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The introduction of moving obstacles into a robot’s environment presents added 

complexity to the motion planning task.  This dissertation examines the need for and 

development of a representation which incorporates the dynamic nature of the environment and 

presents a novel motion planning method which utilizes this representation to facilitate the 

generation of optimal trajectories among moving obstacles, termed the predictive temporal 

motion planning (PTMP) method.  This new method provides an advanced approach to the 

problem of generating solution trajectories in dynamic environments by elegantly connecting the 

tasks of obstacle detection and prediction, environment mapping and motion planning. 

The dynamic environmental representation takes the form of a typical grid which is 

extended into the time dimension by adding temporal layers to the grid structure.  The layers of 

this temporal grid represent distinct time-steps into the future.  These time-steps are determined 

by considering how the motion planning algorithm calculates its discrete control commands.  

Obstacle motion prediction is incorporated into the temporal grid by estimating future positions 

of moving obstacles and displaying these estimates in the layer of the temporal grid associated 

with the prediction times. 



 

13 
 

The new motion planning method then can use this predictive temporal grid to investigate 

potential control input sequences to generate an optimal trajectory to achieve its goal.  As the 

algorithm evaluates potential control commands at various time-steps in the future, it does so by 

exploring the various temporal layers of the new grid structure corresponding to these distinct 

control times.  By considering the estimated future motions of any obstacles, the motion planning 

algorithm can more intelligently calculate its control sequences to avoid these objects in an 

efficient manner. 

The research presented covers the theory of this new method and a specific implementation 

on an unmanned ground vehicle platform at the University of Florida’s Center for Intelligent 

Machines and Robotics (CIMAR).  Results from simulation have shown that the PTMP method 

is viable and advantageous for the motion planning required by robotic systems in dynamic 

environments. 
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CHAPTER 1 
INTRODUCTION 

The field of robotics, while not so young anymore, is still experiencing rapid growth and 

development.  Advanced areas of research are being presented every year, and robots continue to 

be utilized in new and novel ways.  Unmanned vehicles are one specific area of robotics that is 

receiving a lot of attention.  These intelligent mobile platforms are highly attractive since they 

can be placed in uncertain or even dangerous environments to accomplish missions that would be 

unsafe for humans.  Each new application of mobile robots typically involves increasingly 

complex scenarios that require the robot to sense its environment and execute behaviors with 

more precision and efficiency than before.  For unmanned ground robots, navigation through 

dynamic urban environments represents one of these increasingly complex scenarios.  The 

research presented in this document continues this ongoing trend of advancing the field, 

specifically in dealing with this issue of navigating in areas with moving obstacles. 

Background 

Unmanned robots exist in many different shapes and sizes and varying degrees of 

intelligence and capability.  Unmanned ground vehicles can operate on rough and rugged terrain, 

inside of buildings where hostile conditions may exist, and in tight spaces that would otherwise 

be inaccessible for humans.  Unmanned underwater vehicles can be deployed by the military to 

sneak undetected under the surface if necessary, or can be used by scientists to analyze the ocean 

floor mapping or drilling purposes.  Unmanned aerial vehicles range from models with one foot 

wingspans that can be used for urban search and rescue, to the full-sized Predators currently 

deployed for reconnaissance and precision strikes in Iraq and Afghanistan. 

Unmanned vehicles can be further classified as either teleoperated or fully autonomous 

depending on the level of intelligence.  Teleoperated vehicles require human input, but remotely 
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from a distance.  They are regularly used by the military and bomb squads across the country to 

deal with potential explosive devices.  The robot can be remotely driven to a possible 

unexploded ordinance, and then through the use of onboard mechanisms, can detonate or dispose 

of the threat.  They can also be driven through dangerous rubble to search for survivors of an 

earthquake or missile attack.  On the other hand, fully autonomous robots require no human 

interaction aside from an initialization process.  This type of vehicle is appealing to the military 

because of the ability of the robot to make decisions and take action on its own keeps soldiers out 

of harm’s way.  These robots are incredibly complex and require hundreds or even thousands of 

components working together flawlessly to be successful.  The presented research focuses on 

these autonomous unmanned vehicles, although it could potentially be used on teleoperated 

vehicles and other types of robotic systems as well. 

Fully autonomous vehicles require significant cognitive abilities.  Given only some goal to 

achieve, the robot must localize itself, put together a representation of its surroundings, plan a 

course of action through its surroundings to achieve its goal, and then act upon this plan.  The 

problem of localization requires the robot to determine where it is and where its destination is in 

a particular reference frame.  One possible solution is the process known as simultaneous 

localization and mapping, or SLAM (Leonard & Durrant-Whyte, 1990).  SLAM involves 

creating an environmental map based on sensor data, while concurrently keeping track of the 

robot’s current position.  Another common approach is through the use of the Global Positioning 

System satellite network coupled with an inertial navigation system which can track the motion 

of the robot in the absence of accurate data from the satellites.  This localizes the robot in a 

global frame of reference using latitudes, longitudes, and elevations, but can be transformed into 

other frames of reference. 
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In addition to knowing its location in its reference frame, the robot must know what its 

surrounding look like.  There are a variety of sensors capable of putting together a representation 

of the environment depending on the application, and usually, a collection of these sensors is 

utilized.  For underwater robotic vehicles, sonar might be the sensor of choice.  Cameras and 

laser scanners are just a few examples of hardware that can be used to classify the terrain in front 

of and around a ground robot, and to locate and track static and dynamic obstacles near the 

vehicle.  And for unmanned aerial vehicles, radar and thermal cameras may be best suited to 

provide the required information. 

This raw sensor data must then be combined to create a representation that can be useful to 

the robot.  A common type of representation is a grid map, which rasterizes the surrounding 

environment into cells and classifies each cell to some degree of occupancy according to the 

sensor data associated with that cell.  Vector representation is another way to describe the robot’s 

surroundings.  This method is more closely related to the raw data provided by the sensors in that 

it describes the environment as a series of distances and angles.  Regardless of the technique, this 

knowledge of the surrounding area is crucial for the issue of maneuvering the robot from its 

current position to the goal. 

The determination of deliberative control inputs to accomplish this task of acquiring a goal 

can be completed by a variety of means and is typically termed path planning or motion 

planning.  Planning algorithms include, but are not limited to, the rather simplistic vector driver 

algorithms which compute the angle between the current vehicle heading and the heading to the 

goal and relate it to a steering input to change the heading, complex model predictive control 

methods which take the kinematics and dynamics of the vehicle into account, and heuristic 

algorithms which efficiently estimate the optimal path and generate control inputs.  Presently, 
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there are many algorithms in use that are capable of calculating trajectories that are optimal in 

terms of travel time, travel distance, or some other metric that differentiates one potential path 

from another.  The work to be presented expands on an existing path planning method. 

Finally, once a set of control is calculated, the inputs must be implemented through 

actuation of the vehicle.  Typically, the control inputs consist of steering commands to change 

the heading of the vehicle and acceleration or deceleration commands to change the velocity of 

the vehicle.  These commands are usually implemented through mechanical or electrical means.  

Steering commands may be instituted as changes in pressure for hydraulically driven vehicles, or 

position changes of a motor connected to the steering column of an Ackerman-steered vehicle.  

Velocity changes can be implemented by means of an electrical signal being sent to a computer 

for vehicles with electronically controlled acceleration and deceleration, or by pushing or pulling 

on a brake or throttle pedal using a motor. 

This sequence of events must be repeatedly carried out as new information about the state 

of the vehicle and the state of its surroundings changes.  Depending on the type of vehicle and 

application, this could require considerable computational resources to process all the incoming 

data and run the algorithms necessary to generate the output commands.  This brief summary 

only begins to scratch the surface when describing the complexity required in operating 

unmanned robotic vehicles. 

Focus 

Past research indicates many motion planning algorithms are adept at finding optimal paths 

through static environments.  However, the introduction of dynamic objects which have 

uncertain motions into the environment complicates the planning process.  While sensing 

technology is fairly reliable in terms of detecting and mapping static objects, the issue of 

detecting and tracking moving objects has only recently begun to be investigated.  Furthermore, 
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the ability of an autonomous robot to plan a trajectory through an environment where dynamic 

obstacles are present is a very young area of research. 

One of the main issues that arise in such a situation is the modeling of a moving object in 

the environmental representation through which the robot plans.  In the case of a grid map, the 

question of how to describe the motion of the object in the cells of the grid is important.  Many 

existing motion planners run their planning algorithms repeatedly at some regular time interval 

and treat each instance of a grid as static.  As new sensor data is received, the previous map is 

updated for the next iteration of the algorithm.  In this sense, the motion of moving objects can 

be represented over a number of successive grids, with the objects being treated as static in each 

individual grid.  This will allow the motion planner to find a complete trajectory from the current 

position to the goal position that avoids object for this instance in time, assuming a complete 

trajectory is attainable.  However, this can be misleading as the planner has no intuition as to 

what the future motions of the moving object will be, and could lead to the robot planning a path 

that would ultimately lead to a collision, or planning a highly suboptimal path to avoid the object 

as time progresses. 

The ability to predict the motion of dynamic objects could aid in solving this problem.  

There are several prediction algorithms that could be used to describe the future states of a 

moving object in the environment of the robot.  If a motion planning algorithm could know how 

an object’s position will change over some period of time in the future with a reasonable degree 

of certainty, it could make more intelligent choices in terms of steering and velocity commands.  

And even if the exact future position of the object cannot be precisely defined, a probability 

distribution of future positions could still be useful. 
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Problem Statement 

After the aforementioned discussion of predicting the future motions of moving obstacles, 

the question of how to describe the predicted motion of a dynamic object in the representation of 

the robot’s surroundings arises.  The introduction of time-varying data in a data structure that 

represents the robot’s environment brings new challenges and new possibilities to the robot 

motion planning task.  Additionally, the development of a motion planner that can plan a 

trajectory through this type of temporal data structure is desirable.  While the development of a 

prediction algorithm is outside the scope of this study, the research presented in this document 

addresses the issue of how to use this predicted data to plan an optimal path for an autonomous 

robot by focusing on the development of a grid map which can take advantage of this data to 

store occupancy information for a range of time, rather than for a single instant, and the 

development of a motion planner which can plan an optimal trajectory for the robot using the 

spatial and time-dependent data contained within this new grid.  Even though the central aim of 

this work was to develop a temporal motion planning algorithm for obstacle avoidance purposes, 

it also has applications such as target interception, which will be presented, in which an obstacle 

is treated as a goal to attain rather than an obstacle to avoid. 

Motivation 

The presented research advances the capabilities of autonomous ground robots that have 

been developed at the Center for Intelligent Machines and Robotics (CIMAR) at the University 

of Florida and at the Air Force Research Lab (AFRL) at Tyndall Air Force Base.  CIMAR and 

AFRL have been collaborating on projects for many years and have successfully automated 

vehicles for such applications as clearing mine fields, detecting unexploded bombs and patrolling 

the perimeters of military installations.  Motion planning development is crucial toward the 

success of this collaboration and the issue of dynamic obstacles is prevalent in current projects. 
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At Tyndall Air Force Base, research is conducted with the aim of using ground robots for 

military base perimeter defense as part of the Remote Detection Challenge and Response 

(REDCAR) project.  A rugged mobile platform has been developed that can be used 

autonomously or through teleoperation.  Upon detection of an intruder while autonomously 

patrolling a perimeter, the vehicle can switched into teleoperated mode and can be directed to 

intercept the target and neutralize it by lethal or non-lethal means.  With an advanced target 

tracking system and a reliable target motion predictor coupled with the developed temporal 

motion planner, the robot would be able to chase down and intercept a target without human 

intervention.  On the other hand, the planner would also avoid any other dynamic objects within 

the environment that are not identified as a target. 

The most recent autonomous vehicle research at CIMAR has focused on a large-scale 

autonomous vehicle for navigation in an urban environment.  The motivation for this work was 

entry into a robotics competition coordinated by the Defense Advanced Research Projects 

Agency (DARPA) known as the DARPA Urban Challenge (DUC) and held in southern 

California in November of 2007.  This most recent contest built on the success of the previous 

robotic challenges in 2004 and 2005.  While the previous DARPA competitions were geared 

toward off-road navigation, the Urban Challenge, as the name suggests, focused on autonomous 

driving capabilities in urban environments in the presence of other moving vehicles, including 

other robots.  Robots were required to exhibit a long list of complex driving behaviors that are 

commonplace when a human is driving a vehicle.  Being that the competition was a race, 

competitors had to balance the desire for speed with the necessity of obeying all traffic rules and 

being safe.  Some of the basic navigation and traffic requirements included: remaining within the 

desired lane, obeying speed limits, maintaining a safe following distance, passing slow moving 
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or stopped cars, completing a U-turn, and obeying intersection precedence.  Required behaviors 

for advance navigation and traffic included: navigating an obstacle field, parking, merging with 

moving traffic, and defensive driving. 

CIMAR’s entry into the challenge was an automated 2007 Toyota Highlander Hybrid, as 

seen in Figure 1-1.  The vehicle was outfitted with a sensor network composed of global 

positioning system (GPS) receivers coupled with an inertial navigation system, eight laser range 

scanners, and four cameras.  Motors were attached to the steering column and shifting 

mechanism for autonomous steering and gear shifting.  The existing drive-by-wire system for 

throttle and brake was utilized for autonomous acceleration and deceleration.  A custom built 

computer rack was populated with twelve dual-core computers, of which ten were used. 

The motion planner utilized by CIMAR for the DUC is a form of receding horizon 

controller running a modified A* search algorithm to find the optimal path through a 

traversability grid of fused sensor data (Crane et al., 2005).  The A* algorithm creates a search 

tree through the grid map, evaluates the cost of the nodes in the tree, and uses these costs 

heuristically searches through the tree to find a least cost path to a predetermined goal.  The 

nodes of the tree are vehicle state representations which are expanded through a kinematic 

vehicle model.  The cost of a node depends on several factors, including distance from the node 

to the center of the perceived lane, distance from the node to the goal, and the traversability 

values associated with the cells between the node of interest and its predecessor node.  Being a 

best-first search algorithm, the A* algorithm keeps track of the costs of all nodes on the tree and 

selects the lowest cost node for expansion (Hart, Nilsson, & Raphael, 1968). 

Several of the requirements of the DUC have motivated the presented research topic.  The 

inevitability of the robot interacting with other moving obstacles, and potentially with other 
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intelligent vehicles, demonstrates the need for efficient and optimal motion planners that can take 

the predicted motion of dynamic objects into consideration.  The path planning algorithm 

described previously is not sufficient to deal with dynamic objects in the robot’s environment.  

For most behaviors developed for the DUC, moving obstacles were handled at a higher level in 

the system.  For example, for behaviors associated with road following, intersections, and 

passing, any moving obstacles were simply removed from the grid map to avoid interfering with 

the planning algorithm’s stability.  Changes in velocity were instead commanded by other 

components of the system to slow the robot to a stop if following too closely to a moving object, 

or to speed up to pass a moving object.  For behaviors associated with obstacle fields and parking 

lots, the motion planner simply treated moving objects as static for each particular planning 

instance.  With the ability to represent the predicted motion of dynamic objects in a grid map, 

and with the ability to plan motions through this type of grid, the trajectories planned by the 

Urban NaviGator will be more optimal with regards to dealing with these moving obstacles.  The 

facilities and resources at CIMAR allowed an in depth study of this claim and improved the 

chances of this type of technology coming to fruition. 

This chapter provides an introduction and some background information to the task of 

motion planning in dynamic environments that is investigated in this dissertation.  It outlines the 

problem statement in three main areas: generating a temporal representation of the environment, 

incorporating predictive motion models of moving objects into this temporal representation, and 

developing a temporal motion planning technique.  Lastly, it provides specific motivation for 

addressing this type of problem in the form of the requirements of autonomous ground vehicle 

navigation in dynamic environments.  The following chapter reviews previous research 

conducted that deals with the three areas of the problem statement. 
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Figure 1-1.  The Urban NaviGator: Team Gator Nation’s Urban Challenge entry.  
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CHAPTER 2 
REVIEW OF LITERATURE 

A review of published research was conducted to get an idea of how different areas of this 

problem have been solved, thereby providing a means of comparing and contrasting the 

presented work.  While the issue of planning trajectories through dynamic environments is a 

relatively new area of research in the field of autonomous robotics, several different approaches 

were studied.  The review began by investigating how others had approached motion planning in 

the presence of moving obstacles.  Many of the techniques regarded the world as static and 

projected forbidden regions from the instantaneous location of the objects.  Some of them 

addressed the issue by planning in the velocity space and adjusting angular and linear velocities 

rather than planning in a spatial domain.  The addition of the time dimension into the vehicle’s 

configuration space was also analyzed, but again, in a static representation.  Several replanning 

algorithms which maintain the previous solution path and only alter sections of the path that are 

affected by changing arc costs due to objects moving in the environment were also studied. 

Next, planning methods that utilized motion prediction of dynamic obstacles were 

investigated.  Many of these techniques were only capable of predicting the states of the objects 

a short time in the future, which may be useful when the robot is close to any of these objects, 

but it is desirable to know well ahead of time if any evasive action may be required to avoid 

collisions.  Several methods studied required a training period, where the motion patterns of 

obstacles were observed for a time to aid the prediction algorithm.  While this may be useful for 

highly structured environments such as warehouses or factories where moving objects’ paths 

tend to be repeated, this approach may be misleading or simply not useful when dealing with 

objects with uncertain motion or other cognitive vehicles. 
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Time was taken to review ways of representing a robot’s environment to see how this 

could be extended to save temporal data in addition to spatial data.  Several methods created a 

grid structure with a time dimension included, but this temporal dimension represented the 

history of the environment being described rather than looking in the future.  The state-time 

space of a robot is another representation that was used in a variety of planning algorithms and 

allows for temporal information to be stored. 

Lastly, existing literature dealing with the issue of robotic interception problems was 

investigated.  Many applications of this problem relate to robotic manipulator arms attempting to 

grasp a moving object where the trajectory of the object is straight-forward and can be easily 

predicted.  The complications associated with the end-effector of the manipulator matching the 

position, velocity and orientation of the obstacle make this problem difficult to solve.  Several 

techniques associated with mobile ground robotics tracking and catching a moving target were 

also studied. 

Path Planning in Dynamic Environments 

Replanning Algorithms 

Some motion planning algorithms for autonomous robots are run over and over again at a 

high rate, planning from scratch each time to take changes in the environment into account.  

However, several types of algorithms make use of saving the previous solution trajectory from 

the start point to the goal location and only make minor adjustments to the trajectory as arc costs 

in the search tree change in the vicinity of the path. 

In 1994, Stentz presented a search algorithm that was similar to the A* algorithm, but 

allowed for arc cost parameters to change during the planning process (Stentz, 1994).  The 

algorithm used “raise states” and “lower states” on the list of nodes waiting for expansion to 

propagate information about path cost increases and decreases, respectively.  When one of these 
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states was expanded, it passed on the cost changes to its successor nodes.  Experimental results 

showed that the new algorithm, known as the D* algorithm, demonstrated significant speedup 

compared to a general optimal replanner, and the speedup increased dramatically as the number 

of cells in the grid increased. 

Several extensions of the D* algorithm have been developed over the years.  A focusing 

heuristic was used to effectively narrow the propagation front of the “raise states” and “lower 

states” in the Focussed D* algorithm, and thus, was shown to be more efficient in replanning 

(Stentz, 1995).  This narrowing occurred as a result of the inclusion of a cost to return to the 

robot which penalized the wider edges of the propagation front.  The modified algorithm proved 

to be effective when run off-line, resulting in lower planning times than the basic D* algorithm, 

but had higher planning times when used as an on-line planner. 

The Delayed D* algorithm required approximately half the computation of the D* 

algorithm by including a one-step look-ahead cost, but generated equivalent optimal paths 

(Ferguson & Stentz, 2005).  The look-ahead cost was defined as the minimum of the cost 

estimates of the successor nodes to the goal. The algorithm was shown to be more efficient since 

the propagation of some cost changes were ignored as long as possible, while more important 

changes were propagated. 

