMP method are now briefly described. As part of the Perception

Element, the Moving Obstacle (MO) sensor was responsible for detecting, localizing,

classifying, and tracking objects of interest in the robot’s environment. This software component

accomplished these tasks by fusing data from several of the LADARs on the vehicle. The use of

these four strategically placed lasers allowed for a data field that encompassed the entire area

around the vehicle, and the two long-range scanners allowed for early detection of objects on the

front and sides of the vehicle. The raw range data provided by the various lasers was fused and

evaluated for objects of interest that roughly match a model of a vehicle. Once one of these

objects of interest was identified, its location, defined by its estimated centroid, and its velocity

was calculated. As MO completed this task for the entire sensor data series, a list of potential

dynamic objects was created and was made available to the rest of the system. This list of

moving obstacles was used in the PTMP method to build a dataset of obstacle positions and

velocities to be used by the prediction algorithm to estimate future object positions and

velocities.

Other elements of the Perception element were responsible for producing traversability

grids according to their respective function. These multiple TGs then had to be fused into a

single, usable grid, which was the charge of the Smart Arbiter (SARB) component. The concept

of traversability is explained shortly in the following section, but may be used loosely to describe

the function of the SARB. After collecting the various TGs from the different components, the

SARB executed an arbitration algorithm which analyzed the traversability values for a particular

74

cell in each of its incoming grids and selected the lowest traversability value to assign to that cell

in the output TG. The lowest value was selected as a matter of safety to accommodate different

sensors having different views of the environment and providing different traversability values

for a particular cell. The SARB could also intelligently change how certain regions, such as the

desired lane of travel, were represented in the grid as a means of aiding motion planning during

different vehicle operating behaviors. The last step in the fusion algorithm was to dilate any

obstacles by a size equivalent to the width of the robot, plus a buffer region, to allow for safe

avoidance of these obstacles. This output grid was used as the baseline for the creation of the

predictive temporal grid.

Traditional Traversability Grid

The first step in the development of the predictive temporal planning method considered

building a temporal grid structure from an existing spatial grid. The spatial TG developed by

CIMAR sought to create a rasterized representation of the environment around a robot similar to

an occupancy grid. Rather than simply classifying cells as occupied or free, the grid allowed for

variability in the level of “occupancy” by assigning each cell a value which represented how

traversable the cell was. For example, a cell containing a modest incline was assigned a lower

traversability value than a cell containing completely flat terrain, although a vehicle would still

be able to traverse the former. Figure 4-2 displays a visualization of how the immediate

environment could be viewed by a human in the top image and by a robot as a TG in the bottom

image. All cells considered out of bounds are painted red and assigned the lowest possible

traversability value, while the drivable corridor is painted green and assigned a high

traversability value. Cells containing trees or other impassable objects are also painted red and

assigned low traversability values and cells representing terrain that experiences significant

changes in elevation are painted yellow and assigned intermediate traversability values

75

signifying that these cells are not as traversable as their neighboring cells that contain flat terrain.

A cell’s traversability value was determined by the fusion of data coming from the robot’s sensor

network. Cells containing obstacles, or which were deemed out of bounds, were assigned low

traversability values, while cells that were unoccupied, flat, and in the robot’s desired direction

of travel were assigned high traversability values.

The TG design used during the presented research called for 121 rows (0 to 120) and 121

columns (0 to 120) with the vehicle located in the center cell at location (60, 60). Each cell

represented an area of 0.5 m by 0.5 m square, resulting in a grid of size 60 m by 60 m square.

With the vehicle located in the center of the grid, this grid provided data for a range of

approximately 30 m around the vehicle. The traversability values of each of the 14,641 cells of

the grid were stored as unsigned character data types, resulting in each grid requiring just less

than 15 kilobytes of memory. The grid coordinate system was aligned with the Universal

Transverse Mercator coordinate system such that the vertical axis of the grid represented the

Northing direction and the horizontal axis represented the Easting direction. As the grid

coordinate frame was fixed, the environment in turn rotated around the origin according to the

vehicle heading direction.

A special data structure, termed the torus buffer, was previously implemented to store the

data associated with the traditional TG. This structure, while essentially a linear data array,

allowed for easy shifting of the grid’s traversability values as the vehicle moved by connecting

the last element of each row with the first element and the last element of each column with the

first. By comparing the current global location of the grid center with the current global position

of the vehicle, row and column shift values could be calculated and the corresponding number of

rows and columns at the edge of the grid could be re-initialized as the vehicle moves.

76

Considering a single column of twenty grid cells in Figure 4-3(a), attaching the last cell to the

first cell resulted in the ring buffer data structure depicted in Figure 4-3(b). Extending this out to

twenty columns resulted in the linear array of ring buffers shown in Figure 4-3(c). And finally,

Figure 4-3(d) shows a visualization of the torus buffer after the last ring buffer was connected to

the first ring buffer in the array.

The simple nature of the traditional TG made it possible for each sensing component on

the robot to produce their own TG, which reported their specific view of the environment. For

example, a camera-based vision component could be used to detect the lines on the edges of the

desired lane of travel and paint them in a TG, while a laser-based sensor could concentrate on

terrain estimation and report a TG based on its findings. With multiple grids coming from the

various components, it became necessary to fuse them into a single output grid. In general, the

arbitration algorithm observed the multiple traversability values for a given cell in each of the

grids provided by the individual sensor components and assigned the lowest value as the

traversability of that particular cell in the output TG, as described in the previous section.

The arbitrated TG was then used by the motion planning algorithm to generate optimal

control inputs to the vehicle. Figure 4-4 shows an example of an input TG with the center of the

desired lane of travel painted in green and assigned the best traversability value possible, and the

extent of the desired lane painted in blue with a slightly lower traversability value. All regions of

the grid outside of the desired lane of travel are painted in red with a low traversability value.

The yellow cells surrounded by green represent an obstacle and are assigned untraversable

values. Referring back to Figure 3-3 provides an example of an output TG from the motion

planning algorithm. The image depicts the vehicle navigating a sharp right turn through an

77

intersection. The areas painted brown represent the areas of the grid explored by the motion

planning algorithm, while the light blue line represents the selected optimal solution path.

A shortcoming of this traditional TG, which was one of the motivating factors behind the

development of this new temporal method, must be addressed. This shortcoming dealt with the

fact that the grid represented an instantaneous snapshot of the robot’s environment where all

objects were treated as static. This snapshot was used by the motion planning algorithm to

generate a sequence of control inputs to navigate the robot from its current state to its desired

goal state, which was likely at the edge of the TG. Each of these control inputs were calculated

at discrete times in the future until the goal state was achieved. This sequence of inputs was then

traced back to the first input, which was the instantaneous control implemented by the vehicle.

The final step in this sequence, which achieved the goal state, could have represented a control

input required at a time falling ten to fifteen seconds or more in the future, depending on the

speed of the vehicle. This practice of planning a path through a dynamic environment that was

being artificially treated as static could have led to instabilities in the control inputs and could

have been fatal when considering the close proximity of the robot to moving obstacles. The

presented research provides a new approach that addresses this drawback to the use of the

traditional TG when trying to plan optimal paths through environments with dynamic objects.

Temporal Grid Creator

The Temporal Grid Creator (TGC) component was responsible for generating the

predictive temporal grid structure that was the backbone of the presented motion planning

method. Inputs included vehicle position and velocity measurements, the fused traversability

grid coming from the SARB, the list of moving objects in the environment coming from MO and

the values of the time-dependent search parameters that are described in Chapter 3 coming from

the motion planning algorithm. The structure of the component was separated into multiple

78

processor threads based on its three main functions to allow for concurrent execution: the

collection of moving obstacle data, the prediction of future moving obstacle positions, and,

finally, the creation of the predictive temporal grid. Each of these functions are outlined in

detail, along with a discussion of the specific motion planning algorithm search parameters that

are described in general terms in the previous chapter and how they were used in the creation of

the temporal grid structure.

Obstacle Position Data Collection

As mentioned previously, one of the inputs of the TGC component was the list of detected

moving obstacles reported by MO. Information in this list included a unique identifier, an

obstacle classifier declaring an object as a car, bus, tree, or the like, an velocity and a

velocity, an array of and positions that defined the left-most, right-most, and closest points of

the obstacle, and a time-stamp for the data for each obstacle. MO provided this information for

all objects within a range of approximately 150 m around the vehicle in every direction.

However, as the maximum dimensions of the new temporal grid structure were set to 30 m

around the vehicle to match those of the traditional TG, the TGC only maintained a list of the

objects within a range of approximately this size and disregarded all objects that were further

away.

The TGC used this information to build a time-stamped data set for each obstacle present

in the environment. While an obstacle could be defined by MO as multiple points at the extents

of its visibility, the TGC calculated and assigned the obstacle position as the centroid of these

extents. As it was building these data sets, the algorithm shifted the actual time-stamp values so

that the oldest data point was associated with an initial zero-time. The shifted time-stamps of the

subsequent data points were determined by calculating the difference between the un-shifted

time-stamp value of a particular data point and that of the oldest data point.

79

The number of data points to be saved was an adjustable parameter which was set to 100

samples for this implementation. This value was selected to improve the accuracy of the

prediction model for each obstacle, while being small enough to still allow for fast convergence

of the model. When the number of total data points reached this limit, the oldest data point

already in the collection was removed to make room for an additional data point to be added.

Assuming that the algorithm update rate was equal to or near the desired rate of 40 Hz, this data

collection represented a time-history of approximately 2.5 seconds for each obstacle. This data

collection with shifted timestamps could then be used to estimate a prediction model for the

future motions of the obstacles.

Search Parameters

To reiterate, the developed temporal grid extended the spatial TG into the time dimension

by adding layers to the grid structure. Each temporal layer of the new grid represented how the

robot’s environment would have likely appeared at a distinct time-step in the future, according to

the obstacle prediction models described in the previous section. The number of temporal layers

in the new grid and the size of the time-steps between layers were determined by several

parameters associated with the motion planner’s search algorithm. Therefore, it is again prudent

to provide a brief overview of the motion planning algorithm implemented on the Urban

NaviGator and these key parameters in particular. The algorithm utilized for the development of

this temporal method combined a receding horizon control strategy with an A* heuristic search

algorithm to expand out a tree of search nodes, which represented potential vehicle states that

could be reached in the future according to specific control inputs. The state of the robot was

defined as:

80

 (4-1)

where and are the position of the state in the vehicle frame of reference, is the vehicle

heading angle, is the desired vehicle velocity and is the desired steering effort for the given

state. The steering effort was defined for a range from -100% to 100%, representing the steering

wheel achieving full-left and full-right soft-lock, respectively. These components of the

potential states represented in Equation 4-1 were estimated from a kinematic model of the robot

and were generated according to prospective steering commands, which were one of the control

inputs to the vehicle. The geometry used in the model is based on a bicycle (two-wheeled)

model and is shown in Figure 4-5 and the kinematic equations of motion are given as:

 (4-2)

 (4-3)

 (4-4)

where is the current vehicle heading angle, is the change in vehicle heading angle which

is instituted by the steering effort, , is the distance-step equivalent of the generation

time-step, and are the change in vehicle position in the vehicle frame of reference, and

is the average curvature of the path travelled by the vehicle for a commanded steering angle

of and a vehicle wheelbase of length , and is defined as:

. (4-5)

The arc length from Figure 4-5 represents the time-step (or equivalent distance-step)

between the current vehicle state and one of the potential future vehicle states that could be

reached from this current state as expanded by the search algorithm. This step size was one of

81

the key parameters used in determining the number of layers that the temporal grid contained. It

should be noted that the step size did not need to be constant for every generation of search

nodes expanded. It was determined during previous development of the motion planning

algorithm that a unique step size for the initial expansion of search nodes was beneficial,

followed by a consistent step-size for all subsequent generations. This was caused by the fact

that the initial generation of expanded search nodes had the most impact on the selected control

input for the vehicle. This standard was adopted for the development of the temporal grid

structure for the presented research. The search time horizon was the other important parameter

and represented the maximum future-time to which the motion planning algorithm expanded

search nodes before terminating. The goal state for the planning algorithm was placed at this

time horizon, which typically corresponded to the edge of the TG.

