
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 

STINFO COPY 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

 
  

                                                                              
 
  
COUNTERING BOTNETS:  ANOMALY-BASED DETECTION, 
COMPREHENSIVE ANALYSIS, AND EFFICIENT MITIGATION  

 
 
GEORGIA TECH RESEARCH CORPORATION 
 

MAY 2011  
 
FINAL TECHNICAL REPORT  

AFRL-RI-RS-TR-2011-098 

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND  



  

NOTICE AND SIGNATURE PAGE 
 
 
 
Using Government drawings, specifications, or other data included in this document for  
any purpose other than Government procurement does not in any way obligate the U.S. 
Government. The fact that the Government formulated or supplied the drawings,  
specifications, or other data does not license the holder or any other person or corporation;  
or convey any rights or permission to manufacture, use, or sell any patented invention that  
may relate to them.  
 
This report is the result of contracted fundamental research deemed exempt from public 
affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.  This report is 
available to the general public, including foreign nationals. Copies may be obtained from 
the Defense Technical Information Center (DTIC) (http://www.dtic.mil).   
 
 
AFRL-RI-RS-TR-2011-098 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
FOR THE DIRECTOR:  
 
          
              /s/                                                      /s/ 
 
 
KEESOOK HAN                WARREN H. DEBANY JR., Technical Advisor 
Work Unit Manager    Information Exploitation and Operations Division 
                                                                               Information Directorate                                                                        
  
                    
 
 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  
 
 
 



  

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 

 May 2011 
2. REPORT TYPE

Final Technical Report 
3. DATES COVERED (From - To)

March 2008 – October 2010 
4. TITLE AND SUBTITLE 
 
COUNTERING BOTNETS:  ANOMALY-BASED DETECTION, 
COMPREHENSIVE ANALYSIS, AND EFFICIENT MITIGATION 

5a. CONTRACT NUMBER 
N/A 

5b. GRANT NUMBER 
FA8750-08-2-0141 

5c. PROGRAM ELEMENT NUMBER
 

6. AUTHOR(S) 
Wenke Lee 
David Dagon 
Jon Giffin 
Nick Feamster 
Gunter Ollman 
Jody Westby 
Rick Wesson 
Paul Vixie 

5d. PROJECT NUMBER 
DHS1 

5e. TASK NUMBER 
BO 

5f. WORK UNIT NUMBER 
TN 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Tech Research Corporation 
505 10th St. NW 
Atlanta, GA  30332-0001

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate 
Rome Research Site/RIGD 
525 Brooks Road 
Rome  NY  13441 

10. SPONSOR/MONITOR'S ACRONYM(S)
              AFRL/RI 

11. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
AFRL-RI-RS-TR-2011-098 

12. DISTRIBUTION AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research 
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum 
dated 10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.   
13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
We cover five general areas: (1) botnet detection, (2) botnet analysis, (3) botnet mitigation, (4) add-on tasks to the original 
contract, including the Conficker Working Group Lessons Learned, Layer-8 Exploration of Botnet Organization, and DREN 
research, and (5) commercialization in this paper. We have successfully developed new botnet detection and analysis capabilities 
in this project. These algorithms have been evaluated using real-world data, and have been put into actual, deployed systems. The 
most significant technical developments include a new dynamic reputation systems for DNS domains, a scalable anomaly 
detection system for botnet detection in very large network, and a transparent malware analysis system. In addition, on several 
occasions we have used our botnet data and analysis to help law enforcement agencies arrest botmasters. We also have had great 
success transitioning technologies to commercial products that are now used by government agencies, ISPs, and major 
corporations.  

 

15. SUBJECT TERMS 
Cyber Security, Cyber Attack, Botnet, Botnet Detection, Botnet Traceback and Attribution, Malware, Malware Analysis, DNS, DNS-Based 
Monitoring, DNS-Based Redirection, BGP, BGP Route Injection.  

 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
 

UU 

18. NUMBER 
OF PAGES 
 

58 

19a. NAME OF RESPONSIBLE PERSON 
KEESOOK HAN 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

19b. TELEPHONE NUMBER (Include area code) 
N/A 

           Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.



 
 

TABLE OF CONTENTS 
 
SECTION                                                                                 PAGE
  
LIST OF FIGURES .......................................................................................................................................... ii 

LIST OF TABLES ........................................................................................................................................... iii 

1.0  SUMMARY .............................................................................................................................................. 1 

1.1  OVERVIEW ...................................................................................................................................... 1 

2.0  INTRODUCTION .................................................................................................................................... 1 

2.1  BOTNET DETECTION ..................................................................................................................... 1 

2.2  BOTNET ANALYSIS ....................................................................................................................... 1 

2.3  BOTNET MITIGATION .................................................................................................................... 2 

2.4  ADD-ON TASKS .............................................................................................................................. 2 

2.5  COMMERCIALIZATION .................................................................................................................. 2 

3.0  METHODS, ASSUMPTIONS AND PROCEDURES ................................................................................... 3 

3.1  BOTNET DETECTION ..................................................................................................................... 3 

3.1.1  DNS-BASED MONITORING .................................................................................................... 3 

3.1.2  NETWORK-BASED ANOMALY DETECTION ....................................................................... 19 

3.2  BOTNET ANALYSIS ..................................................................................................................... 31 

3.2.1  MALWARE ANALYSIS .......................................................................................................... 31 

3.2.2  BOTNET TRACEBACK AND ATTRIBUTION ........................................................................ 34 

3.3  BOTNET MITIGATION .................................................................................................................. 35 

3.4  ADD-ON TASKS ............................................................................................................................ 35 

3.5  COMMERCIALIZATION ................................................................................................................ 36 

4.0  RESULTS AND DISCUSSION ............................................................................................................... 37 

4.1  EVALUATION OF NOTOS ............................................................................................................ 37 

4.2  DISCUSSION ................................................................................................................................. 44 

5.0  CONCLUSION ....................................................................................................................................... 46 

6.0  REFERENCES ...................................................................................................................................... 47 

6.1  LIST OF PERFORMERS ............................................................................................................... 49 

6.2  LIST OF PUBLICATIONS/REPORTS ........................................................................................... 49 

LIST OF ACRONYMS ................................................................................................................................... 52 

 

  

i



 
 

LIST OF FIGURES 
 
Figure 1: (a) SIE’s architecture: sensors contribute data to an aggregation node, which 

rebroadcasts DNS data for analysis nodes (b) SIE data averages 45Mb/s, with bursts 
up to 100Mb/s. ............................................................................................................ 3 

Figure 2: GeoIP Plotting of Bot Victims. ........................................................................... 3 
Figure 3: System Overview ................................................................................................ 6 
Figure 4: Computing network/zone/evidence based features. ............................................ 8 
Figure 5: Off-line and on-line modes in Notos. .................................................................. 8 
Figure 6: (a) Network profile modeling in Notos. (b) Network and zone based clustering 

in Notos. ...................................................................................................................... 9 
Figure 7: Network & zone based clustering process in Notos, in the case of a Akamai [A] 

and a malicious [B] domain name............................................................................. 14 
Figure 8: The output from the network profiling module, the domain clustering module 

and the evidence vector will assist the reputation function to assign the reputation 
score to the domain d. ............................................................................................... 15 

Figure 9: ROC curves for all network profile classes shows the Meta-Classifier’s 
accuracy. ................................................................................................................... 18 

Figure 10: The ROC curve from the reputation function indicating the high accuracy of 
Notos. ........................................................................................................................ 18 

Figure 11: Architectural Overview ................................................................................... 22 
Figure 12: Packet Sampling Architecture ......................................................................... 22 
Figure 13: Average detection rate for cross-epoch correlation, over different PerExp .... 26 
Figure 14: Detection rate for cross-epoch correlation, PerExp = 0.01 ............................. 26 
Figure 15: Detection rate for cross-epoch correlation, PerExp = 0.05 ............................. 27 
Figure 16: Scalability of Cross-Epoch Correlation ........................................................... 28 
Figure 17: Avg detection rate (over SRT s) of Cross-Epoch Correlation using B-Sampling

 ................................................................................................................................... 29 
Figure 18: Ether’s system architecture. ............................................................................ 32 
Figure 19: With the 2-step clustering step, Notos is able to cluster large trends of DNS 

behavior. .................................................................................................................... 38 
Figure 20: By using different number of network and zone vectors we observe that after 

the first 100,000, there is no significant variation in the absolute number of produced 
clusters during the 1st and 2nd level clustering steps. .............................................. 39 

Figure 21: An example of characterizing the akamaitech.net unknown vectors as benign 
based on the already labeled vectors (akamai.net) present in the same cluster. ....... 40 

Figure 22: An example of how the Zeus botnet clusters during our experiments. All 
vectors are in the same network cluster and in two different zone clusters. ............. 41 

Figure 23: Dates in which various blacklists confirmed that the RRs were malicious after 
Notos assigned low reputation to them on the 1st of August. .................................. 43 

ii



 
 

LIST OF TABLES 
 
Table 1: Background traces .............................................................................................. 23 

Table 2: Botnet traces ....................................................................................................... 23 

Table 3: Sampling rate ...................................................................................................... 25 

Table 4: Detection Rates of Cross-Epoch Correlation using B-Sampling ........................ 27 

Table 5: Detection Rates of Fine-Grained Detectors ........................................................ 29 

Table 6: Performance of Fine-Grained Detector .............................................................. 30 

Table 7: Effectiveness of generic unpackers. ................................................................... 33 

Table 8: Effectiveness of sandboxing environments. ....................................................... 34 

Table 9: Sample cases form Zeus domains detected by Notos and the corresponding days 
that appeared in the public BLs. All evidence information in this table were 
harvested from zeustracker.abuse.ch. ....................................................................... 42 

Table 10: Anecdotal cases of malicious domain names detected by Notos and the 
corresponding days that appeared in the public BLs .[1]: hosts-file.net, [2]: 
malwareurl.com, [3] siteadvisor.com, [4] virustotal.com, [5] 
ddanchev.blogspot.com, [6] malwaredomainlist.com. ............................................. 42 

 

iii



 
 

 
1.0 SUMMARY 
 

1.1 Overview 
 
We cover five general areas: (1) botnet detection, (2) botnet analysis, (3) botnet 
mitigation, (4) add-on tasks to the original contract, including the Conficker Working 
Group Lessons Learned, Layer-8 Exploration of Botnet Organization, and DREN 
research, and (5) commercialization in this final technical paper.  
The introduction to the project and an overview of each area is given in Section 2. In 
Section 3, we present the procedures and results for each area. We evaluate a DNS 
reputation system and discuss the most significant results in Section 4. Section 5 is the 
conclusion.  
 
2.0 INTRODUCTION 

2.1 Botnet Detection 
 
Our goal was to develop botnet detection technology that is robust against new and 
evolving forms of botnets and evasion techniques. Toward this goal, we have researched 
and developed complementary approaches for DNS-based monitoring and network-based 
anomaly detection.  
 
In DNS monitoring, our approach is to analyze DNS query traffic to identify domain 
names that are used for botnet command and control (C&C). We have systematically 
analyzed the DNS protocol behaviors at each layer of the DNS hierarchy, extracted 
statistical and temporal features, and applied machine learning algorithms to learn models 
to distinguish the look-up patterns of a botnet C&C domain from those of a legitimate 
DNS domain.  
 
