

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

COUNTERING BOTNETS: ANOMALY-BASED DETECTION,
COMPREHENSIVE ANALYSIS, AND EFFICIENT MITIGATION

GEORGIA TECH RESEARCH CORPORATION

MAY 2011

FINAL TECHNICAL REPORT

AFRL-RI-RS-TR-2011-098

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report is the result of contracted fundamental research deemed exempt from public
affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is
available to the general public, including foreign nationals. Copies may be obtained from
the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-098 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

KEESOOK HAN WARREN H. DEBANY JR., Technical Advisor
Work Unit Manager Information Exploitation and Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

 May 2011
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

March 2008 – October 2010
4. TITLE AND SUBTITLE

COUNTERING BOTNETS: ANOMALY-BASED DETECTION,
COMPREHENSIVE ANALYSIS, AND EFFICIENT MITIGATION

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-08-2-0141

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Wenke Lee
David Dagon
Jon Giffin
Nick Feamster
Gunter Ollman
Jody Westby
Rick Wesson
Paul Vixie

5d. PROJECT NUMBER
DHS1

5e. TASK NUMBER
BO

5f. WORK UNIT NUMBER
TN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Tech Research Corporation
505 10th St. NW
Atlanta, GA 30332-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RIGD
525 Brooks Road
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-098

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum
dated 10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
We cover five general areas: (1) botnet detection, (2) botnet analysis, (3) botnet mitigation, (4) add-on tasks to the original
contract, including the Conficker Working Group Lessons Learned, Layer-8 Exploration of Botnet Organization, and DREN
research, and (5) commercialization in this paper. We have successfully developed new botnet detection and analysis capabilities
in this project. These algorithms have been evaluated using real-world data, and have been put into actual, deployed systems. The
most significant technical developments include a new dynamic reputation systems for DNS domains, a scalable anomaly
detection system for botnet detection in very large network, and a transparent malware analysis system. In addition, on several
occasions we have used our botnet data and analysis to help law enforcement agencies arrest botmasters. We also have had great
success transitioning technologies to commercial products that are now used by government agencies, ISPs, and major
corporations.

15. SUBJECT TERMS
Cyber Security, Cyber Attack, Botnet, Botnet Detection, Botnet Traceback and Attribution, Malware, Malware Analysis, DNS, DNS-Based
Monitoring, DNS-Based Redirection, BGP, BGP Route Injection.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

58

19a. NAME OF RESPONSIBLE PERSON
KEESOOK HAN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.

TABLE OF CONTENTS

SECTION PAGE

LIST OF FIGURES .. ii

LIST OF TABLES ... iii

1.0 SUMMARY .. 1

1.1 OVERVIEW .. 1

2.0 INTRODUCTION .. 1

2.1 BOTNET DETECTION ... 1

2.2 BOTNET ANALYSIS ... 1

2.3 BOTNET MITIGATION .. 2

2.4 ADD-ON TASKS .. 2

2.5 COMMERCIALIZATION .. 2

3.0 METHODS, ASSUMPTIONS AND PROCEDURES ... 3

3.1 BOTNET DETECTION ... 3

3.1.1 DNS-BASED MONITORING .. 3

3.1.2 NETWORK-BASED ANOMALY DETECTION ... 19

3.2 BOTNET ANALYSIS ... 31

3.2.1 MALWARE ANALYSIS .. 31

3.2.2 BOTNET TRACEBACK AND ATTRIBUTION .. 34

3.3 BOTNET MITIGATION .. 35

3.4 ADD-ON TASKS .. 35

3.5 COMMERCIALIZATION .. 36

4.0 RESULTS AND DISCUSSION ... 37

4.1 EVALUATION OF NOTOS .. 37

4.2 DISCUSSION ... 44

5.0 CONCLUSION ... 46

6.0 REFERENCES .. 47

6.1 LIST OF PERFORMERS ... 49

6.2 LIST OF PUBLICATIONS/REPORTS ... 49

LIST OF ACRONYMS ... 52

i

LIST OF FIGURES

Figure 1: (a) SIE’s architecture: sensors contribute data to an aggregation node, which

rebroadcasts DNS data for analysis nodes (b) SIE data averages 45Mb/s, with bursts
up to 100Mb/s. .. 3

Figure 2: GeoIP Plotting of Bot Victims. ... 3
Figure 3: System Overview .. 6
Figure 4: Computing network/zone/evidence based features. .. 8
Figure 5: Off-line and on-line modes in Notos. .. 8
Figure 6: (a) Network profile modeling in Notos. (b) Network and zone based clustering

in Notos. .. 9
Figure 7: Network & zone based clustering process in Notos, in the case of a Akamai [A]

and a malicious [B] domain name... 14
Figure 8: The output from the network profiling module, the domain clustering module

and the evidence vector will assist the reputation function to assign the reputation
score to the domain d. ... 15

Figure 9: ROC curves for all network profile classes shows the Meta-Classifier’s
accuracy. ... 18

Figure 10: The ROC curve from the reputation function indicating the high accuracy of
Notos. .. 18

Figure 11: Architectural Overview ... 22
Figure 12: Packet Sampling Architecture ... 22
Figure 13: Average detection rate for cross-epoch correlation, over different PerExp 26
Figure 14: Detection rate for cross-epoch correlation, PerExp = 0.01 26
Figure 15: Detection rate for cross-epoch correlation, PerExp = 0.05 27
Figure 16: Scalability of Cross-Epoch Correlation ... 28
Figure 17: Avg detection rate (over SRT s) of Cross-Epoch Correlation using B-Sampling

 ... 29
Figure 18: Ether’s system architecture. .. 32
Figure 19: With the 2-step clustering step, Notos is able to cluster large trends of DNS

behavior. .. 38
Figure 20: By using different number of network and zone vectors we observe that after

the first 100,000, there is no significant variation in the absolute number of produced
clusters during the 1st and 2nd level clustering steps. .. 39

Figure 21: An example of characterizing the akamaitech.net unknown vectors as benign
based on the already labeled vectors (akamai.net) present in the same cluster. 40

Figure 22: An example of how the Zeus botnet clusters during our experiments. All
vectors are in the same network cluster and in two different zone clusters. 41

Figure 23: Dates in which various blacklists confirmed that the RRs were malicious after
Notos assigned low reputation to them on the 1st of August. 43

ii

LIST OF TABLES

Table 1: Background traces .. 23

Table 2: Botnet traces ... 23

Table 3: Sampling rate .. 25

Table 4: Detection Rates of Cross-Epoch Correlation using B-Sampling 27

Table 5: Detection Rates of Fine-Grained Detectors .. 29

Table 6: Performance of Fine-Grained Detector .. 30

Table 7: Effectiveness of generic unpackers. ... 33

Table 8: Effectiveness of sandboxing environments. ... 34

Table 9: Sample cases form Zeus domains detected by Notos and the corresponding days
that appeared in the public BLs. All evidence information in this table were
harvested from zeustracker.abuse.ch. ... 42

Table 10: Anecdotal cases of malicious domain names detected by Notos and the
corresponding days that appeared in the public BLs .[1]: hosts-file.net, [2]:
malwareurl.com, [3] siteadvisor.com, [4] virustotal.com, [5]
ddanchev.blogspot.com, [6] malwaredomainlist.com. ... 42

iii

1.0 SUMMARY

1.1 Overview

We cover five general areas: (1) botnet detection, (2) botnet analysis, (3) botnet
mitigation, (4) add-on tasks to the original contract, including the Conficker Working
Group Lessons Learned, Layer-8 Exploration of Botnet Organization, and DREN
research, and (5) commercialization in this final technical paper.
The introduction to the project and an overview of each area is given in Section 2. In
Section 3, we present the procedures and results for each area. We evaluate a DNS
reputation system and discuss the most significant results in Section 4. Section 5 is the
conclusion.

2.0 INTRODUCTION

2.1 Botnet Detection

Our goal was to develop botnet detection technology that is robust against new and
evolving forms of botnets and evasion techniques. Toward this goal, we have researched
and developed complementary approaches for DNS-based monitoring and network-based
anomaly detection.

In DNS monitoring, our approach is to analyze DNS query traffic to identify domain
names that are used for botnet command and control (C&C). We have systematically
analyzed the DNS protocol behaviors at each layer of the DNS hierarchy, extracted
statistical and temporal features, and applied machine learning algorithms to learn models
to distinguish the look-up patterns of a botnet C&C domain from those of a legitimate
DNS domain.

In network-based anomaly detection, our approach is to analyze in-bound and out-bound
traffic of an enterprise network, and apply clustering analysis to identify the group(s) of
hosts that have similar C&C like traffic (e.g., communicate to an outside server with
similar network flows) and similar malicious activity traffic (e.g., spam). According to
our definition, these group(s) of hosts are part(s) of a botnet(s).

2.2 Botnet Analysis

We have developed new malware analysis technologies with the focus of defeating
obfuscation techniques employed by malware. Our technologies include an automated
unpacker, and a transparent analysis environment where malware cannot know it is being
analyzed.

We have also explored techniques and procedures to investigate evidence of at network
service providers, communications in on-line forums, etc. that can suggest the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 1

whereabouts of botmasters. Our work has yielded promising results and suggested
research directions for effective botnet traceback and attribution techniques.

2.3 Botnet Mitigation

We have developed a host-based forensic analysis and recovery tool. It uses virtual
machine technologies to build a clean execution context on an infected system and
automatically analyzes and recovers from infections. The analysis includes both an off-
line forensic analysis of the affected disk as well as host-level execution of behavioral
profiles generated by executing the infected system in a protected emulation
environment.

We have developed several network-based response techniques and procedures, including
DNSbased redirection, and blackhole route injection.

2.4 Add-on Tasks

We organized and led an effort to document the lessons learned in the Conficker botnets.
The participants included academic researchers, network providers, and analysts from
security companies. A report has been published.

Together with the Internet Law Group, we also explored the regulatory frameworks that
permit civil investigation of the financial structure, organization and management of
botnets. The goal is to develop techniques that can be used for de-monetizing botnets
through the eventual disruption of payment processing in criminal networks.

With the help of DREN, we developed spam and botnet data analysis systems for
identifying compromised government assets, clustering analysis of DNS reputation, and
DNS Weather Map data.

2.5 Commercialization

Support Intelligence has developed and commercialized several tools and data feed,
including DNSBL data analysis tools.

Damballa has also incorporated several algorithms developed in this project into their
products and services, including dynamic and passive DNS monitoring, and DNS
redirection. Damballa’s growing list of customers including major ISPs and Fortune 500
companies, banks, and universities.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 2

3.0 METHODS, ASSUMPTIONS AND PROCEDURES

3.1 Botnet Detection

3.1.1 DNS-Based Monitoring

Passive DNS Data For part of this project, Georgia Tech and ISC were required to create
a passive-DNS data collection system. This has resulted in the creation of the Security
Information Exchange, SIE. Details about SIE are found at https://sie.isc.org. Figure 1 (a)
shows a conceptual view of the SIE data collection system.

Figure 1: (a) SIE’s architecture: sensors contribute data to an aggregation node,
which rebroadcasts DNS data for analysis nodes (b) SIE data averages 45Mb/s, with

bursts up to 100Mb/s.

Figure 2: GeoIP Plotting of Bot Victims.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 3

GeoIP Information Georgia Tech has produced a IPv4-to-jurisdiction database. The
database allows one to map a given IP (if located in the US) to a US District Court
jurisdiction. These jurisdictions in turn correspond to FBI districts. This mapping permits
researchers to identify areas where victims are located, and which FBI office may have
jurisdiction over any resulting investigation.

