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ABSTRACT 

Bioterrorism is not a new threat, but the potential for disastrous outcomes is greater than 

it has ever been.  In order to confront this threat, biosurveillance systems are utilized to 

provide early warning of health threats, early detection of health events, and situational 

awareness of disease activity.  To date, there is little known about the performance of 

such biosurveillance systems in comparison to diagnosis capabilities of medical 

personnel.  In this thesis, a discrete event simulation model of an anthrax outbreak is 

developed in order to analyze the performance of such biosurveillance systems in 

comparison to medical personnel.  This research found the Early Aberration Reporting 

System C1 statistical algorithm is useful in early event detection of a bioterror attack. 

Given an exposed population of 1,000 people, the nominal probability that the algorithm 

signals first is 31.5% and it is 0.3% for an exposed population of 10,000 people. Given an 

exposed population of 1,000 people, the nominal time it takes for the algorithm to signal 

is 3.3 days and 0.38 days for an exposed population of 10,000 people.    
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EXECUTIVE SUMMARY 

Bioterrorism is not a new threat, but the potential for disastrous outcomes is greater than 

it has ever been. The U.S. government recognizes the threat and, via Homeland Security 

Presidential Directive 21 (HSPD-21), has directed “further improvement in the 

preparedness of our public health and medical systems to address current and future 

biological warfare threats and to respond with greater speed and flexibility to multiple or 

repetitive attacks” (HSPD-21, 2007).  In order to confront this threat, biosurveillance 

systems are utilized to provide early warning of health threats, early detection of health 

events, and situational awareness of disease activity.  To date, there is little known about 

the performance of such biosurveillance systems in comparison to medical personnel.  An 

open question is under what conditions does biosurveillance tends to detect an outbreak 

more quickly than medical personnel?  

The methodology used to answer this question is discrete event simulation of an 

anthrax outbreak using the Java programming language.  In order to design the simulation 

in this thesis, a review of Professor Fricker's and Buckeridge's simulations was 

conducted.  The Fricker simulation is too simplistic in its design while the Buckeridge 

simulation is too detailed. Therefore, the design of the simulation in this thesis seeks to 

be more realistic than Fricker, but also more generalizable than Buckeridge.  The goal is 

to explore the performance of the EARS' C1 statistical detection algorithm versus 

medical personnel with the following questions in mind:  

(1) Can the C1 statistical algorithm used in the Center for Disease Control and 

Prevention's Early Aberration Reporting System (EARS) be useful/effective for early 

event detection (EED) in comparison to medical personnel? If so, under what conditions? 

(2) What factors most affect the performance of such an algorithm, in the sense 

that it results in either C1 algorithm or medical personnel performing significantly better 

than the other?  

To address these questions, two response variables were modeled and analyzed: 

the probability the C1 algorithm signals first and the number of days it takes for the C1 
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algorithm to signal.  The evaluation was conducted for two scenarios: one for an initial 

exposed population of 1,000 people and one for 10,000 exposed people.  In the worst 

case scenarios, the probability the algorithm signals first is 13.04% for an exposed 

population of 1,000 people and it is 0.03% for an exposed population of 10,000 people.  

In the nominal case scenarios, the probability the algorithm signals first is 31.5% for an 

exposed population of 1,000 people and it is 0.3% for an exposed population of 10,000 

people.  In the worst case scenarios, the longest time it takes for the algorithm to signal is 

6.63 days for an exposed population of 1,000 people and 4.14 days for an exposed 

population of 10,000 people.  In the nominal case scenarios, the time it takes for the 

algorithm to signal is 3.3 days for an exposed population of 1,000 people and 0.38 days 

for an exposed population of 10,000 people.    

The parameters with the largest effect on the probability the algorithm signals first 

are:  the probability an individual is infected with Anthrax, the probability a non-infected 

individual goes to the hospital for non-anthrax related flu, and the daily increase in the 

probability an infected person will be correctly diagnosed.  An increase in the threshold 

and the transitional probabilities of people getting infected, going to the hospital for non-

anthrax related flu and correct diagnosis by doctor all decrease the probability the 

algorithm signals first, and thus increase the probability the doctor signals first. This 

finding is consistent with Professor Fricker’s simulation results in the sense that as the 

probability of correct diagnosis by doctor increases, the probability the statistical 

algorithm detects the outbreak decreases.   

The parameters with the largest effect on the number of days to algorithm signal 

are: the probability an individual is infected, the probability a non-infected individual 

goes to the hospital for non-anthrax related flu, and the daily increase in the probability 

an infected person goes to the hospital. An increase in the transitional probabilities of 

people getting infected, going to the hospital for non-anthrax related flu and an infected 

person goes to the hospital result in an increase in the time it takes for the algorithm to 

signal.   

This research shows that biosurveillance statistical algorithms, such as the EARS 

C1, are useful in EED of a bioterror attack.  Although the probability the algorithm 
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signals first may seem low, note that whether the algorithm signaled first was quite 

situation dependent.  And even in the worst case scenario for 1,000 exposed people, the 

algorithm signaled first more than one time in ten.  Thus, at the very least biosurveillance 

is an effective back-up to clinicians.  On the other hand, there were scenarios in which the 

statistical algorithm almost always signaled first.  Follow on research that can build upon 

this thesis are: evaluating different population sizes, investigating the effects of a wider 

range for the simulation parameters, comparing the performance among other statistical 

algorithms, and exploring the parameters that have a significant effect on the number of 

days to the doctor signaling.    
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I. INTRODUCTION  

Bioterrorism is not a new threat, but the potential for disastrous outcomes is 

greater than it has ever been. The U.S. government recognizes the threat and, via 

Homeland Security Presidential Directive 21 (HSPD-21), has directed “further 

improvement in the preparedness of our public health and medical systems to address 

current and future biological warfare threats and to respond with greater speed and 

flexibility to multiple or repetitive attacks” (HSPD-21, 2007).  In order to confront this 

threat, biosurveillance systems are utilized to provide early warning of health threats, 

early detection of health events, and situational awareness of disease activity.  To date, 

little is known about the performance of such biosurveillance systems in comparison to 

medical personnel.  An open question is under what conditions does biosurveillance tend 

to detect an outbreak more quickly than medical personnel? 

This thesis addresses this question via a discrete event simulation of an anthrax-

based bioterrorism attack.  The goal is to use an idealized model of health-seeking 

behaviors and medical outcomes of an affected population to assess the relative 

performance of biosurveillance versus medical personnel in detecting the attack. 

A. BACKGROUND 

1. Biosurveillance 

HSPD-21 defines biosurveillance as “the process of active data-gathering with 

appropriate analysis and interpretation of biosphere data that might relate to disease 

activity and threats to human or animal health whether infectious, toxic, metabolic, or 

otherwise, and regardless of intentional or natural origin” (HSPD-21, 2007).  There are 

three types of biosurveillance: human (epidemiologic) surveillance, animal (zoonotic) 

surveillance, and agricultural surveillance.  Syndromic surveillance is a specific type of 

epidemiological surveillance that has been defined as “the ongoing, systematic collection, 

analysis, interpretation, and application of real-time (or near-real-time) indicators of 

diseases and outbreaks that allow for their detection before public health authorities 

would otherwise note them.” (Sosin, 2003)   
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Syndromic surveillance differs from the traditional epidemiologic surveillance in 

a number of ways: it uses health-related data, such as counts of individuals coming into 

medical facilities, over-the-counter medication sales, and aggregate laboratory test 

results. The data are prediagnostic or prior to case confirmation. Syndromic surveillance 

is not supposed to provide a definitive determination that an outbreak is occurring but 

only to signal that an outbreak maybe occurring (Fricker & Rolka, 2006).   

2. Biosurveillance Systems 

While there are different types of biosurveillance systems currently in operation, 

they all share a common goal of improving the chances of detecting an outbreak early. 

All of them have four main functions: data collection, data management, analysis, and 

reporting.  Three large-scale systems currently in use are BioSense, ESSENCE, and 

EARS.  

BioSense.  Launched in 2003 as a result of the Public Health Security and 

Bioterrorism Preparedness and Response Act of 2002, its purpose is to establish an 

integrated national public health surveillance system for early detection and rapid 

assessment of potential bioterrorism-related illness.   Developed and operated by the 

Centers for Disease Control and Prevention (CDC), in 2010 the CDC started redesigning 

the BioSense program based on input and guidance from local, state, and federal partners. 

The goal of the redesign effort is to be able to provide nationwide and regional situational 

awareness for all-hazard health-related threats (beyond bioterrorism) and to support 

national, state, and local responses to those threats (CDC, 2010a). 

ESSENCE.  An acronym for Electronic Surveillance System for the Early 

Notification of Community-based Epidemics, ESSENCE was developed starting in 1999 

and is operated by the Department of Defense.  It monitors infectious disease outbreaks at 

more than 300 military treatment facilities worldwide on a daily basis using data from 

patient visits to the facilities and pharmacy data (Fricker, 2010). 

EARS.  An acronym for Early Aberration Reporting System, EARS was 

developed by the CDC. It was pioneered as a method for monitoring bioterrorism during 

large-scale events where there is little or no "baseline" data.   Following the terrorist 
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attacks of September 11, 2001, various city, county, and state public health officials in 

the United States and abroad have adopted EARS for routine health surveillance using 

syndromic and other data from emergency departments, reportable conditions, 911 calls, 

physician office data, school and business absenteeism, and over-the-counter drug sales 

(CDC, 2010b). 

All of the systems rely on statistical algorithms to trigger an outbreak signal, so 

that public health official can take appropriate actions.  However, little is known about 

how such a system is likely to perform, particularly in comparison to medical personnel. 

Furthermore, there are many statistical issues that remain to be resolved.  One of the 

issues is: When do statistical methods add value to the existing medical infrastructure and 

under what conditions?   

As shown in Figure 1, Fricker and Rolka (2006) suggest that if the outbreak is 

sufficiently large, geographically concentrated, and/or easy to diagnose, then a doctor is 

likely to be equally fast or faster at detecting an outbreak than a statistical algorithm.  In 

contrast, if the outbreak is very small and/or diffuse, then a statistical algorithm operated 

in isolation is unlikely to detect the outbreak.  In the case of a moderately sized outbreak 

that is easy to diagnose, a doctor’s diagnosis will be faster than a statistical algorithm.  

The result of these restrictions is that statistical methods are likely to add value only 

when an outbreak is large and/or concentrated enough to statistically detect, but not so 

large that the outbreak is obvious, combined with the situation where identification of the 

type of outbreak is sufficiently hard to diagnose, making the doctor likely to miss it for 

some time (Fricker & Rolka, 2006).  Therefore, biosurveillance can potentially serve as 

primary detection tool for a rare and hard to diagnose disease or agent and a 

supplementary tool to medical personnel for a moderately sized outbreak that is 

moderately hard to diagnose.  
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Figure 1.   When is syndromic surveillance useful for outbreak detection? From 
Fricker and Rolka (2006) 

3. Anthrax Overview 

Anthrax, Bacillus Anthracis, has been used as a biological weapon dating back to 

World War I as a means to cause economic havoc through the loss of livestock. (Grey & 

Spaeth, 2006).  During World War II, the Japanese government formed the research unit 

731 at Pingfen to conduct research on anthrax weaponization using prisoners of war as 

test subjects.  It is believed that Japan employed anthrax in its campaign against 

Manchuria, releasing spores into the atmosphere over the area (Zubay, 2005).   

In response to these threats, Britain and United States launched biological 

weapons initiatives to conduct extensive research on anthrax.  In 1942, Britain performed 

extensive testing at Gruinard Island, off the coast of Scotland by detonating bombs hung 

on scaffolding structures and examining the extent of contamination of the surrounding 

area.  In 1943, the United States established a pilot plant at Camp Detrick to produce 

biological weapons and manufactured 5,000 bombs filled with anthrax spores    

(Christopher et al., 1997).   
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More recently in 1990, United Nations (UN) inspectors confirmed that Iraq had 

100 R400 bombs filled with botulinum toxin, 50 with anthrax, and 16 with aflatoxin. In 

all, they produced 8500 L of anthrax, 6500 L of which was weaponized into rockets and 

bombs (Zilinskas, 1997). From 1990 to 1993, the Aum Shinrikyo cult released 

aerosolized anthrax and botulinum toxin on several occasions at the Diet (the legislature), 

the Imperial Palace, the U.S. Naval base at Yokosuka, and other places throughout Tokyo 

(Atlas, 2002).  The most recent use of anthrax as a biological weapon occurred in the 

United States in 2001, when unknown individual or group sent mails containing refined 

anthrax spores in the form of a highly concentrated dry powder to a variety of media 

institutions and governmental offices.  Of the 22 confirmed cases of anthrax, 11 were  

due to inhalational and five resulted in casualties.  The investigation revealed that the 

Ames strain of Bacillus Anthracis was used in the attack, and this strain was not 

developed on foreign soil, but rather by scientists associated with the U. S. Army Medical 

Research Institute of Infectious Diseases (Zubay, 2005). 