In network-based anomaly detection, our approach is to analyze in-bound and out-bound 
traffic of an enterprise network, and apply clustering analysis to identify the group(s) of 
hosts that have similar C&C like traffic (e.g., communicate to an outside server with 
similar network flows) and similar malicious activity traffic (e.g., spam). According to 
our definition, these group(s) of hosts are part(s) of a botnet(s). 

2.2 Botnet Analysis 
 
We have developed new malware analysis technologies with the focus of defeating 
obfuscation techniques employed by malware. Our technologies include an automated 
unpacker, and a transparent analysis environment where malware cannot know it is being 
analyzed. 
 
We have also explored techniques and procedures to investigate evidence of at network 
service providers, communications in on-line forums, etc. that can suggest the 
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whereabouts of botmasters. Our work has yielded promising results and suggested 
research directions for effective botnet traceback and attribution techniques. 

2.3 Botnet Mitigation 
 
We have developed a host-based forensic analysis and recovery tool. It uses virtual 
machine technologies to build a clean execution context on an infected system and 
automatically analyzes and recovers from infections. The analysis includes both an off-
line forensic analysis of the affected disk as well as host-level execution of behavioral 
profiles generated by executing the infected system in a protected emulation 
environment. 
 
We have developed several network-based response techniques and procedures, including 
DNSbased redirection, and blackhole route injection. 

2.4 Add-on Tasks 
 
We organized and led an effort to document the lessons learned in the Conficker botnets. 
The participants included academic researchers, network providers, and analysts from 
security companies. A report has been published. 
 
Together with the Internet Law Group, we also explored the regulatory frameworks that 
permit civil investigation of the financial structure, organization and management of 
botnets. The goal is to develop techniques that can be used for de-monetizing botnets 
through the eventual disruption of payment processing in criminal networks. 
 
With the help of DREN, we developed spam and botnet data analysis systems for 
identifying compromised government assets, clustering analysis of DNS reputation, and 
DNS Weather Map data. 

2.5 Commercialization  
 
Support Intelligence has developed and commercialized several tools and data feed, 
including DNSBL data analysis tools. 
 
Damballa has also incorporated several algorithms developed in this project into their 
products and services, including dynamic and passive DNS monitoring, and DNS 
redirection. Damballa’s growing list of customers including major ISPs and Fortune 500 
companies, banks, and universities.  
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3.0 METHODS, ASSUMPTIONS AND PROCEDURES 

3.1 Botnet Detection 

3.1.1 DNS-Based Monitoring 
 
Passive DNS Data For part of this project, Georgia Tech and ISC were required to create 
a passive-DNS data collection system. This has resulted in the creation of the Security 
Information Exchange, SIE. Details about SIE are found at https://sie.isc.org. Figure 1 (a) 
shows a conceptual view of the SIE data collection system. 
 

 
 

Figure 1: (a) SIE’s architecture: sensors contribute data to an aggregation node, 
which rebroadcasts DNS data for analysis nodes (b) SIE data averages 45Mb/s, with 

bursts up to 100Mb/s. 
 
 

 

 
 

Figure 2: GeoIP Plotting of Bot Victims. 
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GeoIP Information Georgia Tech has produced a IPv4-to-jurisdiction database. The 
database allows one to map a given IP (if located in the US) to a US District Court 
jurisdiction. These jurisdictions in turn correspond to FBI districts. This mapping permits 
researchers to identify areas where victims are located, and which FBI office may have 
jurisdiction over any resulting investigation. 
 
As a result of this exercise, we have also created a variety of tools that plot geo-locations 
of botnets. These tools can create animations or static images, as shown in Figure 2. This 
sort of visualization assisted in the development and debugging of the GeoIP deliverable, 
and may prove useful to other researchers. 
 
dnscap We have developed dnscap, a dns capture and analysis tool. A copy of the tool is 
available at https://www.dns-oarc.net/tools/dnscap. The tool is similar to various PCAP 
handling tools, except that it understands the DNS protocol, and exposes filtering options 
to command line users. Thus, one can use dnscap to filter pcap data based on the content 
of RRsets, and not merely based on the IP and UDP header information. 
 
Detection of Fast Flux Networks We developed a passive approach for detecting and 
tracking malicious flux service networks. Our detection system is based on passive 
analysis of recursive DNS (RDNS) traffic traces collected from multiple large networks. 
Contrary to previous work, our approach is not limited to the analysis of suspicious 
domain names extracted from spam emails or precompiled domain blacklists. Instead, our 
approach is able to detect malicious flux service networks in-the-wild, i.e., as they are 
accessed by users who fall victims of malicious content advertised through blog spam, 
instant messaging spam, social website spam, etc., beside email spam. We experimented 
with the RDNS traffic passively collected at two large ISP networks. Overall, our sensors 
monitored more than 2.5 billion DNS queries per day from millions of distinct source IPs 
for a period of 45 days. Our experimental results show that the proposed approach is able 
to accurately detect malicious flux service networks. Furthermore, the results show that 
our passive detection and tracking of malicious flux service networks can facilitate spam 
filtering applications. 
 
We describe our approach in more detail below. 
 
Our detection system is based on passive analysis of recursive DNS traces collected from 
multiple large networks. In practice, we deploy a sensor in front of the recursive DNS 
(RDNS) server of different networks, passively monitor the DNS queries and responses 
from the users to the RDNS, and selectively store information about potential fast-flux 
domains into a central DNS data collector. Since the amount of RDNS traffic in large 
networks is often overwhelming, we devised a number of prefiltering rules that aim at 
identifying DNS queries to potential fast-flux domain names, while discarding the 
remaining requests to legitimate domain names. Our prefiltering stage is very 
conservative, nevertheless, it is able to reduce the volume of the monitored DNS traffic to 
a tractable amount without discarding information about domain names actually related 
to malicious flux services. Once information about potential malicious flux domains has 
been collected for a certain epoch E (e.g., one day), we perform a more fine-grain 
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analysis. First, we apply a clustering process to the domain names collected during E, and 
we group together domain names that are related to each other. For example we group 
together domain names that point to the same Internet service, are related to the same 
content distribution network (CDN), or are part of the same malicious flux network. Once 
the monitored domain names have been grouped, we classify these clusters of domains 
and the related monitored resolved IP addresses as either being part of a malicious flux 
service network or not. This is in contrast with most previous works, in which single 
domain names are considered independently from each other, and classified as either fast-
flux or non-fast-flux. Our detection approach has a fundamental advantage, compared to 
previous work. Passively monitoring live users’ DNS traffic offers a new vantage point, 
and allows us to capture queries to flux domain names that are advertised through a 
variety of means, including for example blog spam, social websites spam, search engine 
spam, and instant messaging spam, beside email spam and precompiled domain 
blacklists. Furthermore, differently from the active probing approach used in previous 
work, we passively monitor live users traffic without interacting ourselves with the flux 
networks. Active probing of fast-flux domain names may be detected by the attacker, 
who often controls the authoritative name servers responsible for responding to DNS 
queries about her fast-flux domain names. If the attacker detects that an active probing 
system is trying to track her malicious flux service network, she may stop responding to 
queries coming from the probing system to prevent unveiling further information. On the 
other hand, our detection system is able to detect flux services in a stealthy way. This 
work is to be published in the 2009 Annual Computer Security Applications Conference 
[20]. 
 
Passive DNS Monitoring for Dynamic Reputation of Domains The Domain Name 
System (DNS) is an essential protocol used by not only legitimate Internet applications 
but also cyber attacks. For example, botnets are known to rely on DNS to support agile 
command and control infrastructures. An effective way to disrupt these attacks is to put 
the domains known to be involved in malicious activities on a block- list (or, blacklist) or 
a filtering rule in a firewall or network intrusion detection system. To evade such security 
countermeasures, attackers have recently developed techniques to make very agile use of 
DNS, e.g., by using new domains daily, to render static blacklisting or firewalling 
ineffective. We developed a dynamic reputation system for DNS called Notos (see Figure 
3). The premise of this system is that malicious, agile use of DNS has unique 
characteristics and can be distinguished from legitimate, professionally-provisioned DNS 
services. Notos uses passive DNS query data and analyzes the network and zone features 
of domains. It builds models of known legitimate domains and malicious domains, and 
uses these models to compute a reputation score for a new domain indicative of whether 
the domain is likely to be for malicious or legitimate uses. We have evaluated Notos in a 
large ISP’s networks with DNS traffic from 1.4 million users. Our results show that 
Notos can identify malicious domains with very high accuracy (true positive rate) 
(96.8%) and very low false positive rate (0.38%), and can identify these domains weeks 
or even months before they appear in public blacklists. This work was published in the 
19th USENIX Security Symposium, August 2010[7]. 
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Figure 3: System Overview 

 
Below we provide some details of the Notos system.  
 
The goal of the Notos reputation system is to dynamically assign reputation scores to 
domain names. Given a domain name d, we want to assign a low reputation score if d is 
involved in malicious activities (e.g., if it has been involved with botnet C&C servers, 
spam campaigns, malware propagation, etc.). On the other hand, we want to assign a high 
reputation score if d is associated with legitimate Internet services.  
 
Notos’ main source of information is a passive DNS (pDNS) database, which contains 
historical information about domain names and their resolved IPs. Our pDNS database is 
constantly updated using real-world DNS traffic from multiple geographically diverse 
locations as shown in Figure 3. We collectDNS traffic from two ISP recursive DNS 
servers (RDNS) located in Atlanta and San Jose. The ISP nodes witness 30,000 DNS 
queries/second during peak hours. We also collect DNS traffic through the Security 
Information Exchange (SIE) [10], which aggregates DNS traffic received by a large 
number of RDNS servers from authoritative name servers across North America and 
Europe. In total, the SIE project processes approximately 200 Mbit/s of DNS messages, 
several times the total volume of DNS traffic in a single US ISP. 
 
Another source of information we use is a list of known malicious domains. For example, 
we run known malware samples in a controlled environment and we classify as 
suspicious all the domains contacted by malware samples that do not match a pre-
compiled white list. In addition, we extract suspicious domain names from spam emails 
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collected using a large spam-trap. Again, we discard the domains that match our whitelist 
and consider the rest as potentially malicious. Furthermore, we collect a large list of 
popular, legitimate domains from alexa.com. The set of known malicious and 
legitimate domains represents our knowledge base, and is used to train our reputation 
engine. 
 
Intuitively, a domain name d can be considered suspicious when there is evidence that d 
or its IP addresses are (or were in previous months) associated with known malicious 
activities. The more evidence of “bad associations” we can find about d, the lower the 
reputation score we will assign to it. On the other hand, if there is evidence that d is (or 
was in the past) associated with legitimate, professionally run Internet services, we will 
assign it a higher reputation score. 
 
Before describing the internals of our reputation system, we introduce some basic 
terminology. A domain name d consists of a set of substrings or labels separated by a 
period; the rightmost label is called the top-level domain, or TLD. The second-level 
domain (2LD) represents the two rightmost labels separated by a period; the third-level 
domain (3LD) analogously contains the three rightmost labels, and so on. As an example, 
given the domain name d=“a.b.example.com”, TLD(d)=“com”, 2LD(d)=“example.com”, 
and 3LD(d)=“b.example.com”. 
 
Let s be a domain name (e.g., s=“example.com”). We define Zone(s) as the set of 
domains that include s and all domain names that end with a period followed by s (e.g., 
domains ending in “.example.com”). 
 
