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a b s t r a c t

Estimating damage in structural systems is a challenging problem due to the complexity of the likelihood
function describing the observed data. From a Bayesian perspective a complicated likelihood means effi-
cient sampling of the posterior distribution is difficult and standard Markov Chain Monte Carlo samplers
may no longer be sufficient. This work describes a population-based Markov Chain Monte Carlo approach
for efficient sampling of the damage parameter posterior distributions. The approach is shown to accu-
rately estimate the state of damage in a cracked plate structure using simulated, free-decay response
data. The use of this approach in identifying structural damage has not previously been explored.

Published by Elsevier Ltd.

1. Introduction

The problem of identifying damage in structural systems can be
effectively cast as an estimation problem. That is to say: given a se-
quence of observed data collected from one or more sensors, esti-
mate the damage presence, location, and extent. This information
is necessary for predicting the future state of the structure in ques-
tion, i.e. for prognostics.

There are two main classes of estimation approaches available:
the method of maximum likelihood and Bayesian estimation. The
former produces a single ‘‘best’’ estimate, defined as that which
maximizes the probability of having observed a given set of data
(e.g. structures’ vibrational response). The latter views the param-
eter to be estimated as a random variable and the goal is to com-
bine the likelihood with prior information to produce the
estimated probability density function (PDF) associated with each
parameter.

The difficulty with either approach in structural estimation
problems is that the likelihood function (the core of both estima-
tion approaches) is often an extremely complicated function of
the structure’s parameters with many maxima. This severely
restricts the use of standard optimization algorithms. For example,
a simple gradient ascent algorithm cannot be used to find the max-
imum likelihood estimate (MLE) in many structural system identi-
fication problems. This has been recognized by a number of

researchers and solutions proposed. Horibe, for example, used a
genetic algorithm (GA) to find the MLE of a structure’s parameters
in a simple vibration problem [1]. Likewise, Stull et al. considered a
GA in generating MLEs of structural parameters in a static shell
buckling problem [2]. In the context of damage detection Panigrahi
et al. used a GA to perform parameter estimation by minimizing
differences between predicted and observed modal properties [3]
using a likelihood based on modal properties. Additional work by
Hwang et al. also employed a cost function based on modal prop-
erties and used a GA to estimate stiffness in a composite structure
[4]. The authors point out that for certain problems maximizing the
likelihood does not necessarily require a GA. For example, if en-
ough is known about the parameter distributions a priori and one
has a good initial guess, the perturbation approach of Fonseca
et al. [5] or Xu et al. [6] can be used to obtain MLEs of a structure’s
parameters. In the related field of structural reliability, researchers
have also long recognized the challenges in structural optimization
problems. The early work of Kiureghian and Dakessian [7], for
example, developed a method for avoiding local optima in estimat-
ing failure probability in structures. More recently Guo et al. [8]
developed an algorithm for efficiently obtaining globally optimal
solutions for structural design problems possessing multiple local
optima.

In this paper, however, the authors are interested in obtaining
the entire parameter probability distribution. This distribution
can be used to extract both the parameter estimate and credible
intervals which provide a measure of confidence in the estimate.
The authors view well-defined credible intervals as essential in
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damage detection application. Optimal decisions regarding the
maintenance and usage of a structure are predicated on
quantifying the uncertainty in the damage estimate. To this end
the Bayesian estimation framework is conceptually the most
appealing. In Bayesian estimation one combines prior information
with the likelihood to produce the desired posterior parameter
estimate A number of researchers have had success using a Mar-
kov-Chain-Monte-Carlo (MCMC) approach to explore the posterior
distribution in structural parameter estimation problems. Numer-
ous works by Beck et al. (see e.g. [9–11]) have used MCMC methods
to estimate structural parameters. Additional work by Glaser et al.
[12] illustrated the approach in detecting stiffness reduction in
beams using static measurements. Zhang and Cho [13] also used
the MCMC approach to help design an evolutionary algorithm for
performing system identification.

The MCMC approach (to be described) works by repeatedly per-
turbing the parameter(s) of interest and either accepting or reject-
ing the proposals based on a well-defined criteria. However, the
MCMC algorithm can become ‘‘stuck’’ in a local minima, again
due to the complicated likelihood function (see Section 2). This
is, of course, why so many researchers use GAs to explore compli-
cated parameter spaces in obtaining MLEs. As a result, recent
works have proposed to fuse GAs with MCMC in order to more effi-
ciently explore the posterior distribution. Efforts to this end in-
clude the work of Vrugt et al. [14] who combined differential
evolution (a genetic algorithm search technique) with MCMC to
draw samples from parameters in a complex soil moisture model.
Also noted is the work of Zhang and Cho [13] who combined the
searching capabilities of an evolutionary algorithm with MCMC
to produce faster convergence of parameter estimates using data
generated from a laser system. The use of multiple solutions that
can exchange information as they explore the posterior have come
to be known as ‘‘population-based MCMC’’ methods. A nice over-
view of population-based MCMC (Pop-MCMC) methods is provided
by Jasra et al. [15] where the initial idea was credited to Geyer [16].
Other recent Pop-MCMC works include the imaging application of
Kim et al. [17]. Although this approach has seen recent use in these
and other complicated estimation problems it has not yet been
used in structural dynamics problems despite obvious advantages
over conventional MCMC in sampling complicated posterior
distributions.