Following the attacks in 2001, an attempt was made to statistically analyze data 

regarding symptoms in patients with inhalational anthrax and symptoms from influenza 

and ambulatory community-acquired pneumonia.  The goal was to develop a method to 

distinguish anthrax from influenza and pneumonia in the early stage of disease 

progression.  Hupert et al. (2003) compared 28 cases of inhalational anthrax, both modern 

and past occurrences, with more than 2700 cases of influenza and 149 cases of 

ambulatory community-acquired pneumonia.  The study revealed that abnormal lung 

examination, dyspnea, and nausea or vomiting are statistically greater indicators for 

anthrax, while sore throat and rhinorrhea1 are statistically greater indicators for influenza.  

Cough, chest pain, abnormal temperature, and headache did not demonstrate a statistical 

difference between anthrax and influenza. 

Anthrax is a disease associated mostly with herbivores and has three forms: 

cutaneous, gastrointestinal, and inhalational.  Cutaneous anthrax results from direct 

contact with infected livestock or livestock products.  Mortality for untreated cutaneous 

                                                 
1 Persistent watery mucus discharge from the nose, commonly referred to as runny nose. 
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anthrax is about 20%.  A pruritic red papular lesion2 is formed within one week of 

exposure to the spore.  Once the lesion enlarges and ruptures, it forms an ulcer covered 

by black eschar3, which then dries up and falls off within two weeks (Grey & Spaeth, 

2006).  Patients with cutaneous anthrax usually experience headaches and occasional 

fevers up to 102o F. Unlike the cutaneous form, gastrointestinal (GI) anthrax occurs from 

the deposition of vegetative bacilli from uncooked meat in the upper or lower portion of 

the GI track rather than from spore germination.  Oral or esophageal ulcers are developed 

at the initial site of bacterial deposition.  Patients usually experience nausea, vomiting, 

malaise initially and then bloody diarrhea, acute abdominal pain.  The actual case 

numbers for GI anthrax are extremely low, therefore no mortality statistic is available 

(Zubay, 2005).  

In Zubay (2005), inhalational anthrax is described as the most lethal form of the 

disease, which has a mortality rate of 80%.  It is contracted when spores are inhaled and 

deposited in the alveolar4.  The spores germinate into active bacilli in the mediastinal 

lymph nodes5. Human to human transmission of the disease is extremely rare, and would 

occur only through direct transfer of fluids containing the bacteria from one individual to 

another.  The symptoms of inhalational anthrax can be broken down into two stages. In 

the first stage, which normally last a few days, there are no clinically significant signs. 

Patients often exhibit only symptoms similar to those of flu and cold, making early 

diagnosis extremely difficult unless there is prior knowledge of an anthrax outbreak.  The 

second stage develops rapidly with onset of acute dyspnea6 and subsequent cyanosis7.  

The second stage normally lasts less than 24 hours and leads to death.   

Anthrax is considered one of the most dangerous and most likely agents that 

would be used in a bioterrorist attack due to hardiness of the spores, potency, and 
                                                 

2 A small, solid, circumscribed elevation characterized by an intense itching sensation. 

3 A piece of dead tissue that is cast off from the surface of the skin. 
4 The tiny air sacs of the lungs. 
5 Region behind the sternum and between the two pleural sacs containing the lungs. 
6 Shortness of breath, a subjective difficulty or distress in breathing. 
7 Bluish discoloration, especially of the skin and mucous membranes, caused by decreases in 

oxygenated hemoglobin. 
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availability.  The spore is extremely resistant to environmental stresses such as heat, cold, 

many chemical disinfectants, long dry spells, and low levels of ultraviolet light. It will 

grow rapidly in a nutrient-rich environment and when the nutrients are exhausted, rather 

than dying, the bacteria will form dormant spores, which is a method of preserving the 

Deoxyribose Nucleic Acid (DNA) until conditions return to an optimal state for bacterial 

growth.  The hardiness of the spores requires extensive sterilization efforts and the 

aerosolized form has no odor, essentially colorless, and virtually undetectable.  The first 

sign that an attack has occurred will probably be the first diagnosis of a patient in a 

hospital.  Besides the hardiness of the spore form, anthrax is extremely potent and deadly 

bacteria with mortality rates as high as 80% (Zubay, 2005).   

In 1993, the U.S. Congressional Office of Technology examined a hypothetical 

bioterrorist attack utilizing aerosolized spores of Bacillus Anthracis.  The study 

concluded an estimated 130,000 to 3 million casualties would result in the event of an 

aerosolized release of 100 kg of anthrax spores upwind of Washington, DC (Office of 

Technology Assessment, 1993). Anthrax is readily available throughout the world, will 

grow relatively easily on most laboratory media, and can also be aerosolized for mass 

destruction.  While anthrax possesses characteristics of an ideal biological weapon, it is 

more manageable from a biodefense perspective because it is not known to spread from 

person to person unless there is a direct transmission of bodily fluids, and there is very 

little risk from secondary aerosolization (Zubay, 2005).  

B. LITERATURE REVIEW 

In order to develop an idealized discrete event simulation of an anthrax outbreak 

that is more realistic than Fricker, but also more generalizable than Buckeridge, a 

literature review of these two simulations is described in the following sections.  

1. A Simple Simulation 

In his short course, titled “Methodological Issues in Biosurveillance”, at the 

Twelfth Biennial CDC Symposium on Statistical Methods, Professor Fricker presented 

the results of a very simple bioterrorism attack simulation study.  As illustrated in Figure 

2, in Professor Fricker's simulation, on average, 100 people per day (with a standard 
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deviation of 20 people) go to the hospital with flu-like symptoms.  A bioterror attack 

results in X number of people exposed to a bio-agent also going to the hospital with flu-

like symptoms, thereby increasing the total number of people at the hospital with flu-like 

symptoms.  A CUSUM (cumulative sum) statistical algorithm monitors the average 

number of people going to the hospital with flu-like symptoms with a false signal rate 

fixed at once per 30 days.  The CUSUM algorithm will signal an outbreak if there is a 

statistically unusual increase.  Working concurrently with the CUSUM algorithm is a 

doctor who sees each patient and makes a diagnosis based on his or her expertise.  For 

those exposed to bio-agent, there is some probability p that the doctor will correctly 

diagnose the patient as not having the flu but rather as having been exposed to the bio-

agent.  The research question for this simple simulation is, what is the probability the 

clinician diagnoses a case of the bio-agent before the CUSUM algorithm signals? 

(Fricker, 2009, and Fricker, 2011) 

 

Figure 2.   A simple simulation. From Fricker (2009)  

The simulation results can be summarized as the higher the probability of correct 

diagnosis by doctor (p), the higher the probability the clinician will detect an outbreak 
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before the CUSUM signals.  As shown in Figure 3, if p is 0.01 and X (the number 

exposed to the bio-agent) is between 8 and 50 per day, then there is a 50% chance the 

clinician will detect first. If p is increased to 0.025 and same value for X, then there is a 

75% chance the clinician will detect first.  If p is 0.05 and X is between 10 and 50 per 

day, then there is a 90–95% chance the clinician will detect first.  

 

Figure 3.   Simple simulation results A. From Fricker (2009) 

Consistent with Fricker and Rolka (2006), and as shown in Figure 4, Professor 

Fricker’s simulation results suggest there is a role for statistical algorithms in 

biosurveillance when the pathogen is hard to diagnose and /or when small numbers of 

bio-agent are present at the hospital.  While this simulation is simplistic with only two 

parameters p and X, it motivates a more detailed simulation that expands the model, 

which is the main portion of this thesis.   
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Figure 4.   Simple simulation results B. From Fricker (2009) 

2. Evaluating Detection of an Inhalational Anthrax Outbreak 

In his paper titled “Evaluating Detection of an Inhalational Anthrax Outbreak,” 

Professor Buckeridge conducted a simulation study to compare clinical case finding with 

syndromic surveillance for detection of an outbreak of inhalational anthrax (the deadliest 

type with mortality rate of 80%).   His aim was to develop a model for simulating the 

usage of healthcare services after a large-scale exposure to aerosol anthrax spores and 

then to use this model to estimate the detection benefit of syndromic surveillance when 

compared with the clinical case finding.   

The simulation design consists of four parts: dispersion of released anthrax 

spores, infection of exposed persons, progression of disease in infected persons, and 

symptomatic persons’ use of the health care system.  The dispersion model simulates the 

number of anthrax spores a person would inhale at locations throughout the region after 

release of aerosolized spores using the Hazard Prediction and Assessment Capability 

(HPAC) software developed by the Defense Threat Reduction Agency (DTRA).  The 

infection of exposed person model simulates the number of persons infected using a 
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semi-Markov process to simulate the progression through three discrete states of disease.  

Each infected person begins in the incubation8 state and then progresses through the 

prodromal9 state and the fulminant 10 state. The time in each state is sampled from a log 

normal distribution.  The usage of health care system model uses a semi-Markov process 

to simulate the probability and timing of a symptomatic person seeking care and 

submission of blood for culture.  For patients who are in the prodromal or fulminant state, 

the probability of seeking care increases linearly over the duration of the state. For 

patients whose blood samples are cultured, the testing process transitions through two 

states: growth and isolation. The time spent in these two states is modeled using an 

exponential distribution.  

Three anthrax release scenarios were explored: 1kg, 0.1kg, and 0.01 kg. For each 

scenario, 1000 simulations were conducted.  The evaluation metrics of outbreak detection 

through syndromic surveillance consists of sensitivity, specificity, and timeliness at a 

range of decision thresholds.  Sensitivity is the probability of correctly detecting an 

attack, specificity is the probability of not signaling when there is no attack, and 

timeliness is a measure of the duration between the release of anthrax spores and the first 

report of an outbreak.  The results of the simulation suggest that syndromic surveillance 

could detect an inhalational anthrax outbreak before clinical case finding. With a 

simulated 1kg of anthrax spores release, the proportion of outbreaks detected first by 

syndromic surveillance was 0.59 at a specificity of 0.9 and 0.28 at a specificity of 0.995.  

When syndromic surveillance was highly sensitive to detect a substantial proportion of 

outbreaks before clinical case finding, it generated frequent false alarms.  The syndromic 

surveillance system’s ability to detect was influenced by both specificity and release size, 

with specificity being the predominant factor. There was a tradeoff between sensitivity 

and specificity of syndromic surveillance.  In order to reduce the false alarm rate,  

 

                                                 
8 The time from the moment of exposure to an infectious agent until signs and symptoms of the disease 

appear. 
9 Early symptom or set of symptoms that might indicate the start of a disease before specific symptoms 

occur. 
10 Sudden and severe to the point of lethality. 
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specificity must be high. However, as specificity is increased, sensitivity is decreased, 

and the proportion of outbreaks that was detected first by syndromic surveillance 

decreased more significantly (Buckeridge, 2006).   

C. SCOPE OF THESIS 

Fricker’s simulation is too simplistic in its design while Buckeridge’s simulation 

is too detailed in its design. The Fricker simulation only has two parameters: X (number 

exposed to the bio-agent) and p (probability the doctor diagnoses correctly).  

Additionally, the probability of correct diagnosis by the doctor remains the same as time 

progresses. In contrast, the Buckeridge simulation is too detailed with many parameters 

in both the dispersion model and the health care usage model. For each parameter value, 

there are three sets of value intervals due to three anthrax release scenarios of 1kg, 0.1kg, 

and 0.01 kg, and they are drawn from various probability distributions such as the log-

normal, Bernoulli and exponential.  If a simulation is too simple or too detailed, then it is 

difficult to gain some insights into what are the main factors that affect whether an 

algorithm or clinician is likely to signal an outbreak first. Therefore, the scope of this 

thesis is to develop an idealized discrete event simulation of an anthrax outbreak that is 

more realistic than Fricker, but also more generalizable than Buckeridge.  In order to 

explore the performance of the statistical detection algorithm versus medical personnel, 

this thesis will endeavor to answer these questions:  

(1) Can the statistical algorithm be useful/effective for early event detection 

(EED) in comparison to medical personnel? If so, under what conditions? 

(2) What factors most affect the performance of such an algorithm, in the sense 

that it results in either the algorithm or medical personnel performing significantly better 

than the other?  
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II. SIMULATION MODEL  

A. DISCRETE EVENT SIMULATION 

Discrete event simulation (DES) is a powerful computing technique for 

understanding the behavior of a system.  The operation of such a system is represented as 

a chronological sequence of events.  Each event occurs at a discrete point in time and 

marks a change of state in the system.  The elements of a DES are states, events, and 

scheduling relationships between events.  A state variable in a DES model has a 

possibility of changing value at least once during any given simulation run.  In contrast, a 

parameter variable does not change during a simulation run.  Events are the building 

blocks in a DES model.  Events are responsible for changing a few state variables 

(possibly none) or many state variables.  Once the state transition is done in an event, it 

will schedule every possible future event. This is the scheduling relationship between 

events.   

The method of time advance in a DES model is called "next event."  Simulation 

time moves in typically unequal increments, jumping from the scheduled time of one 

event to another.  Figure 5 shows that at the start of a simulation, the initial event is 

scheduled, which is responsible for initializing all state variables as well as scheduling 

any initial real events of the model.  If there are pending events, then simulation time is 

advanced to the earliest scheduled event, the previous event is removed from the event 

list, all  state transitions associated with the event are executed  and the scheduling of  

any events as specified by the model are performed (Buss, 2010).   
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Figure 5.   Next event flow chart. From Buss (2010) 

An event graph is used to depict the scheduling relationship between events.  