Let D = {d1, d2, ..., dm} be a set of domain names. We call A(D) the set of IP addresses 

ever pointed to by any domain name d ∈ D. 
 
Given an IP address a, we define BGP(a) to be the set of all IPs within the BGP prefix of 
a, and AS(a) as the set of IPs located in the autonomous system in which a resides. In 
addition, we can extend these functions to take as input a set of IPs: given IP set A = a1, 
a2, ..., aN, BGP(A) = Sk=1..N BGP(ak); AS(a) is similarly extended. 
 
To assign a reputation score to a domain name d we proceed as follows. First, we 
consider the most current set Ac(d) = {ai}i=1..m of IP addresses to which d points. Then, 
we query our pDNS database to retrieve the following information: 
 

• Related Historic IPs (RHIPs), which consist of the union of A(d), 
A(Zone(3LD(d))), and A(Zone(2LD(d))). In order to simplify the notation we 
will refer to A(Zone(3LD(d))) and A(Zone(2LD(d))) as A3LD(d) and A2LD(d), 
respectively. 

• Related Historic Domains (RHDNs), which comprise the entire set of domain 
names that ever resolved to an IP address a ∈ AS(A(d)). In other words, RHDNs 

contain all the domains di for which A(di) ∩ AS(A(d)) 6= ∅. 
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After extracting the above information from our pDNS database, we measure a number of 
statistical features. Specifically, for each domain d we extract three groups of features, as 
shown in Figure 4: 

 
Figure 4: Computing network/zone/evidence based features. 

 

 
 

Figure 5: Off-line and on-line modes in Notos. 
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Figure 6: (a) Network profile modeling in Notos. (b) Network and zone based 

clustering in Notos. 
 

• Network-based features: The first group of statistical features is extracted from 
the set of RHIPs. We measure quantities such as the total number of IPs 
historically associated with d, the diversity of their geographical location, the 
number of distinct autonomous systems (ASs) in which they reside, etc. 

• Zone-based features: The second group of features we extract are those from the 
RHDNs set. We measure the average length of domain names in RHDNs, the 
number of distinct TLDs, the occurrence frequency of different characters, etc. 

• Evidence-based features: The last set of features includes the measurement of 
quantities such as the number of distinct malware samples that contacted the 
domain d, the number of malware samples that connected to any of the IPs 
pointed by d, etc. 

 
Once extracted, these statistical features are fed to the reputation engine. Notos’ 
reputation engine operates in two modes: an off-line “training” mode and an on-line 
“classification” mode. During the off-line mode, Notos trains the reputation engine using 
the information gathered in our knowledge base, namely the set of known malicious and 
legitimate domain names and their related IP addresses. Afterwards, during the on-line 
mode, for each new domain d, Notos queries the trained reputation engine to compute a 
reputation score for d (see Figure 5). We now explain the details about the statistical 
features we measure, and how the reputation engine uses them during the off-line and on-
line modes to compute a domain names’ reputation score. 
 
We now describe key statistical features and the intuition behind their selection. 
 
Given a domain d we extract a number of statistical features from the set RHIPs of d. 
Our network-based features describe how the operators who own d and the IPs that 
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domain d points to, allocate their network resources. Internet miscreants often abuse 
DNS to operate their malicious networks with a high level of agility. Namely, the domain 
names and IPs that are used for malicious purposes are often short-lived and are 
characterized by a high churn rate. This agility avoids simple blacklisting or removals by 
law enforcement. In order to measure the level of agility of a domain name d, we extract 
eighteen statistical features that describe d’s network profile. Our network features fall 
into the following three groups: 
 

• BGP features: This subset consists of a total of nine features. We measure the 
number of distinct BGP prefixes related to BGP(A(d)), the number of countries in 
which these BGP prefixes reside, and the number of organizations that own these 
BGP prefixes; the number of distinct IP addresses in the sets A3LD(d) and A2LD(d); 
the number of distinct BGP prefixes related to BGP(A3LD(d)) and BGP(A2LD(d)), 
and the number of countries in which these two sets of prefixes reside. 

• AS features: This subset consists of three features, namely the number of distinct 
autonomous systems related to AS(A(d)), AS(A3LD(d)), and AS(A2LD(d)). 

• Registration features: This subset consists of six features. We measure the 
number of distinct registrars associated with the IPs in the A(d) set; the diversity 
in the registration dates related to the IPs in A(d); the number of distinct registrars 
associated with the IPs in the A3LD(d) and A2LD(d) sets; and the diversity in the 
registration dates for the IPs in A3LD(d) and A2LD(d). 

While most legitimate, professionally run Internet services have a very stable network 
profile, which is reflected into low values of the network features described above, the 
profiles of malicious networks (e.g., fast-flux networks) usually change relatively 
frequently, thus causing their network features to be assigned higher values. We expect a 
domain name d from a legitimate zone to exhibit a small values in its AS features, mainly 
because the IPs in the RHIPs should belong to the same organization or a small number 
of different organizations. On the other hand, if a domain name d participates in 
malicious activities (i.e., botnet activities, flux networks), then it could reside in a large 
number of different networks. The list of IPs in the RHIPs that correspond to the 
malicious domain name will produce AS features with higher values. In the same sense, 
we measure that homogeneity of the registration information for benign domains. 
Legitimate domains are typically linked to address space owned by organizations that 
acquire and announce network blocks in some order. This means that the registration-
feature values for a legitimate domain name d that owned by the same organizations will 
produce a list of IPs in the RHIPs that will have small registration feature values. If this 
set of IPs exhibits high registration feature values, it means that they very likely reside in 
different registrars and were registered on different dates. Such registration-feature 
properties are typically linked with fraudulent domains. 
 
The network-based features measure a number of characteristics of IP addresses 
historically related to a given domain name d. On the other hand, the zone-based features 
measure the characteristics of domain names historically associated with d. The intuition 
behind the zonebased features is that while legitimate Internet services may be associated 
with many different domain names, these domain names usually have strong similarities. 
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For example, google.com, googlesyndication.com, googlewave.com, etc., 
are all related to Internet services provided by Google, and contain the string “google” in 
their name. On the other hand, malicious domain names related to the same spam 
campaign, for example, often look randomly generated and share few common 
characteristics. Therefore, our zone-based features aim to measure the level of diversity 
across the domain names in the RHDNs set. Given a domain name d, we extract 
seventeen statistical features that describe the properties of the set RHDNs of domain 
names related to d. We divide these seventeen features into two groups: 
 

• String features: This group consists of twelve features. We measure the number 
of distinct domain names in RHDNs, and the average and standard deviation of 
their length; the mean, median, and standard deviation of the occurrence 
frequency of each single character in the domain name strings in RHDNs; the 
mean, median and standard deviation of the distribution of 2-grams (i.e., pairs of 
characters); the mean, median and standard deviation of the distribution of 3-
grams. 

• TLD features: This group consists of five features. For each domain di in the 
RHDNs set, we extract its top-level domain TLD(di) and we count the number of 
distinct TLD strings that we obtain; we measure the ratio between the number of 
domains di whose TLD(di)=“.com” and the total number of TLD different from 
“.com”; also, we measure the mean, median, and standard deviation of the 
occurrence frequency of the TLD strings.  

 

It is worth noting that whenever we measure the mean, median and standard deviation of 
a certain property, we do so in order to summarize the shape of its distribution. For 
example, by measuring the mean, median, and standard deviation of the occurrence 
frequency of each character in a set of domain name strings, we summarize how the 
distribution of the character frequency looks like. 
 
We use the evidence-based features to determine to what extent a given domain d is 
associated with other known malicious domain names or IP addresses. As mentioned 
above, Notos collects a knowledge base of known suspicious, malicious, and legitimate 
domain names and IPs from public sources. For example, we collect malware-related 
domain names by executing large numbers of malware samples in a controlled 
environment. Also, we check IP addresses against a number of public IP blacklists. Given 
a domain name d, we measure six statistical features using the information in the 
knowledge base. We divide these features into two groups: 
 

• Honeypot features: We measure three features, namely the number of distinct 
malware samples that, when executed, try to contact d or any IP address in A(d); 
the number of malware samples that contact any IP address in BGP(A(d)); and 
the number of samples that contact any IP address in AS(A(d)). 

• Blacklist features: We measure three features, namely the number of IP addresses 
in A(d) that are listed in public IP blacklists; the number of IPs in BGP(A(d)) that 
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are listed in IP blacklists; and the number of IPs in AS(A(d)) that are listed in IP 
blacklists. 

Notos uses the blacklist features from the evidence vector so it can identify the re-use of 
known malicious network resources like IPs, BGP prefixes or even ASs. Domain names 
are significantly cheaper than IPv4 addresses; so malicious users tend to reuse address 
space with new domain names. We should note that the evidence-based features represent 
only part of the information we used to compute the reputation scores. The fact that a 
domain name was queried by malware does not automatically mean that the domain will 
receive a low reputation score. 
 
Notos’ reputation engine is responsible for deciding whether a domain name d has 
characteristics that are similar to either legitimate or malicious domain names. In order to 
achieve this goal, we first need to train the engine to recognize whether d belongs (or is 
“close”) to a known class of domains. This training can be repeated periodically, in an 
off-line fashion, using historical information collected in Notos’ knowledge base. Once 
the engine has been trained, it can be used in on-line mode to assign a reputation score to 
each new domain name d. 
 
We first explain how the reputation engine is trained, and then we explain how a trained 
engine is used to assign reputation scores. During off-line training (Figure 5), the 
reputation engine builds three different modules.  
 
We briefly introduce each module and then elaborate on the details: 
 

• Network Profiles Model: A model of how well known networks behave. For 
example, we model the network characteristics of popular content delivery 
networks (e.g., Akamai, AmazonCloudFront), and large popular websites (e.g., 
google.com, yahoo.com). During the on-line mode, we compare each new domain 
name d to these models of well-known network profiles, and use this information 
to compute the final reputation score, as explained below. 

• Domain Name Clusters: We group domain names into clusters sharing similar 
characteristics. We create these clusters of domains to identify groups of domains 
that contain mostly malicious domains, and groups that contain mostly legitimate 
domains. In the on-line mode, given a new domain d, if d (more precisely, d’s 
projection into a statistical feature space) falls within (or close to) a cluster of 
domains containing mostly malicious domains, for example, this gives us a hint 
that d should be assigned a low reputation score. 

• Reputation Function: For each domain name di, i = 1..n, in Notos’ knowledge 
base, we test it against the trained network profiles model and domain name 
clusters. Let NM(di) and DC(di) be the output of the Network Profiles (NP) 
module and the Domain Clusters (DC) module, respectively. The reputation 
function takes in input NM(di), DC(di), and information about whether di and its 
resolved IPs A(di) are known to be legitimate, suspicious, or malicious (i.e., if 
they appeared in a domain name or IP blacklist), and builds a model that can 
assign a reputation score between zero and one to d. A reputation score close to 
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zero signifies that d is a malicious domain name while a score close to one 
signifies that d is benign. 

We now describe each module in detail.  
 
During the off-line training mode, the reputation engine builds a model of well-known 
network behaviors. An overview of the network profile modeling module can be seen in 
Figure 6. In practice we select five sets of domain names that share similar 
characteristics, and learn their network profiles. For example, we identify a set of domain 
names related to very popular websites (e.g., google.com, yahoo.com, amazon.com) and 
for each of the related domain names we extract their network features. We then use the 
extracted feature vectors to train a statistical classifier that will be able to recognize 
whether a new domain name d has network characteristics similar to the popular websites 
we modeled. 
 
