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Abstract

This thesis documents the development of the Vision-Aided Navigation using

Statistical Predictive Rendering (VANSPR) algorithm which seeks to enhance the

endgame navigation solution possible by inertial measurements alone. The impetus

of the work is the design of a precision weapon that does not rely on the Global

Positioning System, functions autonomously, thrives in complex three-dimensional

environments, is impervious to jamming, and can perform adequately with incomplete

information.

Before the algorithm can be used, virtual world models are constructed of the

target environment and constituent objects. These models are designed to be rep-

resentative in size, shape, and texture by utilizing physical measurement and digital

photographs of object surfaces. Eight data collection flights were executed at the Air

Force Test Pilot School by modifying a C-12C aircraft with a high-quality scientific-

grade digital camera, an inertial navigation system, and supporting hardware and

software and flying it against five target environments at various aspects. The test

algorithm employs a nonlinear Unscented Kalman Filter (UKF) which seeks to deter-

mine navigation errors by comparing real images captured by the test camera with a

collection of statistically significant virtual images.

Results indicate that the VANSPR algorithm has the potential to be a viable

method of aiding an inertial-only navigation system to achieve many tactical strikes.

On 14 flight test runs lasting 60 seconds each, the average positional error was 166

feet at endgame, compared with 411 feet achieved by a free-inertial system for a 60%

improvement.
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Vision-Aided Autonomous Precision Weapon Terminal

Guidance

Using a Tightly-Coupled INS

and Predictive Rendering Techniques

I. Introduction

This thesis describes the development of a vision-based navigation solution that

compares images captured by an on-board (mounted on aircraft for the purposes of

flight test) camera system with synthetically-generated images to determine relative

position. The underlying technique, Statistical Predictive Rendering (SPR), was used

previously in an Air Force Institute of Technology (AFIT) project to improve upon

relative navigation during aerial refueling [37]. The work presented here applies the

concept via a new test algorithm coined Vision-Aided Navigation using Statistical

Predictive Rendering (VANSPR) to more complex and ground-based object envi-

ronments. In-flight data for this research was collected during a Test Management

Project (TMP), named Project Shuttermatch [4], during the author’s education at

the Air Force Test Pilot School (TPS) as part of the Joint AFIT/TPS program. The

emphasis of this research was terminal weapon navigation in a GPS-denied environ-

ment, a primary focus of AFIT’s Advanced Navigation Technology (ANT) Center.

The VANSPR algorithm has potential to also be utilized in a wide variety of other

navigation applications.

1.1 Motivation

Modern air warfare takes precision strike as a precondition for operations. This

fact has been most visibly evidenced over the past decade in the Afghanistan and Iraq

wars where physical proximity between strategic targets of interest and civilian prop-

erty and lives may be separated by mere feet. The political and moral implications of

errant weapons can be devastating; hence, the requirement for precision is obvious, as
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expressed in the official US Air Force Doctrine-1 Publication: “... with the advent of

precision weaponry, the US is capable of carefully regulating the destructive effects of

[strategic attack] thereby minimizing collateral damage. This capability enables the

US to use these coercive mechanisms in a way that complies with the laws of armed

conflict” [9]. In general, the more precise a weapon can be, the better the weapon is.

1.1.1 Precision and Near-Precision Weapons. Because this research ul-

timately seeks to enhance military weapon utility, the state-of-the-art in precision

weapons must be discussed briefly. Air-to-ground weapons with some type of active

targeting can be broadly classified as near-precision or precision. The term near-

precision refers to weapons such as the Joint Direct Attach Munitions (JDAM) that

navigate to a programmed coordinate location, but have no real perception of the

environment around them. JDAMs navigate through use of an Inertial Navigation

System (INS) and a Global Positioning System (GPS) receiver. While GPS is heav-

ily relied upon for the best possible solution, a less accurate INS-only solution may

also be obtained by mathematical integration of sensed accelerations and angular

rates. Precision weapons, like the Laser-Guided Bomb (LGB), have a seeker head

that detects a laser beam spot on a target that the operator actively directs, and

navigates to the laser spot location. As the names imply, precision weapons generally

perform more accurately than near-precision weapons. The unclassified advertised

JDAM Circle Error Probable (CEP) is 13 meters using GPS and 30 meters without

GPS guidance [33]. The CEP statistics for LGBs are classified.

Both of these weapon types have clear disadvantages. The JDAM navigation

solution is limited by the accuracy of the coordinates that it is given. In a stressful,

quickly-evolving target environment, erroneous coordinates have been programmed

into weapons with grave consequences. This problem is partially mitigated with new

technologies that allow combat aircrew to receive coordinates via datalink and send

them to a bomb without additional hand-copying and re-typing. A disadvantage of the

LGB is the requirement for a pilot or other asset to remain in the target environment

2



during the 30-90 second time-of-flight. This required loiter time to illuminate a target

may cause unnecessary exposure to threats and/or prevent prosecution of a subsequent

high-value, time-sensitive target.

Recent work has been made to create laser JDAMs which add a seeker head to a

conventional JDAMs to give them the additional abilities of an LGB. While increasing

the flexibility, and hence operational value, of the weapon, it does not overcome or

circumvent the inherent problems of each weapon type. A laser JDAM may be able to

precisely strike a moving tank, but the ability is lost if a cloud layer is present between

the target and strike aircraft. Likewise, the JDAM functionality of the weapon would

make it useable to drop through the cloud layer, but the benefit of a precision weapon

would be lost.

1.1.2 Dependence on the Global Positioning System. Although used perhaps

most conspicuously by JDAMs, the use of GPS for precision navigation is widespread.

The current reliance on GPS in military systems, including weaponry, has lead to a

complacency concerning its future availability. In other words, users may not know

what they have until it is taken from them. Contemporary conflicts have shown the

vulnerabilities and potential exploitation of the GPS system on a relatively small scale,

but it is almost certain that any future large-scale engagement with a technologically

adept adversary would involve an effort to deny precision navigation capability by

any possible means. This threat has led to an intensifying science and engineering ef-

fort, expressed by one contemporary professional magazine as: “The [Air Force] must

focus on developing technologies for air and space systems that enable it to maintain

air dominance in hostile territory. Three research areas are deemed particularly im-

portant in this regard: precise navigation and timing in GPS-denied environments,

electromagnetic-spectrum warfare, and cyber resilience” [8]

In the last several years, much work has been done to find a reliable alterna-

tive to GPS aiding of navigation systems. While GPS is, and will likely remain for

many years, appropriate for many commercial and military uses, vulnerabilities exist
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which motivate the need for back-up and replacement systems and methods. Some

reasons for GPS nonavailability may be inherent: indoor navigation, use at extreme

latitudes, or even extraterrestrial operations beyond the current GPS constellation.

Nonavailability may also be caused by unintentional sources such as signal blockage

from terrain in mountainous areas, buildings in urban environments, foliage cover

in forest or jungle, or atmospheric interference. A third source is malevolent signal

interference, which may or may not be recognized, depending on the form it takes.

This type of interference may cause outright disruption in service, increased error, or

clever deception resulting in high confidence in incorrect position. Such sabotage may

target either military or commercial assets to gain tactical or economic advantage [5].

The fact that a GPS-receiver works by performing relatively simple algorithms

on the signals it receives from a high-tech multi-billion dollar satellite constellation

lends to its small size and expense. The tradeoff, however, is that it must rely on out-

side signals to perform. Solutions that feature an INS are self-contained but require

updates from some additional sensor or sensors for accuracy over an extended period of

time. Combined INS/GPS systems, as previously mentioned regarding JDAM, com-

bine the accuracy of GPS with the statistical rigor of a Kalman-filtered INS. With a

lapse in GPS information, the INS will continued to navigate, albeit in a degraded

state. It is desired, therefore, to have self-contained passive sensors that can be inte-

grated with the INS to improve its navigation accuracy and reliability. Such sensors,

like cameras, are mostly resilient to electronic jamming and other types of spoofing,

and have been shown to significantly improve an INS-only system [15] [35] [23].

1.1.3 Vision-Aided Navigation. The ideal model of a vision-based system

already exists in most humans as eyes, brain, and supporting subsystems. While it

might be thought that machines could more easily conquer any task more quickly and

efficiently than organic life, as has been shown with robots that perform tasks from

automobile manufacturing to playing chess, more cognitive tasks pose an extremely

difficult problem. This is in part due to the large amounts of contextual and intuitive
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information that humans and animals unconsciously apply to the raw data that their

eyes see. Computers simply lack the natural ability to fill in gaps in information

- unless they are somehow told to do so by their programming. Therein lies the

challenge of computer vision applications. The problem is somewhat simplified in the

application presented in this research in that while the perspective of the environment

is changing in time, the objects in the environment are assumed to be stationary.

Computer vision always implies some type of comparison, whether it is detecting

change or movement from one frame to the next or attempting to identify an individual

object in a scene by comparing the image with a database of what an object should

or may look like. If information (i.e., position and attitude) can be extracted from

these differences that reveal how the scene has changed, then the surmised errors can

be removed from the navigation solution.

1.2 Problem Statement

The impetus for this research is to contribute toward evolving smart weapons

into brilliant weapons by developing a navigation algorithm that maintains the advan-

tages of precise weapons (what part of the tank do I want to hit?) and non-precision

weapons (can I drop even if I can’t see the target?) and can be used in a GPS-

denied environment. Past vision-based efforts have primarily treated the navigation

problem as flat and two-dimensional [23, 25, 35, 36] and generally offered no way to

improve performance when it is most desired. This research examines the special case

and consequent issues of considering the three-dimensional aspect of the environment

and, for the case of a precision weapon, greater potential accuracy as the system

nears its target. To accomplish this, a unique algorithm is developed that compares

images taken by the on-board camera system with predictively-rendered views of a

three-dimensional target environment model to determine navigation error. Since the

models can be constructed to a high degree of fidelity and resolution, navigation so-

lution refinement can be increased as the observer gets closer to three-dimensional

objects in the environment. Simulation will be used to develop the Kalman filter
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mechanization and flight test will be used to collect images, truth data, and raw iner-

tial data to practically test the algorithm in a “real world” environment. The research

in this thesis specifically addresses the relative navigation problem of a tightly-coupled

INS/vision system in a three-dimensional, GPS-denied environment.

1.3 Research Goals and Contributions

In addition to the overall objective of contributing towards a greater weapon

capability as stated in the section above, several specific research goals and contribu-

tions to the navigation field are set. These include improving the navigation solution

over an INS-only system, maintaining the ability to track objects throughout greatly

changing viewpoint geometry, lowering the computation burden required for feature

tracking in changing geometry, demonstrating the use of inexpensive Commercial Off

the Shelf (COTS) software for complex targeting, and improving the navigation solu-

tion as the target is neared.

1.3.1 Navigation Solution Improvement over INS Alone. Flight test data

included raw INS for constructing a navigation system as well as post-flight pro-

cessed Time-Space-Position-Inertial (TSPI) to be used as a truth source. The raw

INS data, consisting simply of the raw three-axis accelerometer and rate gyroscope

gyro) measurements (six measurements per sample time), were run through the ap-

propriate mechanization equations to construct an unaided flight path trajectory. A

more detailed discussion of the mechanization equations will be given in Chapter 2.

The primary specific objective of the VANSPR algorithm is to show performance im-

provement over the INS-only solution. A GPS-aided “real-time” solution was also

available as a means of algorithm comparison, which was practically indistinguishable

from the TSPI data without close examination. While this trajectory offers another

means of comparison, the VANSPR algorithm performance is not expected to be as

good as GPS-aided or TSPI solutions.
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1.3.2 Track Objects Throughout Greatly Changing Viewpoint Geometry.

The task of comprehending that the same object is being observed after the viewing

aspect has been substantially changed is a very challenging problem in the field of

computer vision. Considering the images shown in Figure 1.1, it would be unlikely that

a feature-matching algorithm would be able to correctly determine that the starred

feature points in one image matched their counterparts in the other image. Some

algorithms like the Scale-Invariant Feature Transform R⃝ (SIFT R⃝) [19] can withstand

some affine perspective change, but will eventually break down. This can be a problem

when attempting to compare subsequent images taken from a camera in a vision-aided

navigation system.

An advantage of comparing an actual image to a synthetically generated image,

as used in the VANSPR algorithm, is that the two images should be similar enough

that a large perspective change would not be present between the two. A feature-

matching algorithm would simply see two very similar images. The assumption is

that a particular feature point is not important, but only the presence of finding some

feature points in the image pair for the purposes of extracting information from the

differences.

Figure 1.1: Feature-point matches on same building with sig-
nificantly changed perspective. Even highly-robust feature cor-
relation algorithms have difficulty finding these matches.
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1.3.3 Lower Computational Burden for Three-dimensional Processing. Com-

putationally robust, and therefore computationally expensive, feature-matching algo-

rithms such as SIFT R⃝ are partially invariant to affine perspective changes, making

it an ideal tool for cases where that is expected. However, when a pair of images

being compared does not have such perspective difference, a faster, less burdensome

algorithm can be applied.

1.3.4 Commercial Off-The-Shelf (COTS) Software for Complex Targeting.

Three-dimensional models used in the research were built using the Google Sketchup

Pro R⃝ software application, readily available for download for anyone with an internet

connection and the minimum hardware and operating system requirements. The

primary advantages to using this software package is that it is user-friendly, has

a large user community driving frequent updates and bug fixes, and can be quickly

obtained on new mission planning computers. Target environment design can even be

accomplished on the free version of the software, Google Sketchup R⃝. The Pro version

is required to export the models to MATLAB R⃝, as will be explained in greater detail

later.

1.3.5 Improving Solution as System Nears Target. As with most other

vision-aided navigation techniques where it is desired to navigate to an object, the

solution accuracy increases as the target approaches and grows larger in the image.

The scale of error correction becomes refinement if the predictive algorithm has suf-

ficiently matched the real world up to that point. This ability creates a type of

self-deconfliction within the weapon’s navigation system where decisions based on ge-

ometry or recognizable features can be exploited even if the precise desired impact

point cannot be seen. If the camera and algorithm could be operated real-time and

at a high enough rate, and if the three-dimensional model was built to a high-enough

degree of accuracy, the last image processed could theoretically be a correction of

centimeters. The resolution of detail seen in the three-dimensional target models is

limited by the resolution of the images used for surface texture-mapping.
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1.4 Scope and Assumptions

The use of SPR to solve the position problem is relatively new to the field of

navigation engineering; therefore, there is much to evaluate and discuss. The research

could eventually extend to indoor navigation and robotic/vehicular navigation in cities

(“urban jungles”) and incorporate a variety of additional sensors. The focus of SPR

in the context of this thesis is autonomous navigation for the purpose of terminal

weapon guidance, mechanized in a tightly-coupled INS and Kalman filter system.

Figure 1.2 depicts a conceptual overview of how the VANSPR algorithm works.

Viewpoints of a constructed “world model” are generated by a priori navigation state

estimates and compared with actual camera images. Special image assessment tech-

niques are used to extract error directions and magnitudes which can then be used to

correct the navigation solution to provide a more accurate a posteriori estimate.

Figure 1.2: Conceptual overview of the VANSPR algorithm.
Camera images are compared with computer-generated images
of what the scene is expected to look like. Differences in these
images are used to determine errors which may then be removed
from the navigation estimate.

Assumptions of this research include:

• The VANSPR algorithm solves only the navigation aspect of the problem. The

weapon flight control system is assumed to be pre-existing.

• The VANSPR algorithm is online (causal). However, this proof-of-concept is

post-processed; a real-time version is left for future work.
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• All objects are stationary relative to the navigation frame.

• Target environment locations are accurate to 0.025 meter [14].

• GPS is not available to the VANSPR test algorithm.

• No lasing, range-finding, or any other kind of update besides camera images will

be available to algorithm.

• An initial handoff of navigation states and covariance is available from TSPI

data at “release” time.

• INS attitude errors are assumed to be negligible over the weapon time of flight.

• The autogain software settings of the test camera provide the optimal picture

and will not be changed.

1.5 Thesis Overview

This thesis is divided into five chapters to present the background, algorithm

development, laboratory and flight test procedures, experimental results, and offer

conclusions and recommendations. Chapter 2 builds the required knowledge to under-

stand the problem in a mathematical sense to include basic notation, reference frames

and transformations, Earth modeling and mapping, system modeling, INS concepts,

digital imaging, methods of image comparison, Kalman filtering, three-dimensional

modeling, and previous work.

Chapter 3 offers a detailed description of the VANSPR algorithm development

from the establishment of the system model to time-alignment of the flight test data.

The mathematical development of the Kalman filter that was used will be given, along

with a description of what image comparison and processing techniques were used.

Chapter 4 details the hands-on portion of the research through simulation and

flight test. Miniature simulations of various pieces of the VANSPR algorithm were

conducted to ensure they would work in the final product. A large amount of varied

data over the course of eight test flights was collected to provide meaningful points
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of comparison and insure against transient problems. The research will consider only

the relevant weapon profile maneuvers that were flown.

Chapter 5 Presents the experimental results of the flight tests. This includes

verification of the ability to render synthetic images that closely resemble actual cam-

era images when provided with truth data, verification of various image comparison

methods with typical flight test data, and exploration of modifications to data pro-

cessing.

Finally, Chapter 6 will offers conclusions to the examined data and makes rec-

ommendations for future work. While this research attempts to evaluate the utility

of using SPR to strike ground targets with a guided weapon, more questions will

inevitably be formed from the investigation and present opportunities for further ex-

ploration.
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II. Background

This chapter provides the conceptual and mathematical background necessary for

the upcoming VANSPR algorithm development discussion. A basis of mathematical

notation will be presented first, followed by a review of reference frames, how reference

frames may be transformed, and the role of Earth modeling and mapping. Next,

system modeling and INS concepts will be discussed in a more mathematics-intensive

manner. The vision-based aspect of the research will then be examined in the sections

on digital imaging and image comparison techniques. A review of Kalman filtering,

to include the unscented Kalman filter, and vision-aiding will be discussed, followed

by how the target environments were three-dimensionally modeled. Finally, a brief

review of relevant previous research will be conducted.

2.1 Mathematical Notation

This thesis uses the following mathematical notation:

• Scalars : upper or lower case letters in italic type, (e.g., a or A).

• Vectors : lower case letters in bold type, (e.g., x). Vectors are assumed to be

column vectors unless otherwise noted, comprised of scalar elements where xi is

the ith scalar element of x.

• Unit Vectors : denoted with a check symbol above the vector letter and defined

by the two norm, (e.g., ∥x̌∥ = 1).

• Matrices : upper case letters in bold type, (e.g., X). The element Xij is the

scalar component of X from the ith row and jth column.

• Transpose : denoted with a superscript T, (e.g., xT). The transpose can be

applied to a vector or matrix.

• Estimated Variables : denoted with a hat symbol above the variable name,

(e.g., x̂). This is an estimate of a random variable.

• Computed Variables : denoted with a tilde symbol above the variable name,

(e.g., x̃). This is a computed variable and hence corrupted by noise.
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• Measured Variables : denoted with a bar symbol above the variable name,

(e.g., x̄). This is a measured variable and hence corrupted by noise.

• Homogeneous Coordinates : denoted by an underline below the variable

name, (e.g., x). This is a two-dimensional coordinate represented as a 3×1

matrix for mathematical reasons; the last element is a 1.

• Direction Cosine Matrices (DCM :) uppercase letter C denoted with sub-

script and superscript letters, (e.g., Cb
a). This is a 3×3 matrix that transforms

a 3×1 vector in the a coordinate system into the b coordinate system.

• Quaternions : lowercase letter q denoted with subscript and superscript letters,

(e.g., qb
a). This is a 4×1 vector that transforms a 3×1 vector in the a coordinate

system into the b coordinate system.

• Reference Frame : denoted with a superscript on the vector name indicating

what coordinate system it is represented in, (e.g., xa).

• Relative Position or Motion : denoted with a two-lettered subscript repre-

senting the motion of one reference frame with respect to another reference

frame, and often with a superscript indicating what reference frame it is repre-

sented in, (e.g., ωc
ab means it is a rotation rate vector of the b frame relative to

the a frame, represented in the c frame).

• Time Derivatives : denoted with dots above the vector, DCM, or quaternion,

(e.g., ṙ(t), r̈(t), Ċn
e , q̇n

e ). One dot indicates a first derivative, a second dot

indicates a second derivative, etc.

• Sigma Points : Greek letter chi (χ) represents an L×(2L+1) matrix of values

generated by the Unscented Transform (UT), where L is the number of states.

The subscript denotes the matrix that has undergone the UT, (e.g., χab
k
is the

transformed version of ab
k).
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2.2 Reference Frames

Bodies of interest require a concise mathematical and conceptual description

to convey meaning of position and motion. This is accomplished through the use of

reference frames. Reference frames may be classified as inertial, meaning the frame

itself is not accelerating, or noninertial, meaning the frame is accelerating. The

acceleration of the noninertial frame may be translational, rotational, or a combination

of both. Rotating reference frames are considered noninertial even when no actual

rotational acceleration exists within the frame; linear accelerations are induced in

frames that have a constant rotational velocity, hence they are noninertial frames. In

an inertial reference frame, the equations of classical mechanics can be used without

modification; however, in a noninertial reference frame, equations of motion must be

modified to account for “fictitious force” induced by the frame’s acceleration.