Each graph consists of nodes and directed edges. Each node corresponds to an event, or 

state transition, and each edge corresponds to the scheduling of other events.  Each edge 

can optionally have an associated Boolean condition and/or a time delay. Figure 6 shows 

that the occurrence of Event A causes Event B to be scheduled after a time delay of t, 

providing condition (i) is true (Buss, 2010). 

 

Figure 6.   Fundamental event graph construct. From Buss (2010). 

B. EARS' C1 ALGORITHM 

As described in Fricker et al. (2008), EARS’ event detection methods are called 

“C1-MILD”, “C2-MEDIUM”, and “C3-ULTRA”.  The C1 method uses the seven days 

prior to the current observation to calculate the sample average and sample standard 
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deviation of a syndrome daily count for day t.  This thesis only applies the C1 method 

and uses daily number of people going to the hospital and being classified with flu 

symptom.  The C1 method is defined as 
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As implemented in EARS, the C1 method signals an outbreak at time t when the 

C1 statistic exceeds a fixed threshold of three sample standard deviations from the 

sample mean.   

C. OUTBREAK SIMULATION MODEL 

1. Simulation Design 

The goal of the simulation design is to gain insights on which outbreak signal (C1 

EARS algorithm or the doctor) occurs first as a function of certain parameters.  The 

approach is to come up with a conceptual design pictorially first, then translates the 

design into a simplified event graph, and finally into a detailed event graph.  The Java 

programming language with the Simkit library is used to write and execute the outbreak 

simulation code.  

Figure 7 illustrates the design of an outbreak simulation model pictorially.  At the 

start of the simulation, the entire population is susceptible to some disease.  Given the 
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susceptible population, a person can remain susceptible, or go to the hospital with flu-like 

symptom, or become infected.  Given a bioterror attack occurs, an infected person (bio-

agent) will go to the hospital seeking care.  At the hospital, the doctors see each patient 

and make a diagnosis. If the doctor correctly diagnoses the patient, then he or she will 

signal an outbreak.  If the doctor misdiagnoses the bio-agent, then that person is still 

infected and returns to the infected pool of individuals.  The C1 algorithm monitors the 

average number of people going to the hospital with flu-like symptoms (which consists of 

the sum of those going to the hospital with the flu and those with flu-like symptoms 

resulting from exposure to the bioterrorism agent) and signals an outbreak, if there is a 

statistically unusual increase, at which point C1 is greater than the specified threshold.   

 

Figure 7.   A more realistic simulation 

In Figure 8, the conceptual design is translated into a simplified event graph.  

Each node corresponds to an event such as Susceptible, Stay Susceptible or Go To 
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Hospital. Each directed edge corresponds to the scheduling of other events.  At the 

beginning of the simulation, the entire population is susceptible to some disease.  Given 

the susceptible population, a person can stay susceptible, go to the hospital with flu-like 

symptoms, or become infected with the bioterrorism agent.  A bioterror attack happens, 

an infected person may go to the hospital seeking care.  Given a person is infected and 

goes to the hospital, a doctor will perform diagnosis. If the doctor diagnoses the patient 

correctly, he/she will signal an outbreak. If the doctor misdiagnoses, the patient remains 

infected and no signal is generated.  The C1 algorithm will signal that there is an unusual 

increase of number of people going to the hospital is the C1 statistic exceeds some 

prespecified threshold.  The number of people going to the hospital used in the C1 

statistic calculation represents the people who show up to the hospital from the 

susceptible population and the infected population. 

 

Figure 8.   Simplified event graph 
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The final step before writing the simulation code is drawing a detailed event 

graph with its corresponding parameters (which will not change during a simulation run),  

state variables (which will change at least once during a simulation run), state transitions, 

and the scheduling relationships between events.  Four Java classes: PatientCreator, 

Patient, Outbreak, and RunOutbreak are created to model the bioterrorism attack. Figures 

9 and 10 depict the detailed event graph for the Outbreak class.   

 

Figure 9.   Detailed event graph with parameters and state variables 

The PatientCreator and Patient Java classes are responsible for creating a patient 

object and keeping track of how long each patient has been infected prior to seeing the 

doctor at the hospital.  How long each patient has been infected will have an impact on 
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two transitional probabilities: the probability of correct diagnosis by the doctor and the 

probability of going to the hospital seeking care given a person is infected.  This 

simulation model uses the same approach as in Buckeridge’s simulation in the sense that 

the probability of seeking care increases linearly over the duration of the state.  

Additionally, the longer a person stays infected, the probability of correct diagnosis by 

the doctor also increases linearly since the symptoms are becoming more obvious.  

 

Figure 10.   Detailed event graph with state transitions, events and scheduling 
relationships between events 

The Outbreak Java class incorporates the detailed event graph from Figures 9 and 

10.  It contains the simulation’s parameters, state variables, state transitions, events and 

the scheduling relationships between events.   
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a. Parameters 

There are six parameters in the simulation model. Population size (n) is a 

number representing the population size, which is specified at the beginning of an 

outbreak simulation run. The population sizes simulated in this thesis are 1,000 or 10,000 

people.  The transitional probabilities are x1 and x2, where x1 is the probability of 

transitioning from susceptible to infected and x2 is the probability a susceptible person 

goes to the hospital for non-anthrax related flu symptoms.  The threshold (x3) is used as a 

parameter for an algorithm signal when C1 is greater than the specified threshold.  The 

maximum number of days an infected person is guaranteed to be correctly diagnosed by 

the doctor is x7, and the maximum number of days an infected person is guaranteed to go 

to the hospital seeking care is x6.  Table 1 is the simulation parameters with their name, 

Java variable type, range and description.     

Name Java 

type 

Range Description 

x1 double 0.001 to 0.1 probability of transitioning from susceptible to 

infected 

x2 double 0.001 to 0.1 probability a susceptible person goes to 

hospital for non-anthrax related flu symptoms 

x3 double 2 to 3 threshold 

x7 double 7 to 21 maximum number of days an infected person 

is guaranteed to be correctly diagnosed 

x6 double 14 to 28 maximum number of days an infected person 

is guaranteed to go to hospital seeking care 

n integer 1000 or 10000 population size 

Table 1.   Simulation parameters 
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b. State Variables 

The state variables can be broken down in five different groups: 

transitional probabilities, an aggregate count, a daily count, time in the infected state, and 

other.  The probability of an infected person going to the hospital seeking care is x5 and 

the probability of correct diagnosis by the doctor is x4.  The initial values for these 

probabilities start out at 0 and increases linearly over time up to 1.  There are three state 

variables to keep track of an aggregate count: total number susceptible (S) with initial 

value equal to the population size, total number infected (I) with initial value of 0, and 

total number show up at hospital (H) with initial value of 0.  For the daily count, there are 

three state variables with initial values of 0: number susceptible each day (St), number 

infected each day (It), and number at hospital each day (Ht).  The state variable that keeps 

track of how long each patient is infected before he or she shows up at the hospital is T1, 

which has direct impact in updating the probability of correct diagnosis by the doctor (x4) 

and the probability of an infected person going to the hospital seeking care (x5).  The last 

groups of state variables are tA and tD, which record the time of the algorithm or doctor 

signal of an outbreak.  The Boolean state variables associated with tA and tD are algorithm 

signal (A) and doctor signal (D), which has an initial value of false.  Finally, d represents 

the current day in the simulation, letting all patient objects know what day it is.  The state 

variable outbreakStart is the day the outbreak occurs with a value of 7.  In the simulation, 

an outbreak does not occur until 7 days has gone by.  It is necessary to collect data for 7 

days in order to use them in the C1 algorithm.  Table 2 is the simulation state variables 

with their name, Java variable type, and description.     
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Name Java type Description 

S integer total number susceptible (initial value is population size) 

I integer total number infected (initial value of 0) 

H integer total number at hospital (initial value of 0) 

St integer 

array 

an array to store number susceptible on each day (size of 

1000) 

It integer 

array 

an array to store number infected on each day (size of 

1000) 

Ht integer 

array 

an array to store number at hospital on each day (size of 

1000) 

T1 double keep track of how long each patient has been infected 

x5 double probability of transitioning from infected to hospital (initial 

value of 0), gets updated as the day progresses 

x4 double probability of correct diagnosis by doctor (initial value of 

0), gets updated as the day progresses 

tA double record the time of an algorithm signal (initial value of 0) 

tD double record the time of a doctor signal (initial value of 0) 

A Boolean algorithm signal (initial value of false) 

D Boolean  doctor signal (initial value of false) 

C1 double store the value of C1 statistic of the EARS algorithm 

d integer the current day  (initial value of 0) 

outbreakStart integer the day an outbreak occur (initial value of 7) 

Table 2.   Simulation state variables 
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c. Events and State Transitions 

Each node in Figure 10 (detailed event graph) represents an event, which 

corresponds to a public method in the Outbreak class.  Underneath each event node is the 

associated state transition or transitions, where certain state variables will be updated 

during the simulation run.  A typical sequence of events can be summarized as: one event 

occurs (i.e. Susceptible), state transitions are performed for that event, and the next event 

is scheduled. 

(1) The Reset and Run event.  The Reset event is responsible for 

setting the initial values of all state variables at the start of the simulation.  The Run event 

is responsible for scheduling the arrival of each patient into the system. It will stop 

scheduling the arrival of the patients once it reaches the population size.  Additionally, it 

has an End of Day event, where at the end of each day in the simulation, it is scheduled to 

record: the number of susceptible (St), the number of infected (It), and the number of 

people showing up at the hospital (Ht).  Once the daily counts are recorded, End of Day 

event will increase numDay (d) by 1, which advances the simulation to the next day.    

(2) The Becomes Susceptible and Susceptible event.  The Becomes 

Susceptible event is a bookkeeping event, where the occurrence of this event will 

increment the total number of Susceptible (S) by 1.  The Susceptible event is responsible 

for scheduling other events.  Given a susceptible person, he or she can either remain 

susceptible, or go to the hospital, or become infected.  The total transitional probabilities 

for these three events add up to 1.  The scheduling of these three events depends on the 

result of drawing a random uniform variable U (0, 1).  If U is less than or equal to x1 (the 

probability of transitioning from susceptible to infected) and d (the current day) is greater 

than or equal to outbreakStart (has value of 7), then the person will transition to the 

Infected event, meaning he or she has gone from being Susceptible to being Infected.  

The second part of the conditional statement where d is greater than or equal to 

outbreakStart ensures that no one can be infected until a bioterror attack happens, which 

occurs at day 7.  If U is greater x1 and U is less than or equal to the sum of x1 (the 

probability of transitioning from susceptible to infected) and x2 (the probability a 

susceptible person goes to the hospital for non-anthrax related flu symptoms), then the 
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person will transition to the Susceptible To Hospital event, meaning a susceptible person 

decides to go to the hospital seeking care.  If a susceptible person does not go to the 

hospital or becomes infected, then he or she remains susceptible to a disease.   

(3) The Susceptible To Hospital event.  State transitions and the 

calculation of C1 statistic are performed in this event.  If a person shows up to this event, 

he or she comes from the susceptible population.  This event will increment the total 

number at hospital (H) by 1 and decrement the total number susceptible (S) by 1.  It will 

call the calculateC1() helper method to figure out the value of C1 statistic at that time. If 

C1 is greater than x3 (threshold), it will schedule an ALGO Signal event.  This means the 

algorithm has signaled that there is an outbreak, at which point the simulation will 

terminate.  If there is no outbreak signal from an algorithm, then the person is scheduled 

to the Susceptible Back To Susceptible event, meaning he or she goes to the hospital and 

there is nothing wrong with them, therefore they go back to being susceptible.   

(4) The Susceptible To Infected event.  The Susceptible To 

Infected event is a bookkeeping event.  If a person arrives to this event, that means they 

were susceptible and then became infected with anthrax due to a bioterror attack.  A time 

is recorded upon an arrival of a person to this event.  This is necessary in order to keep 

track of how long each person has been infected (T1).  After recording the time, the 

occurrence of this event will decrement the total number of Susceptible (S) by 1, and 

increment the total number of Infected (I) by 1.  Afterwards, the simulation schedules the 

person to transition to the Infected event.   

(5) The Infected event.  Given an infected person, he or she can 

either remain infected or go to the hospital.  The total transitional probabilities for these 

two events add up to 1.  Prior to the scheduling of these two events, the probability of an 

infected person going to the hospital seeking care (x5) needs to be updated.  This is done 

due to the fact that the longer a person is infected, the probability of them going to the 

hospital seeking care increases linearly as the day progresses.  Therefore: 

 
 updated x5 = original x5 + ((1 - original x5) * (T1 / x6)) (2) 

where 

• x5 is the probability of an infected person going to the hospital seeking care 
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• T1 is how long each patient has been infected 

• x6 is the maximum number of days an infected person is guaranteed to go to 

hospital seeking care 

Once the update of x5 is done, the scheduling of other events 

occurs, which depends on the result of drawing a random uniform variable U(0,1).  If U 

is greater than 0 and less than or equal to the updated x5,  then the person will transition to 

the Infected To Hospital event, meaning he or she has gone from being Infected to going 

to the hospital seeking care.  If that conditional statement is not true, then a person 

remains infected.    