In our current implementation of Notos we model the following classes of domain names: 
 

• Popular Domains. This class consists of a large set of domain names under the 
following DNS zones: google.com, yahoo.com, amazon.com, ebay.com, 
msn.com, live.com, myspace. com, and facebook.com. 

• Common Domains. This class of domains includes domain names under the top 
one hundred zones, according to alexa.com. We exclude from this group all 
the domain names already included in the Popular Domains class (which we 
model separately). 

• Akamai Domains. Akamai is a large content delivery network (CDN), and the 
domain names related to this CDN have very peculiar network characteristics. To 
model the network profile of Akamai’s domain names, we collect a set of 
domains under the following zones: akafms.net, akamai.net, akamaiedge.net, 
akamai.com, akadns.net, and akamai.com. 

• CDN Domains. In this class we include domain names related to CDNs other 
than Akamai. For example, we collect domain names under the following zones: 
panthercdn.com, llnwd.net, cloudfront.net, nyud.net, nyucd.net and redcondor.net. 
We chose not to aggregate these CDN domains and Akamai’s domains in one 
class, since we observed that Akamai’s domains have a very unique network 
profile. Therefore, learning two separate models for the classes of Akamai 
Domains and CDN Domains allows use to achieve better classification accuracy 
during the on-line mode, compared to learning only one model for both classes. 

• Dynamic DNS Domains. This class includes a large set of domain names 
registered under two of the largest dynamic DNS providers, namely No-IP (no-
ip.com) and DynDNS (dyndns.com). For each class of domains, we train a 
statistical classifier to distinguish between one of the classes and all the others. 
Therefore, we train five different classifiers. For example, we train a classifier 
that can distinguish between the class of Popular Domains and all other classes of 
domains. That is, given a new domain name d, this classifier is able to recognize 
whether d’s network profile looks like the profile of a well-known popular 
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domain or not. Following the same logic we, can recognize network profiles for 
the other classes of domains. In this phase, the reputation engine takes the domain 
names collected in our pDNS database during a training period, and builds 
clusters of domains that share similar network and zone based features. The 
overview of this module can be seen in Figure 6(b). We perform clustering in two 
steps. In the first step we only use the network-based features to create coarse-
grained clusters. Then, in the second step, we split each coarse-grained cluster 
into finer clusters using only the zone-based features, as shown in Figure 7. 

 

 
 

Figure 7: Network & zone based clustering process in Notos, in the case of a 
Akamai [A] and a malicious [B] domain name. 
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Figure 8: The output from the network profiling module, the domain clustering 
module and the evidence vector will assist the reputation function to assign the 

reputation score to the domain d. 
 
 
Network-based Clustering The objective of network-based clustering is to group 
domains that share similar levels of agility. This creates separate clusters of domains with 
“stable” network characteristics and “non-stable” networks (like CDNs and malicious 
flux networks). 

Zone-based Clustering After clustering the domain names according to their network-
based features, we further split the network-based clusters of domain names into finer 
groups. In this step, we group domain names that are in the same network-based cluster 
and also share similar zone-based features. To better understand how the zone-based 
clustering works, consider the following examples of zone-based clusters: 

Cluster 1: 
..., 72.247.176.81 e55.g.akamaiedge.net, 72.247.176.94 e68.g.akamaiedge.net, 72.247.176.146 e120.g.akamaiedge.net, 72.247.176.65 
e39.na.akamaiedge.net, 72.247.176.242 e216.g.akamaiedge.net, 72.247.176.33 e7.g.akamaiedge.net, 72.247.176.156 
e130.g.akamaiedge.net, 72.247.176.208 e182.g.akamaiedge.net, 72.247.176.198 e172.g.akamaiedge.net, 72.247.176.217 
e191.g.akamaiedge.net, 72.247.176.200 e174.g.akamaiedge.net, 72.247.176.99 e73.g.akamaiedge.net, 72.247.176.103 
e77.g.akamaiedge.net, 72.247.176.59 e33.c.akamaiedge.net, 72.247.176.68 e42.gb.akamaiedge.net, 72.247.176.237 
e211.g.akamaiedge.net, 72.247.176.71 e45.g.akamaiedge.net, 72.247.176.239 e213.na.akamaiedge.net, 72.247.176.120 
e94.g.akamaiedge.net, ... 
 

Cluster 2: 
..., 90.156.145.198 spzr.in, 90.156.145.198 vwui.in, 90.156.145.198 x9e.ru, 90.156.145.50 v2802.vps.masterhost.ru, 90.156.145.167 
www.inshaker.ru, 90.156.145.198 x7l.ru, 90.156.145.198 c3q.at, 90.156.145.198 ltkq.in, 90.156.145.198 x7d.ru, 90.156.145.198 
zdlz.in, 90.156.145.159 www.designcollector.ru, 90.156.145.198 x7o.ru, 90.156.145.198 q5c.ru, 90.156.145.159 designtwitters.com, 
90.156.145.198 u5d.ru, 90.156.145.198 x9d.ru, 90.156.145.198 xb8.ru, 90.156.145.198 xg8.ru, 90.156.145.198 x8m.ru, 90.156.145.198 
shopfilmworld.cn, 90.156.145.198 bigappletopworld.cn, 90.156.145.198 uppd.in, ... 
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Each element of the cluster is a domain name - IP address pair. These two groups of 
domains belonged to the same network cluster, but were separated into two different 
clusters by the zonebased clustering phase. Cluster 1 contains domain names belonging 
to Akamai’s CDN, while the domains in Cluster 2 are all related to malicious websites 
that distribute malicious software. The two clusters of domains share similar network 
characteristics, but have significantly different zonebased features. For example, consider 
domain names d1=“e55.g.akamaiedge.net” from the first cluster, and d2=“spzr.in” from 
the second cluster. The reason why d1 and d2 were clustered in the same network-based 
cluster is because the set of RHIPs for d1 and d2 have similar characteristics. In particular, 
the network agility properties of d2 make it look like if it was part of a large CDN. 
However, when we consider the set of RHDNs for d1 and d2, we can notice that the zone-
based features of d1 are much more “stable” than the zone-based features of d2. In other 
words, while the RHDNs of d1 share strong domain name similarities (e.g., they all share 
the substring “akamai”) and have low variance of the string features, the strong zone 
agility properties of d2 affect the zone-based features measured on d2’s RHDNs and make 
d2 look very different from d1. 
 
One of the main advantages of Notos is the reliable assignment of low reputation scores 
to domain names participating in “agile” malicious campaigns. Less agile malicious 
campaigns, e.g., Fake AVs campaigns may use domain names structured to resemble 
CDN related domains. Such strategies would not be beneficial for the FakeAV campaign, 
since domains like virus-scan1.com, virus-scan2.com, etc., can be trivially 
blocked by using simple regular expressions [21]. In other words, the attackers need to 
introduce more “agility” at both the network and domain name level in order to avoid 
simple domain name blacklisting. Notos would only require a few labeled domain names 
belonging to the malicious campaign for training purposes, and the reputation engine 
would then generalize to assign a low reputation score to the remaining (previously 
unknown) domain names that belong to the same malicious campaign. 
 
Once we build a model of well-known network profiles and the domain clusters, we can 
build the reputation function. The reputation function will assign a reputation score in the 
interval [0, 1] to domain names, with 0 meaning low reputation (i.e., likely malicious) 
and 1 meaning high reputation (i.e., likely legitimate). We implement our reputation 
function as a statistical classifier. In order to train the reputation function, we consider all 
the domain names di, i = 1, .., n in Notos’ knowledge base, and we feed each domain di 

to the network profiles module and to the domain clusters module to compute two output 
vectors NM(di) and DC(di), respectively. We explain the details of how NM(di) and 
DC(di). For now it sufficient to consider NM(di) and DC(di) as two feature vectors. For 
each di we also compute an evidence features vector EV (di). Let v(di) be a feature vector 
that combines the NM(di), DC(di), and EV (di) feature vectors. We train the reputation 
function using the labeled dataset L = {(v(di), yi)}i=1..n, where yi = 0 if di is a known 
malicious domain name, otherwise yi = 1. 
 
After training is complete; the reputation engine can be used in on-line mode (Figure 5) 
to assign a reputation score to new domain names. For example, given an input domain 
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name d, the reputation engine computes a score S ∈ [0, 1]. Values of S close to zero 
mean that d appears to be related to malicious activities and therefore has a low 
reputation. On the other hand, values of S close to one signify that d appears to be 
associated with benign Internet services, and therefore has a high reputation. The 
reputation score is computed as follows. First, d is fed into the network profiles module, 
which consists of five statistical classifiers. The output of the network profiles module is 
a vector NM(d) = {c1, c2, ..., c5}, where c1 is the output of the first classifier, and can be 
viewed as the probability that d belongs to the class of Popular Domains, c2 is the 
probability that d belongs to the class of Common Domains, etc. At the same time, d is 
fed into the domain clusters module, which computes a vector DC(d) = {l1, l2, ..., l5}. The 
elements li of this vector are computed as follows. Given d, we first extract its network-
based features and identify the closest network-based cluster to d, among the network-
based clusters computed by the domain clusters module during the off-line mode. Then, 
we extract the zone-based statistical features and identify the zone-based cluster closest to 
d. Let this closest domain cluster be Cd. At this point, we consider all the zone-based 
feature vectors vj ∈ Cd, and we select the subset of vectors Vd ⊆ Cd for which the two 
following conditions are verified: i) dist(zd, vj) < R, where zd is the zone-based feature 
vector for d, and R is a predefined radius; ii) vj ∈ KNN(zd), where KNN(zd) is the set of 
k nearest-neighbors of zd.  
 
The feature vectors in Vd are related to domain names extracted from Notos’ knowledge 
base. Therefore, we can assign a label to each vector vi ∈ Vd, according to the nature of 
the domain name d from which vi was computed. The domains in Notos’ knowledge base 
belong to different classes. In particular, we distinguish between eight different classes of 
domains, namely Popular Domains, Common Domains, Akamai, CDN, and Dynamic 
DNS, and Spam Domains, Flux Domains, and Malware Domains.  
 
In order to compute the output vectorDC(d), we compute the following five statistical 
features: the majority class label L (e.g., L may be equal to Malware Domain), i.e., the 
label that appears the most among the vectors vi ∈ Vd; the standard deviation of label 

frequencies, i.e., given the occurrence frequency of each label among the vectors vi ∈ Vd 

we compute their standard deviation; given the subset V (L)d ⊆ Vd of vectors in Vd that are 
associated with label L, we compute the mean, median and standard deviation of the 
distribution of distances between zd and the vectors vj ∈ V (L)d . 
 
Given a domain d, once we compute the vectors NM(d) and DC(di) as explained above, 
we also compute the evidence vector EV (d). At this point, we concatenate these three 
feature vectors into a sixteen dimensional feature vector v(d), and we feed v(d) in input 
to our trained reputation function. The reputation function computes a score S = 1 − f(d), 
where f(d) can be interpreted as the probability that d is a malicious domain name. S 
varies in the [0, 1] interval, and the lower the value of S, the lower d’s reputation. 
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Figure 9: ROC curves for all network profile classes shows the Meta-Classifier’s 

accuracy. 
 