Reference frames may be defined in various geometric coordinate systems such

as rectangular (Cartesian), spherical, and cylindrical. In this thesis, right-handed

Cartesian coordinate frames with mutually perpendicular (orthonormal) x, y, and z

axes will be used primarily. A brief description of the reference frames that will be

used or needed in this research will be discussed next.

2.2.1 True Inertial Frame (I-frame). The only truly inertial reference frame

in the universe is the I-frame. In this reference frame, motion equations can be directly

applied without compensating for fictitious forces of noninertial frames. Since there

are an infinite number of I-frames, no origin is defined (or needed).

2.2.2 Earth-Centered Inertial Frame (i-frame). The origin of the i-frame is

at the center of the Earth, with two of its axes defined by “fixed” stars. The x-axis

is defined in the vernal equinox direction. By strict definition, the vernal equinox

direction is found by drawing a line from the Earth to the Sun on the first day of

spring. When this was determined several thousand years ago, this line also pointed

to the first star in the Constellation Aries [27]. Although no longer strictly true (the
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line now points through the Pisces constellation), the x-axis is often defined in the

literature as pointing to the First Point in Aries. The z-axis points at the star Polaris

(North Star), and the y-axis is orthogonal to the x and z axes. Since the Earth

rotates but the i-frame does not, a stationary point in the i-frame would move across

the Earth in time.

2.2.3 Earth-Centered Earth-Fixed Frame (e-frame). Also referred to as the

ECEF-frame, the e-frame shares the center of the Earth as its origin with the i-frame.

However, unlike the non-rotating i-frame, the e-frame rotates with the Earth. A

stationary point, with respect to the surface of the Earth, defined in the e-frame has

constant geodetic coordinates.

2.2.4 Navigation Frame (n-frame). The origin of the n-frame is at the navi-

gation system (INS in an aircraft) and has axes defined by true north, east, and down.

Coordinate systems with this orientation are commonly referred to as NED coordinate

systems. “Down” is defined by the direction of the gravity vector. Because the origin

of the navigation system is within the aircraft, the frame moves with the aircraft

position but is always oriented the same regardless of aircraft attitude. Navigation

frames (n-frames) differ for different bodies of interest; only one body, the aircraft, is

considered here.

2.2.5 Earth-Fixed Navigation Frame (n’-frame). An additional NED coor-

dinate system will be used which has the same axis orientation previously described

for the n-frame, but that does not move with the aircraft. The n’-frame will be used

to describe movement relative to aircraft position at a specific point in time. In prac-

tice, the n’-frame origin will be declared collocated with the n-frame origin at the

beginning of a data collection run but remain stationary with respect to the Earth

to provide a convenient means of observing relative movement over the course of the

run. Figure 2.1 shows the Earth-centered inertial, Earth-centered Earth-fixed, and

navigation frames together.
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Figure 2.1: Earth-centered inertial, Earth-centered Earth-
fixed, and navigation frames [35] . The symbols λ, ϕe, and
ωiet refer to longitude, latitude, and Earth rotation angle, re-
spectively.

2.2.6 Body Frame (b-frame). The origin of the b-frame is collocated with

the n-frame; however, the axes rotate with respect to aircraft attitude. The x, y, and

z axes are defined in the direction of the aircraft’s nose, right wing, and bottom of the

aircraft respectively. A C-12C aircraft, used during the data collection test flights, is

shown in Figure 2.2 with the b-frame axes superimposed.

2.2.7 Camera Frame (c-frame). The c-frame’s origin is the camera’s optical

center. The z-axis points out the camera’s lens. The x-axis points up and the y-axis

points out the right side of the camera as shown in Figure 2.3. The plane created by

the x and y-axes parallels the focal plane.

2.2.8 VRML Frame (v-frame). Target models constructed in the Virtual

Reality Markup Language (VRML) world comply with yet another coordinate system,
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Figure 2.2: Body frame axes defined on a C-12C aircraft. This
was the aircraft used for the data collection test flights.

Figure 2.3: Camera axes superimposed on Prosilica 4900
camera. The camera installed on the aircraft was rotated 90◦

counter-clockwise to optimize the view vertically.
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Figure 2.4: MATLAB R⃝ standard graphics and VRML syn-
thetic world coordinate systems [30]. These differences required
rotational transformations to correctly display the computer-
generated models with respect to aircraft estimated position and
attitude.

different from the MATLAB R⃝ standard for three-dimensional coordinates shown in

Figure 2.4. Knowledge of both of these frames is required since VRML objects are

manipulated through MATLAB R⃝.

2.3 Reference Frame Transformations

Reference frame transformations consist of two separate steps: translation and

rotation. Translation simply moves the origin of one frame to the next by means of

an additive vector:

pn = pe − pe
0, (2.1)

where pe
0 is the three-dimensional position vector from the origin of the e-frame to

the origin of the n-frame, expressed in the e-frame.

While the reference frame coordinates locate the position of a body in space,

another mathematical representation must be used to describes the body’s attitude
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with respect to the reference frame. The three most common attitude representations

are Euler angles, direction cosine matrices, and quaternions.

2.3.1 Euler Angles. Euler angles consist of the parameters yaw (ψ), pitch

(θ), and roll (ϕ) and are typically defined by the three two-dimensional planes in the

b-frame of an aircraft relative to the three two-dimensional planes of the collocated n-

frame. Unlike other coordinate system angle transformations that can be done in one

step, the conversion of Euler angles to another frame is done one angle at a time. Any

order can be used, as long as it is applied consistently throughout all mathematical

manipulation. The order most commonly used is yaw, then pitch, and then roll. An

attempt to make a transformation with the same angles but rotated in a different

order will yield an incorrect result. Yaw may also be referred to as heading. Positive

Euler angles indicate the rotation is in accordance with the right-hand rule for the

axis it rotates about. The methods described in the next two subsections are most

commonly used for angular coordinate system transformations, while the Euler angles

are typically calculated and displayed to the pilot.

2.3.2 Direction Cosine Matrices (DCMs). A direction cosine matrix (DCM)

is a 3×3 matrix with columns that represent unit vectors in one reference frame pro-

jected along the axis of another reference frame. Unlike the Euler angle representation,

no regard for rotation order needs to be made. A complete mathematical explanation

can be found in Titterton [31]. Once the appropriate DCM is constructed for trans-

formation between reference frames, a vector in the original frame is pre-multiplied

by the DCM to realize the vector in the new frame:

vn = Cn
ev

e (2.2)

For transformations between several reference frames, successive DCMs can be

pre-multiplied for each single reference frame conversion. Careful attention must be

paid to the order of matrix multiplication:
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pb = Cb
nC

n
eC

e
ip

i (2.3)

Consideration of some special properties of the DCM when used to transform

right-hand Cartesian coordinates should be made to ensure that they are maintained

when the vector mathematics are computed in a digital computer. These properties

are:

Det(Cb
a) ≡ |Cb

a| = 1 (2.4)

Ca
b = (Cb

a)
−1 = (Cb

a)
T (2.5)

Cc
a = Cc

bC
b
a (2.6)

2.3.3 Quaternions. An elegant, albeit slightly more difficult to implement,

mathematical method of reference frame rotation is the quaternion. Quaternions are

4×1 matrices that define a single vector about which one reference frame may be

rotated by a given angle to achieve a new reference frame. A quaternion has one real

component and three imaginary components:

qn
e = a+ bi+ cj+ dk (2.7)

where qn
e is a reference frame rotation from the e-frame to n-frame, a is the real

component, and b, c, and d are coefficients of the imaginary i, j, and k components.

The quaternion can also be expressed as
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qn
e =


a

b

c

d

 =


cos (µ/2)

(µx/µ) sin (µ/2)

(µy/µ) sin (µ/2)

(µz/µ) sin (µ/2)

 (2.8)

where µ is the magnitude and µx, µy, and µz are the components of the rotation

vector.

In order to apply a quaternion transformation to a vector, the vector’s dimension

must first be increased to 4×1 with the addition of a zero term to the real component’s

vector location.

ra =


x

y

z

 ⇒ ra
′
=


0

x

y

z

 (2.9)

The vector can then be transformed with a quaternion by:

rb
′
= qb

a r
a′ qb∗

a (2.10)

where qb∗
a denotes the complex conjugate of qb

a. The desired vector, rb can then be

extracted by removing the leading zero of the first element:

rb
′
=

 0

rb

 (2.11)

Similar to DCMs, quaternions can also be multiplied together to transform a

vector through multiple reference frames. Also like DCMs, careful attention must be

paid to the order of multiplication to ensure a correct result.
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2.3.4 Propagation of Rotations in Time. If the reference frames of interest

continue to change with respect to each other over time, a differential equation must

be used to describe the DCM or quaternion. It is assumed that Euler angles will be

converted into one of these forms before continuing.

A DCM propagating in time can be described by:

Ċn
e = Cn

eΩ
e
ne (2.12)

where Ωe
ne is the skew symmetric rotation vector of frame e with respect to frame n,

resolved in the e-frame.

The rotation vector ω, expanded as

ω =


ωx

ωy

ωz

 (2.13)

can be expressed in skew symmetric form as

ω× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.14)

The propagation of a quaternion in time may be expressed as

q̇n
b =

1

2
qn
bp

b
nb (2.15)

where

pb
nb =

[
0 ωbT

nb

]T
(2.16)
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where ωb
nb is the angular rotation of the body frame with respect to the navigation

frame, expressed in the body frame.

2.3.5 Simultaneous Translation and Rotation. If a position vector needs to

be resolved in another reference frame that requires both a translation and rotation

transformation, both operations may be expressed in one equation as

pb = Cb
n(p

e + pe
0) (2.17)

2.4 Earth Modeling and Mapping

2.4.1 Basic Geodesy. Geodesy is the study of the measurement and repre-

sentation of the Earth. The ties to navigation on and above the Earth are obvious:

the more accurate the model, the more accurate the navigation solution. In the case

of Air Force interests, the more accurate the model and navigation solution, the more

effective the weaponry.

A datum is a collection of reference points used to determine the location of

any other points around or on the surface of the Earth. The datum database on

any modern commercial hand-held GPS receiver will show that many datums exist

to describe a geographic position, with some being useable for only a limited area.

The World Geodetic System 1984 (WGS-84) is currently the most widely recognized

datum.

The Earth is not a perfectly uniform shape; it is most accurately described

in mathematical terms as an oblate spheroid. For the purposes of modeling and

navigation, two common models of the Earthare the ellipsoid and the geoid. A datum

defines a unique ellipsoidal model of the Earth with minimum error in the area of

interest. A geoid is a gravitation equipotential model of the Earth. This means that

at any given point on a geoid, the surface is perpendicular to local “down” or the

direction a plumb line would point. Because of mass inconsistencies in the Earth and

at the surface, local gravity vectors are not equal in magnitude and are not uniformly
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Figure 2.5: Ellipsoid and geoid models compared to the ac-
tual surface of the Earth [10]. These three references may be
collocated or differ by several hundred feet.

pointed toward the exact center of the Earth. Figure 2.5 demonstrates the differences

between a model ellipsoid, a geoid, and the Earth’s surface.

2.4.2 WGS-84. WGS-84 provides a common global framework for all

geospatial information within the Department of Defense (DoD) and globally for

GPS users. WGS-84 provides a comprehensive coordinate system, a reference el-

lipsoid, and a geoid model. The system has been updated several times since its

inception in 1984, with the most significant update for navigation purposes being the

Earth Gravitational Model 1996 (EGM96) [22]. The e-frame will be used to represent

the WGS-84 ellipsoid as shown in Figure 2.6.

Now that reference systems and the associated mathematics required to transi-

tion between them has been discussed, the background discussion will continue with
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Figure 2.6: WGS-84 model [22]. The x and y axes rotate with
the Earth while the z-axis remains stationary through the true
North Pole.

a description of optimal estimation in inertial navigation systems, starting with its

requisite mathematical system model.

2.5 System Modeling

Before optimal estimation can be accomplished, the system of interest must be

represented mathematically. The first step in this process is to construct differen-

tial equations that represent the system dynamics. The second step is determining

a mathematical representation of the various noise sources. The third step is deter-

mining what simplifications can be made while still maintaining a reasonable level of

fidelity. Although navigation engineering is a hard science, decisions like this require

judgement that may appear as much an art as a science. For the simplest construc-

tion and calculation, systems are assumed to be Linear Time-Invariant (LTI). If the

equations must remain nonlinear, special methods, to be discussed later, are utilized

for optimal estimation.

After a set of differential equations have been determined, they can be repre-

sented in state-space as
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ẋ(t) = F(t)x(t) +B(t)u(t) +G(t)w(t) (2.18)

where F(t) is the state dynamics matrix, x(t) is the state vector, B(t) is the input

influence matrix, u(t) is the deterministic input vector, G(t) is the noise-influence ma-

trix, andw(t) is the noise vector, usually characterized as White Gaussian Noise (WGN) [20].

The F, B, and G matrices are time-invariant in many cases, leading to a simpler so-

lution. The x(t) vector contains the states of interest upon which the differential

equations were written. It should be noted that Equation (2.18) is a linear equation.

The system could be described more generally as

ẋ(t) = f [x(t),u(t), t] +G(t)w(t) (2.19)

where the function f [x(t),u(t), t] may or may not be linear.

A unique solution to x(t) exists as

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(t)dτ (2.20)

where x0 is the initial condition state vector and Φ(t, t0) is the state transition ma-

trix that propagates the homogenous portion of Equation (2.20) (not including the

integral) from time t0 to t [20].

In practical use on a computer, all mathematics are solved in the discrete do-

main. Equation (2.20) then becomes

xk+1 = Φkxk +wk (2.21)

where k is a discrete time, k + 1 is next time interval, and wk is the driven response

at k due to the presence of the noise during the (tk, tk+1) interval [7].
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In order to observe the state matrix at the next time interval, the discrete state

transition matrix must be solved. This is accomplished using

Φk = eFk(dt) (2.22)

where Fk is the state dynamics matrix at time k and dt is the computer cycle time

(sample time) [7].

2.5.1 Full State Representation. For navigation purposes, states are typi-

cally chosen to be position in three axes (pn), velocity in three axes (vn), attitude in

three axes (Θn), accelerometer biases in three axes (ab), and gyro biases in three axes

(bb) - for a total of 15 states. The accelerometer and gyro biases, always referenced

in the b-frame for convenience, will be discussed in more detail in Section 2.6.2. A

time invariant representation is

x =



pn

−−−

vn

−−−

Θn

−−−

ab

−−−

bb


15×1

(2.23)

A partner noise vector for Equation (2.23) is
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w =



wb
a

−−−

wb
b

−−−

wb
abias

−−−

wb
bbias


12×1

(2.24)

where wb
a and wb

b are additive accelerometer and gyro noises and wb
abias

and wb
bbias

are accelerometer bias and gyro bias noises. These will described in further detail in

Section 2.6.2.

2.5.2 Error State Representation. In practical use in navigation systems,

an estimate of state errors is often considered instead of the full state. The high

frequency dynamics experienced by an INS can be noisy and don’t necessarily need

to be modeled to accurately accomplish navigation estimation. The error state form

of Equation (2.23) is

δx =



δpn

−−−

δvn

−−−

ψn

−−−

δab

−−−

δbb


15×1

(2.25)

where the attitude error vector (ψ) is defined as an array of small angle errors about

the n-frame axes:

28



ψn =


ψn

ψe

ψd


3×1

(2.26)

The noise vector w remains the same for the error state representation. Deriva-

tion of the states’ differential equations will be provided in Section 2.7.

2.6 Inertial Navigation Systems

The primary goal of inertial navigation is to determine position and velocity

using an INS. Parameters that are a part of the mechanization, such as attitude, may

also be desired for display.

The two basic components of an INS are a triad of accelerometers (consisting

of a two-dimensional accelerometer along each axis) and a triad of gyros (fixed in

each of the three planes corresponding to the axis convention). The accelerometers

measure specific force in the b-frame (f b) which can be expressed as (∆vb) after the

acceleration of gravity has been removed and the computer cycle interval (dt) has

been incorporated. Likewise, the gyros measure angular rates in the b-frame (∆θbib)

which can be expressed as ωb
ib when dt is incorporated. Note that p, q, and r, the

rotation rates about the body frame x, y, and z axes, are not the same as Euler angle

rates.

The basic equation governing inertial navigation, known as the navigation equa-

tion is

a = f + g (2.27)

where a is the acceleration vector, f is the specific force vector, and g is the gravity

vector. Once the acceleration vector is known, it is a simple matter to derive velocity

and position:
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v(t) =

∫
a(t) dt (2.28)

p(t) =

∫∫
a(t) dt (2.29)

where dt is the variable of integration and is not related to the discrete sample time.

Further discussions of position, velocity, and acceleration are assumed to be functions

of time and will not include the postscript (t).

2.6.1 Strapdown INS Mechanization. The real-world case of inertial navi-

gation in the n-frame is more complicated because it occurs in a noninertial, rotating

reference frame. Figure 2.7 depicts the sequence of calculations that must be per-

formed to calculate the acceleration vector for the n-frame. The navigation equation

of Equation (2.27) becomes

an
e = fn − gn (2.30)

where

an
e = v̇n

e = p̈n
e (2.31)

and gn is the straight-down gravity vector.

The role of the attitude computer is to produce a new body-to-nav frame DCM

for each iteration. This is done by solution of the equation

Ċn
b = Cn

bΩ
b
nb (2.32)

which can also be expressed in the discrete time domain as
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Figure 2.7: Strapdown INS mechanization in navigation
frame [31]. The gyro measurements are processed to create
a body-to-nav platform attitude to correctly interpret the ac-
celerometer measurements in the n-frame.

Cn
bk+1

= Cn
bk

[I+Ωb
nb dt] (2.33)

where Ωb
nb is the skew-symmetric form of ωb

nb

Ωb
nb = ωb

nb× (2.34)

and

ωb
nb = ωb

ib −Cb
nk
ωn
in (2.35)

where ωb
ib is directly from the gyro andCb

nk
is from the previous iteration (transposed).

Additionally,
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ωn
in = ωn

ie + ωn
en (2.36)

where ωn
ie is the sidereal rate (rotation rate of Earth) and ωn

en is the transport rate

(rate of the n-frame moving across the e-frame).

Now the fn term of Equation (2.30) can be solved as

fn = Cn
b f

b (2.37)

The gn term of Equation (2.30) can be expressed as

gn = (2ωn
ie + ωn

en)× vn
e + gn

l (2.38)

where (2ωn
ie+ω

n
en)×vn

e is a combination of Coriolis acceleration and centripetal force

effects, and gn
l is the local gravity vector. See [31] for an expanded explanation.

The last term of Equation (2.38) can be expressed as [23]

gn
l = gn − Ωn

ie
2(Ro + h)

2


sin(2L)

0

1 + cos(2L)

 (2.39)

where gn again refers to a straight-down vector and gn
l refers to the local gravity

vector, R0 is the radius of the Earth, h is Above Ground Level (AGL) altitude, and

Ωn
ie is the scalar sidereal rate. The local gravity vector is not the same as the straight-

down vector and incorporates the Earth’s rotation and position on the Earth. All

of the components required to determine the acceleration of the body in the n-frame

with respect to the Earth have been solved according to Equation (2.30); velocity and

position can now be determined by integration. Characterization of the accelerometer

and gyro inherent errors will be examined next before construction of the governing

differential equations.
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2.6.2 Inertial Sensor Models. Both accelerometer and gyro measurements

can be mathematically represented with additive noise and biases. The accelerometer

equation is

f̄ b = f b + ab +wb
a (2.40)

where f̄ b is the measured specific force, f b is the true specific force, ab is the accelerom-

eter bias, and wb
a is the additive accelerometer noise. The gyro equation is

ω̄b
ib = ωb

ib + bb +wb
b (2.41)

where ω̄b
ib is the measured body angular rates, ωb

ib is the true angular rates, bb is the

gyro bias, and wb
b is the additive gyro noise.

The biases may be modeled as First Order Gauss-Markov (FOGM) processes

as:

ȧb = − 1

τa
ab +wb

abias
(2.42)

where τa is the first-order accelerometer bias time constant and wb
abias

is the additive

accelerometer bias noise, and

ḃb = − 1

τb
bb +wb

bbias
(2.43)

where τb is the first-order gyro bias time constant and wb
bbias

is the additive gyro bias

noise.