(6) The Infected To Hospital event.  A person who shows up to this 

event means they were susceptible, became infected with anthrax due to a bioterror 

attack, and decided to go to the hospital seeking care.  The first step is to record how long 

they have been infected with anthrax prior to showing up to the hospital seeking care 

(T1).  This is done due to the fact that the longer a person is infected, the probability of 

correct diagnosis by the doctor (x4) increases linearly as the day progresses.   Therefore: 

 
 updated x4 = original x4 + ((1 - original x4) * (T1 / x7)) (3) 

where 

• x4 is the probability of correct diagnosis by the doctor 

• T1 is how long each patient has been infected 

• x7 is the maximum number of days an infected person is guaranteed to be 

correctly diagnosed 

Once the update of x4 is done, the scheduling of other events 

occurs, which depends on the result of drawing a random uniform variable U(0,1).  If U 

is greater than 0 and less than or equal to the updated x4, then the person will transition to 

the Correctly Diagnosed event, meaning an infected person goes to the hospital seeking 

care and the doctor diagnose them correctly.  If that conditional statement is not true, then  
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the person will transition to the Incorrectly Diagnosed event and ultimately end up at the 

Infected event, meaning the doctor misdiagnoses the patient and the patient goes back to 

being infected with the anthrax disease.   

This event will also increment the total number at hospital (H) by 1 

and decrement the total number infected (I) by 1.  It will call the calculateC1() helper 

method to figure out the value of C1 statistic at that time. If C1 is greater than x3 

(threshold), it will schedule an ALGO Signal event.  This means the algorithm has 

signaled that there is an outbreak, at which point the simulation will terminate.  If there is 

no outbreak signal from an algorithm, then the person is scheduled to the Correctly 

Diagnosed or Incorrectly Diagnosed event,  

 
(7) The Incorrectly Diagnosed event.  If a doctor misdiagnoses a 

patient, then he or she will arrive to this event.  It will increment the total number of 

infected (I) by 1 and decrement the total number at the hospital (H) by 1.  After that, a 

person will transition to the Infected event, meaning an infected person receives an 

incorrect diagnosis by the doctor will go back to being infected with anthrax.   

(8) The ALGO Signal event.  The simulation will immediately 

terminate upon the occurrence of this event.  What will trigger the scheduling of this 

event is when C1 is greater than the threshold (x3).  There are only two times that C1 is 

calculated and then compared to the threshold.  Once a susceptible person arrives to the 

hospital seeking care, or an infected person arrives to the hospital seeking care, it will 

trigger the C1 statistic calculation.  In this event, the Boolean state variable A is changed 

from false to true and the time of the algorithm signal (tA) is recorded.  The time of the 

algorithm signal is recorded to answer the question of how many day(s) does it take for 

an algorithm to signal an anthrax outbreak. The time it takes for an algorithm to signal 

will then be compared to the time it takes for a doctor to signal.  Prior to ending the 

simulation, a daily report will be printed out detailing the number of susceptible (St), the 

number of infected (It), and the number at the hospital (Ht).    

(9) The DOC Signal event.  The simulation will immediately 

terminate upon the occurrence of this event.  What will trigger the scheduling of this 

event is when the doctor correctly diagnoses an infected patient.  In this event, the 
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Boolean state variable D is changed from false to true and the time of the doctor signal 

(tD) is recorded.  The time of the DOC signal is recorded to answer the question of how 

many day(s) does it take for a doctor to signal an anthrax outbreak. The time it takes for a 

doctor to signal will then be compared to the time it takes for an algorithm to signal.  

Prior to ending the simulation, a daily report will be printed out detailing the number of 

susceptible (St), the number of infected (It), and the number at the hospital (Ht).   

In order to run the simulation, a Java execution class called 

RunOutbreak is required. This is where all the parameters can be changed prior to the 

start of each simulation run.  Various statistical objects are created in order to keep track 

of the statistics of interest with a 95% confidence interval.  The statistics of interest are: 

average number of algorithm signals, average number of doctor signals, average number 

of days it takes for an algorithm signal, and average number of days it takes for a doctor 

signal.  Each simulation run consists of 10,000 replications.  Figure 11 illustrates a 

typical output print out as a result of the RunOutbreak class. 

 

RUN #1: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  874.6673 +/-  0.3439 
 Avg no. Infected:  43.8027 +/-  0.3289 
 Avg no. At The Hospital:  81.5301 +/-  0.0493 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.1304 +/-  0.0066 
 AVG NO. OF DOCTOR SIGNALS:  0.8696 +/-  0.0066 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.5613 +/-  0.0496 
 AVG No. of Days from Susceptible to Doc Signal:  4.1611 +/-  0.0077  

Figure 11.   Simulation outputs example 

2. Experimental Design 

In order to determine the settings of the parameters of the simulation at the start of 

each run, a D-optimal custom designed experiment with five factors resulting in 25 runs 

is chosen. JMP statistical software is utilized to generate the design matrix using the 

parameters in Table 1.  The D-optimal design is presented in Table 3 where: 
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• x1 is the probability of transitioning from susceptible to infected 

• x2 is the probability a susceptible person goes to hospital for non-anthrax 

related flu symptoms 

• x3 is the threshold 

• x7 is the maximum number of days an infected person is guaranteed to be 

correctly diagnosed 

• x6 is the maximum number of days an infected person is guaranteed to go 

to hospital seeking care 

There is a restriction placed on the values of x7 in relation to x6 in the sense that x6 

must be greater than x7 by 7.     
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Run # x1 x2 x3 x7 x6

1 0.1000 0.1000 2.00 7.10 14.00
2 0.0010 0.0010 2.00 21.00 28.00
3 0.1000 0.1000 2.50 7.00 21.84
4 0.0010 0.0505 3.00 7.00 22.01
5 0.1000 0.0505 2.00 7.00 28.00
6 0.0505 0.0010 3.00 21.00 28.00
7 0.0505 0.1000 3.00 7.00 28.00
8 0.1000 0.1000 3.00 14.93 21.83
9 0.1000 0.0010 3.00 7.00 28.00
10 0.0010 0.1000 2.50 14.05 28.00
11 0.0505 0.0505 2.50 14.00 21.00
12 0.0010 0.1000 3.00 7.10 14.00
13 0.0010 0.1000 2.00 13.49 20.39
14 0.1000 0.0505 3.00 14.62 28.00
15 0.1000 0.1000 2.00 21.00 28.00
16 0.0010 0.0010 2.50 7.00 28.00
17 0.0010 0.0010 3.00 13.24 20.14
18 0.0010 0.1000 3.00 21.00 27.90
19 0.1000 0.0010 2.50 21.00 27.90
20 0.1000 0.0010 2.00 13.06 19.96
21 0.0505 0.0010 2.00 11.93 28.00
22 0.0010 0.1000 2.00 7.00 28.00
23 0.1000 0.0010 3.00 7.00 14.00
24 0.0010 0.0010 2.00 7.00 14.00
25 0.0505 0.0505 2.50 11.35 18.25  

Table 3.   Simulation parameter values generated by JMP D-optimal design matrix 
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III. ANALYSIS OF THE SIMULATION RESULTS 

There are two response variables of interest in the analysis of the simulation 

results: the probability of an algorithm signaling first and the number of days it takes for 

the algorithm to signal.  In the probability of algorithm signaling first case, there are two 

models: one for an initial exposed population of 1,000 people (Model 1) and one for 

10,000 exposed people (Model 2).  In the number of days it takes for the algorithm to 

signal case, there are two models: one for an initial exposed population of 1,000 (Model 

3) and one for 10,000 exposed people (Model 4). Prior to developing and analyzing the 

main effects of the four models, the general logistic regression model is explained.    

A. LOGISTIC REGRESSION MODEL 

Logistic regression models the probability of an event or outcome (p) as  

0 1 1logit( ) ln
1 k k

pp x x
p

β β β
⎛ ⎞

≡ = + + +⎜ ⎟−⎝ ⎠
"

.   (4) 

In this model, the log odds of p, often called the logit, is a linear function of the 

independent variables x1,…,xk.  Note that the odds of p, which is p/(1-p), can range from 

0 (when p=0) to infinity (when p=1), while the log odds has domain (-∞,+∞).  This 

relationship allows the independent variables to range over the whole real line while p is 

constrained to the unit interval (as a probability should be constrained).   

In Equation 4, we see that for positive coefficients ( 0 1, , , kβ β β… ) increases in the 

associated independent variable (holding all others constant) results in an increase in the 

log odds.  Similarly, for negative coefficients, decreases in the associated independent 

variable (holding all others constant) results in a decrease in the log odds.  Increasing log 

odds corresponds to increasing p. 

Solving Equation 4 for p and substituting the estimated coefficients (denoted 

as 0 1
ˆ ˆ ˆ, , , kβ β β… ) resulting from fitting the logistic regression model to data gives in the 

following equation for estimating p: 
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( )0 1 1
ˆ ˆ ˆ

1ˆ
1 k kx x

p
e β β β− + + +

=
+

"
    (5) 

Using Equation 5, for a simple logistic regression model with one independent 

variable, we can plot x versus p and show that p is appropriately constrained to the unit 

interval.  For example, Figure 12 shows the resulting logistic curve for .2ˆ and 1ˆ
10 == ββ  

. 

 

Figure 12.   Plot of p =  1/(1+exp(-1-2x)) 

When estimating the probability p per Equation 5, increases in independent 

variables with positive coefficients correspond to increases in p̂ ; the larger the coefficient 

(holding all else constant), the more dramatically the probability changes from small 

(near 0) to large (near 1).  Figure 13 illustrates this for four different β1 values. 
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Figure 13.   Plot of ( )( )11/ 1 exp 1p xβ= + − − for various values of β1 

The models resulting from the biosurveillance algorithm are not as simple as 

Equation 4, since they have quadratic and interaction terms in them.  Also, the models are 

not fit in the usual way, where one usually has observed some sort of binary outcome and 

the logistic regression model is fit as a generalized linear model.  Rather, in this case, we 

have estimated probabilities from the simulation and we fit the estimated log odds as a 

linear function of the various covariates using ordinary least squares (OLS). 

B. PROBABILITY OF ALGORITHM SIGNALING FIRST RESULTS 

In analyzing the probability of algorithm signaling first results, there are two 

versions: one for an initial exposed population of 1,000 people (Model 1) and one for 

10,000 exposed people (Model 2).  Main effects, interaction, and quadratic terms are 

included in both models.  JMP stepwise function is utilized to determine which terms are 

significant.  After each simulation run, the probability of algorithm signaling first is 
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estimated in the simulation.  Then, it is transformed into the logit in order to fit and 

analyze the models. Table 4 is a modified version of Table 1, with the variables used in 

the analysis.   

p̂  estimated probability (from the simulation) that the algorithm signals first  

x1 probability of transitioning from susceptible to infected, 10.001 0.1x≤ ≤  

x2 probability a susceptible person goes to the hospital for non-anthrax related flu 

symptoms, 20.001 0.1x≤ ≤  

x3 threshold, 32 3x≤ ≤  

x4 daily increase in the probability an infected person will be correctly diagnosed, 

beginning at zero on the day of infection and increasing linearly up to a 

probability of one (when the infected person will have such obvious symptoms 

he or she is guaranteed to be correctly diagnosed), 41/ 21 1/ 7x≤ ≤  

x5 daily increase in the probability that an infected person goes to the hospital, 

where the probability increases linearly from zero to one (at which time the 

person is so sick he or she will definitely go to the hospital), 51/ 28 1/14x≤ ≤  

Table 4.   Analysis model variables 

1. Population Size of 1,000 (Model 1) 

Table 5 shows the results of 25 simulation runs, where 10,000 replications are 

executed within each run.  The time it takes to complete the simulation run is 36 hours 

using a personal computer laptop and a desktop. The probability of algorithm signaling 

first is estimated via the simulation, translated into the logit, and then entered into JMP 

(along with the parameters used in the simulation) for model fitting and analysis.  
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Run # Probability of 
algorithm 
signaling first

Logit of propability 
of algorithm 
signaling first

1 0.1304 ‐1.8974
2 0.9390 2.7339
3 0.0524 ‐2.8950
4 0.2810 ‐0.9395
5 0.2490 ‐1.1040
6 0.9320 2.6178
7 0.0373 ‐3.2507
8 0.0241 ‐3.7011
9 0.9178 2.4128
10 0.3903 ‐0.4461
11 0.2263 ‐1.2293
12 0.1694 ‐1.5899
13 0.6307 0.5352
14 0.0739 ‐2.5283
15 0.9353 2.6711
16 0.7409 1.0507
17 0.6810 0.7584
18 0.2356 ‐1.1770
19 0.9845 4.1513
20 0.9957 5.4448
21 0.9694 3.4557
22 0.6041 0.4226
23 0.9866 4.2990
24 0.8637 1.8464
25 0.2227 ‐1.2500  

Table 5.   Probability of algorithm signaling first results (population size of 1,000) 

The probability of algorithm signaling first ranges from 0.1304 (lowest value in 

run number 1) to 0.9957 (highest value in run number 20).  Run numbers 1 and 20 have 

the same probability of transitioning from susceptible to infected state (x1 = 0.1) and the 

same threshold (x3 = 2).  They differ in the probability a susceptible person goes to the 

hospital for non-anthrax related flu (x2).  In run number 1, the probability is higher at 0.1 

while it is at 0.001 for run number 20.  The daily increase in the probability an infected 

person will be correctly diagnosed (x4) and an infected person goes to the hospital (x5) in 
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run number 1 are both lower than in run number 20.  In run number 1, the daily increase 

in the probability an infected person will be correctly diagnosed is 1/7and the daily 

increase in the probability that an infected person goes to the hospital is 1/14.  In run 

number 20, the daily increase in the probability an infected person will be correctly 

diagnosed is 1/13 and the daily increase in the probability that an infected person goes to 

the hospital is 1/20 days.     