 
Figure 10: The ROC curve from the reputation function indicating the high 

accuracy of Notos. 
 
The ROC curves in Figure 9 and Figure 10, show high accuracy of Notos. Detailed 
evaluation of Notos will be presented in Section 4. 
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3.1.2 Network-Based Anomaly Detection 
 
BotSniffer and BotMiner We have developed the BotSniffer [13] and BotMiner [14] 
systems, which are intended for detecting bots in enterprise networks. BotSniffer is an 
anomaly detection system for detecting centrally controlled botnets. It uses several 
“spatial and temporal correlation” algorithms to identify a group of hosts that connect to 
the same outside server with similar traffic and at similar times. BotMiner is a much-
improved version of BotSniffer in that it can detect botnets regardless of the structures 
(e.g., centralized or P2P) and protocols (e.g., IRC, HTTP, or SMTP, etc.) used in 
command and control. Our botnet detection work is of the highest research quality, with 
the BotSniffer paper in NDSS 2008 and the BotMiner paper in USENIX Security 2008). 
Our work also generates a lot of interests from the industry. The BotSniffer system has 
been widely reported in industry publications. Technical details: 
 
We observed that network activities of bots within the same botnet are correlated with 
each other and even with their own previous behavior. Thus, we designed BotSniffer as a 
real-time anomaly detection system that captures the spatial-temporal and correlation 
properties of C&C activities by bots. Examples of such bot activities include similar 
connections to same outside server, and similar scan targets and spam messages. We have 
developed heuristics to recognize such C&C activities in IRC and HTTP traffic. We 
evaluated BotSniffer using several real network traces and found the results to be very 
promising. However, a BotSniffer can detect only centralized botnet. We designed 
BotMiner to be a general-purpose botnet detection system. It finds communication 
clusters of similar connections based on a set of connection features such as duration, 
flow sizes, frequency, etc. Bots of the same botnet will belong to the same cluster(s) 
regardless whether botnet is centralized or P2P because the communications between the 
bots and the command and control sever(s), or between the bot peers, are similar. 
BotMiner finds “activities” clusters based on similar (bot) attack-/fraudulent activities 
(e.g., scan and spam). The two kinds of clusters are then correlated to identify bots. We 
showed that BotMiner has very good accuracy (very high detection rate and very low 
false positive rate) in detecting botnets, including P2P botnets. However, the clustering 
algorithms are computationally intensive, and as a result, BotMiner is not yet suitable for 
real-time detection. We are working on traffic sampling techniques to scale up the 
performance of BotMiner. 
 
Scalable Botnet Detection Using Adaptive Sampling and Spatial-Temporal Flow 
Correlation 
 
We have developed a botnet-driven network flow analysis approach that aims to narrow 
down high volumes of traffic to a limited number of network flows that are most likely 
related to botnet C&C communications. The sources of such communications are 
considered highly suspicious hosts, and their traffic can be forwarded to existing packet-
based botnet detectors for further, fine-grain analysis. This allows us to significantly 
reduce the amount of traffic on which DPI is applied, therefore boosting the scalability of 
existing DPI-based botnet detection systems. 
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Network flow analysis typically requires far less resource than DPI. However, collecting 
precise network flow information in high-speed networks is challenging, because we may 
not be able to afford to process every single packet that crosses the network. In order to 
solve this problem, packet sampling techniques are commonly employed to reduce the 
number of packets to be processed. For example, uniform sampling and its variant 
periodic sampling are among the most popular packet sampling techniques, and allow us 
to reconstruct approximate network flow information. However, the effect of these 
sampling techniques is that they are able to reconstruct relatively precise information 
about large flows (i.e., flows that carry a high number of packets), such as media 
streaming flows, but may poorly approximate or miss outright information about small 
and medium flows. As many botnet C&C communications are characterized by small- or 
medium-size flows (i.e., flows that carry a relatively low number of packets), uniform 
and periodic sampling are not suitable for performing flow-based botnet detection. 
Therefore, we introduced a novel, adaptive sampling technique that is able to reconstruct 
precise network flow information for flows that are most likely related to botnet C&C 
communications, while maintaining only approximate information about other flows. 
 
Also, we have developed a new spatial-temporal correlation analysis to identify hosts in a 
network that share persistently similar communication patterns, which is one of the main 
characteristics of botnets. Our spatial-temporal flow correlation analysis is motivated by 
the following observation. Because of their (illegal) economy-driven nature, botnets are 
used by the botmaster for as long as possible to maximize profits (e.g., several months, or 
until the botnet is dismantled by law enforcement). Therefore, their C&C 
communications are active for a relatively long (though not necessarily continuous) 
period of time. Based on these observations, we focus our analysis on identifying hosts in 
a network that persistently share similar communication patterns for a relatively long (not 
necessarily continuous) period of time. 
 
We implemented a proof-of-concept version of our system, and evaluated it using real-
world legitimate and botnet-related network traces. Our experimental results show that 
the proposed approach is scalable and can effectively detect bots with few false positives, 
which can be further reduced by fine-grained botnet detection systems such as BotSniffer 
and BotMiner. 
 
Below we provide some details of this scalable botnet detection framework. 
 
As shown in Figure 11, our botnet detection framework has three components: Flow-
Capture, Flow-Correlation, and Fine-Grained Detector. 
 
The Flow-Capture module aims to monitor the traffic at the edge of high-speed networks 
to gather network flow information, based on the sampled packets. The Flow-Capture 
module is divided in two components: Packet-Sampling and Flow-Assembler. Packet-
Sampling is a botnetaware sampling algorithm. Given an overall target sampling 
probability (SRTarget), it samples packets likely related to botnet C&C communications 
and delivers them to Flow-Assembler, along with their corresponding instant sampling 
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probabilities. The Flow-Assembler reconstructs flow information, and assembles the 
sampled packets into raw flows. 
 
The Flow-Correlation module groups flows output by Flow-Assembler into C-flows. A 
C-flow is an abstraction introduced in BotMiner to represent the C&C communication 
patterns of potential bots. Each C-flow represents a view of the communication patterns 
from a monitored host to a remote service over a certain epoch (e.g, 12 hours). Flow-
Correlation applies a scalable clustering algorithm over the C-flows to identify hosts that 
exhibit similar communication patterns towards machines outside the monitored network. 
This step is similar to the C-Plane analysis performed by BotMiner, but there are two 
fundamental differences. First, we use a significantly more efficient flow clustering 
process, compared to BotMiner, which can handle large traffic volumes typical of high-
speed networks. Second, unlike BotMiner, our Flow-Correlation module performs 
crossepoch correlation to identify hosts that show persistently similar communication 
patterns, a telltale sign of botnets. Any pair of hosts that exhibit persistently similar 
communication patterns will then be labeled as suspicious hosts (potential bots) and 
delivered to the Fine-Grained Detector for further in-depth analysis. The Fine-Grained 
Detector can then focus on monitoring the packets related to only the suspicious IPs 
provided by our Flow-Correlation module, thus reducing the overall cost of the botnet 
detection process. 
 
The design and implementation of the Flow-Capture and Flow-Correlation modules and 
the detection framework are the main contributions of this work. Existing DPI-based 
botnet detectors can be plugged within our framework with little or no modification to 
constitute the Fine-Grained Detector module. We developed a Fine-Grained Detector 
derived from BotMiner and BotSniffer, and we plugged it into our botnet detection 
framework.  
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Figure 11: Architectural Overview 

 

 
Figure 12: Packet Sampling Architecture 

 
 
In particular, we used two components: i) an implementation of the malicious activities 
detector derived from BotMiner’s A-Plane monitor, which can identify groups of similar 
malicious activities based on the attack features (e.g., the scanned port, the exploits or 
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binary content), and ii) BotSniffer’s IRC-based botnet detection module. Similar to the 
Cross-Plane correlation in BotMiner, the correlation component correlates 
communication patterns and activity patterns to detect bots. Any pair of IPs that share 
persistently similar communication patterns (generated by Flow-Correlation) and similar 
malicious activities (generated by the malicious activities detector) are labeled as bots by 
the correlation component. And any host identified by the BotSniffer’s IRC-based botnet 
detection module will be labeled as bot. 
 
We implemented a prototype system and evaluated it using traces of real-world network 
traffic and different botnets. The results show that Flow-Capture can achieve a 
significantly higher sampling rate for botnet-related packets compared to the pre-defined 
sampling rate. We compared B-Sampling to FlexSample, and the experimental results 
indicate that B-Sampling outperforms FlexSample regarding sampling rate for botnet 
packets and detection rate of Flow-Correlation. The cross-epoch correlation can 
effectively and efficiently identify bots given a small percentage of suspicious hosts. The 
fine-grained detector can achieve high detection rate and low false positive rate by only 
inspecting packets related to a small percentage of suspicious hosts. 
 
 
 
 
 

Table 1: Background traces 
 

 
 

Table 2: Botnet traces 
 

 
 
We mounted our monitors on a span port mirroring a backbone router at the college 
network (200Mbps-300Mbps at daytime) to collect data. The traffic covers various 
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applications and we believe such kind of traffic provides good traces to evaluate our 
system. The dataset contains TCP and UDP headers for continuous 3.5 days and full 
packets for 1.5 hours in Table 1 We eliminated a B/16 subnet for dynamic IPs allocated 
for wireless connections, which are frequently changed and can not accurately represent 
the same hosts for multiple epochs. We observed a total of 1460 different IP addresses in 
3.5 days. We also collected 1.5 hour traces with full payload. 
 
We collected the traces of 7 different botnets including IRC-, HTTP- and P2P-based 
botnets, as described in Table 2. Bot-IRC-A and Bot-HTTP-A were collected by 
running bot instances (“TR/Agent.1199508.A” and “Swizzor.gen.c”) inmultiple hosts in 
the honeypot. Bot-IRC-B and Bot-HTTP-B/Cwere generated using Rubot [19], a 
botnet emulation framework. In Bot-HTTP-B, bots periodically contacted the C&C 
server every 10 minutes. And in Bot-HTTP-C, the bots contacted the C&C server in a 
more stealthy way by adding a random time interval between 0 to 10 minutes on each 
time of visiting. Both of them conducted scanning attack on receiving the “scan” 
command. Bots in Bot-IRC-A send packets much more frequently to C&C server in 
the IRC session, resulting in much larger C&C flows compared to Bot-IRC-B. We 
collected traces of two P2P-based botnets, Storm [14] and Waledac [17], by running 
binaries in the controlled environment. 
 
After aligning the timestamp of each packet in botnet traces according to the time of the 
first packet in background traces, we mixed 3.5 consecutive days of botnet traces into the 
college traces by overlaying them to randomly picked client IPs in college network. We 
took one epoch E as 12hr so there are 7 epochs in total. The filter covers major local 
DNS, email servers in the college, the IP ranges of the popular service networks (e.g., 
MICROSOFT, GOOGLE, YAHOO, SUN, etc.), popular content distribution networks 
(e.g., AKAMAI) , whose IP ranges are unlikely to be used for Botnet C&Cs, and IPs of 
top 10000 alexa domains (corresponding to 12230 IPs). 
 