2.7 Inertial Navigation Dynamics

The necessary mathematical framework has now been laid to write the error

state differential equations to populate the dynamics matrix (F).
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2.7.1 Attitude Dynamics. The body-to-nav frame DCM can be approxi-

mated as [31]

C̃n
b ≈ [I− (ψ×)]Cn

b (2.44)

Taking the time derivative of Equation (2.44) yields

˙̃Cn
b = −(ψ̇×)Cn

b + [I− (ψ×)]Ċn
b (2.45)

Substituting Equation (2.32) into Equation (2.45) and solving for (ψ̇×) yields

ψ̇× = [I− (ψ×)]Cn
bΩ

b
nbC

b
n − C̃n

b Ω̃
b
nbC

b
n (2.46)

Finally, substituting Equation (2.35) and Equation (2.41) into Equation (2.46) yields

ψ̇ = −[(Cn
eω

e
ie)×]ψ −Cn

bb
b −Cn

bw
b
b (2.47)

2.7.2 Position and Velocity Dynamics. Starting from the most basic repre-

sentation, position in the i-frame can be expressed as

pi = Ci
e[p

e
0 +Ce

np
n] (2.48)

where pe
0 is the origin of the n-frame, expressed in the e-frame. Taking two time

derivatives yields

p̈i = Ci
eC

e
np̈

n + 2Ci
eΩ

e
ieC

e
nṗ

n +Ci
e(Ω

e
ie)

2[pe
0 +Ce

np
n] (2.49)

Substituting the navigation equation, Equation (2.30), and Equation (2.31) into Equa-

tion (2.49) and solving for acceleration yields
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p̈n = fn − 2Cn
eΩ

e
ieC

e
nṗ

n −Cn
e (Ω

e
ie)

2[pe
0 +Ce

np
n] + gn (2.50)

and substituting the identity

ṗn = vn (2.51)

yields

v̇n = Cn
b f

b − 2Cn
eΩ

e
ieC

e
nṗ

n −Cn
e (Ω

e
ie)

2[pe
0 +Ce

np
n] + gn (2.52)

A calculated form, ˙̃vn, is constructed by adding accelerometer measurement

and attitude errors and by substituting the gravity function [35], Equation (2.40),

and Equation (2.47) to yield

˙̃vn = C̃n
b f

b − 2Cn
eΩ

e
ieC

e
nṽ

n +Cn
eg

e(pe
0 +Ce

np̃
n) (2.53)

Substituting Equation (2.52) and Equation (2.53) into the acceleration error

vector equation

δv̇n = ˙̃vn − v̇n (2.54)

yields

δv̇n = Gnδpn − 2Cn
eΩ

e
ieC

e
nδv

n + (fn×)ψ +Cn
b a

b +Cn
bw

b
a (2.55)

where δpn and δvn are the error vectors denoting the difference between truth and

calculated values.

All equations required for construction of a state-space dynamics model have

now been derived.
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2.8 Kalman Filtering

A Kalman filter is an optimal estimator that performs by means of an iterative

algorithm. One of the most desirable features of the algorithm is that it not only

maintains a mean estimate of the states of interest, but also produces and maintains

a covariance matrix which corresponds to their uncertainties. During operation, the

filter runs in two repeating steps: propagation and measurement update. Propaga-

tion occurs between every computer clock cycle. The expected value of the state is

calculated along with the covariance matrix. When an update is available, the algo-

rithm optimally weights how much to “believe” the new information. While simple in

concept, designing a practical Kalman filter requires insight into proper system mod-

eling to ensure the filter does not diverge or believe itself too well and not properly

accept incoming measurements. It is also possible for the filter to become corrupted

to where it believes all incoming measurements and has no memory of the past. The

equations presented here will be in discrete form since that is most applicable to use

in a computer program.

The system model, repeated from Equation (2.21) is

xk+1 = Φkxk +wk (2.56)

A Kalman filter in its basic form is a model-dependent filter and not adaptive; if the

model does not fit the physical situation, it may yield poor results [18].

A model of measurements also exists:

zk = Hkxk + vk (2.57)

where zk is the vector of measurements, Hk is the linear measurement observation

matrix, xk is the state vector, and vk is the noise measurement vector.

Similar to Equation (2.19), Equation (2.57) can be generally expressed as
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zk = h[xk] + vk (2.58)

where h[xk] may or may not be linear.

2.8.1 Linear Kalman Filter. Although this research utilizes an unscented

Kalman filter to deal with nonlinearities in propagation and measurement, the simpler

case of a linear Kalman filter will be discussed to provide adequate background.

The discrete propagation equations carry the state and state uncertainty esti-

mates from after the previous measurement (a posteriori) to right before the next

measurement (a priori). If measurements are taken at a slower rate than the prop-

agation rate, the propagation equations are simply repeated until a measurement is

available. The state and state uncertainty propagation equations are:

x̂−
k = Φk−1x̂

+
k−1 (2.59)

P−
xx,k = Φk−1P

+
xx,k−1Φ

T
k−1 +Qk (2.60)

where the process noise matrix can be defined as

Qk = E{wkw
T
k } (2.61)

where E{•} is the expectation operator.

The measurement update equations incorporate newly acquired information into

the Kalman filter algorithm. The Kalman gain, Kk, provides the optimum weighting

of the new measurement. The update equations are:

Kk = P−
xx,kH

T
k [HkP

−
xx,kH

T
k +Rk]

−1 (2.62)
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where HkP
−
k H

T
k +Rk is the residual covariance, with Rk defined as

Rk = E{vkv
T
k } (2.63)

where vk is the uncertainty of the measurements and

x̂+
k = x̂−

k +Kk[zk −Hkx̂
−
k ] (2.64)

where zk −Hkx̂
−
k is the residual, and

P+
xx,k = P−

xx,k −KkHkP
−
xx,k (2.65)

The Kalman filter equations just described are for the linear case only, i.e.

f [xk,uk] is equivalent to Fxk +Bkuk and h[xk] is equivalent to Hkxk. If the system

matrices are nonlinear, the equations can either be linearized beforehand which may

result in highly inaccurate filter performance, or alternative filter types may be used.

The most common filter type implemented to deal with nonlinearities is the Extended

Kalman Filter (EKF) which linearizes the nonlinear system dynamic equations about

nominal state points during each iteration. Another filter type that handles nonlin-

earities, and the method used in this research, the Unscented Kalman Filter (UKF)

is described next.

2.8.2 Unscented Kalman Filter. The goal of the UKF is to improve upon

the EKF by “capturing” higher-order effects of a Probability Density Function (PDF)

An EKF truncates everything after the second term in the Taylor-series expansion

when calculating the linear approximation. The UKF accomplishes state estimation

by expressing the estimate as a collection of “carefully chosen” samples (particles)

called sigma points. The main idea is that it is easier to approximate a probability

distribution than it is to approximate an arbitrary nonlinear function or transforma-

tion [17]. The theory is similar to that of a Particle Filter (PF), except the particles
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are not chosen at random. The UKF is also capable of capturing non-Gaussian statis-

tics more accurately; however, all random variables will be assumed to be Gaussian

in this research.

2.8.2.1 Unscented Transform. The original PDF is made useable to

the UKF through the Unscented Transform (UT). A collection of 2L+1 sigma points

are defined as

χ0 = x̂ (2.66)

χi = x̂+
√
L+ λ ( c

√
Pxx)i ∀ i ∈ [1, L] (2.67)

χi = x̂−
√
L+ λ ( c

√
Pxx)i ∀ i ∈ [L+ 1, 2L] (2.68)

where x̂ is the mean state vector estimate, Pxx is the state covariance matrix, L is

the number of states, and λ is a scaling parameter defined as

λ = α2(L+ κ)− L (2.69)

The c
√
Pxx refers to the Cholesky decomposition mathematical operation. Since a

true square root of a matrix does not exist, the Cholesky decomposition is one of

several methods to approximate the matrix square root. The considered matrix must

be symmetric and positive-definite. The i subscript refers to the ith column of the

state covariance matrix.

The variable α is a user-specified parameter that changes the spread of the

function and κ is a secondary tuning parameter, usually set to zero.

The sigma point weighting parameters are defined as
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W (m)
o =

λ

L+ λ
(2.70)

W (c)
o =

λ

L+ λ
+ (1− α2 + β) (2.71)

W
(m)
i =W

(c)
i =

1

2(L+ λ)
(2.72)

where the (m) and (c) superscripts denote mean and covariance respectively, and β

is a tuning parameter set equal to two in the Gaussian case.

The statistics of the sigma point populated PDF can be recovered using the

equations

x̂ =
2L∑
i=0

W
(m)
i χi (2.73)

Pxx =
2L∑
i=0

W
(c)
i [χi − x̂][χi − x̂]T (2.74)

Sigma points can be propagated through nonlinear dynamics to create trans-

formed sigma points. These transformed sigma points can then make use of the given

equations to calculate new statistics.

2.8.2.2 UKF Propagation. The concept of UKF propagation is that

a collection of sigma points, consisting of a mean and statistically significant “sur-

rounding points” are individually propagated through state dynamics equations, with

the intent of being reassembled on the other side using mathematical tools that will

create a new mean and covariance.

After the mean and covariance have been transformed to a collection of sigma

points using the UT, the sigma points are passed though the state dynamics (mech-

anization equations for navigation applications):
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χi,k+1 = f [χi,k,uk,wk] (2.75)

where they can be used to reconstruct the a priori mean and covariance:

χ̂−
i,k+1 = Φ(k + 1, k)χ̂+

i,k +Bkuk (2.76)

P−
xx,k+1 = Φ(k + 1, k)P+

xx,kΦ
T(k + 1, k) +Qk (2.77)

where χ̂−
i,k+1 and P−

xx,k+1 are the sigma point state estimates and uncertainties after

propagation in time, Φ(k+1, k) is the state transition matrix, Bk is the input influence

matrix, uk is the input set, and Qk is the discrete process noise.

2.8.2.3 UKF Measurement Update. The UT is also used to handle the

nonlinear propagation as described in [12,17].

Each sigma point is passed through the measurement equation:

Z−
i,k = h[χ−

i,k,vk] (2.78)

to create the collection of predicted measurements, Z−
i,k. In a linear Kalman filter,

this would be a one-dimensional vector of values; however, a measurement prediction

is created for each sigma point in a UKF.

A mean predicted observation and measurement covariance are then calculated:

ẑk =
2L∑
i=0

W
(m)
i Z−

i,k (2.79)

Pzz,k =
2L∑
i=0

W
(c)
i [Z−

i,k − ẑk][Z−
i,k − ẑk]

T +Rk (2.80)
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A cross-covariance matrix and Kalman gain are then computed as

Pxz,k =
2L∑
i=0

W
(c)
i [χi,k − x̂−

k ][Z
−
i,k − ẑk]

T (2.81)

Kk = Pxz,kP
−1
zz,k (2.82)

The a posteriori state estimate mean and covariance can be expressed as

x̂+
k = x̂−

k +Kk(z̄k − ẑk) (2.83)

P+
xx,k = P−

xx,k −KkPzz,kK
T
k (2.84)

where z̄k is the incoming measurement.

2.9 Digital Imaging

While the field of optics can be very complex and the mathematics very involved,

the approach to understanding what is required for the test camera in this research

will take every simplification available, to the level of fidelity required for this research.

This section will discuss optical projection theory and lens distortion.

2.9.1 Optical Projection Theory. The use of a pinhole camera model is the

fundamental assumption that greatly simplifies the concept of optics for this research.

The term focal length refers to the distance from the center of the lens to the image

plane when the size of the aperture (a hole through which light enters the camera)

approaches zero. Figure 2.8 illustrates the projection of a an object in the distance,

located at sc that is projected onto the image plane at point sproj. The focal length

can be used to define a ratio as

42



Figure 2.8: Three-dimensional image plane. H and W are
physical measurements [35].

sproj = (
f

scz
)sc (2.85)

where scz is the scalar z-direction component of sc in the c-frame. Note that W and

H are physical measurements of the camera sensor itself. Figure 2.9 shows the same

scenario looking directly onto the two-dimensional image plane.

Veth [35] shows that position vectors in the camera frame, denoted as sc can

be transformed to homogeneous pixel coordinates in the image plane frame by

spix =
1

scz
Tpix

c sc (2.86)

with Tpix
c defined as
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Figure 2.9: Image plane reference frame. H and W define the
physical dimensions whileM andN are the pixel dimensions [35]

Tpix
c =


−f M

H
0 M+1

2

0 f N
W

N+1
2

0 0 1

 (2.87)

where f is focal length, M and N are number of vertical and horizontal pixels on the

image plane, and W and H are the physical measurements of the camera sensor. The

inverse of Tpix
c may be used to convert from pixel coordinates to camera coordinates

if scz is known.

2.9.2 Lens Distortion. The inherent lens distortion of an actual camera is

inconsistent with the pinhole approximation. Light is bent in complex ways through

different areas of the lens before being focused on the focal plane. The pinhole camera
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model simplifies the optics problems by assuming all light rays pass through a single

point on the lens before creating a perfect, undistorted image on the focal plane.

It is, therefore, desired to remove gross distortion. While complex aberrations

that may be present in a lens could more accurately be represented by high-order

polynomials and complex three-dimensional vector fields, a suitable error model is

the “Plumb Bob” distortion model [6] which separates the distortion into radial and

tangential components.

An ideal nonhomogeneous two-dimensional representation (x,y) of a three-dimensional

point (X,Y,Z) with no distortion can be shown as

xno distortion =

x
y

 =

X/Z
Y/Z

 (2.88)

To mathematically characterize radial distortion, the squared radius can be

defined

r2 = x2 + y2 (2.89)

The components of distortion are then defined

ζradial = 1 + kc1r
2 + kc2r

4 + kc5r
6 (2.90)

ζtangential =

2kc3xy + kc4(r
2 + 2x2)

kc3(r
2 + 2y2) + 2kc4xy

 (2.91)

where kc1, kc2, kc3, kc4, and kc5 are distortion coefficients that must be solved, usually

by calibration, in order to characterize the distortion.

A more complete representation of a point in an image with distortion applied

can now be described as
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xdistorted = ζradial xno distortion + ζtangential (2.92)

where xno distortion is the original undistorted point from Equation(2.88). The prac-

tical goal for this research is then to create an undistorted image by applying these

parameters in the form

xno distortion =
xdistorted − ζtangential

ζradial
(2.93)

2.10 Image Comparison Techniques

The problem of extracting information from a comparison of two or more images

is one of both image processing and geometry involving transformations between two-

dimensional image space and three-dimensional space where actual objects exist. This

section discusses the image processing aspect and some contemporary techniques. The

focus will be on two major categories of image comparison: pixel-based and feature-

based. Other methods will be briefly mentioned to provide the reader with an overview

of the state of the art.

2.10.1 Feature-based Methods. Feature-based techniques involve finding

unique points of interest in an image and attempting to relocate these points in other

images. Depending on how much the subsequent image may have changed in terms

of translation, rotation, or affine movement, the feature-finding algorithm may not

be able to find a matching feature point. Simple algorithms like the Harris-Stephens

corner detector find matches where pixel-composition is very similar - such as another

corner. More robust and computationally-costly algorithms like SIFT R⃝ are capable

of finding matches on the surfaces of objects that have been decreased in size and par-

tially changed in affine perspective. With an understood spatial relationship between

feature points in a single image, and several confirmed feature-point matches between

two different images, an understanding of the observed motion can be deducted.

46



Current vision and INS-coupled research solutions attempt to improve matching

accuracy and speed by narrowing the match search area through statistical application

of estimation and uncertainty. In other words, information is carried from one visual

frame to the next that provides a best guess of where the feature point should lie,

along with an uncertainty ellipse to constrain the search [35].

Only Harris-Stephens corner detection and SIFT R⃝ were used in the research,

but many other methods exist. Some are relatively simple algorithms similar to the

Harris-Stephens detector such as the Shi-Tomasi method [28] while others are more

complex such as the Speeded Up Robust Features (SURF) algorithm [3].

2.10.1.1 Harris-Stephens Corner Detector. The Harris-Stephens cor-

ner detector is an improvement upon an earlier algorithm by Moravec. Conceptually,

the method involves shifting a window and determining average intensity changes.

Three cases are considered [16]:

1. Vertical and horizontal shifts of the window will result in small changes in aver-

age intensity if the image region encompassed by the window is approximately

constant.

2. Shifts in the window along an edge will result in small intensity changes but

shifts perpendicular to an edge will result in large change.

3. Vertical and horizontal window shifts in a region that contains a corner will

have have large intensity changes in both directions.

The algorithm is designed to find corners but other means must be exploited

to correlate found corners in one image with those in another image since there is no

included specific feature descriptor.

2.10.1.2 SIFT R⃝. The patented SIFT R⃝ algorithm, developed by

David Lowe at the University of British Columbia is a robust, although computa-

tionally expensive, means of detecting points of interest in an image. Because of the
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unique descriptors, they can be readily compared and matched with other images that

contain the same feature points for many computer vision uses. A detailed mathe-

matical explanation of the algorithm can be found in Lowe’s publication [16], but the

major steps of the algorithm will be briefly summarized.

1. Scale-space extrema detection. The image is convolved with Gaussian filters of

different scales and scale-space extrema are found that persist through different

scale changes. This is important because feature points generated by SIFT R⃝

are scale invariant, i.e. the same feature on an object should be detectable in

image pairs that have different distances or zooming to the object.

2. Keypoint localization. The results of the previous step are pruned to remove

unstable and low contrast candidates. The accuracy of remaining candidates

are also improved by checking in a space around the candidates and searching

for conflicting candidates.

3. Orientation assignment. A magnitude and direction are assigned to each feature

point based on a calculated gradient of pixels in its local neighborhood.

4. Keypoint descriptor. A 128-dimension descriptor based on the previous steps

is generated for each feature point. This ensures that each feature point is

highly distinctive. This feature of SIFT R⃝ points makes it a very powerful tool

in finding corresponding points in other images because of the high confidence

that can be placed in the uniqueness of the keypoint descriptor to a particular

feature point across different images.

For correlating points between images, matching is usually the slowest part of

the process since point detection is fairly quick. There is no way to really determine if

a feature point is correct in an image without searching for its twin in another image.

It is also recommended that some logic outside of SIFT R⃝ be used to mitigate multiple

matches. This is not in general a big problem but can be an issue when SIFT R⃝ is

used within another specific-purpose algorithm that makes extensive use of geometry

based on image pairing.
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2.10.2 Pixel-based Methods. Pixel-based methods attempt to exploit more

(ideally, all) of what can be seen. It is supposed that this is closer to how organic life

perceives the environment and objects within it. While the potential for information

extraction is greatly increased, the engineering implications also grow as every pixel

in the image now has potential significance. Even so, some method of data reduction

must be implemented to use the information. Some implemented techniques include

Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD), Normalized

Cross Correlation (NCC), and variants of each. In general, pixel-based methods

calculate disparity at each pixel within a neighborhood specified by an adjustable

“window”, which is a square neighborhood of pixels. A corresponding pixel in a second

image is searched for by attempting to minimize error and maximize similarity.

Although these methods can be applied directly to images, depending on the

specific software implementation, some type of pre-filtering or conditioning is often

first applied. Examples include converting images from color to grayscale, threshold-

ing (converting to a binary image), applying various gradient operators, and morpho-

logical techniques. Some, but not all of these techniques were used in this research.

See [16] for further reading.

2.10.2.1 Sum of Absolute Differences. The SAD method subtracts

pixels within a window between two images and then aggregates all of the differences

within the window to provide a score for each pixel in the first image. SAD is the sim-

ples and least computationally burdensome method of pixel correlation. A tractable

method for quick use of the results is to execute a two-dimensional summation on the

scores to yield a single value. The lower the value, the higher the correlation of the

two images. This concept is the basis for all of the pixel-based methods presented

here.

The basic SAD equation is

SAD =
∑

(i,j)∈W

|I1(i, j)− I2(x+ i, y + j)| (2.94)
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where x and y are pixel coordinates, W is the chosen window, i and j are the pixels

in the window being evaluated, and I1 and I2 are the first and second images. The

algorithm is applied to every pixel in the images. Both images must be the same size.

A variant can be applied where the mean pixel intensity values within each

window of each image are independently subtracted. This may produce better results

when comparing images with wide contrast differences by normalizing them first. The

zero mean SAD (ZSAD) equation is

ZSAD =
∑

(i,j)∈W

|I1(i, j)− Ī1(i, j)− I2(x+ i, y + j) + Ī2(x+ i, y + j)| (2.95)

where Ī1(i, j) and Ī2(i, j) are the mean intensity values of specified pixels.

Another method that attempts to normalize differences in the two compared

images while calculating a correlation is the locally-scaled SAD (LSAD):

LSAD =
∑

(i,j)∈W

|I1(i, j)−
Ī1(i, j)

Ī2(x+ i, y + j)
I2(x+ i, y + j)| (2.96)

2.10.2.2 Sum of Squared Differences. The more popular SSD method

squares and aggregates pixel differences within the window. The squared term adds

a “penalty” for error distance and theoretically provides more accurate results. The

general SSD formula is

SSD =
∑

(i,j)∈W

(I1(i, j)− I2(x+ i, y + j))2 (2.97)

Analogous to the zero mean SAD Equation (2.95), a zero mean SSD can be

computed as

ZSSD =
∑

(i,j)∈W

(I1(i, j)− Ī1(i, j)− I2(x+ i, y + j) + Ī2(x+ i, y + j))2 (2.98)
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as well as a locally scaled SSD:

LSSD =
∑

(i,j)∈W

(
I1(i, j)−

Ī1(i, j)

Ī2(x+ i, y + j)
I2(x+ i, y + j)

)2

(2.99)

2.10.2.3 Normalized Cross Correlation. The most complex method

considered is NCC. It seeks to improve performance by also creating an increasing

penalty, although more complex than that of SSD, based on error distance. The

technique can be expressed as

NCC =

∑
(i,j)∈W I1(i, j)I2(x+ i, y + j)√∑

(i,j)∈W (I1(i, j))2
∑

(i,j)∈W (I2(x+ i, y + j))2
(2.100)

2.10.3 Others. Several other methods of providing a means of correlation

between images exist to include:

• Relate surfaces of objects in images using homography.