The number of layers for the temporal grid was calculated by determining the number of

steps required to reach the goal at this time horizon. A visualization of the expansion of the

prospective future vehicles states is provided in Figure 4-6 with the initial node expansion

time-step normal node expansion time-step and the search time horizon shown. It is

important to emphasize that these time-steps and time horizons had equivalent distance-steps

 and and distance-horizon that could be used in their place. These values could be

used interchangeably by considering the velocity of the vehicle in the -direction of the

vehicle coordinate system, which pointed in the direction of travel. The conversion was

calculated as:

 (4-6)
 (4-7)

 (4-8)

82

The vehicle is depicted with the goal state painted green at the edge of the image in Figure

4-6. Each of the black circles represents a potential vehicle state that was explored by the

planning algorithm, while the red circles and lines represent the solution sequence of state

changes which will bring the vehicle from its current state to the goal state. The curving, dashed

line represents the search time horizon, with the initial and normal time-steps displayed as well.

The number of temporal layers was calculated as:

. (4-9)

In the event that the calculated number of temporal layers coming from Equation 4-9 did not

result in an integer, the value was rounded to the next integer.

An obvious concern with this approach was that this value for the number of temporal

layers was not necessarily constant during a mission as the time horizon or node expansion time-

step size could change during runtime as the robot’s behavior or speed changed. For this reason,

the planning algorithm was required to report any changes to these key search parameters so the

temporal grid structure could be updated. Another concern arose as this method assumed that the

number of expanded nodes along the solution path was the minimum number required to reach

the goal state at the time horizon. While this assumption may not have been realistic for

environments heavily occupied by obstacles, either static or dynamic, that the motion planning

algorithm will have to avoid, it was acceptable for the initial development, testing, and validation

of the temporal planning method for representing simple dynamic environments with perhaps a

single obstacle. It was also acceptable because the remote state changes approaching the time

horizon had less impact on the implemented control than the initial state changes. For the initial

development, any expanded search node generations in excess of relied on the last available

temporal layer in the grid.

83

Temporal Grid

With the designation of the aforementioned search parameters, the temporal grid structure

could then be generated. The simple approach would have been to build an entire new TG of

size 121 rows by 121 columns for each new temporal layer and to have modified each layer as

needed. By fully populating each temporal layer of the grid, this method would have required

large amounts of memory and required significant amounts of time to create and copy the grid

structures as evidenced by the preliminary grid test results shown in Tables 4-3, 4-4, and 4-5.

The selected solution to this problem arose from considering the same key search parameters

used to construct the temporal grid.

The initial generation of search nodes expanded by the A* algorithm extended out a time

in the future according to the defined step-size, as previously described. As a best-first search

procedure, the A* algorithm then evaluated these nodes and assigned them a cost to organize

them in a way such that the lowest-cost node was determined for the next round of expansion.

The motion planning algorithm used for the presented research estimated these costs based on

the distance from each node to the goal state and the traversability values of the grid cells

connecting the node and its predecessor node. It then became obvious that the grid cells at the

search time horizon had no affect on the evaluation of these initially expanded search nodes.

Therefore, for this first temporal layer associated with the initial expansion of search nodes, the

grid only needed to be constructed out to the time-step corresponding to the node expansion.

That is, the grid layer associated with a particular generation of search node expansion only

needed to be built far enough to include the cells within which the nodes of that generation

resided so that they could be evaluated by the A* algorithm.

The size of the temporal grid structure was minimized by varying the size of each temporal

layer according to the time-step parameters provided by the motion planning algorithm. Each

84

temporal layer was built-up so that the cells containing the search nodes for that particular

generation were present. For each successive step, the layer became larger and larger up to the

time horizon, which would have most likely resulted in a fully-populated grid layer of 121 rows

by 121 columns. The number of rows and columns in a particular temporal layer were

calculated as follows:

 (4-10)

where and have been defined in the previous section as the initial and normal node

expansion time-steps, is the temporal layer number, is the grid resolution, and is a

function that rounds the result to the nearest integer value according to the prevailing rounding

rule. This calculation worked for determining either rows or columns since the values were

equal for a square grid. Table 4-1 displays the initial row and column and final row and column

for each layer of a sample temporal grid. The sample grid was built from values of = 6.0 m,

 = 4.0 m, and = 42.0 m. From the seventh temporal layer until the last, the layers are

fully populated with 121 rows and 121 columns. This comes about as the total distance

exceeded the maximum possible dimensions of the grid.

This method of optimization gave the temporal grid structure a pyramidal shape. Figure 4-

7 shows a representation of this pyramidal-shaped grid structure and Figure 4-8 shows the profile

of each of the layers of an optimized temporal grid. The initial layer in Figure 4-8(a) represents

the environment out to the initial time-step, while the layer depicted in Figure 4-8(g) represents

the entire environment known to the robot out to the search time horizon. A static obstacle

begins appearing in Figure 4-8(d) and comes into full view in Figure 4-8(f). This serves to

reemphasize that the nodes expanded in the first generation were not impacted by objects further

out in the environment. Because the obstacle was not relevant to the evaluation of the first few

85

generations of expanded search nodes, it was not necessary to include that area in their

associated temporal layers.

As the torus buffer data structure was used to store and modify the traditional TG, an

amended structure was required to store and modify the data for the temporal grid structure. The

temporal torus buffer was used and behaved much the same as the traditional torus buffer

structure. With the inclusion of additional temporal layers in the temporal grid, the last element

of each row and column was to be connected to the first element of each row and column for

each temporal layer in the grid.

The images in Figure 4-9 show conceptually the similarities between the progression from

a simple single column of grid cells to the torus buffer and the progression from the single

temporal column of cells to the temporal torus buffer described above. The column of cells is

extended into the time-dimension in Figure 4-9(a) and assumes that each temporal layer contains

the same number of cells, while the temporal ring buffer is displayed in Figure 4-9(b). The

outer-ring represents the first temporal layer and each subsequent inner-ring represents the next

layer. The linear array of temporal ring buffers is displayed in Figure 4-9(c) followed by a

segmented view of the temporal torus buffer in Figure 4-9(d). This broken view serves to show

the temporal layers within the torus buffer structure. These images represent a grid containing

three temporal layers.

Even considering the views of the temporal torus buffer discussed above, the grid data was

still stored as a linear array of traversability values. Careful attention was taken to guarantee that

the correct element in the array was being set or modified when altering the grid. For the

temporal torus buffer the correct element of the array was calculated as:

 (4-11)

86

where is the temporal layer in which the desired cell resides, and are the

number of rows and columns in a particular temporal layer, and are the row and column

number of the desired cell, and and are the starting row and column number for

a particular temporal layer. This calculation was used in multiple applications, including setting

and retrieving the traversability value of a temporal grid cell.

Initial testing was conducted to study several important values associated with grid

generation. The creation times , cloning times , and memory requirements

were recorded and compared for the traditional TG, fully-populated temporal grid and optimized

temporal grid structures. These tests were carried out for temporal grids with the number of

temporal layers ranging from one to ten. The search parameters utilized for the initial testing

consisted of an initial distance-step of m and a normal time-step of m.

The search distance-horizon was varied from m to m to allow for the

appropriate number of temporal layers for the initial tests. The actual values are displayed in

Table 4-2 for .

The creation times for the three grid types are plotted in Figure 4-10 and listed in Table

4-3. The creation time for the traditional TG remained approximately constant as would be

expected since this grid always contained only a single grid layer, with an average time of

 = 0.1866 ms. The creation times for the fully-populated temporal grid increased linearly

from an initial time of = 0.2223 ms for a single grid layer to = 2.322 ms for ten

temporal layers. Lastly, the creation times for the optimized temporal grid followed an

approximate second order increase from = 0.01490 ms for a single temporal layer to

 = 1.423 ms for all ten layers. Of interest was the smaller creation time for the optimized

temporal grid than the traditional TG. This arose because the total number of cells in the

87

temporal grid did not exceed that of the traditional TG until the fourth temporal layer was added.

The creation time for an optimized temporal grid with ten temporal layers represented a 540%

increase from the single layered traditional TG; however, the creation time for an optimized

temporal grid with only seven layers of = 0.7579 ms resulted in only a 241% increase

and represented a 112% reduction of the creation time of the fully-populated temporal grid with

the same number of temporal layers. This seven-layered temporal grid coincided with the

selected search time-step parameters that were used for this study and thus provide the most

relevant comparison.

The second test studied the cloning times of the three different grid structures.

Specifically, this test measured the time required to access the traversability value of each cell in

one of the grids and set the traversability value of the same cell to be equal to the assessed value

in a separate grid of the same type. Figure 4-11 displays the trends for the three grids and Table

4-4 lists the actual recorded times. As with the creation times, the cloning times of the

traditional TG remained approximately constant, with an average of = 0.07160 ms, while

those of the fully-populated and optimized temporal grids followed an approximate second order

curve. The fully-populated temporal grid’s clone times ranged from = 0.03662 ms for a

single layer to = 1.1405 ms for ten layers. Likewise, the cloning times of the optimized

temporal grid ranged from = 0.03740 ms to = 0.6715 ms. The cloning time for a

temporal grid with seven temporal layers of = 0.2690 ms represented a 275% increase

over that of the traditional TG, but was a 53% reduction when compared to that of the

fully-populated temporal TG.

Lastly, the memory usage was recorded for all three grid types for the same number of

temporal layers as was used in the other tests. While the issue of storage space was not a

88

significant problem, the sizes of these grids were still of interest because of the high rate of

transmission of these grids among various software components on an unmanned vehicle. Table

4-5 shows the actual recorded size of the grids versus the number of temporal layers, while

Figure 4-12 displays the trends in the data. The traditional TG required 14,641 bytes of memory,

which obviously remained constant. The fully-populated temporal grid’s memory requirement

increased linearly from 14,641 bytes for a single layer to 146,410 bytes for ten layers. And

finally, the optimized temporal grid only required 961 bytes for a single layer and 93,290 bytes

for ten temporal layers. For an optimized temporal grid with seven temporal layers, the memory

requirement of 49,367 bytes represented a 237% increase over that of the traditional TG, but was

a 51% reduction in usage compared to the fully-populated temporal TG.

Moving Obstacle Prediction

Since the prediction of the moving objects was not the focus of the presented research, a

modified version of the statistics-based polynomial predictor discussed in (Kent, 2007) was used

to fit curves to the time-series of position and velocity data for each obstacle reported by MO. A

second-order polynomial was chosen for simplicity and ease of use and its coefficients were

calculated by using the GNU Science Library’s (GSL) regression tools (GNU, 2008). A more

complex fit could have been chosen to provide a more accurate estimation of the future positions

and velocities, but as the development of a prediction algorithm was not the focus of the

research, a simple model was sufficient. The data sets described in the previous section were

parsed into vectors of x positions, y positions, x velocities, y velocities, and a matrix of shifted

time-stamps. The GSL function gsl_multifit_linear() took these vectors and matrices and

returned the solution coefficient vector for fitting the second-order polynomial to the data. From

this polynomial, data points were extrapolated into the future to provide the predicted positions

of the obstacles to be painted in the temporal grid. Figure 4-13 shows a visualization of the fitted

89

polynomial to the time-series of data for an obstacle and the extrapolated future position

estimates, along with upper and lower confidence intervals.

For each obstacle, this algorithm estimated the predicted and position at future time

according to:

 (4-12)
 (4-13)

where and are the coefficients of the polynomial curve fits, which are calculated by the

GSL tools. The prediction times used to determine the values of and again came from the

search parameters which were used to build the temporal grid structure, namely the generational

time-steps of search node expansion and the search time horizon. For each generation’s

time-step, the position of each obstacle was estimated using Equations 4-12 and 4-13. The

predicted obstacle positions were then painted in the layer of the temporal grid associated with

that prediction time by converting the predicted position into a row and column pair by using

Equations 3-16 and 3-17 from the previous chapter.