The model is fit in JMP using stepwise regression, regressing the estimated logit 

on the various simulation parameters.  The results using OLS to fit the logit of the 

estimated probabilities to the covariates are seen in Equation 6.   

Model 1: 1,000 people exposed with quadratic and interaction terms (R2=0.92) 

2
2

4332214

321

)(8660.776

9634.264053.200377.3718509.78
6478.33301.484731.210385.12)ˆ(logit

x

xxxxxxx
xxxp

+

+−−−
−−+=

 (6) 

 In order to graphically depict the effects of the variables with the largest effect 

(x2, x3, and x4)  on the probability of algorithm signaling first, Figure 14 through 16 

shows the results for Model 1 where the other variables are set to their nominal values (x1 

= x2 = 0.05, x3 = 2.5, x4 = 1/14, x5 = 1/21) and then plot the estimated probability of 

algorithm signaling first as a function of the variables with the largest effect (x2, x3, and 

x4).   
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Figure 14.   Plot of Model 1 made by varying x2 over its range while setting all other 
variables to their nominal values 

 

Figure 15.   Plot of Model 1 made by varying x3 over its range while setting all other 
variables to their nominal values 
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Figure 16.   Plot of Model 1 made by varying x4 over its range while setting all other 
variables to their nominal values 

The variables with the largest effect on the probability the algorithm signals first 

are x2 (probability going to the hospital for non-anthrax related flu), x3 (threshold), and x4 

(daily increase in the probability an infected person will be correctly diagnosed).  The 

results for x2 (probability going to the hospital for non-anthrax related flu), x3 (threshold), 

and x4 (daily increase in the probability an infected person will be correctly diagnosed) 

are in the expected direction:  

• As the probability of going to the hospital for non-anthrax related flu (x2) 

increases, the probability the algorithm signals first decreases, 

• As the threshold (x3) increases, the probability the algorithm signals first 

decreases, and 

• As the daily increase in the probability an infected person will be correctly 

diagnosed (x4) increases, the probability the algorithm signals first 

decreases. 
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Interestingly, the probability of people getting infected (x1) only modestly affects 

the probability the algorithm signals first, at least over the range of that variable.  This is 

a surprising result, as we expected that:  

• As the probability of people getting infected (x1) increases, we then 

expected that there would be more infected people going to the hospital 

that could be correctly diagnosed and thus the probability the algorithm 

signals first decreases. 

However, variable x1 is very modestly associated with a positive increase in the 

probability the algorithm signals first (though the increase is very small over the range of 

probabilities considered: 10.001 0.1x≤ ≤ ). And, since x5 is not in Model 1, the probability 

the algorithm signals first is not even associated with the daily increase in the probability 

infected persons go to the hospital (over the range considered: 51/ 28 1/14x≤ ≤ ). 

A natural question is which levels of the variables maximize and minimize the 

probability that the algorithm signals first.  The probability the algorithm signals first is 

maximized ( p̂  = 0.996) at the boundaries for each of the variables: x1 = 0.1, x2 = 0.001, 

x3 = 2, and x4 = 1/21.  On the other hand, the probability the algorithm signals first is 

minimized ( p̂  = 0.027) at x1 = 0.1, x2 = 0.094, x3 = 3, and x4 = 1/21.  For both the 

maximization and minimization, since x5 is not in this model, it can take on any value 

between 51/ 28 1/14x≤ ≤ . 

Model adequacy checks examining the residuals are seen in Figure 17 and 18.   

There is no pattern in the residuals, therefore the constant variance and independent 

assumptions are met.  
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Figure 17.   Model 1 residual by predicted plot 
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Figure 18.   Model 1 residual by row plot 

2. Population Size of 10,000 (Model 2) 

Table 6 shows the results of 25 simulation runs, where 10,000 replications are 

executed within each run.  The time it takes to complete the simulation run is 96 hours 

using a personal computer laptop and a desktop.  The probability of algorithm signaling 

first is estimated via the simulation, translated into the logit, and then entered into JMP 

(along with the parameters used in the simulation) for model fitting and analysis.  
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Run # Probability of 
algorithm 
signaling first

Logit of probability 
of algorithm 
signaling first

1 0.0187 ‐3.9604
2 0.8390 1.6508
3 0.0023 ‐6.0725
4 0.1086 ‐2.1051
5 0.0844 ‐2.3840
6 0.9788 3.8323
7 0.0014 ‐6.5699
8 0.0003 ‐8.1114
9 0.9998 8.5170
10 0.1383 ‐1.8295
11 0.0488 ‐2.9700
12 0.0538 ‐2.8672
13 0.2771 ‐0.9589
14 0.0139 ‐4.2619
15 0.0181 ‐3.9936
16 0.5377 0.1511
17 0.4293 ‐0.2847
18 0.0770 ‐2.4838
19 1.0000 13.8155
20 1.0000 13.8155
21 0.9987 6.6441
22 0.2440 ‐1.1309
23 1.0000 13.8155
24 0.7421 1.0569
25 0.0444 ‐3.0691  

Table 6.   Probability of algorithm signaling first results (population size of 10,000) 

The probability of algorithm signaling first ranges from 0.0003 (lowest value in 

run number 8) to 1 (highest value in run number 19, 20, and 23).  According to the 

simulation results, the algorithm will always signal an outbreak first in run number 19, 

20, and 23.  Table 7 consists of the parameter values in the simulation run number 8, 19, 

20, and 23 for comparisons.   
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Parameter  Run #8 Run #19 Run #20 Run #23 

x1 0.1 0.1 0.1 0.1 

x2 0.1 0.001 0.001 0.001 

x3 3 2.5 2 3 

x4 1/14 1/21 1/13 1/7 

x5 1/21 1/27 1/19 1/14 

Table 7.   Model 2 parameters for simulation run number 8, 19, 20 and 23 

The four simulation runs (in Table 7) all have the same probability of 

transitioning from susceptible to infected state (x1 = 0.1).  Run number 19, 20, and 23 

(where the probability of algorithm signaling is 1) have the same probability a susceptible 

person goes to the hospital for non-anthrax related flu (x2 = 0.001).  However in run 

number 8 (where the probability of algorithm signaling is 0.0003), the probability a 

susceptible person goes to the hospital for non-anthrax related flu is much higher (x2 = 

0.1).  Run number 8 and run number 23 have the same threshold (x3 = 2), while run 

number 19 has a threshold of 2.5 and run number 20 has a threshold of 2.  All four 

simulation runs differ in the daily increase in the probability an infected person will be 

correctly diagnosed (x4) and an infected person goes to the hospital (x5).  The daily 

increase in the probability an infected person will be correctly diagnosed for runs number 

8, 19, 20, and 23 are 1/14, 1/21, 1/13, and 1/7 days respectively.  The daily increase in the 

probability an infected person goes to the hospital for runs number 8, 19, 20, and 23 are 

1/21, 1/27, 1/19, and 1/14 days respectively  

The model is fit in JMP using stepwise regression, regressing the estimated logit 

on the various simulation parameters.  The results using OLS to fit the logit of the 

estimated probabilities to the covariates are seen in Equation 7.   

Model 2: 10,000 people exposed with quadratic and interaction terms (R2=0.95) 

2
2

21321

)(2717.1716

58.16601464.24512.102419.33879.5)ˆ(logit

x

xxxxxp

+

−−−+=
  (7) 
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In order to graphically depict the effects of the variables with the largest effect 

(x1, x2, and x3)  on the probability of algorithm signaling first, Figure 19 through 21 

shows the results for Model 2 where the other variables are set to their nominal values (x1 

= x2 = 0.05, x3 = 2.5, x4 = 1/14, x5 = 1/21) and then plot the estimated probability of 

algorithm signaling first as a function of the variables with the largest effect (x1, x2, and 

x3).   

 

Figure 19.   Plot of Model 2 made by varying x1 while setting all other variables to their 
nominal values 
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Figure 20.   Plot of Model 2 made by varying x2 over its range while setting all other 
variables to their nominal values 

 

 

Figure 21.   Plot of Model 2 made by varying x3 over its range while setting all other 
variables to their nominal values 
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The variable with the largest effect on the probability the algorithm signals first 

are x1 (probability of people getting infected), x2 (probability going to the hospital for 

non-anthrax related flu), and x3 (threshold).  The results for x1 (probability of people 

getting infected), x2 (probability going to the hospital for non-anthrax related flu), and x3 

(threshold) are in the expected direction: 

• As the probability of people getting infected (x1) increases, we then 

expected that there would be more infected people going to the hospital 

that could be correctly diagnosed and thus the probability the algorithm 

signals first decreases,  

• As the probability of going to the hospital for non-anthrax related flu (x2) 

increases, the probability the algorithm signals first decreases to the point 

where x2 = 0.05, and 

• As the threshold(x3) is increased, the probability the algorithm signals first 

decreases. 

In this model, variables x4 (daily increase in the probability an infected person will 

be correctly diagnosed) and x5 (daily increase in the probability an infected person goes to 

the hospital) are not included.  Therefore, the probability the algorithm signals first is not 

associated with x4 (over the range considered: 41/ 21 1/ 7x≤ ≤ ) and x5 (over the range 

considered: 51/ 28 1/14x≤ ≤ ). 

The last step is to figure out which levels of the variables maximize and minimize 

the probability that the algorithm signals first.  The probability the algorithm signals first 

is maximized ( p̂  = 0.999) at the boundaries for each of the variables: x1 = 0.001,  x2 = 

0.1, and x3 = 2.  On the other hand, the probability the algorithm signals first is 

minimized ( p̂  = 0) at x1 = 0.1, x2 = 0.069, and x3 = 3.  For both the maximization and 

minimization, since x4 and x5 are not in this model, therefore they can take on any values 

between 41/ 21 1/ 7x≤ ≤ for x4 and 51/ 28 1/14x≤ ≤ for x5. 
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Model adequacy checks examining the residuals are seen in Figure 22 and 23.   

There is no pattern in the residuals, therefore the constant variance and independent 

assumptions are met. 
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Figure 22.   Plot of Model 2 residual by predicted plot 
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Figure 23.   Plot of Model 2 residual by row plot 

3. Comparisons of Model 1 and 2 

In the comparisons of Model 1 and 2, only the main effects that are included in 

the models are analyzed.  Table 8 shows the regression coefficients for Model 1 (exposed 

population of 1,000 people) and Model 2 (exposed population of 10,000 people).  Both 

models’ regression coefficients are consistent in their direction.   
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Model β0 β1 β2 β3 β4 

1 12.0385 21.4731 -48.3301 -3.6478 -78.8509 

2 5.879 33.419 -102.4512 -2.1464 n/a 

Table 8.   Model 1 and 2 regression coefficient comparisons 

The magnitude of β0, β1, and β2 decreases when going from Model 1 to Model 2, 

and the magnitude of β3 increases.  The probability the algorithm signals first is 

maximized at 0.996 and minimized at 0.027 for Model 1, while it is maximized at 0.999 

and minimized at 0 for Model 2.  Model 2 with an R square of 0.95 is a better regression 

line to fit the data than Model 1 with an R square of 0.92. 

C. NUMBER OF DAYS TO ALGORITHM SIGNALING RESULTS 

In the case of Model 1 and 2, the response variable is transformed into the logit 

for model fitting and analysis because probability needs to be constrained from 0 to 1.  

However, in the case of Model 3 and 4, it is not necessary to transform the number of 

days to algorithm signaling into the logit because number of days does not need to be 

constrained to the unit interval (though it does need to be non-negative).  Table 9 shows 

the results of 25 simulation runs for both scenarios: one for an initial exposed population 

of 1,000 people (Model 3) and one for 10,000 exposed people (Model 4).  Within each 

run, 10,000 replications are executed.  The number of days to algorithm signaling is 

entered into JMP for model fitting and analysis. 
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Run # Avg. number of 
days to algorithm 
signaling (n=1,000)

Avg. number of 
days to algorithm 
signaling (n=10,000)

1 1.5613 1.7861
2 4.9279 3.6729
3 1.4008 1.4348
4 4.7434 3.3637
5 1.8281 1.1991
6 3.4975 2.9137
7 2.0751 1.8571
8 1.4523 1.3333
9 3.1122 2.8658
10 5.4399 3.8886
11 2.9076 1.5246
12 4.6930 3.3234
13 4.7476 3.6536
14 2.3112 1.0576
15 4.7824 1.7403
16 4.9935 3.6251
17 5.7182 4.1356
18 6.2687 4.2740
19 2.9908 2.7474
20 2.6989 2.5368
21 3.0096 2.5387
22 4.4969 3.4865
23 2.8659 2.8623
24 4.2619 3.0838
25 2.8078 1.5743  

Table 9.   Number of days to algorithm signaling results (population size of 1,000 and 
10,000) 

1. Population Size of 1,000 (Model 3) 

The number of days to algorithm signaling ranges from 1.4008 days (shortest time 

in run number 3) to 6.2687 days (longest time in run number 18).  Run numbers 3 and 18 

have the same probability a susceptible person goes to the hospital for non-anthrax 

related flu (x2 = 0.1).  They differ in the in the probability of transitioning from 

susceptible to infected state (x1), and the threshold (x3).  In run number 3, the probability 
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is higher at 0.1 while it is at 0.001 for run number 18.  The threshold in run number 3 is 

lower at 2.5 while the threshold for run number 18 is at 3.   The daily increase in the 

probability an infected person will be correctly diagnosed (x4) and an infected person 

goes to the hospital (x5) in run number 3 are both lower than in run number 18.  In run 

number 3, the daily increase in the probability an infected person will be correctly 

diagnosed is 1/7 and the daily increase in the probability that an infected person goes to 

the hospital 1/22.  In run number 18, the daily increase in the probability an infected 

person will be correctly diagnosed is 1/21 and the daily increase in the probability that an 

infected person goes to the hospital is 1/28 days.     