• Edge and line detection using gradient, Hessian operators, Sobel derivative op-

erators.

• Phase correlation using a Fast Fourier Transform (FFT); match single peak in

each image.

• Gradient cross-correlation.

• Template matching; a subimage of an object is rastered across a master image

to find its location.

• Hough detection; can be tailored to find lines, circles, or other shapes.

• Wavelets; suited for edge detection.

It is also recommended that some means of removing outliers is used such as

a median filter, Least Median of Squares Regression (LMedS) [26], or the Random

Sample Consensus (RANSAC) algorithm [13]. These methods attempt to prevent

obvious outlying data from influencing function and curve fitting to data.
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2.11 Previous Work

Much work has been in accomplished in the field of computer vision and its

application to the science of guidance, navigation, and control theory. This section

summarizes a few efforts of particular interest, both academic and industrial.

2.11.1 Weaver. Weaver used a single KC-135 aircraft computer model to

demonstrate the use of predictive rendering in the problem of autonomous aerial refu-

eling [37]. An EKF was employed with inertial measurements to provide estimates to a

MATLAB R⃝-based synthetic view generation algorithm for comparison with available

infrared imagery. He concluded that the most effective image processing technique

was to use SSD for course correlation, followed by magnitude of gradient for fine

tuning the position solution. An example of the gradient applied to the aircraft is

shown in Figure 2.10. The use of the EKF drove the need for iterative perturbations

around the predicted mean based on currently available state uncertainties, resulting

in a slow process. As a result, Weaver recommended using a UKF for future work,

creating a separate synthetic image based on each sigma point. This research uses

that suggestion to create a statistically rigorous method of predictive rendering and

comparison.

2.11.2 Ebcin. Ebcin developed a UKF-based algorithm for a tightly-coupled

optical and inertial navigation system [12]. His algorithm is an error-state feedback

system that uses full states for the strapdown mechanization portion of the algorithm.

Once a collection of sigma points are computed about a nominal, each sigma point

is transformed to and from whole-valued navigation state sigma points using simple

addition and subtraction operations for position, velocity, accelerometer bias, and gyro

bias. The whole-valued body-to-navigation frame DCMs are calculated by converting

the angular errors to equivalent DCMs and the multiplying the DCM with the nominal

body-to-navigation DCM. The results were successful, albeit with a heading bias that

was not accounted for.
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Figure 2.10: Gradient image of KC-135 from Weaver’s re-
search [37]. This method worked well for a lone object against
a blank background (sky).

2.11.3 Veth. Veth’s doctoral dissertation made several significant contribu-

tions toward the goal of “deep-level” image and inertial integration [35]. An online

vision-aided inertial EKF-based algorithm was developed that not only estimated

and corrected errors in the inertial sensor through help from the optical sensor, but

streamlined the optical search space by implementing feedback from the filter. Pre-

vious techniques tended to be ad hoc and lacked statistical rigor. Although this

constraining method is not used, this research borrows heavily from Veth’s derivation

of strapdown mechanization and digital imaging techniques. Veth concluded that the

largest source of error came from EKF linearization, which this work attempts to

avoid with use of the UKF.

2.11.4 Baumberg, Strecha, Tuytelaars, and Van Gool. The need for feature

and/or object recognition in objects that demonstrate widely-changed aspects is ob-

vious for applications of a computer vision in navigation. The authors of [2, 29, 32]

investigate methods that allow for truly affine-invariant descriptors of local image
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structures to be calculated and exploited for widely-spaced viewpoints. While their

results show promise for keeping track of feature points when most of the same ob-

ject surface is in view, it cannot deal with “turning a corner” and viewing surfaces

from completely new perspectives. The research conducted for this thesis claims to

partially solve this, although a virtual model must be first constructed. The work of

these authors also lends itself to the emerging field of automatic three-dimensional

object reconstruction. Combining future work of reconstruction and the work pre-

sented here could eventually lead to truly autonomous and robust precision navigation

in any environment. For further reading on automatic three-dimensional reconstruc-

tion, see [1, 11,21].
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III. VANSPR Algorithm Development

This chapter details the novel approach of integrating synthetic visual data with

actual visual data to aid the navigation solution of a UKF-based optimal estimation

algorithm. The method is based on the SPR technique which consists of constructing

synthetic views of a scene from the perspective of the test vehicle for comparison with

actual images from an on-board camera. This predictively-rendered image is then

compared to collected images using either feature-based or pixel-based comparison

methods which serve to improve the accuracy of the correspondence search technique

employed.

3.1 System Model

The basic dynamics of the system will be presented first, followed by a detailed

walkthrough of the VANSPR algorithm.

3.1.1 Honeywell HG1700 INS. A well-performing optimal estimation algo-

rithm is dependent on a correct model. The following INS parameters were used:

Table 3.1: Honeywell HG1700 tactical-grade IMU.
These parameters were included in the model used by
the Kalman filter [34]. PPM is Parts per Million.

Parameter Units HG1700

Sampling interval ms 10.0
Gyro bias sigma deg/hr 1.0

Gyro bias time constant hr 2

Angular random walk deg/
√
hr 0.3

Gyro scalefactor sigma PPM 150
Accel bias sigma m/s2 0.0098

Accel bias time constant hr 2

Velocity random walk m/s/
√
hr 0.57

Accel scalefactor sigma PPM 300

3.1.2 State Space Representation. The F(t), G(t), and Q(t) matrices, ex-

plained in the previous chapter, are constructed in the error state space form using
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the error state form of the previously derived system differential equations. The dif-

ferential equations are repeated here. The goal is to gather differential equations of

the form of Equation (2.18), repeated here as

δẋ(t) = F(t)δx(t) +G(t)w(t) (3.1)

where B(t) and u(t) are excluded as no external deterministic input is considered,

and from Equation (2.25),

δx =



δpn

−−−

δvn

−−−

ψn

−−−

δab

−−−

δbb


15×1

(3.2)

and, from Equation (2.24)

w =



wb
a

−−−

wb
b

−−−

wb
abias

−−−

wb
bbias


12×1

(3.3)
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The differential equations are as follows. Equation (2.51) is repeated and ex-

pressed in error state form as

δṗn = δvn (3.4)

Equation (2.55) is repeated as

δv̇n = Gnδpn − 2Cn
eΩ

e
ieC

e
nδv

n + (fn×)ψn +Cn
b a

b +Cn
bw

b
a (3.5)

and Equation (2.47) is repeated as

ψ̇n = −[(Cn
eω

e
ie)×]ψn −Cn

bb
b −Cn

bw
b
b (3.6)

along with the accelerometer and gyro biases from Equation (2.42) and Equation (2.43):

δȧb = − 1

τa
δab +wb

abias
(3.7)

δḃb = − 1

τb
δbb +wb

bbias
(3.8)

Now put in matrix form for n’-frame mechanization as

F(t) =



03 I3 03 03 03

Gn −2Ωn
ie fn× Cn

b 03

03 03 −Ωn
ie 03 −Cn

b

03 03 03 −I3(
1
τa
) 03

03 03 03 03 −I3(
1
τb
)


(3.9)
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G(t) =



03 03 03 03

Cn
b 03 03 03

03 −Cn
b 03 03

03 03 I3 03

03 03 03 I3


(3.10)

Q(t) =



I3(σarw) 03 03 03

03 I3(σbrw) 03 03

03 03 I3

(
ab

√
2
σa

)
03

03 03 03 I3

(
ab
√

2
σb

)


(3.11)

where σarw , σbrw , σa, and σb are from Table 3.1.

The discrete form of Q(t) is calculated in Section 3.2.5.3

3.2 Algorithm Walkthrough

A complete walkthrough of the VANSPR algorithm will now be presented. The

initial conditions and states are the best possible available: from TSPI. After the

initial information handoff, similar to what a smart weapon such as a JDAM would

receive from the carrier aircraft at launch, the algorithm functions independently and

receives no further updates from any type of truth source.

3.2.1 Initial Body-to-Nav DCM. An initial body-to-nav DCM, Cn
b , is re-

quired for propagation. It can be readily calculated based on the handoff of yaw(ψ),

pitch(θ), and roll(ϕ). The Cn
b can be expressed as a series of matrix multiplications

of Euler angle matrices by

Cn
b = Cn

1C
1
2C

2
b (3.12)

where
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Cn
1 =


cos ψ −sin ψ 0

sin ψ cos ψ 0

0 0 1

 (3.13)

C1
2 =


cos θ 0 sin θ

0 1 0

−sin θ 0 cos θ

 (3.14)

C2
b =


1 0 0

0 cos ϕ −sin ϕ

0 sin ϕ cos ϕ

 (3.15)

3.2.2 Sidereal Rotation in n-frame. It is also required to calculate the Ce
n

matrix, which can reasonably be assumed constant over the 60-90 second interval of a

locally-flown weapon that this research is considering. Starting with an origin defined

by the starting point of a data collection run in WGS-84 format:

Pwgs
0 = [ϕe λ alt0]

T (3.16)

where ϕe is geodetic latitude, λ is geodetic longitude, alt0 is absolute altitude. The

conversion to Ce
n0 is performed by

Cn
e = Cn,lat,lon

n,lon Cn,lon
e =


−sin ϕe 0 cos ϕe

−cos ϕe sin λ cos λ −sin ϕe sin λ

−cos ϕe cos λ −sin λ −sin ϕe cos λ

 (3.17)

and manipulated into the desired form by

Ce
n = CnT

e (3.18)
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It is then desired to have the rotation transformation in quaternion form. This

conversion is well understood and can be found in [31]:

Ce
n ⇒ qe

n (3.19)

Cn
e ⇒ qn

e (3.20)

The sidereal rotation rate

ωe
ie =

[
0 0 7.292115× 10−5

]T
rad/s (3.21)

can now be transformed into the n-frame using the conversion of Equation (3.20) to

yield

ωn
ie = qn

eω
e
ie (3.22)

Finally, the skew symmetric form can be calculated for later use:

Ωn
ie = ωn

ie× (3.23)

3.2.3 UT Sigma Point Weights. As described previously in Chapter 2,

Equations (2.70, 2.71, and 2.73) are repeated here as Equations (3.24, 3.25, and

3.26), with α set to one. This α setting was selected because it creates sigma points

that have a sufficient distance from the mean sigma point for the purposes of offering

varying viewpoints to the VANSPR algorithm. This will be discussed in more detail

later. The weights are calculated by
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W (m)
o =

λ

L+ λ
(3.24)

W (c)
o =

λ

L+ λ
+ (1− α2 + β) (3.25)

W
(m)
i =W

(c)
i =

1

2(L+ λ)
(3.26)

3.2.4 UKF Sigma Point Generation. Sigma points are re-generated on each

iteration of the UKF cycle using Equations (2.66, 2.67, and 2.68) - repeated again

here for convenience:

χ0 = x̂ (3.27)

χi = x̂+
√
L+ λ ( c

√
Pxx)i ∀ i ∈ [1, L] (3.28)

χi = x̂−
√
L+ λ ( c

√
Pxx)i ∀ i ∈ [L+ 1, 2L] (3.29)

where a scaling parameter λ is defined as

λ = α2(L+ κ)− L (3.30)

3.2.5 Strapdown Mechanization. An iterative cycle is then entered by the

algorithm to propagate the navigation states in time and accept measurement updates.

All functions within this cycle will be discussed. To the maximum extent possible,

strapdown mechanization is performed using quaternions to reduce computational

burden. (Ebcin showed using quaternions decreased processing time from in his UKF

navigation algorithm from 410 to 198 seconds on a 60 second simulation [12]).

3.2.5.1 Attitude Propagation. Attitude propagation is initiated by

transforming the body-to-nav sigma point quaternion rotations to body-to-earth sigma

point quaternion rotations by
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χqe
b
= qe

nχ
T
qn
b

(3.31)

where qe
n is a 4×1 quaternion, while χqn

b
is a 4×L sigma point collection of quaternions.

The sigma point collection is transposed

χqb
e
= χqeT

b
(3.32)

Numerically integrating the sidereal rate by

θeie = ωe
ie dt =

[
0 0 7.292115× 10−5 dt

]T
radians (3.33)

yields the Earth’s rotation angle which can then be transformed into a collection of

sigma points in the body frame using

χθbie
= χqb

e
θeie (3.34)

Finally, the attitude representation is propagated by

χθbnbk

= ∆θbni,k
− χθbie

(3.35)

where ∆θbni,k
is the measurements from the gyros. A numerical derivative is then

applied

χωb
nbk+1

=
χθbnbk

dt
(3.36)

and an average body rotation rate is found by

χωb
nb averagek+1

=
χωb

nbk

+ χb
nbk+1

2
(3.37)
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The sigma point rotation angles from Equation (3.35) are converted to quater-

nion form

χθbnbk

⇒ qbk−
bk+1

(3.38)

rotated into the n-frame after the appropriate quaternion is calculated

qn−
bk+1

= qn
bk
qbk−
bk+1

(3.39)

to yield

qnk−
nk+1

= qn−
bk+1

χ+
qb
nk

(3.40)

3.2.5.2 Position and Velocity Propagation. A sigma point set of ac-

celerations in the n-frame are constructed using accelerometer measurements by

χank+1
= χqn

b

(
∆vbk
dt

)
+ gn − 2Ωn

ieχvnk
(3.41)

In a trickle-down fashion, sigma point collections of velocity

χvnk+1
= χvnk

+
1

2

(
χank

+ χank+1

)
dt (3.42)

and position

χpnk+1
= χpnk

+
1

2

(
χvnk

+ χvnk+1

)
dt (3.43)

are also calculated.
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3.2.5.3 Calculation of Φd and Qd. From the F(t) matrix constructed

in Equation (3.9), the discrete state transition matrix can be calculated using Equa-

tion (2.22), repeated here as

Φk = eFk(dt) (3.44)

The continuous time process noise is made available to the algorithm by con-

verting it to discrete form by

Qk = G(t)Q(t)GT(t) (3.45)

using G(t) and Q(t) from Equations (3.10) and (3.11), respectively, and then to Qdk

using a computational method from [20]:

Qdk =
1

2
[ΦkGkQkG

T
k +GkQkG

T
k Φ

T
k ] dt (3.46)

3.2.5.4 Accelerometer and Gyro Bias Propagation. Before being passed

through the INS mechanization equations, the accelerometer and gyros biases in sigma

point format are removed:

∆vbk+1 = ∆vbk − χabk
dt (3.47)

∆θbk+1 = ∆θbk − χbbk
dt (3.48)

The accelerometer and gyro biases are then propagated as

χabk+1
= Φab(k + 1, k)χabk

(3.49)
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χbbk+1
= Φbb(k + 1, k)χbbk

(3.50)

where Φab and Φbb are the portions of the discrete state transition matrix relevant to

the biases.

3.2.6 Calculating a priori Mean and Covariance. After propagation through

the strapdown mechanization equations is complete, the sigma points are transformed

back into a singular mean state vector and covariance matrix using the equations

x̂−
k =

2L∑
i=0

W
(m)
i χ−

i,k (3.51)

P−
xx,k =

2L∑
i=0

W
(c)
i [χ−

i,k − x̂−
k ][χ

−
i,k − x̂−

k ]
T +Qdk (3.52)

3.2.7 Current Position in WGS-84. After propagation of whole-valued

states, it is desired to know where this takes the vehicle in terms of latitude, longitude,

and altitude. That was defined previously to be in the unchanging n’-frame which

has its origin where the data collection run began and the VANSPR algorithm began

working.

The first step to determine WGS-84 coordinates is to convert the n’-frame x-y

plane coordinates (Cartesian coordinates) into polar coordinates using

θpolarCartesian =

(
180

2π

)(
atan2

(
pn

′
y

pn′
x

))
degrees (3.53)

where atan2 is the four quadrant arctangent, formulated to maintain sign integrity in

all quadrants, and

rpolarCartesian =
√
pn′2
x + pn′2

y meters (3.54)
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The radius in meters is then converted into a distance in degrees. This calculation,

specific to the Earth, is

rpolarCartesian,deg =

(
180

2π

)(
rpolarCartesian

637100 m

)
degrees (3.55)

Latitude can then be determined by

ϕ1 = asin [sin ϕ0 + cos rpolarCartesian,deg + cos ϕ0 sin r
polar
Cartesian,deg cos θ

polar
Cartesian] degrees

(3.56)

and longitude by

λ1 = λ0+atan

[
sin rpolarCartesian,deg sin θ

polar
Cartesian

cos ϕ0 cos r
polar
Cartesian,deg − sin ϕ0 sin r

polar
Cartesian,deg cos θ

polar
Cartesian

]
degrees

(3.57)

3.2.8 Measurement Update. The key to the VANSPR algorithm is the

measurement update. Updating a state, such as position or velocity, directly with a

GPS position or Doppler velicometer is not difficult. However, when a state is being

updated indirectly, such as through a vision-aiding algorithm, more labor is required

in the construction of the measurement model.

3.2.8.1 Measurement Model. The UKF measurement model can be

described by

Z−
i,k = h[χ−

i,k, vk] (3.58)

where Z−
i,k is the sigma point collection of measurements as they appear after the state

sigma points have passed through the measurement system. Real-world measurements

are not perfect, so statistically characterized measurement noise is added as vk.
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In this research, the measurement model, h, simply passes the desired sigma

point values through. The complete state sigma point collection can be described as

the single matrix

χ =



χpn′

−−−

χvn
′

−−−

χΘn′

−−−

χab,n′

−−−

χbb,n′


15× (2L+1)

(3.59)

The measurement model selects the position sigma points, resulting in a 3× (2L+1)

matrix

Z−
i,k = [χvn

′ ]T3× (2L+1) (3.60)

3.2.8.2 Sigma Point Image Comparison. With a few deviations that

will be described in detail shortly, the main idea of the update phase of the algorithm

is to compare synthetically-generated images based on relevant sigma points to actual

camera images. In the 15-state UKF used here, it does not make sense for all state

sigma point subsets to generate images. For example, changes in an image caused by

accelerometer bias perturbations would be visually imperceptible in the short-term.

It would also be difficult to truly establish observability of state impact. In other

words, knowing which combination of state changes contributed to the new image

is of the utmost importance, and it is crucial to avoid giving “credit” to the wrong

states.
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In consideration of this, the first simplification is to consider only the effects of

position perturbations as commanded by the sigma point collection. The angle drift

of the HG1700 IMU is negligible over the short periods of time (approximately 60

seconds) considered for the weapon trajectories. View changes due to the coupled

effects of velocity, accelerometer bias, and gyro bias are not considered. Using only

the three states of x, y, and z translation, seven sigma points are considered. The

underlying behavior of the major position-influenced sigma points can be seen in

Figure 3.1. Position states are realized as a nominal value sigma point (χ0), and a

one−sigma point on each side. Lesser effects can be observed on sigma points beyond

but are very small and were considered negligible.

Figure 3.1: Sigma point spread. The primarily-influenced
sigma points for the x position in the n’-frame are 1, 2, and
17. The y position is concerned with 1, 3, and 18 and the z
position with 1, 4, and 19.
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A further simplification is to assume that the altitude does not change drastically

and that position changes can be satisfactorily considered in only one plane. With

only two states, x and y, only five sigma points are required. The decision to make this

reduction is based on empirical experience. It was too easy for the update mechanisms

to continually take altitude updates and “run away” in altitude. Several workarounds

were implemented to mitigate this, but the final and best solution was simply to not

take altitude updates. This assumption may not be the best final answer, but provided

a means to move on with the more critical aspects of the research. However, an issue

with reducing the required number of observation points down to five is that they

provide very little insight into a solution gradient, or direction. A workaround to this

limitation was to add four pseudosigma points as shown in Figure 3.2. The location of

the sigma points are set (by valuing the UKF parameter α to one) to one− sigma of

the current state covariance. This information is located in the current Pxx,k matrix.

The ϵx, ϵy pairs are coordinates in the grid for referencing a specific (pseudo)sigma

point. Northing and easting changes are made in accordance with the sigma points

and a new synthetic image based on the perturbed position data is compared with an

actual time-stamped image to extract positional error information.

3.2.8.3 SIFT R⃝ Matched Points as Information. As will be discussed

in Section 5.3.1, the use of pixel-based methods (SAD, SSD, etc.) was discarded be-

cause of the need for continual manual adjustment from scenario to scenario. Similar

problems existed in simple feature-point detection, line detection, and other methods.

Hence, the use of SIFT R⃝ match points was determined to be the focus of information

extraction for this research.

