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Abstract

A fundamental requirement in realistic ocean simulations and dynamical studies
is the optimal estimation of gridded fields from the spatially irregular and multi-
variate data sets that are collected by varied platforms. In this work, we derive
and utilize new schemes for the mapping and dynamical inference of ocean fields
in complex multiply-connected domains and study the computational properties
of these schemes. Specifically, we extend a multiscale Objective Analysis (OA)
approach to complex coastal regions and archipelagos. Bayesian-based OAs using
covariances as inputs commonly require an estimate of the distances between data
and model points, without going across complex landforms. New OA schemes
based on estimating the length of shortest sea paths using the Level Set Method
(LSM) and Fast Marching Method (FMM) are thus derived, implemented and uti-
lized in idealized and realistic ocean cases. An FMM-based methodology for the
estimation of total velocity under geostrophic balance in complex domains is also
presented. Comparisons with other OA approaches are provided, including those
using stochastically forced partial differential equations (SPDEs). We find that
the FMM-based OA scheme is the most efficient and accurate. We also show that
the FMM-based field maps do not require postprocessing (smoothing). Mathemat-
ical and computational properties of our new OA schemes are studied in detail,
using fundamental theorems and illustrations. We find that higher-order FMM’s
schemes improve accuracy and that a multi-order scheme is efficient. We also pro-
vide solutions that ensure the use of positive-definite covariances, even in complex
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1. Introduction and Motivation

Statistical field estimation theory was introduced by Gandin (1965) to the
field of meteorology and was extended to oceanography by Bretherton et al.
(1976) where it is commonly referred to as Objective Analysis (OA). The the-
ory is based on the Gauss-Markov theorem (Plackett, 1950), and it provides
a sound basis for interpolating irregularly spaced data onto a computational
grid. Up to specifics of oceanic and atmospheric fields, for example the mul-
tiple scales, the OA scheme is equivalent to utilize the update steps of the
Kalman Filter to grid the irregularly-spaced data. Specifically, the data is
gridded based on specified prior field estimates and error covariance matri-
ces. The OA methodology has been well formulated for open oceans without
any landforms (convex simply-connected domains), but the OA in complex
coastal regions (multiply-connected domains) is one of the ‘last’ mapping
problems which remains to be studied in detail. This is one of the main
research questions of the present work.

Our research is completed using the Multidisciplinary Simulation, Es-
timation and Assimilation System (Haley and Lermusiaux, 2010; MSEAS,
2010). MSEAS consists of a set of mathematical models and computational
methods for ocean predictions and dynamical diagnostics, for data assim-
ilation and data-model comparisons, and for optimization and control of
autonomous ocean observation systems. It is used for basic and fundamen-
tal research and for realistic simulations and predictions, recently includ-
ing monitoring (Lermusiaux, 2007), real-time acoustic-ocean predictions (Xu
et al., 2008; Lermusiaux et al., 2010) and environmental management (Cos-
sarini et al., 2009). Several dynamical models are part of MSEAS, including
a free-surface primitive-equation dynamical model which uses implicit two-
way nesting (Haley and Lermusiaux, 2010). This new multiscale free-surface
code builds on the primitive-equation model of the Harvard Ocean Predic-
tion System (HOPS, Haley et al. (2009)). Additionally, barotropic tides are
calculated from an inverse tidal model (Logoutov and Lermusiaux, 2008; Lo-
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goutov, 2008).
In the multiscale OA schemes of MSEAS, the Kalman updates for data

gridding are carried out successively, from the largest scale (uniform mean
prior) to the smallest scale, using sequential processing of observations and
scale separation. In a two-scale version, a two-staged OA approach (Lermu-
siaux, 1997, 1999) maps the data onto oceanic fields in two steps: the larger
and the smaller scale steps. The main inputs to one of these steps are the
statistical description of the field being estimated and the observational noise
covariance. While the latter is dependent on the measurement sensor, the
knowledge of the field statistics does not come easily in oceanography due
to the scarcity of observations. The field statistics is often provided by ana-
lytical correlation functions which depend on the spatial separation distance
and the spatial-temporal scales (Carter and Robinson, 1987). Other MSEAS
schemes also utilize 4D dynamical models to construct covariances (Lermusi-
aux et al., 2000; Lermusiaux, 2002). These dynamical models are sometimes
successfully simplified to diffusion models (Lynch and McGillicuddy, 2001)
and this approach is also used here to benchmark our new schemes.

Our work on new OA methodologies for complex coastal regions is mo-
tivated by the Philippines Straits Dynamics Experiment (PhilEx, Gordon
et al. (2011)). The goal of PhilEx is to enhance understanding of the oceano-
graphic processes and features arising in and around straits, and to improve
the capability to predict the inherent spatial and temporal variability of
complex Archipelago regions using models and advanced data assimilation
techniques. In addition to the Philippines, we have used our new schemes in
several coastal regions with and without islands, including the Taiwan region,
New England shelf, Dabob Bay and Monterey Bay (Xu et al., 2008; Lermusi-
aux et al., 2010; Haley and Lermusiaux, 2010). Other OA schemes have been
used in coastal regions (Hessler, 1984; Stacey et al., 1988; Paris et al., 2002),
but without satisfying coastline constraints, in particular, there should be no
direct relationship across landforms. In ocean regions with complex 3D ge-
ometries, we found that such schemes give field estimates that lead to major
issues when used to initialize simulations. Efficient and accurate method-
ologies for field (e.g. temperature, salinity, biology, and velocity) mapping
in complex multiply-connected coastal domains and archipelagos were thus
necessary.

The schemes we derive estimate the sea paths between data and model
points using the Level Set Method (LSM) and Fast Marching Method (FMM),
which are techniques (Sethian, 1999b) to evolve boundaries using appropri-
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ate partial differential equations (PDEs). The FMM-based OA methods
are shown to be cheaper and more robust than others, in particular than
those based on solving diffusion-based PDEs. We also study computational
and mathematical properties. We find that higher-order discretizations of
the level-set PDEs increase the accuracy of distance estimates, second-order
schemes being sufficient for most applications. We show that the covariance
matrices are not necessarily positive definite because the Weiner Khinchin
and Bochner theorems for positive definiteness, e.g. (Papoulis, 1991), are only
valid for convex simply-connected domains. Several approaches to overcome
this issue are presented and evaluated. The solutions we propose include
introducing a small process noise or, better, reducing the covariance matrix
based on the dominant singular value decomposition.

Our new methods are expected to have many applications, in particular
to improve the World Ocean Atlas (WOA) climatologies in complex multiply-
connected domains. The WOA provides global ocean climatology containing
monthly, seasonal and annual means of temperature (T) and salinity (S) fields
at standard ocean depths. The temperature and salinity climatologies of the
WOA (Levitus, 1982), which is also termed as ‘Levitus Climatology’ and its
atlas updates in 1994 (Levitus and Boyer, 1994; Levitus et al., 1994), 1998
(Antonov et al., 1998a,b,c; Boyer et al., 1998a,b,c), 2001 (Stephens et al.,
2002; Boyer et al., 2002) and 2005 (Locarnini et al., 2006; Antonov et al.,
2006; Garcia et al., 2006a,b), have proven to be valuable tools for studying
the hydrographic structures of the World’s oceans. The WOA climatologies
have been particularly useful for providing initial and boundary conditions to
ocean circulation models. The OA procedure for the ‘Levitus Climatology’
requires the use of an analytical correlation function to determine the covari-
ance (or weight function, as described by Levitus (1982)). If the “straight
Euclidean distance” (the straight line distance between two points) is used
in such analytical correlation functions, the distance estimate is inappro-
priate for complex multiply-connected domains, as this “straight Euclidean
distance” goes across land and so violates all coastline/bottom constraints.
In particular, unconnected water masses are then erroneously blended across
landforms, leading to artificial water masses, spurious currents and other fic-
titious features. The aim of our new methodologies is to satisfy all geometric
constraints arising in complex multiply-connected domains and so rectify all
of these issues.

The paper is organized as follows. The problems addressed are described
in Sect. 2. In Sect. 3, we review the two staged multi-scale statistical
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field mapping approach from MSEAS. In Sect. 4, we introduce the new
OA methodologies based on the Level Set Method and the Fast Marching
Method. An optimization approach for computing the transport streamfunc-
tion and total velocity under geostrophic balance by minimizing the unknown
inter-island transports is also discussed. The OA approach based on the
stochastically forced partial differential equations (SPDE) is introduced in
Sect. 5. In Sect. 6, applications of our new methodologies, for the complex
regions of Dabob Bay and Philippines Archipelago are presented. In Sect. 7,
we study the computational properties of our new mapping schemes. Sec-
tion 8 consists of a summary and conclusions. The scheme to compute the
‘Levitus Climatology’ maps is summarized in App. A, the FMM algorithm
in App. B and the algorithm for minimizing unknown inter-island transports
in App. C.

2. Problem Statement

We begin by introducing the definitions of convex domains, simply and
multiply connected domains. A domain is said to be convex if for every
pair of points within the domain, every point on the straight line segment
that joins them is also within the domain. A domain is said to be simply-
connected if any closed curve within it can be continuously shrunk to a point
without leaving the domain. A domain which is not simply-connected is
called multiply-connected.

A main research question of this work is field mapping via OAs in com-
plex multiply-connected coastal domains. OA schemes require a description
of field statistics which is often provided by analytical correlation functions
(Carter and Robinson, 1987; Lam et al., 2009). Such analytical correlation
functions are dependent on the spatial separation distance. Using “straight
Euclidean” distances in complex multiply-connected domains is not appro-
priate since there is no direct relationship across landforms. An appropriate
measure of distance should be longer. The most straightforward is the length
of the shortest sea path i.e., the shortest path without going across complex
landforms. Examples of such paths that we computed for the Monterey Bay,
Massachusetts Bay, Dabob Bay and Philippines Archipelago are illustrated
in Fig. 1. Our new methodology measures these distances most efficiently.
It also allows altering distances to account for dynamical or other effects.
For example, our estimation of 3D shortest sea paths can be set-up such
that vertical distances are weighted more than horizontal ones, hence ac-
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counting for effects of reduced correlations across depths. In general, any
coordinate system can be used: if instead of depth, density surfaces are em-
ployed, diapycnal paths can be weighted more than isopycnal paths. All of
these generalizations of the shortest sea path, as well as correlation functions
that are constrained by dynamical or feature-based considerations, can be
easily accommodated in our new OA methodology.