As a result of this exercise, we have also created a variety of tools that plot geo-locations
of botnets. These tools can create animations or static images, as shown in Figure 2. This
sort of visualization assisted in the development and debugging of the GeoIP deliverable,
and may prove useful to other researchers.

dnscap We have developed dnscap, a dns capture and analysis tool. A copy of the tool is
available at https://www.dns-oarc.net/tools/dnscap. The tool is similar to various PCAP
handling tools, except that it understands the DNS protocol, and exposes filtering options
to command line users. Thus, one can use dnscap to filter pcap data based on the content
of RRsets, and not merely based on the IP and UDP header information.

Detection of Fast Flux Networks We developed a passive approach for detecting and
tracking malicious flux service networks. Our detection system is based on passive
analysis of recursive DNS (RDNS) traffic traces collected from multiple large networks.
Contrary to previous work, our approach is not limited to the analysis of suspicious
domain names extracted from spam emails or precompiled domain blacklists. Instead, our
approach is able to detect malicious flux service networks in-the-wild, i.e., as they are
accessed by users who fall victims of malicious content advertised through blog spam,
instant messaging spam, social website spam, etc., beside email spam. We experimented
with the RDNS traffic passively collected at two large ISP networks. Overall, our sensors
monitored more than 2.5 billion DNS queries per day from millions of distinct source IPs
for a period of 45 days. Our experimental results show that the proposed approach is able
to accurately detect malicious flux service networks. Furthermore, the results show that
our passive detection and tracking of malicious flux service networks can facilitate spam
filtering applications.

We describe our approach in more detail below.

Our detection system is based on passive analysis of recursive DNS traces collected from
multiple large networks. In practice, we deploy a sensor in front of the recursive DNS
(RDNS) server of different networks, passively monitor the DNS queries and responses
from the users to the RDNS, and selectively store information about potential fast-flux
domains into a central DNS data collector. Since the amount of RDNS traffic in large
networks is often overwhelming, we devised a number of prefiltering rules that aim at
identifying DNS queries to potential fast-flux domain names, while discarding the
remaining requests to legitimate domain names. Our prefiltering stage is very
conservative, nevertheless, it is able to reduce the volume of the monitored DNS traffic to
a tractable amount without discarding information about domain names actually related
to malicious flux services. Once information about potential malicious flux domains has
been collected for a certain epoch E (e.g., one day), we perform a more fine-grain

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 4

analysis. First, we apply a clustering process to the domain names collected during E, and
we group together domain names that are related to each other. For example we group
together domain names that point to the same Internet service, are related to the same
content distribution network (CDN), or are part of the same malicious flux network. Once
the monitored domain names have been grouped, we classify these clusters of domains
and the related monitored resolved IP addresses as either being part of a malicious flux
service network or not. This is in contrast with most previous works, in which single
domain names are considered independently from each other, and classified as either fast-
flux or non-fast-flux. Our detection approach has a fundamental advantage, compared to
previous work. Passively monitoring live users’ DNS traffic offers a new vantage point,
and allows us to capture queries to flux domain names that are advertised through a
variety of means, including for example blog spam, social websites spam, search engine
spam, and instant messaging spam, beside email spam and precompiled domain
blacklists. Furthermore, differently from the active probing approach used in previous
work, we passively monitor live users traffic without interacting ourselves with the flux
networks. Active probing of fast-flux domain names may be detected by the attacker,
who often controls the authoritative name servers responsible for responding to DNS
queries about her fast-flux domain names. If the attacker detects that an active probing
system is trying to track her malicious flux service network, she may stop responding to
queries coming from the probing system to prevent unveiling further information. On the
other hand, our detection system is able to detect flux services in a stealthy way. This
work is to be published in the 2009 Annual Computer Security Applications Conference
[20].

Passive DNS Monitoring for Dynamic Reputation of Domains The Domain Name
System (DNS) is an essential protocol used by not only legitimate Internet applications
but also cyber attacks. For example, botnets are known to rely on DNS to support agile
command and control infrastructures. An effective way to disrupt these attacks is to put
the domains known to be involved in malicious activities on a block- list (or, blacklist) or
a filtering rule in a firewall or network intrusion detection system. To evade such security
countermeasures, attackers have recently developed techniques to make very agile use of
DNS, e.g., by using new domains daily, to render static blacklisting or firewalling
ineffective. We developed a dynamic reputation system for DNS called Notos (see Figure
3). The premise of this system is that malicious, agile use of DNS has unique
characteristics and can be distinguished from legitimate, professionally-provisioned DNS
services. Notos uses passive DNS query data and analyzes the network and zone features
of domains. It builds models of known legitimate domains and malicious domains, and
uses these models to compute a reputation score for a new domain indicative of whether
the domain is likely to be for malicious or legitimate uses. We have evaluated Notos in a
large ISP’s networks with DNS traffic from 1.4 million users. Our results show that
Notos can identify malicious domains with very high accuracy (true positive rate)
(96.8%) and very low false positive rate (0.38%), and can identify these domains weeks
or even months before they appear in public blacklists. This work was published in the
19th USENIX Security Symposium, August 2010[7].

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 5

Figure 3: System Overview

Below we provide some details of the Notos system.

The goal of the Notos reputation system is to dynamically assign reputation scores to
domain names. Given a domain name d, we want to assign a low reputation score if d is
involved in malicious activities (e.g., if it has been involved with botnet C&C servers,
spam campaigns, malware propagation, etc.). On the other hand, we want to assign a high
reputation score if d is associated with legitimate Internet services.

Notos’ main source of information is a passive DNS (pDNS) database, which contains
historical information about domain names and their resolved IPs. Our pDNS database is
constantly updated using real-world DNS traffic from multiple geographically diverse
locations as shown in Figure 3. We collectDNS traffic from two ISP recursive DNS
servers (RDNS) located in Atlanta and San Jose. The ISP nodes witness 30,000 DNS
queries/second during peak hours. We also collect DNS traffic through the Security
Information Exchange (SIE) [10], which aggregates DNS traffic received by a large
number of RDNS servers from authoritative name servers across North America and
Europe. In total, the SIE project processes approximately 200 Mbit/s of DNS messages,
several times the total volume of DNS traffic in a single US ISP.

Another source of information we use is a list of known malicious domains. For example,
we run known malware samples in a controlled environment and we classify as
suspicious all the domains contacted by malware samples that do not match a pre-
compiled white list. In addition, we extract suspicious domain names from spam emails

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 6

collected using a large spam-trap. Again, we discard the domains that match our whitelist
and consider the rest as potentially malicious. Furthermore, we collect a large list of
popular, legitimate domains from alexa.com. The set of known malicious and
legitimate domains represents our knowledge base, and is used to train our reputation
engine.

Intuitively, a domain name d can be considered suspicious when there is evidence that d
or its IP addresses are (or were in previous months) associated with known malicious
activities. The more evidence of “bad associations” we can find about d, the lower the
reputation score we will assign to it. On the other hand, if there is evidence that d is (or
was in the past) associated with legitimate, professionally run Internet services, we will
assign it a higher reputation score.

Before describing the internals of our reputation system, we introduce some basic
terminology. A domain name d consists of a set of substrings or labels separated by a
period; the rightmost label is called the top-level domain, or TLD. The second-level
domain (2LD) represents the two rightmost labels separated by a period; the third-level
domain (3LD) analogously contains the three rightmost labels, and so on. As an example,
given the domain name d=“a.b.example.com”, TLD(d)=“com”, 2LD(d)=“example.com”,
and 3LD(d)=“b.example.com”.

Let s be a domain name (e.g., s=“example.com”). We define Zone(s) as the set of
domains that include s and all domain names that end with a period followed by s (e.g.,
domains ending in “.example.com”).

Let D = {d1, d2, ..., dm} be a set of domain names. We call A(D) the set of IP addresses

ever pointed to by any domain name d ∈ D.

Given an IP address a, we define BGP(a) to be the set of all IPs within the BGP prefix of
a, and AS(a) as the set of IPs located in the autonomous system in which a resides. In
addition, we can extend these functions to take as input a set of IPs: given IP set A = a1,
a2, ..., aN, BGP(A) = Sk=1..N BGP(ak); AS(a) is similarly extended.

To assign a reputation score to a domain name d we proceed as follows. First, we
consider the most current set Ac(d) = {ai}i=1..m of IP addresses to which d points. Then,
we query our pDNS database to retrieve the following information:

• Related Historic IPs (RHIPs), which consist of the union of A(d),
A(Zone(3LD(d))), and A(Zone(2LD(d))). In order to simplify the notation we
will refer to A(Zone(3LD(d))) and A(Zone(2LD(d))) as A3LD(d) and A2LD(d),
respectively.

• Related Historic Domains (RHDNs), which comprise the entire set of domain
names that ever resolved to an IP address a ∈ AS(A(d)). In other words, RHDNs

contain all the domains di for which A(di) ∩ AS(A(d)) 6= ∅.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 7

After extracting the above information from our pDNS database, we measure a number of
statistical features. Specifically, for each domain d we extract three groups of features, as
shown in Figure 4:

Figure 4: Computing network/zone/evidence based features.

Figure 5: Off-line and on-line modes in Notos.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 8

Figure 6: (a) Network profile modeling in Notos. (b) Network and zone based

clustering in Notos.

• Network-based features: The first group of statistical features is extracted from
the set of RHIPs. We measure quantities such as the total number of IPs
historically associated with d, the diversity of their geographical location, the
number of distinct autonomous systems (ASs) in which they reside, etc.

• Zone-based features: The second group of features we extract are those from the
RHDNs set. We measure the average length of domain names in RHDNs, the
number of distinct TLDs, the occurrence frequency of different characters, etc.

• Evidence-based features: The last set of features includes the measurement of
quantities such as the number of distinct malware samples that contacted the
domain d, the number of malware samples that connected to any of the IPs
pointed by d, etc.

Once extracted, these statistical features are fed to the reputation engine. Notos’
reputation engine operates in two modes: an off-line “training” mode and an on-line
“classification” mode. During the off-line mode, Notos trains the reputation engine using
the information gathered in our knowledge base, namely the set of known malicious and
legitimate domain names and their related IP addresses. Afterwards, during the on-line
mode, for each new domain d, Notos queries the trained reputation engine to compute a
reputation score for d (see Figure 5). We now explain the details about the statistical
features we measure, and how the reputation engine uses them during the off-line and on-
line modes to compute a domain names’ reputation score.

We now describe key statistical features and the intuition behind their selection.

Given a domain d we extract a number of statistical features from the set RHIPs of d.
Our network-based features describe how the operators who own d and the IPs that

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 9

domain d points to, allocate their network resources. Internet miscreants often abuse
DNS to operate their malicious networks with a high level of agility. Namely, the domain
names and IPs that are used for malicious purposes are often short-lived and are
characterized by a high churn rate. This agility avoids simple blacklisting or removals by
law enforcement. In order to measure the level of agility of a domain name d, we extract
eighteen statistical features that describe d’s network profile. Our network features fall
into the following three groups:

• BGP features: This subset consists of a total of nine features. We measure the
number of distinct BGP prefixes related to BGP(A(d)), the number of countries in
which these BGP prefixes reside, and the number of organizations that own these
BGP prefixes; the number of distinct IP addresses in the sets A3LD(d) and A2LD(d);
the number of distinct BGP prefixes related to BGP(A3LD(d)) and BGP(A2LD(d)),
and the number of countries in which these two sets of prefixes reside.

• AS features: This subset consists of three features, namely the number of distinct
autonomous systems related to AS(A(d)), AS(A3LD(d)), and AS(A2LD(d)).

• Registration features: This subset consists of six features. We measure the
number of distinct registrars associated with the IPs in the A(d) set; the diversity
in the registration dates related to the IPs in A(d); the number of distinct registrars
associated with the IPs in the A3LD(d) and A2LD(d) sets; and the diversity in the
registration dates for the IPs in A3LD(d) and A2LD(d).