The actual method of detecting viable SIFT R⃝ points, as explained in Sec-

tion 2.10.1.2, took approximately 5 seconds per image pair (800 × 800 resolution).

The process of determining pairs amongst all the match from both images, however,

was the most computationally burdensome (time-consuming) step of the measurement

update. SIFT R⃝ matching was determined by computing the dot products between
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Figure 3.2: Augmented sigma point perturbation grid. The
black circles represent sigma points and the black crosses repre-
sent pseudosigma points, added to provide greater visibility into
error. The ϵx, ϵy pairs are coordinates in the grid. The grid does
not consider altitude; an augmented sigma cube (not used suc-
cessfully here) could be used to take altitude measurements as
well.

all combinations of both images’ descriptor vectors, sorting by angle size, and finding

neighboring angles that were less than a specified threshold value. A SIFT R⃝ threshold

value of 0.6 was generally determined to produce a viable number of SIFT R⃝ matches

while minimizing false matches. In circumstances where “SIFT starvation”, a lack

of sufficient feature points to obtain viable results, is occurring, raising the thresh-

old value may provide the required information while also raising the uncertainty of

correct matches.
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The collection of matched SIFT R⃝ pairs was intentionally reduced in the upper

and lower vertical quarters of the image to avoid effects as described in Section 5.2.3

that skew the measurement by an artificial position “pulling”. When SIFT R⃝ points

were viewed in experimentation, situations were often observed where a large collec-

tion of SIFT R⃝ points were along the bottom fifth of the screen. An example image

pair showing the reduced SIFT R⃝ set is shown in Figure 3.3.

Figure 3.3: Reduced SIFT R⃝ collection; real (left), synthetic

(right). SIFT R⃝ points in the upper and lower vertical quarters
of the image are eliminated to prevent matching skew due to
elevation error.

3.2.8.4 Taking the Measurement. The measurement step is a two-part

process consisting of first determining which synthetic image most closely aligns with

the actual camera image and then calculating a weighted shift direction vector to

remove remaining observable pixel error. The goal of this second part is to align

the SIFT R⃝ point matches as closely as possible and then determine the real-world

position that would cause this image shift.

In the first part of the measurement step, the location coordinates of pixel

match pairs in the two images differenced corporately. As shown in Figure 3.4, the

pairs may not be in the exact same position relative to other match points in the same
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image, but should maintain a relatively similar geometry overall if the algorithm has

produced a useable synthetic view. Posed mathematically, the average x and y pixel

shifts are calculated separately as

∆Xpix
j =

1

n

n∑
i=1

(xsi − xri) (3.61)

∆Y pix
j =

1

n

n∑
i=1

(ysi − yri) (3.62)

and combined as

γj =
√
(∆Xpix

j )2 + (∆Y pix
j )2 (3.63)

where γj is the pixel shift “score” of the jth synthetic image and n is the number

of matched SIFT R⃝ pairs. The lowest overall score across the synthetic images is

declared the closest match:

γmatch = min{γ} (3.64)

The value of this sigma grid location, as seen previously in Figure 3.2 is the

error position state value

δpn′, match = ϵx, ϵy(γmatch) (3.65)

where δpn′, match is the closest perturbation based simply on the closest match. If the

measurement calculation ended with this step, a measurement with the correct di-

rection, but incorrect magnitude, would be obtained. Because two-dimensional pixel

shift information is available from each of the nine (pseudo)sigma point comparisons,

a refined measurement can be obtained without the requirement for further pertur-

bation. It should be noted that the minimum x and minimum y shifts may actually
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Figure 3.4: Pixel shift differencing. Coordinates of corre-

sponding SIFT R⃝ points are subtracted and aggregated to char-
acterize image error which can be interpreted to position error.

be from different (pseudo)sigma points, but the calculation of γmatch only concerns

one (pseudo)sigma point. Therefore, a small amount of additional error exists, but

determining it and removing it would require generating more synthetic views and

repeating the whole process.

Now, the pixel error is removed in the dominant pixel error direction by a

weighted magnitude. As an example, say that the dominant pixel error was in the x

direction, so

∆Xpix
γ > ∆Y pix

γ (3.66)

where (∆Xpix
γ ,∆Y pix

γ ) are the x and y pixel shifts of γmatch.

Since the center and γmatch (pseudo)sigma point pixel shifts are known, a gradi-

ent can be established to interpolate or extrapolate where the zero pixel shift should

occur. See Figure 3.5 for a graphical depiction of this example.
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Figure 3.5: Example refinement of the update measurement
with x being the dominant pixel error direction. The x pixel shift
of the state estimate (center sigma point) is 15 pixels and the
x pixel shift of the best match pseudosigma point is 5 pixels.
Another 5 pixels in the same direction is required to achieve

a zero-pixel shift. A ratio of

∣∣∣∣ d0dσ
∣∣∣∣ is calculated to determine

fractional multiples of σx and σy to achieve the zero pixel shift
point. Moving the position error by 1.5σx and 1.5σy should
result in a zero pixel shift.

The zero distance is simply the pixel shift of the central (pseudo)sigma point:

d0 = ∆Xpix
1 (ϵx0ϵy0) (3.67)

where the first image is always the center (pseudo)sigma point corresponding to the

mean estimate at (ϵx0ϵy0).

The sigma distance is the distance from the the center (pseudo)sigma point to

the one determined previously as the best match:
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dσ = ∆Xpix
1 (ϵx0ϵy0)−∆Xpix

γ (ϵxγϵyγ ) (3.68)

The distance ratio is then defined as

ζ0γ =

∣∣∣∣d0dσ
∣∣∣∣ (3.69)

The new error position estimate can now be calculated by scaling Equation 3.65

with Equation 3.69:

δpn′
= δpn′, matchζ0γ (3.70)

and subtracting from the n’-frame position vector to create the optimum position

measurement:

z̄k = rn
′ − δpn′

(3.71)

3.2.8.5 Predicted Observation. After the selected positional sigma

points are passed into the sigma point measurement collection via Equation (3.60), a

mean predicted observation and measurement covariance can be calculated:

ẑk =
2L∑
i=0

W
(m)
i Z−

i,k (3.72)

Pzz,k =
2L∑
i=0

W
(c)
i [Z−

i,k − ẑk][Z−
i,k − ẑk]

T +Rk (3.73)

Calculation of a meaningful Rk matrix is non-trivial for an autonomous al-

gorithm where the only allowed adaptations are internal and not manually adjusted.

Several rigorous approaches were investigated utilizing pixel shift magnitudes, z-buffer

distance for each pixel, and lens distortion characteristics. Weaver’s method of Rk
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approximation was to fit an inverse Gaussian to his curve of errors built from per-

turbation fitting [37]. The method in this work, however, only generates five images

in two Degrees of Freedom (DOF), plus the four cross-coupled pseudosigma points,

for a total of nine. There is not enough information to build a meaningful Gaussian

distribution curve. While one method would work well with one data set or against a

certain target, a different approach would work better for another. Remembering the

goal was to abstain from manually adjusting parameters, a long series of experimental

observations led to the development of an empirical formula of weighted qualitative

values. After further filter tuning, this too was abandoned in favor of a constant val-

ued measurement noise which will be presented at the end of the next section. This

may have the appearance of not being statistically rigorous; however, the desire to

be mathematically pure must be balanced with the practical goal of engineering and

tuning of an optimal estimator. The development of this empirical formula follows.

3.2.8.6 Measurement Noise Characterization. The presented Rk ma-

trix consists of three calculated quantities for each direction: pixel spread, average

pixel shift, and the number of useable SIFT R⃝ matches.

Pixel spread is calculated by first finding the minimum values in each of the

three rows (columns for y-values) shown in Figure 3.2:

υx =


min {ϵx1}

min {ϵx0}

min {ϵx2}

 (3.74)

υy =


min{ϵy1}

min {ϵy0}

min {ϵy2}

 (3.75)

A pixel spread parameter is then calculated to find the widest difference between the

three rows (or columns) by
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µx = max {υx} −min {υx} (3.76)

µy = max {υy} −min {υy} (3.77)

Next, an overall average pixel shift in each direction is calculated by taking

another average of the previously calculated (Equations (3.61) and (3.62)) image

average pixel shifts:

ηx =
1

9

9∑
j=1

∆Xpix
j (3.78)

ηy =
1

9

9∑
j=1

∆Y pix
j (3.79)

The third parameter, SIFT R⃝ weight score (WSIFT ), is invented according to

Table 3.2. A minimum of 10 SIFT R⃝ point matches are required or the synthetic

measurement in question is ignored. These weighted scores were determined from

experimental observation; feature matches of about 150 or more provided the best

results.

Table 3.2: SIFT R⃝ weight assignments. As imple-
mented in the measurement noise equation, measure-
ment uncertainty will decrease as the pool of SIFT R⃝
points increases, provided the SIFT R⃝ threshold is set
to a level that does not allow for excessive mismatches.

SIFT R⃝ Weight Score SIFT R⃝ Points Found (Windowed)

3 > 149
2 > 49
1 > 9

0 (no update) < 9

77



Finally, the empirical measurement noise equations are presented as

σx = 0.15

(
100

µx

)
+ 0.7

(
ηx
2

)
+ 0.15

(
20

WSIFT

)
(3.80)

σy = 0.15

(
100

µy

)
+ 0.7

(
ηy
2

)
+ 0.15

(
20

WSIFT

)
(3.81)

where

Rk =

σ2
x 0

0 σ2
y

 (3.82)

This method seemed to produce the best results for a limited set of data. How-

ever, as more data was introduced, filter tuning experimentation revealed optimum

filter performance was actually achieved by using a constant measurment noise of

Rk =

202 0

0 202

 meters2 (3.83)

3.2.8.7 Completing the Update. A cross-covariance matrix and Kalman

gain are then computed as

Pxz,k =
2L∑
i=0

W
(c)
i [χi,k − x̂−

k ][Z
−
i,k − ẑk]

T (3.84)

Kk = Pxz,kP
−1
xz,k (3.85)

followed by the a posteriori state estimate mean and covariance, expressed as

x̂+
k = x̂−

k +Kk(z̄k − ẑk) (3.86)
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where z̄k − ẑk is the residual, or difference between the expected measurement value

and the actual measurement value.

P+
xx,k = P−

xx,k −KkPzz,kK
T
k (3.87)

This chapter provided a detailed walkthrough the VANSPR algorithm. The next

chapter will bridge the theory into practical application in discussions of laboratory

work, flight test planning and execution, and the creating of the computer target

models.
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IV. Laboratory Work, Flight Test, and Virtual World Model

Construction

Prior to implementation of the VANSPR algorithm on flight test data, the ability

to recreate virtual scenes from truth data position and attitude, followed by concep-

tion and execution of a flight test program to collect the necessary visual, inertial,

and truth data was required. Additionally, large-scale VRML models were created

for generation of the synthetic target views created by VANSPR. This chapter dis-

cusses the hardware, software, and other resources that were required, along with the

methodology used in flight planning and model construction.

4.1 Laboratory Work

Laboratory work, conducted at AFIT, laid the foundation and built confidence

in the fundamental techniques that would be used by the mature VANSPR algo-

rithm after flight test at TPS. This work consisted of establishing a small-scale truth

position source, creating a computer model of a simulated target, and generating

synthetic viewpoints based on truth position and attitude that accurately match real

photographs taken by a test camera.

4.1.1 Vicon R⃝ System. Position and attitude truth data was obtained by a

Vicon R⃝ precision tracking system. A Vicon R⃝ camera, shown in Figure 4.1(a) tracks

small balls made of reflective tape. When used in a constellation of 10 cameras, as

partially shown in Figure 4.1(c), position of the reflective balls to an accuracy of 1

millimeter was achievable. Figure 4.1(b) shows the test camera, a 1280×960 resolution

Prosilica GC1290C (color) scientific camera and a board that was glued on the top

with tracking balls. The Vicon R⃝ system did not directly provide attitude information,

so the attached board contained several tracking balls that, when individually and

accurately triangulated, could produce a calculated three-axis attitude. The origin

translation between the center of the camera’s optical plane and the ball immediately
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(a) Front view of one Vicon R⃝ camera. (b) Board with four tracking spheres
glued to test camera.

(c) Three of the 10 cameras arranged in a circle around
the test area in the Vicon R⃝ lab.

Figure 4.1: Vicon R⃝ system at AFIT. The system of 10 cameras provided precision
tracking of specially marked objects to a precision of 1 millimeter.

above it were measured to a 1 mm accuracy and fine rotational biases were not

determined.

The Vicon R⃝ system proved to be a convenient method of gathering precise

position and attitude data for validation of the algorithms’ ability to recreate the

scene synthetically. Small position and angular errors that were noted during software

viewpoint recreation testing were difficult to elminate. This was partially attributed

to the “tyranny of small scale,” referring to the effect of very small errors resulting

in large visual changes because of the small-scale differences between camera, target

objects, and the distances between them.

4.1.2 Small-Scale Model Creation. The first step was creation of a simple

target model, comprised of a small rug to represent the target environment and a
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(a) Box “target” with visually distinctive
markings.

(b) Rug “target environment” with dis-
tinctive pattern markings.

(c) Simple combined prototype target in
target environment.

Figure 4.2: Early target environment at AFIT’s Vicon R⃝ lab. Individual objects

were modeled in Google Sketchup Pro R⃝ and combined virtually.

box to serve as a three-dimensional target object within the target environment.

Measurement and photographs of all surfaces of the objects were taken and the effects

of lens distortion were removed; this process was especially germane to images taken

during flight test and will be discussed later. The objects to be modeled are shown in

Figure 4.2. Creation of the virtual environment was accomplished in Google Sketchup

Pro R⃝, which will be discussed in further detail in Section 4.2.8. The modeled shape

of the target environment and the complete model with texture-mapped photographs

applied are shown in Figure 4.3

4.1.3 Virtual Viewpoint Generation. The model generated in Google Sketchup

Pro R⃝ was then exported as a VRML object. MATLAB R⃝, which is capable of reading
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(a) Target environment with no texture-
mapping.

(b) Target environment after texture maps
(photos of all object surfaces) have been
added.

Figure 4.3: Construction of prototype target environment with target in Google

Sketchup Pro R⃝. The object shapes are created first, followed by texture-mapping
photos to object surfaces.

this object format, was then used to manipulate the object in position and attitude.

The common aerospace viewpoint conventions of Cartesian position and roll, pitch,

and yaw differ from the MATLAB R⃝ implementation so special code had to be written

to translate these parameters into those used by MATLAB R⃝. Once this was written

as a callable function, there were no further interpretation issues. Figure 4.4 shows

three sample viewpoints generated in MATLAB R⃝.

The VRML scripting language provides a near limitless means to add and modify

three-dimensional computer models. One application is the addition of non-real ob-

jects for the purpose of visualization, such as the rocket shown in Figure 4.5 which was

associated to the test camera. In experimental runs, a separate MATLAB R⃝ window

showed a rocket trajectory towards the box with the physical test camera represented

as the rocket. A practical future application for the creation of novel objects is the

addition of new structures to existing target models based on updated intelligence.

Unfortunately, MATLAB R⃝ only possesses very high-level access to VRML objects;

therefore, changes such as this have to be written directly in VRML and then copied

into the VRML world file. Special functions were written to take care of all this

seamlessly in MATLAB R⃝.
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(a) Synthetic upside-down view of the prototype
target environment.

(b) Synthetic ground-level view of the tar-
get object (box).

(c) Close-up synthetic view of box target.

Figure 4.4: Virtual views of the prototype target environment as viewed in

MATLAB R⃝ using the 3D Simulink Animation Toolbox. None of these views were
actual photographs but virtually created after the constituent objects were modeled.
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Figure 4.5: Synthetic view of prototype target environment
with the addition of a fabricated rocket object that was created
for inclusion in the virtual space. Novel scenes can be created
combining real and imaginary objects; this technique could be
used to add new structures to existing target models based on
updated intelligence.

4.1.4 Pixel-based Methods Between Real and Synthetic Images. The pixel-

based methods of SAD, ZSAD, LSAD, SSD, ZSSD, LSSD, and NCC were each applied

to ten sample data sets of real images with five synthetically-generated perturbation

images for each. The methods were used after Canny line detection was applied to

the images. The perturbations were significantly different from each other. While the

different methods produced a varied gradient of scores, all methods achieved 100%

correct matching. This created the expectation that results would be similar for the

test flight data.

4.1.5 SIFT R⃝ Matching Between Real and Synthetic Images. A picture of

the VRML viewpoint, referred to as a synthetic image, can look very similar to the

actual photograph taken from the same vantage point. Early experimentation with

pixel-based methods, such as SSD, were highly successful in differentiating between

which synthetic images provided the closest match with actual camera image. Addi-

tionally, feature-based methods such as SIFT R⃝ yielded excellent results. The SIFT R⃝

algorithm neither knew nor cared that both images were not actual photographs. Fig-
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(a) Real image with SIFT R⃝ matches. (b) Synthetically-rendered image with
SIFT R⃝ matches.

Figure 4.6: SIFT R⃝ feature point matching between real and synthetic images.

SIFT R⃝ neither knows nor cares that both images are not real photographs.

ure 4.6 shows a sample real and synthetic image pair with about 50 matching SIFT R⃝

pairs.

Early work also considered methods of exploiting the SIFT R⃝ pair correspon-

dences through their relative geometry. Methods of determining translation, rotation,

scaling, and combinations of these were developed and successfully demonstrated by

intentionally injecting errors into the synthetic renderings and then allowing written

error detection algorithms to find the deviations. The results were successful recogni-

tion of the error and quantification within 5%. An example of the method is depicted

in Figure 4.7.

4.1.6 Fidelity of Synthetic Views. The most important question for use

of virtual viewpoints in an algorithm that relies on them for correspondence with

real images is to what extent do the synthetic images match the real thing when

given perfect position and attitude information. A series of sample trajectories were

created with the Vicon R⃝ system by “hand flying” the camera toward the rug-box

target while ensuring the reflective tracking balls were visible to the Vicon R⃝ camera

constellation. The resulting synthetic images were remarkably similar to the real

images, with only minor differences noted at extremely close ranges. Figure 4.8 shows

a transparent overlay of the synthetic image on the real image for several frames of one
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(a) Translation and rotation. (b) Scaling.

(c) Rotation. (d) Translation and scaling.

Figure 4.7: Detection of image change between real and synthetic views using

SIFT R⃝ point vector flows. Changes were intentionally injected to observe effects and
test error observability.
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of the experimental trajectory runs. Very good matches show almost no perceptible

difference while errors are revealed by a blurring effect where pixels don’t line up

correctly. Laboratory experiments were extremely useful in providing familiarization

with the concepts, capabilities, and limitations of predictive rendering. The next step

was a larger scale experiment: flight test.

4.2 Flight Test Hardware, Software, and Other Resources

The successful collection of the necessary flight test data and creation of com-

puter models required a well-planned hardware and software design. The basic lessons

from previous camera-on-aircraft projects were implemented; however, most of the

hardware and software solution was original and therefore designed from the ground

up. Figure 4.9 shows a hardware schematic of the aircraft modification used for

in-flight data collection.

4.2.1 C-12C “Huron” Aircraft. One C-12C “Huron” aircraft as shown in

Figure 4.10, tail number 76-0161, was modified and flown to collect the required flight

test data. Behind the cockpit, which included the pilot and copilot stations, a total

of three passenger seats were installed for the flight test crew. An equipment rack

was installed on the left side of the cabin which held a tower desktop computer, a

laptop computer, a Time Code Generator (TCG), a truth source and INS unit, an

ethernet network switch, and associated power supplies and cabling. A GPS antenna

was installed on the outside of the aircraft. The Prosilica 4900 test camera was fixed

to a custom mounting bracket which was mounted in a driftmeter port under the

copilot’s seat. One of the pilots’ Multi-Function Displays (MFD) was modified to

repeat the images being recorded by the test camera.

4.2.2 Prosilica 4900 Camera System. The Prosilica 4900 camera, serial

number 02-2095A-06062, was a high-resolution (16 megapixel (MP), 4,872 horizontal

x 3,248 vertical pixels) monochrome camera with a Kodak KAI-16000 sensor. The

active image size of the sensor is 36.1 millimeters horizontal and 24.0 millimeters
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(a) Trajectory frame #1.
Small errors are seen as
blurring between the overlays.

(b) Trajectory frame #2.
Small errors are again seen as
blurring between the overlays.

(c) Trajectory frame #3. More
significant errors are detectable
as differences between the im-
ages.

(d) Trajectory frame #4. Er-
rors are very small and show an
almost perfect match.

(e) Trajectory frame #5.
Slight blurring in upper left
corner shows discrepancy
between real and virtual
images

(f) Trajectory frame #6. An-
other good image pair with
strong correlation.

(g) Trajectory frame #7.
Closer view shows error more
clearly.

(h) Trajectory frame #8. Er-
ror persists, which may be an
error bias.