The physical shortest sea paths, or any generalization of such paths, in
complex multiply-connected regions can be efficiently obtained using the
following numerical techniques: the Level set method (LSM) (Osher and
Sethian, 1988; Sethian, 1999b) and the Fast Marching Method (FMM) (Sethian,
1996, 1999b). These methods model the propagation of evolving boundaries
using appropriate PDE’s. Here, we illustrate their applications for realistic
OAs in both the Philippines Archipelago and Dabob Bay (WA, USA) regions.
Other optimization methods for path planning, for example Dijkstra’s algo-
rithm (Bertsimas and Tsitsiklis, 1997) and Bresenham-based line algorithm
(Bresenham, 1965) could also be used for mapping in complex domains, but
we find and show that the FMM and LSM schemes are computationally more
efficient and more accurate. We also compare our results to the OA approach
based on solving stochastically forced PDEs (Balgovind et al., 1983; Lynch
and McGillicuddy, 2001).

The FMM and LSM can also be utilized for estimating the minimum
vertical area along any path between two islands. The advantage of the
FMM and LSM is that this can be efficiently computed for all island pairs
in complex domains with many islands. Such areas are needed to estimate
total velocities and transports under a geostrophic constraint (Wunsch, 1996)
with our hydrographic OAs. Specifically in our case, these vertical areas
are used in the inversion for the transport streamfunction along the island
coastlines. The resulting temperature, salinity and velocity field estimates
can then be used as first-guess in 3D mapping of primitive-equation fields
and error covariances (Lermusiaux et al., 2000; Lermusiaux, 2002).

Mathematical and computational properties of the new mapping schemes
are also investigated in detail. To reduce the computational cost and to
understand the impact of individual data, sequential processing of observa-
tions (Parrish and Cohn, 1985; Cho et al., 1996) is utilized. By definition, the
prior covariance matrix should be positive definite. According to the Wiener-
Khinchin and Bochner theorem (Papoulis, 1991; Yaglom, 2004; Dolloff et al.,
2006), a covariance matrix based on an analytical correlation function will
be positive definite if the Fourier transform (or the spectral density of the
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correlation function) is non-negative for all frequencies. These theorems are
valid only for convex simply-connected domains. In our complex multiply-
connected domains, the covariance matrix may become negative due to: a)
Numerical errors in the computation of the shortest sea path’s length using
our new FMM/LSM based schemes, or, b) The presence of landforms. These
issues may lead to divergence problems (Brown and Hwang, 1997) in the
field mapping. Therefore, the following two questions were investigated and
resolved: a) What are the computational errors in the sea path lengths com-
puted using the FMM/LSM and how can they be reduced?, and, b) What
are the computational issues including non-positive definite covariances that
arise in mapping data in a multiply-connected coastal domain and how can
they be remedied? Answering these questions was indispensable for the de-
velopment of the FMM/LSM based scheme for complex multiply-connected
domains.

3. MSEAS Objective Analysis Approach

Bayesian-based OA schemes are well established for mapping heteroge-
neous, multivariate, irregular data (Gandin, 1965; Bretherton et al., 1976;
Carter and Robinson, 1987; Daley, 1993) in open oceans, without islands or
archipelagos, as well as in atmospheric sciences. Most OA schemes utilize
the Gauss-Markov or minimum error variance criterion (Plackett, 1950) to
map observations to the numerical grid and they require the computation
of Euclidean distances between all data and model points. Within MSEAS,
our multi-scale OA scheme consists of the successive utilization of Kalman
update steps, one for each scale and for each correlation across scales (Ler-
musiaux et al., 2000; Lermusiaux, 2002). In particular, our two-scale OA
version is summarized in (Lermusiaux, 1997, 1999).

Considering one scale or one interaction between two scales, let us denote
the vector of numerical grid point locations as x and the vector of measure-
ment locations as X, then the OA estimate of the field for that scale or
interaction (ψOA) based on the latest background field (ψ̄,d̄) is given by:

ψOA = ψ̄ + Cor(x,X)[Cor(X,X) + R]−1[d− d̄]

= ψ̄ + KOA[d− d̄] (1)

where Cor(x,X) is the correlation matrix between grid and data points (for
multivariate OAs or 3D OAs, it is a normalized covariance matrix, see Ler-
musiaux (2002)), d̄ = Hψ̄, H is the observation matrix, d is the sensor data
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vector, R is the error covariance matrix for the sensor data d (for the scale
considered) at data points, and the gain KOA is given by:

KOA = Cor(x,X)[Cor(X,X) + R]−1 (2)

The error covariance of the estimated field (for one scale) is then given by
(where E[] denotes the expectation operator):

POA = E[(x− E[x])(x− E[x])T ]

= Cor(x,x)−KOACor(X,x). (3)

A comparison between our above update equations for the OA for one scale
and the Kalman filter (KF) update equations (using underscore t to indicate
time t is made in Table 1).

KF Update Equations MSEAS OA Update equations
hline Kalman gain: OA Gain:
Kt=Pt|t−1Ht

T×[HtPt|t−1Ht
T+Rt ]−1 K = Cor(x,X)× [Cor(X,X) + R]−1

State estimate update: State estimate update:
x̂t = x̂t|t−1 + Kt(yt −Htx̂t|t−1) ψOA = ψ̄ + K[d− d̄].
Error covariance update: Error covariance update:
Pt = (I−KtHt)Pt|t−1 POA = Cor(x,x)−KOA × Cor(X,x)

Table 1: Comparison between the Kalman Filter and the MSEAS OA update
equations (for a univariate variable and one scale).

Thus, if covariances in time are not considered, the update equations of
the OA of one scale are equivalent to the update equations of the discrete
Kalman filter algorithm. The background error correlation matrix for the
field-to-data points, Cor(x,X), and the background correlation matrix at the
data points, Cor(X,X), are directly related to the KF a priori error covari-
ance matrix Pt|t−1 i.e. Cor(x,X) = Pt|t−1H

T
t and Cor(X,X) = HtPt|t−1H

T
t

(Ht is the observation matrix). In 2D horizontal OAs for a single variable,
the matrix R is often chosen diagonal with a uniform non-dimensional obser-
vational error variance σ2

d, i.e. R = σ2
dI. In MSEAS, the correlation matrices

for a given scale are usually generated from the isotropic function:

Cor(r) =

(
1− r2

L2
0

)
exp

[
−0.5× (

r2

L2
e

+
∆t2

τ 2
)

]
(4)
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Here, ∆t is the difference between the observation and the estimation time
and τ is the decorrelation time scale. This correlation in time effect extends
the direct Kalman update step at a single time to a smoothing OA step
using data from different but synoptic times. The parameters L0 and Le are
the zero-crossing and the e-folding length scales. The scalar r is the spatial
separation distance.

The MSEAS OAs are often carried out in two stages (Lermusiaux, 1999).
In the first stage, the largest dynamical scales (denoted LS) are mapped onto
the computational grid using the parameters (τ , L0, Le)LS. The background
field for this stage is often chosen to be equal to the horizontal mean of all the
observations. In the second stage, the smaller scales are mapped using the
coefficients (τ , L0, Le)ME often corresponding to the most energetic (meso)
scales. The background field for this stage is the first stage OA. A major
assumption in this OA approach is that the errors in the largest and the most
energetic stages are statistically independent. A 3D and dynamics-based
extension of this approach, including multiscale interactions, is presented in
(Lermusiaux et al., 2000; Lermusiaux, 2002): this 3D multiscale approach
also benefits from our new efficient estimation of shortest sea paths. Of
course, the accuracy of the field estimates also depends on the spatial and
time scale parameters used in the analytical correlation function, as well as
on the correlation function itself. The 2D horizontal version of the MSEAS
OA has many similarities with the approach used for ‘Levitus Climatology’
maps (Levitus, 1982; Locarnini et al., 2006; Antonov et al., 2006; Garcia
et al., 2006a,b) which is described in App. A.

The ‘Levitus Climatology’ and above two-scale MSEAS OA mapping
schemes compute the covariance or weight factors by providing Euclidean
distances as inputs to correlation functions. If they are not employed in
open ocean conditions, actual sea distances between data and model points
without going across complex landforms or through bathymetry are needed.
The LSM or FMM presented next in Sect. 4 are used to obtain such short-
est sea distances between any two points in a complex (e.g. multi-island)
multiply-connected coastal region.

4. Methodologies for estimating the length of shortest sea paths in
complex coastal regions and archipelagos

The shortest sea paths between data and model-grid points in complex
multiply-connected coastal regions are efficiently computed using the LSM
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and FMM. These paths are then input to our MSEAS software for multi-
scale OAs. The LSM and FMM methods are both more accurate and com-
putationally cheaper than the conventional Bresenham-based line algorithm
(Bresenham, 1965) and Dijkstra’s algorithm (Bertsimas and Tsitsiklis, 1997).
Comparisons to these other algorithms are discussed in (Agarwal, 2009), key
results are summarized in Sect. 7.1.

4.1. Objective Analysis using the Level Set Method (LSM)

A level set of a real-valued function φ of n variables is a set of the form:

{(x1, ..., xn)|φ(x1, ..., xn) = c} (5)

where c is a constant and xi are the n variables. That is, a level set is the
set of points where the function φ takes on a given constant value c.

Osher and Sethian (1988) proposed a numerical technique, which is called
the Level Set Method, to implicitly represent and model the propagation of
evolving level set interfaces under the influence of a given velocity field using
appropriate PDEs. An initial value formulation describing the interface mo-
tion is now discussed. The initial position of interfaces are given by level sets
of the function φ. The evolution of this function φ is linked to the propaga-
tion of the interface through a time-dependent level set equation. Interfaces
can be represented explicitly (parametrized interfaces i.e. interfaces given by
x = x(s), where s is the parameter) or implicitly (e.g. interfaces given by the
zero level set i.e. φ(x) = 0). Using the implicit representation φ(x), where x
is the position vector, a convection equation can be solved to propagate level
sets advected by a velocity field v:

φt + v.∇φ = 0 (6)

In many cases, one is interested only in the motion normal to the boundary.
Therefore, the velocity v can be represented using the scalar speed function
F and the normal direction n. Thus.

v = Fn = F
∇φ
|∇φ|

(7)

The hyperbolic, non-linear (Hamilton-Jacobi equation) level set equation,
obtained from Eqns. 6 and 7, is given by:

φt + F |∇φ| = 0 (8)
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Integrating the level set equation is an initial value problem which tracks the
evolution of the level sets φ=constant assuming F is given by the specifics of
the evolution of the φ for a particular problem. The following first order up-
winded finite difference approximation can be used to integrate this equation
8 (2-dimensional in space) (Osher and Sethian, 1988; Sethian, 1999b):

φn+1
i,j = φni,j −∆t[max(F, 0)∇+

i,j +min(F, 0)∇−
i,j]

where,

∇+
i,j = [max(D−xφni,j, 0)2 +min(D+xφni,j, 0)2 +

max(D−yφni,j, 0)2 +min(D+yφni,j, 0)2]1/2

∇−
i,j = [min(D−xφni,j, 0)2 +max(D+xφni,j, 0)2 +

min(D−yφni,j, 0)2 +max(D+yφni,j, 0)2]1/2 (9)

Here, D−x is the first order backward difference operator in the x-direction;
D+x is the first order forward difference operator in the x-direction, etc.
Mathematically, these operators are given by:

D−xφi,j =
φi,j − φi−1,j

∆x
; D+xφi,j =

φi+1,j − φi,j
∆x

(10)

The above numerical technique of the Level Set Method can be used to
solve the Eikonal Equation as described next. If the scalar speed function of
the front F is non-negative, then the steady state boundary value problem,
known as the Eikonal equation, can be formulated to evaluate the arrival
time function T(x). The Eikonal equation representing the time T(x) for
the “frontal interface” to reach the position x from its initial position is
given by:

F |∇T | = 1 (11)

The Eikonal equation simply states that the gradient of the arrival time
function is inversely proportional to the local speed of the front. To solve the
Eikonal equation, a time dependent problem is proposed. The time evolved
steady state solution of the resultant Hamilton-Jacobi equation is the Eikonal
equation. Mathematically, this is written as:

Tt + F |∇T | = 1
steady−→ F |∇T | = 1 (12)
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This Hamilton-Jacobi equation (Eqn. 12 (Left)) can be discretized using the
numerical scheme for the Level Set equation. The steady state solution of
this Hamilton-Jacobi equation will be the solution of the Eikonal equation
(Eqn. 12 (Right)).