Figure 4-14 shows the results of the initial, fully-populated temporal grid construction with

the predicted positions of a simulated obstacle painted as it moved perpendicular to and crossed

the robot’s desired lane of travel. The vehicle’s direction of motion, or heading angle, is labeled

as ψ in this figure as well as all subsequent grid images. Figure 4-14(a) displays the

representation of the predicted environment after the initial time-step of the search algorithm,

while Figure 4-14(g) represents the final prediction of the environment as the search algorithm

reached its time horizon. This figure serves to show the successful mapping of the predicted

motion of a moving obstacle. A sample of the optimized temporal grid, which was provided to

the motion planning algorithm, is shown in Figure 4-15 with the robot’s heading facing toward

90

the left of the image pointing down the desired lane of travel painted in blue. In both instances,

the obstacle was simulated with a velocity of 2.2352 mps (5 mph) in the vertical (Y) direction.

The obstacles were painted in the temporal grid according to their exact predicted

positions. The cell represented by the row-column pair calculated from Equations 3-16 and 3-17

was assigned the lowest traversability value possible to show the obstacle. As a result of the

vehicle being treated as a point, the predicted position of the obstacle was then dilated by an area

equivalent to the width of the robot. Therefore, the surrounding cells were also assigned the

lowest traversability value possible out to an area the size of the vehicle, plus a variable buffer

region to allow for a safe avoidance distance. Figure 4-16 shows a single grid image with all the

predicted positions of a moving obstacle painted with only the dilation described above to show

the progression of the object across the lane. The layers of an optimized temporal grid are shown

in Figure 4-17 with the individual predicted positions painted to show what the motion planning

algorithm was provided with to attempt to generate a plan with the moving obstacle present with

predicted positions painted.

Temporal Motion Planner

The culmination of the presented research came as the motion planning algorithm

generated its sequence of control input steering commands by searching through the temporal

grid described in this chapter. The motion planning algorithm developed in (Galluzzo, 2006)

provided the backbone for the development of this new temporal planning method. This

algorithm combined a receding horizon control strategy with the A* algorithm to simultaneously

generate steering, throttle, and brake commands for an unmanned ground robot. This algorithm

allowed the robot to successfully navigate a road course and avoid static obstacles in a fairly

unstructured environment. The temporal method presented extended the functionality of this

91

original algorithm to deal with both static and dynamic obstacles in structured and unstructured

environments.

Referring to the previous discussion of the search algorithm, a tree of search nodes

representing potential future vehicle states was expanded, with each of these nodes falling within

a cell in the grid. Costs were then assigned to each node based on a number of factors. The A*

search algorithm called for a two-part cost taking the form:

 (4-14)

where is the estimated total cost of node , is the actual cost to get from the initial

node to node , and is the estimated cost to get from node to the goal. The original

algorithm from (Galluzzo, 2006) and the presented temporal algorithm both estimated these costs

based on the traversability values of the grid cells between a particular node and its predecessor

node and the distance from the node to the goal point. Therefore, it was necessary to access

these values in the torus buffer or temporal torus buffer data structures.

For the temporal method, this was made possible by utilizing special functions to which

the node generation and row and column of the cell of interest were provided. These values were

then used to access the grid cell in the linear data array of the temporal torus buffer according to

Equation 4-11. The node generation was used to determine the correct layer of the temporal grid

structure to access. For example, a search node generated in the initial expansion required the

traversability value of its containing cell in the initial temporal layer to correctly calculate its

associated cost, while a node generated in the second expansion of nodes required the value of its

containing cell in the next temporal layer, and so on. Therefore, with each new generation of

search nodes expanded, the temporal planning algorithm was required to search deeper in the

temporal grid structure, or equivalently further out in time, to calculate the cost of each node.

92

This ability to access the traversability values of any given cell allowed the first

component of a node’s estimated cost to be calculated as:

 (4-15)

where is the generation number of node is the number of grid cells traversed between

node and its predecessor node, is the traversability value associated with a particular grid

cell, is the distance step between node and its predecessor, is a constant representing

the number of meters traversed per cell (0.5 m), and is the number of grid cells traversed

from the start node to node . Similarly, the second component of the node’s estimated

cost was determined as:

 (4-16)

where is the average cost per grid cell from the start node to the node and is the

distance from the node to the goal. The total cost resulting from Equation 4-14 had abstract,

dimensionless cost units which were compared for the various search nodes.

Upon finding a successful path from the start node to the final goal state, the solution path

was traced back to the initially expanded node. The desired steering command associated with

this initial search node on the solution path was then selected as the control input to the vehicle.

Figure 4-18 displays the temporal layers of a single, fully-populated temporal grid, which show

the expansion of the search tree as an obstacle crossed the desired path of the vehicle. Each

black line represents an expanded search node, with the solution path painted in grey. Figure 4-

19 shows the same situation in the temporal layers of an optimized grid.

93

Target Interception Application

All previous sections of this chapter discuss the development of the temporal motion

planning method in terms of avoiding moving obstacles in the robot’s environment. However,

another application, which presented itself during the development and testing process,

considered the opposite goal. Rather than treating an object as an obstacle, it was advantageous

to treat this object of interest as a target to be intercepted and possibly neutralized. Following the

same procedure of detecting and tracking the target made it possible to apply the prediction

algorithm described previously to estimate the future positions and velocities of this target

object. At this point, the predicted positions of the object were used to generate a goal point for

the motion planning algorithm to seek out.

The original motion planning algorithm calculated its goal point based on a list of

waypoints that followed the robot’s desired lane of travel, and that it was required to visit. This

goal point was typically located at the edge of the grid unless the vehicle was approaching an

intersection or a curve in the road, or the end of its mission. For a target interception application,

the goal point was calculated as the final predicted position of the object of interest at the search

algorithm’s time horizon. Using the final predicted position allowed the planning algorithm to

direct the vehicle toward the location where it was believed the target would be in the future at

the search time horizon, rather than where the target was currently located.

Depending on the speed of the moving target, this last predicted position might have been

outside of the motion planner’s search time horizon, in which case the target-defined goal point

was snapped to the edge of the valid search space. This provided an attainable goal that was

along the same heading as the final predicted position of the target. In this application, the

motion planning algorithm directly required the prediction information for the target object to

select this final predicted position and calculate the goal point.

94

In addition to generating the goal point based on the predicted position of the target object,

the temporal grid was also able to aid the motion planning algorithm in generating a trajectory to

intercept the target. In treating an object of interest as a target as opposed to an obstacle to be

avoided, the object was represented differently in the temporal grid map. To reiterate, grid cells

containing objects the robot needed to avoid were assigned low traversability values, which

translated into a very high cost for a node that falls within that cell. For a target interception

application, the cells that contained the final predicted position of the target did not need to be

assigned untraversable values, but rather high traversability values to attract the planning

algorithm to generate a path to this point.

This chapter describes the specific implementation of the new PTMP method for an

unmanned ground vehicle tasked with navigating dynamic urban environments. The new TGC

software component provided much of the functionality of the new method, along with the

modified temporal motion planning algorithm. The next chapter describes the testing procedure

and analyzes and discusses the results of the various tests conducted.

95

Figure 4-1. Urban NaviGator system architecture diagram.

96

Figure 4-2. Traversability grid representation of robot’s environment.

97

Figure 4-3. Formation of torus buffer. A) Single columns of grid cells, B) ring buffer, C) ring
buffer array, D) torus buffer.

98

Figure 4-4. Motion planning algorithm input traversability grid.

99

Figure 4-5. Vehicle kinematic model geometry.

Figure 4-6. Illustration of search algorithm node expansion showing key search parameters.

100

Figure 4-7. Pyramidal-shaped optimized temporal grid structure.

101

Figure 4-8. Optimized temporal grid layers showing static obstacle appearing.

102

Figure 4-9. Formation of temporal torus buffer. A) Single temporal column of grid cells, B)
temporal ring buffer, C) temporal ring buffer array, D) temporal torus buffer.

103

Figure 4-10. Creation times for TG, full temporal TG and optimized temporal TG.

104

Figure 4-11. Cloning times for TG, full temporal TG and optimized temporal TG.

105

Figure 4-12. Memory requirements for TG, full temporal TG and optimized temporal TG.

106

Figure 4-13. Prediction visualization showing polynomial curve fit and extrapolated data.

107

Figure 4-14. Full temporal grid layers showing predicted positions of obstacle.

108

Figure 4-15. Optimized temporal grid layers showing predicted positions of obstacle.

109

Figure 4-16. Future predicted positions of obstacle in single traversability grid.

110

Figure 4-17. Optimized temporal grid showing simple dilation of predicted obstacle positions.

111

Figure 4-18. Full temporal grid layers showing expansion of search tree with obstacle.

112

Figure 4-19. Optimized temporal grid layers showing expansion of search tree with obstacle.

113

Table 4-1. Temporal layer size parameters for .
Temporal
layer Rows Start

row
End
row Columns Start

column
End
column

Total
cells

1 31 45 75 31 45 75 961
2 47 37 83 47 37 83 2209
3 63 29 91 63 29 91 3969
4 79 21 99 79 21 99 6241
5 95 13 107 95 13 107 9025
6 111 5 115 111 5 115 12321
7 121 0 120 121 0 120 14641
8 121 0 120 121 0 120 14641
9 121 0 120 121 0 120 14641
10 121 0 120 121 0 120 14641

Table 4-2. Distance horizon values for each temporal layer for initial temporal grid testing.
Temporal
layer 1 2 3 4 5 6 7 8 9 10

Distance
horizon
[m]

6.0 10.0 14.0 18.0 22.0 26.0 30.0 34.0 38.0 42.0

Table 4-3. Grid creation times (in seconds) for .

Temporal
layer

Traversability grid
creation times (s)

Fully-populated temporal
traversability grid creation
times (s)

Optimized temporal
traversability grid creation
times (s)

 1 0.0002056 0.0002223 0.00001490
 2 0.0002600 0.0004475 0.00004411
 3 0.0001571 0.0006768 0.0001125
 4 0.0001473 0.0008907 0.0002034
 5 0.0001907 0.001131 0.0003427
 6 0.0001635 0.001344 0.0005334
 7 0.0001761 0.001598 0.0007579
 8 0.0001933 0.001486 0.0008027
 9 0.0001859 0.002052 0.001200
10 0.0001870 0.002322 0.001423

114

Table 4-4. Grid cloning times (in seconds) for .

Temporal
layer

Traversability grid
cloning times (s)

Fully-populated temporal
traversability grid cloning
times (s)

Optimized Temporal
traversability grid cloning
times (s)

 1 0.00003712 0.00003662 0.00003740
 2 0.00004942 0.00008391 0.00001843
 3 0.00004466 0.0001360 0.00002826
 4 0.00004946 0.0002337 0.00007593
 5 0.00005231 0.0002548 0.0001440
 6 0.00008152 0.0004810 0.0001815
 7 0.0009052 0.0005744 0.0002690
 8 0.0009737 0.0007937 0.0003977
 9 0.0001017 0.0008799 0.0004913
10 0.0001119 0.001141 0.0006715

Table 4-5. Memory requirements (in bytes) for .

Temporal
layer

Traversability grid
memory usage (bytes)

Fully-populated temporal
traversability grid memory
usage (bytes)

Optimized temporal
traversability grid memory
usage (bytes)

 1 14641 14641 961
 2 14641 29282 3170
 3 14641 43923 7139
 4 14641 58564 13380
 5 14641 73205 22405
 6 14641 87846 34726
 7 14641 102487 49367
 8 14641 117128 64008
 9 14641 131769 78649
10 14641 146410 93290

115

CHAPTER 5
TESTING AND RESULTS

The temporal motion planning method outlined in this document was implemented and

tested extensively. Because of the complexity of maintaining a functional autonomous vehicle

and the considerable resources in terms of manpower and facilities required to execute

autonomous testing, comprehensive testing was first conducted in simulation to verify the

performance of the various developed algorithms. While the results of these simulations were

promising, live robotic testing was also necessary to practically confirm the validity of using a

predictive temporal motion planning method for autonomous ground vehicle navigation.