The model is fit in JMP using stepwise regression, regressing the estimated logit 

on the various simulation parameters.  The results using OLS to fit the estimated number 

of days to algorithm signaling to the covariates are seen in Equation 8.   

Model 3: 1,000 people exposed with quadratic and interaction terms (R2=0.80) 

2
121 )(3063.438795.10908.692086.6ˆ xxxy +−−=     (8) 

In order to graphically depict the effects of the variables with the largest effect (x1 

and x2)  on the number of days to algorithm signaling, Figure 24 and 25 shows the results 

for Model 3 where the other variables are set to their nominal values (x1 = x2 = 0.05, x3 = 

2.5, x4 = 1/14, x5 = 1/21) and then plot the estimated number of days to algorithm 

signaling as a function of the variables with the largest effect (x1 and x2). 
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Figure 24.   Plot of Model 3 made by varying x1 over its range while setting all other 
variables to their nominal values 

 

Figure 25.   Plot of Model 3 made by varying x2 over its range while setting all other 
variables to their nominal values 
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The variable with the largest effect on the number of days to algorithm signals 

first are x1 (probability of people getting infected) and x2 (probability going to the hospital 

for non-anthrax related flu).  The results for x1 (probability of people getting infected and 

x2 (probability going to the hospital for non-anthrax related flu) are not in the expected 

direction: 

• As the probability of people getting infected (x1) increases, the probability 

the algorithm signals first decreases and thus the number of days to 

algorithm signals first increases, and 

• As the probability of going to the hospital for non-anthrax related flu (x2) 

increases, the probability the algorithm signals first decreases and thus the 

number of days to algorithm signals first increases.  

In this model, variables x3 (threshold), x4 (daily increase in the probability an 

infected person will be correctly diagnosed) and x5 (daily increase in the probability an 

infected person goes to the hospital) are not included.  Therefore, the number of days to 

algorithm signals first is not associated with x3 (over the range considered: 32 3x≤ ≤ ), x4 

(over the range considered: 41/ 21 1/ 7x≤ ≤ ) and x5 (over the range considered: 

51/ 28 1/14x≤ ≤ ). 

Determining which levels of the variables maximize and minimize the average 

time until the algorithm signals is the next step.  The number of days to algorithm signals 

first is maximized ( ŷ  = 6.13) at the boundaries for each of the variables: x1 = 0.001 and  

x2 = 0.001.  On the other hand, the number of days to algorithm signals first is minimized 

( ŷ  = 2.34) at x1 = 0.08 and x2 = 0.1.  For both the maximization and minimization, since 

x3, x4 and x5 are not in this model, therefore they can take on any values between 

32 3x≤ ≤ for x3, 41/ 21 1/ 7x≤ ≤ for x4, and 51/ 28 1/14x≤ ≤ for x5. 

Model adequacy checks examining the residuals are seen in Figure 26 and 27.   

There is no pattern in the residuals, therefore the constant variance and independent 

assumptions are met. 
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Figure 26.   Plot of Model 3 residual by predicted plot 
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Figure 27.   Plot of Model 3 residual by row plot 

2. Population size of 10,000 (Model 4) 

The number of days to algorithm signaling ranges from 1.0576 days (shortest time 

in run number 14) to 4.1356 days (longest time in run number 17).  The probability of 

transitioning from susceptible to infected state (x1) and the probability a susceptible 

person goes to the hospital for non-anthrax related flu (x2) are both higher in run number 

14 (x1 = 0.1, x2 = 0.505) compared to run number 17 (x1 = 0.001, x2 = 0.001).  They have 

the same threshold of 3.  The daily increase in the probability an infected person will be 

correctly diagnosed (x4) and an infected person goes to the hospital (x5) in run number 17 

are both lower than in run number 14.  In run number 17, the daily increase in the 

probability an infected person will be correctly diagnosed is 1/13 and the daily increase in 
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the probability that an infected person goes to the hospital 1/20.  In run number 14, the 

daily increase in the probability an infected person will be correctly diagnosed is 1/15 

days and the daily increase in the probability that an infected person goes to the hospital 

is 1/28.     

The model is fit in JMP using stepwise regression, regressing the estimated logit 

on the various simulation parameters.  The results using OLS to fit the estimated number 

of days to algorithm signaling to the covariates are seen in Equation 9.   

Model 4: 10,000 people exposed with quadratic and interaction terms (R2=0.98) 

2
2

2
1

325131215

4321

)(9626.317)(361.255

42.545.1875411.6045.119953.2
914.12167.06243.60909.175008.2ˆ

xx

xxxxxxxxx
xxxxy

++

−+−−−
−+−−=

  (9) 

In order to graphically depict the effects of the variables with the largest effect 

(x1, x2, x3, and x5) on the number of days to algorithm signaling, Figure 28 through 31 

shows the results for Model 4 where the other variables are set to their nominal values (x1 

= x2 = 0.05, x3 = 2.5, x4 = 1/14, x5 = 1/21) and then plot the estimated number of days to 

algorithm signaling as a function of the variables with the largest effect (x1, x2, x3, and x5). 

 

Figure 28.   Plot of Model 4 made by varying x1 over its range while setting all other 
variables to their nominal values 
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Figure 29.   Plot of Model 4 made by varying x2 over its range while setting all other 
variables to their nominal values 

 

 

Figure 30.   Plot of Model 4 made by varying x3 over its range while setting all other 
variables to their nominal values  
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Figure 31.   Plot of Model 4 made by varying x5 over its range while setting all other 
variables to their nominal values 

The variable with the largest effect on the number of days to algorithm signals 

first are x1 (probability of people getting infected), x2 (probability going to the hospital for 

non-anthrax related flu), x3 (threshold), and x5 (daily increase in the probability an 

infected person goes to the hospital).  The results for x1 (probability of people getting 

infected and x2 (probability going to the hospital for non-anthrax related flu) and x5 (daily 

increase in the probability an infected person goes to the hospital) are in the expected 

direction: 

• As the probability of people getting infected (x1) increases, the probability 

the algorithm signals first decreases and thus the number of days to 

algorithm signals first increases,  

• As the probability of going to the hospital for non-anthrax related flu (x2) 

increases, the probability the algorithm signals first decreases and thus the 

number of days to algorithm signals first increases, and  
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• As the daily increase in the probability an infected person goes to the 

hospital (x5) increases, the probability the algorithm signals first decreases 

and thus the number of days to algorithm signals first increases.   

Interestingly, Figure 18 shows that the threshold (x3) is not in the expected 

direction.  This is a surprising result, as we expected that:  

• As the threshold (x3) increases, the probability the algorithm signals first 

decreases and thus the number of days to algorithm signals first should 

increases.   

In this model, variable x4 (daily increase in the probability an infected person will 

be correctly diagnosed) is not included.  Therefore, the number of days to algorithm 

signals first is not associated with x4 (over the range considered: 41/ 21 1/ 7x≤ ≤ ).  

The last question is which levels of the variables maximize and minimize the 

number of days to algorithm signals first.  The number of days to algorithm signals first 

is maximized ( ŷ  = 4.68) at the boundaries for each of the variables: x1 = 0.1, x2 = 0.1, x3 

= 2, and x5 = 1/14.  On the other hand, the number of days to algorithm signals first is 

minimized ( ŷ  = 0) at x1 = 0.025, x2 = 0.026, x3 = 3, and x5 = 1/28.  For both the 

maximization and minimization, since x4 is not in this model, therefore it can take on any 

values between 41/ 21 1/ 7x≤ ≤ . 

Model adequacy checks examining the residuals are seen in Figures 32 and 33.  

There is no pattern in the residuals, therefore the constant variance and independent 

assumptions are met. 
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Figure 32.   Plot of Model 4 residual by predicted plot 
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Figure 33.   Plot of Model 4 residual by row plot 

3. Comparisons of Model 3 and 4 

In the comparisons of Model 3 and 4, only the main effects that are included in 

the model are being looked at.  Table 10 shows the regression coefficients for Model 3 

(exposed population of 1,000 people) and Model 4 (exposed population of 10,000 

people).  Both models’ regression coefficients are consistent in their direction.  However, 

Model 4 has more terms than Model 3 since it includes β3, β4, and β5 in the model.  
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Model β0 β1 β2 β3 β4 β5 

3 6.2086 -69.908 -10.795 n/a n/a n/a 

4 2.5008 -17.0909 -6.6243 0.2167 -1.914 -2.953 

Table 10.   Model 3 and 4 regression coefficient comparisons 

The magnitude of β0 decreases when going from Model 3 to 4, and the magnitude 

of β1 and β2 increases when going from Model 3 to 4.  The number of days to algorithm 

signals first is maximized at 6.13 days and minimized at 2.34 days for Model 3, while it 

is maximized at 4.68 days and minimized at 0 for Model 4.  Model 4 with an R square of 

0.98 is a better regression line to fit the data than Model 3 with an R square of 0.8. 
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IV. CONCLUSIONS 

A. BIOSURVEILLANCE IS USEFUL FOR EED 

This research shows that biosurveillance statistical algorithms, such as the EARS 

C1, are useful in EED of a bioterror attack.  The metrics used to determine the 

effectiveness of the EARS C1 algorithm (as seen in Table 11) are the probability it 

signals an anthrax outbreak first and the time it takes to do so.  In the worst case 

scenarios, the probability the algorithm signals first is 13.04% for an exposed population 

of 1,000 people and it is 0.03% for an exposed population of 10,000 people.  In the 

nominal case scenarios, the probability the algorithm signals first is 31.5% for an exposed 

population of 1,000 people and it is 0.3% for an exposed population of 10,000 people. 

Although these probabilities may seem low, note that whether the algorithm signaled first 

was quite situation dependent.  And even in the worst case scenario for 1,000 people, the 

algorithm signaled first more than one time in 10.  Thus, at the very least biosurveillance 

is an effective back-up to clinicians.  On the other hand, there were scenarios in which the 

statistical algorithm almost always signaled first. 

Furthermore, the EARS C1 algorithm does not take a long time to signal an 

anthrax outbreak.  In the worst case scenarios, the longest time it takes for the algorithm 

to signal is 6.63 days for an exposed population of 1,000 people and 4.14 days for an 

exposed population of 10,000 people.  In the nominal case scenarios, the time it takes for 

the algorithm to signal is 3.3 days for an exposed population of 1,000 people and 0.38 

days for an exposed population of 10,000 people.    
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Population 

size 

Min 

Prob. 

ALGO 

signals  

Nominal 

Prob. 

ALGO 

signal 

Max 

Prob. 

ALGO 

signal 

Min days 

to ALGO 

signal 

Nominal 

days to 

ALGO 

signal 

Max days 

to ALGO 

signal 

1,000 0.1304 0.315 0.9957 1.4 3.3 6.63 

10,000 0.0003 .003 1 1.06 0.38 4.14 

Table 11.   Model 1 through Model 4 of the response variables results 

The ideal algorithm maximizes the probability it signals first while minimizes the 

time it takes to signal.  Table 12 gives the values of the parameters that maximize the 

probability the algorithm signals first.  In the case of an exposed population of 1,000 

people, x5 is not in the model thus it can be any value between the specified ranges.  In 

the case of an exposed population of 10,000 people, x4 and x5 are not in the model thus 

they can be any value between the specified ranges.  The probability the algorithm 

signals first is maximized at 99.6% for an exposed population of 1,000 people and 99.9% 

for an exposed population of 10,000 people. 

Population 

size 

x1 x2 x3 x4 x5 

1,000 0.1 0.001 2 1/21 51/ 28 1/14x≤ ≤

10,000 0.001 0.1 2 41/ 21 1/ 7x≤ ≤ 51/ 28 1/14x≤ ≤

Table 12.   Values of the parameters that maximize the probability the algorithm 
signals first 

Table 13 gives the values of the parameters that minimize the number of days it 

takes for an algorithm signal. In the case of an exposed population of 1,000 people, x3, x4, 

and x5 are not in the model thus they can be any value between the specified ranges.  In 

the case of an exposed population of 10,000 people, x4 is not in the model, thus it can be  
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any value between the specified ranges.  The time it takes to signal is minimized at 2.34 

days for an exposed population of 1,000 people and 0 day for an exposed population of 

10,000 people. 