While most legitimate, professionally run Internet services have a very stable network
profile, which is reflected into low values of the network features described above, the
profiles of malicious networks (e.g., fast-flux networks) usually change relatively
frequently, thus causing their network features to be assigned higher values. We expect a
domain name d from a legitimate zone to exhibit a small values in its AS features, mainly
because the IPs in the RHIPs should belong to the same organization or a small number
of different organizations. On the other hand, if a domain name d participates in
malicious activities (i.e., botnet activities, flux networks), then it could reside in a large
number of different networks. The list of IPs in the RHIPs that correspond to the
malicious domain name will produce AS features with higher values. In the same sense,
we measure that homogeneity of the registration information for benign domains.
Legitimate domains are typically linked to address space owned by organizations that
acquire and announce network blocks in some order. This means that the registration-
feature values for a legitimate domain name d that owned by the same organizations will
produce a list of IPs in the RHIPs that will have small registration feature values. If this
set of IPs exhibits high registration feature values, it means that they very likely reside in
different registrars and were registered on different dates. Such registration-feature
properties are typically linked with fraudulent domains.

The network-based features measure a number of characteristics of IP addresses
historically related to a given domain name d. On the other hand, the zone-based features
measure the characteristics of domain names historically associated with d. The intuition
behind the zonebased features is that while legitimate Internet services may be associated
with many different domain names, these domain names usually have strong similarities.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 10

For example, google.com, googlesyndication.com, googlewave.com, etc.,
are all related to Internet services provided by Google, and contain the string “google” in
their name. On the other hand, malicious domain names related to the same spam
campaign, for example, often look randomly generated and share few common
characteristics. Therefore, our zone-based features aim to measure the level of diversity
across the domain names in the RHDNs set. Given a domain name d, we extract
seventeen statistical features that describe the properties of the set RHDNs of domain
names related to d. We divide these seventeen features into two groups:

• String features: This group consists of twelve features. We measure the number
of distinct domain names in RHDNs, and the average and standard deviation of
their length; the mean, median, and standard deviation of the occurrence
frequency of each single character in the domain name strings in RHDNs; the
mean, median and standard deviation of the distribution of 2-grams (i.e., pairs of
characters); the mean, median and standard deviation of the distribution of 3-
grams.

• TLD features: This group consists of five features. For each domain di in the
RHDNs set, we extract its top-level domain TLD(di) and we count the number of
distinct TLD strings that we obtain; we measure the ratio between the number of
domains di whose TLD(di)=“.com” and the total number of TLD different from
“.com”; also, we measure the mean, median, and standard deviation of the
occurrence frequency of the TLD strings.

It is worth noting that whenever we measure the mean, median and standard deviation of
a certain property, we do so in order to summarize the shape of its distribution. For
example, by measuring the mean, median, and standard deviation of the occurrence
frequency of each character in a set of domain name strings, we summarize how the
distribution of the character frequency looks like.

We use the evidence-based features to determine to what extent a given domain d is
associated with other known malicious domain names or IP addresses. As mentioned
above, Notos collects a knowledge base of known suspicious, malicious, and legitimate
domain names and IPs from public sources. For example, we collect malware-related
domain names by executing large numbers of malware samples in a controlled
environment. Also, we check IP addresses against a number of public IP blacklists. Given
a domain name d, we measure six statistical features using the information in the
knowledge base. We divide these features into two groups:

• Honeypot features: We measure three features, namely the number of distinct
malware samples that, when executed, try to contact d or any IP address in A(d);
the number of malware samples that contact any IP address in BGP(A(d)); and
the number of samples that contact any IP address in AS(A(d)).

• Blacklist features: We measure three features, namely the number of IP addresses
in A(d) that are listed in public IP blacklists; the number of IPs in BGP(A(d)) that

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 11

are listed in IP blacklists; and the number of IPs in AS(A(d)) that are listed in IP
blacklists.

Notos uses the blacklist features from the evidence vector so it can identify the re-use of
known malicious network resources like IPs, BGP prefixes or even ASs. Domain names
are significantly cheaper than IPv4 addresses; so malicious users tend to reuse address
space with new domain names. We should note that the evidence-based features represent
only part of the information we used to compute the reputation scores. The fact that a
domain name was queried by malware does not automatically mean that the domain will
receive a low reputation score.

Notos’ reputation engine is responsible for deciding whether a domain name d has
characteristics that are similar to either legitimate or malicious domain names. In order to
achieve this goal, we first need to train the engine to recognize whether d belongs (or is
“close”) to a known class of domains. This training can be repeated periodically, in an
off-line fashion, using historical information collected in Notos’ knowledge base. Once
the engine has been trained, it can be used in on-line mode to assign a reputation score to
each new domain name d.

We first explain how the reputation engine is trained, and then we explain how a trained
engine is used to assign reputation scores. During off-line training (Figure 5), the
reputation engine builds three different modules.

We briefly introduce each module and then elaborate on the details:

• Network Profiles Model: A model of how well known networks behave. For
example, we model the network characteristics of popular content delivery
networks (e.g., Akamai, AmazonCloudFront), and large popular websites (e.g.,
google.com, yahoo.com). During the on-line mode, we compare each new domain
name d to these models of well-known network profiles, and use this information
to compute the final reputation score, as explained below.

• Domain Name Clusters: We group domain names into clusters sharing similar
characteristics. We create these clusters of domains to identify groups of domains
that contain mostly malicious domains, and groups that contain mostly legitimate
domains. In the on-line mode, given a new domain d, if d (more precisely, d’s
projection into a statistical feature space) falls within (or close to) a cluster of
domains containing mostly malicious domains, for example, this gives us a hint
that d should be assigned a low reputation score.

• Reputation Function: For each domain name di, i = 1..n, in Notos’ knowledge
base, we test it against the trained network profiles model and domain name
clusters. Let NM(di) and DC(di) be the output of the Network Profiles (NP)
module and the Domain Clusters (DC) module, respectively. The reputation
function takes in input NM(di), DC(di), and information about whether di and its
resolved IPs A(di) are known to be legitimate, suspicious, or malicious (i.e., if
they appeared in a domain name or IP blacklist), and builds a model that can
assign a reputation score between zero and one to d. A reputation score close to

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 12

zero signifies that d is a malicious domain name while a score close to one
signifies that d is benign.

We now describe each module in detail.

During the off-line training mode, the reputation engine builds a model of well-known
network behaviors. An overview of the network profile modeling module can be seen in
Figure 6. In practice we select five sets of domain names that share similar
characteristics, and learn their network profiles. For example, we identify a set of domain
names related to very popular websites (e.g., google.com, yahoo.com, amazon.com) and
for each of the related domain names we extract their network features. We then use the
extracted feature vectors to train a statistical classifier that will be able to recognize
whether a new domain name d has network characteristics similar to the popular websites
we modeled.

In our current implementation of Notos we model the following classes of domain names:

• Popular Domains. This class consists of a large set of domain names under the
following DNS zones: google.com, yahoo.com, amazon.com, ebay.com,
msn.com, live.com, myspace. com, and facebook.com.

• Common Domains. This class of domains includes domain names under the top
one hundred zones, according to alexa.com. We exclude from this group all
the domain names already included in the Popular Domains class (which we
model separately).

• Akamai Domains. Akamai is a large content delivery network (CDN), and the
domain names related to this CDN have very peculiar network characteristics. To
model the network profile of Akamai’s domain names, we collect a set of
domains under the following zones: akafms.net, akamai.net, akamaiedge.net,
akamai.com, akadns.net, and akamai.com.

• CDN Domains. In this class we include domain names related to CDNs other
than Akamai. For example, we collect domain names under the following zones:
panthercdn.com, llnwd.net, cloudfront.net, nyud.net, nyucd.net and redcondor.net.
We chose not to aggregate these CDN domains and Akamai’s domains in one
class, since we observed that Akamai’s domains have a very unique network
profile. Therefore, learning two separate models for the classes of Akamai
Domains and CDN Domains allows use to achieve better classification accuracy
during the on-line mode, compared to learning only one model for both classes.

• Dynamic DNS Domains. This class includes a large set of domain names
registered under two of the largest dynamic DNS providers, namely No-IP (no-
ip.com) and DynDNS (dyndns.com). For each class of domains, we train a
statistical classifier to distinguish between one of the classes and all the others.
Therefore, we train five different classifiers. For example, we train a classifier
that can distinguish between the class of Popular Domains and all other classes of
domains. That is, given a new domain name d, this classifier is able to recognize
whether d’s network profile looks like the profile of a well-known popular

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 13

domain or not. Following the same logic we, can recognize network profiles for
the other classes of domains. In this phase, the reputation engine takes the domain
names collected in our pDNS database during a training period, and builds
clusters of domains that share similar network and zone based features. The
overview of this module can be seen in Figure 6(b). We perform clustering in two
steps. In the first step we only use the network-based features to create coarse-
grained clusters. Then, in the second step, we split each coarse-grained cluster
into finer clusters using only the zone-based features, as shown in Figure 7.

Figure 7: Network & zone based clustering process in Notos, in the case of a
Akamai [A] and a malicious [B] domain name.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 14

Figure 8: The output from the network profiling module, the domain clustering
module and the evidence vector will assist the reputation function to assign the

reputation score to the domain d.

Network-based Clustering The objective of network-based clustering is to group
domains that share similar levels of agility. This creates separate clusters of domains with
“stable” network characteristics and “non-stable” networks (like CDNs and malicious
flux networks).

Zone-based Clustering After clustering the domain names according to their network-
based features, we further split the network-based clusters of domain names into finer
groups. In this step, we group domain names that are in the same network-based cluster
and also share similar zone-based features. To better understand how the zone-based
clustering works, consider the following examples of zone-based clusters:

Cluster 1:
..., 72.247.176.81 e55.g.akamaiedge.net, 72.247.176.94 e68.g.akamaiedge.net, 72.247.176.146 e120.g.akamaiedge.net, 72.247.176.65
e39.na.akamaiedge.net, 72.247.176.242 e216.g.akamaiedge.net, 72.247.176.33 e7.g.akamaiedge.net, 72.247.176.156
e130.g.akamaiedge.net, 72.247.176.208 e182.g.akamaiedge.net, 72.247.176.198 e172.g.akamaiedge.net, 72.247.176.217
e191.g.akamaiedge.net, 72.247.176.200 e174.g.akamaiedge.net, 72.247.176.99 e73.g.akamaiedge.net, 72.247.176.103
e77.g.akamaiedge.net, 72.247.176.59 e33.c.akamaiedge.net, 72.247.176.68 e42.gb.akamaiedge.net, 72.247.176.237
e211.g.akamaiedge.net, 72.247.176.71 e45.g.akamaiedge.net, 72.247.176.239 e213.na.akamaiedge.net, 72.247.176.120
e94.g.akamaiedge.net, ...

Cluster 2:
..., 90.156.145.198 spzr.in, 90.156.145.198 vwui.in, 90.156.145.198 x9e.ru, 90.156.145.50 v2802.vps.masterhost.ru, 90.156.145.167
www.inshaker.ru, 90.156.145.198 x7l.ru, 90.156.145.198 c3q.at, 90.156.145.198 ltkq.in, 90.156.145.198 x7d.ru, 90.156.145.198
zdlz.in, 90.156.145.159 www.designcollector.ru, 90.156.145.198 x7o.ru, 90.156.145.198 q5c.ru, 90.156.145.159 designtwitters.com,
90.156.145.198 u5d.ru, 90.156.145.198 x9d.ru, 90.156.145.198 xb8.ru, 90.156.145.198 xg8.ru, 90.156.145.198 x8m.ru, 90.156.145.198
shopfilmworld.cn, 90.156.145.198 bigappletopworld.cn, 90.156.145.198 uppd.in, ...