The Level Set Method has been used in a wide variety of applications
which include arrival time problems in control theory, generation of minimal
surfaces, flame propagation, fluid interfaces, shape reconstruction etc. In
the oceanic context, the method can be used to determine shortest sea path
lengths as follows. The scalar speed function F is set to 0 for the grid points
on land and 1 for the grid points on water. The level set T(x), which is
the arrival time function, then also represents the shortest sea distance from
the starting position to the position vector x. This is because the level set
T, which is the arrival time, when multiplied by the local speed of the front
(equal to 1 in this case) gives the level set T itself for the shortest sea path
length estimate. Once these sea distances between all data points and model
points are available, the prior correlation functions can be evaluated and the
correlation matrices filled in Eqn. 1. An OA can then be computed.

Operation count for the LSM: The computation of shortest sea paths via
the LSM requires evolving of all the level sets in Eqn. 8 and not simply
the zero level set corresponding to the front itself. The LSM thus has an
operation count of O(N3) in two dimensions for N2 grid points (Sethian,
1999b). It is computationally expensive since an extra dimension is added
to the problem.

A modified approach named ‘Fast Marching level set method’, which sig-
nificantly reduces the operation count, is described next. Roughly speaking,
the two possible ways to obtain steady-state are either iteration towards the
solution, or direct construction of the stationary solution T. While LSM con-
structs the solution to the Eikonal Eqn. 11 by iterating towards the solution,
FMM is based on direct construction of the stationary solution T.

4.2. Objective Analysis using the Fast Marching Method (FMM)

The Fast Marching Method (FMM) for monotonically advancing fronts
has been proposed by Sethian (1996, 1999b). This method leads to a very
fast scheme for solving the Eikonal Eqn. 11. The Level set method relies
on computing the evolution of all the level sets by solving an initial value
PDE using numerical techniques from hyperbolic conservation laws. This
is because the Level Set Method iteratively solves the level set equation to
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compute the steady state solution which corresponds to the solution of the
Eikonal equation (Eqn. 12). As an alternative, an efficient modification is
to perform the work only in the neighborhood of the zero level set, as this
is known as the ‘narrow band approach’. The basic idea is to tag the grid
points as either “alive”, “land mines” or “far away” depending on whether
they are inside the band, near its boundary, or outside the band, respectively.
The work is performed only on alive points, and the band is reconstructed
once the land mine points are reached.

The FMM solves boundary value problems without iterations. The method
is applicable to monotonically advancing fronts (i.e. the front speed (F ≥ 0
or F ≤ 0 ) which are governed by the level set equation (Eqn. 12). The
steady state form of the level set equation is the Eikonal equation (Eqn. 11)
which says that the gradient of the arrival time surface is inversely propor-
tional to the speed of the front. For the two dimensional case, the stationary
boundary value problem is given by:

|∇T |F (x, y) = 1 s.t. Γ = {(x, y)|T (x, y) = 0} (13)

where Γ is the starting position of the interface. The first order finite differ-
ence discretization form of the Eikonal equation (Sethian, 1999b) at the grid
point (i,j) is given by:

[max(D−x
ij T, 0)2 +min(D+x

ij T, 0)2 +

max(D−y
ij T, 0)2 +min(D+y

ij T, 0)2]1/2 =
1

Fij

or,

[max(max(D−x
ij T, 0),−min(D+x

ij T, 0))2 +

max(max(D−y
ij T, 0),−min(D+y

ij T, 0))2] =
1

F 2
ij

(14)

Equation 14 is essentially a quadratic equation for the value at each grid point
(assuming that values at the neighboring nodes are known). An iterative
algorithm for computing the solution to Eqn. 14 was introduced by Ruoy and
Tourin (1992). FMM is based on the observation that the upwind difference
structure of Eqn. 14 means that the information propagates “one way”, i.e.
from the smaller values of T to the larger values. Therefore, FMM rests
on solving Eqn. 14 by building the solution outward from the smallest time
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value T. The front is swept ahead in an upwind manner by considering a set
of points in a narrow band around the existing front and bringing new points
into the narrow band structure. The fast marching algorithm is discussed in
detail in App. B (see also (Agarwal, 2009)).

The use of higher-order FMMs (or LSMs) to reduce errors in the estima-
tion of shortest sea path lengths is discussed in Sect. 7.2. They are compu-
tationally more expensive but can be necessary for robust and accurate OAs
because in complex multiply-connected domains, we found that covariance
matrices were sensitive to the accuracy of these lengths. These findings are
discussed later in Sections 7.2 and 7.3.
Operation count for the FMM: Once again, for estimating the optimal
distance, the scalar speed function F is set to 0 for the grid points on land
and 1 for the grid points on water. However, the FMM has a significantly
lower operation count of O(N2 Log N) for N2 grid points (Sethian, 1999b).
It is computationally much cheaper than the LSM explained above.

The Fast Marching Method, as discussed above, is an efficient way to
compute the sea distance between any two locations. These sea distances
can then be used for setting up the covariance matrix using any distance-
dependent analytical correlation function (e.g. Eqn. 4). Note that the cost
of the OAs proper are the same for both the LSM and FMM.

4.3. Total velocity under geostrophic balance: Estimating the minimum ver-
tical area in complex coastal regions and archipelagos

Classically, the synoptic ocean data that are most abundant are hydro-
graphic (temperature and salinity) measurements. If these data are first
gridded by OAs, they can be used to estimate a velocity field under the con-
straint of geostrophic shear (Wunsch, 1996) or other momentum balance as-
sumptions including full momentum conservation of the primitive-equations
(Lermusiaux et al., 2000; Lermusiaux, 2002). If geostrophic shear is used as
the constraint, to compute transport estimates from the hydrographic OAs,
a reference velocity is required. In complex domains, an estimate of the area
of the sea cross-sections between any two landforms (e.g. islands) is also
often necessary to set the inter-islands transports. The FMM can be directly
used to compute the minimum of these cross-sectional areas.

In our case, we utilize an optimization scheme to estimate these inter-
island transports, see (Haley et al., 2011; MSEAS, 2010). The scheme is
summarized in App. C. Its objective is to find a set of values for the trans-
port streamfunction (Ψ) along the island coastlines that produce a suitably
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smooth (initial) velocity field, e.g. without unrealistic velocities. If prior
estimates of specific transports between islands are known, they are utilized
with their uncertainties as inputs to the optimization scheme. If such prior
estimates are not available, they are set using a minimum energy principle:
a norm of the total velocity between the corresponding islands is minimized
under the constraint of geostrophic velocity shear balancing the hydrographic
OA maps. To do so, the weight functions require an estimate of the cross-
sectional area between islands. This is not easy to compute exactly without
a FMM/LSM approach.

With the FMM/LSM schemes, the minimum vertical area can be obtained
if we solve the Eikonal Eqn. 11 setting the scalar speed function to be F(x,y)
= 1/H(x,y). The Eikonal equation thus simplifies to |∇T | = H, which shows
that the solution T(x,y) of this Eikonal equation will be the minimum vertical
area. This new approach is used in Sect. 6 to obtain velocity estimates from
our hydrographic FMM-based OA maps.

5. Objective Analysis using stochastically forced partial differential
equations (SPDE’s)

Another OA approach that accounts for landforms is based on using
SPDE’s. The central idea is to represent the underlying field variability
as an outcome of a stochastic process using a SPDE where the stochasticity
represents the uncertainty in this differential equation. The SPDE is defined
only over the sea domain so as to account for geometric constraints. The
covariance matrix for the field is then constructed numerically, by solving a
set of SPDEs over the sea domain. For example, the stochastically forced
Helmholtz equations in 1-D and 2-D in space for the field ψ in an unbounded
domain (Balgovind et al., 1983) are associated with the following covariance
functions respectively:

∂2ψ

∂x2
− k2ψ = ε(x) ⇔ Cψψ(r) = (1 + kr)e(−kr)

∇2ψ − k2ψ = ε(x, y) ⇔ Cψψ(r) = krK1(kr)

'
(π

2
kr

)1/2
(

1 +
3

8kr

)
e−kr

, kr →∞ (15)

where, K1 is the Bessel function of the second kind. The process noise ε
is a random disturbance with mean 0, standard deviation 1 and no spatial
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correlation. Also, the length scale corresponds to the inverse of the SPDE pa-
rameter (k). Denman and Freeland (1985) and Weaver and Courtier (2001)
have proposed other correlation functions which can also be linked to appro-
priate SPDE’s.

A major advantage of this SPDE approach is that the field-to-field co-
variance Cor(x,x) can be computed numerically from the discretized SPDE
along with appropriate boundary conditions (i.e. no flux boundary condi-
tion across islands) to directly account for the coastline constraints (Lynch
and McGillicuddy, 2001). The discretization of SPDEs (such as Eqn. 15) or
any other differential operator defined on the sea domain usually amounts to
solving a matrix equation of the form:

[A]{ψ} = {e} (16)

where {e} is the spatial discretization of the process noise ε. All the coastline
constraints are then incorporated automatically in this matrix form (16).
Since [Cee] = [I], the covariance matrices for field-to-field points and field-
to-data points are directly obtained from Eqn. 16:

Cor(x,x) = [A]−1[Cee][A]−T = ([A]T [A])−1

Cor(x,X) = [A]−1[Cee][A]−T [H]T = ([A]T [A])−1[H]T (17)

The covariance matrix (17) obtained using the SPDE approach can be used
along with Gauss-Markov Estimation theory (see Table 1) to perform OAs in
coastal regions. A limitation of this approach is that the resulting fields can
be affected by the discretization error associated with the discretized form of
the SPDE. In fact, we found that we often need to postprocess (smooth out)
the SPDE-gridded fields to remove spurious field gradients. Such gradients,
even when small, can lead to spurious velocities by aggregate integration in
the vertical for the estimation of total velocity under geostrophic balance.
It has also been verified that that the SPDE approach is computationally
expensive when compared to our new FMM-based methodology.