Our goal in this manuscript is therefore to adopt the Pop-MCMC
approach to a difficult parameter estimation problem in structural
dynamics, namely the estimation of parameters governing crack
damage in an aluminum plate. The specific implementation of
the pop-MCMC algorithm is new as is the application to structural
vibration problems. The population-based approach is shown to
provide reliable estimates of the crack parameters under realistic
levels of noise. These estimates are not always possible using stan-
dard MCMC as will be shown. Additionally, implementation of the
Pop-MCMC algorithm requires that the forward model be compu-
tationally efficient. Section 4 is therefore devoted to developing a
low-dimensional finite element (FE) crack model. The model uses
specially tailored elements, resulting in a model that retains the
fidelity of the standard FE approach without the computational
overhead.

2. Brief review of Bayes rule and MCMC

Given data from a system of interest, denoted by the vector of N
observations s, and a model that describes those data w(h), the
practitioner’s job is to estimate the model parameter vector
h � (h1,h2, . . . ,hP). Typically one takes ‘‘good’’ estimates to be those
that perform well in the face of the inevitable uncertainty (e.g.
noise) in the data. In this paper it is assumed that the uncertainty
takes the form of additive noise such that our measured data are

s ¼ wðhÞ þ n ð1Þ

where the noise vector n � ni, i = 1, . . . ,T is comprised of T, zero-
mean, iid entries with joint probability distribution

pHðnÞ ¼
1

ð2pr2ÞT=2 e
�
PT

i

ni=2r2

ð2Þ

Thus, the noise is assumed to be stationary, Gaussian with variance
r2. The likelihood function is then formed by simply substituting
ni = si �wi(h) giving

pHðnÞ � pHðsjhÞ ¼
1

ð2pr2ÞT=2 e
�
PT

i

ðsi�wiðhÞÞ2=2r2

ð3Þ

which is the probability of having observed the sequence of data s
given the model, defined by parameters h. The aforementioned
MLEs are obtained by maximizing Eq. (16). However, the goal is
to obtain estimates of both the parameter and the amount of uncer-
tainty in the parameter estimate. For this reason the Bayesian esti-
mation philosophy is adopted thus providing estimates of the entire
parameter posterior distribution from which credible intervals for
our parameters can easily be obtained.

Bayes’ rule states that the joint posterior distribution of our
model parameters may be found by the relationship

pHðhÞ ¼
pHðsjhÞppðhÞ

pDðsÞ
ð4Þ

where pp(h) is the joint prior parameter distribution, reflecting any
a priori information one might have about our parameter, and pD(s)
is the joint distribution of our acquired data. Of course the above
expression is for the joint parameter distribution whereas one is
typically interested in the marginal (individual) posteriors, i.e.
pHp
ðhpÞ. Analytically this would require integrating Eq. (4) over

the other P � 1 parameters, e.g.

pHp
ðhpÞ ¼

Z
RP�1

pHðhÞdh�p ð5Þ

where the notation
R

RP�1 dh�p denotes the multi-dimensional inte-
gral over all parameters other than hp. This cannot typically be done
in closed form and instead the authors resort to numerical methods.

The Markov Chain Monte Carlo (MCMC) algorithm was pro-
posed by Hastings [18] as a means of drawing samples from Eq.
(4) directly (without having to integrate). The MCMC algorithm is
now fairly standard and the reader is referred to [19] for a descrip-
tion in the context of structural dynamics. The algorithm builds a
Markov chain for each parameter such that samples from the chain
are, in fact, samples from the desired posterior distribution. The
chain is formed by first proposing state transitions for each param-
eter via a so-called proposal distribution, qðh�pjhpÞ. This distribution
provides a rule for generating a candidate parameter value h�p given
the current value in the chain hp. The proposed parameter (keeping
all other parameters fixed at their current value) is then accepted
or rejected with probability

rMH ¼min
pHðsjh�pÞppp

ðh�pÞ
pHðsjhpÞppp

ðhpÞ
;1

( )
: ð6Þ

This procedure is referred to as the Metropolis–Hastings (MH) algo-
rithm after the originators [20,18]. The same is done for each of the
p = 1, . . . ,P parameters in h while holding the other P � 1 parameters
fixed. Thus, the approach is really drawing samples from the condi-
tional posterior pHp

ðhpjh�pÞ. In other words, given that the other
parameters are fixed to their current values in the chain, sample
the posterior for parameter p. This procedure is referred to as Gibbs
sampling and eliminates the need to perform the high-dimensional
integral required by Eq. (5). The above-described procedure
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constitutes one iteration of the Markov chain. Starting with initial
parameter values chosen from their respective prior distributions
hpð0Þ � ppp

ðhpÞ this process (accept/reject) repeats K times yielding
the samples hp(k), k = 1 . . . ,K.