Figure 4.8: Selected frames from simulated weapon trajectory against the rug-on-
box target environment showing transparent synthetic views overlaid on photographs.
Vicon R⃝ position and derived attitude measurements were provided to the synthetic
viewpoint rendering routine to create the synthetic views. Overall, synthetic view-
point images strongly correlated with the actual photographs.
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Figure 4.9: Data collection system hardware schematic. All
hardware shown was installed on the C-12C test aircraft.
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Figure 4.10: C-12C “Huron” aircraft. The relatively spacious
cabin and cruising speed of 120-150 knots made the Huron an
ideal data collection platform.

vertical. The camera was capable of transferring three uncompressed frames per

second (fps) via an ethernet connection. The camera was mounted sideways and at

a 12.5◦ downward angle under the aircraft to maximize the vertical view. Complete

technical specifications are provided in Appendix A.

The camera lens was a 50 millimeter focal length Zeiss Planar T* 1,4/50 ZF,

part number 15670459. Its manual aperture setting was intended to be set to full-

closed and focus set on infinity during all flight testing. More information on the lens

is provided in Appendix A.

The camera was mounted in a custom heavy-duty metal enclosure through a

driftmeter port in the floor of the cabin under the copilot’s seat as shown in Fig-

ure 4.11. Not all C-12C aircraft have a driftmeter port; this aircraft was modified

during a previous flight test program. Since the test project was not given exclusive

use of the aircraft during the flight test period and the camera would have to be

removed for other flights in the aircraft, it was highly desired to have a means of rein-

stalling the camera without requiring the re-boresighting of the camera. The chosen

design held the camera in place with precision-machined grooves and four machine

bolts to a tolerance of 0.002 inches.
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(a) CAD depiction of camera mount.

(b) Camera mounted through driftmeter port under copilot on C-12C.

Figure 4.11: Camera mount installed on test aircraft. The mount is designed to
maintain a ±0.002 inch tolerance between installations.
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4.2.3 On-board Computers and Network Switch. Two computers, as shown

in Figure 4.12 were carried onboard for data collection and control of the camera. The

primary computational duties were performed by a tower desktop computer located

in the equipment rack. This computer had an Intel Xeon 64-bit LGA-771 quad-core

processor with a front bus speed of 1333 megahertz (MHz), 8 gigabytes (GB) of

Random Access Memory (RAM), and a 500 GB hard drive. The computer controlled

the camera through a network switch via a 10 gigabit (10 gigabit per second transfer

rate) ethernet connection. A Getac B300 ruggedized laptop with a 2.0 gigahertz (GHz)

Intel i7 processor, 4 GB RAM, and a 10-gigabit ethernet port was used to control the

AMPEX computer via a Windows Remote Desktop connection. The network switch

made simultaneous ethernet traffic possible. After each flight, all imagery data was

transferred to a one terabyte (TB) portable hard drive. This process took from one

to two hours and required the aircraft to remain on ground power.

Figure 4.12: Installed equipment rack with tower computer
beneath and laptop velcroed on top. The laptop controlled the
rest of the hardware through a remote desktop connection.
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4.2.4 StreamPix5 R⃝ Software, Time-Code Generator, and Pilot Display.

StreamPix5, sold by Norpix Incorporated, is a specialized program designed to control

scientific cameras and provide real-time digital video recording to the hard drive. The

real-time video captured during flight test was stored to the AMPEX hard drive in

Tagged Image File Format (TIFF). The camera was allowed to capture images at the

maximum rate it was capable (averaging three frames per second) and sent a trigger

to the computer, notifying StreamPix5, when an image was captured. A hardware

TCG signal was input to a special interface card in the computer to synch it to actual

GPS time (translated to local 24-hour time) and to time-stamp the image file names

with this time. The StreamPix5 video signal was also sent to the pilots’ center MFD

for real-time viewing of the camera images to aid in target tracking.

Figure 4.13: Pilot display showing real-time camera view.
This modification allowed the pilots to accurately fly the air-
craft to collect the required visual data.

4.2.5 GLite. A Configuration 2B GPS-Aided Inertial Navigation Reference

Unit (GAINR) Lite was used to record raw inertial measurements, real-time GPS-

aided Kalman filter data, and additional information needed for the post-processed

TSPI data. The GLite contained a Honeywell HG1700 Inertial Measurement Unit

(IMU), a Personal Computer Memory Card International Association (PCMCIA)

slot to hold the removable data card, a GPS receiver, an internal computer and
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software, and various interfaces [24]. The HG1700 IMU is the same type found in

JDAM weapons. After each flight, the PCMCIA card contents were copied to the

author’s computer before TSPI processing which typically took about a week. The

GPS receiver provided raw measurements of L1 C/A code pseudorange and carrier

phase and non-differential instantaneous position estimates at 10 samples per second

and blended to create the real-time solution. The raw IMU measurements were taken

at 100 samples per second.

Figure 4.14: GLite precision navigation unit. This hardware
recorded raw inertial, a real-time GPS-aided Kalman filter po-
sition solution, and additional data to create highly-accurate
post-processed TSPI data.

4.2.6 Data Processing Computer. Algorithm coding and post-flight data

processing were performed on an Apple MacBook Pro with a 2.67 gigahertz Intel

quad-core i7 CPU, 8 GB of RAM, a 500 GB hard drive, and a NVIDIA GeForce

GT330M graphics card with 512 MB of video RAM, running the 64-bit version of

Windows 7 Home Premium Edition.

4.2.7 Camera for Texture-Mapping Three-Dimensional Models. A small

“point and shoot” camera was used to take pictures of the objects to modeled in the

target environment. The camera used was a 14.7 MP Samsung TL34HD.
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4.2.8 Google Sketchup Pro R⃝ Software. To construct the virtual worlds

required by the VANSPR algorithm, the COTS Google Sketchup Pro R⃝ software

was used. This Computer Aided Design (CAD) software package allowed the user

to quickly create representative shapes of all objects of interest in the target envi-

ronments and texture-map photographs of the corresponding surfaces to the target

shapes. Target environments were created by building individual component shapes

to scale separately, followed by combining them into a master file. The ground sur-

faces for the environments were created by texture-mapping high-resolution aerial

imagery on flat surfaces. The free version of the software (Google Sketchup) could

be used for all object model creation, but the commercial version (Google Sketchup

Pro R⃝) was required to export the models to VRML format for use in MATLAB R⃝.

4.2.9 MATLAB R⃝ Version R2010b Software. MATLAB R⃝ is a computing

environment and programming language commonly used in engineering applications.

Program execution is not particularly fast, but the language is relatively easy to

program, debug, and modify for initial algorithm development. Additionally, many

“toolboxes” have been developed to speed development in specific research areas.

The VANSPR algorithm, written in MATLAB R⃝, uses the 3D Simulink Animation

Toolbox (also known as Virtual Reality Toolbox in older versions) for VRML model

control. The MathWorks Inc. generally releases two version each year with new

features and bug fixes; certain functions of the VANSPR algorithm require version

2008b or later. The 64-bit Windows version was required for some phases of the

analysis due to the extra accessible memory locations.

4.2.10 Air Force Flight Test Center Resources. All flight testing was accom-

plished on the Precision Impact Range Area (PIRA) located at Edwards Air Force

Base (AFB), California. The Air Force Flight Test Center (AFFTC) Range Divi-

sion maintains differential GPS antennas and provided post-processing on the GLite

recorded data to create the highly-accurate TSPI data.
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Five locations in the PIRA were used as targets during the test flights including

the Solar Active Edge Corner (SAEC) board, a T-43 tank, a conex structure, Cowbell

Tower, and the X-33 compound, as shown in Figure 4.15. The locations of the chosen

targets in the PIRA are shown in Figure 4.16. These five targets were chosen because

of their variety of terrain, shape, size, number of objects, and contrast. Only existing

targets were used; nothing new was created.

4.3 Flight Test Planning and Execution

There are an infinite number of variables associated with target environments

such as shape, height, weather, approach to the target, contrast, etc. The three main

factors of interest used in a Design of Experiments (DOE) flight test design were

target type, run-in angle, and flight profile. The primary considerations for the target

environments were location in consideration of limited flight time, shape, number of

structures in the target environment, and contrast. The five main target environments

were the X-33 compound, Cowbell Tower, SAEC, tank on PB-9, and a conex structure.

These target environments possessed varying degrees of the proposed considerations.

In addition to target considerations, the VANSPR algorithm was also challenged by

run-in angle and approach to target variations. Flight condition variables including

shadows, specific pilot, and time of day were minimized to the maximum extent

possible. These variables were minimized by flying the sorties close to a time of the

day when shadows were minimal, flying at close to the same time each day, and flying

repeatable flight test techniques.

Sixty data collection runs were conducted over the course of eight test flights

against five different target environments using two different attack profiles. The

cruise profile, explained in greater depth in the next subsection, was flown at altitudes

of 200, 500, and 2000 feet AGL and at three different run-in headings for each target.

Table 4.1 shows the cruise profile test points and Table 4.2 shows the weapon profile

test points. Figures 4.17, 4.18, 4.19, 4.20, and 4.21 depict the various run-in headings

flown against each target. The X-33 compound necessitated modified run-in headings
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(a) SAEC target environment. This was
the only flat target used.

(b) PB-9 Tank target environment. A
shipping container is also located on the
edge of the circle.

(c) Cowbell Tower target environment.
This area includes a tank, toilet, con-
struction vehicle, and containers.

(d) Conex target environment. This en-
vironment also included four airplanes
and a petroleum truck.

(e) X-33 target environment. This com-
plex included over 40 separate target ob-
jects.

Figure 4.15: Selected PIRA target environments.
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Figure 4.16: Location of targets on PIRA. The top of the
photograph is north; the Edwards AFB runways are to the left
of the image (not shown). The distance from Cowbell Tower to
PB-9 is 9.2 statue miles.
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Figure 4.17: Run-in headings against SAEC board. The mag-
netic headings shown correspond to 0◦, 30◦, and 45◦ from a
heading chosen as perpendicular to one side of the board.

for the 200 foot AGL test points in order to safely avoid the 250 foot water tower in

the complex.

4.3.1 Cruise Profiles. The cruise profile test runs were accomplished at a

constant altitude. The planned altitudes were 200 feet (with a tolerance of +200/-0

feet), 500 ±200 feet, and 2,000 ±200 feet AGL, at a speed of 120 ±10 Knots Indicated

Air Speed (KIAS), with flaps set at 40%. A pitch rap or wing rock, depending on

the test point, was accomplished by the pilot prior to initiating the data run for the

purpose of correlating TSPI and inertial data (from the GLite) in postflight analysis.

The data collected on the cruise profiles is not discussed in this thesis but is available

for follow-on work. The nature of the data is very similar to that collected from

the weapon profile test points but less dynamic and not realistic for what a weapon-

mounted camera would see.

4.3.2 Weapon Profile. The weapon profile test runs attempted to approxi-

mate the image geometry and dynamics encountered by an optically guided weapon

during the terminal phase of flight, within the constraints of aircraft performance

and safety of flight. The trajectory, depicted in Figure 4.22, was a wings level dive
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Table 4.2: Flight test sortie matrix of weapon profiles. The first number is sortie
the test point was accomplished on. The second number is the run-in heading. Bad
data is indicated by “XX”. The 0◦, 30◦, 45◦ headings refer to the aspect to chosen
target surface.

Weapon Profile

Target 0◦ 30◦ 45◦

SAEC XX 7 / 223◦ 3 / 208◦

Conex 5 / 255◦ 5 / 225◦ 4 / 210◦

Tank (PB-9) 4 / 270◦ 3 / 240◦ 7 / 225◦

Cowbell Tower 4 / 255◦ 7 / 225◦ 7 / 210◦

X-33 compound 4 / 275◦ 8 / 245◦ 7 / 230◦

Figure 4.18: Run-in headings against tank on PB-9. The
magnetic headings shown correspond to 0◦, 30◦, and 45◦ from a
heading chosen as perpendicular to the broadside of the tank.
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Figure 4.19: Run-in headings against Cowbell Tower. The
magnetic headings shown correspond to 0◦, 30◦, and 45◦ from a
heading chosen as perpendicular to one side of the tower cab.

Figure 4.20: Run-in headings against conex structure. The
magnetic headings shown correspond to 0◦, 30◦, and 45◦ from a
heading chosen as perpendicular to one side of the conex struc-
ture.
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Figure 4.21: Run-in headings against X-33 compound. The
magnetic headings shown correspond to 0◦, 30◦, and 45◦ from
a heading chosen as perpendicular to one side of the largest
building. The 200 foot AGL test points required that the 30◦

and 45◦ run-ins be altered to provide adequate spacing from the
250 foot water tower.

profile towards a ground target. The points were planned to collect approximately

90 seconds of data with the target in a stable position on a navigation display. A

pitch rap was accomplished by the pilot prior to initiating the run for the purpose of

correlating TSPI and inertial data (from the GLite).

The maneuver was initiated from level flight at 4,100 ± 200 feet AGL, 160 ± 20

KIAS, and 40% flaps on the specified run-in magnetic course ± 10◦. Between 4.9-5.8

nautical miles (nm) from the target, a dive angle between 6-8◦ was established to put

the centroid of target approximately one quarter of the way down from the top of the

navigation display. Due to environmental conditions, the pilot adjusted the push over

distance and/or initiation altitude in order to achieve the desired dive angle. The

centroid of the target was maintained at this position for the entire dive. Recovery

was initiated no later than 500 feet AGL for final dive angles of less than or equal to

10◦ and 800 ft AGL for final dive angles between 10◦ and 15◦. The planned maximum

altitude lost during the dive recovery was 73 feet. Therefore, the minimum altitude

during the dive recovery was planned to be 427 feet AGL. The recovery and abort
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procedures were for both to simultaneously add full power, pull to and maintain 1.8g,

and maintain constant airspeed until a positive rate of climb was established.

Figure 4.22: Weapon profile. The data collection run begins
at 4,100 feet AGL and transitions to a 10◦ dive at approximately
5 nm from the target. Recovery was initiated at 500 feet AGL.

4.3.3 Flight Test Time Alignment Procedures. Proper alignment of time-

stamped data from multiple sources is critical in an estimation algorithm. A mismatch

could lead to time correlation issues - a violation of Kalman filter assumptions. To help

ensure all recorded data was being properly time-stamped, each data collection run

was initiated with a pitch rap or wing rock. In post-flight analysis, these maneuvers

were observable in the visual, inertial, TSPI, and real-time Kalman filtered data sets.

It was determined that the wing rock was the more desirable maneuver in that it was

easy to find in the vast data because of its visual significance (easy to see rocking in

a sequence of images), longer duration, and the presence of multiple distinct points

(maximum bank angle in both directions, passing through or returning to wings level

flight).

The 412 Range Squadron provided a simple C++ software script that read the

real-time GPS-aided Kalman filter navigation solution file and converted it to a Google

Earth compatible data file. This allowed the test team to copy the data off the GLite

data card before turning it in for processing (which typically took about seven days)

and check for reasonableness. Figure 4.23 shows the complete trajectory of a test
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Figure 4.23: Three-dimensional real-time position informa-
tion plotted in Google Earth. This data, 99.4% similar to TSPI
was available immediately after each test flight.

flight in Google Earth. Note that altitude was also recorded and depicted three-

dimensionally.

Another method was employed on the ground before several flight to detect any

latency between image capture and time-stamping. Images were time-stamped in-

flight using the same time code generator signal used by the GLite for time-stamping

TSPI and real-time GPS-aided Kalman-filtered data. The time stamp of each image

was presented as the file name of the image file. In order to characterize the time-

latency (i.e. delay) of the time-stamping of the images, video of a separate, highly-

accurate clock was taken. The separate system used the same model of TCG to ensure

meaningful results. The time shown in the image was compared to the time-stamp

(image file name) for each image. The average time-delay for was shown to be 0.077

seconds with a standard deviation of 0.044 seconds using 163 time-stamped images.

The largest time lag was 0.561 seconds and the smallest time lag was 0.036 seconds.

Figure 4.24 shows the highly-accurate TCG-driven time display that was filmed with

the test camera to see when the images were really time-stamped and stored.

4.3.4 Gross Distortion Removal. Three iterations of the Caltech’s MATLAB R⃝

Camera Calibration Toolkit were conducted to minimize the lens distortion present

in the collected data images. The camera calibration software determined the differ-
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Figure 4.24: Laptop showing highly-accurate time from a con-
nected time code generator (TCG). The laptop screen showing
the time was imaged and compared with the time-stamp trig-
gered by the test camera to determine time-stamp latency.

ences between pixel locations of square intersections on the calibration board with

where they should have been (since the calibration board object was known to the

application). The pixel error was decreased in each of the first three iterations as

shown in Table 4.3. The refined corner locations were re-examined after each itera-

tion to ensure that they fell at the square intersections on the calibration board in

the calibration images. A fourth iteration yielded incorrect reprojection of the corner

points; therefore, the refinement was considered complete after three iterations. The

numerical errors were approximately three times the standard deviation in pixels, as

defined by the software package.

The five image distortion coefficients, described in Equations (2.90) and (2.91)

were calculated. The results are shown in Table 4.4. The pixel error was determined

to be 1.41617 pixels horizontally and 1.70991 pixels vertically. Tangential error values

were relatively low, accounting for no more than 1.6 pixel shifts to remove distortion.

Radial distortion shifts, however, approached 30 pixels of error. Therefore, the total

distortion model appears to be almost exclusively comprised of radial distortion.
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Table 4.3: Resultant pixel errors from reiterations
of distortion removal using the Caltech Camera Cal-
ibration Toolbox. The first three iterations resulted
in pixel error improvement while a fourth iteration re-
sulted in a greater pixel error.

Iteration Pixel Error (x) Pixel Error (y) Comments

1 1.49866 1.87658
2 1.42494 1.72067
3 1.41617 1.70991 Lowest error; optimal iteration
4 1.42493 1.72066 Pixel error getting worse

Table 4.4: Calculated image distortion coefficients.
The five values were solved using the Caltech Camera
Calibration Toolbox.

Image Distortion Coefficient Coefficient Value

kc1 -0.173620
kc2 0.206130
kc3 0.001160
kc4 0.000014
kc5 0.000000
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4.4 Virtual World Model Construction

Three-dimensional models of target objects, accurate to the nearest inch for

rectangular targets and to the nearest six inches for objects with highly irregular ge-

ometry, were created. The flat surrounding target environments were constructed to

an area of at least four square miles for each target using three-inch imagery. The im-

agery was collected in 2008. The imagery ws validated and determined to be sufficient

to meet the test objectives. Height, width, and depth of target objects were collected

using hand-held tape measures to the nearest inch. When available, building height

data were acquired from the 412 Range Squadron at Edwards AFB. All structures

and objects with a height of greater than five feet were measured. Google Sketchup

Pro R⃝, the software used to construct the models, allowed for dimensions of objects to

be defined to accuracies less than an inch. A Samsung TL34HD camera was used to

photograph all target surfaces to include the tops of the targets. Each surface of the

objects was photographed at an angle as close to normal to the surface as possible.

Physical separation of objects was often less than two feet and prevented pictures be-

ing taken of adjacent surfaces. This omission of pictures was not problematic because

these surfaces were not visible by the camera during the flight test. Before using these

photographs as object textures, the lens image distortion was removed using the same

procedure that was used for the Prosilica 4900 test camera. Distortion removal was

accomplished to minimize pixel location errors in views of the models when compared

to actual images taken with the Prosilica camera. Additionally, the photographs were

down sampled using MATLAB R⃝ from 4384×3288 pixels to 800×600 pixels and con-

verted to grayscale. Converting the images to grayscale and reducing the resolution

alleviated some of the computational burden during later model view re-orientations

while maintaining the required quality. Three-inch geo-orthorectified aerial imagery,

shown in Figure 4.25, provided by 95ABW/CEV Environmental Management Divi-

sion was used to build the model environments. Geo-orthorectification is the process

of removing parallax due to camera angle and correlating pixels to latitude and lon-

gitude. In addition, the images are oriented to true north. These image tiles were
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then pieced together in the CAD software before target objects were added as shown

in Figure 4.26.
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(a) Imagery tile to the north of the SAEC target.

(b) Imagery tile containing the SAEC target.

Figure 4.25: Geo-orthorectified three-inch resolution overhead imagery tile (2,296.5
feet × 3,609 feet). PIRA target environments were built using these high-resolution
image tiles.
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Figure 4.26: Assembly of multiple imagery tiles in Google

Sketchup Pro R⃝. Target objects and structures may be added
after the flat ground environment is created.
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Particular attention should be paid to the units in MATLAB R⃝ and those of

Google Sketchup Pro R⃝. Google Sketchup Pro R⃝ allows for use of English or met-

ric units in construction but MATLAB R⃝ does not. In VRML as interpreted by

MATLAB R⃝, one “unit” is equal to 40 meters. Therefore, Google Sketchup Pro R⃝

models must be shrunk by a 40:1 ratio before exporting to VRML format. This can

be easily done after the complete model is built. If the model is not shrunk before

use in MATLAB R⃝, a z-frame clipping issue will prevent viewing the model even at

reasonable distances.

Three-dimensional target objects within a target environment were individually

created and then imported into the environment scene. Figure 4.27 is an example

of a created object, before and after texture-mapping has been applied. Figure 4.28

shows a more complex target environment object that was created. The VANSPR

algorithm increases accuracy with closing range to targets to an even greater degree

than possible with other methods due the scalability of the realized resolution.