Population 

size 

x1 x2 x3 x4 x5 

1,000 0.08 0.1 32 3x≤ ≤  41/ 21 1/ 7x≤ ≤ 51/ 28 1/14x≤ ≤

10,000 0.025 0.026 3 41/ 21 1/ 7x≤ ≤ 1/28 

Table 13.   Values of the parameters that minimize the number of days to algorithm 
signal 

The parameters with the largest effect on the probability the algorithm signals first 

are the probability of people getting infected (x1), the probability of going to the hospital 

for non-anthrax related flu (x2), the threshold (x3), and the daily increase in the probability 

an infected person will be correctly diagnosed (x4).  An increase in the threshold and the 

transitional probabilities of people getting infected, going to the hospital for non-anthrax 

related flu and correct diagnosis by doctor result in a decrease in the probability the 

algorithm signals first, and thus an increase in the probability the doctor signals first. This 

finding is consistent with Professor Fricker’s simulation results in the sense that as the 

higher the probability of correct diagnosis by doctor, the less likely the statistical 

algorithm is to signal first.   

The parameters with the largest effect on the number of days to algorithm signal 

are the probability of people getting infected (x1), the probability of going to the hospital 

for non-anthrax related flu (x2), the threshold (x3), and the daily increase in the probability 

an infected person goes to the hospital (x5). An increase in the transitional probabilities of 

people getting infected, going to the hospital for non-anthrax related flu and an infected 

person goes to the hospital result in an increase in the time it takes for the algorithm to 

signal.   
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B. FUTURE RESEARCH OPPORTUNITIES 

In this thesis, two exposed population sizes of 1,000 and 10,000 people are 

explored in the simulation model analysis.  The results suggest a possibility of a 

population size effect in the sense that the larger the population size, the lower the 

probability of an algorithm to signal first.  In order to better characterize the region where 

biosurveillance is useful (as seen in Figure 1), different population sizes should be 

evaluated.  Additionally, the five simulation parameters were evaluated over a small 

range for their values.  While these ranges were judged to be the most likely, it would be 

interesting to investigate the effects of a wider range for these parameters. 

There are many biosurveillance statistical algorithms that can be implemented in 

the simulation model such as the EARS C2 and C3, the CUSUM, and the Shewhart.  The 

simulation model in this thesis only implements the EARS C1 statistical algorithm.  

There could be interesting insights in comparing the performance among various 

statistical algorithms.  Furthermore, while it is not necessary to model the probability the 

doctor signals first, since it is 1 minus the probability the algorithm signals first, the 

number of days to doctor signal can still be modeled to explore the effect of the variables 

that are significant.   
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APPENDIX A. OUTPUTS (POPULATION SIZE OF 1,000) 

For a population size of 1,000 people, 25 simulation runs is executed. Each 

simulation run consists of 10,000 replications. 
RUN #1: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  874.6673 +/-  0.3439 
 Avg no. Infected:  43.8027 +/-  0.3289 
 Avg no. At The Hospital:  81.5301 +/-  0.0493 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.1304 +/-  0.0066 
 AVG NO. OF DOCTOR SIGNALS:  0.8696 +/-  0.0066 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.5613 +/-  
0.0496 
 AVG No. of Days from Susceptible to Doc Signal:  4.1611 +/-  
0.0077 
 
RUN #2: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  998.1784 +/-  0.0214 
 Avg no. Infected:  0.9739 +/-  0.0189 
 Avg no. At The Hospital:  0.8477 +/-  0.0057 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9390 +/-  0.0047 
 AVG NO. OF DOCTOR SIGNALS:  0.0610 +/-  0.0047 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.9279 +/-  
0.0611 
 AVG No. of Days from Susceptible to Doc Signal:  8.4033 +/-  
0.1705 
 
RUN #3: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  868.7775 +/-  0.2955 
 Avg no. Infected:  49.8837 +/-  0.2884 
 Avg no. At The Hospital:  81.3388 +/-  0.0478 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0524 +/-  0.0044 
 AVG NO. OF DOCTOR SIGNALS:  0.9476 +/-  0.0044 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.4008 +/-  
0.0585 
 AVG No. of Days from Susceptible to Doc Signal:  4.2956 +/-  
0.0093 
 
RUN #4:  
Using 10000 independent replications, 95% CI for following measures as 
followed: 



 64

 Avg no. Susceptible:  953.9723 +/-  0.0492 
 Avg no. Infected:  1.4709 +/-  0.0172 
 Avg no. At The Hospital:  44.5568 +/-  0.0399 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.2810 +/-  0.0088 
 AVG NO. OF DOCTOR SIGNALS:  0.7190 +/-  0.0088 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.7434 +/-  
0.1035 
 AVG No. of Days from Susceptible to Doc Signal:  8.3513 +/-  
0.0459 
 
 
RUN #5: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  911.7260 +/-  0.4776 
 Avg no. Infected:  45.4950 +/-  0.4670 
 Avg no. At The Hospital:  42.7790 +/-  0.0382 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.2490 +/-  0.0085 
 AVG NO. OF DOCTOR SIGNALS:  0.7510 +/-  0.0085 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.8281 +/-  
0.0462 
 AVG No. of Days from Susceptible to Doc Signal:  4.3655 +/-  
0.0113 
 
RUN #6: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  976.8183 +/-  0.2171 
 Avg no. Infected:  22.2274 +/-  0.2128 
 Avg no. At The Hospital:  0.9543 +/-  0.0073 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9320 +/-  0.0049 
 AVG NO. OF DOCTOR SIGNALS:  0.0680 +/-  0.0049 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.4975 +/-  
0.0212 
 AVG No. of Days from Susceptible to Doc Signal:  4.3574 +/-  
0.0402 
 
RUN #7: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  885.8269 +/-  0.1909 
 Avg no. Infected:  31.8395 +/-  0.1815 
 Avg no. At The Hospital:  82.3335 +/-  0.0465 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0373 +/-  0.0037 
 AVG NO. OF DOCTOR SIGNALS:  0.9627 +/-  0.0037 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.0751 +/-  
0.1193 
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 AVG No. of Days from Susceptible to Doc Signal:  4.7316 +/-  
0.0126 
RUN #8: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  860.1158 +/-  0.3125 
 Avg no. Infected:  58.5347 +/-  0.3082 
 Avg no. At The Hospital:  81.3495 +/-  0.0464 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0241 +/-  0.0030 
 AVG NO. OF DOCTOR SIGNALS:  0.9759 +/-  0.0030 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.4523 +/-  
0.1105 
 AVG No. of Days from Susceptible to Doc Signal:  4.6403 +/-  
0.0120 
 
 
RUN #9: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  964.9003 +/-  0.2958 
 Avg no. Infected:  34.1795 +/-  0.2923 
 Avg no. At The Hospital:  0.9202 +/-  0.0069 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9178 +/-  0.0054 
 AVG NO. OF DOCTOR SIGNALS:  0.0822 +/-  0.0054 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.1122 +/-  
0.0163 
 AVG No. of Days from Susceptible to Doc Signal:  4.0231 +/-  
0.0103 
RUN #10: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 

 Avg no. Susceptible:  913.6131 +/-  0.0715 
 Avg no. Infected:  1.6930 +/-  0.0220 
 Avg no. At The Hospital:  84.6939 +/-  0.0577 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.3903 +/-  0.0096 
 AVG NO. OF DOCTOR SIGNALS:  0.6097 +/-  0.0096 
 
 AVG No. of Days from Susceptible to Algo Signal:  5.4399 +/-  
0.1008 
 AVG No. of Days from Susceptible to Doc Signal:  9.8614 +/-  
0.0632 
 
RUN #11: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  924.7160 +/-  0.2904 
 Avg no. Infected:  31.7611 +/-  0.2738 
 Avg no. At The Hospital:  43.5228 +/-  0.0392 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.2263 +/-  0.0082 
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 AVG NO. OF DOCTOR SIGNALS:  0.7737 +/-  0.0082 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.9076 +/-  
0.0691 
 AVG No. of Days from Susceptible to Doc Signal:  4.8954 +/-  
0.0156 
 
RUN #12: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  913.8416 +/-  0.0576 
 Avg no. Infected:  1.3499 +/-  0.0141 
 Avg no. At The Hospital:  84.8086 +/-  0.0512 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.1694 +/-  0.0074 
 AVG NO. OF DOCTOR SIGNALS:  0.8306 +/-  0.0074 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.6930 +/-  
0.1194 
 AVG No. of Days from Susceptible to Doc Signal:  7.9121 +/-  
0.0399 
 
 
 
RUN #13: 
 Avg no. Susceptible:  915.1090 +/-  0.0734 
 Avg no. Infected:  1.1578 +/-  0.0191 
 Avg no. At The Hospital:  83.7332 +/-  0.0611 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.6307 +/-  0.0095 
 AVG NO. OF DOCTOR SIGNALS:  0.3693 +/-  0.0095 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.7476 +/-  
0.0710 
 AVG No. of Days from Susceptible to Doc Signal:  8.8979 +/-  
0.0720 
 
RUN #14: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  895.4357 +/-  0.3960 
 Avg no. Infected:  61.5230 +/-  0.3877 
 Avg no. At The Hospital:  43.0413 +/-  0.0364 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0739 +/-  0.0051 
 AVG NO. OF DOCTOR SIGNALS:  0.9261 +/-  0.0051 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.3112 +/-  
0.1147 
 AVG No. of Days from Susceptible to Doc Signal:  4.7250 +/-  
0.0129 
 
RUN #15: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
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 Avg no. Susceptible:  998.2334 +/-  0.0199 
 Avg no. Infected:  0.9150 +/-  0.0173 
 Avg no. At The Hospital:  0.8516 +/-  0.0058 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9353 +/-  0.0048 
 AVG NO. OF DOCTOR SIGNALS:  0.0647 +/-  0.0048 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.7824 +/-  
0.0574 
 AVG No. of Days from Susceptible to Doc Signal:  8.0618 +/-  
0.1629 
 
RUN #16: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  997.9773 +/-  0.0215 
 Avg no. Infected:  1.1488 +/-  0.0185 
 Avg no. At The Hospital:  0.8739 +/-  0.0059 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.7409 +/-  0.0086 
 AVG NO. OF DOCTOR SIGNALS:  0.2591 +/-  0.0086 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.9935 +/-  
0.0649 
 AVG No. of Days from Susceptible to Doc Signal:  8.0587 +/-  
0.0756 
 
RUN #17: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  997.7239 +/-  0.0227 
 Avg no. Infected:  1.3561 +/-  0.0191 
 Avg no. At The Hospital:  0.9200 +/-  0.0062 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.6810 +/-  0.0091 
 AVG NO. OF DOCTOR SIGNALS:  0.3190 +/-  0.0091 
 
 AVG No. of Days from Susceptible to Algo Signal:  5.7182 +/-  
0.0708 
 AVG No. of Days from Susceptible to Doc Signal:  8.5502 +/-  
0.0750 
 
RUN #18: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  912.3599 +/-  0.0665 
 Avg no. Infected:  2.1806 +/-  0.0232 
 Avg no. At The Hospital:  85.4595 +/-  0.0525 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.2356 +/-  0.0083 
 AVG NO. OF DOCTOR SIGNALS:  0.7644 +/-  0.0083 
 
 AVG No. of Days from Susceptible to Algo Signal:  6.2687 +/-  
0.1449 
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 AVG No. of Days from Susceptible to Doc Signal:  10.9104 +/-  
0.0626 
 
RUN #19: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  968.1928 +/-  0.3108 
 Avg no. Infected:  30.9146 +/-  0.3077 
 Avg no. At The Hospital:  0.8926 +/-  0.0066 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9845 +/-  0.0024 
 AVG NO. OF DOCTOR SIGNALS:  0.0155 +/-  0.0024 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.9908 +/-  
0.0174 
 AVG No. of Days from Susceptible to Doc Signal:  4.0516 +/-  
0.0349 
 
RUN #20: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  974.1262 +/-  0.2674 
 Avg no. Infected:  25.0157 +/-  0.2653 
 Avg no. At The Hospital:  0.8580 +/-  0.0063 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9957 +/-  0.0013 
 AVG NO. OF DOCTOR SIGNALS:  0.0043 +/-  0.0013 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.6989 +/-  
0.0162 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
 
RUN #21: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  982.2369 +/-  0.2077 
 Avg no. Infected:  16.8805 +/-  0.2051 
 Avg no. At The Hospital:  0.8826 +/-  0.0064 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9694 +/-  0.0034 
 AVG NO. OF DOCTOR SIGNALS:  0.0306 +/-  0.0034 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.0096 +/-  
0.0218 
 AVG No. of Days from Susceptible to Doc Signal:  4.1046 +/-  
0.0343 
 
RUN #22: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  915.2453 +/-  0.0717 
 Avg no. Infected:  1.1097 +/-  0.0182 
 Avg no. At The Hospital:  83.6450 +/-  0.0604 
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 AVG NO. OF ALGORITHM SIGNALS:  0.6041 +/-  0.0096 
 AVG NO. OF DOCTOR SIGNALS:  0.3959 +/-  0.0096 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.4969 +/-  
0.0685 
 AVG No. of Days from Susceptible to Doc Signal:  8.4233 +/-  
0.0643 
 