We evaluated B-Sampling algorithm using the mixed traces with different target 
sampling rates (0.01, 0.025, 0.05, 0.075 and 0.1). We compared B-Sampling to 
FlexSample [6], a state-of-theart sampling algorithm that can be configured with different 
“conditions” for different purposes. FlexSample used a specific condition (Figure 10 in 
FlexSample [6]) to capture botnet packets by allocating the majority of budgets to 
packets related to “servers with high indegree of small flows”. However, since the 
number of infected machines could be small in real-world, the “high fan-in” feature may 
not hold and thus will probably miss the botnet packets. This condition causes very low 
sampling rates on botnet packets in our traces. Therefore, we modify the condition and 
only use the condition related to flow size for FlexSample. 
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Table 3: Sampling rate 

 

 
 

 
 

Table 3 presents the overall sampling rates and sampling rates for botnet-related packets 
on the mixed dataset, using both B-Sampling and FlexSample. The first column (SRT ) 
reports the pre-defined target sampling rates we experimented with. The second column 
(SRActual,B) and the third column (SRActual,Flex) report the actual overall sampling rates 
achieved by B-Sampling and FlexSample. The results show that both B-Sampling and 
FlexSample keep the actual sampling rate close to the target sampling rate. The 
remaining columns report the sampling rates related to different types of botnet-related 
packets, where we “zoom” in the sampled packets and evaluate the actual sampling rates 
for packets of each botnet. For example, the 4th column (SRIRC−A/B,B) reports the actual 
sampling rate for packets in Bot-IRC-A and Bot-IRC-B using B-Sampling, whereas the 
5th column (SRIRC−A/B,Flex) presents the sampling rate using FlexSample. We can find 
that B-Sampling captures a higher percentage of botnet packets, compared to 
FlexSample. For example, considering the second row (target sampling rate is 0.025), B- 
Sampling achieves a sampling rate of 0.93 (SRIRC−A/B, B column) while FlexSample 
achieves that of 0.002 (SRIRC−A/B, Flex column) for packets in Botnet-IRC-A, where 
the C&C flows are large flows. The remaining columns report a comparison of B-
Sampling and FlexSampling on the sampling rates for other botnets. As we can see, B-
Sampling achieves higher sampling rate for botnet-related packets, compared to 
FlexSample. It is possible to increase the flow size in the FlexSample condition or reduce 
the budget for small flows to make FlexSample capture more packets in Botnet-IRC-
A. However, it will cause FlexSample to decrease the sampling rates for packets related 
to botnets whose C&Cs are small flows such as Bot-HTTP- and Bot-P2P-. The 
reason is that the feature of flow size and server indegree are not intrinsic for botnets and 
different botnets can diverse greatly regarding these features. B-Sampling gave higher 
sampling rate for packets in Bot-IRC- and Bot-HTTP- than those in Bot-P2P-, 
because that the number of packets related to syn-server is much smaller than that related 
to syn-clients, and thus syn-servers have higher priority. 
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Figure 13: Average detection rate for cross-epoch correlation, over different PerExp 
 

 

 
Figure 14: Detection rate for cross-epoch correlation, PerExp = 0.01 
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Figure 15: Detection rate for cross-epoch correlation, PerExp = 0.05 

 
 

Table 4: Detection Rates of Cross-Epoch Correlation using B-Sampling 
 

 
 
 
We evaluated the cross-epoch correlation with B-Sampling using the mixed traces for 
two properties, detection accuracy and scalability. We set  
 
  
 
which means that two hosts sharing similar communication patterns for any 3 out of 7 
epochs will be labeled as suspicious. 
 
Given SRT and PerExp, each cell shows the detection rate of bots(/23) and percentage of 
noises(/1460) identified by Flow-Correlation using B-Sampling (see Table 4). The 
results show that Flow-Correlation can achieve high detection rate with low PerExp. For 
example, with PerExp ≥ 5%, for all the SRT evaluated, Flow-Correlation can successfully 
identify all the bots. While for the very low PerExp (e.g., 2% and 3%), more than half of 
the bots were still captured. Figure 13 illustrates the average detection rates over different 
PerExp for each target sampling rate, and Figure 14 and Figure 15 present the detection 
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rates using B-Sampling and FlexSample with PerExp of 0.01 and 0.05. The comparison 
results show that by using B-Sampling, Flow-Correlation can achieve higher detection 
rate. 
 

 
 

Figure 16: Scalability of Cross-Epoch Correlation 
 
 
Figure 16 presents the time consumption (in a 4Gmemory and 2-core CPU computer) for 
crossepoch correlation and the C-Plane clustering of BotMiner as the number of C-flows 
increases. We configured Birch to run MaxRound = 50 to simulate the process of 
identifying up to PerExp suspicious hosts. The exponential time increment for C-Plane 
clustering of BotMiner indicates its limited scalability. The cross-epoch correlation 
shows linear pattern and its linear regression model is t = 0.0035x. 
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Figure 17: Avg detection rate (over SRT s) of Cross-Epoch Correlation using B-
Sampling 

 
 
Figure 17 presents the mean and standard deviation for detection rates by Flow-
Correlation with B-Sampling for different M, given PerExp (5% or 10%) for all SRT . 
First, the results demonstrate the effectiveness of cross-epoch correlation. When no cross-
epoch correlation is used (M = 1), many legitimate IPs show stronger similarity than bots 
in a single epoch. Therefore, given a certain PerExp, more than 50% bots are missed. 
While cross-epoch correlation can effectively eliminate these legitimate IPs that show 
strong similarity in one epoch but do not have persistently similar patterns. For example, 
cross-epoch correlation with M = 2 can successfully detect most bots. Second, the results 
indicate that cross-epoch correlation is not sensitive to the value of M. For example, for 
M = 3/4/5, the cross-epoch correlation achieves similar detection rate. Such observation 
also indicates that N/2 is a good value for M. 
 

Table 5: Detection Rates of Fine-Grained Detectors 
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Fine-grained botnet detector inspects all the packets related to suspicious IPs detected by 
Flow-Correlation. Using 1.5hr trace mixed with botnet traces, we evaluated the detection 
rate and performance of the fine-grained detector. 
 
By analyzing the similarity among IRC messages, “IRC Message Correlation” 
component in our detector detected bots in Bot-IRC-A/B. Other bots were detected by 
the “Correlation” component. For example, Bots in Bot-HTTP-B/C trigger alerts 
when they scan the local network. Bot-HTTP-A bots trigger alerts when they make 
update requests. Storm and Waledac trigger alerts when they discover peers. These 
bots were detected by correlating such activities/alerts with corresponding pairs of IPs 
from Flow-Correlation. Table 5 presents the detection rates and false positive rates for the 
fine-grained detector for different SRT s and PerExps. For most combinations of SRT and 
PerExp, our framework can reduce traffic volume by more than 90% for fine-grained 
detector but still keep high detection rates and low false positives. For example, for SRT 

= 0.01 and PerExp = 0.05, the fine-grained detector can detect all bots with false positive 
of 0, and it only needs to focus on 1.7% percentage of packets. 
 
 

Table 6: Performance of Fine-Grained Detector 

 
 
Table 6 presents the performance comparison, including the percentage of packets 
inspected and the processing time of the fine-grained detector in two situations: i) the 
detector is directly applied, ii) the detector is applied with Flow-Correlation and B-
Sampling (PerExp = 0.05 and M = 3). By using Flow-Correlation, fine-grained detector 
to reduce 95% time to process off-line traces, indicating a great workload reduction in 
real time. 
 
Detection of Obscure Botnet Command and Control Channels We studied the 
problem of identifying obscure chat-like botnet command and control (C&C) 
communications, which are indistinguishable from human-human communication using 
traditional signature-based techniques. Existing passive-behavior-based anomaly 
detection techniques are limited because they either require monitoring multiple bot 
infected machines that belong to the same botnet or require extended monitoring times. 
We explored the potential use of active botnet probing techniques in a network 
middlebox as a means to augment and complement existing passive botnet C&C 
detection strategies, especially for small botnets with obfuscated C&C content and 
infrequent C&C interactions. We present an algorithmic framework that uses hypothesis 
testing to separate botnet C&C dialogs from human-human conversations with desired 
accuracy and implement a prototype system called BotProbe. Experimental results on 
multiple real-world IRC bots demonstrated that our proposed active methods can 
successfully identify obscure and obfuscated botnet communications. A realworld user 
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study on about one hundred participants also showed that the technique has a low false 
positive rate on human-human conversations. This work was published in the 2009 
Annual Computer Security Applications Conference [15]. 
 
httprecon We have developed a novel, network-level behavioral malware clustering 
system. We focused on the analysis of structural similarities among malicious http 
traffic traces generated by http-based malware. The proposed clustering system is able 
to unveil similarities (or relationships) among malware samples that may not be captured 
by system-level behavioral clustering, thus offering a new point of view and valuable 
information to malware analysts. Also, we defined the similarity metrics among http 
traffic traces, and tailored our clustering algorithms so that the output of our system 
provides a good input for algorithms that automatically generate network signatures. 
Such network signatures can in turn be deployed to an Intrusion Detection System (IDS) 
located at the edge of a network in order to detect malicious outbound http requests, 
which are a symptom of infection. We implemented a proof-of-concept version of our 
network-level malware clustering system, and performed experiments withmore than 
19,000malware samples. Our experimental results confirmed the effectiveness of the 
proposed clustering approach, and showed how the process of automatically generating 
network signatures for detecting malware-compromised machines can benefit from it. 
This work was published in the 7th USENIX Symposium on Networked Systems Design 
and Implementation (NSDI), in April 2010 [21]. 

3.2 Botnet Analysis 

3.2.1 Malware Analysis 
 
Ether We have developed a new and transparent malware analysis platform. The focal 
point in the malware analysis battle is how to detect versus how to hide a malware 
analyzer from malware in runtime. The state-of-the-art analyzers reside in or emulate part 
of the guest operating system and its underlying hardware, making them easy to detect 
and evade. We developed a transparent and external approach to malware analysis, which 
is motivated by the intuition that for a malware analyzer to be transparent, it must not 
induce any side-effects that are unconditionally detectable by malware. Our analyzer, 
Ether, is based on a novel application of hardware virtualization extensions such as Intel 
VT, and resides completely outside of the target OS environment. Thus, there are no in-
guest software components vulnerable to detection, and there are no shortcomings that 
arise from incomplete or inaccurate system emulation. Our experiments were based on 
our study of obfuscation techniques used to create 25,000 recent malware samples. The 
results showed that Ether remains transparent and defeats the obfuscation tools that evade 
existing approaches. We also demonstrated that with coarse-grained tracing (e.g., system-
call level tracing), Ether incurs negligible overhead, and with fine-grained tracing (e.g., 
instruction-level tracing), Ether can be significant depending on the analysis tasks. We 
are working on scaling the performance of Ether. A paper on Ether was published in the 
15th ACM Conference on Computer and Communications Security (CCS 2008) [11] 
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Figure 18: Ether’s system architecture. 
 
 

Below we highlight the system architecture of Ether as well as the evaluation results. 
 
As shown in Figure 18, the architecture of Ether consists of a hypervisor component and 
a userspace component running in domain 0. Ether’s hypervisor component is responsible 
for detecting events in the analysis target. Currently, such events include system call 
execution, instruction execution, memory writes, and context switches. Ether’s user space 
component acts as a controller regulating which processes and events in the guest should 
be monitored. This component also contains logic to derive semantic information from 
analyzed events, such as translating a system call number into system call name or 
displaying system call argument content based on argument data type. 
 