Figure 4.27: Untextured and textured instances of the conex
structure target object. Textures can add a high degree of real-
ism to the synthetic object.

The remainder of this chapter provides further graphical examples of target

scenes that have been virtually recreated in the CAD software. Figures 4.29, 4.30,

4.31, 4.32, and 4.33 show an actual image from flight test followed by three virtual

viewpoints made possible with the created virtual world. An example of a weapon

trajectory to a target, that was not possible during the flight test data collection, is

shown in Figure 4.34 to illustrate the possibilities of the method.
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Figure 4.28: Actual photograph of crane vehicle (left) and
computer model (right). The computer generated model allows
for any viewpoint of the crane to be observed.

(a) Real image. (b) Synthetic image.

(c) Synthetic view. (d) Synthetic view.

Figure 4.29: SAEC target environment real and synthetic images. This was the
only target that had no three-dimensional structure.
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(a) Real image. (b) Synthetic image.

(c) Synthetic view. (d) Synthetic view.

Figure 4.30: Conex target environment real and synthetic images.
Synthetic views are shown in Google Sketchup Pro R⃝ with shadowing turned on; this
is not used in the VANSPR algorithm.

(a) Real image. (b) Synthetic image.

(c) Synthetic view. (d) Synthetic view.

Figure 4.31: Cowbell Tower target environment real and synthetic images.
Synthetic views are shown in Google Sketchup Pro R⃝ with shadowing turned on; this
is not used in the VANSPR algorithm.
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(a) Real image. (b) Synthetic image.

(c) Synthetic view. (d) Synthetic view.

Figure 4.32: Tank on PB-9 target environment real and synthetic images
Synthetic views are shown in Google Sketchup Pro R⃝ with shadowing turned on; this
is not used in the VANSPR algorithm.

116



(a) Real image. (b) Synthetic image.

(c) Synthetic view. (d) Synthetic view.

Figure 4.33: X-33 compound target environment real and synthetic images.
X-33 compound target environment real and synthetic images. Consisting of 42 target
objects, this was the largest and most complex target environment.
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(a) Synthetic view of X-33 target at high
altitude.

(b) Closer synthetic view of target

(c) Closer synthetic view of target with
changed perspective.

(d) Closer synthetic view of target with
flatter aspect.

(e) Target synthetic view briefly before simulated impact.

Figure 4.34: Sequence of rendered images as target object is approached.
Available resolution to algorithm can be maintained if modeled with sufficiently high-
resolution texture maps.
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V. Flight Test Experimental Results

This chapter presents performance results of both the underlying algorithms necessary

for image correlation and the overall performance of the VANSPR algorithm. A

thorough exploration of what conditioning had to be performed on the data before

it could be used in the algorithm was critical to any success it could have. This

included verifying that the virtual worlds were built correctly in that they faithfully

reproduced a scene when given truth position and attitude information and verifying

that the discussed image processing techniques would be useable on the collected real

and synthetic images. After basic success of the VANSPR algorithm was declared,

dissection of the data was performed to determine its sensitivity to target type, target

aspect, and attack profile. Further analysis was performed to test the algorithm’s

sensitivity to using three-dimensional models versus flat, shadowing and overexposure

(unintended results of Test Sortie 1), image update rate, and image resolution.

5.1 Overview of Collected Data

A large amount of data was collected during the data collection flight test phase

of the research. Most of this was the high-resolution images; each uncompressed TIFF

format frame was approximately 15 MB. Totals, by data type, are listed in Table 5.1.

Data download from the C-12C’s installed computer to a portable hard drive took

approximately two hours after each sortie.

5.2 Verification of VRML Model

Once all flight test data (to include TSPI “truth”, real-time GPS-aided Kalman

filtered, inertial, and high-resolution images) were collected, a verification was per-

formed to ensure synthetic views accurately matched real images when built using

truth data. In other words, TSPI position and attitude data were fed into the syn-

thetic image generation portion of the VANSPR algorithm to see if the resultant

synthetic images looked liked the captured images. The initial comparison using just

TSPI data and the reference frame angular rotations between the GLite and test
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Table 5.1: Collected flight test data. Each test flight
collected high-resolution images, TSPI, and raw iner-
tial data.

Flight Image Count Images (GB) Raw INS (MB) TSPI (MB)

1 5,665 71.2 142.0 22.2
2 7,627 93.2 182.0 28.0
3 5,135 70.0 143.0 26.6
4 9,189 118.0 140.0 30.8
5 10,175 127.0 215.0 33.6
6 10,607 134.0 215.0 32.4
7 8,281 106.0 152.0 34.0
8 5,666 75.1 98.8 15.3

Totals 62,275 794.5GB 222.9MB 1287.8MB

Grand Total 62,275 796.0GB

camera provided reasonable results but seemed to show consistent biases. The first

goal was to determine and remove those biases.

5.2.1 Determination of Fixed Angle Biases. The original angular rotations

between the GLite and camera determined from boresighting were -0.43◦ yaw, -12.19◦

of pitch, and -0.28◦ of roll. By an experimental iterative process of adding biases

to each of these angles and comparing the real and synthetic matching on approxi-

mately 10 frames on runs spanning all five targets, the following angular biases were

determined: -0.3◦ yaw, -0.1◦ pitch, and -0.7◦ roll. While these biases may seem very

small and possibly inconsequential, the reader should be reminded that a camera is

essentially an angle-detection device and that pixel error increases with distance for

an angular error. Therefore, accounting for these small angular anomalies led to much

more consistent and repeatable image matching.

5.2.2 Verification of Time-stamp Latency. A method of determining latency

from image time-stamping was described in Section 4.3.3. Screen shots of a high-

precision clock were filmed by the test camera. The differences between these screen-
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captured times and the image time stamps (via the image filename) were compared

and analyzed. Performing statistical analysis on 163 images revealed a 0.077 ± 0.044

second one-sigma lag on the time stamps. A correction for this was initially applied to

the data; however, later manual comparisons of real and synthetic side-by-side video

revealed this adjustment created a greater misalignment. It can be concluded that

the time-stamp latency in-flight was different (shorter), but this cannot be quantified

since the screen capture method could not be accomplished in flight. Removing the

correction appeared to provide the best results; hence, no correction for time latency

was applied.

5.2.3 Image Error Due to Constant Elevation Assumption. The virtual

ground plane, made up of flat rectangles texture-mapped with aerial-view image tiles

as discussed in Section 4.4, does not take into account changing terrain elevation in

the target environment. The desire for simplicity was the main motivator. Even with

flat terrain, the X-33 compound VRML file was over 100MB, a moderate strain for

even today’s most elite personal computers. The result of this simplification is visible

image mismatching, even when using TSPI “truth” data to build synthetic views at

locations other than the central target object which defines the v-frame origin. In

general, the mismatch gets worse as distance increases away from the origin as the

terrain diverges from the central target object’s elevation. Figures 5.1, 5.2, 5.3, and 5.4

give four examples of this effect. Figures 5.1 and 5.3 show a greater mismatch, most

visible in the road patterns, since they are a greater distance from the intended target.

Figures 5.2 and 5.4 show much better matching since the model and true elevation

are close to being equal. For endgame navigation, which is of primary interest in a

weapon, this is not a large problem. For enroute navigation, however, this is a bit

more troublesome. It would not be wise to make the covariance matrix values (Pxx)

artificially large and cause the filter to heavily weight an update that would almost

surely be incorrect. A more reasonable approach would be to increase the values in
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the R matrix when less feature matches are available (typically at further ranges),

causing the filter to weight the measurement less.

5.3 Verification of Image Comparison Methods

All previously-discussed pixel-based methods, Harris-Stephens corner detection,

Hough line detection, and SIFT R⃝ matching were examined for viability in comparing

real and synthetic images collected and derived from flight test. With the exception

of SIFT R⃝ matching, which improved in the flight test environment, results were

considerably worse. In fact, SIFT R⃝ matching was determined to be the only realistic

option for an algorithm that shouldn’t need to be manually adjusted for different

environments and conditions at this stage of development.

5.3.1 Pixel-based methods. The pixel-based image comparison techniques

(SAD, ZSAD, LSAD, SSD, ZSSD, LSSD, and NCC) were applied using three different

methods. The first method was to threshold the image, creating a binary image (only

black or white pixels), and then apply a pixel-based equation. Approximately 60

combinations of thresholds were applied to both real and synthetic images with no

discernable matching pixel patterns. The pixel-based algorithms, therefore, performed

as would be expected and picked correct matches 10% of the time. The second method

was to first apply a Canny edge detector, which also uses thresholding as a sub-

routine in its algorithm, before the comparisons. The results were almost identical.

Finally, a publicly-available version of the algorithm that processed the intensities

of the grayscale (as opposed to binary) image was used. The results were slightly

better with about 35% correct matching, but still considered a failure. Applying

image-processing techniques such as sharpening the image improved results slightly.

Again, however, the purpose of the test algorithm is to be autonomous and not require

special-case alterations depending on target environment characteristics.

The reason this genre of method worked for Weaver’s work is that a single

aircraft against a blank background (sky) is a far simpler image processing problem.

122



(a) Real image. (b) Synthetic image.

(c) Synthetic image overlaid on real image.

Figure 5.1: Comparison of real and synthetic views early in a run against the
SAEC target. The synthetic view was generated with TSPI truth data. Discrepancies
in image alignment are primarily due to elevation differences between target and
surrounding landscape since the entire surface was modeled as flat with a constant
elevation equal to that of the SAEC board.
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(a) Real image. (b) Synthetic image.

(c) Synthetic image overlaid on real image.

Figure 5.2: Comparison of real and synthetic views late in a run against the SAEC
target. The synthetic view was generated with TSPI truth data. Discrepancies in
image alignment are small close to the target where elevation deviations are minimal.
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(a) Real image. (b) Synthetic image.

(c) Synthetic image overlaid on real image.

Figure 5.3: Comparison of real and synthetic views early in a run against the
conex target. The synthetic view was generated with TSPI truth data. Discrepancies
in image alignment are primarily due to elevation differences between target and
surrounding landscape since the entire surface was modeled as flat with elevation
equal to that of the immediate conex structure area.
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(a) Real image. (b) Synthetic image.

(c) Synthetic image overlaid on real image.

Figure 5.4: Comparison of real and synthetic views late in a run against the conex
structure. The synthetic view was generated with TSPI truth data. Discrepancies in
image alignment are small close to the target where elevation deviations are minimal.
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Detecting the presence of a line, shape, or contrast gradient without any possibility of

clutter (clouds and sun glare were avoided) can be handled with a constant parameter

algorithm. Ground clutter and changing objects of interest in a downward-looking

application presents a different set of challenges that require adaptive pixel-based

parameters which was not addressed in this work.

5.3.2 Harris-Stephens Corner Detection. Image comparison using Harris-

Stephens Corner Detection was not considered successful. The most obvious discrep-

ancy was the high number of corners found in the real images as compared to the

synthetic images when the sensitivity arguments were the same. Adjusting these pa-

rameters manually could sometimes yield more corners found in the synthetic view,

but then would become worse when applied to a different data set. Without a more

robust, automatic method of adjusting these parameters, manual adjustment would

be required, negating the desired autonomy of the VANSPR algorithm. Figure 5.5

shows Harris-Stephens corner points on three image pairs taken along a run at the

conex target. It can be readily seen that in addition to a much smaller number of

corners found in the synthetic image, the points it does find tend to be in the distance

and not very well matched with those in the real image. The reason for tending to find

points in the distance is primarily due to the artificial edge (“horizon”) caused by the

boundary of the synthetic world. While simple edges are not detected, lines intersect-

ing the artificial horizon make a corner and are hence detected. In a similar fashion,

the simple algorithm finds abundant corners around the edges where lines are running

off the image. It should be noted, however, that unlike SIFT R⃝, the Harris-Stephens

algorithm as implemented here does not match pairs but simply finds corner points in

the images individually. The exception seems to be when very close to objects with

very distinctive corners, as shown in Figure 5.5(c). While potentially useable for the

last moments of flight for a weapon, the corner detection method was not suitable

overall for enroute navigation to the target.
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(a) Real (left) and synthetic (right) images early in a conex run with Harris-
Stephens corners.

(b) Real (left) and synthetic (right) images midway through a conex run
with Harris-Stephens corners.

(c) Real (left) and synthetic (right) images late in a conex run with Harris-
Stephens corners.

Figure 5.5: Harris-Stephens corner detections in real and synthetic images along a
run against the conex structure. The tendency for corners to have greatest density in
differing areas in the two image types makes information extraction using this method
of minimal value. 128



5.3.3 Hough Line Detection. The technique of detecting lines in the images

by finding peaks of a Hough transform was attempted. The first step was to detect

edges in both images using the Canny edge detector algorithm. Through experimen-

tation, the optimal values for obtaining edges in the real image was with hysteresis

thresholding limits of 0.3 and 0.55 and a threshold filter standard deviation of one.

Optimum results were achieved on the synthetic images using 0.1 and 0.12 for thresh-

old values and also one for the threshold filter standard deviation. After optimum

edge detection was achieved in both images independently, the Hough transform was

applied to each to find lines. As can be seen from Figure 5.6, correlation of lines

for each image pair was poor. Like the Harris-Stephens corner points, the synthetic

image tended to find detail and lines in the distance. In the virtual ground plane,

since it is really a rotated image of an overhead photograph, features in the distance

are not degraded in the same way they would be in a real image. Features are not

faded or distorted in the atmosphere, but only compressed due to the optical ge-

ometry. Therefore, any high contrast features gain strength when compressed (from

planar rotation) and enhance their attraction to the preconditioning edge detector.

The conex structure and roads with obvious straight lines and seemingly high con-

trast were seldom chosen for long as the best candidate for being a line. Hough line

detection was dismissed as a viable method of image pair correlation.

5.3.4 SIFT R⃝ Feature Point Matching. SIFT R⃝ matching between real and

synthetic images demonstrated a high-degree of fidelity in all considered flight test

data runs. Figure 5.7 shows three real and synthetic image pairs with matching

SIFT R⃝ points. While SIFT R⃝ pairs in Figures 5.7(a) and (b) may seem sparse, it

should be noted that the number of pairs displayed was significantly reduced to be

more easily seen here for illustrative purposes; the setting that was actually used

filled much of the screen with SIFT R⃝ point matches. Figure 5.7 (c) demonstrates

how the number of matches increases with decreasing range to the target, provided

the target and its environment are “interesting” to the SIFT R⃝ algorithm. A balance
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(a) Real (left) and synthetic (right) images early in a conex run with
Hough lines.

(b) Real (left) and synthetic (right) images midway through a conex
run with Hough lines.

(c) Real (left) and synthetic (right) images late in a conex run with
Hough lines.

Figure 5.6: Hough lines in real and synthetic images on a run against the conex
target. After several pre-processing steps were performed on the images, a Hough line-
detection transform was applied. The synthetic image preferred lines in the distance.
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between generating a well-populated SIFT R⃝ data set and generating so many pairs

that significant errors are introduced was determined experimentally. Unlike experi-

mentally derived results in previous image comparison techniques discussed, however,

the settings appeared to be consistently optimal. It should also be noted that only

pixel areas of interest to the algorithm matter; even if the model is incomplete, as

shown in Figure 5.28.
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(a) Real (left) and synthetic (right) images early in a conex run with SIFT R⃝
matches.

(b) Real (left) and synthetic (right) images midway through a conex run
with SIFT R⃝ matches.

(c) Real (left) and synthetic (right) images late in a conex run with SIFT R⃝
matches.

Figure 5.7: SIFT R⃝ matched features in real and synthetic images on a run against
the conex target. The threshold for matches is turned up for illustration purposes;
available correct matches are usually much greater in number.
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(a) Cowbell 210◦ weapon profile at beginning with reduced canvas; real (left), synthetic
(right).

(b) Cowbell 210◦ closing on target with matching and navigation updates provided by the
VANSPR algorithm; real (left), synthetic (right).

Figure 5.8: Image matching far and near. The image processing portion of the
VANSPR algorithm has no concept of range; it treats the real and synthetic image
pairs simply as two similar images. The navigation portion of the algorithm, how-
ever, is aware of range and makes image perturbations and measurement weightings
accordingly. Note that the algorithm still operates with incomplete information (top).
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5.4 Performance of the VANSPR Algorithm

After the rending portion of the algorithm was validated to ensure a reasonable

match would be presented given truth data, the UKF-based prediction mechanization

was ready for test using only the time-stamped inertial ∆v and ∆θ measurements.

Again, the goal of this testing in the early phases of SPR using a priori world models

was to simply beat an INS-only solution. While this may sound trivial, the algorithm

must be assembled in such a way as to correctly pass true, albeit noisy, measurement

updates and confidences (covariances) for optimal weightings.

5.4.1 Measurement Scheduling. Most of the runs consisted of about 205

time-stamped images. All of these images were not processed for each run. Instead,

a standard schedule was devised that was adhered to on all runs. The reasons that

all images were not used include:

1. Pixel shift due to image perturbation is much smaller at larger distances from the

target and of a lower discernible resolution. Therefore, the amount of actionable

information that can be extracted from multiple image comparisons at large

distances is relatively small.

2. Less SIFT R⃝ points are available at larger distances from the target which

equates to greater measurement uncertainty. The algorithm considers less than

10 measurements as no measurements.

3. A MATLAB R⃝ 3D Simulink Animation Toolbox software bug causes periodic

synthetic window update failures. Over the course of data processing and reduc-

tion, this glitch occurred approximately one out of every 25 runs. When it did

occur, the virtual canvas, from which the synthetic image is captured, blanked

out or updated to some impossible pose. Inevitably, this glitch always occurred

toward the end of run processing, a task which takes about an hour and a half,

thereby invalidating all run data processed up to that point and preventing an

observation of the endgame navigation solution.
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Because of the limited additional value of processing all the measurements early

in the run and the additional risk of software failure, the best solution was to create

a scheduled measurement process. The measurement schedule time line, discussed in

reverse chronological order, was as follows:

1. Three measurements separated by 0.3 seconds before the end of the data collec-

tion run.

2. Three measurements separated by 1.5 seconds.

3. Three measurements separated by 3.0 seconds.

4. All preceding measurements separated by 9.0 seconds.

5.4.2 Test Point Results. The full results of the 14 weapon profile flight

test runs are shown individually in Figures 5.9-5.22 and corporately in Table 5.2

which shows positional, altitude, and spherical (total) errors for each. The individual

figures show latitude error, longitude error, altitude error, spherical error, the number

of SIFT R⃝ matches found at each measurement update, and an overhead view of the

trajectory for reader reference. The jumpiness seen in the data is due to the ratio of

Q : R and changes depending on filter tuning.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black).

Figure 5.9: SAEC 223◦ position error, feature matches, and overhead view. Mea-
surement uncertainty was σx = σy = 20m. The scheduling of measurements and
amount of available SIFT measurements have a significant effect on the ability of
VANSPR to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.10: SAEC 208◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx=20m,σy=20m. The scheduling of measurements and
amount of available SIFT measurements have a significant effect on the ability of
VANSPR to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.11: Conex 255◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.12: Conex 225◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.13: Conex 210◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.14: Cowbell Tower 255◦ position error, feature matches, and overhead
view. Measurement uncertainty is σx = σy = 20m. The scheduling of measurements
and amount of available SIFT measurements have a significant effect on the ability
of VANSPR to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.15: Cowbell Tower 225◦ position error, feature matches, and overhead
view. Measurement uncertainty is σx = σy = 20m. The scheduling of measurements
and amount of available SIFT measurements have a significant effect on the ability
of VANSPR to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.16: Cowbell Tower 210◦ position error, feature matches, and overhead
view. Measurement uncertainty is σx = σy = 20m. The scheduling of measurements
and amount of available SIFT measurements have a significant effect on the ability
of VANSPR to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.17: Tank 270◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.18: Tank 240◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.19: Tank 225◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.20: X-33 275◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.21: X-33 245◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.22: X-33 230◦ position error, feature matches, and overhead view. Mea-
surement uncertainty is σx = σy = 20m. The scheduling of measurements and amount
of available SIFT measurements have a significant effect on the ability of VANSPR
to correct the position error.

149



Table 5.2: Full VANSPR results. The errors shown
are position, altitude, and spherical at the end of
runs. Measurement error was standardized at 20 m for
best general use; better results for specific runs were
obtained using other values and measurement uncer-
tainty determination methods.