Finally, the Field D* algorithm addressed the issue of assuming straight-line trajectories 

from a node to its neighbors (Ferguson & Stentz, 2007).  This new algorithm used linear 

interpolation to produce smoother paths.  Simulated robotic experiments showed Field D* 

generated solutions that were 96% as costly as the original D* algorithm and took 1.7 times as 

long to calculate. 
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Velocity Obstacles 

Planning in the velocity-space of a robot is a relatively new method of dealing with 

dynamic obstacles.  Just as a robot’s environment can be broken up into spatial states for the 

motion planning algorithm to search through, it can also be discretized into a finite number of 

linear and angular velocity pairs.  But in doing so, the problem of how to facilitate reactive 

obstacle avoidance during the path planning process arises. 

The concept of Velocity Obstacles (VO) was discussed by Fiorini and Shiller as a potential 

solution to this problem (Fiorini & Shiller, 1998).  The process of constructing a VO began by 

using the relative velocity between the robot and the obstacle to create a collision cone, which 

was the set of relative velocities that would result in a collision at some time in the future.  The 

VO was then defined as the vector sum of this collision cone with the velocity vector of the 

obstacle.  The VO represented a region in the velocity space of the robot that would lead to a 

collision with the obstacle within a time horizon.  Obstacle avoidance was carried out by creating 

a set of reachable avoidance velocities defined by the dynamic constraints of the vehicle. 

The aforementioned process of creating velocity obstacles assumed the obstacle was 

moving in a straight line, represented by a constant linear velocity with no angular velocity.  

However if the obstacle was traveling along an arc, this method could have misrepresented the 

set of velocities that would result in a collision.  This could have led to falsely indicating a 

collision would occur, when the current trajectory would actually be suitable to avoid the object.  

This problem was addressed by developing the concept of Non-Linear Velocity Obstacles 

(NLVO) (Shiller, Large, & Sekhavat, 2001).  Again, the NLVO represented the set of robot 

velocities that resulted in a collision with a particular obstacle, but they took the nonlinear 

motion of these obstacles into account. 
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This concept was then implemented in a robot motion planning algorithm and used for 

obstacle avoidance (Large, Laugier, & Shiller, 2005).  As the NLVOs were generated, the 

algorithm also calculated time-to-collision estimates for each of the NLVOs.  An A* algorithm 

was then run to search the velocity-space of the robot.  The two criteria used for sorting and 

evaluating the set of velocities for the search algorithm were the computed time-to-collision and 

the time-to-goal. 

In 2004, Kluge developed a Probabilistic Velocity Obstacle (PVO) method to take the 

uncertainty of obstacle shapes and velocities into account (Kluge, 2003).  Under the assumption 

that the obstacles in the environment were also intelligent, a recursive modeling technique was 

employed to attempt to model the decision making processes of the moving obstacles.  With 

these models, the predicted velocities could then be used to generate the PVOs rather than 

requiring observation of obstacle velocities. 

Dynamic Window 

The dynamic window approach was another velocity space search method.  It was first 

developed to control the motion of a robot with a synchro-drive (Fox, Burgard, & Thrun, 1996).  

The algorithm was well suited for dealing with velocity and acceleration constraints present in all 

mobile robots.  It strived to limit the velocity search space of the motion planner in three steps.  

The first step reduced the space by allowing only circular trajectories defined by unique 

translational and rotational velocity pairs.  Of these pairs, the second step ensured that only safe 

velocities were searched by limiting the space to admissible velocities. Specifically, these 

admissible velocities were velocities that allowed the robot to stop before reaching the closest 

obstacle on the current path.  The last step reduced the space further by creating the dynamic 

window, which represented the set of admissible velocities that could be reached in a time 

interval defined by the limited acceleration or deceleration of the robot. 
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This planning method was then extended in a number of studies to improve its 

performance.  A priori maps of the environment were used to aid in avoiding undetectable 

obstacles that were represented in the maps (Fox, Burgard, Thrun, & Cremers, 1998).  Known as 

the model-based dynamic window approach, this form of the algorithm used metric Markov 

localization to estimate the robot’s position within the map.  The reduced dynamic window 

approach took advantage of the fact that 95% of the time, the highest admissible velocity was 

selected by only calculating the dynamic window for this speed (Arras, Persson, Tomatis, & 

Siegwart, 2002).  This further diminished the size of the velocity search space, and thus 

increased the speed and efficiency of the search algorithm.  Ogren and Leonard combined the 

dynamic window approach with Lyapunov nonlinear control theory to generate a convergent 

dynamic window method (Ogren & Leonard, 2002).  A model predictive control law and a 

control Lyapunov function (CLF) were chosen such that the constrained optimal control problem 

was satisfied for a short time horizon.  This study overcame shortcomings of other dynamic 

window approaches such as the potential for the solution to diverge or get stuck in a limit cycle. 

An elegant combination of the dynamic window approach with the previously discussed 

Focused D* algorithm was recently developed that generated admissible trajectories for a mobile 

robot (Seder, Macek, & Petrovic, 2005).  This algorithm was implemented on a real mobile robot 

outfitted with a laser range finder to detect moving obstacles.  This method was further extended 

in such a way that guaranteed solution trajectories that avoided collisions with moving obstacles 

(Seder & Petrovic, 2007).  The concept of “moving cells” was introduced to represent the motion 

of dynamic objects in the grid map.  For each newly occupied grid cell, a motion heading and 

velocity vector were estimated by some means.  A series of potential trajectories were then 

generated starting at this “moving cell” much in the same way candidate trajectories were 
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generated for the robot.  These “moving cell” trajectories were then checked against the dynamic 

window trajectories for the robot for collisions. 

Path-Velocity Decomposition 

The path-velocity decomposition method attempted to solve the motion planning problem 

in dynamic environments by breaking it down into two sub-problems (Kant & Zucker, 1986).  

The first sub-problem could be thought of as a traditional path planning process attempting to 

avoid static obstacles, while ignoring the dynamic ones.  The second sub-problem then planned 

the velocity profile along the solution path of the first sub-problem to deal with moving objects.  

The path planning process was solved by creating a graph defined by the set of vertices of the 

static polygonal obstacles and the set of edges among nodes that did not intersect any of the 

static objects.  To find the velocities along this path, moving objects were represented as 

hyper-volumes that were swept out in space-time.  The velocity planner then checked for 

intersections of these volumes with the path output from the planning problem.  Any 

intersections provided time-varying constraints on the robot’s position along the path and allow 

for a velocity to be selected. 

The aforementioned study decomposed the problem to a global path and velocity planner, 

with no means to consider changes in the environment.  Kant and Zucker then extended this 

concept into a hierarchical planner by adding a local avoidance planner that reacted to changes in 

the environment detected by sensors (Kant & Zucker, 1988).  The constraints resulting from the 

volumes swept by detected obstacles effectively formed forbidden regions in the path-time space 

of the robot.  The low-level avoidance planner overlaid a repulsive acceleration on the path 

generated by the global planner that moved the robot away from a detected obstacle.  

Simulations were run with perfect and imperfect estimation of obstacle velocities and showed 
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that this hierarchical form of path-velocity decomposition allowed for local avoidance of moving 

obstacles. 

Fraichard and Laugier further developed the method by adding the generation of “adjacent 

paths” into the path planning process which dealt with cases where a dynamic object followed 

the robot’s nominal path or stopped on top of it (Fraichard & Laugier, 1993).  The first step of 

the path-velocity decomposition algorithm now found a nominal path and calculated a set of 

paths, which were reachable from the nominal path.  These “adjacent paths” were not necessarily 

collision free with respect to stationary objects.  They, therefore, required being checked for 

collisions, which resulted in a set of “forbidden” intervals along the paths.  The second step of 

the path planning process, denoted as trajectory planning, determined the motion of the robot 

among the nominal paths and “adjacent paths.”  The velocity planning stage was carried out in 

the same manner described above. 

While the previous study focused on the spatial planning stage of the path-velocity 

decomposition, a recent study alternatively focused on the velocity planning stage in a shared 

workspace where multiple robots may have travelled (Hwang & Ju, 2002).  The method 

classified the moving objects in the environment as controllable or uncontrollable.  It was 

assumed that the global planning problem had been solved for all the controllable robots without 

any static obstacles interfering with the path.  The global path was then decomposed into a series 

of subtasks, each of which contained a desired goal position and a desired arrival time.  

Space-time graphs were then generated for each of the subtasks.  These space-time graphs were 

essentially a local mapping of forbidden regions for the controllable objects.  An interface 

propagation method was then used to calculate velocity profiles for the controllable objects to 

avoid entering forbidden regions. 
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Artificial Potential Fields 

The use of time-varying potential field functions for motion planning was first introduced 

as an obstacle avoidance technique for robotic manipulators and mobile robots (Khatib, 1986).  

The method created a virtual force field for the robot to plan through with goal positions being 

represented by an attractive force and obstacles to be avoided represented as repulsive forces.  A 

resultant force was calculated for the robot with the direction of the force being the desired 

heading direction for the robot and the magnitude of the force being equivalent to the desired 

speed.  While this original study dealt solely with static obstacles, it was extended to incorporate 

dynamic ones. 

Ko and Lee defined the “avoidability measure” as a way of describing the possibility that 

the robot collided with an obstacle (Ko & Lee, 1996).  This measure was a function of the 

distance between the robot and the object and the speed of the object relative to the robot.  The 

avoidance measure was inversely proportional to the possibility that the robot and the dynamic 

obstacle experienced a collision, so it increased as the distance and relative velocity decreased.  

This study used a virtual distance function, which emphasized the distance metric over the speed, 

as its “avoidability measure.”  This function could be tuned so that the robot began avoiding 

obstacles closer or further away.  It was then mapped to a potential force to be used with the 

traditional potential field method. 

This method was extended to account for moving obstacles and moving targets in a 

number of studies.  Ge and Cui defined an attractive potential for the target that took the relative 

position and velocity of the target with respect to the robot into account (Ge & Cui, 2002).  

Therefore, as the distance between the robot and target increased, or the target started 

accelerating away from the robot, the attractive force of the target increased.  On the other hand, 

each moving obstacle was given a repulsive potential that was inversely proportional to the 
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relative positions and velocities among these obstacles and the robot.  This study also addressed 

local minima issues that arose when an obstacle was between the robot and the target and was 

moving in the same direction as the two, and when the robot was approaching the goal, but could 

not reach it because an obstacle was close.  Computer simulations and experiments on real 

mobile robots showed this method to be effective in avoiding moving obstacles while 

intercepting the target.  Another study addressed moving obstacles and targets in a robotic soccer 

scenario by defining the relative threat function (Cao, Huang, & Zhou, 2006).  This threat 

function was again derived by examining the relative positions and velocities between the robot, 

target, and moving obstacles.  When the robot was within a region of influence of a particular 

obstacle, the repulsive potential of that particular object acted against the robot. Otherwise, if it is 

outside the region of influence, the robot ignored the effects of that dynamic obstacle. 

Several other methods have been developed to use the potential field method with motion 

planning among moving obstacles. Poty, Melchior, and Oustaloup used a fractional potential to 

generate a fractional road to take the danger of each moving object into account (Poty, Melchior, 

& Oustaloup, 2004).  The use of the fractional potential ensured a continuous flow of potential 

among isolated sources.  It then used the method in (Ge & Cui, 2002) to extend the use of 

fractional potential for motion planning in dynamic environments. 

Probabilistic Roadmaps 

The concept of probabilistic roadmaps (PRM) was developed by Svestka and Overmars for 

single car-like robots in a static environment (Svestka & Overmars, 1994) and was later applied 

to multiple robots (Svestka & Overmars, 1995).  An undirected graph was built incrementally by 

adding random free configurations of the robot to the set of nodes and trying to connect those 

newly added nodes to a number of chosen nodes already in the existing set.  The map was then 

checked for intersections with known obstacles.  Once the roadmap had been generated, it could 
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be used to solve motion planning problems, referred to as “queries.”  For the multi-robot 

situation, a “super-graph” was built from the individual roadmaps of the robots.  The areas swept 

by the robots when moving along a particular edge in their map were checked against each other 

and disallowed if they intersected.  This method was shown to be probabilistically complete, 

meaning that, given enough time, the planner found a solution to any query if a solution existed. 

It is important to note that the previously described studies dealt strictly with static 

environments and with roadmaps that were generated off-line.  This method was extended to 

dynamic environments, however, by building small roadmaps on-the-fly that connected some 

initial and final state (Kindel, Hsu, Latombe, & Rock, 2000).  This study introduced the use of 

PRMs in the state-time space of the robot.  It also assumed the trajectories of the moving 

obstacles were known a priori.  Another study that assumed the motions of the obstacles were 

known ahead of time used a hierarchical method to search through the roadmap (van den Berg & 

Overmars, 2005).  An A* algorithm was used on the global level to find a trajectory to pass on to 

the local planner, which used a depth-first search to investigate the edges of the roadmap in 

state-time space.  A geometric property denoted as “expansiveness” was introduced in (Hsu, 

Kindel, Latombe, & Rock, 2002) and used to show that the probability that this type of planner 

failed to find a solution trajectory when one existed quickly converged to zero as the number of 

collision-free samplings of the workspace increased. 

An incremental learning approach to the roadmap problem was presented in (Koenig & 

Likhachev, 2002) to allow on-line management of the roadmap for every planning query.  This 

method differed from traditional probabilistic roadmap methods in that it used a 

Rapidly-exploring Random Tree (RRT) structure to grow the map.  While a traditional RRT 

algorithm may grow a new RRT for every planning problem, this variation took advantage of 
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previously “learned” trees for future planning problems.  The map structure then became a 

“forest” of RRTs, termed the Reconfigurable Random Forest (RRF).  As multiple planning 

queries were solved, the algorithm managed the forest by invalidating sections that were affected 

by moving obstacles and trimming away unnecessary nodes. 

A recent study addressed the issue of PRM-based planners spending most of their time 

checking for collisions when constructing the roadmap (Jaillet & Simeon, 2004).  This study 

took advantage of the fact that moving objects only partially changed the workspace of the robot.  

It limited the area of the roadmap that was updated to portions that were important to obtaining a 

solution.  If an important area of the roadmap was broken by a moving obstacle, the algorithm 

employed an RRT planner to attempt to locally reconnect the endpoints of the blocked edges.  If 

this local reconnection solution failed, extra nodes were placed in the map near the broken edges 

and then connected to allow for more options.  This algorithm also stored past positions of 

moving objects to reduce the number of collision checks required for a particular edge in the 

map. 

A method utilizing a Flexible Anytime Dynamic A* PRM (FADPRM) algorithm was 

implemented in (Belghith, Kabanza, Hartman, & Nkambou, 2006), allowing the planner to use a 

roadmap to provide a sub-optimal path quickly.  The robot’s workspace was divided into zones 

based on the different degrees of desirability of traversal.  The algorithm then incrementally 

improved the quality of the solution path if extra time was available.  Experiments were 

conducted by simulating the Space Station Remote Manipulator System (SSRMS).  The results 

of these simulations showed that the FADPRM algorithm initially required more time to replan, 

but quickly and significantly reduced that amount of time when compared with a traditional 

PRM replanner. 
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Path Planning with Moving Obstacle Motion Prediction 

The shortcomings of the discussed motion planning algorithms leave much to be desired.  

Treating dynamic objects as instantaneously static may simplify the motion planning procedure 

and allow for rudimentary obstacle avoidance; however, when dealing with large autonomous 

robots moving at fairly high velocity, as was the case during the DUC, rudimentary obstacle 

avoidance is not sufficient.  Avoiding collisions was of the utmost importance and, therefore, 

requires a more elegant solution.  The ability to predict the likely motion of any dynamic 

obstacles in the environment would allow for motion planners to more effectively find a solution 

path that would safely and smoothly avoid these obstacles. 

Regression Methods 

Autoregressive modeling (ARM) is one method of predicting future states of time series 

data.  This form of prediction was implemented in (Kehtarnavaz & Li, 1988) to aid in generating 

a collision-free path for a simulated robot.  This model was a function of a difference equation 

between successive position measurements and a prediction error estimation term.  Accelerations 

for the obstacles were modeled in a similar fashion.  The coefficients of this model were then 

solved for and used in the prediction function.  Several sets of simulations results presented 

showed that this method was feasible for predicting obstacle positions one time-step in the future 

for obstacle avoidance purposes. 

Another study fused a steering behavior generated from an ARM-based obstacle motion 

prediction with obstacle avoidance and goal-seeking behaviors to control mobile robot in an 

environment with dynamic objects (Yung & Ye, 1998).  A least squares method was used to 

form the ARM from previous measurements of an obstacle’s positions.  The predicted positions 

coming from the ARM and the current position of the obstacles were then used to form a 

collision zone, which was used to define fuzzy representations of allowed and disallowed 
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steering angles.  Fuzzy control actions were also generated in an obstacle avoidance behavior 

and goal-seeking behavior and then fused with the control actions from the predictor. 

Elnagar and Gupta used the conditional maximum likelihood technique to estimate the 

parameters for an ARM for motion prediction of moving obstacles (Elnagar & Gupta, 1998).  

The study also extended the aforementioned ARMs in that it predicted both translational and 

rotational motion.  The same simulations were carried out as in (Kehtarnavaz & Li, 1988), but 

the maximum likelihood method produced much more accurate predictions of the obstacle 

movement.  Elnagar further extended this work by considering variable time-steps for 

predictions (Elnagar & Hussein, 2003).  This method also used a quaternion representation rather 

than an Euler representation.  The ARM utilized was almost the same as in other methods 

mentioned, but the prediction process was performed with variable time-steps.  If a prediction 

was deemed accurate, the time interval was increased before the next reading.  This adaptive 

time-interval feature allowed the algorithm to outperform other ARM methods in terms of 

computational cost. 

Another interesting robotic application of an ARM for object motion prediction deals with 

robotic manipulators attempting to grasp moving targets.  Houshangi began developing this 

concept using visual feedback of the manipulator and the target object (Houshangi, 1990).  

Because of the inherent delay in the estimating the current location of the target and the 

manipulator end-effector, the prediction model was used to control the manipulator arm.  The 

trajectories generated by the planner were implemented by a self-tuning controller to allow the 

end-effector to track and grasp the target object. 

Several other variations of motion planning algorithms which use ARMs to predict future 

obstacle positions have been developed.  Zhuang used an ARM predictor in a polar-coordinate 
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space based planner (Zhuang, Du, & Wu, 2006), and Yu and Su used an Adapted Regression 

model based on a polynomial regression coupled with a new method which classified obstacles 

as triangular, convex, or convex (Yu & Su, 2003).  Motion planning in a situation with multiple, 

cooperative robots was also considered by Pereira (Pereira, Campos, & Aguirre, 2000). 

A recent study carried out in CIMAR used a polynomial regression to track and predict the 

motion of moving obstacles (Kent, 2007).  The method presented by Kent first fit a high order 

polynomial to a time series of position data for an obstacle.  The algorithm then ran a statistical 

analysis of variance to determine which coefficients of the polynomial were irrelevant and 

disregarded these terms from the model.  It repeated the entire procedure until a lowest order 

polynomial predictor was settled upon.  This lowest order polynomial was then used to predict 

obstacle position, velocity, and heading for time steps of one, three and five seconds in the 

future.  The algorithm also provided an upper and lower confidence interval to account for 

uncertainty in the model. 

Bayesian Methods 

Because of their usefulness when dealing with modeling systems based on uncertain data, 

prediction algorithms utilizing Bayesian probability theory are well suited for solving the 

presented problem.  One such method, known as the Bayesian Occupancy Filter (BOF), was 

developed for short-term motion prediction.  This method draws heavily from the development 

of Bayesian programming described in (Coue, Fraichard, Bessiere, & Mazer, 2003), which broke 

the problem down into two complementary stages run recursively.  The estimation stage sought 

to approximate the probability of occupancy for each cell in the described grid by recursively 

using the sensor observations.  The prediction stage then developed an a priori description of the 

occupancy of a particular cell in the grid for the next time step. 
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The BOF was used as a potential solution to the problems of occlusion and consistent 

detection of moving obstacles in (Laugier et al., 2005).  It was applied to the cells in a 

four-dimensional occupancy grid which included the velocity dimension.  This study in 

particular applied a wavelet-based model for the BOF.  A partial motion planning algorithm 

(PMP) was then used with the predictions to navigate through the dynamic environment by 

generating a set of “inevitable collision states,” which were robot states which, regardless of the 

avoidance control input applied, would result in a collision with an obstacle.  The PMP searched 

through the grid and returned the best plan, which may not have reached the final goal point, but 

which avoided these collision states. 