The analysis target consists of a Xen domU running Windows XP Service Pack 2. The 
only change we made to the default installation of Windows XP was disabling PAE and 
large memory pages. These modifications exist solely to make memory write detection 
easier in the initial Ether implementation and are not a limitation of our approach. 
 
We developed two tools based on Ether: EtherUnpack and EtherTrace. EtherUnpack 
traces memory writes and single instructions (i.e., fine-grained tracing), while EtherTrace 
traces system calls (i.e., coarse-grained tracing). We used these tools to evaluate Ether 
and compare it against current approaches. 
 
To compare EtherUnpack against current approaches, we tested it alongside two other 
automated unpacking tools. These were PolyUnpack [22], a generic in-guest unpacking 
tool and Renovo [18], an external unpacker based on the BitBlaze Binary Analysis 
Platform [3]. The results of our testing are shown in Table 7 and Table 8. 
 
As shown in Table 7 and Table 8, EtherUnpack was able to reveal hidden code from 
tElock, the CERTLEXSI sample, Armadillo [2], Obsidium, and Themida [4] because it 
does not rely on correct CPU emulation, and instead utilizes native hardware for 
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instruction execution. Ether was also able to trace the PCPrivacyTool and our synthetic 
QEMU [8] detection sample without issue. Since it is inherently impossible to ensure the 
equivalence of an emulated processor to a real processor, more emulation inconsistencies 
are likely present in QEMU. Therefore, as an alternative to QEMU, we advocate the use 
of hardware virtualization-based approaches such as Ether. 
 
The results indicate once again that Armadillo, which is quite popular in current malware, 
provides strong anti-analysis protections and detected both Anubis [1] and Norman 
Sandbox [5]. Besides Armadillo, Anubis failed to trace tElock, which crashed after 
reporting failure of an internal CRC check. Reasons why Anubis failed to trace ASProtect 
or why Norman Sandbox failed to trace yoda’s Protector are unclear. In contrast to both 
Anubis and Norman, EtherTrace successfully traced all samples. 
 
Automatic Reverse Engineering of Malware Emulators Malware authors have 
recently begun using emulation technology to obfuscate their code. They convert native 
malware binaries into bytecode programs written in a randomly-generated instruction set 
and paired with a native binary emulator that interprets the bytecode. No existing 
malware analysis technique can reliably defeat this obfuscation technique. We developed 
the first approach in automatic reverse engineering of malware emulators. Our algorithms 
are based on dynamic analysis. We execute the emulated malware in a protected 
environment and record the entire x86 instruction trace generated by the emulator.  
 
 

Table 7: Effectiveness of generic unpackers. 
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Table 8: Effectiveness of sandboxing environments. 

 
 
We then use dynamic data-flow and taint analysis over the trace to identify data buffers 
containing the bytecode program and extract the syntactic and semantic information 
about the bytecode instruction set. With these analysis outputs, we are able to generate 
data structures, such as control-flow graphs (CFG), that provide the foundation for 
subsequent malware analysis. We implemented a proof-of-concept system called 
Rotalume and evaluated it using both legitimate programs and malware emulated by 
VMProtect and Code Virtualizer. The results showed that Rotalume accurately revealed 
the syntax and semantics of the emulated instruction sets and reconstructed execution 
paths of the original programs from their bytecode representations. This work was 
published in the 2009 IEEE Symposium on Security and Privacy, and won the best 
student paper award [23]. 

 

3.2.2 Botnet Traceback and Attribution 
 
We have developed several techniques to analyze (historical) DNS query data, network 
traces, messages in on-line forums (e.g. IRC), and correlate to identify and locate 
botmasters. We have used these techniques to help law enforcement agencies. For 
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example, we were members of the Mariposa Working Group (MWG), which performed 
attribution and traceback on the so-called Mariposa botnet. In the end, several groups 
were arrested in several countries. While many of the suspects still face trial, one public 
piece of information about the MWG was noted by Director Mueller at the August 5, 
2010 International Conference on Cyber Security: 
 
Law enforcement agencies alone cannot defeat our cyber adversaries. In the Mariposa 
case, our private sector partners also provided valuable help. The Mariposa Working 
Group, an informal band of security researchers and volunteers, gave us intelligence to 
track down the subjects, and worked to dismantle the botnet after we made our arrests. 
Thus far, our botnet traceback and attribution techniques are still mostly manual. In the 
near future, we will research the creation of automated approaches. 

3.3 Botnet Mitigation 
 
We have developed a system for host-based forensics analysis and recovery. These tools 
run from a bootable CD that can be used to boot the infected machine into a secure 
environment for analysis and clean-up. We (in particular, Damballa) have developed 
several DNS redirection techniques to disrupt botnet C&C. These include DNS 
sinkholing where the resolved IP is pointed to a sinkhole, and DNS reset where the 
resolved IP is the local loopback address. Damballa has incorporated these techniques in 
their products and services. 
 
We (in particular, Support Intelligence) have continued to develop our network 
prophylactic for ISPs. Using DNSRBL lists to identify address to provide specific routes 
into a network device that does further deep packet inspection (DPI) to assess the 
problem and advise customer service fraud department or technical support with advise 
on malicious traffic. Routes are injected into the ISP core to route suspicious traffic 
through analysis engine. Support Intelligence also worked on BGP monitoring with 
algorithms to track routes for networks with significant botnet telemetry emanations. 

3.4 Add-on Tasks 
 
We have successfully produced a report detailing the lessons learned in detecting and 
responding to the Conficker botnets. The report is published as: 
• ConfickerWorking Group: Lessons Learned. http://www.confickerworkinggroup. 
org/wiki/uploads/Conficker Working Group Lessons Learned 17 June 2010 final.pdf. January 
2011. 
 
With the Internet Law Group, we also explored the regulatory frameworks that permit 
civil investigation of the financial structure, organization and management of botnets. 
The work is still on-going because it takes a long time for our study, which must include 
real investigation cases, to conclude. We hope to be able to report our results in the near 
future. 
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With the help of DREN, we have developed spam and botnet data analysis systems for 
identifying compromised government assets, clustering analysis of DNS reputation, and 
DNS Weather Map data. These systems are now used on a daily basis by DREN 
operators. 
 

3.5 Commercialization 
 
Damballa was founded in 2006. The PI Wenke Lee and co-PI David Dagon were among 
the cofounders. Damballa participated in this project, and has incorporated Ether into 
their malware analysis system, Notos into their DNS-based monitoring product, and DNS 
sinkholing and reset into their products. Damballa has also developed a network-based 
anomaly detection based on BotMiner. Damballa now has over 50 employees and several 
dozens of customers. Several customers, including Comcast and Vanderbilt University 
have gone public with their anti-botnet strategies based on Damballa products and 
services. 
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4.0 RESULTS AND DISCUSSION 
 
Results of various tasks are in Section 3. We especially present the evaluation of a 
dynamic reputation system for DNS and discuss the most significant results of DNS 
monitoring, network-based anomaly detection and malware analysis in this section. 

4.1 Evaluation of Notos 
 
As a first step, we computed vectors based on the statistical features from 250,000 unique 
RRs. These vectors were computed based on historic passive DNS information from the 
last two weeks of DNS traffic observed on the same two ISP recursive resolvers in 
Atlanta and San Jose. The accuracy of the Meta-Classification system (see Figure 6 (a)) 
in the network profile module is critical for the overall performance of Notos. This is 
because, in the on-line mode, Notos will receive unlabeled vectors which must be 
classified and correlated with what is already present in our knowledge base. For 
example, if the classifier receives a new RR and assigns to it the label Akamai with very 
high confidence, that implies the RR which produced this vector will be part of a network 
similar to Akamai. However, this does not necessarily mean that it is part of the actual 
Akamai CDN. We will see next how we can draw conclusions based on the proximity 
between labeled and unlabeled RRs within the same zone-based clusters. Furthermore, 
we discuss the accuracy of the Meta-Classifier when modeling each different network 
profile class. OurMeta-Classifier consists of five different classifiers, one for each 
different class of domains we model. We chose to use a Meta-Classification system 
instead of a traditional single classification approach becauseMeta-Classification systems 
typically perform better than a single statistical classifier [9] [16]. Throughout our 
experiments this proved to be also true. The ROC curve in Figure 9, shows that the Meta-
Classifier can accurately classify RRs for all different network profile classes. 
 
The training dataset for the Meta-Classifier is composed of sets of 2,000 vectors from 
each of the five network profile classes. The evaluation dataset is composed of 10,000 
vectors, 2,000 from each of the five network profile classes. The classification results for 
the domains in the Akamai, CDN, dynamic DNS and Popular classes showed that the 
supervised learning process in Notos is accurate, with the exception of a small number of 
false positives related to the Common class (3.8%). After manually analyzing these false 
positives, we concluded that some level of confusion between the vectors produced by 
Dynamic DNS domain names and the vectors produced by domain names in the 
Common class still remains. However, this minor misclassification between network 
profiles does not significantly affect the reputation function. This is because the zone 
profiles of the Common and Dynamic DNS domain names are significantly different. 
This difference in the zone profiles will drive the network-based and zone-based 
clustering steps to group the RRs from Dynamic DNS class and Common class in 
different zone-based clusters. 
 
Despite the fact that the network profile modeling process provides accurate results, it 
doesn’t mean this step can independently designate a domain as benign or malicious. The 
clustering steps will assist Notos to group vectors not only based their network profiles 
but also based on their zone properties. In the following we show how the network and 
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zone profile clustering modules can better associate similar vectors, due to properties of 
their domain name structure. In the domain name clustering process, Figure 6(b)) we 
used X-Means clustering in series, once for the network-based clustering and again for 
the zone-based clustering. In both steps we set the minimum and maximum number of 
clusters to one and the total number of vectors in our dataset, respectively. We run these 
two steps using different numbers of zone and network vectors. 
 
 
 
 

 
 
 
 

 
 

Figure 19: With the 2-step clustering step, Notos is able to cluster large trends of 
DNS behavior. 
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Figure 20: By using different number of network and zone vectors, we observe that 

after the first 100,000, there is no significant variation in the absolute number of 
produced clusters during the 1st and 2nd level clustering steps. 

 
Figure 20 shows that after the first 100,000 vectors are used, the number of network and 
zone clusters remains fairly stable. This means that by computing at least 100,000 
network and zone vectors—using a 15-day old passive DNS database—we can obtain a 
stable population of zone and network based clusters for the monitored network. We 
should note that reaching this network and cluster equilibrium does not imply that we do 
not expect to see any new type of domain names in the ISP’s DNS recursive. This just 
denotes that based on the RRs present in our passive DNS database, and the daily traffic 
at the ISP’s recursive, 100,000 vectors are enough to reflect the major network profile 
trends in the monitored networks. Figure 20 indicates that a sample set of 100,000 vectors 
may represent the major trends in a DNS sensor. It is hard to safely estimate the exact 
minimum number of unique RRs that is sufficient to identify all major DNS trends. An 
answer to this should be based upon the type, size and utilization of the monitored 
network. Without data from smaller corporate networks it is difficult for us to make a 
safe assessment about the minimum number of RR necessary for reliably training Notos. 
The evaluation dataset we used consisted of 250,000 unique domain names and IPs. The 
cluster overview is shown in Figure 19. In the following paragraphs we discuss some 
interesting observations that can be made from these network-based and zone-based 
cluster assignments. As an example, network clusters 0 and 1 are predominantly 
composed of zones participating in fraudulent activities like spam campaigns (yellow) 
and malware dropping or C&C zones (red). On the other hand, network clusters 2 to 5 
contain Akamai, dynamic DNS, and popular zones like Google, all labeled as benign 
(green). We included the unlabeled vectors (blue) based on which we evaluated the 
accuracy of our reputation function. We have a sample of unlabeled vectors in almost all 
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network and zone clusters. We will see how already labeled vectors will assist us to 
characterize the unlabeled vectors in close proximity. 
 