Target INS error (ft) VANSPR error (ft)

SAEC 223◦ 563, 42, 564 101, -59, 118
SAEC 208◦ 182, 22, 183 470, -22, 470
Conex 255◦ 727, 1, 727 141, -79, 161
Conex 225◦ 405, -37, 407 262, -105, 282
Conex 210◦ 392, 38, 393 49, -40, 63
Cowbell 255◦ 412, 34, 414 23, -65, 70
Cowbell 225◦ 543, 13, 543 101, -57, 116
Cowbell 210◦ 378, 3, 378 66, -78, 103
Tank 270◦ 530, 50, 532 164, -57, 174
Tank 240◦ 431, 7, 431 135, -30, 138
Tank 225◦ 372, 16, 372 190, -74, 204
X-33 275◦ 245, 32, 247 293, -48, 297
X-33 245◦ 230, 2, 230 575, -76, 581
X-33 230◦ 370, 27, 370 364, -50, 368
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5.4.2.1 General Observations. Several general observations can be

made on the data from the individual runs that may provide insight into further

analysis. First, a comment on accuracy must be made. In the case of seemingly bad

result of 470 feet for the SAEC 208◦ run, the fact that the almost identical runs of

Conex 210◦ and Cowbell Tower 210◦ both had their best results of 63 feet and 103

feet, respectively, seems suspicious. Further investigation was not conducted in the

interest of time for this research but should be settled for future work.

A strong correlation can be seen on most of the runs between a high number

of available SIFT points and low error. Where the number of SIFT points peak,

the error curves usually trend back towards zero. The X-33 runs are the clearest

example of the effect a small pool of available SIFT matches has on the ability of

VANSPR to correct itself. An additional comment on the X-33 runs is that there was

a considerable difference in the appearance of the complex due to the changes that

were made between the time the geo-orthorectified imagery tile photographs were

taken in 2008 and when the test flights were accomplished in September 2010.

Mission planning for the targets was focused on the aspect to a selected target

surface and not to cardinal heading. All the runs were conducted from magnetic

headings of 208◦ to 275◦, so observability into some of the directional error effects is

limited. Most of the runs have a southerly error that seems to worsen as the flight

direction becomes more westerly. The longitudinal errors were considerably higher in

general, revealing a “long-short” (actually long for all cases seen here). The side-to-

side errors were generally well-contained and corrected for.

Note that although the total error is lower using VANSPR for all but two cases,

the altitude errors are generally higher. This is probably due to not taking an altitude

measurement directly. It has already been explained that observational errors were

the primary factor for this simplification. Depending on the use of an air-to-ground

weapon that could make use of VANSPR, altitude error is of variable importance. If

a 90◦ impact angle is desired and fusing is not dependent on self-contained timing,
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positional error is most important. For applications requiring limited maneuvering in

mountainous or urban terrain, altitude errors can be the difference between bombs

on target and striking an obstacle well short of the intended target. Table 5.3 refers

to the same runs but focuses on total (spherical) error.

Table 5.3: Spherical error results using the same parameters. Bad data is indicated
by “XX”. Position and altitude errors are shown separately in Table 5.2. 0◦, 30◦, and
45◦ refer to run-in headings as described in Chapter 4.

Weapon Profile Final Error (feet)

Target 0◦ 30◦ 45◦

Method INS VANSPR INS VANSPR INS VANSPR

SAEC XX XX 564 118 183 470
Conex 727 161 407 282 393 63

Cowbell Tower 414 70 543 116 378 103
Tank 532 174 431 138 372 204

X-33 compound 247 297 230 581 370 368

It may also be of interest to discuss the results in terms of percentage im-

provement. Table 5.4 shows the same data as Table 5.3, but in terms of percentage

improvement, defined as

%improvement =
V ANSPR− INS

INS
× 100 (5.1)

Table 5.4: Spherical error results in percentage improvement. Bad data is indicated
by “XX”. Measurement uncertainty was σx = σy = 20m. 0◦, 30◦, and 45◦ refer to
run-in headings

Percentage Improvement

Target 0◦ 30◦ 45◦

SAEC XX 79 -156
Conex 78 44 84

Cowbell Tower 83 79 73
Tank 67 68 45

X-33 compound -20 -153 1
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While the data set is not large, analysis by correlation may at least bring out some

factors which contributed to the algorithm’s success or failure. The average overall

VANSPR error, using σx = σy = 20m was 288 feet as compared to the INS-only error

of 411 feet, for an improvement of 30%. If the user is allowed to incorporate the

empirical R from Chapter 3 for the worst SAEC and X-33 runs, results improve to

166 feet for a 63% overall improvement.

5.4.2.2 Effect of Measurement Scheduling. The measurement schedul-

ing was increased for this run to observe the effects that more measurements would

provide. The results are shown in Figure 5.23, for comparison with the nominal mea-

surement schedule for the same target run shown in Figure 5.10. While producing

improved results (303 feet versus 470 feet of error), the similar shape indicates prob-

lems with measurements at similar times during the run and a more serious problem

with the weighting of the measurement itself.

5.4.2.3 Effect of Target Type. A consolidation of INS error, VANSPR

error, and percentage improvement dependent on target only is shown in Table 5.5.

Table 5.5: Percentage error by target. Cowbell
Tower was most improved by VANSPR while the X-33
and SAEC targets showed only minimal improvement.
Measurement uncertainty was σx = σy = 20m.

Target INS error (ft) VANSPR error (ft) Percentage Improvement

SAEC 374 588 -57
Conex 509 169 67

Cowbell Tower 445 96 78
Tank 445 172 61

X-33 compound 282 415 -47

It can be seen that runs against the Cowbell Tower target enjoyed the greatest

improvement from VANSPR while the X-33 compound and SAEC board received the

least. However, alternate filter tunings give the SAEC target the best improvement.

As stated earlier, nearby runs on almost the same heading, such as the Cowbell 210◦
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(a) Latitude error with one− σ uncertainty. (b) Longitude error with one− σ uncertainty.

(c) Altitude error with one− σ uncertainty. (d) Spherical error.

(e) SIFT R⃝ matches available. (f) Overhead view comparing TSPI (blue),
VANSPR (discontinous black) and INS-only
(black)

Figure 5.23: SAEC 208◦ position error, feature matches, and overhead view with
increased measurement scheduling. Measurement uncertainty is σx = σy = 20m.
The measurement scheduling was increased for this run to observe the effects. While
producing improved results (303 feet versus 470 feet of error), the similar shape indi-
cates problems with measurements at similar times during the run and a more serious
problem with the weighting of the measurement itself.
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run, produced a 103 foot error result. Although “targets” were the initial focus be-

cause of the weapon guidance context, observation of SIFT R⃝ points on runs revealed

the great importance of the surrounding terrain - in fact to a greater extent than the

targets themselves, especially for the smaller targets. It may seem that the desert

floor would be considered as noise or clutter to a visual algorithm, but is in fact rich

in visual information, provided the patterns do not change much between current

observation and the texture-mapping image tiles used to model the ground.

The effect of chosen measurement noise also contributed to X-33 run results.

Using the empirical R, the X-33 endgame errors were 206 feet, 301 feet, and 352 feet

on the three aspect runs. The choice of σx = σy = 20m, which seemed to optimize

results from the other targets made the errors worse.

The extremely small contribution of the three-dimensional model on the X-33

run may seem the most surprising. However, this is partially explainable by observing

the collected SIFT R⃝ points on the target run-in. The SIFT R⃝ algorithm chooses a

much higher density of points on the desert floor than on the buildings in the X-33

complex.

5.4.3 Effect of Three-dimensional Models. A further examination of the X-

33 target was conducted by conducting runs with and without the three-dimensional

models present, using the empirical R matrix which worked better on the X -33

target. The “flat” version was simply the geo-orthorectified imagery tiles texture-

mapped onto flat ground panels.

The same run was performed for the 275◦ X-33 run with a flat environment and

with a three-dimensional environment as shown in Figures 5.24 and 5.25 respectively.

The results, shown in Table 5.6, indicate almost no difference between the two runs. It

should be noted that several of the target environments had changed somewhat from

how they appeared in the modeling imagery. Some had temporary vehicles present

during flight test data collection or new desert trails forming. The X-33 compound,

however, showed the most change; storage containers had been moved and piles of
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equipment had been shifted. While many SIFT R⃝ points may have been found in the

individual real and synthetic images, matched pairs were not abundant.

Table 5.6: Flat versus three-dimensional model.
The empirical R matrix was used.

Target Spherical Error (ft)

X-33 three-dimensional 206
X-33 flat 207

X-33 INS only 247

It should also be noted that the target environment that led to the best VANSPR

performance with the empirical R, the SAEC, is the only completely flat target.

The high-contrast SAEC board itself, however, did not yield many SIFT R⃝ matches.

Although high contrast and distinctive in nature because of it’s right angles and

symmetry, it would be a better target for pixel-based comparisons. In fact, during

experimentation with edge detection on flight test data, the SAEC board was one of

the few things recognizable in a binary image.

Besides the obvious man-made objects in the environment that would lend them-

selves to modeling, some natural items, such as trees and mountains, should be con-

sidered for modeling. It would likely be a much more difficult task, but could just

provide the needed relative positioning required for a precision strike. Figure 5.26

provides an example were visual cues from trees in the environment are missing be-

cause they are considered flat. If trees ever were modeled, there would have to be an

automatic means to be practical.

5.4.4 Effect of Overexposure. The aperture on the Prosilica 4900 camera

was set to full closed on all but the first sortie where it was inadvertently left open one

setting value. The resultant overexposure of the images created a unique opportunity

to examine the effects. While it was obvious that information was lost on many of

the runs, with grayscale images appearing almost binary (only black and white), the

tank target seemed to be easier to discern. Therefore, an experiment was conducted
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(a) Midway through run on flat X-33 compound; real (left), synthetic (right).

(b) End of run on flat X-33 compound; real (left), synthetic (right).

Figure 5.24: X-33 target run without three-dimensional models. The image is just
the geo-orthorectified imagery tiles on a flat ground plane.
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(a) Start of run on three-dimensional X-33 compound; real (left), synthetic
(right).

(b) Midway through run on three-dimensional X-33 compound; real (left),
synthetic (right).

(c) End of run on three-dimensional X-33 compound; real (left), synthetic
(right).

Figure 5.25: X-33 target run with 3-D models. Forty-two model objects populate
the X-33 compound.

158



Figure 5.26: Flat trees in virtual image; real (left), synthetic
(right). The visual information available in natural resources
could help achieve high-level precision someday.

for verification. The 270◦ tank run was processed with both Sortie 1 images and data

and the redo Sortie 4 images and data. Figure 5.27 provides two frames each from

the real and synthetic images sets. The results, shown in Table 5.7 actually show

an improved solution; the INS-only solution for the overexposed sortie also yielded a

worse solution. Since the run was against the tank, which is a small dark object in a

large low contrast area, more SIFT R⃝ points were found in the overexposed case.

Table 5.7: Effect of overexposure and clouds in
spherical error (feet). Results show improvement over-
exposed data for the tank target.

Case INS error (ft) VANSPR error (ft)
Normal settings 532 178
Overexposed 558 129

5.4.5 Effect of Bad SIFT R⃝ matching. One particular case of bad SIFT R⃝

matching was studied to include the effects of threshold changing. Figure 5.28(a)

shows an end-stage run where the solution is obviously suffering. While each mea-
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(a) Mid-run image of tank on PB-9.

(b) End of run against tank on PB-9.

Figure 5.27: Comparison of overexposed test camera image (left) and synthetic
image (right) of the same.
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surement update usually consists of several hundred SIFT R⃝ points per comparison,

this run had a stretch of several updates where less than 10 (which the algorithm

ignores) or between 10 and 20 (which will be accepted but may be suspect) SIFT R⃝

pairs were observed. The resultant spherical error was 303 feet. Since the algorithm

is intended to be autonomous, it is not desired to have to manually adjust param-

eters, but for investigation purposes, the SIFT R⃝ threshold was increased from the

nominal 0.6 to 0.75. The result was many more SIFT R⃝ points found and an endgame

positional error of 70 feet, a 77% improvement. Figure 5.28(b) and (c) show real and

synthetic views with the improved SIFT R⃝ threshold. It should be noted that increas-

ing the SIFT R⃝ threshold cannot be a carte blanche solution. When a relatively large

number of SIFT R⃝ matches are already being found, turning up the threshold allows

for less discriminating matches. Even if the matches were all perfect, adding more

than required needlessly increases computational burden.

5.4.6 Summary. This was a summary of some of the some of the many effects

that could be studied when cameras are incorporated into navigation solutions. Many

variables can cause a substantial effect including measurement rates and scheduling,

selection of the measurement noise model, run-in headings, three-dimensional effect of

computer-generated models, and number of available SIFT R⃝ matches. The INS-only

endgame error was 411 feet. Using σx = σy = 20m for measurement uncertainty,

VANSPR error was 288 feet, a 30% improvement. When the empirical R was used

for the runs with the highest errors, the overall result became 166 feet, for a 63%

improvement.
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(a) Conex 225◦ run with low number of SIFT R⃝ matches; real (left), syn-
thetic (right).

(b) Conex 255 with higher SIFT R⃝ matches; real (left), synthetic (right).

(c) Improved run completion due to higher SIFT R⃝ matching; real (left),
synthetic (right).

Figure 5.28: Effects of increasing SIFT R⃝ threshold to aid feature point starvation.

Images pairs (b) and (c) are from a second run after the SIFT R⃝ threshold was
increased.
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VI. Conclusions and Recommendations

This final thesis chapter will reiterate overall conclusions of the research and make

recommendations for follow-on work, both near and far-term.

6.1 Conclusions

The work of this thesis presented the first application of Statistical Predictive

Rendering (SPR) to the task of vision-aided navigation for a weapon’s terminal guid-

ance system. An average endgame positional error of 166 feet (using two different

values of R, was achieved compared with 411 feet for an INS-only solution over the

course of a 60-second run. Proper selection of R proved to be a critical and elusive

component of success. While this is a step towards the eventual goal of having an

autonomous weapon with the flexibility of a JDAM and the accuracy of an LGB,

more work is required in several areas.

The desire of autonomy was a supporting goal that drove many engineering

decisions throughout the research. Many parameters could be tweaked to get better

results during specific conditions, but it was desired to have a “one-size-fits-all” al-

gorithm that could be employed in any environment. Because of this constraint, all

pixel-based methods, simple corner detectors, and line and edge detection algorithms

were rejected. Other compromises were made to SIFT R⃝ thresholding, update rates,

etc.

Part of the intent of this research was to study the effect of navigation amongst

three-dimensional objects - a realistic problem for a smart weapon dropping through

an area of rugged terrain or significant urban development. Because of the inherent

limitations of an airplane and the further necessarily imposed limitations of safety,

this aspect of the research was not satisfactorily executed. The groundwork, however,

has been laid for future work that will examine this in more detail.

While a learning curve exists for model creation through algorithm employment

in its current state, some basic familiarity is all that is required for an engineer or

operator to quickly start building targets and running the “plug-and-play” VANSPR
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software. With a new TSPI file, inertial file, and a folder of images, the algorithm is

ready to be used in minutes.

None of the assumptions stated at the beginning of this thesis were disproved.

One essential assumption of experimental interest was assuming that the attitude

rate values provided by the high-quality Honeywell HG1700 IMU gyros would re-

main accurate over the course of the 60-second data collection runs. The allowed for

considerable simplification of the algorithm’s estimation responsibilities.

The VANSPR algorithm was most successful against the Cowbell Tower tar-

get and least effective against the SAEC board and X-33 compound. It was also

demonstrated that a weapon profile run against the X-33 compound with or without

three-dimensional models produces approximately the same results.

6.2 Recommendations for Future Work

Many opportunities for improvement and expansion presented themselves through-

out the research and development of the VANSPR algorithm. Some suggestions would

be appropriate for near-term incorporation while others are larger in scope and would

likely result from a building block approach for the purposes of academic research.

6.2.1 Near-Term Follow-up Recommendations. Suggestions for immediate

follow-on work include:

• Perform analysis on non-weapon profile data that was collected. This data was

not of particular interest in the context of a non-power glide weapon but is in

the same format and can readily be processed by the VANSPR algorithm for

further SPR navigation research. Furthermore, this analysis may provide the

additional insight required for a highly-robust Rmatrix.

• Make the SIFT R⃝ thresholding value adaptive and work to create a noise matrix

that is more rigorously developed and adapted.
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• Incorporate some means of altitude observability; refine use of the sigma point

grid to to create a sigma cube or other hypergeometric shape.

• Find innovative methods to fuze both SIFT R⃝ feature point and pixel-based

methods to pickup the heavy lifting when the other fails.

• Perform data collection from a vehicle that can capture images to a closing

range of 1-2 meters to better simulate a weapon. A helicopter would be a

perfect choice, provided that the increased vibration would not degrade image

quality. The possibilities of having useable information is limited only by the

resolution of the on-board camera and of the model. See Figure 6.1

• Create more accurate models with accurate terrain elevation. The constant

terrain elevation assumption was a simplification for proof-of-concept for this

research. However, this assumption resulted in obvious and sometimes large

errors. Digital Terrain Elevation Data (DTED) could be utilized to mitigate

this issue. Some caution should be given, however, to creating large models

with more detail than can be handled by the computer processor, graphics

processor, or MATLAB R⃝.

• Camera boresight using a laser-based method. The flight test portion of this

project intended to use a laser method for boresighting; however, an equipment

failure required that a less accurate method be used that required moving a

mechanical “arm” around various reference points on the interior and exterior

of the aircraft. No serious degradation was noted in the end products, but it

was unacceptable to have unquantifiable errors in what should have been a very

precise procedure.

• Explore image processing techniques to make further use of pixel-based meth-

ods, Hough line transforms, and simple feature detection (e.g., Harris-Stephens

corner detection). More advanced filtering techniques, which was beyond the

scope of this thesis, may prove to be profitable to make these techniques useable.
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• Incorporate additional, including non-traditional, sensors such as a flash Laser

Detection and Ranging (LADAR) to enhance position information, especially

in the endgame portion of the simulated weapon trajectory. The flash LADAR

creates a three-dimensional image where each pixel, in addition to grayscale

intensity, also possesses depth information to the object fragment it represents.

This three-dimensional mapping could be treated with a variation of SPR to

provide fine alignment at close range.

• Optimize the VANSPR algorithm to work real-time. Certain aspects of process-

ing will require novel methods to achieve this goal, but immediate improvements

could be expected by taking advantage of parallel processing methods with mod-

ern multi-core computers, utilizing separate on-board Graphics Processing Units

(GPUs), and porting or compiling existing code into C/C++.

• If feature-based methods (e.g., SIFT R⃝) are used exclusively, undistortion equa-

tions could be applied only to feature-matched pixel coordinates instead of the

entire image as done by [23].

• Incorporate a multi-hypothesis tracking filter to capture alternative branched

solutions. Practically speaking, an incorrect real/virtual image match could

cause a divergence that is unrecoverable in a single filter as used in the current

VANSPR implementation. Such a configuration could track multiple possibili-

ties and bring the solution back towards the true trajectory when the appropri-

ate filter(s) begin to clearly outperform the others.

• Incorporate anticipated shadowing effects to minimize image processing confu-

sion. This would be especially important in target environments with significant

vertical development. Shadowing with VRML models is currently possible in

the Google Sketchup Pro R⃝ application as seen in Figures 4.29, 4.30, 4.31, 4.32,

and 4.33. Additional programming could take time of day and observer location

to calculate sun position, light angles, and resultant shadowing.
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• Add two additional cameras, mounted orthogonally to the first and each other.

Detecting perspective changes of distant objects by attempting to observe trans-

lational changes can be extremely challenging. Angular changes are more de-

tectable and could be exploited by providing a means of observation in three

rotation axes. As an example, viewing the stars from different locations on the

same hemisphere of the Earth provides very little viewpoint change. However,

even a small rotational change is observable and measurable.

6.2.2 Long-Term Follow-up Recommendations. More ambitious future re-

search might also consider:

• Incorporate Artificial Intelligence (AI) algorithms that recognize classes and

types of target objects during flight and make real-time decisions of priority and

result maximization. Existing intelligence databases may be of use in creating

VRML objects for “off-the-shelf” application.

• Develop cooperative networking of enroute weapons or vehicles that share view-

points to refine the three-dimensional picture. Preceding weapons or vehicles

can perform a “reconnaissance” role to make subsequent vehicles “smarter and

smarter”. Integration into future System of System (SoS) datalink networks

could also make use of feeds from Global Hawks, U-2s, satellites, etc.

• Incorporate research from the field of automatic object reconstruction from im-

ages. This research was briefly mentioned in Section 2.11.4.

6.3 Summary

This thesis presented the development and early application of an autonomous

precision weapon terminal guidance system using a tightly-coupled INS and camera.

The use of statistical predictive rendering was used to provide a visual means of

comparison with actual images and remove errors from the navigation solution. The

goal of outperforming an INS-only solution was successfully met. However, follow-on
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(a) High-altitude viewpoint of Cowbell Tower (synthetic).

(b) Close-up view of Cowbell Tower (synthetic).

(c) Reading the brand of air conditioning unit on Cowbell Tower (syn-
thetic).

Figure 6.1: Predictive rendering zoom effects. Resolution available to the algorithm
is limited only to the fidelity of the computer model.

168



research is required to achieve the precision necessary for integration with real-world

combat systems.
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Appendix A. Camera System Specifications

Figure A.1: Prosilica 4900 datasheet.
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Figure A.2: Kodak KAI-16000 image sensor technical specifi-
cations.
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Figure A.3: Carl Zeiss Planar T* 4/50 ZF lens technical spec-
ifications.
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