A dynamic Bayesian network was used to model the motions of moving objects in 

(Rennekamp, Homeier, & Kroeger, 2006).  The mapping of this Bayesian network matched that 

of a planar Voronoi graph.  The transition models of the trajectories of the moving objects were 

learned during a training phase.  These models were then projected onto the graph and used to 

predict the motions of the obstacles.  This system was implemented using a vision system to 

track the motions of humans in an office-type environment. 

Markov Methods 

Several modeling methods have been attributed to Russian mathematician Andrey Markov.  

Hidden Markov models (HMM) describe stochastic processes that cannot be observed directly, 

but rather are observed through sequences of observations generated by another set of stochastic 

processes (Rabiner & Juang, 1986).  Three problems must be solved for an HMM to be useful.  

The evaluation problem deals with proving a model generated a particular set of observations.  

The second problem addresses the issue of figuring out the state sequence, which is the hidden 

part of an HMM.  And finally, the training problem attempts to optimize the parameters of the 

model. 
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A hidden Markov model was used to predict moving obstacle’s motions by Zhu for a 

visually controlled robot in (Zhu, 1990).  The study considered three types of obstacle models.  

The constant velocity model assumed zero acceleration and served as a basis for more 

complicated models.  The random motion model used a probability distribution function to 

describe the changes of the obstacles state.  Lastly, the intentional motion model considered that 

the obstacle may have had some predetermined objective or route, which could not simply be 

described by a probability distribution, but rather required some a priori knowledge of the 

obstacle’s intent.  The current position and future model-predicted position of the obstacle were 

used to create “forbidden regions” in the robot’s grid.  A trajectory-guided motion planning 

algorithm was used to evaluate a finite set of potential paths which took the HMM’s probabilistic 

evaluations into account.  This work was later compared to a deterministic prediction algorithm 

(DPA) in (Zhu, 1991).  It was shown that the HMM method led to a lower collision rate with 

moving obstacles than did the DPA.  However, it also had a higher computation time than the 

DPA and deviated more from the global path. 

Markov chains are the simplest form of hidden Markov models and deal with how the 

outcome of one process affects the outcome of a subsequent instance of that process.  More 

specifically, given a set of states, Markov chains seek to estimate transition probabilities to 

predict what the next set of states will be (Grinstead & Snell, 1997).  Using Markov chains 

allows the next state to be predicted based solely on the current state, and not based on previous 

states. 

The dynamics of moving humans were abstracted to Markov chains in (Rohrmuller, 

Althoff, Wollherr, & Buss, 2008) and used to generate time-dependent occupancy grids for robot 

navigation.  A velocity model and an acceleration model were studied.  A set of probabilistic 
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reachable states, defined as the set of all states that a human can reach from an initial state for all 

possible control inputs, was generated and was projected in a potential field for the motion 

planning algorithm.  Experimental results showed this method was effective in navigating 

through areas populated by humans.  The results also showed that use of the velocity model 

allowed for quicker replanning than did use of the acceleration model. 

Neural Networks 

Development of artificial neural networks (ANN) is growing rapidly due to their many 

applications.  Chang and Song devised a model-free ANN for single time-step prediction of 

moving obstacles for mobile robot navigation (Chang & Song, 1996).  For this early study, 

obstacles were assumed to follow a rectilinear path with constant velocity.  Past sensor readings 

were the inputs to the ANN and the outputs were the predicted reading at the next time instant 

for that particular sensor.  It was found that the two most recent sensor readings were enough to 

predict the next one.  The ANN was trained off-line by means of back-propagation.  This 

predictor was coupled with a virtual force guidance navigation scheme.  The repulsive forces 

generated by the moving obstacle were generated by a deceleration and push-away layer 

surrounding the obstacle position.  The algorithm was later tested on a mobile robot with human 

obstacles (Chang & Song, 1997).  Because of several shortcomings of the ultrasonic transducers 

used in (Chang & Song, 1996) and (Chang & Song, 1997), Song and Chang also tested the 

feasibility of a CCD camera added to the sensor network (Song & Chang, 1999). 

An ANN was used to solve the navigation problem in a study which utilized a hierarchical 

partially observable Markov decision process (POMDP) in (Foka & Trahanias, 2002).  The 

POMDP, which in effect modeled the decision process of the robot, took a state representation of 

the environment as input and output the optimal control actions.  For large search spaces, 

hierarchical POMDP’s are computationally more efficient since they decompose the problem 
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into multiple linked POMDP’s, each with a smaller state space to search.  A polynomial ANN 

was used for short-term prediction and was integrated into the reward function of the POMDP.  

The coefficients of the polynomial were calculated by training the ANN off-line with an 

evolutionary method. 

A moving obstacle avoidance algorithm was developed by coupling a radial-basis-function 

neural network (RBFNN) with a rolling planning method in (Li, Li, & Song, 2008).  A camera 

attached to the robot was used to capture the motions of the dynamic obstacles for training the 

ANN.  A rolling window was generated to shrink the search space to the sensor’s viewing area.  

If it was determined in the rolling planning process that the predicted position of a moving 

obstacle would obstruct the robot, the obstacle was treated as static at that predicted position and 

an obstacle avoidance maneuver was generated. 

Dynamic Environment Representation 

Typically, a robot’s environment is represented in two spatial dimensions.  A common 

approach to creating this representation is to generate a discretized grid.  Each cell in this grid is 

assigned a value which describes the occupancy of that particular cell.  This concept was first 

introduced for mobile robots by Elfes (Elfes, 1989).  The most basic occupancy grids are binary 

in nature and can only label cells in the grid as “occupied” or “free.”  Sometimes a more variable 

representation of the occupancy is desired, such as a probability of occupancy.  One method 

similar to a probabilistic representation was created by CIMAR with the development of the 

concept of “traversability” and the traversability grid (Crane et al., 2005).  This type of grid still 

can describe cells as “occupied” or “free,” but also allows for varying degrees of “traversability” 

to distinguish areas of the grid that may be more desirable to traverse than others. 

These types of grids, coupled with advanced motion planning algorithms have been 

utilized by many robotics systems in recent history.  However, they allow for a strictly static 
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representation of the environment at any instant in time.  Therefore, a moving obstacle is actually 

represented as a static obstacle in a single occupancy grid.  For dynamic environments, it would 

be advantageous to be able to have a spatial and temporal representation of the surroundings.  A 

few studies have attempted to address this issue, but much room is left for improvement. 

State-Time Graph 

The concept of adding the time dimension to a robot’s state space was first considered by 

Fujimura and Samet in (Fujimura & Samet, 1989).  Moving objects were represented as swept 

volumes in state-time space.  A hierarchical quadtree structure was used to represent this three 

dimensional space.  The state-time space was repeatedly divided until each cell satisfies one of a 

set of conditions.  Vertex cells contained part of a trajectory of a vertex of an obstacle, edge cells 

contained part of a trajectory of an edge of an obstacle, empty cells did not contain any part of 

any trajectory, and full cells were completely contained in a trajectory.  Cells were then 

decomposed into L-points associated with the two spatial dimensions and T-points associated 

with the time dimension.  The set of L and T-points were then searched by a heuristic algorithm 

to find the time-optimal trajectory for the robot. 

State-time space was later used for the motion planning problem of a mobile robot 

following specified lanes in (Fraichard & Laugier, 1992).  Points in this state-time space were 

represented as tuples consisting of the current lane, position, velocity, and time instant.  

Neighboring points were reached by applying acceleration to the robot for a time-step.  This 

process generated a directed graph in the state-time space for the robot to search through.  An A* 

algorithm was used to facilitate this search to find the time-optimal trajectory for the robot to 

follow. 

The authors further extended this study to take constraints imposed by the dynamics of the 

robot and moving obstacles into account (Fraichard & Laugier, 1993).  A dynamic model of the 
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robot was presented and constraints associated with engine force, sliding, velocity, and 

acceleration were considered.  Dynamic obstacles were again represented as swept volumes in 

the robot’s state-time space.  These volumes, along with the regions represented in the dynamic 

constraints models, were used to create “forbidden regions” of the state-time space of the robot.  

The same A* algorithm was then used to search the state-time space of the robot and 

successfully avoided these “forbidden regions” in simulation. 

Rude investigated the issue of collision avoidance for two cooperative robots in state-time 

space in (Rude, 1997) by means of a space-time “collision vector.”  These two robots were 

constantly transmitting their planned trajectory through the joint state-time space to each other, 

so each knew the intended path of the other.  The “collision vector” was then calculated as the 

shortest magnitude vector between the two planned trajectories.  If the magnitude of this vector 

was less than a distance equivalent to the radii of the two robots, a collision was possible and 

needed to be avoided.  This avoidance maneuver was generated by constructing a displacement 

vector that would alter the trajectory of one of the robots enough such that the magnitude of the 

resulting “collision vector” was large enough to evade the collision.  Simulations and 

experiments on robots confirmed that this method was successful in avoiding collisions. 

The interface propagation method, a modified form of the path-velocity decomposition, 

was used for velocity planning through a state-time graph in (Hwang & Ju, 1999).  In this case, 

the state-time graph was two-dimensional, consisting of the time dimension and a single distance 

dimension to represent the distance traveled along an existing global plan.  Forbidden regions 

were again used to represent the motion of obstacles in the state-time graph.  A maximum 

distance and time interval were calculated for these regions to approximately quantify a potential 

collision.  A “speed zone cone” was created to modify the state-time graph based on the 
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maximum and minimum speed of the robot, as the two-dimensional graph could equivalently 

represent a speed graph.  The velocity profile was then calculated based on the interface 

propagation algorithm.  This profile facilitated avoiding the “forbidden region” representations 

of the moving obstacles in the environment. 

Temporal Geographical Information Systems 

Geographic information systems (GIS) keep track of objects and events and where these 

objects and events occur or exist (Longley, Goodchild, Maguire, & Rhind, 2001).  In addition to 

these spatial descriptions, it may be desirable to capture and store temporal information about 

these objects and events, which gives rise to the concept of temporal GIS.  This new form of GIS 

seeks to record historical geographic states, pick out changes and patterns in spatio-temporal 

data, and predict the future properties of these geographic states. 

This multi-dimensional framework gives rise to the potential for one dimension 

dominating another, which results in the clustering of data being very attractive as discussed in 

(Langran, 1990).  One example of a structure that may experience this dimensional dominance is 

the temporal grid, which is a common geographic data structure, and can be clustered in a variety 

of ways.  A space-dominated approach provides individual snapshots of the grid over time as 

described in (Armstrong, 1988) and is fittingly known as the Snapshot Model.  Conversely, a 

time-dominated approach could group values contained within an individual cell over all time-

steps, while a spatiotemporal approach, where both the time and space dimensions are weighted 

approximately equal, could cluster small cubes in space-time.  In addition to the Snapshot 

Model, Langran and Chrisman developed the Space-Time Composite method (Langran & 

Chrisman, 1988) which builds a view of a geographic area by beginning with a base map, which 

becomes a temporal composite by considering the accumulated geometric changes in the area.  

This essentially decomposes the map into smaller pieces as time passes. 
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Temporal GIS has previously been applied to several different robotic applications. 

Hatayama and Matsuno describe the use of temporal GIS by robots examining damaged 

buildings after disasters in (Hatayama & Matsuno, 2008).  The KIWI+ format developed in this 

study allows spatiotemporal objects to be managed by using both the aforementioned Snapshot 

Model and Space-Time Approach model described in (Worboys, 1994).  Trajectories of 

spatiotemporal objects can be described either as a polyline or polygon with N points and only 

one temporal factor or as a polyline or polygon where each point has its own instant temporal 

factor.  Using the same format, temporal GIS is used to aid in recognizing vehicles on a road 

which may be parking in (Ishikawa et al., 2005).  “Change regions” are built from the difference 

between reference GIS data and a proposed omni-directional motion stereo vision system.  This 

method was successfully used to recognize a truck, sedan, and station wagon in the field. 

Temporal Occupancy Grid 

A recent extension to the traditional occupancy grid added the time dimension and has led 

to the concept of the Temporal Occupancy Grid (TOG) (Arbuckle, Howard, & Mataric, 2002).  

This new type of grid allowed for occupancy to be estimated for a number of different 

time-scales.  The grid consisted of a matrix made up of two spatial dimensions, one time 

dimension, and additional dimensions for the number of time-scales used.  Rather than each cell 

in the grid having one occupancy value, each cell had several different occupancy values 

corresponding to the different time scales specified.  Each cell was further classified based on 

these numerous occupancy values.  Cells containing static obstacles would likely have high 

probabilities of being occupied on all time scales.  On the other hand, cells which had moving 

obstacles passing through them would have high probabilities of occupancy on short time scales, 

but low probabilities on long time scales.  The time dimension of the TOG could then be 

collapsed by considering these classifications.  Experiments were conducted to validate the 
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method for static and dynamic environments, and showed that a TOG could effectively estimate 

historic occupancy of an environment. 

While they did not refer to it explicitly as a temporal occupancy grid, Biber and Duckett 

used a grid which stored occupancy values for multiple time scales in an attempt to map dynamic 

environments for mobile service robots (Biber & Duckett, 2005) .  Each level of the grid 

associated with a specific time scale was built from a set of sensor samples taken from the 

previous scale to that particular scale.  The levels of the map were updated by randomly 

removing a number of samples and replacing them with an equivalent number of randomly 

selected samples from the new sample set.  To use the map at a specific time, a normal 

distribution was estimated from the samples.  Experiments were carried out using this method 

with five time scales in a busy office setting to obtain a short-term and long-term memory map.  

The results of these experiments showed that this method could effectively describe areas of the 

environment that are likely static or dynamic. 

Another TOG algorithm was developed for mobile robot environment mapping by Mitsou 

and Tzafestas in (Mitsou & Tzafestas, 2007).  In this method, the traditional occupancy grid was 

again extended through the time dimension.  The time dimension was represented by time 

intervals, and a time index, in the form of a B+ tree, was assigned to each cell in the grid.  The 

probability of occupancy of the cell for a particular time step was stored in these indices.  The 

standard deviation of the various occupancy probabilities for each cell was then used to describe 

the dynamics of that cell.  Cells containing static objects exhibited little to no dynamic activity 

and had high occupancy probabilities.  Dynamic objects were classified as either low dynamic 

objects or high dynamic objects.  Low dynamic objects appeared only in a limited number of 

places, while high dynamic objects moved arbitrarily and could be found in many places.  The 
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time indices of each cell were searched to aid in detecting the different types of objects.  For 

experimentation, a simulated robot was outfitted with a simulated laser range finder and tasked 

with mapping an environment with doors that can be opened or closed and humans moving 

around. 

Autonomous Target Interception 

The concept of using motion prediction to aid in allowing a robot to navigate to a 

particular state to intercept some sort of object or target has been explored for a number of 

applications.  Hujic, Croft, Fenton, Mills, and Benhabib developed a strategy entitled Adaptive 

Prediction Planning and Execution (APPE) in (Hujic et al., 1995) to guide a robotic manipulator 

arm to a rendezvous point to grasp an object.  Once a trajectory was predicted for the target, a 

one-dimensional search was conducted of the predicted trajectory to find rendezvous-points 

where the target and manipulator end-effector arrived at the same time and with the same 

velocity.  The minimum time rendezvous point was selected and the joint trajectories were then 

determined for the manipulator.  This strategy was then extended to on-line replanning in another 

study (Croft, Fenton, & Benhabib, 1998). 

A rendezvous-guidance technique was coupled with the velocity obstacle concept in 

(Kunwar & Benhabib, 2006) to autonomously navigate a mobile robot to intercept a moving 

target among other moving obstacles.  A vision sensing system was used to collect position and 

velocity data on both the target and all other dynamic objects in the environment.  Velocity 

obstacles were then generated for all objects within a defined time horizon for obstacle 

avoidance.  A parallel-navigation law was then used to guide the robot to the target’s location 

and to match the velocity of the target.  This law stated that if the relative velocity between the 

robot and the target remained parallel to the position vector between the two, the distance 
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between them would decrease until they “collide.”  Simulation and robotic experiments were 

used to test the method with multiple moving obstacles and a single target. 

An interception problem for a robotic manipulator on an orbiting spacecraft attempting to 

grasp free-floating objects was discussed by Robert in (Robert & Sharf, 2007).  A Kalman filter 

was used to propagate the target dynamics to predict the future states.  The interception 

technique was broken down into the approach to the rendezvous point and the capture of the 

target.  The approach trajectory was generated by finding the time-optimal interception point.  

This optimal trajectory was recalculated as needed when the predicted trajectory of the target 

changed, thus changing the optimal interception point.  For the capture phase, a finer tracking 

algorithm was used to adjust the manipulator end-effector velocity and twist to match that of the 

target.  Numerical simulations were executed to compare this technique to a more traditional 

visual-servoing method and showed that the predictive technique resulted in almost negligible 

joint angle error and a lower interception time. 

This chapter provides an overview of many of the common techniques previously studied 

to address the key elements of the problem statement for the research presented.  Specifically, it 

has focused on motion planning methods for dynamic environments, motion prediction for 

moving objects in dynamic environments, and dynamic environment representation.  The 

following chapter describes the newly developed predictive temporal motion planning method 

from a theoretical standpoint. 
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CHAPTER 3 
THEORETICAL APPROACH 

Navigating dynamic environments is a complex problem for a robot that requires a 

coordinated effort among several elements of the system.  This dissertation presents a novel 

approach to this task, which considers how the robot’s surroundings changes with time.  A 

predictive temporal motion planning method was developed that utilized the coupling of moving 

obstacle detection and prediction with the occupancy grid concept to generate a representation of 

the changing environment, which the motion planning algorithm then used to more intelligently 

generate motions which avoided any objects in its vicinity.  This chapter strives to break this 

process down into its key components.  The first of those components considers the generation of 

the temporal grid, followed by the inclusion of obstacle prediction information into the temporal 

grid, and finally, the exploration of the temporal grid by a motion planning algorithm to build 

optimal trajectories for the robot. 

First, an overview of common control techniques and graph search methods is provided to 

divulge the important parameters that intimately link the motion planning algorithm and the 

temporal grid concept.  The next section then focuses on the construction of the temporal grid 

itself, followed by a description of the process of predicting the motions of obstacles and the 

integration of these predictions into the temporal grid.  Lastly, the temporal motion planning 

algorithm is outlined to draw all of the elements presented in the previous sections together.  The 

information in these sections is provided in a generic sense to emphasize that this predictive 

temporal method is applicable to a variety of robotic systems, including robotic manipulators in 

addition to unmanned air, ground, and underwater vehicles.  The next chapter narrows down the 

description to an implementation on an unmanned ground vehicle. 
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Motion Planning Overview 

Before outlining the fundamental theory of the temporal grid, it is prudent to discuss the 

influence of the motion planning algorithm on the creation of the grid.  Therefore, a brief 

overview of discrete-time control methods for robot navigation is provided.  The ultimate goal of 

robot planning is to generate a continuous motion from a start configuration to a goal 

configuration contained within the robot’s configuration space while avoiding all obstacles.  

Before this process can even begin, sensors must examine the surrounding environment to 

produce a mapping displaying the areas that are both safe and unsafe for the robot to navigate to 

reach its goal. 

A common approach to this mapping is the generation of a grid map, which decomposes 

the robot’s environment into a series of spatially-defined cells.  Each cell in the grid represents a 

region of the surrounding environment that can be classified as being free and accessible to the 

robot, or closed due to being currently occupied by an object.  These classifications can then be 

used by a motion planning algorithm to evaluate the grid to determine a sequence of 

configurations that will successfully move the robot from its initial position and orientation to its 

goal position and orientation. 

The first technique of interest considers the various grid-based or graph-based search 

methods.  These methods overlay the grid map on the systems configuration space, therefore, 

considering each grid point as a potential configuration, or state.  These methods include 

uninformed techniques, such as breadth-first and depth-first search.  Uninformed search methods 

operate with no special knowledge of the problem other than the start state and the goal state and, 

therefore, have no information to focus the direction of the search.  Instead, they use a brute-

force approach to search as many nodes on the graph as possible in hopes of finding a solution 

trajectory (Nilsson, 1998). 
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Breadth-first search considers applying all possible operators to a state, followed by 

applying all possible operators to the successors of that state, and so on.  Conversely, depth-first 

search expands and explores the successors of a single state at a time.  Once a successor is 

generated, one of its own successors is generated, and so on.  A depth bound is defined such that 

a particular branch of the search does not continually expand states without allowing for different 

branches to be explored.  Figures 3-1 and 3-2 display simple representations of breadth-first 

search and depth-first search state exploration, respectively. 