This chapter outlines the various testing methods and metrics used to measure the

performance of this method. The first section outlines the test plan for data collection and

analysis of results to ensure effective investigation of the presented research. Next, the

simulation procedure and results are described, followed by the same for live robotic testing.

Finally, a summary of the test results is provided, which draws a few preliminary conclusions.

Test Plan

It was determined that the new PTMP method could be applied to several of the operating

behaviors encountered during the DUC and to the target interception problem presented. A few

of these behaviors included an unmanned ground vehicle attempting to follow a moving object in

its desired lane of travel, navigating an intersection with oncoming vehicles present, passing a

slow-moving vehicle in its desired lane and navigating an unstructured obstacle field. A subset

of these behaviors was selected for thorough testing to validate the newly-developed planning

method.

The first step was to conduct a series of baseline and control tests to collect data by which

to compare the results of the PTMP tests against. The baseline tests involve running a motion

116

planning algorithm similar to that described in (Galluzzo, 2006) in situations matching those to

be described shortly. However, no moving obstacles were present so that the pure, undisturbed

motion planning outputs was measured. This provided the ideal test results in terms of the

desired testing metrics which are outlined in a later section. The control tests introduced moving

obstacles in the same scenarios to observe and quantify how the control outputs of the motion

planning algorithm were affected by these objects. Finally, the same tests were conducted using

the new PTMP algorithm to investigate its performance with moving obstacles present.

Figure 5-1 shows an aerial view of the test site at the Gainesville Raceway, which has

served as the test facility for much of CIMAR’s autonomous ground vehicle projects. The site

provides paved road segments used in testing many of the required behaviors for the DUC,

including straight and curved road segments with multiple lanes, intersections, dead-end streets

and a parking area. Sections of this area were selected for simulating the required test

environments. Figure 5-2 shows a close-up visualization of the waypoints defining the road

segment used for the following behavior tests and Figure 5-3 shows the same for the waypoints

and perimeter points defining the open, unstructured area used for the obstacle field behavior and

target interception tests.

Following Behavior

The first behavior selected involved the robot maintaining its desired lane of travel while

following another moving object in front of it. The following operating behavior is a crucial

ability exhibited by an unmanned vehicle that may interact with other moving vehicles in an

urban environment. Figure 5-4 illustrates the effect an obstacle situated in the vehicle’s desired

lane had on the motion planning algorithm’s attempt to plan a path down the center of the lane as

recorded during a control test of the following behavior. The presence of the obstacle, painted in

yellow, forced the planner to attempt to find a path that took the vehicle out of the desired lane.

117

The wide region of expanded search nodes illustrates the difficulty of the attempt, and the light

yellow line signifies the failed solution path.

Another problem which arose from this situation is illustrated as the solution path

oscillates from the left side of the obstacle in Figures 5-4(a) and (b) to the right side of the

obstacle in Figures 5-4(c) and (d). This oscillation could lead the vehicle to reach an unstable

state that could ultimately lead to a collision with a vehicle in the adjacent lane or an object to

the side of the desired lane of travel. This unacceptable behavior resulted from the moving

object being treated as static while the planning algorithm expanded its search tree.

In the following behavior test, a similar situation was constructed to test the effectiveness

of the developed predictive temporal motion planner when faced with the same scenario. The

vehicle was placed in its desired lane behind another vehicle travelling in the same direction in a

straight line. The lead obstacle vehicle was instructed to progress with a velocity that matched

that of the robot such that the separation distance remained approximately constant. The use of

obstacle motion prediction by the new temporal planning method should have allowed the

motion planning algorithm to generate its control sequence smoothly as the object was projected

further along the desired lane of travel as the planning time progressed. Table 5-1 outlines the

following behavior test plan, including the purpose and description, expected results, and lists the

types of data that were recorded for analysis.

Obstacle Field Behavior

The previously described following behavior test-case simulation took place on a

structured road with a desired lane of travel and with the followed obstacle maintaining the same

lane in a straight line. A less defined situation was chosen for the next round of testing. The

images in Figure 5-5 show the robot attempting to plan a path in an open, unstructured

environment around an obstacle that did not necessarily follow a prescribed path. The robot

118

itself was free to traverse any part of the open area to reach its goal. It is evident in the various

traversability grids shown that the motion planner was having difficulty finding a consistent

solution as the selected path oscillates in front of the obstacle in Figures 5-5(a) and (b) and

behind the passing obstacle in Figures 5-5(c) and (d).

The test outlined for this situation sought to analyze the pure obstacle avoidance

capabilities of the presented motion planning method. The robot was placed in one of these

open, unstructured areas and commanded to traverse straight across to the opposite side. An

obstacle vehicle was commanded to follow a path that crossed the straight-line path connecting

the robot with its goal in a perpendicular manner at an intermediate distance. The velocity of the

obstacle vehicle was set such that it passed the robot and was out of its way by the time the robot

reached that position. Table 5-2 outlines the obstacle field behavior test plan, and contains the

same sections as the following behavior test plan.

Target Interception

The final series of tests considers the target interception application of the PTMP method.

These tests were similar to those of the obstacle field behavior situation with an object crossing

perpendicularly to the current vehicle heading in the same open, unstructured environment.

However, in this instance, the object was used to calculate the goal point that the robot was

seeking to achieve rather than being treated as an obstacle that the robot needed to avoid. In this

scenario, the motion planner directly received the prediction model of the object and used the

final predicted position to calculate its goal point, toward which it attempted to plan a path. The

motivation for this application came from the research being conducted by AFRL for perimeter

surveillance and response. The ability of unmanned ground robots that are patrolling a secure

perimeter to autonomously detect and intercept an intruder could provide useful deterrence and

119

allow for more time for a more forceful and appropriate response to be coordinated. Table 5-3

outlines this final test plan.

Test Metrics

A number of different performance measures were selected to be recorded to evaluate the

new PTMP method when compared to existing motion planning techniques. These metrics

served to investigate the effectiveness of the new method in allowing a robotic system to

navigate in dynamic environments. The first set of metrics was associated with how efficient

and effective the planning method was at finding a solution path. The first metric selected

involved the success versus failure rate of the motion planning algorithm in generating

trajectories that allowed the system to achieve its goal. It was found that obstacles crossing in

the path of the vehicle could have caused a failure of the search algorithm using the traditional

motion planning method, whereas the temporal motion planning method could have addressed

this problem by projecting the positions of the obstacle forward with time. The number of search

nodes expanded was also an important measure of efficiency of the motion planning algorithm.

It was shown that moving obstacles could affect the search algorithm negatively and result in

more of the search space being explored to find ways around the obstacle, while it was believed

that the predictive temporal method would be able to use the minimum number of nodes since it

was obvious that the obstacle would be out of the vehicle’s path.

The cost of the entire solution path was a good comparative parameter which captured the

optimality of the various methods. This cost again was based on the traversability values of the

cells through which the solution trajectory pass and the distance from a particular node to the

goal state, and was calculated according to Equations 4-14, 4-15, and 4-16 with simple cost

units. For the following behavior test, because the center of the lane was painted with the lowest

cost traversability, this meant that the lower the total path cost, the closer the solution trajectory

120

tracked the center of the lane. It was believed that this parameter would be less useful during the

obstacle field behavior testing because all cells within the open, unstructured environment were

assigned the same traversability values; however, the cost associated with the distance to the goal

would still be applicable and could still have been used as a measure of performance.

The second set of metrics dealt with the solution path itself and the affect of the solution

path on the motion of the vehicle. The deviation of the solution path was a measure of how the

path diverged from a nominal straight-line path to the goal point. The sum of the heading angle

changes instituted by each individual state change in the solution path was calculated. This

provided evidence of the motion planner’s attempts to divert the path around the obstacle versus

simply planning toward the goal as if the obstacle was not present. Likewise, how well the

solution path tracks the goal point was a good measure of the how the motion planning algorithm

performed. Therefore, the heading angles from the vehicle to the goal state and from the vehicle

to the final node on the solution path were calculated and compared.

The final metric involved the commanded steering effort, which was determined by the

solution path. Ideally, the PTMP method would generate a solution path that minimized the

motion of the vehicle when driving in a straight-line behind an obstacle and planning toward a

goal point directly in front of the vehicle as an obstacle that it would not collide with passed in

front of its straight-line path. However, any interference resulting from the obstacle would

present itself as the commanded steering effort increased or oscillated.

All of these values were logged in a separate computational thread by the motion planning

algorithm so that it did not interfere with the performance of the rest of the algorithm. Data was

recorded, plotted and analyzed to determine the results of each of the tests. A last, visual metric

was used to gauge the performance of the new method. Traditional and temporal traversability

121

grid images were recorded for all of the tests conducted with the output of the temporal motion

planner displayed to provide visual evidence of how well the algorithm dealt with the various

situations with the moving obstacles.

Simulation

To evaluate the new PTMP method before actually using it to autonomously drive the

Urban NaviGator, extensive simulation was carried out. These simulations were executed for

each test scenario described above using all of the key software components required for

autonomous navigation. Most of these components were run exactly as they would be during

autonomous navigation; however, a few simulators were run in place of other key components.

A Global Position and Orientation Sensor (GPOS) simulator was run to reproduce position and

orientation information and to facilitate vehicle motion during the simulations. A Primitive

Driver (PD) simulator was run to allow the simulated vehicle to be placed in and taken out of an

autonomous mode and to allow for simulated gear shifting. Finally, a simulated MO sensor was

implemented to provide fabricated obstacle position and motion data. The various motion

planning algorithms used for comparison and the new PTMP method were run in their natural

state. Now each of the simulation scenarios is described in detail, along with the results.

Following Behavior

The simulation environment for the testing of the following operating behavior was created

by generating a sequence of waypoints in a straight line for approximately 150 m to act as the

desired lane of travel for the robot. The simulated vehicle was placed at the beginning of this

straight road segment with an obstacle vehicle in front of it in the same desired lane of travel.

This obstacle was defined by a single position in the lane and dilated by approximately the width

of the vehicle in every direction to account for the simulated vehicle being treated as a single

122

point. This position and the trajectory and velocity of the obstacle were simulated in MO and

reported to the TGC component.

The obstacle was initially located approximately 18 m in front of the vehicle. At this point

the vehicle was put into a simulated autonomous state and the motion planner began generating

its trajectory. The test began as the position simulator began moving the vehicle in a straight line

between each of the waypoints that defined the testing road segment. As the vehicle began

exhibiting motion, the simulated MO sensor began artificially moving the followed obstacle in a

similar straight line between each of the waypoints. The vehicle velocity was set at a constant

4.47 mps (10 mph) and the velocity of the obstacle was set to match. This resulted in the

followed obstacle remaining a constant distance in front of the vehicle as they progressed down

the road segment.

Figure 5-6 shows a single fully-populated temporal grid produced by the TGC that shows

the various temporal layers, and the associated predicted positions of the followed obstacle.

Figure 5-7 then shows the temporal layers of the equivalent optimized temporal grid that was

reported to the motion planning component. These images show that, for each successive

temporal layer, the predicted position of the followed obstacle was outside of the motion

planning algorithm’s visible area. As this test was being conducted, both the TGC component

and the motion planning algorithm logged data pertaining to the relevant testing metrics

described in the earlier section. Table 5-4 shows a sample of predicted obstacle positions in both

the local (vehicle) and global (UTM) coordinate systems and velocities for a following behavior

test. A discrepancy is noticed in the desired starting X position of the obstacle (-18 m) and the

initial predicted position of the obstacle (-12.96 m). This was likely caused by the asynchronous

123

nature of the desired rate of collection of data points with allowable provision of the data by the

MO sensor which was then corrected.