A similar variant of the above methodology represents the covariance
function (Cψψ), instead of the field (ψ), by a SPDE, e.g. a stochastic
Helmholtz equation (Logutov, personal communication). The advantage is
that the covariances required are then computed directly, without the need
of Eqns. 17, which is much cheaper. However, the noise in the resulting OA
fields are then found to be even larger (Agarwal, 2009). An heuristic reason is
that this simpler representation corresponds to carrying out a “smoothing”
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step using the Helmholtz equation only once as compared to twice in the
original representation (Eqn. 17). Both of these methods, the SPDE speci-
fied for the field (ψ) and the SPDE specified for the covariance (Cψψ) were
implemented. They are utilized for comparisons with our new LSM-based
and FMM-based schemes.

Even though many different SPDE’s could be utilized for mapping a field,
in our examples, we selected the stochastically forced Helmholtz equation for
three reasons. First, the dynamics of the atmosphere can be approximately
governed on the time scale of a few days by a Helmholtz-like equation, which
is the equation for the conservation of potential vorticity under the assump-
tions of a quasi-geostrophic, frictionless, shallow water model without topog-
raphy (Balgovind et al., 1983; Pedlosky, 1987). Second, a Helmholtz equa-
tion can be obtained from the diffusion or wave equations and background
correlations are seldom modeled as Gaussian, by solving a pseudo-diffusion
equation (Derber and Bouttier, 1999). In these linear PDE’s, if the solution
is assumed separable in time and space, one obtains for the time variation
an ordinary differential equation of the first order. For the spatial variations,
one always obtains a Helmholtz equation (Selvadurai, 2000), which is the
equation that would be used for spatial mapping. Thirdly, the Helmholtz
equation is equivalent to a steady diffusion-reaction equation.

Operation count for the SPDE-based OAs: The cost of the SPDE
computations of covariances with one data point is at least in N2n but most
likely in N3 where n is the number of time-steps to reach steady state.

Meaningful comparisons among the different methods require comparable
covariance parameters. Specifically, for our SPDE-based OA examples using
Eqn. 15, the SPDE parameter (k) is chosen such that the correlation function
corresponding to the stochastically forced Helmholtz equation best fits the
analytical correlation function used by our standard OA scheme and by our
new LSM or FMM-based schemes, see Sect. 4 and (Agarwal, 2009). The
results of these methods can then be compared to each other. This is done
next in Sect. 6.2 using the World Ocean Atlas-2005 data in the Philippines
Archipelago region.

6. Applications illustrating the novel OA methodologies

Methodologies for OAs in complex multiply-connected coastal regions
were derived and described in Sect. 4. These methodologies are based on
computing optimal sea path lengths using the Level Set Method (LSM) and
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the Fast Marching Method (FMM). They efficiently incorporate all geometri-
cal constraints (e.g. there is no direct relationship across landforms) but also
other generalized constraints (see Sect. 7). They are utilized next to map tem-
perature, salinity and biological (chlorophyll) fields using a 2-staged mapping
scheme in the following regions: Dabob Bay and Philippines Archipelago. For
other regions, we refer to Agarwal (2009).

Section 6.1 evaluates our new schemes in Dabob Bay and shows that
they are more effective than other classic distance optimizing algorithms
such as the Bresenham-based line algorithm (Bresenham, 1965). Section
6.2 compares the different methods introduced in Sects. 4 and 5 for OAs in
the Philippines Archipelago region. The estimation of total velocity under
geostrophic balance by minimizing unknown inter-island transports is also
illustrated.

6.1. Objective Analysis in Dabob Bay

Dabob Bay data are used to illustrate the effectiveness of the FMM-based
scheme over other distance optimizing algorithms like Bresenham-based line
algorithm (Bresenham, 1965). Figure 2 shows maps of temperature and
salinity fields obtained using the spatially irregular data in the region and
the a. Bresenham-based line algorithm, b. Fast Marching Method. The
limitation of Bresenham-based line algorithm is that the optimal distance
computed using this method is discontinuous. This results in discontinuities
in the covariance and also in the resultant field maps (Agarwal, 2009).

The temperature and salinity field maps (Fig. 2) were obtained using
two-scale OAs: one with larger length scales (L0 = 60, Le = 30)LS and
one with smaller length scales (L0 = 30, Le = 15)ME, in both cases using
a non-dimensional observational error variance (σ2

d = 0.25). Temperature
and salinity data have higher values in the western arm (Fig. 2 (top)). The
eastern arm (Fig. 2 (Middle)) has relatively low temperature and salinity.
Effects due to the discontinuity in distance obtained from Bresenham-based
line algorithm are clearly evident in Fig. 2 (Middle). Numerical fronts with
high temperature and salinity gradients exist at the intersection of the two
arms. Such fronts lead to numerical problems in dynamical simulations.
The geostrophic velocity obtained using these field maps is unrealistic and
has high magnitudes along these fronts. A possible remedy, which reduces
the discontinuity effects, is to smooth the distance by averaging distances
of neighboring points (Haley, personal communication). We found that this
averaging technique becomes numerically very expensive. In addition, the
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intensity of erroneous fronts are reduced when this averaged Bresenham-
based line algorithm is used, but they still exist. Finally, when our new FMM-
based scheme is used to compute distances and to compute the OAs, results
are clearly devoid of any numerical fronts (Fig. 2 (bottom)). The FMM-based
scheme accurately satisfies the coastline constraints and is computationally
inexpensive when compared to the Bresenham-based line algorithms.

6.2. Objective Analysis in the Philippines Archipelago

A motivation of this study was the Philippines Straits Dynamics Experi-
ment (PhilEx, Lermusiaux et al. (2011)). In such a complex coastal region,
our new schemes were needed to map the very irregular datasets available
and initialize simulations. Without them, major problems occurred: neither
dynamical studies nor ocean forecasts could be initiated from standard OA
schemes. To illustrate this, different OA schemes are compared next, specifi-
cally: our new OA methods based on the FMM, a standard OA scheme which
ignores islands and uses the direct Euclidean distance, and a stochastically
forced PDE scheme (SPDE specified for the field).

The World Ocean Atlas-2005 (Locarnini et al., 2006; Antonov et al., 2006)
data for temperature and salinity are used. WOA-05 data are data mapped
using the ‘Levitus climatology’ scheme (see App. A) and are regularly spaced.
These data are used here primarily to illustrate and discuss the comparison of
the different methodologies with a classical data set. Subsequently, synoptic
in situ data sets are used for temperature, salinity and biological (chlorophyll)
data.

6.2.1. Objective Analysis using WOA-05 data: Methods comparison

Hydrographic field maps. We compare two-dimensional horizontal OA
field maps of the WOA-05 data (Figs. 3-8, Top-Left) computed using schemes
presented in Sect. 4 and 5. Figures 3, 4 and 5 show the temperature field maps
at the depth of 0m, 200m and 1000m, respectively. Figures 6, 7 and 8 show
the salinity field maps at the depth of 0m, 200m and 1000m, respectively. For
the two-scale OA schemes, the correlation function used for each scale is given
in Eqn. 4. The parameters are: large length scales (L0 = 540, Le = 180)LS,
most energetic length scales (L0 = 180, Le = 60)ME and observational error
variance σ2

d = 0.25. For the SPDE approach, the SPDE parameter k is set to
1/200 (this is a best fit to the correlation function used by the other schemes)
and the observational error to σ2

d = 0.25.
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The OA field maps from all methods (Fig. 3 and 4) indicate that the
Philippines Sea and the region near Palawan island is warmer than the rest
of the region near the surface (0m, 200m). The region south of the Sulu
sea around the Sulu Archipelago has relatively lower temperature. At levels
below 500m (see Fig. 5), there is a significant difference in the temperature of
the Sulu sea (warm) when compared to the rest of the region (cold) (Gamo
et al., 2007; Gordon, 2009). These temperature fields show that direct cor-
relation across landforms are likely weak. Similar observations can be made
for Salinity. Salinity in the Sulu Sea and South China Sea (Fig. 6 and 7) is
lower than the salinity in the rest of the region near the surface (0m, 200m).
At levels below 500m, the salinity in the Sulu Sea (Fig. 8) is significantly
lower than in the rest of the region. These salinity fields further support the
hypothesis that direct correlation across landforms are weak.

The field maps obtained using the LSM and FMM are identical, but the
FMM has a significantly lower computational cost. While the LSM constructs
the distance estimate by iterating towards it, the FMM is based on the direct
construction of the stationary solution (see Sect. 4). The OA fields obtained
using LSM and FMM are very close because the FMM exactly constructs
the solution of the discretized Eikonal equation whereas the LSM computes
the solution within a desired tolerance limit. Thus, an OA based on FMM
should clearly be preferred, as it is more accurate and less expensive. On the
other hand, the SPDE approach leads to OAs that are much more noisy than
those obtained using the FMM. Since it is also more expensive, the FMM
scheme is superior.

The comparison of the different methods for the temperature and salinity
maps at 1000m is shown in Figs. 5 and 8, respectively. The methods based
on FMM (Figs. 3-8 (Bottom-Left)) and SPDE (Figs. 3-8 (Bottom-Right))
clearly satisfy the coastline constraints. The data in the Sulu Sea, which has
high temperature and low salinity compared to the remaining region, does
not influence the field outside the Sulu Sea since the two regions are not con-
nected by water at 1000m (assuming only 2D horizontal correlations). On
the other hand, the standard OA (Figs. 3-8 (Top-Right)) does not satisfy
the coastline constraints. Thus the data outside the Sulu Sea, where the
temperature is low and salinity is high, is correlated to the field inside the
Sulu Sea. This is undesirable since the direct relationship across landforms
is at best very weak. This leads to spurious high temperature and salin-
ity gradients in the Sulu Sea, which creates large spurious geostrophic flow
shear. Differences between temperature field maps and salinity field maps
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obtained using the FMM and using other OA methods at 1000m are shown
in Fig. 9. The differences between the field maps obtained using the FMM
and standard OA are large because the standard OA does not incorporate
the coastline constraints. There are small differences between field maps ob-
tained using the FMM and SPDE approaches because: i) the SPDE scheme
is more sensitive to truncation errors, and ii), the analytical correlation func-
tion corresponding to the Helmholtz equation (used in the SPDE approach)
is slightly different from the analytical correlation function in the FMM.