Informed search methods include best-first techniques such as greedy search and A* 

search.  Best-first search algorithms explore a graph by always expanding the most promising 

state.  This is realized by using a rule, or heuristic, to rank states and determine which is best for 

the next expansion.  Heuristics can range from simple functions, such as the Euclidean distance 

between a state and the goal to more complex evaluations based on a number of different 

parameters and they serve to estimate the distance, or cost, from a particular state to the goal.  

Admissible heuristics are required to not overestimate cost to the goal such that: 

  (3-1) 

where  is the estimate of the cost from a state  on the optimal solution path and  is the 

actual cost from that same state to the goal.  Each time a state is explored and evaluated, it is 

placed on a priority queue, where the first state on the queue is the most promising. 

Receding horizon control (RHC) is another commonly used motion-control strategy that 

utilizes a discrete set of configuration or state changes that are subject to the dynamics of the 

system, given simply as: 

 (3-2) 
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where  is the set of potential future states that are obtainable from the current state,  

is the dynamics function,  is the current state, and  is the current control input.  This 

sequence of state changes is determined by an associated sequence of open-loop plant input 

commands that are generated out to a finite time horizon .  This sequence is optimized and 

given as: 

 (3-3) 

where  are the discrete optimal inputs and  is the finite time horizon.  The initial input in 

the optimal sequence is selected as the commanded control input sent to the plant such that: 

. (3-4) 

At this point, the control is implemented and the optimization repeats to determine the next 

control input for the state change from the new current state  to a specific future state 

 considering updated vehicle and environmental state information.  As evidenced in 

Equations 3-2 and 3-3 the discrete control inputs and state changes occur at distinct distance-

steps or time-steps, as was the case with the grid-search method.  Each successive state-change 

results in a potential configuration that could describe the system at a distinct time in the future.  

At each of these future-times, it is possible that the composition of the surrounding environment 

could have changed dramatically, including the location, orientation, and velocity of any 

obstacles present.  It is this capricious nature of a robot’s environment that was one of the main 

factors in the development of the presented temporal motion planning method.  The work 

presented in this dissertation showed that the ability to incorporate information about how the 

environment changes into a motion planning algorithm that utilizes a strategy such as RHC can 

improve stability and performance of the system. 
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The description of these methods, which use discrete state changes, gives rise to essential 

parameters required for the development of a temporal grid structure.  For the graph-search 

techniques, the exploration of adjacent states represented discrete steps through the configuration 

space while attempting to reach the goal state.  Each of these steps has some physical meaning 

depending on the state representation, such as a distance or a time-step for example.  Likewise, 

the RHC approach utilized a sequence of optimized control inputs separated by similar time-

steps as evident in Equation 3-3.  The number of inputs in the optimal sequence was determined 

by the step-size associated with each state change and the finite time horizon.  The time-step 

among adjacent states is hereafter denoted as  and the time horizon is denoted as .  These 

two key parameters played an important role in determining the number of temporal layers to be 

included in the temporal grid structure.  They were also used in determining the appropriate 

future-times to estimate the positions and velocities of any obstacle present in the robot’s 

environment.  The details of these applications are provided in ensuing sections of this chapter. 

Temporal Grid 

A particularly novel aspect of the presented research was the concept of a predictive 

temporal grid map that represents a robot’s environment at the current time and at distinct times 

in the future up to a time horizon discussed in the previous section. This section focuses on the 

temporal aspect of the grid map, while the predictive aspect is discussed in the next section.  The 

novel temporal grid map was an extension of the traditional occupancy grid that is commonly 

used for robotic environment mapping.  Occupancy grid maps, as defined by Thrun in (Thrun, 

Burgard, & Fox, 2005) seek to rasterize an environment such that: 

 (3-5) 
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where  is the map itself and  represents the individual cells that make up the map.  The 

index  is associated with a particular row and column within the grid structure.  This value is 

determined for a distinct row-column pair  as: 

 (3-6) 

where  is the total number of columns in the grid map.  This convention can be applied 

regardless of the origin of the grid, as long as it is located in one of the corners.  Each cell of  

must be assigned an occupancy value based on accumulated sensor data for the region of the 

environment represented by that cell and the motion of the robot.  This value can be estimated 

for an individual cell as the probably function: 

  (3-7) 

where  is the set of all sensor measurements up to time  and  is the sequence of positions 

of the robot up to time .  This calculation attempts to estimate the likelihood that a cell is 

occupied by some object at a given instant in time given the accompanying sensor data for that 

cell.  Similarly, this posterior distribution can be built up for an entire map as the product of the 

individual cells as: 

. (3-8) 

The development of the temporal grid required a similar procedure for the assignment of 

occupancy for all of its cells as well.  The structure of the temporal grid differed as subsequent 

temporal layers were added.  This spatio-temporal grid structure can be viewed in Figure 3-3 as 

essentially a three-dimensional array of grid cells with two spatial dimensions and the single time 

dimension.  The inclusion of the time dimension in the grid allowed it to contain information 

depicting how the environment changed as time progresses.  A specific grid cell may, therefore, 

be thought of as possessing multiple occupancy values, each associated with a time that is farther 
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in the future than the last.  Figure 3-4 shows another visualization of these temporal layers of a 

group of grid cells.  This image shows a representation of a single row of grid cells with several 

attached temporal branches.  Each branch coming from the original cell represents that same cell 

spatially, but at a distinct time in the future.  The identifier for each cell takes the form 

. 

By adding this temporal dimension to the grid structure, the indexing procedure for 

accessing a particular cell changed slightly.  Whereas the index for a cell in the spatial grid relied 

only on the row and column value of the cell as in Equation 3-5, this index term must now 

account for the temporal layer in which the cell of interest  resides.  The new indexing scheme 

for a row-column-time triple  can be shown as: 

 (3-9) 

where  is the temporal layer in which the cell resides,  and  are the total numbers of 

rows and columns in a layer of the grid, and  and  are the row and column value of cell . 

Referring to the previous section on motion planning algorithms, the values of discrete 

control time-step  and finite time horizon  were described as crucial components of the 

construction of the temporal grid structure.  The time-step determined the instants in time 

represented in each of the successive temporal layers of the grid and, along with the time 

horizon, determined the total number of temporal layers in the grid to be generated.  The number 

of layers  was calculated simply as: 

. (3-10) 

This calculation assumed that the time-step and time-horizon were both constant values, which is 

shown to not necessarily be true in the next chapter.  An optimization scheme is also presented in 

the next chapter which succeeded in reducing the resources necessary to build the temporal grid 
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structure.  This method also altered the indexing scheme presented in Equation 3-9.  Now that 

the basic theory behind the temporal grid structure has been presented, the inclusion of obstacle 

motion prediction information in the grid is discussed. 

Obstacle Motion Prediction 

The introduction of moving obstacles into the robot’s environment presents additional 

challenges to the motion planning problem.  The use of an existing occupancy grid described in 

the previous section requires the motion planner to generate its sequence of control inputs out to 

the time horizon at the edge of the grid while assuming all objects are static during that time.  

Figure 3-5 shows a form of occupancy grid that was modified to show the output of a motion 

planning algorithm of an unmanned ground vehicle that was attempting to generate its sequence 

of controls.  Detected obstacles are painted yellow and remained in the same position in the grid, 

even though they may have been moving.  This provides a good example of how a motion 

planning algorithm expands out its potential future states all the way to the time horizon at the 

edge of the grid, which may represent ten to fifteen seconds or more in the future, while all the 

detected obstacles remain in the same position, regardless of whether they are stationary or 

moving. 

Using a planning strategy such as RHC described previously, if one of the obstacles 

displayed were actually moving along a trajectory that would cross the robot’s desired path in the 

future, the robot would not be able to react until the object actually obstructed its path and 

affected the control input evaluation.  This could ultimately be fatal if the robot did not have 

enough time to stop or plan a path that avoids the obstacle.  On the other hand, if the obstacle 

were crossing the robot’s desired path, but would be well out of the way by the time the robot 

reached that position, the planning algorithm would have no reason to attempt to react to 

navigate around the obstacle. However, using the described methods, the motion planner could 
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incorrectly determine that it was necessary to alter its trajectory to avoid the obstacle. For these 

reasons, it was helpful to be able to estimate the position of the obstacle in the future and to be 

able to represent these predicted future positions in the grid.  To accomplish this, a prediction 

algorithm was required to provide this information for both the position and velocity of all 

obstacles detected in the robot’s vicinity.  A general prediction method is first discussed to 

estimate the future positions and velocities, and is followed by a description of how these 

estimates were represented in the grid. 

To facilitate this estimation, any of a number of prediction algorithms such as a polynomial 

regression predictor, similar to the one discussed in (Kent, 2007), can be used.  This algorithm 

sought to fit curves to time-series of position and velocity data for each obstacle provided by a 

laser-based moving obstacle sensor.  It accomplished this by tracking the global position of an 

obstacle and maintaining a recorded data set of size  as: 

. (3-11) 

For a given data set such as in Equation 3-11, a polynomial was fit to the data that possesses the 

form: 

 (3-12) 

where  is the maximum order of the polynomial.  Therefore, the creation of this prediction 

model depended on solving for the coefficients of the polynomial.  The polynomial can also be 

represented in matrix form as: 

  (3-13) 
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where:   . 

In this matrix form, the coefficient vector  was solved for by pre-multiplying Equation 3-13 by 

and solving the modified equation as: 

  (3-14) 

Similarly, a polynomial of the form: 

 (3-15) 

can be fit and evaluated for the estimation of future  positions by solving for an equivalent 

coefficients vector  

Upon solving for the coefficients of the polynomials as in Equation 3-14, future estimates 

for  and  can be calculated for various values of .  Referring to the previous section on the 

creation of the temporal grid structure, each temporal layer was separated from adjacent layers 

by a distinct time-step determined by the motion planning algorithm time-step parameter .  

These distinct time-steps between temporal layers were used to determine the time values for 

which the future positions of all obstacles needed to be predicted.  A new predicted position was 

required for each successive group of potential state changes investigated by the motion planning 

algorithm, where the time-step associated with the group of state changes  was calculated as: 

. (3-16) 

These values of  were then used in Equations 3-12 and 3-15 to solve for the estimated future 

values of  and . 

After estimating the future positions of any detected obstacles at the distinct times 

presented in Equation 3-16, it was necessary to convert these positions into the temporal grid 
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frame of reference, namely row and column values, to be represented in their respective temporal 

layer.  The row and column values for a particular temporal layer were calculated from the 

predicted x and y positions at that same future-time value  as follows: 

 (3-17) 

 (3-18) 

where  and  are the predicted x and y positions of an obstacle at time , GSM is the grid 

size (length in units equal to that of  and ), and  is the resolution of each grid cell (in the 

same units).  At this point, the occupancy of these row-column pairs was set as occupied in the 

appropriate temporal layer to represent where the obstacle would likely be at that future time. 

Temporal Motion Planning 

With the inclusion of obstacle motion prediction information in the temporal grid structure, 

the motion planning algorithm used this predictive temporal grid to consider how its 

environment changes as time progresses and to more intelligently generate its sequence of 

control commands according to these changes.  As outlined in the previous sections covering the 

creation of the predictive temporal grid, each temporal layer corresponded to a representation of 

the environment at a distinct time-step in the future.  These time-steps coincided with the future 

times at which the planning algorithm was attempting to determine the appropriate control to 

institute the desired change in state. 

The robot motion planning problem can generally be viewed in its optimal control problem 

formulation, which can be given as: 

 (3-19) 
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where  is the performance measure used to evaluate the possible trajectories the robot can 

follow,  is the endpoint cost associated with the final state of the robot,  is the 

intermediate cost functional associated with each of the intermediate states along a trajectory, 

 is a state of the robot at time ,  is the control instituted at time , and  and  are the 

initial and final time of the motion, respectively.  The constraints placed upon the system include 

the dynamics function , the endpoint constraints defining where the system must begin 

and end its motion , and the path constraints of the environment defining physical 

constraints that may limit the possible trajectories .  The second element of Equation 3-19, 

representing the sum of the intermediate state costs, can be split up by discretizing the time 

interval between  and  such as 

. (3-20) 

where the important motion planning parameters discussed previously can be related as 

  (3-21) 

. 

By utilizing this method, this discrete set of evaluation times coincided with the distinct time-

steps associated with the temporal layers of the temporal grid described previously.  Therefore, 

the temporal layer associated with each of these intermediate times was used in the calculation of 

each of the intermediate costs defined by the evaluation functional . 

The intermediate cost function can take many forms, but ultimately will consider the 

conditions of the physical region of the environment which coincides with the potential state to 

be evaluated.  Using an occupancy grid map as an example representation of the environment, 

this would be equivalent to using the occupancy value of a cell in which a potential state resides 

to evaluate the appeal of that state.  To expand on this idea, consider the motion planning 
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algorithm evaluating its first set of potential state changes, occurring at time-step .  Jumping 

ahead a few steps in the evaluation process, perhaps a grid cell that will contain a future potential 

state at time  is unoccupied and available for the robot to traverse.  Now consider the situation 

that, in the time between evaluating the first set of potential states and evaluating the future state 

in the cell at time , the cell becomes occupied by an object.  It is then likely that the motion 

planning algorithm will incorrectly evaluate that state by believing that cell to still be 

unoccupied. This error could lead to this state being selected to determine the control input 

sequence defined in Equation 3-3 and could ultimately lead to the robot colliding with the 

obstacle. 

By replacing the occupancy grid in the previous example with the new predictive temporal 

grid map described in this chapter, the intermediate cost evaluation function did not simply use 

the spatially-defined region of the environment to evaluate a particular state, but also considered 

the estimated future conditions of that region on a time-dependent basis.  Returning to the 

previous example, if the prediction algorithm correctly estimated the future states of the obstacle, 

the cells in the grid that contain this estimated future obstacle state were correctly modified from 

being considered free to being considered occupied on the time-scale associated with that step in 

the state-evaluation process.  Therefore, as the motion planning algorithm evaluated that time-

dependent state, it correctly assessed that the state was not feasible as it could lead to a collision 

with the object. 

Figure 3-6 displays a series of successive steps in the proposed temporal motion planning 

process showing the coarse exploration of potential states as the predicted positions of a moving 

object pass in front of the vehicle.  Each black circle represents a potential future vehicle state, 

with the connecting arcs and straight lines representing the trajectory taken between these 
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various potential states.  The goal state is represented by a green circle and the associated goal 

region is shown as a dashed circle around the goal state.  Figure 3-6(a) represents the initial 

exploration step which uses the information in the initial temporal layer of the grid for 

evaluation.  Successive generations step further out in time as the motion planner accesses their 

associated layers of the temporal grid, which also step further out in time out until it reaches the 

goal as in Figure 3-6(f).  These images depict a case where the object passes before the robot 

would reach the crossing point of the objects path with its own desired path.  Figure 3-7 displays 

a similar series of images representing a case where the motion planner is required to divert from 

its nominal path to avoid the object at its predicted position in shown in Figure 3-7(b). 

This chapter has provided a general overview of the predictive temporal motion planning 

method.  It has presented the concept in a fashion that could lead to the method being 

implemented on a variety of robotic applications.  The description of this new approach has been 

broken into its main components, those being the temporal grid, the inclusion of obstacle motion 

prediction, and the temporal motion planner.  Each of these components was intimately related 

by the temporal elements of the discrete nature of common motion planning algorithms.  The 

next chapter outlines the specific implementation of this new motion planning method that was 

developed and analyzed for the presented research. 

This chapter outlines the new predictive temporal motion planning method in terms of the 

theory of the key parameters used in common discrete motion planning techniques, the temporal 

grid concept, motion prediction models, and temporal motion planning.  These concepts 

addressed the main elements of the problem statement provided in Chapter 1.  The following 

chapter details the specific implementation of these concepts for a large unmanned ground 
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vehicle which was the basis for this study.   It focuses on the important software components that 

previously existed and those that were created for this research. 
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Figure 3-1.  Breadth-first search state exploration order. 

 

 
Figure 3-2.  Depth-first search state exploration order. 
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Figure 3-3.  Three-dimensional temporal grid structure. 

 
 

Figure 3-4.  Temporal grid tree visualization. 
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Figure 3-5.  Sample output traversability grid from motion planning. 
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Figure 3-6.  Discrete exploration steps of motion planner with no obstacle interference. 
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Figure 3-7.  Discrete exploration steps of motion planner with obstacle interference. 
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CHAPTER 4 
IMPLEMENTATION DETAILS 

This chapter outlines the technical details of the existing implementation of the various 

components of the PTMP method used for the research presented in this dissertation.  The 

ultimate objective of the presented research was the actualization of the temporal method on a 

real autonomous robot.  The resources present at CIMAR made this goal a reality in terms of 

software development and the ability to test the method on a reliable robotic test platform.  

Firstly, one of the robotic ground vehicle platforms designed and built at CIMAR, the Urban 

NaviGator is described, followed by a brief background of the traversability grid (TG) developed 

by CIMAR in (Crane et al., 2005) as a starting point from which the temporal grid was built.  

Next, the software component responsible for the generation of the predictive temporal grid is 

discussed in detail.  The temporal motion planning algorithm is then outlined in detail to show 

how the temporal grid was used to effectively generate trajectories for the robotic vehicle.  

Lastly, a unique application of the PTMP method is presented that allowed a robot to 

autonomously follow and intercept a target object. 

Urban NaviGator 

The Urban NaviGator, shown in Figure 1-1, is a fully-autonomous sport utility vehicle that 

was designed and developed at CIMAR for the 2007 DARPA Urban Challenge robotics 

competition and served as the robotic test-platform for the implementation and testing of the 

PTMP method presented in the previous chapter.  The robot was built on a 2006 Toyota 

Highlander Hybrid (THH) chassis that was heavily modified to meet the requirements of 

autonomous navigation.  The hybrid nature of the vehicle allows it to run on its internal electric 

power train and/or its internal combustion engine.  The relevant hardware present on the vehicle 
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is now described, followed by an overview of the system architecture.  Lastly, the software 

components of the architecture that are critical to the PTMP method are outlined. 

Architecture 

The system architecture of the Urban NaviGator is outlined in Figure 4-1 and was 

comprised of four main elements.  The Perception Element contained all the sensor hardware and 

software components that provided data about the surrounding environment to the rest of the 

system.  This included a network of three GPS units, eight laser range finders, four color 

cameras, and a variety of software components that use the aforementioned hardware to carry out 

such tasks as line-finding, moving obstacle detection, and terrain estimation.  The Planning 

Element was responsible for using a Mission Data File (MDF), which defined the locations the 

robot was required to visit and the order in which the robot was required to visit them, to plan 

high-level and mid-level trajectories through the Route Network Definition File (RNDF), which 

defined the entire drivable environment as a set of GPS-based waypoints and checkpoints.  The 

mid-level plans were provided to the low-level motion planning algorithm to calculate the goal 

point to which it generated its trajectory.  The Intelligence Element sought to collect and analyze 

information about the vehicle, the environment, the status of the mission, and the available 

operating behaviors to best choose the next course of action for the vehicle.  Lastly, the Control 

Element was responsible for executing low-level motion planning, which generated the control 

inputs implemented by the vehicle to navigate through its environment and avoid static and 

dynamic obstacles. 

Hardware 

The Urban NaviGator possessed a comprehensive sensor package used for localization, 

terrain estimation, and obstacle detection.  This package included six SICK LMS-291 LADAR 

sensors and two SICK LD-LRS1000 long range LADAR sensors used for obstacle detection and 
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terrain classification.  Also included were four Matrix Vision BlueFox USB color cameras, 

which were used for lane line detection and path-finding.  Three GPS units were combined with 

a GE Aviation North-finding-module (NFM) for vehicle localization.  The NFM maintained 

Kalman filter estimates of the position and orientation of the vehicle in its global frame of 

reference. 

A distributed computing package replaced the rear row of seats in the Urban NaviGator for 

all data processing needs.  The vehicle supported up to twelve ATX motherboards, of which ten 

were populated.  The motherboards contained AMD X2 4600 processors and storage resources 

included four gigabyte compact flash cards and eighty gigabyte hard drives.  The computers ran 

multiple operating systems including Ubuntu 8.04 Linux and Windows XP.  Two gigabit 

Ethernet network switches were available for high-speed data transfer among the various 

computers on the robot.  Lastly, in-car development was facilitated by means of a dual-head 

keyboard-video-mouse (KVM) switch, which allowed access to any of the ten populated 

computers from either of two rear-seat workstations. 