The three separate tests outlined previously were conducted for this scenario to allow for

comparison and contrast. The obvious measure of the success of the new PTMP algorithm was

its ability to successfully generate a solution trajectory. The original algorithm used during the

following behavior control test had a failure rate of approximately 14% as the followed obstacle

presented problems while attempting to generate a trajectory down the center of the desired lane

of travel. Even considering the successful attempt during this test, the solution trajectories would

have effectively driven the robot out of the desired lane and possibly into an oncoming vehicle or

other object. Conversely, the PTMP algorithm experienced a 100% success rate in finding a

solution trajectory. Figure 5-8 shows the temporal layers of an output grid of the new motion

planning algorithm showing each step of the search node expansion out to the time horizon in

Figure 5-8(g).

The next metric of note was the number of search nodes expanded as the vehicle moved

down the desired lane of travel. Figure 5-9 shows a plot of the number of search nodes used

during the three tests over a period of time. The original motion planning algorithm expanded an

average of 46 nodes while planning a trajectory down the center of the desired lane of travel,

with a maximum of 334 nodes expanded during the baseline test with no followed object. The

control test resulted in an average of 445 nodes being expanded with a maximum of 3,401 nodes.

As would be expected, the original motion planning algorithm required many more nodes to be

expanded while attempting to generate its trajectory around the obstacle, again referring to

Figure 5-4. Finally, the new PTMP algorithm required an average of 203 search nodes to be

expanded, with a maximum of 564 nodes expanded. While higher than that of the baseline test,

124

the number of nodes expanded using the PTMP was about half that required by the original

algorithm used during the control test.

Another of the basic metrics used to evaluate the new motion planning algorithm was the

solution path cost. Figure 5-10 displays a plot of these costs for the three separate tests

conducted. The average cost for the original motion planner in the baseline test was

approximately 1.778e15 cost units while that of the same planner during the control test was

approximately 4.113e17 cost units, or over two orders of magnitude more costly. This result was

to be expected as the solution trajectories generated by the motion planner during the control test

were attempting to navigate around the followed obstacle and, therefore, resulted in the

expanded search nodes falling in areas of the TG considered out of bounds with low

traversability values and, thus, very high associated costs. Meanwhile the average cost of the

solution trajectory generated by the new PTMP algorithm was approximately 1.892e15 cost

units. This average cost using the temporal method was only approximately 6.4% larger than

that of the original method from the baseline test, exemplifying that the temporal method was

able to find trajectories that closely followed the low cost cells representing the center of the

desired lane of travel.

The last metric to be analyzed was the final steering command coming from the motion

planning algorithm and implemented as a control input to the robot. This is the most telling

metric as it described how the vehicle will actually drove when confronted with an obstacle in

front of it. An almost negligible average steering command magnitude of approximately 0.5%

was achieved for the baseline test and depicts the original motion planning algorithm as nearly

always finding a solution trajectory directly down the center of the lane with no obstacle present.

On the other hand, the introduction of a followed obstacle in the desired lane of travel resulted in

125

an average magnitude of approximately 11.4% for the control test. This agrees with the other

metrics and the images of the motion planner being forced to generate a solution trajectory that

diverted out of the desired lane and into regions of the grid considered out of bounds in an

attempt to navigate around the followed obstacle. However, the new temporal motion planner

was able to generate solution trajectories with an average steering command magnitude of only

2.8%, achieving an approximately 75.4% reduction in average steering effort when compared to

the control test. Figure 5-11 shows the recorded steering commands for all three following

behavior tests.

Obstacle Field Behavior

The purpose of the obstacle field behavior simulation was to evaluate the pure obstacle

avoidance capabilities of the new PTMP method in an open, unstructured environment. The

environment was set up as a single inlet road segment, a large open area defined by a series of

perimeter points, and a single outlet road segment. The open area zone was approximately 60 m

long by 40 m wide and contained no defined lanes, intersections or constructs which could have

limited the motion planning algorithm in its attempt to build its trajectory to the goal point. The

simulated vehicle was initially situated just inside the entrance to the open area in an orientation

that allowed it to move directly down the center of the zone in a straight line. The lone obstacle

was again represented by the simulated MO sensor as a single position, but was then dilated in

all directions by a length equivalent to the width of the robot plus a small buffer.

The obstacle was initially located approximately 15 m in front of the vehicle and 15 m to

its left side. As with the following behavior tests, the vehicle was placed in a simulated

autonomous state at which point the motion planning algorithm began generating its solution

trajectory. The position simulator was then activated to begin moving the vehicle in a straight

line down the center of the open area at approximately 2.235 mps (5 mph), while attempting to

126

plan toward a goal point approximately 30 m directly in front of it. At this same instant, the

simulated MO sensor began updating the obstacles position in a way that led it to cross

perpendicularly to the path followed by the robot at approximately 4.470 mps (10 mph).

The initial positions of the robot and obstacle and the assigned velocities were selected to

create a scenario where the obstacle passed across the vehicle’s desired path, but was well out of

the path by the time the vehicle reached that location on its path. Figures 5-12 and 5-13 show the

fully populated and optimized layers of a single temporal grid, respectively, and show the

predicted positions of the obstacle crossing the desired path of the robot. These images serve to

show that the obstacle was out of the way by the time the vehicle reached the crossing position,

thus providing the expectation that the motion planning algorithm did not need to alter the

straight-line trajectory of the vehicle. The same temporal motion planning data was recorded to

verify this claim. Table 5-5 provides a sampling of the predicted positions and velocities of the

moving obstacle for an instance of the obstacle field test.

The open area obstacle field behavior simulation was a bit more difficult to analyze in

terms of the performance metrics used for the following behavior due to a number of factors.

The solution path cost became less relevant because the traversability values all grid cells within

the open area zone were equal to emphasize that the vehicle could drive anywhere within the

perimeter of the zone. This resulted in the distance aspect of the search node cost playing a more

important role in the cost analysis. Likewise, because of this uniform traversability, the number

of search nodes varied little from one test to the next. Also, the passing of the obstacle in front

of the vehicle was not a big enough disturbance to cause the motion planning algorithm to fail in

finding a solution trajectory. Therefore, unlike during the following behavior simulations, the

search algorithm failure rate was meaningless for the obstacle field behavior tests. This left the

127

solution path curvature and steering command as the main parameters used to evaluate the

performance of the new temporal motion planning method in this open area obstacle avoidance

situation.

As with the following behavior simulations, the analysis of steering control inputs

commanded by the motion planning algorithm was the most basic and complete measure of the

response of the vehicle to any disturbances in terms of solution trajectories. An obstacle crossing

between the robot and its goal point at the edge of the grid had significant affects on the steering

commanded by the planner as it attempted to navigate around the object to get to the goal point.

This is evidenced in Figure 5-14 by the large magnitude of the steering commanded as the

obstacle passes during the control test.

As was expected with no obstacle present, the original motion planning algorithm

commanded 0% steering effort for the entire baseline test. However, as the obstacle passed

across the vehicle’s desired path during the control test, the steering command reached a

magnitude of approximately 22.8%. Similarly concerning was the fact that actual command

oscillated between positive and negative values of this magnitude in a short amount of time,

signifying possible steering instability as the motion planner attempted to find a path in front of

the passing obstacle initially only to switch to a path that fell behind the obstacle as it moved

further. The PTMP method was able to match the baseline results, maintaining 0.0% steering

command through the entire test, even as the obstacle crossed in front of the simulated vehicle.

This is illustrated by Figure 5-15, which shows the individual layers of a temporal grid with the

expanded search nodes and solution path of the temporal motion planning algorithm drawn as the

predicted positions of the obstacle passed across the robot’s desired path. The temporal layer

shown in Figure 5-15(d) shows the predicted position of the obstacle at the fourth future time

128

step as having just passed the fourth generation of search nodes expanded by the motion planner

such that it did not interfere with the solution path.

Analysis of the solution path deviation further substantiated the claim that the new

temporal motion planning method would successfully generate trajectories that ignored the

passing obstacle. The average path deviation for the baseline test was approximately 14.5° with

a maximum value of 23.8°. The results from the control test showed a significant deviation of

the path as the obstacle crossed in front of the vehicle. An average deviation of approximately

31.7° represented a 118% increase for the control test when compared to the baseline test, and

the maximum deviation of 301.1° represented a 1,162% increase when compared to that of the

baseline test. The new PTMP method was able to achieve results almost identical to those of the

baseline test with an average deviation of approximately 14.4° and a maximum value of 24.1°.

Figure 5-16 plots the results of the three tests conducted and shows the large jump in solution

path deviation experienced during the control test when using the original motion planning

algorithm, while the deviations from the baseline and temporal tests remained small and

consistent.

Target Interception

The final simulation conducted to test the usefulness of the PTMP method was an

assessment of the method’s ability to facilitate a target interception capability. This test was set

up in a similar manner to the obstacle field behavior simulation. However, rather than treating

the predicted positions of the obstacle in each temporal layer as untraversable areas, the final

predicted position in the last temporal layer was used to set the goal point for the motion

planning algorithm to achieve. The same open, unstructured zone from the obstacle field

behavior test was used, and the simulated obstacle began in a slightly different initial position of

20 m in front of the vehicle and 20 m to its left. The same straight-line obstacle trajectory was

129

followed, maintaining a velocity of 2.24 mps (5 mph) as it crossed the open area. Figure 5-17

shows the fully-populated layers of a temporal grid displaying the predicted positions of the

target and Figure 5-18 shows the optimized temporal grid with the same predicted positions.

The simulation was conducted in a static manner such that the vehicle was stationary while

the target crossed the open area in front of it. This approach was chosen because the position

simulator did not actually consider the control commands of the vehicle when changing the

vehicle position. Rather the vehicle would have travelled in a straight line among the waypoints

defining the simulated path of traversal. Keeping the vehicle stationary allowed the natural

output trajectory of the motion planning algorithm to be recorded and analyzed. The target was

placed in motion by the simulated MO sensor after the TGC and PTMP began recording data.

Because this was a new application which could not be accomplished by the original

motion planning algorithm as it was dependent on the predictive nature of the new motion

planning method, it was unnecessary to compare the results of the simulation with any baseline

or control test results. Therefore, the simulation was run only using the new PTMP algorithm,

with the same performance metrics recorded. Evaluating the ability of the PTMP to successfully

generate a trajectory to the calculated goal point coming from the predicted position of the target

was the ultimate goal of this simulation.

The new method resulted in a 100% success rate in generating this trajectory, thus proving

that this application had merit. Figure 5-19 depicts the PTMP populating its tree of nodes in the

subsequent temporal layers of the grid, along with the final solution trajectory. This image also

serves to show that the new motion planner was attempting to generate the trajectory to the goal

point as defined by the final predicted position of the target, which was achieved and shown in

Figure 5-19(g). Figures 5-19(e) and 5-19(f) show earlier predicted positions of the target, also

130

painted in green, but the search tree was still expanding in the direction of the final predicted

position.

Figure 5-20 illustrates how well the new motion planning algorithm tracked the goal point

as calculated by the final predicted position of the target object. The heading angle from the

vehicle and the final predicted position of the target object and the heading angle from the

vehicle to the final node on the solution trajectory are plotted to show how well the trajectory led

the robot to intercept the target. An average discrepancy between these two heading angles of

approximately 0.97° was achieved during the simulation, with a maximum value of 3.7°. The

small magnitude of these values coupled with the perfect success rate of the motion planning

algorithm confirmed that this target interception application was a feasible task for the new

PTMP method. However, there was still room for improvement as this test only proved that the

new method could be used to track the future position of the target and generate control inputs to

drive the robot to that position. Velocity planning needs to also be considered in the event the

target is moving faster or slower than the robot, and care must be taken so that the rendezvous is

safe and collision free.

Testing Summary

The test scenarios described in the previous sections sought to quantify the performance of

the new PTMP method and to compare the new method to an existing motion planning algorithm

implementation when attempting to generate optimal trajectories in environments with moving

obstacles. The results discussed for the following behavior and obstacle field behavior tests have

shown that the new PTMP method exhibited improved performance in this type of situation. For

each test scenario, a single obstacle was placed in motion and its positions were predicted and

incorporated into the temporal grid. Table 5-5 displays the prediction times associated with each

layer of the temporal grid for the various tests. These times corresponded with the steps used by

131

the motion planning algorithm in exploring potential vehicle states to determine an optimal

trajectory.