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 15

Each element of the cluster is a domain name - IP address pair. These two groups of
domains belonged to the same network cluster, but were separated into two different
clusters by the zonebased clustering phase. Cluster 1 contains domain names belonging
to Akamai’s CDN, while the domains in Cluster 2 are all related to malicious websites
that distribute malicious software. The two clusters of domains share similar network
characteristics, but have significantly different zonebased features. For example, consider
domain names d1=“e55.g.akamaiedge.net” from the first cluster, and d2=“spzr.in” from
the second cluster. The reason why d1 and d2 were clustered in the same network-based
cluster is because the set of RHIPs for d1 and d2 have similar characteristics. In particular,
the network agility properties of d2 make it look like if it was part of a large CDN.
However, when we consider the set of RHDNs for d1 and d2, we can notice that the zone-
based features of d1 are much more “stable” than the zone-based features of d2. In other
words, while the RHDNs of d1 share strong domain name similarities (e.g., they all share
the substring “akamai”) and have low variance of the string features, the strong zone
agility properties of d2 affect the zone-based features measured on d2’s RHDNs and make
d2 look very different from d1.

One of the main advantages of Notos is the reliable assignment of low reputation scores
to domain names participating in “agile” malicious campaigns. Less agile malicious
campaigns, e.g., Fake AVs campaigns may use domain names structured to resemble
CDN related domains. Such strategies would not be beneficial for the FakeAV campaign,
since domains like virus-scan1.com, virus-scan2.com, etc., can be trivially
blocked by using simple regular expressions [21]. In other words, the attackers need to
introduce more “agility” at both the network and domain name level in order to avoid
simple domain name blacklisting. Notos would only require a few labeled domain names
belonging to the malicious campaign for training purposes, and the reputation engine
would then generalize to assign a low reputation score to the remaining (previously
unknown) domain names that belong to the same malicious campaign.

Once we build a model of well-known network profiles and the domain clusters, we can
build the reputation function. The reputation function will assign a reputation score in the
interval [0, 1] to domain names, with 0 meaning low reputation (i.e., likely malicious)
and 1 meaning high reputation (i.e., likely legitimate). We implement our reputation
function as a statistical classifier. In order to train the reputation function, we consider all
the domain names di, i = 1, .., n in Notos’ knowledge base, and we feed each domain di

to the network profiles module and to the domain clusters module to compute two output
vectors NM(di) and DC(di), respectively. We explain the details of how NM(di) and
DC(di). For now it sufficient to consider NM(di) and DC(di) as two feature vectors. For
each di we also compute an evidence features vector EV (di). Let v(di) be a feature vector
that combines the NM(di), DC(di), and EV (di) feature vectors. We train the reputation
function using the labeled dataset L = {(v(di), yi)}i=1..n, where yi = 0 if di is a known
malicious domain name, otherwise yi = 1.

After training is complete; the reputation engine can be used in on-line mode (Figure 5)
to assign a reputation score to new domain names. For example, given an input domain

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 16

name d, the reputation engine computes a score S ∈ [0, 1]. Values of S close to zero
mean that d appears to be related to malicious activities and therefore has a low
reputation. On the other hand, values of S close to one signify that d appears to be
associated with benign Internet services, and therefore has a high reputation. The
reputation score is computed as follows. First, d is fed into the network profiles module,
which consists of five statistical classifiers. The output of the network profiles module is
a vector NM(d) = {c1, c2, ..., c5}, where c1 is the output of the first classifier, and can be
viewed as the probability that d belongs to the class of Popular Domains, c2 is the
probability that d belongs to the class of Common Domains, etc. At the same time, d is
fed into the domain clusters module, which computes a vector DC(d) = {l1, l2, ..., l5}. The
elements li of this vector are computed as follows. Given d, we first extract its network-
based features and identify the closest network-based cluster to d, among the network-
based clusters computed by the domain clusters module during the off-line mode. Then,
we extract the zone-based statistical features and identify the zone-based cluster closest to
d. Let this closest domain cluster be Cd. At this point, we consider all the zone-based
feature vectors vj ∈ Cd, and we select the subset of vectors Vd ⊆ Cd for which the two
following conditions are verified: i) dist(zd, vj) < R, where zd is the zone-based feature
vector for d, and R is a predefined radius; ii) vj ∈ KNN(zd), where KNN(zd) is the set of
k nearest-neighbors of zd.

The feature vectors in Vd are related to domain names extracted from Notos’ knowledge
base. Therefore, we can assign a label to each vector vi ∈ Vd, according to the nature of
the domain name d from which vi was computed. The domains in Notos’ knowledge base
belong to different classes. In particular, we distinguish between eight different classes of
domains, namely Popular Domains, Common Domains, Akamai, CDN, and Dynamic
DNS, and Spam Domains, Flux Domains, and Malware Domains.

In order to compute the output vectorDC(d), we compute the following five statistical
features: the majority class label L (e.g., L may be equal to Malware Domain), i.e., the
label that appears the most among the vectors vi ∈ Vd; the standard deviation of label

frequencies, i.e., given the occurrence frequency of each label among the vectors vi ∈ Vd

we compute their standard deviation; given the subset V (L)d ⊆ Vd of vectors in Vd that are
associated with label L, we compute the mean, median and standard deviation of the
distribution of distances between zd and the vectors vj ∈ V (L)d .

Given a domain d, once we compute the vectors NM(d) and DC(di) as explained above,
we also compute the evidence vector EV (d). At this point, we concatenate these three
feature vectors into a sixteen dimensional feature vector v(d), and we feed v(d) in input
to our trained reputation function. The reputation function computes a score S = 1 − f(d),
where f(d) can be interpreted as the probability that d is a malicious domain name. S
varies in the [0, 1] interval, and the lower the value of S, the lower d’s reputation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 17

Figure 9: ROC curves for all network profile classes shows the Meta-Classifier’s

accuracy.

Figure 10: The ROC curve from the reputation function indicating the high

accuracy of Notos.

The ROC curves in Figure 9 and Figure 10, show high accuracy of Notos. Detailed
evaluation of Notos will be presented in Section 4.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 18

3.1.2 Network-Based Anomaly Detection

BotSniffer and BotMiner We have developed the BotSniffer [13] and BotMiner [14]
systems, which are intended for detecting bots in enterprise networks. BotSniffer is an
anomaly detection system for detecting centrally controlled botnets. It uses several
“spatial and temporal correlation” algorithms to identify a group of hosts that connect to
the same outside server with similar traffic and at similar times. BotMiner is a much-
improved version of BotSniffer in that it can detect botnets regardless of the structures
(e.g., centralized or P2P) and protocols (e.g., IRC, HTTP, or SMTP, etc.) used in
command and control. Our botnet detection work is of the highest research quality, with
the BotSniffer paper in NDSS 2008 and the BotMiner paper in USENIX Security 2008).
Our work also generates a lot of interests from the industry. The BotSniffer system has
been widely reported in industry publications. Technical details:

We observed that network activities of bots within the same botnet are correlated with
each other and even with their own previous behavior. Thus, we designed BotSniffer as a
real-time anomaly detection system that captures the spatial-temporal and correlation
properties of C&C activities by bots. Examples of such bot activities include similar
connections to same outside server, and similar scan targets and spam messages. We have
developed heuristics to recognize such C&C activities in IRC and HTTP traffic. We
evaluated BotSniffer using several real network traces and found the results to be very
promising. However, a BotSniffer can detect only centralized botnet. We designed
BotMiner to be a general-purpose botnet detection system. It finds communication
clusters of similar connections based on a set of connection features such as duration,
flow sizes, frequency, etc. Bots of the same botnet will belong to the same cluster(s)
regardless whether botnet is centralized or P2P because the communications between the
bots and the command and control sever(s), or between the bot peers, are similar.
BotMiner finds “activities” clusters based on similar (bot) attack-/fraudulent activities
(e.g., scan and spam). The two kinds of clusters are then correlated to identify bots. We
showed that BotMiner has very good accuracy (very high detection rate and very low
false positive rate) in detecting botnets, including P2P botnets. However, the clustering
algorithms are computationally intensive, and as a result, BotMiner is not yet suitable for
real-time detection. We are working on traffic sampling techniques to scale up the
performance of BotMiner.

Scalable Botnet Detection Using Adaptive Sampling and Spatial-Temporal Flow
Correlation

We have developed a botnet-driven network flow analysis approach that aims to narrow
down high volumes of traffic to a limited number of network flows that are most likely
related to botnet C&C communications. The sources of such communications are
considered highly suspicious hosts, and their traffic can be forwarded to existing packet-
based botnet detectors for further, fine-grain analysis. This allows us to significantly
reduce the amount of traffic on which DPI is applied, therefore boosting the scalability of
existing DPI-based botnet detection systems.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 19

Network flow analysis typically requires far less resource than DPI. However, collecting
precise network flow information in high-speed networks is challenging, because we may
not be able to afford to process every single packet that crosses the network. In order to
solve this problem, packet sampling techniques are commonly employed to reduce the
number of packets to be processed. For example, uniform sampling and its variant
periodic sampling are among the most popular packet sampling techniques, and allow us
to reconstruct approximate network flow information. However, the effect of these
sampling techniques is that they are able to reconstruct relatively precise information
about large flows (i.e., flows that carry a high number of packets), such as media
streaming flows, but may poorly approximate or miss outright information about small
and medium flows. As many botnet C&C communications are characterized by small- or
medium-size flows (i.e., flows that carry a relatively low number of packets), uniform
and periodic sampling are not suitable for performing flow-based botnet detection.
Therefore, we introduced a novel, adaptive sampling technique that is able to reconstruct
precise network flow information for flows that are most likely related to botnet C&C
communications, while maintaining only approximate information about other flows.

Also, we have developed a new spatial-temporal correlation analysis to identify hosts in a
network that share persistently similar communication patterns, which is one of the main
characteristics of botnets. Our spatial-temporal flow correlation analysis is motivated by
the following observation. Because of their (illegal) economy-driven nature, botnets are
used by the botmaster for as long as possible to maximize profits (e.g., several months, or
until the botnet is dismantled by law enforcement). Therefore, their C&C
communications are active for a relatively long (though not necessarily continuous)
period of time. Based on these observations, we focus our analysis on identifying hosts in
a network that persistently share similar communication patterns for a relatively long (not
necessarily continuous) period of time.

We implemented a proof-of-concept version of our system, and evaluated it using real-
world legitimate and botnet-related network traces. Our experimental results show that
the proposed approach is scalable and can effectively detect bots with few false positives,
which can be further reduced by fine-grained botnet detection systems such as BotSniffer
and BotMiner.

Below we provide some details of this scalable botnet detection framework.

As shown in Figure 11, our botnet detection framework has three components: Flow-
Capture, Flow-Correlation, and Fine-Grained Detector.

The Flow-Capture module aims to monitor the traffic at the edge of high-speed networks
to gather network flow information, based on the sampled packets. The Flow-Capture
module is divided in two components: Packet-Sampling and Flow-Assembler. Packet-
Sampling is a botnetaware sampling algorithm. Given an overall target sampling
probability (SRTarget), it samples packets likely related to botnet C&C communications
and delivers them to Flow-Assembler, along with their corresponding instant sampling

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 20

probabilities. The Flow-Assembler reconstructs flow information, and assembles the
sampled packets into raw flows.

The Flow-Correlation module groups flows output by Flow-Assembler into C-flows. A
C-flow is an abstraction introduced in BotMiner to represent the C&C communication
patterns of potential bots. Each C-flow represents a view of the communication patterns
from a monitored host to a remote service over a certain epoch (e.g, 12 hours). Flow-
Correlation applies a scalable clustering algorithm over the C-flows to identify hosts that
exhibit similar communication patterns towards machines outside the monitored network.
This step is similar to the C-Plane analysis performed by BotMiner, but there are two
fundamental differences. First, we use a significantly more efficient flow clustering
process, compared to BotMiner, which can handle large traffic volumes typical of high-
speed networks. Second, unlike BotMiner, our Flow-Correlation module performs
crossepoch correlation to identify hosts that show persistently similar communication
patterns, a telltale sign of botnets. Any pair of hosts that exhibit persistently similar
communication patterns will then be labeled as suspicious hosts (potential bots) and
delivered to the Fine-Grained Detector for further in-depth analysis. The Fine-Grained
Detector can then focus on monitoring the packets related to only the suspicious IPs
provided by our Flow-Correlation module, thus reducing the overall cost of the botnet
detection process.