The distribution qðh�pjhpÞ can be thought of as a rule for perturb-
ing hp. The magnitude of this perturbation will be decided by the
parameters associated with q(�). For example, it is common to
choose the proposal distribution to be the Uniform distribution
centered at hp, i.e.

qðh�pjhpÞ ¼ Uðhp � A; hp þ AÞ ð7Þ

where A is a real constant that plays the role of the perturbation
size. Typically A is tuned dynamically so that on average
rMH = 0.3 � 0.5 (see [19] for a more thorough discussion and for
sample code). Heuristically it is easy to see how the approach
works. The algorithm continually perturbs each parameter, checks
whether or not a better fit (consistent with the prior) is achieved
by computing rMH, and keeps parameter values that do well in this
regard. The fact that in the end the chain of values are samples from
pHp
ðhpÞ is actually quite remarkable. However, one can immediately

see where problems can arise.
Consider a bimodal posterior distribution of a single parameter

h,

pHðhÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pfr2

p e�ðh�lÞ2=ð2fr2Þ

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� f Þr2

p e�ðhþlÞ2=ð2ð1�f Þr2Þ ð8Þ

for known, positive constants f, r, l. The constant f < 1 specifies the
fraction of the distribution variance associated with the distribution
peaks at +l, �l. For this example the values r = 1, f = 0.3, were used
along with two different values for the peak locations, l = 2,4. The
resulting distribution presents difficulties for the conventional
MCMC algorithm for the l = 4 case as shown in Fig. 1. For l = 2
the peaks of the distributions are close enough that the algorithm
can easily move back and forth between the two regions of high
probability. However for l = 4 the Markov Chain quickly becomes
‘‘trapped’’ in a single portion of the posterior distribution. This is
simply due to the fact that the proposal distribution is not capable
of moving the chain easily from one peak to the other. The solution,
however, is not as simple as changing the proposal distribution to
give us larger perturbations to our chain (i.e. increase A). If the pro-
posal values are very far from the existing values they will almost
always be rejected, thus the Markov Chains will take an extremely
long time to converge. An efficient sampler is one that would allow
us to locally explore a high probability region of the posterior while
simultaneously provide a mechanism for covering large distances in
parameter space to reach other high probability regions. The popu-
lation-based MCMC approach, described next, was designed specif-
ically for this reason.

3. Population-based MCMC

As with standard MCMC, the goal of the Pop-MCMC algorithm is
to draw samples from some desired posterior distribution pH(h). A
very nice introduction to the topic of Population-based MCMC
(Pop-MCMC) is given by Jasra et al. [15]. The basic idea is to first
create a new, composite posterior density

pCðhð1:NÞÞ ¼
YN

n¼1

pnðhðnÞÞ ð9Þ

which is a function of the composite parameter vector
h(1:N) = (h(1), . . . ,h(N)). It is required that pn(h(n)) = pH(h) for at least
one n, i.e. one of the posteriors comprising the composite density

is the true posterior distribution. In what follows the authors use
n = 1 to denote the true posterior distribution from which the de-
sired samples will be drawn. If an irreducible, a-periodic Markov
chain can be constructed that has pC(h(1:N)) has its invariant distri-
bution, then samples from the marginal distribution

pHðhÞ ¼
Z

RN�1
pCðhð1:NÞÞdhð2:NÞ

can be drawn where the notation
R

RN�1 dhð2:NÞ denotes the multi-
dimensional integral over all parameters vectors other than
h � h(1). This is accomplished numerically by running ‘‘N’’ Markov
chains concurrently, each exploring its own posterior distribution
pn(h(n)). Each chain can be considered in turn, holding the others
fixed (Gibbs sampling), and samples from p1(h(1)) are retained as
samples from the desired joint posterior.

There exists a good deal of freedom in choosing the pn(�) and in
selecting different types of proposals for exploring the parameter
space. With regard to the former one would like to wisely choose
the pn(�) so as to facilitate easy exploration of the parameter space.
While other approaches can be used (see [15]), in this paper the so-
called tempered sequence of distributions is used

pnðhðnÞÞ � pfn
H ðhðnÞÞ ð10Þ

for fn 2 (0,1]. For f1 = 1, of course, one has the true posterior. For
smaller values of fn one obtain successively smoother versions of
the original posterior. The idea is that the smoothed distributions
are easier for their corresponding Markov chains to explore, yet
they are still related to the true posterior and therefore still carry
information about high probability regions of the parameter space.
As an example consider N = 4 separate instances of the bi-modal
distribution (8) raised to the fn = 1, 0.5, 0.1, 0.0125 powers, respec-
tively. These distributions are shown in Fig. 2. The standard MCMC
algorithm will have an easier time exploring these smoother
parameter spaces. Of course only samples from the distribution
with f1 = 1 are of interest, however the additional distributions
can clearly facilitate efficient sampling if one has a means of passing
information between chains. The chain associated with the true
posterior needs to be informed by the chains exploring the smooth-
er distributions.