The PTMP method was able to closely match the results of the baseline tests when

comparing important parameters, as opposed to the original motion planning algorithm used

during the control tests, which struggled for the chosen behaviors. It achieved a perfect success

rate in attempting to generate trajectories while following a moving obstacle, as well as when

attempting to navigate an obstacle field with a moving object crossing its desired path, and was

able to minimize the total path deviation and associated steering commands. On the other hand,

the control tests showed that the original motion planning algorithm struggled when

encountering the moving objects, resulting in an unacceptable failure rate. It also generated

paths that exhibited large deviations from a desired nominal, straight path and resulted in

significant steering commands that would have driven the robot off the road or could have led to

unstable oscillatory motions.

The new PTMP method also facilitated a target interception application that was not

possible when using the compared original motion planning algorithm. The newly developed

algorithm allowed for autonomously navigating to intercept a moving target object. It exhibited

a perfect success rate in generating trajectories towards the final predicted position of the target

object with minimal path deviation. This new application, coupled with the significant

improvement in performance, in terms of the key performance metrics discussed, achieved

during the behavioral test cases has proven that this new temporal motion planning method may

be used to better manage the motion planning problem in dynamic environments.

This chapter outlines the test plan used for the validation of the new temporal motion

planning method and discusses the results of those tests in detail. The tests concentrated on the

132

following and obstacle field operating behaviors and a new target interception application to

show the advantages of the new method and its improved performance over the original static

motion planning algorithm. The following chapter draws conclusions from the results of these

tests and introduces several areas of recommended additional work for this new motion planning

method.

133

Figure 5-1. Gainesville Raceway pit area with points defining test areas.

Figure 5-2. Straight road segment selected for following behavior test with defining waypoints.

134

Figure 5-3. Open unstructured area with defining waypoints and perimeter points drawn.

135

Figure 5-4. Sample following behavior control test results.

136

Figure 5-5. Sample obstacle field behavior control test results.

137

Figure 5-6. Sample full temporal grid layers with predicted position of followed object.

138

Figure 5-7. Sample optimized temporal layers of following behavior test temporal grid.

139

Figure 5-8. Sample output temporal grid from following behavior.

140

Figure 5-9. Number of expanded search nodes for following operating behavior tests.

0 5 10 15
0

100

200

300

400

500

600

700

Time [s]

N
od

es
 E

xp
an

de
d

Following Search Nodes

Baseline
Control
Temporal

141

Figure 5-10. Solution trajectory costs for the following behavior tests.

0 5 10 15
0

1

2

3

4

5

6

7
x 10

17

Time [s]

C
os

t [
$]

Following Solution Path Costs

Baseline
Control
Temporal

142

Figure 5-11. Steering commands for following behavior tests.

0 5 10 15
-10

-5

0

5

10

15

20

Time [s]

E
ffo

rt
[%

]

Following Steering Commands

Baseline
Control
Temporal

143

Figure 5-12. Sample full temporal layers showing predicted positions of obstacle.

144

Figure 5-13. Sample optimized temporal grid layers from obstacle field behavior test..

145

Figure 5-14. Steering commands for obstacle field behavior tests.

0 1 2 3 4 5 6 7 8 9 10 11
-25

-20

-15

-10

-5

0

5

10

15

20

25

Time [s]

E
ffo

rt
[%

]

Obstacle Field Steering Commands

Baseline
Control
Temporal

146

Figure 5-15. Sample output temporal grid of obstacle field behavior simulation.

147

Figure 5-16. Path deviation results for obstacle field behavior tests.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

Time [s]

P
at

h
D

ev
ia

tio
n

[d
eg

]

Obstacle Field Path Deviations

Baseline
Control
Temporal

148

Figure 5-17. Sample full temporal grid layers showing progression of target object.

149

Figure 5-18. Sample optimized temporal grid layers showing progression of target object.

150

Figure 5-19. Sample full temporal grid output of motion planner during target interception test.

151

Figure 5-20. Target and solution path heading angles for target interception test.

0 1 2 3 4 5 6 7 8 9
-80

-70

-60

-50

-40

-30

-20

Time [s]

H
ea

di
ng

 A
ng

le
 [d

eg
]

Target & Solution Path Heading Angles

Target Heading
Solution Heading

152

Table 5-1. Following behavior test plan.
Purpose:

Establish the PTMP method’s ability to navigate a mobile ground robot down a desired lane of
travel while following another moving vehicle, and to compare this performance with that of a
non-temporal motion planner. This test will examine one of the simplest operating behaviors
involving interaction with moving obstacles executed by the vehicle and could lead into more
complicated behaviors.

Design:

The vehicle will attempt to navigate down a straight road segment while following behind a
moving vehicle in the same lane travelling in the same direction. The path will be built as a
series of waypoints from an existing RNDF of the test facility and a test-specific MDF. The
obstacle vehicle will maintain a speed approximately equal to of the robot such that no risk of
the robot colliding is present.

Robot velocity: (-4.4704 m/s, 0.0)

Obstacle initial position: (-18.0 m, 0.0 m)
Obstacle velocity: (-4.4704 m, 0.0 m)
Expected results:

The PTMP method will show successful trajectory generation that allows the vehicle to
navigate down the center of its desired lane of travel behind another moving vehicle in its lane.

Logged measurements:

Input parameters:
GPOS, VSS

Output parameters:
Steering effort, Solution path

Other parameters:
Component update rates, Goal point, Search success rate, Search node usage, Solution path
deviation, Obstacle positions, Obstacle predicted positions

153

Table 5-2. Obstacle field behavior test plan.
Purpose:

Establish the PTMP method’s ability to navigate an open, unstructured area with moving
obstacles crossing its path, and to compare this performance with that of a non-temporal
motion planner. This test will examine and record the method’s obstacle avoidance
capabilities.
Design:

The vehicle will attempt to navigate through an open, unstructured area in which it has nothing
defining where it must travel, while a moving obstacle crosses perpendicularly to its desired
path in such a way that it will be out of the way by the time the robot reaches that crossing
position. The open area will be defined in an RNDF only as a set of perimeter points.

Robot velocity: (-2.235 m/s, 0.0 m/s)

Obstacle initial position: (-15.0 m, -15.0 m)
Obstacle velocity: (0.0 m/s, 4.4704 m/s)
Expected results:

The PTMP method will successfully generate a trajectory that allows the vehicle to achieve its
goal while not being diverted by the obstacle crossing its path.

Logged measurements:

Input parameters:
GPOS, VSS

Output parameters:
Steering effort, Solution path

Other parameters:
Component update rates, Goal point, Search success rate, Search node usage, Solution path
deviation, Obstacle positions, Obstacle predicted positions

154

Table 5-3. Target Interception test plan.
Purpose:

Establish the use of the PTMP method for a target interception application.
Design:

The vehicle will attempt to track the final predicted position of an obstacle traversing an open,
unstructured area and generate a trajectory to intercept that position by treating it as the motion
planning algorithm’s goal. The target will move in a straight line in front of the robot. The
robot will remain stationary throughout the test.

Robot velocity: (0.0 m/s, 0.0 m/s)

Obstacle initial position: (-20.0 m, -20.0 m)
Obstacle velocity: (0.0 m/s, 2.235 m/s)
Expected results:

The PTMP method will successfully treat the final predicted position of the target object as its
goal point and generate a trajectory that will intercept this position. The test will take place in
the same open area environment used for the obstacle field tests.
Logged measurements:

Input parameters:
GPOS, VSS

Output parameters:
Steering effort, Solution path

Other parameters:
Component update rates, Target goal point, Search success rate, Search node usage, Solution
path deviation, Obstacle positions, Obstacle predicted positions

155

Table 5-4. Sample of predicted positions and velocities for following behavior testing.
Temporal
layer

X position
(m)

Y position
(m)

X velocity
(m/s)

Y velocity
(m/s)

 Local Global Local Global
1 -12.96 378087.7 0.14 3292661.0 -4.47 0.00
2 -17.00 378083.6 0.14 3292661.0 -4.47 0.00
3 -21.11 378079.5 0.14 3292661.0 -4.47 0.00
4 -25.29 378075.3 0.14 3292661.0 -4.47 0.00
5 -29.52 378071.1 0.14 3292661.0 -4.47 0.00
6 -33.83 378066.8 0.14 3292661.0 -4.47 0.00
7 -38.20 378062.4 0.14 3292661.0 -4.47 0.00

Table 5-5. Sample of predicted positions and velocities for obstacle field behavior testing.
Temporal
layer

X position
(m)

Y position
(m)

X velocity
(m/s)

Y velocity
(m/s)

 Local Global Local Global
1 -15.98 377378.8 -7.47 3292548.1 0.0 4.47
2 -15.98 377378.8 -3.42 3292552.2 0.0 4.47
3 -15.98 377378.8 0.63 3292556.2 0.0 4.47
4 -15.98 377378.8 4.67 3292560.3 0.0 4.47
5 -15.98 377378.8 8.70 3292564.3 0.0 4.47
6 -15.98 377378.8 12.73 3292568.3 0.0 4.47
7 -15.98 377378.8 16.75 3292572.3 0.0 4.47

Table 5-6. Prediction times for three test scenarios at various temporal.
Temporal
layer

Distance
step (m)

Following behavior
prediction times (s)

Obstacle field
prediction times (s)

Target interception
prediction times (s)

1 6.0 1.3422 1.3422 2.6846
2 10.0 2.2370 2.2370 4.4743
3 14.0 3.1317 3.1317 6.2640
4 18.0 4.0265 4.0265 8.0537
5 22.0 4.9213 4.9213 9.8434
6 26.0 5.8160 5.8160 11.6331
7 30.0 6.7180 6.7180 13.4228

156

CHAPTER 6
CONCLUSIONS AND FUTURE WORK

This dissertation describes a new and novel motion planning method developed by the

author that considered the predicted motions of any obstacle present in the immediate

environment. This newly termed predictive temporal motion planning method allowed a robotic

system to generate a trajectory through a dynamic environment to successfully achieve its goal

state. This final chapter seeks to close the discussion of this new method by first presenting

several areas of potential future work that arose during the development and testing of the new

planning method. It then draws conclusions from the theory and implementation discussed in

Chapters 3 and 4 and from the test results of the validation process described in Chapter 5. It

also outlines the main contributions of the PTMP method to the field of robotics.

Future Work

The research presented in this document laid the case for the feasibility and advantages of

the PTMP method, but there are still several advancements that can improve the new method

further and several other applications for which the method could be effectively used that are

now discussed. The first of these improvements dealt with the continued optimization of the

temporal grid structure. The implemented optimization technique involved simply building each

temporal layer of the grid up to a size that was reachable by the associated generation of search

node expansion, thus resulting in a pyramid-type structure with the initial temporal layers being

represented by fairly small grids and the latter temporal layers being nearly fully-populated grids.

While this was much more efficient than simply building a fully-populated grid for each

temporal layer, it still allowed for the duplication of cells in different temporal layers that did not

change traversability value from one layer to the next. Ideally, a tree structure approach could be

used to add new branches to each cell only when the traversability value of that cell changed.

157

The associated time-step would need to be recorded for each change so that the motion planning

algorithm could intelligently search through this tree structure to find the correct traversability

value. This approach would result in the minimum size of the temporal grid structure being

achieved, as new cells were added only when absolutely necessary.