The design and implementation of the Flow-Capture and Flow-Correlation modules and
the detection framework are the main contributions of this work. Existing DPI-based
botnet detectors can be plugged within our framework with little or no modification to
constitute the Fine-Grained Detector module. We developed a Fine-Grained Detector
derived from BotMiner and BotSniffer, and we plugged it into our botnet detection
framework.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 21

Figure 11: Architectural Overview

Figure 12: Packet Sampling Architecture

In particular, we used two components: i) an implementation of the malicious activities
detector derived from BotMiner’s A-Plane monitor, which can identify groups of similar
malicious activities based on the attack features (e.g., the scanned port, the exploits or

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 22

binary content), and ii) BotSniffer’s IRC-based botnet detection module. Similar to the
Cross-Plane correlation in BotMiner, the correlation component correlates
communication patterns and activity patterns to detect bots. Any pair of IPs that share
persistently similar communication patterns (generated by Flow-Correlation) and similar
malicious activities (generated by the malicious activities detector) are labeled as bots by
the correlation component. And any host identified by the BotSniffer’s IRC-based botnet
detection module will be labeled as bot.

We implemented a prototype system and evaluated it using traces of real-world network
traffic and different botnets. The results show that Flow-Capture can achieve a
significantly higher sampling rate for botnet-related packets compared to the pre-defined
sampling rate. We compared B-Sampling to FlexSample, and the experimental results
indicate that B-Sampling outperforms FlexSample regarding sampling rate for botnet
packets and detection rate of Flow-Correlation. The cross-epoch correlation can
effectively and efficiently identify bots given a small percentage of suspicious hosts. The
fine-grained detector can achieve high detection rate and low false positive rate by only
inspecting packets related to a small percentage of suspicious hosts.

Table 1: Background traces

Table 2: Botnet traces

We mounted our monitors on a span port mirroring a backbone router at the college
network (200Mbps-300Mbps at daytime) to collect data. The traffic covers various

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 23

applications and we believe such kind of traffic provides good traces to evaluate our
system. The dataset contains TCP and UDP headers for continuous 3.5 days and full
packets for 1.5 hours in Table 1 We eliminated a B/16 subnet for dynamic IPs allocated
for wireless connections, which are frequently changed and can not accurately represent
the same hosts for multiple epochs. We observed a total of 1460 different IP addresses in
3.5 days. We also collected 1.5 hour traces with full payload.

We collected the traces of 7 different botnets including IRC-, HTTP- and P2P-based
botnets, as described in Table 2. Bot-IRC-A and Bot-HTTP-A were collected by
running bot instances (“TR/Agent.1199508.A” and “Swizzor.gen.c”) inmultiple hosts in
the honeypot. Bot-IRC-B and Bot-HTTP-B/Cwere generated using Rubot [19], a
botnet emulation framework. In Bot-HTTP-B, bots periodically contacted the C&C
server every 10 minutes. And in Bot-HTTP-C, the bots contacted the C&C server in a
more stealthy way by adding a random time interval between 0 to 10 minutes on each
time of visiting. Both of them conducted scanning attack on receiving the “scan”
command. Bots in Bot-IRC-A send packets much more frequently to C&C server in
the IRC session, resulting in much larger C&C flows compared to Bot-IRC-B. We
collected traces of two P2P-based botnets, Storm [14] and Waledac [17], by running
binaries in the controlled environment.

After aligning the timestamp of each packet in botnet traces according to the time of the
first packet in background traces, we mixed 3.5 consecutive days of botnet traces into the
college traces by overlaying them to randomly picked client IPs in college network. We
took one epoch E as 12hr so there are 7 epochs in total. The filter covers major local
DNS, email servers in the college, the IP ranges of the popular service networks (e.g.,
MICROSOFT, GOOGLE, YAHOO, SUN, etc.), popular content distribution networks
(e.g., AKAMAI) , whose IP ranges are unlikely to be used for Botnet C&Cs, and IPs of
top 10000 alexa domains (corresponding to 12230 IPs).

We evaluated B-Sampling algorithm using the mixed traces with different target
sampling rates (0.01, 0.025, 0.05, 0.075 and 0.1). We compared B-Sampling to
FlexSample [6], a state-of-theart sampling algorithm that can be configured with different
“conditions” for different purposes. FlexSample used a specific condition (Figure 10 in
FlexSample [6]) to capture botnet packets by allocating the majority of budgets to
packets related to “servers with high indegree of small flows”. However, since the
number of infected machines could be small in real-world, the “high fan-in” feature may
not hold and thus will probably miss the botnet packets. This condition causes very low
sampling rates on botnet packets in our traces. Therefore, we modify the condition and
only use the condition related to flow size for FlexSample.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 24

Table 3: Sampling rate

Table 3 presents the overall sampling rates and sampling rates for botnet-related packets
on the mixed dataset, using both B-Sampling and FlexSample. The first column (SRT)
reports the pre-defined target sampling rates we experimented with. The second column
(SRActual,B) and the third column (SRActual,Flex) report the actual overall sampling rates
achieved by B-Sampling and FlexSample. The results show that both B-Sampling and
FlexSample keep the actual sampling rate close to the target sampling rate. The
remaining columns report the sampling rates related to different types of botnet-related
packets, where we “zoom” in the sampled packets and evaluate the actual sampling rates
for packets of each botnet. For example, the 4th column (SRIRC−A/B,B) reports the actual
sampling rate for packets in Bot-IRC-A and Bot-IRC-B using B-Sampling, whereas the
5th column (SRIRC−A/B,Flex) presents the sampling rate using FlexSample. We can find
that B-Sampling captures a higher percentage of botnet packets, compared to
FlexSample. For example, considering the second row (target sampling rate is 0.025), B-
Sampling achieves a sampling rate of 0.93 (SRIRC−A/B, B column) while FlexSample
achieves that of 0.002 (SRIRC−A/B, Flex column) for packets in Botnet-IRC-A, where
the C&C flows are large flows. The remaining columns report a comparison of B-
Sampling and FlexSampling on the sampling rates for other botnets. As we can see, B-
Sampling achieves higher sampling rate for botnet-related packets, compared to
FlexSample. It is possible to increase the flow size in the FlexSample condition or reduce
the budget for small flows to make FlexSample capture more packets in Botnet-IRC-
A. However, it will cause FlexSample to decrease the sampling rates for packets related
to botnets whose C&Cs are small flows such as Bot-HTTP- and Bot-P2P-. The
reason is that the feature of flow size and server indegree are not intrinsic for botnets and
different botnets can diverse greatly regarding these features. B-Sampling gave higher
sampling rate for packets in Bot-IRC- and Bot-HTTP- than those in Bot-P2P-,
because that the number of packets related to syn-server is much smaller than that related
to syn-clients, and thus syn-servers have higher priority.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 25

Figure 13: Average detection rate for cross-epoch correlation, over different PerExp

Figure 14: Detection rate for cross-epoch correlation, PerExp = 0.01

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 26

Figure 15: Detection rate for cross-epoch correlation, PerExp = 0.05

Table 4: Detection Rates of Cross-Epoch Correlation using B-Sampling

We evaluated the cross-epoch correlation with B-Sampling using the mixed traces for
two properties, detection accuracy and scalability. We set

which means that two hosts sharing similar communication patterns for any 3 out of 7
epochs will be labeled as suspicious.

Given SRT and PerExp, each cell shows the detection rate of bots(/23) and percentage of
noises(/1460) identified by Flow-Correlation using B-Sampling (see Table 4). The
results show that Flow-Correlation can achieve high detection rate with low PerExp. For
example, with PerExp ≥ 5%, for all the SRT evaluated, Flow-Correlation can successfully
identify all the bots. While for the very low PerExp (e.g., 2% and 3%), more than half of
the bots were still captured. Figure 13 illustrates the average detection rates over different
PerExp for each target sampling rate, and Figure 14 and Figure 15 present the detection

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 27

rates using B-Sampling and FlexSample with PerExp of 0.01 and 0.05. The comparison
results show that by using B-Sampling, Flow-Correlation can achieve higher detection
rate.

Figure 16: Scalability of Cross-Epoch Correlation

Figure 16 presents the time consumption (in a 4Gmemory and 2-core CPU computer) for
crossepoch correlation and the C-Plane clustering of BotMiner as the number of C-flows
increases. We configured Birch to run MaxRound = 50 to simulate the process of
identifying up to PerExp suspicious hosts. The exponential time increment for C-Plane
clustering of BotMiner indicates its limited scalability. The cross-epoch correlation
shows linear pattern and its linear regression model is t = 0.0035x.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 28

Figure 17: Avg detection rate (over SRT s) of Cross-Epoch Correlation using B-
Sampling

Figure 17 presents the mean and standard deviation for detection rates by Flow-
Correlation with B-Sampling for different M, given PerExp (5% or 10%) for all SRT .
First, the results demonstrate the effectiveness of cross-epoch correlation. When no cross-
epoch correlation is used (M = 1), many legitimate IPs show stronger similarity than bots
in a single epoch. Therefore, given a certain PerExp, more than 50% bots are missed.
While cross-epoch correlation can effectively eliminate these legitimate IPs that show
strong similarity in one epoch but do not have persistently similar patterns. For example,
cross-epoch correlation with M = 2 can successfully detect most bots. Second, the results
indicate that cross-epoch correlation is not sensitive to the value of M. For example, for
M = 3/4/5, the cross-epoch correlation achieves similar detection rate. Such observation
also indicates that N/2 is a good value for M.

Table 5: Detection Rates of Fine-Grained Detectors

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 29

Fine-grained botnet detector inspects all the packets related to suspicious IPs detected by
Flow-Correlation. Using 1.5hr trace mixed with botnet traces, we evaluated the detection
rate and performance of the fine-grained detector.

By analyzing the similarity among IRC messages, “IRC Message Correlation”
component in our detector detected bots in Bot-IRC-A/B. Other bots were detected by
the “Correlation” component. For example, Bots in Bot-HTTP-B/C trigger alerts
when they scan the local network. Bot-HTTP-A bots trigger alerts when they make
update requests. Storm and Waledac trigger alerts when they discover peers. These
bots were detected by correlating such activities/alerts with corresponding pairs of IPs
from Flow-Correlation. Table 5 presents the detection rates and false positive rates for the
fine-grained detector for different SRT s and PerExps. For most combinations of SRT and
PerExp, our framework can reduce traffic volume by more than 90% for fine-grained
detector but still keep high detection rates and low false positives. For example, for SRT

= 0.01 and PerExp = 0.05, the fine-grained detector can detect all bots with false positive
of 0, and it only needs to focus on 1.7% percentage of packets.

Table 6: Performance of Fine-Grained Detector

Table 6 presents the performance comparison, including the percentage of packets
inspected and the processing time of the fine-grained detector in two situations: i) the
detector is directly applied, ii) the detector is applied with Flow-Correlation and B-
Sampling (PerExp = 0.05 and M = 3). By using Flow-Correlation, fine-grained detector
to reduce 95% time to process off-line traces, indicating a great workload reduction in
real time.