RUN #23: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  971.5566 +/-  0.2045 
 Avg no. Infected:  27.5650 +/-  0.2021 
 Avg no. At The Hospital:  0.8784 +/-  0.0064 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9866 +/-  0.0023 
 AVG NO. OF DOCTOR SIGNALS:  0.0134 +/-  0.0023 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.8659 +/-  
0.0120 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
 
RUN #24: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  998.3674 +/-  0.0167 
 Avg no. Infected:  0.7747 +/-  0.0140 
 Avg no. At The Hospital:  0.8578 +/-  0.0058 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.8637 +/-  0.0067 
 AVG NO. OF DOCTOR SIGNALS:  0.1363 +/-  0.0067 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.2619 +/-  
0.0510 
 AVG No. of Days from Susceptible to Doc Signal:  6.7850 +/-  
0.0835 
 
RUN #25: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  926.9914 +/-  0.2653 
 Avg no. Infected:  29.4859 +/-  0.2480 
 Avg no. At The Hospital:  43.5227 +/-  0.0397 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.2227 +/-  0.0082 
 AVG NO. OF DOCTOR SIGNALS:  0.7773 +/-  0.0082 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.8078 +/-  
0.0665 
 AVG No. of Days from Susceptible to Doc Signal:  4.6914 +/-  
0.0139 
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APPENDIX B. OUTPUTS (POPULATION SIZE OF 10,000) 

For a population size of 10,000 people, 25 simulation runs is executed. Each 

simulation run consists of 10,000 replications. 
RUN #1: 
 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  8731.7465 +/-  1.0473 
 Avg no. Infected:  451.5045 +/-  1.0276 
 Avg no. At The Hospital:  816.7490 +/-  0.1477 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0187 +/-  0.0027 
 AVG NO. OF DOCTOR SIGNALS:  0.9813 +/-  0.0027 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.7861 +/-  
0.0589 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
 
 
RUN #2: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9984.5573 +/-  0.1195 
 Avg no. Infected:  6.4804 +/-  0.1087 
 Avg no. At The Hospital:  8.9622 +/-  0.0205 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.8390 +/-  0.0072 
 AVG NO. OF DOCTOR SIGNALS:  0.1610 +/-  0.0072 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.6729 +/-  
0.0452 
 AVG No. of Days from Susceptible to Doc Signal:  6.0739 +/-  
0.0595 
 
 
RUN #3: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  8725.6673 +/-  0.4530 
 Avg no. Infected:  459.6378 +/-  0.4295 
 Avg no. At The Hospital:  814.6949 +/-  0.1486 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0023 +/-  0.0009 
 AVG NO. OF DOCTOR SIGNALS:  0.9977 +/-  0.0009 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.4348 +/-  
0.2192 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
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RUN #4: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9548.2434 +/-  0.1962 
 Avg no. Infected:  8.9145 +/-  0.0673 
 Avg no. At The Hospital:  442.8421 +/-  0.1500 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.1086 +/-  0.0061 
 AVG NO. OF DOCTOR SIGNALS:  0.8914 +/-  0.0061 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.3637 +/-  
0.0951 
 AVG No. of Days from Susceptible to Doc Signal:  5.5951 +/-  
0.0195 
 
RUN #5: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9126.8494 +/-  2.5781 
 Avg no. Infected:  443.9956 +/-  2.5345 
 Avg no. At The Hospital:  429.1550 +/-  0.1235 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0844 +/-  0.0054 
 AVG NO. OF DOCTOR SIGNALS:  0.9156 +/-  0.0054 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.1991 +/-  
0.0272 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
 
RUN #6: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9844.1701 +/-  1.0238 
 Avg no. Infected:  146.8568 +/-  1.0155 
 Avg no. At The Hospital:  8.9732 +/-  0.0205 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9788 +/-  0.0028 
 AVG NO. OF DOCTOR SIGNALS:  0.0212 +/-  0.0028 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.9137 +/-  
0.0112 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
 
RUN #7: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  8934.9395 +/-  0.3315 
 Avg no. Infected:  241.5711 +/-  0.2994 
 Avg no. At The Hospital:  823.4894 +/-  0.1491 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0014 +/-  0.0007 
 AVG NO. OF DOCTOR SIGNALS:  0.9986 +/-  0.0007 
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 AVG No. of Days from Susceptible to Algo Signal:  1.8571 +/-  
0.3086 
 AVG No. of Days from Susceptible to Doc Signal:  4.0097 +/-  
0.0019 
 
RUN #8: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  8724.7995 +/-  0.2571 
 Avg no. Infected:  452.5076 +/-  0.2214 
 Avg no. At The Hospital:  822.6929 +/-  0.1475 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0003 +/-  0.0003 
 AVG NO. OF DOCTOR SIGNALS:  0.9997 +/-  0.0003 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.3333 +/-  
1.4342 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
 
RUN #9: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9721.7984 +/-  1.3892 
 Avg no. Infected:  269.3565 +/-  1.3854 
 Avg no. At The Hospital:  8.8451 +/-  0.0188 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9998 +/-  0.0003 
 AVG NO. OF DOCTOR SIGNALS:  0.0002 +/-  0.0003 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.8658 +/-  
0.0092 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
 
RUN #10: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9145.1221 +/-  0.3014 
 Avg no. Infected:  10.8172 +/-  0.0873 
 Avg no. At The Hospital:  844.0607 +/-  0.2334 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.1383 +/-  0.0068 
 AVG NO. OF DOCTOR SIGNALS:  0.8617 +/-  0.0068 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.8886 +/-  
0.0873 
 AVG No. of Days from Susceptible to Doc Signal:  6.4954 +/-  
0.0261 
 
RUN #11: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9320.5834 +/-  1.1333 
 Avg no. Infected:  245.1088 +/-  1.0725 
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 Avg no. At The Hospital:  434.3078 +/-  0.1305 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0488 +/-  0.0042 
 AVG NO. OF DOCTOR SIGNALS:  0.9512 +/-  0.0042 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.5246 +/-  
0.0758 
 AVG No. of Days from Susceptible to Doc Signal:  4.0354 +/-  
0.0037 
 
RUN #12: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9151.6558 +/-  0.2248 
 Avg no. Infected:  7.9654 +/-  0.0523 
 Avg no. At The Hospital:  840.3788 +/-  0.1921 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0538 +/-  0.0044 
 AVG NO. OF DOCTOR SIGNALS:  0.9462 +/-  0.0044 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.3234 +/-  
0.0971 
 AVG No. of Days from Susceptible to Doc Signal:  5.3208 +/-  
0.0171 
 
RUN #13: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9151.1031 +/-  0.3326 
 Avg no. Infected:  8.8764 +/-  0.0852 
 Avg no. At The Hospital:  840.0205 +/-  0.2633 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.2771 +/-  0.0088 
 AVG NO. OF DOCTOR SIGNALS:  0.7229 +/-  0.0088 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.6536 +/-  
0.0570 
 AVG No. of Days from Susceptible to Doc Signal:  6.1353 +/-  
0.0259 
 
RUN #14: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9092.1364 +/-  1.2156 
 Avg no. Infected:  478.1780 +/-  1.1903 
 Avg no. At The Hospital:  429.6856 +/-  0.1163 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0139 +/-  0.0023 
 AVG NO. OF DOCTOR SIGNALS:  0.9861 +/-  0.0023 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.0576 +/-  
0.0437 
 AVG No. of Days from Susceptible to Doc Signal:  4.0092 +/-  
0.0019 
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RUN #15: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  8721.8274 +/-  1.3847 
 Avg no. Infected:  464.5901 +/-  1.3847 
 Avg no. At The Hospital:  813.5825 +/-  0.1489 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0181 +/-  0.0026 
 AVG NO. OF DOCTOR SIGNALS:  0.9819 +/-  0.0026 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.7403 +/-  
0.0641 
 AVG No. of Days from Susceptible to Doc Signal:  4.0474 +/-  
0.0042 
 
 
RUN #16: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9983.4946 +/-  0.1002 
 Avg no. Infected:  7.4277 +/-  0.0903 
 Avg no. At The Hospital:  9.0777 +/-  0.0198 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.5377 +/-  0.0098 
 AVG NO. OF DOCTOR SIGNALS:  0.4623 +/-  0.0098 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.6251 +/-  
0.0502 
 AVG No. of Days from Susceptible to Doc Signal:  5.5708 +/-  
0.0280 
 
RUN #17 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9981.8387 +/-  0.1007 
 Avg no. Infected:  8.8777 +/-  0.0898 
 Avg no. At The Hospital:  9.2835 +/-  0.0199 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.4293 +/-  0.0097 
 AVG NO. OF DOCTOR SIGNALS:  0.5707 +/-  0.0097 
 
 AVG No. of Days from Susceptible to Algo Signal:  4.1356 +/-  
0.0586 
 AVG No. of Days from Susceptible to Doc Signal:  5.8402 +/-  
0.0272 
 
RUN #18: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9140.2920 +/-  0.2857 
 Avg no. Infected:  12.5356 +/-  0.0916 
 Avg no. At The Hospital:  847.1724 +/-  0.2157 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0770 +/-  0.0052 
 AVG NO. OF DOCTOR SIGNALS:  0.9230 +/-  0.0052 
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 AVG No. of Days from Susceptible to Algo Signal:  4.2740 +/-  
0.1333 
 AVG No. of Days from Susceptible to Doc Signal:  6.9514 +/-  
0.0279 
 
RUN #19 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9739.9407 +/-  1.8247 
 Avg no. Infected:  251.2507 +/-  1.8204 
 Avg no. At The Hospital:  8.8085 +/-  0.0191 
 
 AVG NO. OF ALGORITHM SIGNALS:  1.0000 +/-  0.0000 
 AVG NO. OF DOCTOR SIGNALS:  0.0000 +/-  0.0000 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.7474 +/-  
0.0122 
 AVG No. of Days from Susceptible to Doc Signal: -7.0000 +/- ? 
 
RUN #20: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9771.6956 +/-  2.2940 
 Avg no. Infected:  219.5363 +/-  2.2893 
 Avg no. At The Hospital:  8.7681 +/-  0.0193 
 
 AVG NO. OF ALGORITHM SIGNALS:  1.0000 +/-  0.0000 
 AVG NO. OF DOCTOR SIGNALS:  0.0000 +/-  0.0000 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.5368 +/-  
0.0155 
 AVG No. of Days from Susceptible to Doc Signal: -7.0000 +/- ? 
 
RUN #21: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9877.8940 +/-  1.2423 
 Avg no. Infected:  113.2931 +/-  1.2367 
 Avg no. At The Hospital:  8.8129 +/-  0.0198 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.9987 +/-  0.0007 
 AVG NO. OF DOCTOR SIGNALS:  0.0013 +/-  0.0007 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.5387 +/-  
0.0158 
 AVG No. of Days from Susceptible to Doc Signal:  4.0000 +/-  
0.0000 
 
RUN #22: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9152.6061 +/-  0.3130 
 Avg no. Infected:  8.3418 +/-  0.0775 
 Avg no. At The Hospital:  839.0521 +/-  0.2517 
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 AVG NO. OF ALGORITHM SIGNALS:  0.2444 +/-  0.0084 
 AVG NO. OF DOCTOR SIGNALS:  0.7556 +/-  0.0084 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.4865 +/-  
0.0585 
 AVG No. of Days from Susceptible to Doc Signal:  5.7992 +/-  
0.0228 
 
RUN #23: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9722.4944 +/-  1.3986 
 Avg no. Infected:  268.6586 +/-  1.3949 
 Avg no. At The Hospital:  8.8470 +/-  0.0188 
 
 AVG NO. OF ALGORITHM SIGNALS:  1.0000 +/-  0.0000 
 AVG NO. OF DOCTOR SIGNALS:  0.0000 +/-  0.0000 
 
 AVG No. of Days from Susceptible to Algo Signal:  2.8623 +/-  
0.0093 
 AVG No. of Days from Susceptible to Doc Signal: -7.0000 +/- ? 
 
RUN #24: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9986.1669 +/-  0.0848 
 Avg no. Infected:  4.8968 +/-  0.0745 
 Avg no. At The Hospital:  8.9364 +/-  0.0203 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.7421 +/-  0.0086 
 AVG NO. OF DOCTOR SIGNALS:  0.2579 +/-  0.0086 
 
 AVG No. of Days from Susceptible to Algo Signal:  3.0838 +/-  
0.0377 
 AVG No. of Days from Susceptible to Doc Signal:  4.9364 +/-  
0.0293 
 
RUN #25: 
Using 10000 independent replications, 95% CI for following measures as 
followed: 
 Avg no. Susceptible:  9322.9228 +/-  0.9899 
 Avg no. Infected:  242.4855 +/-  0.9332 
 Avg no. At The Hospital:  434.5917 +/-  0.1270 
 
 AVG NO. OF ALGORITHM SIGNALS:  0.0444 +/-  0.0040 
 AVG NO. OF DOCTOR SIGNALS:  0.9556 +/-  0.0040 
 
 AVG No. of Days from Susceptible to Algo Signal:  1.5743 +/-  
0.0771 
 AVG No. of Days from Susceptible to Doc Signal:  4.0078 +/-  
0.0018 
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