Perhaps the simplest type of move to accomplish this is the so-
called swap move. This is similar to a Metropolis–Hastings move
where the proposal is to consider swapping the parameter values
in chains u, v. Assuming an equal probability of selecting chains
u, v from the N possibilities, this swap is accepted with probability

rswap ¼min
puðhðvÞÞpvðhðuÞÞ
puðhðuÞÞpvðhðvÞÞ

;1

( )
: ð11Þ

Typically swap moves are not proposed after every iteration in the
Markov Chains but are performed with some probability. Returning
to the bi-modal example, consider N = 4 chains exploring the com-
posite target

pCðhð1:4ÞÞ ¼
Y4

n¼1

pfn
H ðhðnÞÞ; ð12Þ

thus one has four Markov chains running concurrently with fn = 1,
0.75, 0.5, 0.25, respectively. After each iteration in the Markov chain
a swap move is performed with 50% probability. This move consists
of uniformly selecting two of the chains and evaluating Eq. (11). If
the proposal is accepted the values in the chains are exchanged
and the algorithm continues to the next iteration in the Markov
chains. Fig. 3 shows the results of this sampler All four Markov
chains are informing each other as to the presence of multiple peaks
in the distribution. The end result is that the chain associated with
f1 = 1 contains samples from the desired posterior distribution; this
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distribution is shown in Fig. 3b and compares favorably to the true
posterior density.

While the swap move is an effective means of communicating
among chains, a more sophisticated type of move is required for
the structural estimation problem considered next. Particularly for
multivariate parameter estimation, it is useful to design a move that

can hold multiple parameters fixed while allowing other groups of
parameters to move simultaneously. Such a move is not allowed
with the standard Metropolis-within-Gibbs sampling (one parame-
ter moved at a time) or by the swap move which moves all parame-
ters simultaneously. A particularly effective move is to use
differential evolution to generate a trial vector. Differential evolution
(DE) is the engine of a popular GA used in searching complex param-
eter space [21]. The approach draws at random three members of the
population, h(u), h(v), h(w) and generates the trial vector

hðu
0Þ ¼ hðuÞ þ cðhðvÞ � hðwÞÞ ð13Þ

where c is a user-defined constant. Each of the P elements in this
trial vector replace the elements of the original vector h(u) with
50% probability. This final step (keep new element or retain old)
emulates the ‘‘cross-over’’ step common to most GAs. Once the trial
vector has been generated it is accepted/rejected using rMH (Eq. 6).
However, in order to differentiate among the types of moves the
acceptance ratio for the DE move will be denoted rDE.

It should mentioned that others have proposed a straight cross-
over move whereby the parameter vector is split at a point m < P
for two ‘‘parent’’ vectors and generating the trial vectors:

hðu
0 Þ ¼ ½hðuÞ1 ; . . . ; hðuÞm ; hðvÞ1 ; . . . ; hðvÞP �

hðv
0Þ ¼ ½hðvÞ1 ; . . . ; hðvÞm ; hðuÞ1 ; . . . ; hðuÞP �

ð14Þ

and accepting with probability rswap (Eq. 11)[15]. This is indeed a
useful way of exchanging information between chains, however

0 2000 4000 6000 8000 10000
−5

−4

−3

−2

−1

0

1

2

3

4
(a)

C
ha

in
 1

Iteration
−5 0 5

0

0.1

0.2

0.3

0.4
(b)

θ

p θ(θ
)

True PDF
Sampled PDF

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6
(c)

C
ha

in
 1

Iteration
−5 0 5

0

0.2

0.4

0.6

0.8

1
(d)

θ

p θ(θ
)

True PDF
Sampled PDF

Fig. 1. Markov Chains and estimated bi-modal posterior distribution given by Eq. (8) with l = 2 (a,b) and l = 4 (c,d), respectively.
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Fig. 2. Successive pnðhÞ ¼ pfn
H ðhÞ corresponding to the bi-modal posterior distribu-

tion Eq. (8). The true posterior distribution from which samples are sought is given
by f1 = 1.
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the authors have found that this mechanism is already provided for
in the differential evolution move, thus this type of move is not used
in this paper.

The above-described moves clearly borrows from the genetic
algorithm (GA) approach to optimization problems. In fact, Pop-
MCMC is effectively combining the efficient search capabilities of
GAs with the power of the Bayesian MCMC approach to sampling.
Both types of moves, swap and differential evolution, will be used
in the structural dynamics example presented in subsequent
sections.

4. An efficient cracked plate model

One critical component of this process is a computationally fast
model that is also flexible enough to incorporate a variety of dam-
age modes. The model predicts the lateral deflection of the plate at
a given point in space and time, w(x,y, t). Efficiency of the forward
model is essential as the Pop-MCMC algorithm requires a very
large number of model-to-date comparisons, i.e. evaluate rMH, rswap,
rDE. Flexibility is also desired because while the current study con-
siders damage consisting of only a single straight crack, it is the
model alone that limits the type of damage that can be considered
by this technique. A model that could handle multiple cracks,
branched cracks, edge cracks, or corrosion would be valuable. A
purely analytical model entailing virtually no computation time
would be ideal on both counts. Unfortunately, analytical solutions
for the dynamic response of a rectangular plate with an arbitrary
crack (position, orientation, and size) do not presently exist to
the knowledge of the authors. Solecki [22] produced a solution
for the natural frequencies of a plate with a single crack, but did
not extend it to the myriad of other situations of future interest.
A second possible family of models are finite element solutions.
These clearly have the desired flexibility, but involve time march-
ing and so are computationally intense. In this present work, a
compromise approach is taken. A finite element eigen-solution is
used to build in the features of the crack singularity. Building off
of these numerical frequencies and mode shapes, modal analysis

is used to describe the actual motion in space and time, w(x,y, t).
The eigen-solution to this finite element model gives the modes
in terms of the nodal displacements. The values at the instrumen-
tation locations are interpolated via the natural neighbor method.
Standard modal analysis proceeds from there. This hybrid solution
is many times faster than time marching, while retaining the flex-
ibility inherent in the finite element approach.