Actuation of the Urban NaviGator was facilitated by a variety of means.  For steering 

automation, an Animatics SmartMotor was attached to the steering column and received position 

commands that were associated with the steering commands coming from the motion planning 

algorithm.  Throttle and brake automation was enabled through use of the existing drive-by-wire 

system already implemented on the vehicle.  A custom controller was designed and incorporated 

to pass throttle and brake commands to the vehicle when it was in an autonomous state.  This 

autonomous state was reached through a multiple-step process, at which point the vehicle was 

remotely activated to begin a mission. 
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Software 

All of the various elements making up the system architecture described in the previous 

section were supported by multiple software components that were responsible for the various 

tasks associated with each architecture element.  Two of the components that are critical to the 

success of the implemented PTMP method are now briefly described.  As part of the Perception 

Element, the Moving Obstacle (MO) sensor was responsible for detecting, localizing, 

classifying, and tracking objects of interest in the robot’s environment.  This software component 

accomplished these tasks by fusing data from several of the LADARs on the vehicle.  The use of 

these four strategically placed lasers allowed for a data field that encompassed the entire area 

around the vehicle, and the two long-range scanners allowed for early detection of objects on the 

front and sides of the vehicle.  The raw range data provided by the various lasers was fused and 

evaluated for objects of interest that roughly match a model of a vehicle.  Once one of these 

objects of interest was identified, its location, defined by its estimated centroid, and its velocity 

was calculated.  As MO completed this task for the entire sensor data series, a list of potential 

dynamic objects was created and was made available to the rest of the system.  This list of 

moving obstacles was used in the PTMP method to build a dataset of obstacle positions and 

velocities to be used by the prediction algorithm to estimate future object positions and 

velocities. 

Other elements of the Perception element were responsible for producing traversability 

grids according to their respective function.  These multiple TGs then had to be fused into a 

single, usable grid, which was the charge of the Smart Arbiter (SARB) component.  The concept 

of traversability is explained shortly in the following section, but may be used loosely to describe 

the function of the SARB. After collecting the various TGs from the different components, the 

SARB executed an arbitration algorithm which analyzed the traversability values for a particular 
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cell in each of its incoming grids and selected the lowest traversability value to assign to that cell 

in the output TG.  The lowest value was selected as a matter of safety to accommodate different 

sensors having different views of the environment and providing different traversability values 

for a particular cell.  The SARB could also intelligently change how certain regions, such as the 

desired lane of travel, were represented in the grid as a means of aiding motion planning during 

different vehicle operating behaviors.  The last step in the fusion algorithm was to dilate any 

obstacles by a size equivalent to the width of the robot, plus a buffer region, to allow for safe 

avoidance of these obstacles.  This output grid was used as the baseline for the creation of the 

predictive temporal grid. 

Traditional Traversability Grid 

The first step in the development of the predictive temporal planning method considered 

building a temporal grid structure from an existing spatial grid.  The spatial TG developed by 

CIMAR sought to create a rasterized representation of the environment around a robot similar to 

an occupancy grid. Rather than simply classifying cells as occupied or free, the grid allowed for 

variability in the level of “occupancy” by assigning each cell a value which represented how 

traversable the cell was. For example, a cell containing a modest incline was assigned a lower 

traversability value than a cell containing completely flat terrain, although a vehicle would still 

be able to traverse the former.  Figure 4-2 displays a visualization of how the immediate 

environment could be viewed by a human in the top image and by a robot as a TG in the bottom 

image.  All cells considered out of bounds are painted red and assigned the lowest possible 

traversability value, while the drivable corridor is painted green and assigned a high 

traversability value.  Cells containing trees or other impassable objects are also painted red and 

assigned low traversability values and cells representing terrain that experiences significant 

changes in elevation are painted yellow and assigned intermediate traversability values 
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signifying that these cells are not as traversable as their neighboring cells that contain flat terrain.  

A cell’s traversability value was determined by the fusion of data coming from the robot’s sensor 

network.  Cells containing obstacles, or which were deemed out of bounds, were assigned low 

traversability values, while cells that were unoccupied, flat, and in the robot’s desired direction 

of travel were assigned high traversability values. 

The TG design used during the presented research called for 121 rows (0 to 120) and 121 

columns (0 to 120) with the vehicle located in the center cell at location (60, 60).  Each cell 

represented an area of 0.5 m by 0.5 m square, resulting in a grid of size 60 m by 60 m square.  

With the vehicle located in the center of the grid, this grid provided data for a range of 

approximately 30 m around the vehicle.  The traversability values of each of the 14,641 cells of 

the grid were stored as unsigned character data types, resulting in each grid requiring just less 

than 15 kilobytes of memory.  The grid coordinate system was aligned with the Universal 

Transverse Mercator coordinate system such that the vertical axis of the grid represented the 

Northing direction and the horizontal axis represented the Easting direction.  As the grid 

coordinate frame was fixed, the environment in turn rotated around the origin according to the 

vehicle heading direction. 

A special data structure, termed the torus buffer, was previously implemented to store the 

data associated with the traditional TG.  This structure, while essentially a linear data array, 

allowed for easy shifting of the grid’s traversability values as the vehicle moved by connecting 

the last element of each row with the first element and the last element of each column with the 

first.  By comparing the current global location of the grid center with the current global position 

of the vehicle, row and column shift values could be calculated and the corresponding number of 

rows and columns at the edge of the grid could be re-initialized as the vehicle moves.  
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Considering a single column of twenty grid cells in Figure 4-3(a), attaching the last cell to the 

first cell resulted in the ring buffer data structure depicted in Figure 4-3(b).  Extending this out to 

twenty columns resulted in the linear array of ring buffers shown in Figure 4-3(c).  And finally, 

Figure 4-3(d) shows a visualization of the torus buffer after the last ring buffer was connected to 

the first ring buffer in the array. 

The simple nature of the traditional TG made it possible for each sensing component on 

the robot to produce their own TG, which reported their specific view of the environment.  For 

example, a camera-based vision component could be used to detect the lines on the edges of the 

desired lane of travel and paint them in a TG, while a laser-based sensor could concentrate on 

terrain estimation and report a TG based on its findings.  With multiple grids coming from the 

various components, it became necessary to fuse them into a single output grid.  In general, the 

arbitration algorithm observed the multiple traversability values for a given cell in each of the 

grids provided by the individual sensor components and assigned the lowest value as the 

traversability of that particular cell in the output TG, as described in the previous section. 

The arbitrated TG was then used by the motion planning algorithm to generate optimal 

control inputs to the vehicle.  Figure 4-4 shows an example of an input TG with the center of the 

desired lane of travel painted in green and assigned the best traversability value possible, and the 

extent of the desired lane painted in blue with a slightly lower traversability value.  All regions of 

the grid outside of the desired lane of travel are painted in red with a low traversability value.  

The yellow cells surrounded by green represent an obstacle and are assigned untraversable 

values.  Referring back to Figure 3-3 provides an example of an output TG from the motion 

planning algorithm.  The image depicts the vehicle navigating a sharp right turn through an 
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intersection.  The areas painted brown represent the areas of the grid explored by the motion 

planning algorithm, while the light blue line represents the selected optimal solution path. 

A shortcoming of this traditional TG, which was one of the motivating factors behind the 

development of this new temporal method, must be addressed.  This shortcoming dealt with the 

fact that the grid represented an instantaneous snapshot of the robot’s environment where all 

objects were treated as static. This snapshot was used by the motion planning algorithm to 

generate a sequence of control inputs to navigate the robot from its current state to its desired 

goal state, which was likely at the edge of the TG.  Each of these control inputs were calculated 

at discrete times in the future until the goal state was achieved.  This sequence of inputs was then 

traced back to the first input, which was the instantaneous control implemented by the vehicle. 

The final step in this sequence, which achieved the goal state, could have represented a control 

input required at a time falling ten to fifteen seconds or more in the future, depending on the 

speed of the vehicle.  This practice of planning a path through a dynamic environment that was 

being artificially treated as static could have led to instabilities in the control inputs and could 

have been fatal when considering the close proximity of the robot to moving obstacles.  The 

presented research provides a new approach that addresses this drawback to the use of the 

traditional TG when trying to plan optimal paths through environments with dynamic objects. 

Temporal Grid Creator 

The Temporal Grid Creator (TGC) component was responsible for generating the 

predictive temporal grid structure that was the backbone of the presented motion planning 

method.  Inputs included vehicle position and velocity measurements, the fused traversability 

grid coming from the SARB, the list of moving objects in the environment coming from MO and 

the values of the time-dependent search parameters that are described in Chapter 3 coming from 

the motion planning algorithm.  The structure of the component was separated into multiple 
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processor threads based on its three main functions to allow for concurrent execution: the 

collection of moving obstacle data, the prediction of future moving obstacle positions, and, 

finally, the creation of the predictive temporal grid.  Each of these functions are outlined in 

detail, along with a discussion of the specific motion planning algorithm search parameters that 

are described in general terms in the previous chapter and how they were used in the creation of 

the temporal grid structure. 

Obstacle Position Data Collection 

As mentioned previously, one of the inputs of the TGC component was the list of detected 

moving obstacles reported by MO.  Information in this list included a unique identifier, an 

obstacle classifier declaring an object as a car, bus, tree, or the like, an  velocity and a  

velocity, an array of  and  positions that defined the left-most, right-most, and closest points of 

the obstacle, and a time-stamp for the data for each obstacle.  MO provided this information for 

all objects within a range of approximately 150 m around the vehicle in every direction.  

However, as the maximum dimensions of the new temporal grid structure were set to 30 m 

around the vehicle to match those of the traditional TG, the TGC only maintained a list of the 

objects within a range of approximately this size and disregarded all objects that were further 

away. 

The TGC used this information to build a time-stamped data set for each obstacle present 

in the environment.  While an obstacle could be defined by MO as multiple points at the extents 

of its visibility, the TGC calculated and assigned the obstacle position as the centroid of these 

extents.  As it was building these data sets, the algorithm shifted the actual time-stamp values so 

that the oldest data point was associated with an initial zero-time.  The shifted time-stamps of the 

subsequent data points were determined by calculating the difference between the un-shifted 

time-stamp value of a particular data point and that of the oldest data point. 
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The number of data points to be saved was an adjustable parameter which was set to 100 

samples for this implementation.  This value was selected to improve the accuracy of the 

prediction model for each obstacle, while being small enough to still allow for fast convergence 

of the model.  When the number of total data points reached this limit, the oldest data point 

already in the collection was removed to make room for an additional data point to be added.  

Assuming that the algorithm update rate was equal to or near the desired rate of 40 Hz, this data 

collection represented a time-history of approximately 2.5 seconds for each obstacle.  This data 

collection with shifted timestamps could then be used to estimate a prediction model for the 

future motions of the obstacles. 

Search Parameters 

To reiterate, the developed temporal grid extended the spatial TG into the time dimension 

by adding layers to the grid structure.  Each temporal layer of the new grid represented how the 

robot’s environment would have likely appeared at a distinct time-step in the future, according to 

the obstacle prediction models described in the previous section.  The number of temporal layers 

in the new grid and the size of the time-steps between layers were determined by several 

parameters associated with the motion planner’s search algorithm.  Therefore, it is again prudent 

to provide a brief overview of the motion planning algorithm implemented on the Urban 

NaviGator and these key parameters in particular.  The algorithm utilized for the development of 

this temporal method combined a receding horizon control strategy with an A* heuristic search 

algorithm to expand out a tree of search nodes, which represented potential vehicle states that 

could be reached in the future according to specific control inputs.  The state of the robot was 

defined as: 
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 (4-1) 

where  and  are the position of the state in the vehicle frame of reference,  is the vehicle 

heading angle,  is the desired vehicle velocity and  is the desired steering effort for the given 

state.  The steering effort was defined for a range from -100% to 100%, representing the steering 

wheel achieving full-left and full-right soft-lock, respectively.  These components of the 

potential states represented in Equation 4-1 were estimated from a kinematic model of the robot 

and were generated according to prospective steering commands, which were one of the control 

inputs to the vehicle.  The geometry used in the model is based on a bicycle (two-wheeled) 

model and is shown in Figure 4-5 and the kinematic equations of motion are given as: 

 (4-2) 

 (4-3) 

 (4-4) 

where  is the current vehicle heading angle,  is the change in vehicle heading angle which 

is instituted by the steering effort, ,  is the distance-step equivalent of the generation 

time-step,  and  are the change in vehicle position in the vehicle frame of reference, and 

is the average curvature of the path travelled by the vehicle for a commanded steering angle 

of  and a vehicle wheelbase of length , and is defined as: 

. (4-5) 

The arc length  from Figure 4-5 represents the time-step (or equivalent distance-step) 

between the current vehicle state and one of the potential future vehicle states that could be 

reached from this current state as expanded by the search algorithm.  This step size was one of 
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the key parameters used in determining the number of layers that the temporal grid contained.  It 

should be noted that the step size did not need to be constant for every generation of search 

nodes expanded.  It was determined during previous development of the motion planning 

algorithm that a unique step size for the initial expansion of search nodes was beneficial, 

followed by a consistent step-size for all subsequent generations.  This was caused by the fact 

that the initial generation of expanded search nodes had the most impact on the selected control 

input for the vehicle.  This standard was adopted for the development of the temporal grid 

structure for the presented research.  The search time horizon was the other important parameter 

and represented the maximum future-time to which the motion planning algorithm expanded 

search nodes before terminating.  The goal state for the planning algorithm was placed at this 

time horizon, which typically corresponded to the edge of the TG. 

The number of layers for the temporal grid was calculated by determining the number of 

steps required to reach the goal at this time horizon.  A visualization of the expansion of the 

prospective future vehicles states is provided in Figure 4-6 with the initial node expansion 

time-step  normal node expansion time-step  and the search time horizon  shown.  It is 

important to emphasize that these time-steps and time horizons had equivalent distance-steps 

 and  and distance-horizon  that could be used in their place.  These values could be 

used interchangeably by considering the velocity of the vehicle in the -direction  of the 

vehicle coordinate system, which pointed in the direction of travel.  The conversion was 

calculated as: 

 (4-6) 
  (4-7) 

  (4-8) 
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The vehicle is depicted with the goal state painted green at the edge of the image in Figure 

4-6.  Each of the black circles represents a potential vehicle state that was explored by the 

planning algorithm, while the red circles and lines represent the solution sequence of state 

changes which will bring the vehicle from its current state to the goal state.  The curving, dashed 

line represents the search time horizon, with the initial and normal time-steps displayed as well.  

The number of temporal layers  was calculated as: 

. (4-9) 

In the event that the calculated number of temporal layers coming from Equation 4-9 did not 

result in an integer, the value was rounded to the next integer. 

An obvious concern with this approach was that this value for the number of temporal 

layers was not necessarily constant during a mission as the time horizon or node expansion time-

step size could change during runtime as the robot’s behavior or speed changed.  For this reason, 

the planning algorithm was required to report any changes to these key search parameters so the 

temporal grid structure could be updated.  Another concern arose as this method assumed that the 

number of expanded nodes along the solution path was the minimum number required to reach 

the goal state at the time horizon.  While this assumption may not have been realistic for 

environments heavily occupied by obstacles, either static or dynamic, that the motion planning 

algorithm will have to avoid, it was acceptable for the initial development, testing, and validation 

of the temporal planning method for representing simple dynamic environments with perhaps a 

single obstacle.  It was also acceptable because the remote state changes approaching the time 

horizon had less impact on the implemented control than the initial state changes.  For the initial 

development, any expanded search node generations in excess of  relied on the last available 

temporal layer in the grid. 
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Temporal Grid 

With the designation of the aforementioned search parameters, the temporal grid structure 

could then be generated.  The simple approach would have been to build an entire new TG of 

size 121 rows by 121 columns for each new temporal layer and to have modified each layer as 

needed.  By fully populating each temporal layer of the grid, this method would have required 

large amounts of memory and required significant amounts of time to create and copy the grid 

structures as evidenced by the preliminary grid test results shown in Tables 4-3, 4-4, and 4-5.  

The selected solution to this problem arose from considering the same key search parameters 

used to construct the temporal grid. 

The initial generation of search nodes expanded by the A* algorithm extended out a time 

in the future according to the defined step-size, as previously described.  As a best-first search 

procedure, the A* algorithm then evaluated these nodes and assigned them a cost to organize 

them in a way such that the lowest-cost node was determined for the next round of expansion.  

The motion planning algorithm used for the presented research estimated these costs based on 

the distance from each node to the goal state and the traversability values of the grid cells 

connecting the node and its predecessor node.  It then became obvious that the grid cells at the 

search time horizon had no affect on the evaluation of these initially expanded search nodes.  

Therefore, for this first temporal layer associated with the initial expansion of search nodes, the 

grid only needed to be constructed out to the time-step corresponding to the node expansion.  

That is, the grid layer associated with a particular generation of search node expansion only 

needed to be built far enough to include the cells within which the nodes of that generation 

resided so that they could be evaluated by the A* algorithm. 

The size of the temporal grid structure was minimized by varying the size of each temporal 

layer according to the time-step parameters provided by the motion planning algorithm.  Each 
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temporal layer was built-up so that the cells containing the search nodes for that particular 

generation were present.  For each successive step, the layer became larger and larger up to the 

time horizon, which would have most likely resulted in a fully-populated grid layer of 121 rows 

by 121 columns.  The number of rows and columns in a particular temporal layer  were 

calculated as follows: 

 (4-10) 

where  and  have been defined in the previous section as the initial and normal node 

expansion time-steps,  is the temporal layer number,  is the grid resolution, and  is a 

function that rounds the result to the nearest integer value according to the prevailing rounding 

rule.  This calculation worked for determining either rows or columns since the values were 

equal for a square grid.  Table 4-1 displays the initial row and column and final row and column 

for each layer of a sample temporal grid.  The sample grid was built from values of  = 6.0 m, 

 = 4.0 m, and  = 42.0 m.  From the seventh temporal layer until the last, the layers are 

fully populated with 121 rows and 121 columns.  This comes about as the total distance 

exceeded the maximum possible dimensions of the grid. 

This method of optimization gave the temporal grid structure a pyramidal shape.  Figure 4-

7 shows a representation of this pyramidal-shaped grid structure and Figure 4-8 shows the profile 

of each of the layers of an optimized temporal grid.  The initial layer in Figure 4-8(a) represents 

the environment out to the initial time-step, while the layer depicted in Figure 4-8(g) represents 

the entire environment known to the robot out to the search time horizon.  A static obstacle 

begins appearing in Figure 4-8(d) and comes into full view in Figure 4-8(f).  This serves to 

reemphasize that the nodes expanded in the first generation were not impacted by objects further 

out in the environment.  Because the obstacle was not relevant to the evaluation of the first few 
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generations of expanded search nodes, it was not necessary to include that area in their 

associated temporal layers. 

As the torus buffer data structure was used to store and modify the traditional TG, an 

amended structure was required to store and modify the data for the temporal grid structure.  The 

temporal torus buffer was used and behaved much the same as the traditional torus buffer 

structure.  With the inclusion of additional temporal layers in the temporal grid, the last element 

of each row and column was to be connected to the first element of each row and column for 

each temporal layer in the grid. 

The images in Figure 4-9 show conceptually the similarities between the progression from 

a simple single column of grid cells to the torus buffer and the progression from the single 

temporal column of cells to the temporal torus buffer described above.  The column of cells is 

extended into the time-dimension in Figure 4-9(a) and assumes that each temporal layer contains 

the same number of cells, while the temporal ring buffer is displayed in Figure 4-9(b).  The 

outer-ring represents the first temporal layer and each subsequent inner-ring represents the next 

layer.  The linear array of temporal ring buffers is displayed in Figure 4-9(c) followed by a 

segmented view of the temporal torus buffer in Figure 4-9(d).  This broken view serves to show 

the temporal layers within the torus buffer structure.  These images represent a grid containing 

three temporal layers. 

Even considering the views of the temporal torus buffer discussed above, the grid data was 

still stored as a linear array of traversability values.  Careful attention was taken to guarantee that 

the correct element in the array was being set or modified when altering the grid.  For the 

temporal torus buffer the correct element of the array  was calculated as: 

 (4-11) 
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where  is the temporal layer in which the desired cell resides,  and  are the 

number of rows and columns in a particular temporal layer,  and  are the row and column 

number of the desired cell, and  and  are the starting row and column number for 

a particular temporal layer.  This calculation was used in multiple applications, including setting 

and retrieving the traversability value of a temporal grid cell. 