Detection of Obscure Botnet Command and Control Channels We studied the
problem of identifying obscure chat-like botnet command and control (C&C)
communications, which are indistinguishable from human-human communication using
traditional signature-based techniques. Existing passive-behavior-based anomaly
detection techniques are limited because they either require monitoring multiple bot
infected machines that belong to the same botnet or require extended monitoring times.
We explored the potential use of active botnet probing techniques in a network
middlebox as a means to augment and complement existing passive botnet C&C
detection strategies, especially for small botnets with obfuscated C&C content and
infrequent C&C interactions. We present an algorithmic framework that uses hypothesis
testing to separate botnet C&C dialogs from human-human conversations with desired
accuracy and implement a prototype system called BotProbe. Experimental results on
multiple real-world IRC bots demonstrated that our proposed active methods can
successfully identify obscure and obfuscated botnet communications. A realworld user

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 30

study on about one hundred participants also showed that the technique has a low false
positive rate on human-human conversations. This work was published in the 2009
Annual Computer Security Applications Conference [15].

httprecon We have developed a novel, network-level behavioral malware clustering
system. We focused on the analysis of structural similarities among malicious http
traffic traces generated by http-based malware. The proposed clustering system is able
to unveil similarities (or relationships) among malware samples that may not be captured
by system-level behavioral clustering, thus offering a new point of view and valuable
information to malware analysts. Also, we defined the similarity metrics among http
traffic traces, and tailored our clustering algorithms so that the output of our system
provides a good input for algorithms that automatically generate network signatures.
Such network signatures can in turn be deployed to an Intrusion Detection System (IDS)
located at the edge of a network in order to detect malicious outbound http requests,
which are a symptom of infection. We implemented a proof-of-concept version of our
network-level malware clustering system, and performed experiments withmore than
19,000malware samples. Our experimental results confirmed the effectiveness of the
proposed clustering approach, and showed how the process of automatically generating
network signatures for detecting malware-compromised machines can benefit from it.
This work was published in the 7th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), in April 2010 [21].

3.2 Botnet Analysis

3.2.1 Malware Analysis

Ether We have developed a new and transparent malware analysis platform. The focal
point in the malware analysis battle is how to detect versus how to hide a malware
analyzer from malware in runtime. The state-of-the-art analyzers reside in or emulate part
of the guest operating system and its underlying hardware, making them easy to detect
and evade. We developed a transparent and external approach to malware analysis, which
is motivated by the intuition that for a malware analyzer to be transparent, it must not
induce any side-effects that are unconditionally detectable by malware. Our analyzer,
Ether, is based on a novel application of hardware virtualization extensions such as Intel
VT, and resides completely outside of the target OS environment. Thus, there are no in-
guest software components vulnerable to detection, and there are no shortcomings that
arise from incomplete or inaccurate system emulation. Our experiments were based on
our study of obfuscation techniques used to create 25,000 recent malware samples. The
results showed that Ether remains transparent and defeats the obfuscation tools that evade
existing approaches. We also demonstrated that with coarse-grained tracing (e.g., system-
call level tracing), Ether incurs negligible overhead, and with fine-grained tracing (e.g.,
instruction-level tracing), Ether can be significant depending on the analysis tasks. We
are working on scaling the performance of Ether. A paper on Ether was published in the
15th ACM Conference on Computer and Communications Security (CCS 2008) [11]

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 31

Figure 18: Ether’s system architecture.

Below we highlight the system architecture of Ether as well as the evaluation results.

As shown in Figure 18, the architecture of Ether consists of a hypervisor component and
a userspace component running in domain 0. Ether’s hypervisor component is responsible
for detecting events in the analysis target. Currently, such events include system call
execution, instruction execution, memory writes, and context switches. Ether’s user space
component acts as a controller regulating which processes and events in the guest should
be monitored. This component also contains logic to derive semantic information from
analyzed events, such as translating a system call number into system call name or
displaying system call argument content based on argument data type.

The analysis target consists of a Xen domU running Windows XP Service Pack 2. The
only change we made to the default installation of Windows XP was disabling PAE and
large memory pages. These modifications exist solely to make memory write detection
easier in the initial Ether implementation and are not a limitation of our approach.

We developed two tools based on Ether: EtherUnpack and EtherTrace. EtherUnpack
traces memory writes and single instructions (i.e., fine-grained tracing), while EtherTrace
traces system calls (i.e., coarse-grained tracing). We used these tools to evaluate Ether
and compare it against current approaches.

To compare EtherUnpack against current approaches, we tested it alongside two other
automated unpacking tools. These were PolyUnpack [22], a generic in-guest unpacking
tool and Renovo [18], an external unpacker based on the BitBlaze Binary Analysis
Platform [3]. The results of our testing are shown in Table 7 and Table 8.

As shown in Table 7 and Table 8, EtherUnpack was able to reveal hidden code from
tElock, the CERTLEXSI sample, Armadillo [2], Obsidium, and Themida [4] because it
does not rely on correct CPU emulation, and instead utilizes native hardware for

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 32

instruction execution. Ether was also able to trace the PCPrivacyTool and our synthetic
QEMU [8] detection sample without issue. Since it is inherently impossible to ensure the
equivalence of an emulated processor to a real processor, more emulation inconsistencies
are likely present in QEMU. Therefore, as an alternative to QEMU, we advocate the use
of hardware virtualization-based approaches such as Ether.

The results indicate once again that Armadillo, which is quite popular in current malware,
provides strong anti-analysis protections and detected both Anubis [1] and Norman
Sandbox [5]. Besides Armadillo, Anubis failed to trace tElock, which crashed after
reporting failure of an internal CRC check. Reasons why Anubis failed to trace ASProtect
or why Norman Sandbox failed to trace yoda’s Protector are unclear. In contrast to both
Anubis and Norman, EtherTrace successfully traced all samples.

Automatic Reverse Engineering of Malware Emulators Malware authors have
recently begun using emulation technology to obfuscate their code. They convert native
malware binaries into bytecode programs written in a randomly-generated instruction set
and paired with a native binary emulator that interprets the bytecode. No existing
malware analysis technique can reliably defeat this obfuscation technique. We developed
the first approach in automatic reverse engineering of malware emulators. Our algorithms
are based on dynamic analysis. We execute the emulated malware in a protected
environment and record the entire x86 instruction trace generated by the emulator.

Table 7: Effectiveness of generic unpackers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 33

Table 8: Effectiveness of sandboxing environments.

We then use dynamic data-flow and taint analysis over the trace to identify data buffers
containing the bytecode program and extract the syntactic and semantic information
about the bytecode instruction set. With these analysis outputs, we are able to generate
data structures, such as control-flow graphs (CFG), that provide the foundation for
subsequent malware analysis. We implemented a proof-of-concept system called
Rotalume and evaluated it using both legitimate programs and malware emulated by
VMProtect and Code Virtualizer. The results showed that Rotalume accurately revealed
the syntax and semantics of the emulated instruction sets and reconstructed execution
paths of the original programs from their bytecode representations. This work was
published in the 2009 IEEE Symposium on Security and Privacy, and won the best
student paper award [23].

3.2.2 Botnet Traceback and Attribution

We have developed several techniques to analyze (historical) DNS query data, network
traces, messages in on-line forums (e.g. IRC), and correlate to identify and locate
botmasters. We have used these techniques to help law enforcement agencies. For

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 34

example, we were members of the Mariposa Working Group (MWG), which performed
attribution and traceback on the so-called Mariposa botnet. In the end, several groups
were arrested in several countries. While many of the suspects still face trial, one public
piece of information about the MWG was noted by Director Mueller at the August 5,
2010 International Conference on Cyber Security:

Law enforcement agencies alone cannot defeat our cyber adversaries. In the Mariposa
case, our private sector partners also provided valuable help. The Mariposa Working
Group, an informal band of security researchers and volunteers, gave us intelligence to
track down the subjects, and worked to dismantle the botnet after we made our arrests.
Thus far, our botnet traceback and attribution techniques are still mostly manual. In the
near future, we will research the creation of automated approaches.

3.3 Botnet Mitigation

We have developed a system for host-based forensics analysis and recovery. These tools
run from a bootable CD that can be used to boot the infected machine into a secure
environment for analysis and clean-up. We (in particular, Damballa) have developed
several DNS redirection techniques to disrupt botnet C&C. These include DNS
sinkholing where the resolved IP is pointed to a sinkhole, and DNS reset where the
resolved IP is the local loopback address. Damballa has incorporated these techniques in
their products and services.

We (in particular, Support Intelligence) have continued to develop our network
prophylactic for ISPs. Using DNSRBL lists to identify address to provide specific routes
into a network device that does further deep packet inspection (DPI) to assess the
problem and advise customer service fraud department or technical support with advise
on malicious traffic. Routes are injected into the ISP core to route suspicious traffic
through analysis engine. Support Intelligence also worked on BGP monitoring with
algorithms to track routes for networks with significant botnet telemetry emanations.

3.4 Add-on Tasks

We have successfully produced a report detailing the lessons learned in detecting and
responding to the Conficker botnets. The report is published as:
• ConfickerWorking Group: Lessons Learned. http://www.confickerworkinggroup.
org/wiki/uploads/Conficker Working Group Lessons Learned 17 June 2010 final.pdf. January
2011.

With the Internet Law Group, we also explored the regulatory frameworks that permit
civil investigation of the financial structure, organization and management of botnets.
The work is still on-going because it takes a long time for our study, which must include
real investigation cases, to conclude. We hope to be able to report our results in the near
future.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 35

With the help of DREN, we have developed spam and botnet data analysis systems for
identifying compromised government assets, clustering analysis of DNS reputation, and
DNS Weather Map data. These systems are now used on a daily basis by DREN
operators.

3.5 Commercialization

Damballa was founded in 2006. The PI Wenke Lee and co-PI David Dagon were among
the cofounders. Damballa participated in this project, and has incorporated Ether into
their malware analysis system, Notos into their DNS-based monitoring product, and DNS
sinkholing and reset into their products. Damballa has also developed a network-based
anomaly detection based on BotMiner. Damballa now has over 50 employees and several
dozens of customers. Several customers, including Comcast and Vanderbilt University
have gone public with their anti-botnet strategies based on Damballa products and
services.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 36

4.0 RESULTS AND DISCUSSION

Results of various tasks are in Section 3. We especially present the evaluation of a
dynamic reputation system for DNS and discuss the most significant results of DNS
monitoring, network-based anomaly detection and malware analysis in this section.

4.1 Evaluation of Notos

As a first step, we computed vectors based on the statistical features from 250,000 unique
RRs. These vectors were computed based on historic passive DNS information from the
last two weeks of DNS traffic observed on the same two ISP recursive resolvers in
Atlanta and San Jose. The accuracy of the Meta-Classification system (see Figure 6 (a))
in the network profile module is critical for the overall performance of Notos. This is
because, in the on-line mode, Notos will receive unlabeled vectors which must be
classified and correlated with what is already present in our knowledge base. For
example, if the classifier receives a new RR and assigns to it the label Akamai with very
high confidence, that implies the RR which produced this vector will be part of a network
similar to Akamai. However, this does not necessarily mean that it is part of the actual
Akamai CDN. We will see next how we can draw conclusions based on the proximity
between labeled and unlabeled RRs within the same zone-based clusters. Furthermore,
we discuss the accuracy of the Meta-Classifier when modeling each different network
profile class. OurMeta-Classifier consists of five different classifiers, one for each
different class of domains we model. We chose to use a Meta-Classification system
instead of a traditional single classification approach becauseMeta-Classification systems
typically perform better than a single statistical classifier [9] [16]. Throughout our
experiments this proved to be also true. The ROC curve in Figure 9, shows that the Meta-
Classifier can accurately classify RRs for all different network profile classes.

The training dataset for the Meta-Classifier is composed of sets of 2,000 vectors from
each of the five network profile classes. The evaluation dataset is composed of 10,000
vectors, 2,000 from each of the five network profile classes. The classification results for
the domains in the Akamai, CDN, dynamic DNS and Popular classes showed that the
supervised learning process in Notos is accurate, with the exception of a small number of
false positives related to the Common class (3.8%). After manually analyzing these false
positives, we concluded that some level of confusion between the vectors produced by
Dynamic DNS domain names and the vectors produced by domain names in the
Common class still remains. However, this minor misclassification between network
profiles does not significantly affect the reputation function. This is because the zone
profiles of the Common and Dynamic DNS domain names are significantly different.
This difference in the zone profiles will drive the network-based and zone-based
clustering steps to group the RRs from Dynamic DNS class and Common class in
different zone-based clusters.