The SPDE approach satisfies the coastline constraints, but the discretiza-
tion errors in the SPDE can be significant and this results in noisy spa-
tial variations in the OA maps, even though this noise is not present in
the monthly hydrographic data. This noise then also negatively affects the
geostrophic flow shear, and additional smoothing (post-processing) is often
needed to filter SPDE-based OA fields. Such post-processing is not required
for our FMM-based scheme. As mentioned in Sect. 5, an SPDE approach
can be implemented by specifying the SPDE for the field (as shown in Figs 3-
8 (Bottom-Right)) or by specifying it directly for the covariance (Logutov,
personal communication). The later scheme is a bit cheaper than the former
but it is a rough approximation and it further increases the undesired noise
of the field maps. Finally, the computational time required by the SPDE
approach was confirmed higher than that of the FMM, in accord with the
operation counts of Sect. 5. Thus, the FMM appears to be the best among
all the methods of Sects. 4 and 5. This was confirmed in many other regions
and the FMM scheme is thus used to map the spatially irregular synoptic
data in the sections that follow.

Velocity field maps. We now illustrate the estimation of total velocity
under geostrophic balance in the region using the above OA field maps of
hydrographic WOA05 data. The algorithm for optimizing inter-island trans-
ports (App. C) is utilized to compute a smooth total flow field estimate under
the constraint of geostrophic shear balance. Weight functions based on the
minimum vertical area along each pair of islands are computed and used in
the algorithm. The estimation of the minimum vertical area has been carried
out using the FMM by specifying the scalar speed function in the Eikonal
Eqn. 11 as F(x,y) = 1/H(x,y), where H is the ocean depth. The tempera-
ture and salinity maps are those of our FMM-based OA scheme (Figs. 3-8
(Bottom-Left)) and of the SPDE approach (Figs. 3-8 (Bottom-Right)), with
the Helmholtz equation employed for the field. The streamfunction and ve-
locity fields (at depths 0m, 100m) are shown in Fig. 10. The estimates
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based on our FMM-based hydrographic OAs (Fig. 10 (Left)) are in overall
good agreement with those obtained using maps based on the stochastically
forced Helmholtz equation (Fig. 10 (Right)). However, the SPDE-based ve-
locity fields are noisier, reflecting the spurious noise in the hydrographic OAs.
On average, these monthly mean flow estimates suggest larger density-driven
velocities in the Mindoro strait, near the Mindanao Island and in the Bal-
abac strait. The maximum absolute velocity, reaches 80 cm/s in the Balabac
strait at the surface. At lower depths, velocities remain high in the Mindoro
strait and near the Mindanao Island.

Weight functions based on the minimum inter-island distance, which can
be obtained using the FMM by specifying the scalar speed function in the
Eikonal Eqn. 11 as 1 for sea points and 0 for land points, were also used.
The velocity fields obtained using these weight functions had much larger
magnitudes, particularly in the Balabac strait (Agarwal, 2009) where the
maximum absolute velocity was 141 cm/s. Such high velocity magnitudes
are very unlikely. These results show that weight functions based on the
minimum vertical area (which is logical for transport estimates) are the most
adequate.

6.2.2. Objective Analysis of synoptic data for the Summer 2007

The data used in this example is collected from the Melville exploratory
cruise, sg122 and sg126 gliders for the June-July’07 period (Gordon (2009)
and Craig Lee, personal communication). The data coverage is shown in
Fig. 11 (Top). A portion of the Philippines Archipelago near islands is
sampled and OA maps are computed in that region. The scales used are:
large length scales (L0 = 1080,Le = 360)LS and most energetic length scales
(L0 = 270, Le = 90)ME. The observational error is set to σ2

d = 0.20. The hy-
drographic field maps obtained using our FMM-based OA scheme are shown
in Figs. 12 (Top) and 13 (Top), respectively at depths of 0m and 200m. Once
again, these maps clearly indicate that the coastline constraints are appro-
priately satisfied. At depth of 0m, the warmer regions to the west of Luzon
island remain uncorrelated with the Pacific waters east of Luzon. The warm
Sibuyan and Visayan Seas can be distinguished from the relatively cold Bo-
hol Sea. At 450m and 1000m, the data in the warm Sulu Sea and Bohol
Sea do not impact the other regions: there is no direct relationship across
landforms. Similar observations are made for the salinity (e.g. at 0m, the low
salinities west of Luzon island do not affect Pacific waters east of Luzon).
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6.2.3. Objective Analysis for early Winter 2008

The data used in this example is obtained from the joint Melville cruise
for the Nov’07-Jan’08 period. The data locations are shown in Fig. 11 (Bot-
tom). The OA parameters are: large length scales (L0 = 1080, Le = 360)LS,
most energetic length scales (L0 = 270, Le = 90)ME and observational error
variance (σ2

d = 0.20). The hydrographic field maps obtained using the FMM-
based scheme are shown in Figs. 12 (Bottom) and 13 (Bottom), respectively,
at 0m and 200m depth. At the surface, the warm/fresher region west of
Luzon is uncorrelated with the region east of Luzon. At depths of 450m and
1000m (not shown), the warm Bohol Sea is enclosed and at these depths, it
does not affect other regions either.

Comparing the Winter 2008 from the Summer 20007, the largest differ-
ences in temperature and salinity are near the ocean surface (deeper than
200 m depth, fields are much closer). For example, the 0m temperature near
Luzon is significantly lower in Winter 2008 than in Summer 2007. However,
in the Sulu Sea, the temperature is nearly the same for both Summer 2007
and Winter 2008.

6.2.4. Objective Analysis for biological fields (chlorophyll)

Of course, our new FMM-based scheme is not limited to physical fields.
Its application to biological fields is illustrated here using the Exploratory
cruise Summer 2007 data (Gordon, 2009). Our biological OA field maps
(for chlorophyll, nitrate and ammonium) were utilized to initialize coupled
physics-biology modeling studies (Burton, 2009; Lermusiaux et al., 2011).
The mapping of chlorophyll profiles is illustrated here. The profiles were
estimated from satellite images and a region-by-region feature model (Ler-
musiaux et al., 2011). The biological OA parameters were fit to: large length
scales (L0 = 1080, Le = 360)LS, most energetic length scales (L0 = 270,
Le = 90)ME and observational error variance (σ2

d = 0.20). The resulting
chlorophyll maps are illustrated in Fig. 14 at depths of 0m, 10m, 50m, 160m.

The concentration of biological fields like chlorophyll, phytoplankton and
zooplankton is substantial near the surface due to the presence of sunlight.
The chlorophyll concentration is maximum near islands often driven by winds
or bathymetric upwelling. Away from islands, it tends to be more uniform,
around a mean value. At 0m and 10m depths, the maximum chlorophyll
concentration is observed south of the Visayan sea and in the Bohol Sea.
At 50m depth, chlorophyll concentrations remain significant there, but the
largest chlorophyll concentrations are observed north of Palawan island. Bi-
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ological concentrations at lower depths decrease rapidly.

7. Computational Analysis

The computational properties of our methods for mapping irregular data
in complex geometries are now described and studied. First, the computa-
tional costs are compared in Sect. 7.1. Then, schemes to resolve issues specific
to complex multiply-connected coastal regions such as the need for accurate
distance estimates (Sect. 7.2) and the need for positive-definite covariance
matrices (Sect. 7.3) are discussed. These schemes are important because if
the covariance matrix becomes negative, divergence problems occur in the
Kalman updates (Brown and Hwang, 1997).

To motivate the computational studies, recall that we generate the covari-
ance matrices using analytical correlation functions defined based on the Eu-
clidean distance. These correlation functions are termed “positive definite”
if they generate positive definite covariance matrix in a simply-connected
convex domain. It has been well established using the Wiener-Khinchin and
Bochner’s theorems that if the Fourier transform (or the spectral density) of
a correlation function is non-negative for all frequencies then the correlation
function is positive definite (Yaglom, 1987; Papoulis, 1991; Yaglom, 2004;
Dolloff et al., 2006). However, we found that for coastal regions, covari-
ance matrices generated from “positive definite correlation functions” may
not be positive definite due to: a. numerical errors in the computation of
the shortest path lengths using our FMM/LSM schemes, or b. the presence
of landforms which lead to multiply-connected or non-convex domains, in-
validating assumptions in the Wiener-Khinchin and Bochner theorems (see
(Agarwal, 2009) for proof). This can lead to divergence problems in the
mapping. Such problems are illustrated using the WOA-05 data (Spliced
February and Winter Climatology) shown in Fig. 15 (Top-Left). To simplify,
we consider single-scale OAs (all previous example were two-scale OAs).
The field maps obtained using our FMM-based scheme with length scales
(L0 = 540, Le = 180) and length scales (L0 = 1080, Le = 360) are shown
in Fig. 15. Fields obtained using the larger scales (Fig. 15 (Bottom-Left))
clearly show divergence problems near the Palawan island. These problems
are not encountered when the smaller length scales are used and are much
smaller when a higher-order FMM scheme is used (Fig. 15 (Top-Right)).
Questions which motivate our research in Sects. 7.2 and 7.3 are thus: i)
What are the computational errors in the shortest sea-path distances com-
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puted using the FMM/LSM and how can they be reduced?, and ii) What
are the computational issues including non-positive definite covariances that
arise in a multiply-connected coastal domain and how can they be reme-
died? A higher-order FMM than the first-order one (Sect. 4.2) is discussed
in Sect. 7.2. Higher-order FMMs significantly reduce errors in the distance
estimates, i.e. the difference between the numerically computed and true
distance, which limits divergence problems in the mapping. However, even
if exact distances are used, when curved boundaries or islands are present
in the domain, negative covariances can still occur. Methods to solve these
issues are derived in Sect. 7.3.

7.1. Comparison of Computational Costs

For all OA schemes, we sequentially process observations (see Parrish
and Cohn (1985); Cho et al. (1996); Lermusiaux (1997); Agarwal (2009)).
Such sequential processing drastically reduces computational costs and also
allows estimating the impact of individual data. Since data are processed
sequentially, the costs for the OA schemes are compared by considering a
single scalar data point. The main cost is then the computation of the
covariance of that data point with all other grid points in the domain. For
the FMM, LSM and Dijkstra’s schemes, the operation count to do this is
driven by the computation of the shortest distances from that data point
with all other points. For the SPDE scheme, it depends on the diffusion
equation used and on the iterations to reach state-state. For a 2-D domain
with N points in each direction, these operation counts are given in Table 2.

Method Operation Count
Level Set Method O(N3)
Fast Marching Method O(N2logN)
SPDE Method O(N2n)
Dijkstra’s Method O(N3)

Table 2: Operation counts for computing the covariances among one data
point and each of the N2 model grid points, as obtained using the LSM,
FMM, SPDE (n iterations) and Dijkstra’s schemes.