Initial testing was conducted to study several important values associated with grid 

generation.  The creation times , cloning times , and memory requirements  

were recorded and compared for the traditional TG, fully-populated temporal grid and optimized 

temporal grid structures.  These tests were carried out for temporal grids with the number of 

temporal layers ranging from one to ten.  The search parameters utilized for the initial testing 

consisted of an initial distance-step of  m and a normal time-step of  m.  

The search distance-horizon was varied from  m to  m to allow for the 

appropriate number of temporal layers for the initial tests.  The actual values are displayed in 

Table 4-2 for . 

The creation times for the three grid types are plotted in Figure 4-10 and listed in Table 

4-3.  The creation time for the traditional TG remained approximately constant as would be 

expected since this grid always contained only a single grid layer, with an average time of 

 = 0.1866 ms.  The creation times for the fully-populated temporal grid increased linearly 

from an initial time of  = 0.2223 ms for a single grid layer to  = 2.322 ms for ten 

temporal layers.  Lastly, the creation times for the optimized temporal grid followed an 

approximate second order increase from  = 0.01490 ms for a single temporal layer to 

 = 1.423 ms for all ten layers.  Of interest was the smaller creation time for the optimized 

temporal grid than the traditional TG.  This arose because the total number of cells in the 
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temporal grid did not exceed that of the traditional TG until the fourth temporal layer was added.  

The creation time for an optimized temporal grid with ten temporal layers represented a 540% 

increase from the single layered traditional TG; however, the creation time for an optimized 

temporal grid with only seven layers of  = 0.7579 ms resulted in only a 241% increase 

and represented a 112% reduction of the creation time of the fully-populated temporal grid with 

the same number of temporal layers.  This seven-layered temporal grid coincided with the 

selected search time-step parameters that were used for this study and thus provide the most 

relevant comparison. 

The second test studied the cloning times of the three different grid structures.  

Specifically, this test measured the time required to access the traversability value of each cell in 

one of the grids and set the traversability value of the same cell to be equal to the assessed value 

in a separate grid of the same type. Figure 4-11 displays the trends for the three grids and Table 

4-4 lists the actual recorded times.  As with the creation times, the cloning times of the 

traditional TG remained approximately constant, with an average of  = 0.07160 ms, while 

those of the fully-populated and optimized temporal grids followed an approximate second order 

curve.  The fully-populated temporal grid’s clone times ranged from  = 0.03662 ms for a 

single layer to  = 1.1405 ms for ten layers.  Likewise, the cloning times of the optimized 

temporal grid ranged from  = 0.03740 ms to  = 0.6715 ms.  The cloning time for a 

temporal grid with seven temporal layers of   = 0.2690 ms represented a 275% increase 

over that of the traditional TG, but was a 53% reduction when compared to that of the 

fully-populated temporal TG. 

Lastly, the memory usage was recorded for all three grid types for the same number of 

temporal layers as was used in the other tests.  While the issue of storage space was not a 
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significant problem, the sizes of these grids were still of interest because of the high rate of 

transmission of these grids among various software components on an unmanned vehicle.  Table 

4-5 shows the actual recorded size of the grids versus the number of temporal layers, while 

Figure 4-12 displays the trends in the data.  The traditional TG required 14,641 bytes of memory, 

which obviously remained constant.  The fully-populated temporal grid’s memory requirement 

increased linearly from 14,641 bytes for a single layer to 146,410 bytes for ten layers.  And 

finally, the optimized temporal grid only required 961 bytes for a single layer and 93,290 bytes 

for ten temporal layers.  For an optimized temporal grid with seven temporal layers, the memory 

requirement of 49,367 bytes represented a 237% increase over that of the traditional TG, but was 

a 51% reduction in usage compared to the fully-populated temporal TG. 

Moving Obstacle Prediction 

Since the prediction of the moving objects was not the focus of the presented research, a 

modified version of the statistics-based polynomial predictor discussed in (Kent, 2007) was used 

to fit curves to the time-series of position and velocity data for each obstacle reported by MO.  A 

second-order polynomial was chosen for simplicity and ease of use and its coefficients were 

calculated by using the GNU Science Library’s (GSL) regression tools (GNU, 2008).  A more 

complex fit could have been chosen to provide a more accurate estimation of the future positions 

and velocities, but as the development of a prediction algorithm was not the focus of the 

research, a simple model was sufficient.  The data sets described in the previous section were 

parsed into vectors of x positions, y positions, x velocities, y velocities, and a matrix of shifted 

time-stamps.  The GSL function gsl_multifit_linear() took these vectors and matrices and 

returned the solution coefficient vector for fitting the second-order polynomial to the data.  From 

this polynomial, data points were extrapolated into the future to provide the predicted positions 

of the obstacles to be painted in the temporal grid.  Figure 4-13 shows a visualization of the fitted 
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polynomial to the time-series of data for an obstacle and the extrapolated future position 

estimates, along with upper and lower confidence intervals. 

For each obstacle, this algorithm estimated the predicted  and  position at future time  

according to: 

 (4-12) 
 (4-13) 

where  and  are the coefficients of the polynomial curve fits, which are calculated by the 

GSL tools.  The prediction times used to determine the values of  and  again came from the 

search parameters which were used to build the temporal grid structure, namely the generational 

time-steps of search node expansion and the search time horizon.  For each generation’s 

time-step, the position of each obstacle was estimated using Equations 4-12 and 4-13.  The 

predicted obstacle positions were then painted in the layer of the temporal grid associated with 

that prediction time by converting the predicted position into a row and column pair by using 

Equations 3-16 and 3-17 from the previous chapter. 

Figure 4-14 shows the results of the initial, fully-populated temporal grid construction with 

the predicted positions of a simulated obstacle painted as it moved perpendicular to and crossed 

the robot’s desired lane of travel.  The vehicle’s direction of motion, or heading angle, is labeled 

as ψ in this figure as well as all subsequent grid images.  Figure 4-14(a) displays the 

representation of the predicted environment after the initial time-step of the search algorithm, 

while Figure 4-14(g) represents the final prediction of the environment as the search algorithm 

reached its time horizon.  This figure serves to show the successful mapping of the predicted 

motion of a moving obstacle.  A sample of the optimized temporal grid, which was provided to 

the motion planning algorithm, is shown in Figure 4-15 with the robot’s heading facing toward 
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the left of the image pointing down the desired lane of travel painted in blue.  In both instances, 

the obstacle was simulated with a velocity of 2.2352 mps (5 mph) in the vertical (Y) direction. 

The obstacles were painted in the temporal grid according to their exact predicted 

positions.  The cell represented by the row-column pair calculated from Equations 3-16 and 3-17 

was assigned the lowest traversability value possible to show the obstacle.  As a result of the 

vehicle being treated as a point, the predicted position of the obstacle was then dilated by an area 

equivalent to the width of the robot.  Therefore, the surrounding cells were also assigned the 

lowest traversability value possible out to an area the size of the vehicle, plus a variable buffer 

region to allow for a safe avoidance distance.  Figure 4-16 shows a single grid image with all the 

predicted positions of a moving obstacle painted with only the dilation described above to show 

the progression of the object across the lane.  The layers of an optimized temporal grid are shown 

in Figure 4-17 with the individual predicted positions painted to show what the motion planning 

algorithm was provided with to attempt to generate a plan with the moving obstacle present with 

predicted positions painted. 

Temporal Motion Planner 

The culmination of the presented research came as the motion planning algorithm 

generated its sequence of control input steering commands by searching through the temporal 

grid described in this chapter.  The motion planning algorithm developed in (Galluzzo, 2006) 

provided the backbone for the development of this new temporal planning method.  This 

algorithm combined a receding horizon control strategy with the A* algorithm to simultaneously 

generate steering, throttle, and brake commands for an unmanned ground robot.  This algorithm 

allowed the robot to successfully navigate a road course and avoid static obstacles in a fairly 

unstructured environment.  The temporal method presented extended the functionality of this 
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original algorithm to deal with both static and dynamic obstacles in structured and unstructured 

environments. 

Referring to the previous discussion of the search algorithm, a tree of search nodes 

representing potential future vehicle states was expanded, with each of these nodes falling within 

a cell in the grid.  Costs were then assigned to each node based on a number of factors.  The A* 

search algorithm called for a two-part cost taking the form: 

  (4-14) 

where  is the estimated total cost of node ,  is the actual cost to get from the initial 

node  to node , and  is the estimated cost to get from node  to the goal.  The original 

algorithm from (Galluzzo, 2006) and the presented temporal algorithm both estimated these costs 

based on the traversability values of the grid cells between a particular node and its predecessor 

node and the distance from the node to the goal point.  Therefore, it was necessary to access 

these values in the torus buffer or temporal torus buffer data structures. 

For the temporal method, this was made possible by utilizing special functions to which 

the node generation and row and column of the cell of interest were provided.  These values were 

then used to access the grid cell in the linear data array of the temporal torus buffer according to 

Equation 4-11.  The node generation was used to determine the correct layer of the temporal grid 

structure to access.  For example, a search node generated in the initial expansion required the 

traversability value of its containing cell in the initial temporal layer to correctly calculate its 

associated cost, while a node generated in the second expansion of nodes required the value of its 

containing cell in the next temporal layer, and so on.  Therefore, with each new generation of 

search nodes expanded, the temporal planning algorithm was required to search deeper in the 

temporal grid structure, or equivalently further out in time, to calculate the cost of each node. 
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This ability to access the traversability values of any given cell allowed the first 

component of a node’s estimated cost  to be calculated as: 

  (4-15) 

where is the generation number of node   is the number of grid cells traversed between 

node  and its predecessor node,  is the traversability value associated with a particular grid 

cell,  is the distance step between node  and its predecessor,  is a constant representing 

the number of meters traversed per cell (0.5 m), and  is the number of grid cells traversed 

from the start node  to node .  Similarly, the second component of the node’s estimated 

cost  was determined as: 

  (4-16) 

where  is the average cost per grid cell from the start node to the node  and  is the 

distance from the node  to the goal.  The total cost resulting from Equation 4-14 had abstract, 

dimensionless cost units which were compared for the various search nodes. 

Upon finding a successful path from the start node to the final goal state, the solution path 

was traced back to the initially expanded node.  The desired steering command associated with 

this initial search node on the solution path was then selected as the control input to the vehicle.  

Figure 4-18 displays the temporal layers of a single, fully-populated temporal grid, which show 

the expansion of the search tree as an obstacle crossed the desired path of the vehicle.  Each 

black line represents an expanded search node, with the solution path painted in grey.  Figure 4-

19 shows the same situation in the temporal layers of an optimized grid. 
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Target Interception Application 

All previous sections of this chapter discuss the development of the temporal motion 

planning method in terms of avoiding moving obstacles in the robot’s environment.  However, 

another application, which presented itself during the development and testing process, 

considered the opposite goal.  Rather than treating an object as an obstacle, it was advantageous 

to treat this object of interest as a target to be intercepted and possibly neutralized.  Following the 

same procedure of detecting and tracking the target made it possible to apply the prediction 

algorithm described previously to estimate the future positions and velocities of this target 

object.  At this point, the predicted positions of the object were used to generate a goal point for 

the motion planning algorithm to seek out. 

The original motion planning algorithm calculated its goal point based on a list of 

waypoints that followed the robot’s desired lane of travel, and that it was required to visit.  This 

goal point was typically located at the edge of the grid unless the vehicle was approaching an 

intersection or a curve in the road, or the end of its mission.  For a target interception application, 

the goal point was calculated as the final predicted position of the object of interest at the search 

algorithm’s time horizon.  Using the final predicted position allowed the planning algorithm to 

direct the vehicle toward the location where it was believed the target would be in the future at 

the search time horizon, rather than where the target was currently located. 

Depending on the speed of the moving target, this last predicted position might have been 

outside of the motion planner’s search time horizon, in which case the target-defined goal point 

was snapped to the edge of the valid search space.  This provided an attainable goal that was 

along the same heading as the final predicted position of the target.  In this application, the 

motion planning algorithm directly required the prediction information for the target object to 

select this final predicted position and calculate the goal point. 
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In addition to generating the goal point based on the predicted position of the target object, 

the temporal grid was also able to aid the motion planning algorithm in generating a trajectory to 

intercept the target.  In treating an object of interest as a target as opposed to an obstacle to be 

avoided, the object was represented differently in the temporal grid map.  To reiterate, grid cells 

containing objects the robot needed to avoid were assigned low traversability values, which 

translated into a very high cost for a node that falls within that cell. For a target interception 

application, the cells that contained the final predicted position of the target did not need to be 

assigned untraversable values, but rather high traversability values to attract the planning 

algorithm to generate a path to this point. 

This chapter describes the specific implementation of the new PTMP method for an 

unmanned ground vehicle tasked with navigating dynamic urban environments.  The new TGC 

software component provided much of the functionality of the new method, along with the 

modified temporal motion planning algorithm.  The next chapter describes the testing procedure 

and analyzes and discusses the results of the various tests conducted. 
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Figure 4-1.  Urban NaviGator system architecture diagram. 
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Figure 4-2.  Traversability grid representation of robot’s environment. 
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Figure 4-3.  Formation of torus buffer.  A) Single columns of grid cells, B) ring buffer, C) ring 
buffer array, D) torus buffer. 
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Figure 4-4.  Motion planning algorithm input traversability grid. 
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Figure 4-5.  Vehicle kinematic model geometry. 

 
 

Figure 4-6.  Illustration of search algorithm node expansion showing key search parameters. 
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Figure 4-7.  Pyramidal-shaped optimized temporal grid structure. 



 

101 
 

 
 

Figure 4-8.  Optimized temporal grid layers showing static obstacle appearing. 
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Figure 4-9.  Formation of temporal torus buffer.  A) Single temporal column of grid cells, B) 
temporal ring buffer, C) temporal ring buffer array, D) temporal torus buffer. 
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Figure 4-10.  Creation times for TG, full temporal TG and optimized temporal TG. 
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Figure 4-11.  Cloning times for TG, full temporal TG and optimized temporal TG. 
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Figure 4-12.  Memory requirements for TG, full temporal TG and optimized temporal TG. 
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Figure 4-13.  Prediction visualization showing polynomial curve fit and extrapolated data. 
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Figure 4-14.  Full temporal grid layers showing predicted positions of obstacle. 
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Figure 4-15.  Optimized temporal grid layers showing predicted positions of obstacle. 
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Figure 4-16.  Future predicted positions of obstacle in single traversability grid. 
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Figure 4-17.  Optimized temporal grid showing simple dilation of predicted obstacle positions. 
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Figure 4-18.  Full temporal grid layers showing expansion of search tree with obstacle. 
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Figure 4-19.  Optimized temporal grid layers showing expansion of search tree with obstacle. 
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Table 4-1.  Temporal layer size parameters for . 
Temporal 
layer Rows Start 

row 
End 
row Columns Start 

column 
End 
column 

Total 
cells 

1   31 45   75   31 45   75     961 
2   47 37   83   47 37   83   2209 
3   63 29   91   63 29   91   3969 
4   79 21   99   79 21   99   6241 
5   95 13 107   95 13 107   9025 
6 111   5 115 111   5 115 12321 
7 121   0 120 121   0 120 14641 
8 121   0 120 121   0 120 14641 
9 121   0 120 121   0 120 14641 
10 121   0 120 121   0 120 14641 

 

Table 4-2.  Distance horizon values for each temporal layer for initial temporal grid testing. 
Temporal 
layer 1 2 3 4 5 6 7 8 9 10 

Distance 
horizon 
[m] 

6.0 10.0 14.0 18.0 22.0 26.0 30.0 34.0 38.0 42.0 

 

Table 4-3.  Grid creation times (in seconds) for . 

Temporal 
layer 

Traversability grid 
creation times (s) 

Fully-populated temporal 
traversability grid creation 
times (s) 

Optimized temporal 
traversability grid creation 
times (s) 

  1 0.0002056 0.0002223 0.00001490 
  2 0.0002600 0.0004475 0.00004411 
  3 0.0001571 0.0006768 0.0001125 
  4 0.0001473 0.0008907 0.0002034 
  5 0.0001907 0.001131 0.0003427 
  6 0.0001635 0.001344 0.0005334 
  7 0.0001761 0.001598 0.0007579 
  8 0.0001933 0.001486 0.0008027 
  9 0.0001859 0.002052 0.001200 
10 0.0001870 0.002322 0.001423 
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Table 4-4.  Grid cloning times (in seconds) for . 

Temporal 
layer 

Traversability grid 
cloning times (s) 

Fully-populated temporal 
traversability grid cloning 
times (s) 

Optimized Temporal 
traversability grid cloning 
times (s) 

  1 0.00003712 0.00003662 0.00003740 
  2 0.00004942 0.00008391 0.00001843 
  3 0.00004466 0.0001360 0.00002826 
  4 0.00004946 0.0002337 0.00007593 
  5 0.00005231 0.0002548 0.0001440 
  6 0.00008152 0.0004810 0.0001815 
  7 0.0009052 0.0005744 0.0002690 
  8 0.0009737 0.0007937 0.0003977 
  9 0.0001017 0.0008799 0.0004913 
10 0.0001119 0.001141 0.0006715 

 

Table 4-5.  Memory requirements (in bytes) for . 

Temporal 
layer 

Traversability grid 
memory usage (bytes) 

Fully-populated temporal 
traversability grid memory 
usage (bytes) 

Optimized temporal 
traversability grid memory 
usage (bytes) 

  1 14641   14641     961 
  2 14641   29282   3170 
  3 14641   43923   7139 
  4 14641   58564 13380 
  5 14641   73205 22405 
  6 14641   87846 34726 
  7 14641 102487 49367 
  8 14641 117128 64008 
  9 14641 131769 78649 
10 14641 146410 93290 
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CHAPTER 5 
TESTING AND RESULTS 

The temporal motion planning method outlined in this document was implemented and 

tested extensively.  Because of the complexity of maintaining a functional autonomous vehicle 

and the considerable resources in terms of manpower and facilities required to execute 

autonomous testing, comprehensive testing was first conducted in simulation to verify the 

performance of the various developed algorithms.  While the results of these simulations were 

promising, live robotic testing was also necessary to practically confirm the validity of using a 

predictive temporal motion planning method for autonomous ground vehicle navigation. 

This chapter outlines the various testing methods and metrics used to measure the 

performance of this method.  The first section outlines the test plan for data collection and 

analysis of results to ensure effective investigation of the presented research.  Next, the 

simulation procedure and results are described, followed by the same for live robotic testing.  

Finally, a summary of the test results is provided, which draws a few preliminary conclusions. 

Test Plan 

It was determined that the new PTMP method could be applied to several of the operating 

behaviors encountered during the DUC and to the target interception problem presented.  A few 

of these behaviors included an unmanned ground vehicle attempting to follow a moving object in 

its desired lane of travel, navigating an intersection with oncoming vehicles present, passing a 

slow-moving vehicle in its desired lane and navigating an unstructured obstacle field.  A subset 

of these behaviors was selected for thorough testing to validate the newly-developed planning 

method. 

The first step was to conduct a series of baseline and control tests to collect data by which 

to compare the results of the PTMP tests against.  The baseline tests involve running a motion 
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planning algorithm similar to that described in (Galluzzo, 2006) in situations matching those to 

be described shortly.  However, no moving obstacles were present so that the pure, undisturbed 

motion planning outputs was measured.  This provided the ideal test results in terms of the 

desired testing metrics which are outlined in a later section.  The control tests introduced moving 

obstacles in the same scenarios to observe and quantify how the control outputs of the motion 

planning algorithm were affected by these objects.  Finally, the same tests were conducted using 

the new PTMP algorithm to investigate its performance with moving obstacles present. 

Figure 5-1 shows an aerial view of the test site at the Gainesville Raceway, which has 

served as the test facility for much of CIMAR’s autonomous ground vehicle projects.  The site 

provides paved road segments used in testing many of the required behaviors for the DUC, 

including straight and curved road segments with multiple lanes, intersections, dead-end streets 

and a parking area.  Sections of this area were selected for simulating the required test 

environments.  Figure 5-2 shows a close-up visualization of the waypoints defining the road 

segment used for the following behavior tests and Figure 5-3 shows the same for the waypoints 

and perimeter points defining the open, unstructured area used for the obstacle field behavior and 

target interception tests. 