Despite the fact that the network profile modeling process provides accurate results, it
doesn’t mean this step can independently designate a domain as benign or malicious. The
clustering steps will assist Notos to group vectors not only based their network profiles
but also based on their zone properties. In the following we show how the network and

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 37

zone profile clustering modules can better associate similar vectors, due to properties of
their domain name structure. In the domain name clustering process, Figure 6(b)) we
used X-Means clustering in series, once for the network-based clustering and again for
the zone-based clustering. In both steps we set the minimum and maximum number of
clusters to one and the total number of vectors in our dataset, respectively. We run these
two steps using different numbers of zone and network vectors.

Figure 19: With the 2-step clustering step, Notos is able to cluster large trends of
DNS behavior.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 38

Figure 20: By using different number of network and zone vectors, we observe that

after the first 100,000, there is no significant variation in the absolute number of
produced clusters during the 1st and 2nd level clustering steps.

Figure 20 shows that after the first 100,000 vectors are used, the number of network and
zone clusters remains fairly stable. This means that by computing at least 100,000
network and zone vectors—using a 15-day old passive DNS database—we can obtain a
stable population of zone and network based clusters for the monitored network. We
should note that reaching this network and cluster equilibrium does not imply that we do
not expect to see any new type of domain names in the ISP’s DNS recursive. This just
denotes that based on the RRs present in our passive DNS database, and the daily traffic
at the ISP’s recursive, 100,000 vectors are enough to reflect the major network profile
trends in the monitored networks. Figure 20 indicates that a sample set of 100,000 vectors
may represent the major trends in a DNS sensor. It is hard to safely estimate the exact
minimum number of unique RRs that is sufficient to identify all major DNS trends. An
answer to this should be based upon the type, size and utilization of the monitored
network. Without data from smaller corporate networks it is difficult for us to make a
safe assessment about the minimum number of RR necessary for reliably training Notos.
The evaluation dataset we used consisted of 250,000 unique domain names and IPs. The
cluster overview is shown in Figure 19. In the following paragraphs we discuss some
interesting observations that can be made from these network-based and zone-based
cluster assignments. As an example, network clusters 0 and 1 are predominantly
composed of zones participating in fraudulent activities like spam campaigns (yellow)
and malware dropping or C&C zones (red). On the other hand, network clusters 2 to 5
contain Akamai, dynamic DNS, and popular zones like Google, all labeled as benign
(green). We included the unlabeled vectors (blue) based on which we evaluated the
accuracy of our reputation function. We have a sample of unlabeled vectors in almost all

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 39

network and zone clusters. We will see how already labeled vectors will assist us to
characterize the unlabeled vectors in close proximity.

Before we describe two sample cases of dynamic characterization within zone-based
clusters, we need to discuss our radius R and k value selection. After looking into the
distribution of Euclidean distances between unlabeled and labeled vectors within the
same zone clusters, we concluded that in the majority of these cases the distances were
between 0 and 1000. We tested different values of the radius R and the value of k for the
K-nearest neighbors (KNN) algorithm. We observed that the experiments with radius
values between 50 and 200 provided the most accurate reputation rating results. We also
observed that if k > 25 the accuracy of the reputation function is not affected for all
radius values between 50 and 200. Based on the results of these pilot experiments, we
decided to set k equal to 50 and the radius distance equal to 100.

Figures 13 and 14 show the effect of this radius selection on two different types of
clustering problems. In Figure 21, unknown RRs for akamaitech.net are clustered
with a labeled vector akamai.net. CDNs such as Akamai tended to have new domain
names with each RR, but to also reuse their IPs. By training with only a small set of
labeled akamai.net RRs, our classifier put the new, unknown RRs for
akamaitech.net into the existing Akamai class. IP-specific features therefore
brought the new RRs close to the existing labeled class. Figure 21 compresses all of the
dimensions into a two-dimensional plot (for easier visual representation), but it is clear
the unknown RRs were all within a distance of 100 to the labeled set.

Figure 21: An example of characterizing the akamaitech.net unknown vectors as
benign based on the already labeled vectors (akamai.net) present in the same

cluster.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 40

Figure 22: An example of how the Zeus botnet clusters during our experiments. All
vectors are in the same network cluster and in two different zone clusters.

This result validates that just a few weeks’ worth of labeled data was necessary for
training. Thus, one does not have to exhaustively discover all whitelisted domains. Notos
is resilient to changes in the zone classes we selected. Services like CDNs and major web
sites can add new IPs or adjust domain formats, and these will be automatically
associated with a known labeled class.

The ability of Notos to associate new RRs based on limited labeled inputs is
demonstrated again in Figure 22. In this case, labeled Zeus domains (approximately
2,900 RRs from three different Zeus-related BLs) were used to classify new RRs. Figure
22 plots the distance between the labeled Zeus-related RRs and new (previously
unknown) RRs that are also related Zeus botnets. Most of the new (unlabeled) Zeus RRs
lay very close, and often even overlap, to known Zeus RRs (see Table 9 Table 10). This
is a good result, because Zeus botnets are notoriously hard to track, given the botnet’s
extreme agility. Tracking systems such as zeustracker.abuse.ch and
malwaredomainlist.com have limited visibility into the botnet, and often produce
disjoint blacklists. Notos addresses this problem, by leveraging a limited amount of
training data to correctly classify new RRs. During our evaluation set, Notos correctly
detected 685 new (previously unknown) Zeus RRs.

We decide to use a Decision Tree using Logit-Boost strategy (LAD) as the reputation
function. Our decision is motivated by the time complexity, the detection results and the
precision (true positives over all positives) of the classifier. We compared the LAD
classifier to several other statistical classifiers using a typical model selection procedure
[12]. LAD was found to provide the most accurate results in the shortest training time for
building the reputation function. As we can see from the ROC curve in Figure 10, the
LAD classifier exhibits a low false positive rate (FP%) of 0.38% and true positive rate
(TP%) of 96.8%. It is was noting that these results were obtained using 10-fold cross-

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 41

validation, and the detection threshold was set to 0.5. The dataset using for the evaluation
contained 10,719 RRs related to 9,530 known bad domains. The list of known good
domains consisted of the top 500 most popular domains according to Alexa.

Table 9: Sample cases form Zeus domains detected by Notos and the corresponding

days that appeared in the public BLs. All evidence information in this table were
harvested from zeustracker.abuse.ch.

Table 10: Anecdotal cases of malicious domain names detected by Notos and the
corresponding days that appeared in the public BLs .[1]: hosts-file.net, [2]:

malwareurl.com, [3] siteadvisor.com, [4] virustotal.com, [5] ddanchev.blogspot.com, [6]
malwaredomainlist.com.

We also benchmarked the reputation function on other two datasets containing a larger
number of known good domain names. We experimented with bot the top 10,000 and top
100,000 Alexa domain names. The detection results for these experiments are as follows.
When using the top 10,000 Alexa domains, we obtained a true positive rate of 93.6% and
a false positive rate of 0.4% (again using 10-fold cross-validation and a detection
threshold equal to 0.5). As we can see, these results are not very different from the ones

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 42

we obtained using only the top 500 Alexa domains. However, when we extended our list
of known good domains to include the top 100,000 Alexa domain names, we observed a
significant decrease of the true positive rate and an increase in the false positives.
Specifically, we obtained a TP% of 80.6% and a FP% of 0.6%. We believe this
degradation in accuracy may be due to the fact that the top 100,000 Alexa domains
include not only professionally run domains and network infrastructures, but also include
less good domain names, such as file-sharing, porn-related websites, etc., most of which
are not run in a professional way and have disputable reputation (e.g., A quick analysis of
the top 100,000Alexa domains reported that about 5%of the domains appeared in the
SURBL (www.surbl.org) blacklist, at certain point in time. A more rigorous evaluation of
these results is left to future work.).

Figure 23: Dates in which various blacklists confirmed that the RRs were malicious

after Notos assigned low reputation to them on the 1st of August.

We also wanted to evaluate how well Notos performs, compared to static blacklists. To
this end, we performed a number of experiments as follows. Given an instance of Notos
trained with data collected up to July 31, 2009, we fed Notos with 250,000 distinct RRs
found in DNS traffic we collected on August 1, 2009. We then computed the reputation
score for each of these RRs. First, we set the detection threshold to 0.5, and with this
threshold we identified 54,790 RRs that had a low reputation (lower than the threshold).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 43

These RRs where related to a total of 10,294 distinct domain names (notice that a domain
name may map to more than one IP, and this explains the higher number of RRs). Of
these 10,294 domains, 7,984 (77.6%) appeared in at least one of the public blacklists we
used for comparison within 60 day after August 1, and were therefore confirmed to be
malicious. Figure 23 (a) reports the number and date in which RRs classified as having
low reputation by Notos appeared in the public blacklists. The remaining three plots
(Figure 23 (b), (c) and (d)), report the same results organized according to the type of
malicious domains. In particular, it is worth noting that Notos is able to detect never-
before-seen domain names related to the Zeus botnet several days or even weeks before
they appeared in any of the public blacklists.

For the remaining 22.4% of the 10,294 domains we considered, we were not able to draw
a definitive conclusion. However, we believe many of those domains are involved in
some kind of more or less malicious activities. We also noticed that 7,980 or the 7,984
confirmed bad domain names were assigned a reputation score lower or equal to 0.15,
and that none of the other non-confirmed suspicious domains received a score lower than
this threshold. In practice, this means that an operator who would like to use Notos as a
stand-alone dynamic blacklisting system while limiting the false positives to a negligible
(or even zero) amount may fine-tune the detection threshold and set it around 0.15.

4.2 Discussion

In this project, we have developed algorithms to detect botnets through the analysis of
DNS traffic, local area network traffic, and malware samples. These algorithms were
evaluated using real-world data, and have been implemented into working, deployed
systems. We highlight the most significant results below.

For DNS monitoring, Notos, which is a system that provides a reputation score of a
domain based on passive DNS traffic, represents a new and dynamic way to create and
manage DNS reputation. Static DNS reputation systems have been around for several
years, but increasingly, botmasters are able to use a number of techniques (e.g., generate
many new domains daily) to render these static systems ineffective. With Notos, even a
new domain is assigned a score based on where the domain server is hosted, the
reputation of the provider, etc. Our experiments have shown that Notos is highly
accurate: 98% true positive rate and below 1% false positive rate. And it can identify
malicious domains weeks to months before they are actively used for malicious activities
(and then appear in static reputation systems). This means that Notos can provide
predictive capability that missing in static systems. As for future work, we will extend
Notos so as to provide more refined classification and reputation score on type of
malicious activities are associated with a domain.

In network-based anomaly detection, we developed a scalable botnet detection system
using adaptive sampling and spatial-temporal correlation. This is the first system that
aims at analyzing traffic in a very large network, such as an ISP, to detection botnets. The
key to this system is the traffic sampling techniques that are designed to identify possible
flows that are involved in botnets C&C. Our experimental results show that the proposed
approach is scalable and can effectively detect bots with few false positives, which can be

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 44

further reduced by fine-grained botnet detection systems such as BotSniffer and
BotMiner.