An in-house finite element code was developed for this partic-
ular application, so as to more easily wrap the MCMC process
(code) around the time series solution. The model parameters are
the location of the center of the crack (xcrack,ycrack), the crack length
(a), and the orientation of the crack measured from the positive x-
axis (a). See Fig. 4c. The elements away from the crack tip are stan-
dard eight-noded quadrilateral Mindlin serendipity elements, with
nodes at each corner and at the middle of each side. Adjacent to the
crack tip the eight-noded quads are modified as described in Refs.
[23,24]. In short, two corner nodes and the node in between them
are moved to a single location, leaving a triangular element. The
adjacent side nodes are then moved from the midpoints to one
quarter of the side length. The result is an element with a stress
field that varies as 1ffiffi

r
p , where r is the distance from the collapsed

node (to be placed on the crack tip). See Fig. 4a and b for an illus-
tration. This stress distribution exactly matches the Mitchell solu-
tion[25], which is the analytic stress field near a static crack tip.
Because these augmented triangular elements capture the crack
tip behavior, they are placed around the crack tip in a pinwheel
fashion. See Fig. 4d. This permits a more sparse mesh near the
crack tip than would otherwise be necessary. This reduces the
number of degrees of freedom required and, hence, the computa-
tion time.

The cracked plate model involves several standard assump-
tions. First, the model is linear and it is assumed that material
properties are known exactly (though these could be left as un-
known parameters and found via the Bayesian/MCMC approach).
The deflections are presumed small and crack growth is not con-
sidered; the latter is reasonable under small deflections. The crack
is also assumed to remain open, such that impacts at the crack
interface are ignored. Any mass lost loss due to the crack is
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presumed negligible. Finally, there is only one crack and the tips
are at least one half of the crack length from the edges of the
plate. Since finding smaller cracks is the more interesting and
useful problem, the allowable zone is still a very large fraction
of the plates area. Even taken together, the authors do not believe
that these requirements are too onerous.

As with any finite element analysis, convergence of the mesh
must be verified. Due to the large number of iterations, it is not
practical to verify convergence for every perturbed set of parame-
ters. Instead, because all the meshes used are qualitatively similar,
convergence was checked on several representative parameter
vectors.

5. Implementation

In this paper the structure of interest assume a clamped rectan-
gular plate measuring 1.25 m � 1 m with thickness h = 0.01 m with
material properties E = 209 GPa (Young’s modulus), m = 0.3 (Pois-
son’s ratio), and q = 7850 kg/m3 (density). It will also be assumed
that the plate has been instrumented with M displacement sensors
capable of sampling the plate’s response to an input at i = 1, . . . ,T
equally spaced points in time. The observed signal model is there-
fore written (as before)

sij ¼ wijðhÞ þ nij; i ¼ 1; . . . T; j ¼ 1; . . . ;M ð15Þ

where the nij are taken as realizations of an iid, zero-mean, Gaussian
random process, i.e. each nij � N(0,r2). The model (described in the
previous section) is therefore evaluated at the same times i = 1, . . . ,T
and locations j = 1, . . . ,M as the observed data. Under this noise
model the likelihood function for the data is given by [19]

pHðsjhÞ ¼
1

ð2pr2ÞTM=2 e
� 1

2r2

PT

i

PM
j

ðsij�wijðhÞÞ2

ð16Þ

Denoting the sum-squared error over all sensors by

Qðs; hÞ ¼
XT

i

XM

j

ðsij �wijðhÞÞ2;

the sequence of tempered posterior distributions is formed as

pnðhðnÞÞ ¼ pHðsjhðnÞÞ
fn ppðhðnÞÞ ¼

ppðhðnÞÞ
ð2pr2

nÞ
fnTM=2 e

� fn
2r2

n
Qðs;hðnÞÞ

n ¼ 1; . . . ;N ð17Þ

using the sequence f1 = 1.0,

fnþ1 ¼ fn �
1
N
; n ¼ 1; . . . ;N � 1

as suggested by Jasra et al. [15]. The idea here, as in the toy exam-
ple, is to explore a composite posterior where the ‘‘smoothed’’ mar-
ginal posteriors n = 2, . . . ,N are related to the true posterior of
interest, p1(h(1)).