There are a total of N2 grid points at each level and the operation count
for LSM is obtained from an optimistic guess that LSM will take roughly
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N steps to converge. In reality, the iterations can take much longer to con-
verge, and the LSM is thus not efficient to compute these distances. On
the other hand, FMM is an efficient technique which requires a fast method
to locate the smallest value grid point in the narrow band. The Min-Heap
data structure with backpointers (Sedgewick, 1988) is employed here to effi-
ciently locate the grid point with the minimum value. The total work done
in the DownHeap and UpHeap operations, which ensure that the updated
quantities do not violate the heap properties, is O(log N). Thus, for a 2D do-
main with N grid points in each direction, the FMM has an operation count
of N2logN , which is a significant improvement over the LSM. An efficient
SPDE scheme requires at least an order of N2n where n is the number of it-
erations to reach steady state. We have observed that the SPDE approach is
at least 15% more expensive computationally than the FMM scheme. Thus,
the FMM-based scheme is computationally the most efficient.

7.2. Higher order Fast Marching Method

In a domain with no islands or landforms, the shortest path length ob-
tained using the FMM/LSM should be equal to the Euclidean distance. But
the FMM/LSM have discretization errors which lead to inaccurate length
estimates. The Weiner Khinchin and Bochner theorems are valid for covari-
ances computed using the Euclidean distance in a simply-connected convex
domain. So, if the domain is simply-connected convex, the covariance ma-
trix can only become negative definite due to the inaccurate length estimates.
This may lead to divergence problems in the resultant field maps. In this
Section, the goal is to estimate and reduce the computational errors in the
shortest path lengths. We first introduce the higher order FMM which re-
duces these errors.

The FMM scheme presented in Sect. 4.2 is first order, since the first
order discretization form (Eqn. 14) of the Eikonal Eqn. 11 is used. A dif-
ferent implementation of FMM with higher accuracy (Sethian, 1999a,b) is
discussed here. It employs the second order backward approximation to the
first derivative Tx is given by:

Tx ≈
3Ti − 4Ti−1 + Ti−2

2∆x
⇔ Tx ≈ D−xT +

∆x

2
D−x−xT

(18)

and the second order forward approximation to the first derivative Tx given
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by:

Tx ≈
3Ti − 4Ti+1 + Ti+2

2∆x
⇔ Tx ≈ D+xT − ∆x

2
D+x+xT

(19)

Here D−x and D+x are the first order forward and backward approxima-
tions for the first derivative, respectively (Eqn. 10), D−x−x ≡ D−xD−xand
D+x+x ≡ D+xD+x.

Consider the switch functions defined by:

switch−xij =

 1 if Ti−2,j and Ti−1,j are known (‘Alive’)
and Ti−2,j ≤ Ti−1,j

0 otherwise


switch+x

ij =

 1 if Ti+2,j and Ti+1,j are known (‘Alive’)
and Ti+2,j ≤ Ti+1,j

0 otherwise


(20)

Similar functions are defined in the y-direction. The higher accuracy scheme
attempts to use a second order approximation for the derivative whenever
the points are tagged as ‘alive’ (the points inside the band where the value
of the arrival time function is frozen: see Sect. 4.2) but reverts to the first
order scheme otherwise.

The modified discretization equation for the higher accuracy FMM is thus
given by: 

max([D−x
ij T + switch−xij

∆x
2
D−x−x
ij T ],

−[D+x
ij T − switch+x

ij
∆x
2
D+x+x
ij T ], 0)2

+

max([D−y
ij T + switch−yij

∆y
2
D−y−y
ij T ],

−[D+y
ij T − switch+y

ij
∆y
2
D+y+y
ij T ], 0)2

 =
1

F 2
ij

(21)

It should be noted that the above scheme is not necessarily a second order
scheme. Its accuracy depends on how often the switches evaluate to zero and
how the number of points where the first order method is applied changes
as the mesh is refined. When the number of points where the first order
method is applied is relatively small (occurs only near the coastlines), the
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error is reduced considerably by using the higher accuracy FMM (Agarwal,
2009). It should also be noted that a third or higher-order approximations
for the derivative Tx can similarly be used to construct more accurate FMM
schemes, but this increases the computational cost. We also found that the
relative error in the distances computed by the FMM is higher near the data
point and it decays as the distance increases. To keep the computational
cost low and a uniform relative error, we can thus use higher accuracy FMM
near the data points and then progressively shift to the lower order schemes
as the distance increases.

The results of using higher order FMMs to minimize errors in the estima-
tion of the shortest path length are illustrated on Fig. 15 (Bottom-Right).
They clearly show that the above higher order FMM has attenuated the di-
vergence issues compared to the first order FMM. The divergence issues do
not vanish completely because some discretization errors still occur but also
because of the presence of landforms. To deal with the latter, which are due
to the multiply-connected coastal domains, we further improve schemes next
in Sect. 7.3.

7.3. Positive Definite covariance matrix for complex multiply-connected coastal
regions

Apart from the inaccurate shortest path length, the covariance matrix
may also become negative due to the presence of islands and coastlines.
This is because the presence of islands and archipelagos stretches the direct
Euclidean path, which can render the covariance matrix negative.

For example, consider the idealized multiply-connected domain with an
island, shown on Fig. 16. This domain has 12 grid points marked as ocean
points and 4 grid points marked as land points. The length of the shortest
sea path is computed exactly to form the covariance matrix and so remove
all discretization errors of the FMM/LSM. To do so, the positive-definite

correlation function Cor(r) = exp
[
− r2

2L2

]
with L=2 is used. We find that

the covariance matrix is not positive definite. The maximum eigenvalue for
the covariance matrix is 6.3345 while the minimum is -0.0504. This idealized
example clearly reveals that classic Euclidean-based covariance matrices for
a complex multiply-connected region may not necessarily be positive defi-
nite. This is because the conditions of the Wiener-Khinchin and Bochner’s
theorems are not satisfied.

One could consider changing the coordinate system, for example curvilin-
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ear coordinates. For adequate coordinate choices, in the transformed space,
the domain can then be simply connected and convex. However, the issue
then is that the real distances among grid points become position dependent
which violates another assumption of the Wiener -Khinchin and Bochner’s
theorem, see (Agarwal, 2009) for examples and more discussions.

Hence, other schemes have to be used to alleviate the divergence prob-
lems (Fig. 17 (Top-Left)) due to the non-positive definite covariance matrix.
They include:
a. Discarding the problematic data: Discarding the data that lead to
negative values of HjCor(x,x)j−1H

T
j would solve the issue and eliminate di-

vergences in the resultant OA. However, this method is a not adequate since
the information in the data is discarded entirely. The field map obtained by
discarding the problematic data is shown in Fig. 17 (Top-Right). Clearly,
the divergence problems are removed but loosing data is not acceptable.
b. Introducing process noise: Adding a small process noise to the di-
agonal elements of the covariance matrix would help (Brown and Hwang,
1997), but it will lead to a degree of sub-optimality: the noise affects all of
the problematic data. However, it is often a more acceptable scheme than
discarding the data. We indeed find that introducing the process noise leads
to less divergence problems, as shown in our example, see Fig. 17 (Bottom-
Left).
c. Dominant Singular Value Decomposition (SVD) of a-priori co-
variance: To construct the OA field maps, the full covariance matrix is
not required. In fact, the full covariance matrix (Cor(x,x)) is expensive to
compute and store, and it is therefore rarely computed. The necessary re-
quirement for field maps is the covariance matrix among the grid and data
points, i.e. Cor(x,X). The divergence problems can be removed by first
obtaining the singular value decomposition (SVD) of Cor(x,X) and then re-
taining only the dominant singular values and setting the smaller singular
values (e.g. less than 1 percent of the maximum singular value) to zero. This
SVD procedure renders the covariance matrix non-negative definite, which
was verified in multiple examples where a simulated map was used for a true
ocean. Based on these results and on minimum error variance arguments,
the dominant SVD method is the most acceptable one because it loses the
least information contained in the data. Our example is shown on Fig. 17
(Bottom-Right). We find that the field maps obtained using this dominant
SVD of the a-priori covariance is free from divergence problems. They are
also similar to, but further improve, the fields obtained by introducing the
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process noise.

8. Summary and Conclusions

New methodologies for the efficient mapping and dynamical inference
of ocean fields from irregular data in complex multiply-connected domains
were derived and utilized, and computational properties of these mapping
schemes were studied. These new OA methods, which satisfy the coastline
and bathymetry constraints (e.g. there is no direct relationship across land-
forms), are based on estimating the length of the optimal sea path using
either the Level Set Method (LSM) or the Fast Marching Method (FMM).
The optimal sea path was geometrically defined: i.e. for purely horizontal
OAs, it is the shortest sea distance in 2D, and for 3D OAs, it is the shortest
sea distance in 3D, weighting the vertical or diapycnal distances more than
the horizontal ones. Numerical schemes were derived and implemented, and
their operation counts compared. Their properties and results were studied
in complex domains, the Philippines Archipelago and Dabob Bay, in re-
alistic situations. Both climatological and synoptic datasets were employed
and estimates of temperature, salinity and biological (chlorophyll) fields were
computed and discussed. We found that without these new OA methods, nei-
ther meaningful dynamical studies nor meaningful ocean simulations could
be initiated.

Results were compared with those of a standard OA scheme (using across-
landforms Euclidean distance in the analytical correlation function), of OA
schemes based on other distance estimation methods and of OA schemes
based on the use of stochastically forced PDEs (SPDEs). We showed that the
FMM-based scheme is computationally cheaper than the LSM-based scheme
and diffusion-based SPDE approach. We found that the field maps obtained
using our FMM-based schemes were more robust than those obtained using
SPDE schemes: fields did not require postprocessing (smoothing), i.e. they
were devoid of any spurious gradients. Such spurious gradients in hydro-
graphic maps lead to unrealistic geostrophic flows. The FMM and LSM
were the most appropriate for estimating the optimal sea distances among
other distance estimation schemes such as Dijkstra’s optimization algorithm
and the classic Bresenham-based line algorithm. The optimal distance com-
puted using Dijkstra’s algorithm is computationally expensive and inaccu-
rate. Apart from being computationally expensive, the optimal distance
computed using the Bresenham line algorithm is discontinuous. This results
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in the formation of numerical fronts with high field gradients. Such erroneous
gradients do not occur when our FMM-based scheme is utilized.