Another area of future work considered the resizing of the temporal grid structure if the

key search parameters changed during runtime. Testing for the presented research maintained

constant values of initial time-step, normal time-step, and search horizon time; however, it was

possible and likely that these parameters would change value as the robot executed different

behaviors and experienced changes in speed. As these values changed, the number of temporal

layers and the dimensions of each temporal layer that make up the temporal grid structure may

have become invalid and would be required to be reconfigured to account for the new time-step

or time horizon values. This would have required that the existing temporal grid structure was

destroyed in memory, values for the number of temporal layers and dimensions of each layer

were recalculated, and the new temporal grid structure was generated and populated with their

corresponding traversability values. This ability would have allowed for more robustness as the

robot executed long missions where the operating behaviors and conditions may have changed

many times.

The implemented version of the PTMP method generated the minimum number of

temporal layers as determined by calculating the minimum number of steps from the vehicle’s

location to the time horizon, considering the given time-step values. This approach worked well

when generating a straight trajectory to the goal, in which case the minimum number of

generations of search nodes was expanded; however, if the motion planning algorithm were

required to build a trajectory around a static obstacle or around a curve in the road that forced it

158

to expand more than the minimum number of generations of search nodes, the latter generations

would have had no associated temporal layer from which they could have been evaluated. The

solution utilized during the presented research simply evaluated additional search node

generations by using the last available temporal layer. A possible approach could have involved

including a few additional temporal layers that included additional predictions to account for

possible extraneous generations; however, this would still have resulted in the construction of the

temporal potentially being sub-optimal. A more enlightened solution could have involved

incrementally adding new layers as they became necessary.

The functionality of the TGC component essentially took the place of the SARB

component that fused the multiple traversability grids coming from the various sensor

components on the vehicle. The TGC component received the output traversability grid coming

from the SARB as one of its inputs. It then copied the traversability data contained within this

structure into the newly created temporal grid structure and amended the subsequent temporal

layers as the predicted positions of any moving objects were calculated. To streamline the grid

creation, the functionality of the SARB could have been consolidated into the TGC so that the

temporal grid structure could have been created without the necessity of the traditional

traversability grid. This would have involved the TGC obtaining the various sensor

traversability grids and running the fusion algorithm, modifying cells as necessary resulting from

the motion prediction of the obstacles, and finally, including this fused and modified data into

the temporal grid structure.

Another area of future work considered testing the PTMP method on additional and more

complex operating behaviors exhibited by the Urban NaviGator. This new method also had

applications for scenarios such as intersection navigation with moving traffic. In this situation,

159

the robot may have been attempting to traverse through an intersection to merge onto a lane

where the resident traffic vehicles did not have to stop, or vice versa, if the robot was attempting

to turn off of such a lane onto a side street. The ability to represent the predicted positions of the

other traffic vehicles could have allowed the PTMP to determine when it was safe to begin

accelerating to merge into the desired lane.

Another behavior involved passing a vehicle that was in the desired lane of travel and that

was moving slower than the desired velocity of the robot. The Urban NaviGator was able to pass

static vehicles that were located in its lane; however, it was not capable of accomplishing this

task of passing a slowly moving vehicle. The new PTMP method could have aided in the

behavior by allowing the vehicle to generate a trajectory that would have considered the

predicted future positions of the obstacle vehicle as it was traversing the desired lane. Upon

determination that the vehicle needed to be passed, the robot would have shifted to an adjacent

lane to overtake the other vehicle. As it was passing the vehicle, the predicted positions of the

vehicle would have been displayed in the temporal grid so that the new motion planning

algorithm could have determined a trajectory that would have safely navigated the robot back

into the original lane in front of the obstacle vehicle. This would have required additional

intelligence on the part of the PTMP as it would have needed to not only plan motion but

velocity as well to overtake the vehicle and would have needed to monitor safe passing distances

between the robot and the other vehicle.

A final area of potential future work involves adding intelligence to the new temporal

motion planner. The incorporation of moving obstacle prediction allowed the algorithm to view

if an obstacle was likely to pass in front of its desired path. In the presented cases, the planner

was able to generate its solution trajectories without being affected by the predicted positions of

160

the obstacles. However, if it was determined that the obstacle would adversely affect the desired

trajectory, it would be advantageous for the planner to intelligently choose whether to alter its

desired path to traverse in front of the obstacle or to travel behind the object. Likewise, the

motion planner could be extended to plan a velocity trajectory to either speed the vehicle up to

pass before the object or slow down to let the object pass first and then follow.

Conclusions

The robot motion planning task is not trivial by any means, even after decades of research

and development. The ability of a robot to generate a trajectory to move it from its current state

to its goal state without colliding with any objects is of paramount importance to accomplishing

its mission. The introduction of moving obstacles into the robot’s environment only further

complicates this problem. Situations such as those that arose during the 2007 DARPA Urban

Challenge, in which unmanned ground vehicles were required to navigate urban environments

while interacting with other moving vehicles, including other unmanned vehicles, are prime

examples of the complex nature of the art of robotic motion planning. The research presented in

this dissertation sought to provide a new and novel approach to robotic motion planning in

dynamic environments. The first chapter provides an introduction to the motion planning

problem in general, and discusses the inclusion of dynamic objects in the environment, while

Chapter 2 recounts previous work that sought to address the issue of planning trajectories in

dynamic environments. This is followed by a discussion of the theory behind the newly

presented temporal motion planning method in Chapter 3 and an outline of the current

implementation of the method on the Urban NaviGator in Chapter 4. A description of the

validation procedure and summary of testing results is then provided in Chapter 5.

The new PTMP method sought to incorporate motion prediction for all moving obstacles

in the robot’s immediate environment in a way that aided the algorithm in generating a control

161

input sequence that allowed the robot to safely navigate to its goal. This was facilitated by the

development and implementation of a new grid structure that included temporal layers that

represented how the environment changed at distinct future time-steps. A prediction algorithm

generated a model to estimate the future positions of any obstacles present, and these estimated

future positions were represented in their respective layers of the temporal grid structure to

provide this sense of how the environment changes. The temporal grid was then used by a

motion planning algorithm to intelligently plan a trajectory through the robot’s dynamic

environment by considering the estimates of how the objects in the environment moved over

time.

The concept of a predictive temporal grid was a particularly novel outcome of the

presented research, and the test results described in Chapter 5 provided ample evidence that this

new predictive temporal method was capable of improving motion planning not only for

unmanned ground vehicles, but for other types of unmanned vehicles and other types of robotic

systems in general, including industrial robotic manipulators. The new method, combined with

some of the areas of future research detailed in the previous section also opened up new potential

applications and could provide solutions to existing problems for robotic systems in dynamic

environments.

162

LIST OF REFERENCES

Arbuckle, D., Howard, A., & Mataric, M. (2002, September). Temporal occupancy grids: A
method for classifying the spatio-temporal properties of the environment. In Proceedings
of the IEEE International Conference on Intelligent Robots and Systems, Lausanne,
Switzerland (pp. 409-414).

Armstrong, M. P. (1988, November). Temporality in spatial databases. In Proceedings of the

GIS/LIS'88, San Antonio, Texas, USA (pp. 880-889).

Arras, K. O., Persson, J., Tomatis, N., & Siegwart, R. (2002, May). Real-time obstacle avoidance

for polygonal robots with a reduced dynamic window. In Proceedings of the IEEE
International Conference on Robotics and Automation, Washington, D.C. (pp. 3050-
3055).

Belghith, K., Kabanza, F., Hartman, L., & Nkambou, R. (2006, May). Anytime dynamic path-

planning with flexible probabilistic roadmaps. In Proceedings of the IEEE International
Conference on Robotics and Automation, Orlando, FL (pp. 2372-2377).

Biber, P., & Duckett, T. (2005, June). Dynamic maps for long-term operation of mobile service

robots. In Proceedings of the Robotics: Science and Systems Conference, Cambridge,
MA (pp. 17-24).

Cao, Q., Huang, Y., & Zhou, J. (2006, October). An evolutionary artificial potential field

algorithm for dynamic path planning of mobile robot. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, Beijing, China (pp. 3331-
3336).

Chang, C. C., & Song, K.-T. (1996, May). Dynamic motion planning based on real-time obstacle

prediction. In Proceedings of the IEEE International Conference on Robotics and
Automation, Minneapolis, MN (pp. 2402-2407).

Chang, C. C., & Song, K.-T. (1997). Environment prediction for a mobile robot in a dynamic

environment. IEEE Transactions on Robotics and Automation, 13(6), 862-872.

Coue, C., Fraichard, T., Bessiere, P., & Mazer, E. (2003, September). Using Bayesian

programming for multi-sensor multi-target tracking in automotive applications. In
Proceedings of the IEEE International Conference on Robotics and Automation, Tapei,
Taiwan (pp. 2104-2109).

Crane, C. D., Armstrong, D. G., Ahmed, M., Solanki, S., MacArthur, D., Zawodny, E., Gray, S.,

Petroff, T., Griffis, M., & Evans, C. (2005, March). Development of an integrated sensor
system for obstacle detection and terrain evaluation for application to unmanned ground
vehicles. In Proceedings of the SPIE - The International Society for Optical Engineering -
Unmanned Ground Vehicle Technology VII, Orlando, FL (pp. 156-165).

163

Croft, E. A., Fenton, R. G., & Benhabib, B. (1998). On-line robot planning strategy for target
interception. Journal of Robotic Systems, 15(2), 97-114.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer,

22(6), 46-57.

Elnagar, A., & Gupta, K. (1998). Motion prediction of moving objects based on autoregressive

model. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and
Humans., 28(6), 803-810.

Elnagar, A., & Hussein, A. M. (2003, September). An adaptive motion prediction model for

trajectory planner systems. In Proceedings of the IEEE International Conference on
Robotics and Automation, Tapei, Taiwan (pp. 2442-2447).

Ferguson, D., & Stentz, A. (2005, April). The delayed D* algorithm for efficient path replanning.

In Proceedings of the IEEE International Conference on Robotics and Automation,
Barcelona, Spain (pp. 2045-2050).

Ferguson, D., & Stentz, A. (2007). Field D*: An interpolation-based path planner and replanner.

Robotics Research, 28(239-253.

Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity

obstacles. International Journal of Robotics Research, 17(7), 760-772.

Foka, A. F., & Trahanias, P. E. (2002, September). Predictive autonomous robot navigation. In

Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
(pp. 490-495).

Fox, D., Burgard, W., & Thrun, S. (1996, November). Controlling synchro-drive robots with the

dynamic window approach to collision avoidance. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, Osaka, Japan (pp. 1280-
1287).

Fox, D., Burgard, W., Thrun, S., & Cremers, A. B. (1998, May). Hybrid collision avoidance

method for mobile robots. In Proceedings of the IEEE International Conference on
Robotics and Automation, Lueven, Belgium (pp. 1238-1243).

Fraichard, T., & Laugier, C. (1992, May). Kinodynamic planning in a structured and time-

varying 2D workspace. In Proceedings of the IEEE International Conference on Robotics
and Automation, Nice, France (pp. 1500-1505).

Fraichard, T., & Laugier, C. (1993, May). Path-velocity decomposition revisited and applied to

dynamic trajectory planning. In Proceedings of the IEEE International Conference on
Robotics and Automation, Atlanta, GA (pp. 40-45).

164

Fujimura, K., & Samet, H. (1989). A hierarchical strategy for path planning among moving
obstacles [mobile robot]. IEEE Transactions on Robotics and Automation, 5(1), 61-69.

Galluzzo, T. (2006). Simultaneous planning and control for autonomous ground vehicles. Ph.D.

thesis, University of Florida, Gainesville, FL.

Ge, S. S., & Cui, Y. J. (2002). Dynamic motion planning for mobile robots using potential field

method. Autonomous Robots, 13(3), 207-222.

GNU, "GNU Scientific Library ", 2008.

Grinstead, C., & Snell, J. (1997). Introduction to probability. Providence, R.I.: American

Mathematical Society.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2),
100-107.

Hatayama, M., & Matsuno, F. (2008, August). Temporal GIS for information collection system

using robot technology in a damaged building. In Proceedings of the SICE Annual
Conference, Tokyo, Japan (pp. 1653-1656).

Houshangi, N. (1990, May). Control of a robotic manipulator to grasp a moving target using

vision. In Proceedings of the IEEE Conference on Robotics and Automation, Cincinnati,
OH (pp. 604-609).

Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized kinodynamic motion

planning with moving obstacles. International Journal of Robotics Research, 21(3), 233-
255.

Hujic, D., Zak, G., Croft, E., Fenton, R. G., Mills, J. K., & Benhabib, B. (1995, August). Active

prediction, planning and execution system for interception of moving objects. In
Proceedings of the IEEE International Symposium on Assembly and Task Planning,
Pittsburgh, PA (pp. 347-352).

Hwang, K.-S., & Ju, M.-Y. (1999, October). Automatic generation of a collision free speed

profile for the maneuvering motion. In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, Tokyo, Japan (pp. 708-713).

Hwang, K.-S., & Ju, M.-Y. (2002). Speed planning for a maneuvering motion. Journal of

Intelligent and Robotic Systems: Theory and Applications, 33(1), 25-44.

165

Ishikawa, K., Meguro, J.-I., Amano, Y., Hashizume, T., Takiguchi, J.-I., Kurosaki, R., &
Hatayama, M. (2005, June). Parking-vehicles recognition using spatial temporal data (a
study of mobile robot surveillance system using spatial temporal GIS part 2). In
Proceedings of the IEEE International Workshop on Safety, Security and Rescue
Robotics, Kobe, Japan (pp. 151-157).

Jaillet, L., & Simeon, T. (2004, September). A PRM-based motion planner for dynamically

changing environments. In Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, Sendai, Japan (pp. 1606-1611).

Kant, K., & Zucker, S. (1988, April). Planning collision-free trajectories in time-varying

environments: A two-level hierarchy. In Proceedings of the IEEE International
Conference on Robotics and Automation, Philadelphia, PA (pp. 304-313).

Kant, K., & Zucker, S. W. (1986). Toward efficient trajectory planning: The path-velocity

decomposition. International Journal of Robotics Research, 5(3), 72-89.

Kehtarnavaz, N., & Li, S. (1988, June). A collision-free navigation scheme in the presence of

moving obstacles. In Proceedings of the Computer Society Conference on Computer
Vision and Pattern Recognition, Ann Arbor, MI (pp. 808-813).

Kent, D. (2007). Storing and predicting dynamic attributes in a world model knowledge store.

Ph.D. thesis, University of Florida, Gainesville, FL.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research, 5(1), 90-98.

Kindel, R., Hsu, D., Latombe, J.-C., & Rock, S. (2000, April). Kinodynamic motion planning

amidst moving obstacles. In Proceedings of the IEEE International Conference on
Robotics and Automation, San Fransisco, CA (pp. 537-543).

Kluge, B. (2003, October). Recursive agent modeling with probabilistic velocity obstacles for

mobile robot navigation among humans. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, Las Vegas, NV (pp. 376-381).

Ko, N. Y., & Lee, B. H. (1996, November). Avoidability measure in moving obstacle avoidance

problem and its use for robot motion planning. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, Osaka, Japan (pp. 1296-1303).

Koenig, S., & Likhachev, M. (2002, July). D* lite. In Proceedings of the National Conference on

Artificial Intelligence, Edmonton, Alberta, Canada (pp. 476-483).

Kunwar, F., & Benhabib, B. (2006). Rendezvous-guidance trajectory planning for robotic

dynamic obstacle avoidance and interception. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 36(6), 1432-1441.

166

Langran, G. (1990). Temporal GIS design tradeoffs. Journal of the Urban and Regional
Information Systems Association, 2(1), 16-25.

Langran, G., & Chrisman, N. R. (1988). A framework for temporal geographic information.

Cartographica: The International Journal for Geographic Information and
Geovisualization, 25(3), 1-14.

Large, F., Laugier, C., & Shiller, Z. (2005). Navigation among moving obstacles using the

NLVO: Principles and applications to intelligent vehicles. Autonomous Robots, 19(2),
159-171.

Laugier, C., Petti, S., Vasquez, D., Yguel, M., Fraichard, T., & Aycard, O. (2005). Steps toward

safe navigation in open and dynamic environments. In Springer Tracts in Advanced
Robotics: Autonomous Navigation in Dynamic Environments. (pp. 45-82). Berlin /
Heidelberg, Germany: Springer.

Leonard, J. J., & Durrant-Whyte, H. F. (1990). Simultaneous map building and localization for

an autonomous mobile robot (Technical Memorandum No. 103274). Washington, DC:
NASA.

Li, Y., Li, C., & Song, R. (2008, December). A new hybrid algorithm of dynamic obstacle

avoidance based on dynamic rolling planning and RBFNN. In Proceedings of the IEEE
International Conference on Robotics and Biomimetics, Bangkok, Thailand (pp. 2064-
2068).

Longley, P., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2001). Geographical information

systems and science. New York, NY: John Wiley & Sons, Ltd.

Mitsou, N. C., & Tzafestas, C. S. (2007, June). Temporal occupancy grid for mobile robot

dynamic environment mapping. In Proceedings of the Mediterranean Conference on
Control and Automation, Athens, Greece (pp. 4433892).

Nilsson, N. (1998). Artificial Intelligence: A New Synthesis. San Francisco: Morgan Kaufmann

Publishers, Inc.

Ogren, P., & Leonard, N. E. (2002, October). A tractable convergent dynamic window approach

to obstacle avoidance. In Proceedings of the IEEE International Conference on Intelligent
Robots and Systems, Lausanne, Switzerland (pp. 595-600).

Pereira, G. A. S., Campos, M. F. M., & Aguirre, L. A. (2000, October). Improved control of

visually observed robotic agents based on autoregressive model prediction. In
Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
Takamatsu, Japan (pp. 608-613).

167

Poty, A., Melchior, P., & Oustaloup, A. (2004, August). Dynamic path planning by fractional
potential. In Proceedings of the IEEE International Conference on Computational
Cybernetics, Vienna, Austria (pp. 365-371).

Rabiner, L., & Juang, B. (1986). An introduction to hidden Markov models. IEEE ASSP

Magazine, 3(1), 4-16.

Rennekamp, T., Homeier, K., & Kroeger, T. (2006, October). Distributed sensing and prediction

of obstacle motions for mobile robot motion planning. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, Beijing, China (pp. 4833-
4838).

Robert, J., & Sharf, I. (2007, September). Autonomous capture of free-floating objects using

predictive approach. In Proceedings of the International Astronautical Federation - 58th
International Astronautical Congress, Hyderabad, India (pp. 4160-4174).

Rohrmuller, F., Althoff, M., Wollherr, D., & Buss, M. (2008, September). Probabilistic mapping

of dynamic obstacles using Markov chains for replanning in dynamic environments. In
Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
Nice, France (pp. 2504-2510).

Rude, M. (1997). Collision avoidance by using space-time representations of motion processes.

Autonomous Robots, 4(1), 101-119.

Seder, M., Macek, K., & Petrovic, I. (2005, November). An integrated approach to real-time

mobile robot control in partially known indoor environments. In Proceedings of the
Annual Conference of the IEEE Industrial Electronics Society, Raleigh, NC (pp. 1785-
1790).

Seder, M., & Petrovic, I. (2007, April). Dynamic window based approach to mobile robot motion

control in the presence of moving obstacles. In Proceedings of the IEEE International
Conference on Robotics and Automation, Rome, Italy (pp. 1986-1991).

Shiller, Z., Large, F., & Sekhavat, S. (2001, May). Motion planning in dynamic environments:

Obstacles moving along arbitrary trajectories. In Proceedings of the IEEE International
Conference on Robotics and Automation, Seoul, Korea (pp. 3716-3721).

Song, K.-T., & Chang, C. C. (1999). Reactive navigation in dynamic environment using a

multisensor predictor. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 29(6), 870-880.

Stentz, A. (1995, August). The focussed D* algorithm for real-time replanning. In Proceedings

of the International Joint Conference on Artificial Intelligence, Montreal, Quebec,
Canada (pp. 1652-1659).

168

Stentz, A. (1994, May). Optimal and efficient path planning for partially-known environments.
In Proceedings of the IEEE International Conference on Robotics and Automation,
Philadelphia, PA (pp. 3310-3317).

Svestka, P., & Overmars, M. (1994). Motion planning for car-like robots using a probabilistic

learning approach (Technical Report UU-CS-1994-33). Utrecht, the Netherlands:
Utrecht University.

Svestka, P., & Overmars, M. H. (1995, May). Coordinated motion planning for multiple car-like

robots using probabilistic roadmaps. In Proceedings of the IEEE International Conference
on Robotics and Automation, Nagoya, Aichi, Japan (pp. 1631-1636).

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press.

van den Berg, J. P., & Overmars, M. H. (2005). Roadmap-based motion planning in dynamic

environments. IEEE Transactions on Robotics, 21(5), 885-897.

Worboys, M. F. (1994). Unified model for spatial and temporal information. The Computer

Journal, 37(1), 26-34.

Yu, H., & Su, T. (2003). Destination driven motion planning via obstacle motion prediction and

multi-state path repair. Journal of Intelligent and Robotic Systems: Theory and
Applications, 36(2), 149-173.

Yung, N. H. C., & Ye, C. (1998, October). Avoidance of moving obstacles through behavior

fusion and motion prediction. In Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, San Diego, CA (pp. 3424-3429).

Zhu, Q. (1991). Hidden Markov model for dynamic obstacle avoidance of mobile robot

navigation. IEEE Transactions on Robotics and Automation, 7(3), 390-397.

Zhu, Q. (1990, August). A stochastic algorithm for obstacle motion prediction in visual guidance

of robot motion. In Proceedings of the IEEE International Conference on Systems
Engineering, Pittsburgh, PA (pp. 216-219).

Zhuang, H.-Z., Du, S.-X., & Wu, T.-J. (2006). On-line real-time path planning of mobile robots

in dynamic uncertain environment. Journal of Zhejiang University: Science, 7(4), 516-
524.

BIOGRAPHICAL SKETCH

Eric Thorn was born in 1981 and raised in Pensacola, FL. He received B.S. degrees in

both aerospace engineering and mechanical engineering from the University of Florida in

Gainesville, Florida in December, 2004. He also received an M.S. in mechanical engineering

from the University of Florida in August, 2007. He is currently working as a Graduate Research

Assistant and completing a Doctoral degree in mechanical engineering at the Center for

Intelligent Machines and Robotics (CIMAR) at the University of Florida. His research focuses

on unmanned ground vehicle motion planning and control. He plans to continue his career as a

research engineer in the Department of Intelligent Systems at the Southwest Research Institute in

San Antonio, Texas.

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	INTRODUCTION
	Background
	Focus
	Problem Statement
	Motivation

	REVIEW OF LITERATURE
	Path Planning in Dynamic Environments
	Replanning Algorithms
	Velocity Obstacles
	Dynamic Window
	Path-Velocity Decomposition
	Artificial Potential Fields
	Probabilistic Roadmaps

	Path Planning with Moving Obstacle Motion Prediction
	Regression Methods
	Bayesian Methods
	Markov Methods
	Neural Networks

	Dynamic Environment Representation
	State-Time Graph
	Temporal Geographical Information Systems
	Temporal Occupancy Grid

	Autonomous Target Interception

	THEORETICAL APPROACH
	Motion Planning Overview
	Temporal Grid
	Obstacle Motion Prediction
	Temporal Motion Planning

	/
	IMPLEMENTATION DETAILS
	Urban NaviGator
	Architecture
	Hardware
	Software

	Traditional Traversability Grid
	Temporal Grid Creator
	Obstacle Position Data Collection
	Search Parameters
	Temporal Grid
	Moving Obstacle Prediction

	Temporal Motion Planner
	Target Interception Application

	TESTING AND RESULTS
	Test Plan
	Following Behavior
	Obstacle Field Behavior
	Target Interception

	Test Metrics
	Simulation
	Following Behavior
	Obstacle Field Behavior
	Target Interception

	Testing Summary

	CONCLUSIONS AND FUTURE WORK
	Future Work
	Conclusions

	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