This implementation of the pop-based algorithm proceeds as
follows. The parameter vectors for each of the N chains are initial-
ized by drawing samples from the priors. Then, for each iteration in
the Markov chain, one of the chains n 2 N is selected with uniform
probability, and a standard MH update is performed for each of the
P parameters in h(n) using the Gibbs sampling strategy. Thus, for
each parameter p = 1,. . .,P one generates a candidate value using
Eq. (7), evaluates the ratio

rMH ¼ Exp � fn

2r2
n

Qðs; h�ðnÞp jh
ðnÞ
�pÞ � Qðs; hðnÞjhðnÞ�pÞ

� �� �
ppðh�ðnÞp Þ
ppðhðnÞp Þ

and accepts with probability min(rMH,1). The (unknown) noise var-
iance associated with the nth chain, rn, also needs to be sampled. It
has been demonstrated [19] that by choosing a vague prior for this
parameter, one may directly sample from the posterior via

r2
n �

1
CðMT=2;2=ðfnQðs; hðnÞÞÞ

where C(a,b) denotes the Gamma distribution with parameters a,b.
Once each of the parameters (including the noise variance) have been

Fig. 4. (a) Nodal configuration of the Mindlin serendipity element, (b) resulting interpolation functions, (c) schematic of plate with crack parameters and (d) resulting course
FEM mesh.
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updated for chain n, two different chains u, v 2 [1,N] are selected at
random with uniform probability. With 50% probability either a
‘‘swap’’ move or a ‘‘DE’’ move between these chains is performed.
For the swap move, the prior ratios will cancel, thus one evaluates

rswap ¼ Exp �fu
1

2r2
v

Qðs; hðvÞÞ � 1
2r2

u
Qðs; hðuÞÞ

� ��

� fv
1

2r2
u

Qðs; hðuÞÞ � 1
2r2

v
Qðs; hðvÞÞ

� ��
; ð18Þ

accepting the move with probability min(rswap,1). For the DE move
one requires three randomly drawn chains (see Eq. 13) to generate

the trial vector hðu
0 Þ. The ratio of priors in the acceptance criteria is

also required as they do not cancel out. One therefore evaluates

rDE ¼ Exp � fu

2r2
u

Qðs; hðu0 ÞÞ � Qðs; hðuÞÞ
� �� �

�
QP

pppðhðu
0Þ

p ÞQP
pppðhðuÞp Þ

; ð19Þ

and accept the move with probability min(rDE, 1). To summarize, the
algorithm picks a chain at random and performs a standard MH up-
date on each of the parameters, including the noise variance. The
algorithm then selects chains at random and performs either a swap
move (Eq. 18) or crossover (Eq. 19) with 50% probability. This
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procedure repeats for some number of iterations until enough sam-
ples have been drawn from the posterior distribution.

The algorithm is fairly simple to implement in software, how-
ever is clearly computationally intensive. Each evaluation of a ratio
(rMH,rswap or rDE) requires solving the forward model described in
Section 4. The efficiency of the forward model is therefore of great
importance in using MCMC in structural system identification
problems.

6. Cracked plate identification

There are four parameters that determine the state of damage in
the plate model: crack length a, crack location (xc,yc), and crack ori-
entation hc. These damage parameters are fixed to the values
a = 0.1 m, xc = 0.3 m, yc = 0.5 m, and hc = 30�. Further assume that
four displacement sensors have been placed on the surface of the
plate at the x–y locations (0.375,0.375), (0.375,0.862), (0.862,0.37
5), (0.862,0.862). The acquired data will consist of each sensor’s re-
sponse to four separate impacts (hammer strikes) at locations
(0.29,0.275), (0.29,0.725), (0.96,0.275), and (0.96,0.275). These sen-
sor locations were chosen so as to maximize the sum of the first four
modes in the response. No claims of optimality are made regarding
this choice, in fact finding sensor locations that produce a more well-
defined likelihood is an active area of research.

The data used in the identification procedure consist of four
simulated impulse response signals, sampled at 4 kHz for a

duration of 2 s (T = 8000 observations). The first nine modes were
used in generating the solution, all well below the Nyquist fre-
quency of 2 kHz. The signal to noise ratio was set at 17 dB (50:1)
corresponding to the level of noise observed in previous
experiments.

Given this response the goal is to estimate the posterior distri-
butions associated with each of the crack parameters. Using the
standard MCMC algorithm the authors were unable to consistently
identify the parameters due to the aforementioned problem with
exploring complicated likelihood functions. Fig. 5 shows the argu-
ment of the likelihood, Q(s,h) as a function of different parameter
combinations (holding the others fixed at their true values) As with
the simple 1-D example (Fig. 1), one can immediately see the dif-
ficulty presented by this estimation problem. Consider Fig. 5a.
The location parameter xc has a minimum at the true location,
xc = 0.3, however, there is also a ‘‘trough’’ of minima with a partic-
ularly low value at (xc = 0.85, yc = 0.28). A similarly complicated
likelihood is shown for the parameters a, hc (Fig. 5b). These plots
illustrate the fundamental difficulty in parameter identification
for structural systems: multiple damage states can yield very similar
structural response data.

For this reason the authors have gravitated toward the popula-
tion-based approach to sampling the posterior. In the example that
follows, N = 10 chains were used for each of the parameters a, hc, xc,
yc. The prior for the crack parameter a is take to be a Gamma dis-
tribution, ppa

ðaÞ ¼ aa�1 Exp½�a=b�
CðaÞba with parameters a = 1.25, b = 0.025.