Mathematical and computational properties of the new OA schemes were
studied. The sequential processing of observations reduces the computational
cost and also helps in understanding the impact of individual data. We found
that the use of higher order FMMs increased the accuracy of the estimates
of the length of shortest sea paths. The most efficient FMM schemes de-
rived employed a variable order discretization, the order decaying as the
distance between the data and model points increases. Accurate FMM dis-
tance estimates eliminate one of the sources of negative covariance matrices.
The other source is simply the presence of islands or of other non-convex
landforms. This is because the Wiener-Khinchin and Bochner theorems are
valid only for correlation functions based on the Euclidean distance in convex
simply-connected domains. Several approaches to overcome this issue were
discussed. These include discarding problematic data points, introducing
process noise, and reducing the covariance matrix by applying the dominant
singular value decomposition (SVD). Among these, we argued and showed
that the latter use of the SVD to reduce the covariance matrix is the best
solution.

We have also employed a FMM-based method to estimate the total ve-
locity under geostrophic balance in complex multiply-connected domains.
The FMM is used to compute the minimum vertical area between all pairs
of islands. Theses minimum areas are required to compute the transport
streamfunction field that optimizes the inter-island transports and produces
a smooth velocity field. The result is a mass-conserving geostrophic flow
in balance with the hydrographic OA maps and with optimized inter-island
transports. This method and the minimum vertical area estimates were nec-
essary to obtain realistic velocity estimates in our Philippines Archipelago
examples.

As part of our ongoing work, we have started to incorporate additional
geometrical and non-homogeneous dynamical effects to our FMM-based OA
scheme. An approach we have followed is to modify the scalar speed func-
tion in the Eikonal equation as a function of these geometrical properties
and heterogeneous dynamics. In particular, we have utilized a bathymetry-
dependent scalar speed function to include bathymetric effects at lower depth
levels. To include heterogeneous scales due to the existence of fronts, we can
first create an expected length scale field that is a function of space and
direction, possibly using raw data only (Agarwal, 2009) or a feature model
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(Gangopadhyay and Robinson, 2002). We can then compute the optimal
sea path as before, but select the correlation scales as the smallest scales
found along that path. For example, if the optimal path crosses a front, the
length scale in the across direction would then be the minimum cross-frontal
scale. Analogous modification of the scalar speed function or the length scale
can be used to incorporate other dynamical effects (e.g. conservation of po-
tential vorticity). In the future, the ideas of optimal path length and our
FMM/LSM-based scheme can be used to extend to complex coastal regions
our methodology for 3D multivariate and multi-scale spatial mapping of geo-
physical fields of their dominant errors (Lermusiaux et al., 2000; Lermusiaux,
2002). Such schemes would be needed for ensemble initializations.

We expect a wide range of applications for our new FMM-based mapping
schemes. Already when mapping relatively simple coastal domains, the con-
straints of landforms are not often accounted for. Constraints due to bathy-
metric features should also be respected, even in deep ocean regions, from
the simpler basins, plateaus and troughs to the more complex sills, ridges,
seamounts and trenches. Initial gridded conditions computed by the present
FMM methods have already enabled our simulations in varied regions, includ-
ing the Taiwan region, New England shelf, Dabob Bay and Monterey Bay (Xu
et al., 2008; Lermusiaux et al., 2010; Haley and Lermusiaux, 2010). Our new
methods would also improve the widely-used gridded ocean databases such
as the World Ocean Atlas (WOA) since such oceanic maps were computed
without explicitly accounting for coastline and bathymetry constraints.

9. Acknowledgments

We are sincerely thankful to Dr. Patrick J. Haley and Wayne G. Leslie
for very helpful inputs and multiple discussions. We are thankful to Oleg
G. Logutov for sharing his approximate SPDE mapping method. We are
very grateful to the whole PhilEx and PLUS teams for their fruitful collab-
orations. In particular, we thank crews, operators and support personnel of
the Melville ship (Prof. Arnold L. Gordon, Lamont-Doherty Earth Obser-
vatory of Columbia University), gliders (University of Washington - Applied
Physics Laboratory: Craig Lee, Bruce Howe, Marc Stewart) and kayaks (MIT
LAMSS group under the guidance of Prof. Henrik Schmidt) for their work
and the critical data they provided.

32



A. Objective Analysis Schemes of the ‘Levitus Climatology’

The OA schemes used to map the ‘Levitus Climatology’ (Levitus, 1982;
Locarnini et al., 2006; Antonov et al., 2006; Garcia et al., 2006a,b) have their
origins in the work of Cressman (1959) and Barnes (1964). The approach is
based on adding “corrections”, which are computed as a distance-weighted
mean of all data point difference values, to the first-guess field. Initially, to
reduce the computational time, the World Ocean Atlas 1994 (WOA94) used
the Barnes (1973) scheme which requires only a single “correction” to the
first-guess field at each grid point in comparison to the successive correction
method of Cressman (1959) and Barnes (1964). The most recent WOA98,
WOA01 and WOA05 maps were completed employing a three-pass “correc-
tion” scheme, using the multi-pass analysis of Barnes (1994). The inputs to
this global analysis scheme are differences among a first-guess field and the
one-degree square means of the observed data values. An influence radius
is then specified and a correction to the first-guess value at all grid points
is computed as a distance-weighted mean of only the difference values that
correspond to data points that lie within the area defined by the influence
radius. Mathematically, the correction factor derived by Barnes (1964) is
given by:

Ci,j =

∑d
s=1WsQs∑d
s=1Ws

(22)

where,
(i, j) - are coordinates of grid points;
Ci,j - correction factor at the grid point coordinates (i, j);
d - the number of data points that fall within the area around point (i, j)
defined by the influence radius;
Qs - difference between the observed mean and the first-guess at the sth data
point in the influence area;
Ws = exp(−Er2/R2) (for r ≤ R; Ws = 0 for r > R) - the correlation weight;
r - distance between data and grid points;
R - influence radius; and,
E = 4.
At each grid point, the final analyzed gridded value Gi,j is the sum of the
first guess Fi,j and the correction Ci,j. The expression is:

Gi,j = Fi,j + Ci,j (23)
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If there is no data within the area defined by the influence radius, the cor-
rection is zero and the analyzed value is the first-guess. The analysis scheme
is set up such that the inference radius can be varied at each iteration. To
progressively analyze the smaller scale phenomena with each iteration, the
analysis begins with a large inference radius which is decreased gradually
with each iteration.

Equation 23 can also be expressed in a matrix-vector form,

G = F + [diag(Wed)]
−1WQ (24)

where if n and d denote the number of model-grid and data points, respec-
tively, the analyzed field G and the first guess F are n-by-1, the correlation
weight matrix W is n-by-d, the difference Q between the observed mean and
first-guess at data points is d-by-1, and ed is d-by-1 with unit entities. The
operation diag(v) creates a diagonal matrix i.e. it puts the vector v on the
main diagonal.

In analogy to the Kalman Gain (K) from the Gauss Markov criterion
(K = Cor(x,X)[Cor(X,X) + R]−1), Equations 24 and 1 show that a sim-
ilar Gain matrix (KL = [diag(Wed)]

−1W) can be defined for the Levitus
methodology. While the multi-scale OA approach in MSEAS is based on
Gauss Markov estimation theory and successive scale-by-scale updates, the
Levitus OA is based on computing the distance-weighted mean of all dif-
ferences between the most recent first-guess field and the data mean within
the inference radius and then repeat with a reduced inference radius. The
main difference is that Gauss Markov estimation theory requires and uses
prior error covariances for the data and the first-guess, while the Levitus OA
requires radius of influence estimates and uses data averaging.

B. Fast Marching Algorithm

The fast marching algorithm (Sethian, 1996, 1999b) is:

1. Initialize

(a) Alive points: Let A be the set of all grid points (i,j) on the starting
position of the interface Γ; set Tij = 0 for all points in A.

(b) Narrow Band points: Let the Narrow Band be the set of all grid
points (i,j) in the immediate neighborhood of A; set Tij = d

Fij

for all points in the Narrow Band where, d is the grid separation
distance and F is the front speed (see Eqn. 13).
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(c) Far Away points: Let the Far Away region be the set of all re-
maining grid points (i,j); set Tij = ∞ for all points in the Far
Away region.

2. Marching Forward

(a) Begin Loop: Let (imin,jmin) be the point in the Narrow Band with
the smallest value for T.

(b) Add the point (imin,jmin) to A; remove it from the Narrow Band.
(c) Tag as neighbors any points (imin−1,jmin), (imin+1,jmin), (imin,jmin−

1), (imin,jmin + 1) that are either in the Narrow Band or the Far
Away region. If the neighbor is in the Far Away region, remove it
from that list and add it to the Narrow Band.

(d) Recompute values of T at all neighbors in accordance with Eqn. 14.
Select the largest possible solution to the quadratic equation.

(e) Return to the top of the loop.

Here are some properties of the fast marching algorithm. The smallest
value in the Narrow Band is always correct. Other Narrow Band or Far
Away points with larger values of T cannot affect the smallest value. Also,
the process of recomputing T values at the neighboring points cannot give a
value smaller than any of the accepted value at Alive points, since the correct
solution is obtained by selecting the largest possible solution to the quadratic
equation (Eqn. 14). Thus the algorithm marches forward by selecting the
minimal T value in the Narrow Band and recomputing the values of T at all
neighbors in accordance with Eqn. 14.

The key to an efficient version of the algorithm lies in finding a fast way
to locate the grid point in the Narrow Band with the minimum value for
T. To do so, the heapsort algorithm (Williams, 1964; Sedgewick, 1988) with
backpointers is often implemented and it is the algorithm we used here. This
sorting algorithm generates a “complete binary tree” with the property that
the value at any given parent node is less than or equal to the value at its
child node. Heap is represented sequentially by storing a parent node at the
location k and its child at locations 2k and 2k + 1. The member having the
smallest value is stored at the location k = 1.

All Narrow Band points are initially sorted in a heapsort. The fast march-
ing algorithm works by first finding, and then removing, the member corre-
sponding to the smallest T value from the Narrow Band which is followed by
one sweep of DownHeap to ensure that the remaining elements satisfy the
heap property. The DownHeap operation moves the element downwards in
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the heap until the new heap satisfies the heap properties. Far Away neigh-
bors are added to the heap using the Insert operation which increases the
heap size by one and brings the new element to its correct heap location using
the UpHeap operation. The UpHeap operation moves the element upwards
in the heap until the new heap satisfies the heap properties. The updated
values at the neighbor points obtained from Eqn. 14 are also brought to the
correct heap location by performing the UpHeap operation.