In malware analysis, we developed Ether, a malware analysis system that uses hardware
virtualization features to ensure that malware cannot detect the presence of the analyzer
and evade analysis. The key insight is that with hardware virtualization, there is no
emulation required and hence there is no observable discrepancy (between execution on
an emulator vs. true hardware) that the malware can observe. Our experiment results
show that while many malware programs are now evading popular analysis systems
because they are based on emulation, they cannot evade Ether.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 45

5.0 CONCLUSION

In this project, we have successfully developed a wide range of novel botnet detection,
analysis, and mitigation techniques. These techniques can be deployed at the end-hosts,
enterprise networks, ISPs, and network/DNS operators. The deliverables of this project
include many publications in prestigious academic conferences, software and data
delivered to the government, and commercial products and services. We also successfully
completed several add-on tasks.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 46

6.0 REFERENCES

[1] Anubis: Analyzing Unknown Binaries. http://anubis.seclab.tuwien.ac.at.

[2] Armadillo. http://www.siliconrealms.com.

[3] BitBlaze Binary Analysis Platform. http://bitblaze.cs.berkeley.edu.

[4] Themida. http://www.oreans.com/themida.php.

[5] Norman Sandbox Whitepaper. http://www.norman .com/documents/wp
sandbox.pdf, 2003.

[6] A. Ramachandran, S. Seetharaman, and N. Feamster. Fast monitoring of traffic
subpopulations. In Proc. ACM IMC, 2008.

[7] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building a
dynamic reputation system for dns. In Proceedings of The 19th USENIX Security
Symposium, 2010.

[8] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In ATEC, pages 41–41,
2005.

[9] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[10] I. S. Consortium. SIE@ISC : Security Information Exchange.

https://sie.isc.org/,2004.

[11] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via
hardware virtualization extensions. http://ether.gtisc.gatech.edu/, 2009.

[12] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-Interscience, 2nd
edition, 2000.

[13] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet command and control
channels in network traffic. In Proc. NDSS, 2008.

[14] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In Proc. USENIX
Security, 2008.

[15] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, and W. Lee. Active botnet probing to
identify obscure command and control channels. In Proceedings of The 25th Annual
Computer Security Applications Conference (ACSAC 2009), 2009.

[16] T. Hothorn and B. Lausen. Double-bagging: Combining classifiers by bootstrap
aggregation. Pattern Recognition, 36(6):1303–1309, 2003.

[17] Infosecurity. Storm deadnet reanimates as waledac botnet.
http://infosecurityus/?p=6262, 2009.

[18] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A Hidden Code Extractor for
Packed Executables. In WORM, 2007.

[19] C. P. Lee. FRAMEWORK FOR BOTNET EMULATION AND ANALYSIS. PhD
thesis, Georgia Institute of Technology, Atlanta, GA, Nov. 2008.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 47

[20] R. Perdisci, I. Corona, D. Dagon, and W. Lee. Detecting malicious flux service
networks through passive analysis of recursive dns traces. In Proceedings of The
25th Annual Computer Security Applications Conference (ACSAC 2009), 2009.

[21] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of http-based malware
and signature generation using malicious network traces. In Proceedings of The 7th
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2010.’

[22] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. PolyUnpack:
Automating the Hidden-Code Extraction of Unpack-Executing Malware. In
ACSAC, pages 289–300, 2006.

[23] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic reverse engineering of
malware emulators. In Proceedings of The 2009 IEEE Symposium on Security and
Privacy, 2009.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 48

6.1 List of Performers

The PI and co-PIs of this project are:
• Dr. Wenke Lee, PI; Professor of Computer Science, Georgia Tech.

• Dr. Jon Giffin, co-PI; Assistant Professor of Computer Science, Georgia Tech

• Dr. Nick Feamster, co-PI; Assistant Professor of Computer Science, Georgia Tech

• David Dagon, co-PI; Research Scientist, Georgia Tech

• Gunter Ollman, co-PI; VP of Research, Damballa Inc.

• Jody Westby, co-PI; CEO, Global Cyber Risk, LLC

• Rick Wesson, co-PI; CEO, Support Intelligence

• Paul Vixie, co-PI; Internet Systems Consortium

6.2 List of Publications/Reports

The list of publications in referred conferences and journals:

1. Junjie Zhang, Roberto Perdisci, Wenke Lee, Unum Sarfraz, and Xiapu Luo. Detecting

Stealthy P2P Botnets Using Statistical Traffic Fingerprints. In Proceedings of the 41st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Hong
Kong, China, June 2011 (to appear).

2. Junjie Zhang, Xiapu Luo, Roberto Perdisci, Guofei Gu, Wenke Lee, and Nick Feamster.
Boosting the Scalability of Botnet Detection Using Adaptive Traffic Sampling. In
Proceedings of the 6th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), Hong Kong, China, March 2011 (to appear).

3. Manos Antonakakis, David Dagon, Xiapu Luo, Roberto Perdisci, and Wenke Lee. A
Centralized Monitoring Infrastructure for Improving DNS Security. In Proceedings of The
13th International Symposium on Recent Advances in Intrusion Detection (RAID), Ottawa,
Ontario, Canada, September 2010.

4. Long Lu, Vinod Yegneswaran, Phil Porras, and Wenke Lee. BLADE: An Attack-Agnostic
Approach for Preventing Drive-By Malware Infections. In Proceedings of The 17th ACM
Conference on Computer and Communications Security (CCS), Chicago, IL, October 2010.

5. Manos Antonakakis, Roberto Perdisci, David Dagon,Wenke Lee, and Nick Feamster.
Building a Dynamic Reputation System for DNS. In Proceedings of The 19th USENIX
Security Symposium,Washington, DC, August 2010.

6. Kapil Singh, Samrit Sangal, Nehil Jain, Patrick Traynor, and Wenke Lee. Evaluating
Bluetooth as a Medium for Botnet Command and Control. In Proceedings of The 7th
Conference on Detection of Intrusions and Malware Vulnerability Assessment (DIMVA),
Bonn, Germany, July 2010.

7. Kapil Singh, Alexander Moshchuk, Helen J. Wang, and Wenke Lee. On the Incoherencies in
Web Browser Access Control Policies. In Proceedings of The 2010 IEEE Symposium on
Security and Privacy, Oakland, CA, May 2010.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 49

8. Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral Clustering of HTTP-based
Malware and Signature Generation using Malicious Network Traces. In Proceedings of The
7th USENIX Symposium on Networked Systems Design and Implementation (NSDI), San
Jose, CA, April 2010.

9. Roberto Perdisci, Igino Corona, David Dagon, and Wenke Lee. Detecting Malicious Flux
Service Networks through Passive Analysis of Recursive DNS Traces. In Proceedings of The
25th Annual Computer Security Applications Conference (ACSAC 2009), Honolulu, HI,
December 2009.

10. Guofei Gu, Vinod Yegneswaran, Phillip Porras, Jennifer Stoll, and Wenke Lee. Active Botnet
Probing to Identify Obscure Command and Control Channels. In Proceedings of The 25th
Annual Computer Security Applications Conference (ACSAC 2009), Honolulu, HI, December
2009.

11. Monirul Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure In-VM Monitoring
Using Hardware Virtualization. In Proceedings of The 16th ACM Conference on Computer
Communications Security (CCS 2009), Chicago, IL, November, 2009.

12. Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian Jiang.
Mapping Kernel Objects to Enable Systematic Integrity Checking. In Proceedings of The
16th ACM Conference on Computer and Communications Security (CCS 2009), Chicago, IL,
November, 2009.

13. Kapil Singh, Sumeer Bhola, and Wenke Lee. xBook: Redesigning Privacy Control in Social
Networking Platforms. In Proceedings of The 18th USENIX Security Symposium, Montreal,
Canada, August, 2009.

14. Roberto Perdisci, Manos Antonakakis, Xiapu Luo, and Wenke Lee. WSEC DNS: Protecting
Recursive DNS Resolvers from Poisoning Attacks. In Proceedings of The 39th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2009),
Lisbon, Portugal, June 2009.

15. Monirul Sharif, Andrea Lanzi, Jon Giffin, and Wenke Lee. Automatic Reverse Engineering
of Malware Emulators. In Proceedings of The 2009 IEEE Symposium on Security and
Privacy, Oakland, CA, May 2009. (Best Student Paper Award)

16. Andrea Lanzi, Monirul Sharif, and Wenke Lee. K-Tracer: A System for Extracting Kernel
Malware Behavior. In Proceedings of The 16th Annual Network and Distributed System
Security Symposium (NDSS 2009), San Diego, CA, February 2009.

17. David Dagon, Manos Antonakakis, Kevin Day, Xiapu Luo, Christopher P. Lee, and Wenke
Lee. Recursive DNS Architectures and Vulnerability Implications. In Proceedings of The
16th Annual Network and Distributed System Security Symposium (NDSS 2009), San Diego,
CA, February 2009.

18. Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke Lee. McPAD: A
Multiple Classifier System for Accurate Payload-Based Anomaly Detection. Computer
Networks, Vol. 53, 2009.

19. Roberto Perdisci, Andrea Lanzi, andWenke Lee. McBoost: Boosting Scalability in Malware
Collection and Analysis Using Statistical Classification of Executables. In Proceedings of
The 24th Annual Computer Security Applications Conference (ACSAC 2008), Anaheim, CA,
December 2008.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 50

20. Roberto Perdisci, Andrea Lanzi, and Wenke Lee. Classification of Packed Executables for
Accurate Computer Virus Detection. Pattern Recognition Letters Vol. 29, No. 14 (October
2008).

21. Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: Malware Analysis via
Hardware Virtualization Extensions. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS 2008), Alexandria, VA, October 2008.

22. David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee. Increased
DNS Forgery Resistance Through 0x20-Bit Encoding. In Proceedings of the 15th ACM
Conference on Computer and Communications Security (CCS 2008), Alexandria, VA,
October 2008.

23. Monirul Sharif, Vinod Yegneswaran, Hassen Saidi, Phillip Porras, and Wenke Lee. Eureka:
A Framework for Enabling Static Malware Analysis. In Proceedings of the 13th European
Symposium on Research in Computer Security (ESORICS), Malaga, Spain, October 2008.

24. Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. BotMiner: Clustering Analysis
of Network Traffic for Protocol- and Structure-Independent Botnet Detection. In Proceedings
of The 17th USENIX Security Symposium (Security’08), San Jose, CA, July 2008.

25. Kapil Singh, Abhinav Srivastava, Jon Giffin, andWenke Lee. Evaluating Email’s Feasibility
or Botnet Command and Control. In Proceedings of the 38th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN 2008), Anchorage, Alaska, June 2008.

26. Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An Architecture
for Secure Active Monitoring Using Virtualization. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy, Oakland, CA, May 2008.

27. Guofei Gu, Alvaro A. Cardenas, and Wenke Lee. Principled Reasoning and Practical
Applications of Alert Fusion in Intrusion Detection Systems. In Proceedings of the ACM
Symposium on InformAction, Computer and Communications Security (ASIACCS’08),
Tokyo,Japan, March 2008.

28. ConfickerWorking Group: Lessons Learned.
 http://www.confickerworkinggroup.org/wiki/uploads/Conficker Working Group Lessons
Learned 17 June 2010 final.pdf. January 2011.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 51

LIST OF ACRONYMS

AS Autonomous System

BGP Border Gateway Protocol

BL Black List

C&C Command and Control

CDN Content Distribution Network

DNS Domain Name System

DPI Deep Packet Inspection

DREN Defense Research and Engineering Network

FP False Positive

HTTP HyperText Transfer Protocol

IDS Intrusion Detection System

IP Internet Protocol

IRC Internet Relay Chat

ISC Internet Systems Consortium

ISP Internet Service Provider

LAD Logit-Boost Strategy

P2P Peer-to-Peer

PCAP Packet Capture

pDNS passive DNS

RDNS Recursive DNS

RHIP Related Historic IP

RHDN Related Historic Domain

RR Resource Record

SIE Security Information Exchange

SMTP Simple Mail Transport Protocol

SR Sampling Rate

TCP Transmission Control Protocol

TLD Top-Level Domain

TP True Positive

UDP User Datagram Protocol

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 52