Following Behavior 

The first behavior selected involved the robot maintaining its desired lane of travel while 

following another moving object in front of it.  The following operating behavior is a crucial 

ability exhibited by an unmanned vehicle that may interact with other moving vehicles in an 

urban environment.  Figure 5-4 illustrates the effect an obstacle situated in the vehicle’s desired 

lane had on the motion planning algorithm’s attempt to plan a path down the center of the lane as 

recorded during a control test of the following behavior.  The presence of the obstacle, painted in 

yellow, forced the planner to attempt to find a path that took the vehicle out of the desired lane.  
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The wide region of expanded search nodes illustrates the difficulty of the attempt, and the light 

yellow line signifies the failed solution path. 

Another problem which arose from this situation is illustrated as the solution path 

oscillates from the left side of the obstacle in Figures 5-4(a) and (b) to the right side of the 

obstacle in Figures 5-4(c) and (d).  This oscillation could lead the vehicle to reach an unstable 

state that could ultimately lead to a collision with a vehicle in the adjacent lane or an object to 

the side of the desired lane of travel.  This unacceptable behavior resulted from the moving 

object being treated as static while the planning algorithm expanded its search tree. 

In the following behavior test, a similar situation was constructed to test the effectiveness 

of the developed predictive temporal motion planner when faced with the same scenario.  The 

vehicle was placed in its desired lane behind another vehicle travelling in the same direction in a 

straight line.  The lead obstacle vehicle was instructed to progress with a velocity that matched 

that of the robot such that the separation distance remained approximately constant.  The use of 

obstacle motion prediction by the new temporal planning method should have allowed the 

motion planning algorithm to generate its control sequence smoothly as the object was projected 

further along the desired lane of travel as the planning time progressed.  Table 5-1 outlines the 

following behavior test plan, including the purpose and description, expected results, and lists the 

types of data that were recorded for analysis. 

Obstacle Field Behavior 

The previously described following behavior test-case simulation took place on a 

structured road with a desired lane of travel and with the followed obstacle maintaining the same 

lane in a straight line.  A less defined situation was chosen for the next round of testing.  The 

images in Figure 5-5 show the robot attempting to plan a path in an open, unstructured 

environment around an obstacle that did not necessarily follow a prescribed path.  The robot 
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itself was free to traverse any part of the open area to reach its goal.  It is evident in the various 

traversability grids shown that the motion planner was having difficulty finding a consistent 

solution as the selected path oscillates in front of the obstacle in Figures 5-5(a) and (b) and 

behind the passing obstacle in Figures 5-5(c) and (d). 

The test outlined for this situation sought to analyze the pure obstacle avoidance 

capabilities of the presented motion planning method.  The robot was placed in one of these 

open, unstructured areas and commanded to traverse straight across to the opposite side.  An 

obstacle vehicle was commanded to follow a path that crossed the straight-line path connecting 

the robot with its goal in a perpendicular manner at an intermediate distance.  The velocity of the 

obstacle vehicle was set such that it passed the robot and was out of its way by the time the robot 

reached that position.  Table 5-2 outlines the obstacle field behavior test plan, and contains the 

same sections as the following behavior test plan. 

Target Interception 

The final series of tests considers the target interception application of the PTMP method.  

These tests were similar to those of the obstacle field behavior situation with an object crossing 

perpendicularly to the current vehicle heading in the same open, unstructured environment.  

However, in this instance, the object was used to calculate the goal point that the robot was 

seeking to achieve rather than being treated as an obstacle that the robot needed to avoid.  In this 

scenario, the motion planner directly received the prediction model of the object and used the 

final predicted position to calculate its goal point, toward which it attempted to plan a path.  The 

motivation for this application came from the research being conducted by AFRL for perimeter 

surveillance and response.  The ability of unmanned ground robots that are patrolling a secure 

perimeter to autonomously detect and intercept an intruder could provide useful deterrence and 
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allow for more time for a more forceful and appropriate response to be coordinated.  Table 5-3 

outlines this final test plan. 

Test Metrics 

A number of different performance measures were selected to be recorded to evaluate the 

new PTMP method when compared to existing motion planning techniques.  These metrics 

served to investigate the effectiveness of the new method in allowing a robotic system to 

navigate in dynamic environments.  The first set of metrics was associated with how efficient 

and effective the planning method was at finding a solution path.  The first metric selected 

involved the success versus failure rate of the motion planning algorithm in generating 

trajectories that allowed the system to achieve its goal.  It was found that obstacles crossing in 

the path of the vehicle could have caused a failure of the search algorithm using the traditional 

motion planning method, whereas the temporal motion planning method could have addressed 

this problem by projecting the positions of the obstacle forward with time.  The number of search 

nodes expanded was also an important measure of efficiency of the motion planning algorithm.  

It was shown that moving obstacles could affect the search algorithm negatively and result in 

more of the search space being explored to find ways around the obstacle, while it was believed 

that the predictive temporal method would be able to use the minimum number of nodes since it 

was obvious that the obstacle would be out of the vehicle’s path. 

The cost of the entire solution path was a good comparative parameter which captured the 

optimality of the various methods.  This cost again was based on the traversability values of the 

cells through which the solution trajectory pass and the distance from a particular node to the 

goal state, and was calculated according to Equations 4-14, 4-15, and 4-16 with simple cost 

units.  For the following behavior test, because the center of the lane was painted with the lowest 

cost traversability, this meant that the lower the total path cost, the closer the solution trajectory 
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tracked the center of the lane.  It was believed that this parameter would be less useful during the 

obstacle field behavior testing because all cells within the open, unstructured environment were 

assigned the same traversability values; however, the cost associated with the distance to the goal 

would still be applicable and could still have been used as a measure of performance. 

The second set of metrics dealt with the solution path itself and the affect of the solution 

path on the motion of the vehicle.  The deviation of the solution path was a measure of how the 

path diverged from a nominal straight-line path to the goal point.  The sum of the heading angle 

changes instituted by each individual state change in the solution path was calculated.  This 

provided evidence of the motion planner’s attempts to divert the path around the obstacle versus 

simply planning toward the goal as if the obstacle was not present.  Likewise, how well the 

solution path tracks the goal point was a good measure of the how the motion planning algorithm 

performed.  Therefore, the heading angles from the vehicle to the goal state and from the vehicle 

to the final node on the solution path were calculated and compared. 

The final metric involved the commanded steering effort, which was determined by the 

solution path.  Ideally, the PTMP method would generate a solution path that minimized the 

motion of the vehicle when driving in a straight-line behind an obstacle and planning toward a 

goal point directly in front of the vehicle as an obstacle that it would not collide with passed in 

front of its straight-line path.  However, any interference resulting from the obstacle would 

present itself as the commanded steering effort increased or oscillated. 

All of these values were logged in a separate computational thread by the motion planning 

algorithm so that it did not interfere with the performance of the rest of the algorithm.  Data was 

recorded, plotted and analyzed to determine the results of each of the tests. A last, visual metric 

was used to gauge the performance of the new method.  Traditional and temporal traversability 
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grid images were recorded for all of the tests conducted with the output of the temporal motion 

planner displayed to provide visual evidence of how well the algorithm dealt with the various 

situations with the moving obstacles. 

Simulation 

To evaluate the new PTMP method before actually using it to autonomously drive the 

Urban NaviGator, extensive simulation was carried out.  These simulations were executed for 

each test scenario described above using all of the key software components required for 

autonomous navigation.  Most of these components were run exactly as they would be during 

autonomous navigation; however, a few simulators were run in place of other key components.  

A Global Position and Orientation Sensor (GPOS) simulator was run to reproduce position and 

orientation information and to facilitate vehicle motion during the simulations.  A Primitive 

Driver (PD) simulator was run to allow the simulated vehicle to be placed in and taken out of an 

autonomous mode and to allow for simulated gear shifting.  Finally, a simulated MO sensor was 

implemented to provide fabricated obstacle position and motion data.  The various motion 

planning algorithms used for comparison and the new PTMP method were run in their natural 

state.  Now each of the simulation scenarios is described in detail, along with the results. 

Following Behavior 

The simulation environment for the testing of the following operating behavior was created 

by generating a sequence of waypoints in a straight line for approximately 150 m to act as the 

desired lane of travel for the robot.  The simulated vehicle was placed at the beginning of this 

straight road segment with an obstacle vehicle in front of it in the same desired lane of travel.  

This obstacle was defined by a single position in the lane and dilated by approximately the width 

of the vehicle in every direction to account for the simulated vehicle being treated as a single 
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point.  This position and the trajectory and velocity of the obstacle were simulated in MO and 

reported to the TGC component. 

The obstacle was initially located approximately 18 m in front of the vehicle.  At this point 

the vehicle was put into a simulated autonomous state and the motion planner began generating 

its trajectory.  The test began as the position simulator began moving the vehicle in a straight line 

between each of the waypoints that defined the testing road segment.  As the vehicle began 

exhibiting motion, the simulated MO sensor began artificially moving the followed obstacle in a 

similar straight line between each of the waypoints.  The vehicle velocity was set at a constant 

4.47 mps (10 mph) and the velocity of the obstacle was set to match.  This resulted in the 

followed obstacle remaining a constant distance in front of the vehicle as they progressed down 

the road segment. 

Figure 5-6 shows a single fully-populated temporal grid produced by the TGC that shows 

the various temporal layers, and the associated predicted positions of the followed obstacle.  

Figure 5-7 then shows the temporal layers of the equivalent optimized temporal grid that was 

reported to the motion planning component.  These images show that, for each successive 

temporal layer, the predicted position of the followed obstacle was outside of the motion 

planning algorithm’s visible area.  As this test was being conducted, both the TGC component 

and the motion planning algorithm logged data pertaining to the relevant testing metrics 

described in the earlier section.  Table 5-4 shows a sample of predicted obstacle positions in both 

the local (vehicle) and global (UTM) coordinate systems and velocities for a following behavior 

test.  A discrepancy is noticed in the desired starting X position of the obstacle (-18 m) and the 

initial predicted position of the obstacle (-12.96 m).  This was likely caused by the asynchronous 
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nature of the desired rate of collection of data points with allowable provision of the data by the 

MO sensor which was then corrected. 

The three separate tests outlined previously were conducted for this scenario to allow for 

comparison and contrast.  The obvious measure of the success of the new PTMP algorithm was 

its ability to successfully generate a solution trajectory.  The original algorithm used during the 

following behavior control test had a failure rate of approximately 14% as the followed obstacle 

presented problems while attempting to generate a trajectory down the center of the desired lane 

of travel.  Even considering the successful attempt during this test, the solution trajectories would 

have effectively driven the robot out of the desired lane and possibly into an oncoming vehicle or 

other object.  Conversely, the PTMP algorithm experienced a 100% success rate in finding a 

solution trajectory.  Figure 5-8 shows the temporal layers of an output grid of the new motion 

planning algorithm showing each step of the search node expansion out to the time horizon in 

Figure 5-8(g). 

The next metric of note was the number of search nodes expanded as the vehicle moved 

down the desired lane of travel.  Figure 5-9 shows a plot of the number of search nodes used 

during the three tests over a period of time.  The original motion planning algorithm expanded an 

average of 46 nodes while planning a trajectory down the center of the desired lane of travel, 

with a maximum of 334 nodes expanded during the baseline test with no followed object.  The 

control test resulted in an average of 445 nodes being expanded with a maximum of 3,401 nodes.  

As would be expected, the original motion planning algorithm required many more nodes to be 

expanded while attempting to generate its trajectory around the obstacle, again referring to 

Figure 5-4.  Finally, the new PTMP algorithm required an average of 203 search nodes to be 

expanded, with a maximum of 564 nodes expanded.  While higher than that of the baseline test, 
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the number of nodes expanded using the PTMP was about half that required by the original 

algorithm used during the control test. 

Another of the basic metrics used to evaluate the new motion planning algorithm was the 

solution path cost.  Figure 5-10 displays a plot of these costs for the three separate tests 

conducted.  The average cost for the original motion planner in the baseline test was 

approximately 1.778e15 cost units while that of the same planner during the control test was 

approximately 4.113e17 cost units, or over two orders of magnitude more costly.  This result was 

to be expected as the solution trajectories generated by the motion planner during the control test 

were attempting to navigate around the followed obstacle and, therefore, resulted in the 

expanded search nodes falling in areas of the TG considered out of bounds with low 

traversability values and, thus, very high associated costs.  Meanwhile the average cost of the 

solution trajectory generated by the new PTMP algorithm was approximately 1.892e15 cost 

units.  This average cost using the temporal method was only approximately 6.4% larger than 

that of the original method from the baseline test, exemplifying that the temporal method was 

able to find trajectories that closely followed the low cost cells representing the center of the 

desired lane of travel. 

The last metric to be analyzed was the final steering command coming from the motion 

planning algorithm and implemented as a control input to the robot.  This is the most telling 

metric as it described how the vehicle will actually drove when confronted with an obstacle in 

front of it.  An almost negligible average steering command magnitude of approximately 0.5% 

was achieved for the baseline test and depicts the original motion planning algorithm as nearly 

always finding a solution trajectory directly down the center of the lane with no obstacle present.  

On the other hand, the introduction of a followed obstacle in the desired lane of travel resulted in 
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an average magnitude of approximately 11.4% for the control test.  This agrees with the other 

metrics and the images of the motion planner being forced to generate a solution trajectory that 

diverted out of the desired lane and into regions of the grid considered out of bounds in an 

attempt to navigate around the followed obstacle.  However, the new temporal motion planner 

was able to generate solution trajectories with an average steering command magnitude of only 

2.8%, achieving an approximately 75.4% reduction in average steering effort when compared to 

the control test.  Figure 5-11 shows the recorded steering commands for all three following 

behavior tests. 

Obstacle Field Behavior 

The purpose of the obstacle field behavior simulation was to evaluate the pure obstacle 

avoidance capabilities of the new PTMP method in an open, unstructured environment.  The 

environment was set up as a single inlet road segment, a large open area defined by a series of 

perimeter points, and a single outlet road segment.  The open area zone was approximately 60  m 

long by 40  m wide and contained no defined lanes, intersections or constructs which could have 

limited the motion planning algorithm in its attempt to build its trajectory to the goal point.  The 

simulated vehicle was initially situated just inside the entrance to the open area in an orientation 

that allowed it to move directly down the center of the zone in a straight line.  The lone obstacle 

was again represented by the simulated MO sensor as a single position, but was then dilated in 

all directions by a length equivalent to the width of the robot plus a small buffer.   

The obstacle was initially located approximately 15 m in front of the vehicle and 15 m to 

its left side.  As with the following behavior tests, the vehicle was placed in a simulated 

autonomous state at which point the motion planning algorithm began generating its solution 

trajectory.  The position simulator was then activated to begin moving the vehicle in a straight 

line down the center of the open area at approximately 2.235 mps (5 mph), while attempting to 
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plan toward a goal point approximately 30 m directly in front of it.  At this same instant, the 

simulated MO sensor began updating the obstacles position in a way that led it to cross 

perpendicularly to the path followed by the robot at approximately 4.470 mps (10 mph).   

The initial positions of the robot and obstacle and the assigned velocities were selected to 

create a scenario where the obstacle passed across the vehicle’s desired path, but was well out of 

the path by the time the vehicle reached that location on its path.  Figures 5-12 and 5-13 show the 

fully populated and optimized layers of a single temporal grid, respectively, and show the 

predicted positions of the obstacle crossing the desired path of the robot.  These images serve to 

show that the obstacle was out of the way by the time the vehicle reached the crossing position, 

thus providing the expectation that the motion planning algorithm did not need to alter the 

straight-line trajectory of the vehicle.  The same temporal motion planning data was recorded to 

verify this claim.  Table 5-5 provides a sampling of the predicted positions and velocities of the 

moving obstacle for an instance of the obstacle field test. 

The open area obstacle field behavior simulation was a bit more difficult to analyze in 

terms of the performance metrics used for the following behavior due to a number of factors.  

The solution path cost became less relevant because the traversability values all grid cells within 

the open area zone were equal to emphasize that the vehicle could drive anywhere within the 

perimeter of the zone.  This resulted in the distance aspect of the search node cost playing a more 

important role in the cost analysis.  Likewise, because of this uniform traversability, the number 

of search nodes varied little from one test to the next.  Also, the passing of the obstacle in front 

of the vehicle was not a big enough disturbance to cause the motion planning algorithm to fail in 

finding a solution trajectory.  Therefore, unlike during the following behavior simulations, the 

search algorithm failure rate was meaningless for the obstacle field behavior tests.  This left the 
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solution path curvature and steering command as the main parameters used to evaluate the 

performance of the new temporal motion planning method in this open area obstacle avoidance 

situation. 

As with the following behavior simulations, the analysis of steering control inputs 

commanded by the motion planning algorithm was the most basic and complete measure of the 

response of the vehicle to any disturbances in terms of solution trajectories.  An obstacle crossing 

between the robot and its goal point at the edge of the grid had significant affects on the steering 

commanded by the planner as it attempted to navigate around the object to get to the goal point.  

This is evidenced in Figure 5-14 by the large magnitude of the steering commanded as the 

obstacle passes during the control test. 

As was expected with no obstacle present, the original motion planning algorithm 

commanded 0% steering effort for the entire baseline test.  However, as the obstacle passed 

across the vehicle’s desired path during the control test, the steering command reached a 

magnitude of approximately 22.8%.  Similarly concerning was the fact that actual command 

oscillated between positive and negative values of this magnitude in a short amount of time, 

signifying possible steering instability as the motion planner attempted to find a path in front of 

the passing obstacle initially only to switch to a path that fell behind the obstacle as it moved 

further.  The PTMP method was able to match the baseline results, maintaining 0.0% steering 

command through the entire test, even as the obstacle crossed in front of the simulated vehicle.  

This is illustrated by Figure 5-15, which shows the individual layers of a temporal grid with the 

expanded search nodes and solution path of the temporal motion planning algorithm drawn as the 

predicted positions of the obstacle passed across the robot’s desired path.  The temporal layer 

shown in Figure 5-15(d) shows the predicted position of the obstacle at the fourth future time 
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step as having just passed the fourth generation of search nodes expanded by the motion planner 

such that it did not interfere with the solution path. 

Analysis of the solution path deviation further substantiated the claim that the new 

temporal motion planning method would successfully generate trajectories that ignored the 

passing obstacle.  The average path deviation for the baseline test was approximately 14.5° with 

a maximum value of 23.8°.  The results from the control test showed a significant deviation of 

the path as the obstacle crossed in front of the vehicle.  An average deviation of approximately 

31.7° represented a 118% increase for the control test when compared to the baseline test, and 

the maximum deviation of 301.1° represented a 1,162% increase when compared to that of the 

baseline test.  The new PTMP method was able to achieve results almost identical to those of the 

baseline test with an average deviation of approximately 14.4° and a maximum value of 24.1°.  

Figure 5-16 plots the results of the three tests conducted and shows the large jump in solution 

path deviation experienced during the control test when using the original motion planning 

algorithm, while the deviations from the baseline and temporal tests remained small and 

consistent.   

Target Interception 

The final simulation conducted to test the usefulness of the PTMP method was an 

assessment of the method’s ability to facilitate a target interception capability.  This test was set 

up in a similar manner to the obstacle field behavior simulation.  However, rather than treating 

the predicted positions of the obstacle in each temporal layer as untraversable areas, the final 

predicted position in the last temporal layer was used to set the goal point for the motion 

planning algorithm to achieve.  The same open, unstructured zone from the obstacle field 

behavior test was used, and the simulated obstacle began in a slightly different initial position of 

20 m in front of the vehicle and 20 m to its left.  The same straight-line obstacle trajectory was 
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followed, maintaining a velocity of 2.24 mps (5 mph) as it crossed the open area.  Figure 5-17 

shows the fully-populated layers of a temporal grid displaying the predicted positions of the 

target and Figure 5-18 shows the optimized temporal grid with the same predicted positions. 

The simulation was conducted in a static manner such that the vehicle was stationary while 

the target crossed the open area in front of it.  This approach was chosen because the position 

simulator did not actually consider the control commands of the vehicle when changing the 

vehicle position.  Rather the vehicle would have travelled in a straight line among the waypoints 

defining the simulated path of traversal.  Keeping the vehicle stationary allowed the natural 

output trajectory of the motion planning algorithm to be recorded and analyzed.  The target was 

placed in motion by the simulated MO sensor after the TGC and PTMP began recording data. 