C. Estimating the total velocity field under geostrophic balance by
minimizing unknown inter-island transports

For mesoscale ocean flows, away from boundary layers, the dominant
terms in the horizontal momentum equations are often the Coriolis force and
the pressure gradient. Such a flow field, where a balance is struck between
the Coriolis and pressure forces, is called geostrophic. The thermal wind
equations are obtained for geostrophic flows by assuming that the vertical
momentum equation is approximately given by hydrostatic balance. The
thermal wind equations are:

−f ∂(ρv)

∂z
= g

∂ρ

∂x
and f

∂(ρu)

∂z
= g

∂ρ

∂y
(25)

where, ρ is the density, u and v are the horizontal fluid velocity in the zonal
(x) and meridional (y) directions respectively, and f = 2Ω sinφ is the Coriolis
parameter at latitude φ for the spherical earth rotating at a rate of Ω. The
thermal wind Eqns. 25 when integrated in the vertical give:

ρv(x, y, z, t) =
−g
f

∫ z

z0

∂ρ

∂x
dz + ρv0

ρu(x, y, z, t) =
g

f

∫ z

z0

∂ρ

∂y
dz + ρu0 (26)

where, z0 is a level of reference where v0, u0 are assumed known (z0 is referred
to the level of no motion if v0, u0 = 0).

Flow estimation based on thermal wind balance (Eqn. 26) is a classical
problem in oceanography (Wunsch, 1996). Historically, the main routine
measurements were hydrographic: temperature, T , and salinity, S, at vari-
ous depths. The equation of state for seawater then permits the estimation
of density at a given pressure from these hydrographic data. Thus, with
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Eqn. 26, the vertical shear of the geostrophic flow can be computed from
hydrographic data alone and added to a velocity field of reference. This
leads to mass-conserving estimates if the reference velocity field is conser-
vative since the geostrophic shear already satisfies continuity. If reference
or external barotropic velocities are provided at open boundaries, a Pois-
son equation can be formed for a transport streamfunction by taking the
curl of this barotropic velocity. Solving for the transport streamfunction is
then straightforward for domains without any islands. For complex coastal
regions with islands, the same Poisson equation can be solved, imposing a
fixed transport streamfunction value around each island. The result con-
serves mass by construction. Details are provided in App. 2.2 of (Haley and
Lermusiaux, 2010) for both rigid-lid and free-surface primitive equations.

In the case with islands, a first-guess at the streamfunction along each
island coast can be obtained by sinking the islands to a shallow depth, solv-
ing for the corresponding streamfunction and averaging its values along each
island coast. However, we found that some of the resulting inter-island trans-
ports can be unrealistic, often much too large. Hence, Haley et al. (2011)
derived a methodology to correct for this. Specifically, they optimize the
somewhat known inter-island transports (i.e. add a least-square penalty to-
wards these values) and minimize the unknown ones. These optimized island
transport streamfunctions are then used as Dirichlet boundary conditions
in the Poisson equation. The result is a mass-conserving geostrophic flow
in balance with the hydrographic OA maps and with optimized inter-island
transports. This methodology was illustrated in Sect. 6.2.

Summarizing the inter-island transport optimization, the objective is to
find a set of constant values for (Ψ) along the island coastlines that produce a
suitably smooth initialization velocity field, e.g. with no unrealistically large
velocities. In the unknown straits, the goal is to minimize the kinetic energy
or the maximum absolute velocity. The working assumptions are:
1. Coastlines in the given domain can be divided into two distinct subsets:

(a). Set A: N coastlines along which the transport streamfunction is
unknown, N 6= 0.

(b). Set B: M coastlines along which the transport streamfunction is
known.
2. A first-guess Ψ0 exists for the case with coasts in set B, but no coasts
in set A, i.e. these coasts and their corresponding interiors are replaced by
open ocean (e.g. island sunk to 10m depth).
3. The difference between the first-guess Ψ0 and the final solution Ψ is not
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extremely large. Otherwise, the information from Ψ0 would not be accurate
enough.

Ψ0 contains useful information such as the position of major currents
relative to various coastlines and the effects of topography on the flow. Thus,
Ψ0 can be used to estimate Ψ along the other island coastlines by constructing
an optimization functional for minimizing (in general optimizing) the inter-
island transports subject to weak constraints. The optimization functional
(E) is constructed as follows. Its general form is divided into a summation
of three terms, given by:

E = E1 + E2 + E3 (27)

where, E1 is the minimizing target for the transport between all pairs of
the unknown (Set A) coasts, E2 is the minimizing target for the transport
between all pairs of unknown (Set A) and known (Set B) coasts and E3

is the minimizing target for the transport between all pairs of the unknown
(Set A) coasts and the open boundaries of the domain. The minimum of E is
computed by solving a standard least square problem, i.e. by setting gradients
with respect to the unknown Ψ values equal to zero. These streamfunction
values, which smooth the velocity field, are then used as Dirichlet boundary
conditions to the final Poisson equation.

The expressions for E1, E2 and E3 are provided in Haley et al. (2011).
They require the use of appropriate weights: wnm for the pair of islands
denoted here by subscripts n and m. These weights are computed using
a FMM scheme. Specifically, consider the stream function (Ψ) for a two-
dimensional horizontal flow. It is defined such that the flow velocity can be
expressed as:

~u = (u, v) = − 1

H
∇×Ψk̂ ⇒ u = − 1

H

∂Ψ

∂y
, v =

1

H

∂Ψ

∂x
(28)

Here, H is the ocean depth. The transport between a pair of islands having
streamfunction ψ1 and ψ2 is given by:

ψ2 − ψ1 =

∫
A

~u.n̂dA (29)

where, A is the vertical area between the two islands and n̂ is the unit vector
normal to the vertical area. Equations 28 and 29 suggest that the appropriate
weight function to optimize the velocity field should be wnm = 1/A2

nm, where,
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Anm is the minimum vertical area along any path between the two islands
n and m. Another heuristic choice of weight function can be wnm = 1/d2

nm,
where the dnm’s are mean depths. We found this choice only appropriate
when the depth is almost uniform in between each pair of islands (n,m). In
general, this is not the case and we thus needed to compute the minimum
areas Anm. Using the FMM, as described in Sect. 4.2, is a very convenient
and efficient way to compute these Anm’s. Simulations (Agarwal, 2009) have
been performed with several other weight functions and they confirmed that
the choice of weights wnm = 1/A2

nm lead to the most accurate flow fields.
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Figure 1: Examples of optimal shortest sea paths computed using the Level
Set Method in: (Top - Left) Monterey Bay; (Top - Right) Massachusetts
Bay; (Bottom - Left) Dabob Bay; (Bottom - Right) Philippines Archipelago.
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Figure 2: Temperature (oC) (Top - Left) and Salinity (PSU) (Top-Right)
data in Dabob Bay. OA fields for this Temperature (oC) (Left) and Salinity
(PSU) (Right) in Dabob Bay from the optimal path length computed using:
(Middle) Bresenham-based line algorithm; (Bottom) Fast Marching Method,
clearly showing the issues of the Bresenham-based line algorithm.48



Figure 3: (Top - Left) World Ocean Atlas 2005 Climatology in situ tem-
perature (oC) at 0m. Temperature (oC) OA Fields obtained using: (Top
- Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).
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Figure 4: (Top - Left) World Ocean Atlas 2005 Climatology in situ temper-
ature (oC) at 200.0m. Temperature (oC) OA Fields obtained using: (Top
- Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).
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Figure 5: (Top - Left) World Ocean Atlas 2005 Climatology in situ temper-
ature (oC) at 1000.0m. Temperature (oC) OA Fields obtained using: (Top
- Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).
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Figure 6: (Top - Left) World Ocean Atlas 2005 Climatology in situ Salinity
(PSU) at 0m. Salinity (PSU) OA Fields obtained using: (Top - Right) Stan-
dard OA without taking islands into account; (Bottom - Left) Fast Marching
Method; (Bottom - Right) SPDE approach (representing field by a stochas-
tically forced Helmholtz Equation).
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Figure 7: (Top - Left) World Ocean Atlas 2005 Climatology in situ Salin-
ity (PSU) at 200.0m. Salinity (PSU) OA Fields obtained using: (Top -
Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).
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Figure 8: (Top - Left) World Ocean Atlas 2005 Climatology in situ Salin-
ity (PSU) at 1000.0m. Salinity (PSU) OA Fields obtained using: (Top -
Right) Standard OA without taking islands into account; (Bottom - Left)
Fast Marching Method; (Bottom - Right) SPDE approach (representing field
by a stochastically forced Helmholtz Equation).
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Figure 9: Difference between Temperature (oC) field at Level = 1000m ob-
tained using Fast Marching Method and using: (Top - Left) Standard OA;
(Top - Right) SPDE (representing field by Helmholtz equation). Difference
between Salinity (PSU) field at Level = 1000m obtained using Fast Marching
Method and using: (Bottom - Left) Standard OA; (Bottom - Right) SPDE
(representing field by Helmholtz equation).
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Figure 10: Velocity estimation under geostrophic balance and optimized
inter-island transports (weight functions based on the minimum vertical area)
from hydrographic field maps (WOA05) obtained using the FMM (Left)
and using the SPDE Approach (Right): (Top) Streamfunction, Velocity at
depths: (Middle) 0m; (Bottom) 100m.
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Summer 2007

Winter 2008

Figure 11: Locations of: (Top) Melville exploratory cruise and glider data
(Summer 2007) and (Bottom) Melville joint cruise Data (Winter 2008), both
in the Philippines Archipelago.
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Summer 2007

Winter 2008

Figure 12: Temperature (oC) OA Fields at 0m (Left) and 200m (Right)
using the: (Top) Melville exploratory cruise and glider data (Summer 2007);
(Bottom) Melville joint cruise data (Winter 2008). Colorbars are not the
same for the two periods due to the winter and summer variability.
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Summer 2007

Winter 2008

Figure 13: Salinity (PSU) OA Fields at 0m (Left) and 200m (Right) using
the: (Top) Melville exploratory cruise and glider data (Summer 2007); (Bot-
tom) Melville joint cruise data (Winter 2008). Colorbars are not the same
for the two periods due to the winter and summer variability.
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Figure 14: Chlorophyll (µmol/Kg) OA Fields using the FMM at Level: (Top
- Left) 0m; (Top - Right) 10m; (Bottom - Left) 50m; (Bottom - Right) 160m.
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Figure 15: (Top - Left) World Ocean Atlas 2005 (Spliced February and Win-
ter Climatology) in situ temperature (oC) at 0.0m; Temperature (oC) OA
Fields using the Fast Marching Method at the surface (0m) using the follow-
ing scheme and scales: (Top - Right) First order FMM and L0 = 540km,
Le = 180km; (Bottom - Left) First order FMM and L0 = 1080km,
Le = 360km; (Bottom - Right) Higher order FMM and L0 = 1080km,
Le = 360km.
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Figure 16: Example of an idealized (multiply-connected) domain having an
island.
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Figure 17: Temperature (oC) OA Fields at the surface (0m) (scales L0 =
1080km, Le = 360km) using the: (Top - Left) FMM; (Top - Right) FMM
and removal of problematic data; (Bottom - Left) FMM and introducing
process noise; (Bottom - Right) FMM and applying dominant singular value
decomposition (SVD) of a-priori covariance.
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