Thus, essentially no damage is assumed at the outset. Certainly this
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and hc = �20.
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distribution can be altered to reflect a known level of damage,
however the more typical case is to assume the plate is healthy
and allow the data (likelihood) to drive the posterior. The form of
this prior (Gamma) was chosen based on the fact that the crack
cannot be negative. One might also have chosen a Beta prior which
has finite support on the plate, however for the prior parameters
chosen there is essentially no probability of the crack extending
off the end of the plate. For the crack location parameters xc, yc uni-
form priors were chosen over the span of the crack, i.e. xc U(0,1.25),
yc U(0,1) reflecting the fact that no a prior knowledge about the
crack location exists. Similarly the prior on crack angle was taken
as hc U(�90,90) as in general one will not know the crack orienta-
tion a priori either. The prior distributions are displayed in Fig. 6.

Initializing the Markov chains using these priors, the popula-
tion-based MCMC algorithm was run for 60,000 iterations with a
burn-in of 50,000 iterations. The remaining 10,000 iterations were
stored and used to form the posterior densities shown in Fig. 6. In
this simulation, and in others the authors have looked at, crack
length is perhaps the most easily identified parameter. The Markov
chains in all populations tend to the true value (a = 0.1) after only a
few thousand iterations. Likewise, the location parameter yc exhib-
its a uni-modal posterior distribution. The other parameters, xc, hc

are significantly more challenging to estimate as both show the
clear presence of multiple maxima in the likelihood. The location
parameter xc exhibits multi-modal behavior. In particular one can
see the multiple minima observed in Fig. 5. The two peaks located
at xc = 0.3, xc = 0.4 presented a significant challenge for the regular
MCMC algorithm. Because crack lengths were initially assumed
small, the first minimum encountered by the Markov chain was
the one located at xc = 0.4 and the solution would often remain
here. Running multiple chains easily overcomes this problem. Per-
haps the greatest utility of the approach, however, can be seen in
the identified orientation hc. Regardless of crack geometry, there
are nearly always multiple solutions for hc that come close to max-
imizing the likelihood. The result are multiple well-defined local
maxima that easily trap the standard MCMC algorithm. By con-
trast, Fig. 6 captures the relative heights of these maxima indicat-
ing that the highest probability for crack orientation is at the true
value, hc = 30�.

As a second example, Fig. 7 shows the identified posterior dis-
tributions for the case where the true crack parameters were set
to the values a = 0.1, xc = 0.6, yc = 0.35, hc = �20. Additionally, the
Gamma prior (biased toward no crack) was changed to a Uniform
prior in order to demonstrate the insensitivity of the approach to
this choice. It could be that the practitioner has no a prior informa-
tion regarding the presence and length of a crack, thus a uniform
prior would be appropriate. All parameters are again correctly
identified, provided that the final estimate is taken as the maxi-
mum a posterior value. Again, one sees multiple ‘‘good’’ solutions
which can often trap the standard MCMC algorithm. For example,
the crack location parameter yc has a fairly high probability of
being yc = 0.7 despite the fact that the true value is a factor of
two different. Similarly multiple peaks for the orientation parame-
ter hc can be seen. The authors note that the standard MCMC algo-
rithm was not able to sample from these complex posterior
distributions.

The complexity of the posterior distributions is simply a con-
sequence of trying to identify parameters that have little affect
on the global vibrations. It is obvious from the likelihood plots
(Fig. 5) that varying crack configurations can lead to nearly the
same vibrational response. This is part of the physics of structural
identification problems and the Bayesian approach, using the
pop-MCMC algorithm, is correctly reflecting this uncertainty.
Rather than producing point estimates which may or may not
coincide with the true parameter value, the approach described
here allows for a full accounting of the probability associated

with different crack configurations. The authors view this as a
strength in difficult system identification problems, particularly
those in damage detection where quantifying uncertainty is crit-
ical to making informed decisions regarding the health of a struc-
ture. Choosing to use more modes in the model helps the
situation, however, in practice it becomes increasingly difficult
to match model to data for higher modes. In this paper the focus
was on the first five modes of the response.

7. Conclusions

This paper proposes a population-based Markov Chain Monte
Carlo method for solving complicated system identification prob-
lems in structural dynamics. Both the application and specific
implementation of the method are new. The Pop-MCMC method
is well-suited to the types of posterior parameter distributions of-
ten found in structural dynamics problems. These distributions
tend to be multi-modal and can easily confuse standard MCMC ap-
proaches. The population-based approach, by contrast, uses con-
cepts from genetic algorithm search routines to more efficiently
search this parameter space. The sampling is done in such a way
as to avoid becoming stuck in locally optimal solutions. The effi-
cacy of the approach has been demonstrated in identifying crack
location, length, and orientation using only simulated impulse-re-
sponse data from a cracked-plate model. Because the Pop-based
MCMC method requires repeated iterations of the forward model,
great care was taken in developing an efficient model. This was
accomplished by using tailored ‘‘serendipity’’ elements to describe
the stress field near the crack tip. This allows for good model con-
vergence with many fewer elements than are used in standard fi-
nite element codes. The combination of efficient modeling and
effective parameter identification routines can provide a wealth
of information about the state of a structure. Both the parameter
estimates and the credible intervals associated with those esti-
mates are obtained. This allows for confidence-based decisions
regarding the maintenance of a structure and also provides infor-
mation needed in prognostics models for damage evolution in
structures.