Because this was a new application which could not be accomplished by the original 

motion planning algorithm as it was dependent on the predictive nature of the new motion 

planning method, it was unnecessary to compare the results of the simulation with any baseline 

or control test results.  Therefore, the simulation was run only using the new PTMP algorithm, 

with the same performance metrics recorded.  Evaluating the ability of the PTMP to successfully 

generate a trajectory to the calculated goal point coming from the predicted position of the target 

was the ultimate goal of this simulation. 

The new method resulted in a 100% success rate in generating this trajectory, thus proving 

that this application had merit.  Figure 5-19 depicts the PTMP populating its tree of nodes in the 

subsequent temporal layers of the grid, along with the final solution trajectory.  This image also 

serves to show that the new motion planner was attempting to generate the trajectory to the goal 

point as defined by the final predicted position of the target, which was achieved and shown in 

Figure 5-19(g).  Figures 5-19(e) and 5-19(f) show earlier predicted positions of the target, also 
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painted in green, but the search tree was still expanding in the direction of the final predicted 

position. 

Figure 5-20 illustrates how well the new motion planning algorithm tracked the goal point 

as calculated by the final predicted position of the target object.  The heading angle from the 

vehicle and the final predicted position of the target object and the heading angle from the 

vehicle to the final node on the solution trajectory are plotted to show how well the trajectory led 

the robot to intercept the target.  An average discrepancy between these two heading angles of 

approximately 0.97° was achieved during the simulation, with a maximum value of 3.7°.  The 

small magnitude of these values coupled with the perfect success rate of the motion planning 

algorithm confirmed that this target interception application was a feasible task for the new 

PTMP method.  However, there was still room for improvement as this test only proved that the 

new method could be used to track the future position of the target and generate control inputs to 

drive the robot to that position.  Velocity planning needs to also be considered in the event the 

target is moving faster or slower than the robot, and care must be taken so that the rendezvous is 

safe and collision free. 

Testing Summary 

The test scenarios described in the previous sections sought to quantify the performance of 

the new PTMP method and to compare the new method to an existing motion planning algorithm 

implementation when attempting to generate optimal trajectories in environments with moving 

obstacles.  The results discussed for the following behavior and obstacle field behavior tests have 

shown that the new PTMP method exhibited improved performance in this type of situation.  For 

each test scenario, a single obstacle was placed in motion and its positions were predicted and 

incorporated into the temporal grid.  Table 5-5 displays the prediction times associated with each 

layer of the temporal grid for the various tests.  These times corresponded with the steps used by 
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the motion planning algorithm in exploring potential vehicle states to determine an optimal 

trajectory. 

The PTMP method was able to closely match the results of the baseline tests when 

comparing important parameters, as opposed to the original motion planning algorithm used 

during the control tests, which struggled for the chosen behaviors.  It achieved a perfect success 

rate in attempting to generate trajectories while following a moving obstacle, as well as when 

attempting to navigate an obstacle field with a moving object crossing its desired path, and was 

able to minimize the total path deviation and associated steering commands.  On the other hand, 

the control tests showed that the original motion planning algorithm struggled when 

encountering the moving objects, resulting in an unacceptable failure rate.  It also generated 

paths that exhibited large deviations from a desired nominal, straight path and resulted in 

significant steering commands that would have driven the robot off the road or could have led to 

unstable oscillatory motions. 

The new PTMP method also facilitated a target interception application that was not 

possible when using the compared original motion planning algorithm.  The newly developed 

algorithm allowed for autonomously navigating to intercept a moving target object.  It exhibited 

a perfect success rate in generating trajectories towards the final predicted position of the target 

object with minimal path deviation.  This new application, coupled with the significant 

improvement in performance, in terms of the key performance metrics discussed, achieved 

during the behavioral test cases has proven that this new temporal motion planning method may 

be used to better manage the motion planning problem in dynamic environments. 

This chapter outlines the test plan used for the validation of the new temporal motion 

planning method and discusses the results of those tests in detail.  The tests concentrated on the 
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following and obstacle field operating behaviors and a new target interception application to 

show the advantages of the new method and its improved performance over the original static 

motion planning algorithm.  The following chapter draws conclusions from the results of these 

tests and introduces several areas of recommended additional work for this new motion planning 

method. 
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Figure 5-1.  Gainesville Raceway pit area with points defining test areas. 

 

 
 

Figure 5-2.  Straight road segment selected for following behavior test with defining waypoints. 
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Figure 5-3.  Open unstructured area with defining waypoints and perimeter points drawn. 
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Figure 5-4.  Sample following behavior control test results. 
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Figure 5-5.  Sample obstacle field behavior control test results. 
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Figure 5-6.  Sample full temporal grid layers with predicted position of followed object. 
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Figure 5-7.  Sample optimized temporal layers of following behavior test temporal grid. 
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Figure 5-8.  Sample output temporal grid from following behavior. 
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Figure 5-9.  Number of expanded search nodes for following operating behavior tests. 
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Figure 5-10.  Solution trajectory costs for the following behavior tests. 
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Figure 5-11.  Steering commands for following behavior tests. 

 

0 5 10 15
-10

-5

0

5

10

15

20

Time [s]

E
ffo

rt 
[%

]

Following Steering Commands

 

 
Baseline
Control
Temporal



 

143 
 

 
 

Figure 5-12.  Sample full temporal layers showing predicted positions of obstacle. 
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Figure 5-13.  Sample optimized temporal grid layers from obstacle field behavior test.. 
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Figure 5-14.  Steering commands for obstacle field behavior tests. 
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Figure 5-15.  Sample output temporal grid of obstacle field behavior simulation. 
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Figure 5-16.  Path deviation results for obstacle field behavior tests. 
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Figure 5-17.  Sample full temporal grid layers showing progression of target object. 
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Figure 5-18.  Sample optimized temporal grid layers showing progression of target object. 
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Figure 5-19.  Sample full temporal grid output of motion planner during target interception test. 
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Figure 5-20.  Target and solution path heading angles for target interception test. 
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Table 5-1.  Following behavior test plan. 
Purpose: 
 
Establish the PTMP method’s ability to navigate a mobile ground robot down a desired lane of 
travel while following another moving vehicle, and to compare this performance with that of a 
non-temporal motion planner.  This test will examine one of the simplest operating behaviors 
involving interaction with moving obstacles executed by the vehicle and could lead into more 
complicated behaviors. 

Design: 
 
The vehicle will attempt to navigate down a straight road segment while following behind a 
moving vehicle in the same lane travelling in the same direction.  The path will be built as a 
series of waypoints from an existing RNDF of the test facility and a test-specific MDF.  The 
obstacle vehicle will maintain a speed approximately equal to of the robot such that no risk of 
the robot colliding is present. 
 
Robot velocity: (-4.4704 m/s, 0.0) 
 
Obstacle initial position: (-18.0 m, 0.0 m) 
Obstacle velocity: (-4.4704 m, 0.0 m) 
Expected results: 
 
The PTMP method will show successful trajectory generation that allows the vehicle to 
navigate down the center of its desired lane of travel behind another moving vehicle in its lane. 

Logged measurements: 
 
Input parameters: 
GPOS, VSS 
 
Output parameters: 
Steering effort, Solution path 
 
Other parameters: 
Component update rates, Goal point, Search success rate, Search node usage, Solution path 
deviation, Obstacle positions, Obstacle predicted positions 
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Table 5-2.  Obstacle field behavior test plan. 
Purpose: 
 
Establish the PTMP method’s ability to navigate an open, unstructured area with moving 
obstacles crossing its path, and to compare this performance with that of a non-temporal 
motion planner.  This test will examine and record the method’s obstacle avoidance 
capabilities. 
Design: 
 
The vehicle will attempt to navigate through an open, unstructured area in which it has nothing 
defining where it must travel, while a moving obstacle crosses perpendicularly to its desired 
path in such a way that it will be out of the way by the time the robot reaches that crossing 
position.  The open area will be defined in an RNDF only as a set of perimeter points. 
 
Robot velocity: (-2.235 m/s, 0.0 m/s) 
 
Obstacle initial position: (-15.0 m, -15.0 m) 
Obstacle velocity: (0.0 m/s, 4.4704 m/s) 
Expected results: 
 
The PTMP method will successfully generate a trajectory that allows the vehicle to achieve its 
goal while not being diverted by the obstacle crossing its path. 

Logged measurements: 
 
Input parameters: 
GPOS, VSS 
 
Output parameters: 
Steering effort, Solution path 
 
Other parameters: 
Component update rates, Goal point, Search success rate, Search node usage, Solution path 
deviation, Obstacle positions, Obstacle predicted positions 
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Table 5-3.  Target Interception test plan. 
Purpose: 
 
Establish the use of the PTMP method for a target interception application. 
Design: 
 
The vehicle will attempt to track the final predicted position of an obstacle traversing an open, 
unstructured area and generate a trajectory to intercept that position by treating it as the motion 
planning algorithm’s goal.  The target will move in a straight line in front of the robot.  The 
robot will remain stationary throughout the test. 
 
Robot velocity: (0.0 m/s, 0.0 m/s) 
 
Obstacle initial position: (-20.0 m, -20.0 m) 
Obstacle velocity: (0.0 m/s, 2.235 m/s) 
Expected results: 
 
The PTMP method will successfully treat the final predicted position of the target object as its 
goal point and generate a trajectory that will intercept this position.  The test will take place in 
the same open area environment used for the obstacle field tests. 
Logged measurements: 
 
Input parameters: 
GPOS, VSS 
 
Output parameters: 
Steering effort, Solution path 
 
Other parameters: 
Component update rates, Target goal point, Search success rate, Search node usage, Solution 
path deviation, Obstacle positions, Obstacle predicted positions 
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Table 5-4.  Sample of predicted positions and velocities for following behavior testing. 
Temporal 
layer 

X position  
(m) 

Y position  
(m) 

X velocity 
(m/s) 

Y velocity 
(m/s) 

 Local Global Local Global   
1 -12.96 378087.7 0.14 3292661.0 -4.47 0.00 
2 -17.00 378083.6 0.14 3292661.0 -4.47 0.00 
3 -21.11 378079.5 0.14 3292661.0 -4.47 0.00 
4 -25.29 378075.3 0.14 3292661.0 -4.47 0.00 
5 -29.52 378071.1 0.14 3292661.0 -4.47 0.00 
6 -33.83 378066.8 0.14 3292661.0 -4.47 0.00 
7 -38.20 378062.4 0.14 3292661.0 -4.47 0.00 

 

Table 5-5.  Sample of predicted positions and velocities for obstacle field behavior testing. 
Temporal 
layer 

X position 
(m) 

Y position 
(m) 

X velocity 
(m/s) 

Y velocity 
(m/s) 

 Local Global Local Global   
1 -15.98 377378.8 -7.47 3292548.1 0.0 4.47 
2 -15.98 377378.8 -3.42 3292552.2 0.0 4.47 
3 -15.98 377378.8 0.63 3292556.2 0.0 4.47 
4 -15.98 377378.8 4.67 3292560.3 0.0 4.47 
5 -15.98 377378.8 8.70 3292564.3 0.0 4.47 
6 -15.98 377378.8 12.73 3292568.3 0.0 4.47 
7 -15.98 377378.8 16.75 3292572.3 0.0 4.47 

 

Table 5-6.  Prediction times for three test scenarios at various temporal. 
Temporal 
layer 

Distance 
step (m) 

Following behavior 
prediction times (s) 

Obstacle field 
prediction times (s) 

Target interception 
prediction times (s) 

1 6.0 1.3422 1.3422 2.6846 
2 10.0 2.2370 2.2370 4.4743 
3 14.0 3.1317 3.1317 6.2640 
4 18.0 4.0265 4.0265 8.0537 
5 22.0 4.9213 4.9213 9.8434 
6 26.0 5.8160 5.8160 11.6331 
7 30.0 6.7180 6.7180 13.4228 
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CHAPTER 6 
CONCLUSIONS AND FUTURE WORK 

This dissertation describes a new and novel motion planning method developed by the 

author that considered the predicted motions of any obstacle present in the immediate 

environment.  This newly termed predictive temporal motion planning method allowed a robotic 

system to generate a trajectory through a dynamic environment to successfully achieve its goal 

state.  This final chapter seeks to close the discussion of this new method by first presenting 

several areas of potential future work that arose during the development and testing of the new 

planning method.  It then draws conclusions from the theory and implementation discussed in 

Chapters 3 and 4 and from the test results of the validation process described in Chapter 5.  It 

also outlines the main contributions of the PTMP method to the field of robotics. 

Future Work 

The research presented in this document laid the case for the feasibility and advantages of 

the PTMP method, but there are still several advancements that can improve the new method 

further and several other applications for which the method could be effectively used that are 

now discussed.  The first of these improvements dealt with the continued optimization of the 

temporal grid structure.  The implemented optimization technique involved simply building each 

temporal layer of the grid up to a size that was reachable by the associated generation of search 

node expansion, thus resulting in a pyramid-type structure with the initial temporal layers being 

represented by fairly small grids and the latter temporal layers being nearly fully-populated grids.  

While this was much more efficient than simply building a fully-populated grid for each 

temporal layer, it still allowed for the duplication of cells in different temporal layers that did not 

change traversability value from one layer to the next.  Ideally, a tree structure approach could be 

used to add new branches to each cell only when the traversability value of that cell changed.  
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The associated time-step would need to be recorded for each change so that the motion planning 

algorithm could intelligently search through this tree structure to find the correct traversability 

value.  This approach would result in the minimum size of the temporal grid structure being 

achieved, as new cells were added only when absolutely necessary. 

Another area of future work considered the resizing of the temporal grid structure if the 

key search parameters changed during runtime.  Testing for the presented research maintained 

constant values of initial time-step, normal time-step, and search horizon time; however, it was 

possible and likely that these parameters would change value as the robot executed different 

behaviors and experienced changes in speed.  As these values changed, the number of temporal 

layers and the dimensions of each temporal layer that make up the temporal grid structure may 

have become invalid and would be required to be reconfigured to account for the new time-step 

or time horizon values.  This would have required that the existing temporal grid structure was 

destroyed in memory, values for the number of temporal layers and dimensions of each layer 

were recalculated, and the new temporal grid structure was generated and populated with their 

corresponding traversability values.  This ability would have allowed for more robustness as the 

robot executed long missions where the operating behaviors and conditions may have changed 

many times. 

The implemented version of the PTMP method generated the minimum number of 

temporal layers as determined by calculating the minimum number of steps from the vehicle’s 

location to the time horizon, considering the given time-step values.  This approach worked well 

when generating a straight trajectory to the goal, in which case the minimum number of 

generations of search nodes was expanded; however, if the motion planning algorithm were 

required to build a trajectory around a static obstacle or around a curve in the road that forced it 
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to expand more than the minimum number of generations of search nodes, the latter generations 

would have had no associated temporal layer from which they could have been evaluated.  The 

solution utilized during the presented research simply evaluated additional search node 

generations by using the last available temporal layer.  A possible approach could have involved 

including a few additional temporal layers that included additional predictions to account for 

possible extraneous generations; however, this would still have resulted in the construction of the 

temporal potentially being sub-optimal.  A more enlightened solution could have involved 

incrementally adding new layers as they became necessary.   

The functionality of the TGC component essentially took the place of the SARB 

component that fused the multiple traversability grids coming from the various sensor 

components on the vehicle.  The TGC component received the output traversability grid coming 

from the SARB as one of its inputs.  It then copied the traversability data contained within this 

structure into the newly created temporal grid structure and amended the subsequent temporal 

layers as the predicted positions of any moving objects were calculated.  To streamline the grid 

creation, the functionality of the SARB could have been consolidated into the TGC so that the 

temporal grid structure could have been created without the necessity of the traditional 

traversability grid.  This would have involved the TGC obtaining the various sensor 

traversability grids and running the fusion algorithm, modifying cells as necessary resulting from 

the motion prediction of the obstacles, and finally, including this fused and modified data into 

the temporal grid structure. 

Another area of future work considered testing the PTMP method on additional and more 

complex operating behaviors exhibited by the Urban NaviGator.  This new method also had 

applications for scenarios such as intersection navigation with moving traffic.  In this situation, 
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the robot may have been attempting to traverse through an intersection to merge onto a lane 

where the resident traffic vehicles did not have to stop, or vice versa, if the robot was attempting 

to turn off of such a lane onto a side street.  The ability to represent the predicted positions of the 

other traffic vehicles could have allowed the PTMP to determine when it was safe to begin 

accelerating to merge into the desired lane. 

Another behavior involved passing a vehicle that was in the desired lane of travel and that 

was moving slower than the desired velocity of the robot.  The Urban NaviGator was able to pass 

static vehicles that were located in its lane; however, it was not capable of accomplishing this 

task of passing a slowly moving vehicle.  The new PTMP method could have aided in the 

behavior by allowing the vehicle to generate a trajectory that would have considered the 

predicted future positions of the obstacle vehicle as it was traversing the desired lane.  Upon 

determination that the vehicle needed to be passed, the robot would have shifted to an adjacent 

lane to overtake the other vehicle.  As it was passing the vehicle, the predicted positions of the 

vehicle would have been displayed in the temporal grid so that the new motion planning 

algorithm could have determined a trajectory that would have safely navigated the robot back 

into the original lane in front of the obstacle vehicle.  This would have required additional 

intelligence on the part of the PTMP as it would have needed to not only plan motion but 

velocity as well to overtake the vehicle and would have needed to monitor safe passing distances 

between the robot and the other vehicle. 

A final area of potential future work involves adding intelligence to the new temporal 

motion planner.  The incorporation of moving obstacle prediction allowed the algorithm to view 

if an obstacle was likely to pass in front of its desired path.  In the presented cases, the planner 

was able to generate its solution trajectories without being affected by the predicted positions of 
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the obstacles.  However, if it was determined that the obstacle would adversely affect the desired 

trajectory, it would be advantageous for the planner to intelligently choose whether to alter its 

desired path to traverse in front of the obstacle or to travel behind the object.  Likewise, the 

motion planner could be extended to plan a velocity trajectory to either speed the vehicle up to 

pass before the object or slow down to let the object pass first and then follow. 

Conclusions 

The robot motion planning task is not trivial by any means, even after decades of research 

and development.  The ability of a robot to generate a trajectory to move it from its current state 

to its goal state without colliding with any objects is of paramount importance to accomplishing 

its mission.  The introduction of moving obstacles into the robot’s environment only further 

complicates this problem.  Situations such as those that arose during the 2007 DARPA Urban 

Challenge, in which unmanned ground vehicles were required to navigate urban environments 

while interacting with other moving vehicles, including other unmanned vehicles, are prime 

examples of the complex nature of the art of robotic motion planning.  The research presented in 

this dissertation sought to provide a new and novel approach to robotic motion planning in 

dynamic environments.  The first chapter provides an introduction to the motion planning 

problem in general, and discusses the inclusion of dynamic objects in the environment, while 

Chapter 2 recounts previous work that sought to address the issue of planning trajectories in 

dynamic environments.  This is followed by a discussion of the theory behind the newly 

presented temporal motion planning method in Chapter 3 and an outline of the current 

implementation of the method on the Urban NaviGator in Chapter 4.  A description of the 

validation procedure and summary of testing results is then provided in Chapter 5. 

The new PTMP method sought to incorporate motion prediction for all moving obstacles 

in the robot’s immediate environment in a way that aided the algorithm in generating a control 
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input sequence that allowed the robot to safely navigate to its goal.  This was facilitated by the 

development and implementation of a new grid structure that included temporal layers that 

represented how the environment changed at distinct future time-steps.  A prediction algorithm 

generated a model to estimate the future positions of any obstacles present, and these estimated 

future positions were represented in their respective layers of the temporal grid structure to 

provide this sense of how the environment changes.  The temporal grid was then used by a 

motion planning algorithm to intelligently plan a trajectory through the robot’s dynamic 

environment by considering the estimates of how the objects in the environment moved over 

time. 

The concept of a predictive temporal grid was a particularly novel outcome of the 

presented research, and the test results described in Chapter 5 provided ample evidence that this 

new predictive temporal method was capable of improving motion planning not only for 

unmanned ground vehicles, but for other types of unmanned vehicles and other types of robotic 

systems in general, including industrial robotic manipulators.  The new method, combined with 

some of the areas of future research detailed in the previous section also opened up new potential 

applications and could provide solutions to existing problems for robotic systems in dynamic 

environments. 
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