Before we describe two sample cases of dynamic characterization within zone-based 
clusters, we need to discuss our radius R and k value selection. After looking into the 
distribution of Euclidean distances between unlabeled and labeled vectors within the 
same zone clusters, we concluded that in the majority of these cases the distances were 
between 0 and 1000. We tested different values of the radius R and the value of k for the 
K-nearest neighbors (KNN) algorithm. We observed that the experiments with radius 
values between 50 and 200 provided the most accurate reputation rating results. We also 
observed that if k > 25 the accuracy of the reputation function is not affected for all 
radius values between 50 and 200. Based on the results of these pilot experiments, we 
decided to set k equal to 50 and the radius distance equal to 100. 
 
Figures 13 and 14 show the effect of this radius selection on two different types of 
clustering problems. In Figure 21, unknown RRs for akamaitech.net are clustered 
with a labeled vector akamai.net. CDNs such as Akamai tended to have new domain 
names with each RR, but to also reuse their IPs. By training with only a small set of 
labeled akamai.net RRs, our classifier put the new, unknown RRs for 
akamaitech.net into the existing Akamai class. IP-specific features therefore 
brought the new RRs close to the existing labeled class. Figure 21 compresses all of the 
dimensions into a two-dimensional plot (for easier visual representation), but it is clear 
the unknown RRs were all within a distance of 100 to the labeled set. 
 

 
 

Figure 21: An example of characterizing the akamaitech.net unknown vectors as 
benign based on the already labeled vectors (akamai.net) present in the same 

cluster. 
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Figure 22: An example of how the Zeus botnet clusters during our experiments. All 
vectors are in the same network cluster and in two different zone clusters. 

 
This result validates that just a few weeks’ worth of labeled data was necessary for 
training. Thus, one does not have to exhaustively discover all whitelisted domains. Notos 
is resilient to changes in the zone classes we selected. Services like CDNs and major web 
sites can add new IPs or adjust domain formats, and these will be automatically 
associated with a known labeled class. 
 
The ability of Notos to associate new RRs based on limited labeled inputs is 
demonstrated again in Figure 22. In this case, labeled Zeus domains (approximately 
2,900 RRs from three different Zeus-related BLs) were used to classify new RRs. Figure 
22 plots the distance between the labeled Zeus-related RRs and new (previously 
unknown) RRs that are also related Zeus botnets. Most of the new (unlabeled) Zeus RRs 
lay very close, and often even overlap, to known Zeus RRs (see Table 9 Table 10). This 
is a good result, because Zeus botnets are notoriously hard to track, given the botnet’s 
extreme agility. Tracking systems such as zeustracker.abuse.ch and 
malwaredomainlist.com have limited visibility into the botnet, and often produce 
disjoint blacklists. Notos addresses this problem, by leveraging a limited amount of 
training data to correctly classify new RRs. During our evaluation set, Notos correctly 
detected 685 new (previously unknown) Zeus RRs. 
 
We decide to use a Decision Tree using Logit-Boost strategy (LAD) as the reputation 
function. Our decision is motivated by the time complexity, the detection results and the 
precision (true positives over all positives) of the classifier. We compared the LAD 
classifier to several other statistical classifiers using a typical model selection procedure 
[12]. LAD was found to provide the most accurate results in the shortest training time for 
building the reputation function. As we can see from the ROC curve in Figure 10, the 
LAD classifier exhibits a low false positive rate (FP%) of 0.38% and true positive rate 
(TP%) of 96.8%. It is was noting that these results were obtained using 10-fold cross-
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validation, and the detection threshold was set to 0.5. The dataset using for the evaluation 
contained 10,719 RRs related to 9,530 known bad domains. The list of known good 
domains consisted of the top 500 most popular domains according to Alexa. 
 
Table 9: Sample cases form Zeus domains detected by Notos and the corresponding 

days that appeared in the public BLs. All evidence information in this table were 
harvested from zeustracker.abuse.ch. 

 

 
 
 

Table 10: Anecdotal cases of malicious domain names detected by Notos and the 
corresponding days that appeared in the public BLs .[1]: hosts-file.net, [2]: 

malwareurl.com, [3] siteadvisor.com, [4] virustotal.com, [5] ddanchev.blogspot.com, [6] 
malwaredomainlist.com. 

 

 
 

We also benchmarked the reputation function on other two datasets containing a larger 
number of known good domain names. We experimented with bot the top 10,000 and top 
100,000 Alexa domain names. The detection results for these experiments are as follows. 
When using the top 10,000 Alexa domains, we obtained a true positive rate of 93.6% and 
a false positive rate of 0.4% (again using 10-fold cross-validation and a detection 
threshold equal to 0.5). As we can see, these results are not very different from the ones 
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we obtained using only the top 500 Alexa domains. However, when we extended our list 
of known good domains to include the top 100,000 Alexa domain names, we observed a 
significant decrease of the true positive rate and an increase in the false positives. 
Specifically, we obtained a TP% of 80.6% and a FP% of 0.6%. We believe this 
degradation in accuracy may be due to the fact that the top 100,000 Alexa domains 
include not only professionally run domains and network infrastructures, but also include 
less good domain names, such as file-sharing, porn-related websites, etc., most of which 
are not run in a professional way and have disputable reputation (e.g., A quick analysis of 
the top 100,000Alexa domains reported that about 5%of the domains appeared in the 
SURBL (www.surbl.org) blacklist, at certain point in time. A more rigorous evaluation of 
these results is left to future work.). 
 
 

 
 
Figure 23: Dates in which various blacklists confirmed that the RRs were malicious 

after Notos assigned low reputation to them on the 1st of August. 
 

 
We also wanted to evaluate how well Notos performs, compared to static blacklists. To 
this end, we performed a number of experiments as follows. Given an instance of Notos 
trained with data collected up to July 31, 2009, we fed Notos with 250,000 distinct RRs 
found in DNS traffic we collected on August 1, 2009. We then computed the reputation 
score for each of these RRs. First, we set the detection threshold to 0.5, and with this 
threshold we identified 54,790 RRs that had a low reputation (lower than the threshold). 
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These RRs where related to a total of 10,294 distinct domain names (notice that a domain 
name may map to more than one IP, and this explains the higher number of RRs). Of 
these 10,294 domains, 7,984 (77.6%) appeared in at least one of the public blacklists we 
used for comparison within 60 day after August 1, and were therefore confirmed to be 
malicious. Figure 23 (a) reports the number and date in which RRs classified as having 
low reputation by Notos appeared in the public blacklists. The remaining three plots 
(Figure 23 (b), (c) and (d)), report the same results organized according to the type of 
malicious domains. In particular, it is worth noting that Notos is able to detect never-
before-seen domain names related to the Zeus botnet several days or even weeks before 
they appeared in any of the public blacklists.  
 
For the remaining 22.4% of the 10,294 domains we considered, we were not able to draw 
a definitive conclusion. However, we believe many of those domains are involved in 
some kind of more or less malicious activities. We also noticed that 7,980 or the 7,984 
confirmed bad domain names were assigned a reputation score lower or equal to 0.15, 
and that none of the other non-confirmed suspicious domains received a score lower than 
this threshold. In practice, this means that an operator who would like to use Notos as a 
stand-alone dynamic blacklisting system while limiting the false positives to a negligible 
(or even zero) amount may fine-tune the detection threshold and set it around 0.15. 

4.2 Discussion 
 
In this project, we have developed algorithms to detect botnets through the analysis of 
DNS traffic, local area network traffic, and malware samples. These algorithms were 
evaluated using real-world data, and have been implemented into working, deployed 
systems. We highlight the most significant results below. 
 
For DNS monitoring, Notos, which is a system that provides a reputation score of a 
domain based on passive DNS traffic, represents a new and dynamic way to create and 
manage DNS reputation. Static DNS reputation systems have been around for several 
years, but increasingly, botmasters are able to use a number of techniques (e.g., generate 
many new domains daily) to render these static systems ineffective. With Notos, even a 
new domain is assigned a score based on where the domain server is hosted, the 
reputation of the provider, etc. Our experiments have shown that Notos is highly 
accurate: 98% true positive rate and below 1% false positive rate. And it can identify 
malicious domains weeks to months before they are actively used for malicious activities 
(and then appear in static reputation systems). This means that Notos can provide 
predictive capability that missing in static systems. As for future work, we will extend 
Notos so as to provide more refined classification and reputation score on type of 
malicious activities are associated with a domain. 
 
In network-based anomaly detection, we developed a scalable botnet detection system 
using adaptive sampling and spatial-temporal correlation. This is the first system that 
aims at analyzing traffic in a very large network, such as an ISP, to detection botnets. The 
key to this system is the traffic sampling techniques that are designed to identify possible 
flows that are involved in botnets C&C. Our experimental results show that the proposed 
approach is scalable and can effectively detect bots with few false positives, which can be 
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further reduced by fine-grained botnet detection systems such as BotSniffer and 
BotMiner. 
 
In malware analysis, we developed Ether, a malware analysis system that uses hardware 
virtualization features to ensure that malware cannot detect the presence of the analyzer 
and evade analysis. The key insight is that with hardware virtualization, there is no 
emulation required and hence there is no observable discrepancy (between execution on 
an emulator vs. true hardware) that the malware can observe. Our experiment results 
show that while many malware programs are now evading popular analysis systems 
because they are based on emulation, they cannot evade Ether.  
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5.0 CONCLUSION 
 
In this project, we have successfully developed a wide range of novel botnet detection, 
analysis, and mitigation techniques. These techniques can be deployed at the end-hosts, 
enterprise networks, ISPs, and network/DNS operators. The deliverables of this project 
include many publications in prestigious academic conferences, software and data 
delivered to the government, and commercial products and services. We also successfully 
completed several add-on tasks.  
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LIST OF ACRONYMS 
 
AS  Autonomous System 

BGP  Border Gateway Protocol 

BL  Black List 

C&C  Command and Control 

CDN  Content Distribution Network 

DNS  Domain Name System 

DPI  Deep Packet Inspection 

DREN  Defense Research and Engineering Network 

FP  False Positive 

HTTP  HyperText Transfer Protocol 

IDS  Intrusion Detection System 

IP  Internet Protocol 

IRC  Internet Relay Chat 

ISC  Internet Systems Consortium 

ISP  Internet Service Provider 

LAD  Logit-Boost Strategy  

P2P  Peer-to-Peer 

PCAP  Packet Capture 

pDNS  passive DNS 

RDNS  Recursive DNS 

RHIP  Related Historic IP 

RHDN  Related Historic Domain 

RR  Resource Record 

SIE  Security Information Exchange 

SMTP  Simple Mail Transport Protocol 

SR   Sampling Rate 

TCP  Transmission Control Protocol 

TLD  Top-Level Domain 

TP  True Positive 

UDP  User Datagram Protocol 
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