Acknowledgments

The authors would like to acknowledge the Office of Naval Re-
search under Contract No. N00014-09-WX-2-1002 for providing
funding for this work.

References

[1] Horibe T, Watanabe K. Crack identification of plates using genetic algorithm.
JSME Int J 2006;49:403–10.

[2] Stull CJ, Earls CJ, Aquino W. A posteriori initial imperfection identification in
shell buckling problems. Comput Methods Appl Mech Eng 2008;198:260–8.

[3] Panigrahi SK, Chakraverty S, Mishra BK. Vibration based damage detection in a
uniform strength beam using genetic algorithm. Meccanica 2009;44:
697–710.

[4] Hwang S-F, Wu J-C, He R-S. Identification of effective elastic constants of
composite plates based on a hybrid genetic algorithm. Compos Struct
2009;90:217–24.

[5] Fonseca JR, Friswell MI, Mottershead JE, Lees AW. Uncertainty identification by
the maximum likelihood method. J Sound Vib 2005;288:587–99.

[6] Xu GY, Zhu WD, Emory BH. Experimental and numerical investigation of
structural damage detection using changes in natural frequencies. J Vib Acoust
2007;129:686–700.

[7] Kiureghian AD, Dakessian T. Multiple design points in first and second-order
reliability. Struct Safety 1998;20:37–49.

[8] Guo X, Bai W, Zhang W, Gao X. Confidence structural robust design and
optimization under stiffness and load uncertainties. Comput Methods Appl
Mech Eng 2009;198:3378–99.

[9] Beck JL, Au S-K. Bayesian updating of structural models and reliability using
Markov Chain Monte Carlo simulation. J Eng Mech – ASCE
2002;128(4):380–91.

J.M. Nichols et al. / Computers and Structures xxx (2011) xxx–xxx 9

Please cite this article in press as: Nichols JM et al. Bayesian identification of a cracked plate using a population-based Markov Chain Monte Carlo method.
Comput Struct (2011), doi:10.1016/j.compstruc.2011.03.013

http://dx.doi.org/10.1016/j.compstruc.2011.03.013


[10] Cheung SH, Beck JL. Bayesian model updating using hybrid Monte Carlo
simulation with application to structural dynamic models with many
uncertain parameters. J Eng Mech – ASCE 2009;135(4):243–55.

[11] Au SK, Ching J, Beck JL. Application of subset simulation methods to reliability
benchmark problems. Struct Safety 2007;29:183–93.

[12] Glaser RE, Lee CL, Nitao JJ, Hickling TL, Hanley WG. Markov chain Monte Carlo-
based method for flaw detection in beams. ASCE J Eng Mech
2007;133(12):1258–67.

[13] Zhang B-T, Cho D-Y. System identification using evolutionary Markov Chain
Monte Carlo. J Syst Architect 2001;47:587–99.

[14] Vrugt JA, ter Braak CJF, Diks CGH. Accelerating Markov Chain Monte Carlo
simulation by differential evolution with self-adaptive randomized subspace
sampling. Int J Nonlinear Sci Numer Simul 2009;10(3):273–90.

[15] Jasra A, Stephens DA, Holmes CC. On population-based simulation for static
inference. Stat Comput 2007;17:263–79.

[16] Geyer CJ. Markov chain maximum likelihood. In: Keramigas E, editor.
Computing science and statistics: the 23rd symposium on the
interface. Fairfax: Interface Foundation; 1991. p. 156–63.

[17] Kim W, Park J, Lee KM. Stereo matching using population-based mcmc. Int J
Comput Vision 2009;83:195–209.

[18] Hastings WK. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 1970;57(1):97–109.

[19] Nichols JM, Link WA, Murphy KD, Olson CC. A Bayesian approach to identifying
structural nonlinearity using free-decay response: application to damage
detection in composites. J Sound Vib 2010;329(15):2995–3007.

[20] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of
state calculations by fast computing machines. J Chem Phys
1953;21(6):1087–92.

[21] Storn R, Price R. Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J Global Optim 1997;11:
341–59.

[22] Solecki R. Bending vibration of a rectangular plate with arbitrarily located
rectilinear crack. Eng Fract Mech 1985;22(4):687–95.

[23] Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. Int J Numer
Methods Eng 1975;9:495–509.

[24] Barsoum RS. On the use of isoparametric finite elements in linear fracture
mechanics. Int J Numer Methods Eng 1976;10:25–37.

[25] Mitchell J. Elementary distributions of plane stress. Proc Lond Math Soc
1901;32:35–61.

10 J.M. Nichols et al. / Computers and Structures xxx (2011) xxx–xxx

Please cite this article in press as: Nichols JM et al. Bayesian identification of a cracked plate using a population-based Markov Chain Monte Carlo method.
Comput Struct (2011), doi:10.1016/j.compstruc.2011.03.013

http://dx.doi.org/10.1016/j.compstruc.2011.03.013

	Bayesian identification of a cracked plate using a population-based Markov  Chain Monte Carlo method
	Introduction

	Bayesian identification of a cracked plate using a population-based Markov  Chain Monte Carlo method
	Brief review of Bayes rule and MCMC
	Population-based MCMC
	An efficient cracked plate model
	Implementation
	Cracked plate identification
	Conclusions
	Acknowledgments
	References


