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ABSTRACT   
 
The detection performance of maritime radars is usually limited by sea clutter. The K distribution 
is a well established statistical model of sea clutter which is widely used in performance 
calculations.  There is no closed form solution for the probability of detection in K-distributed 
clutter, so numerical methods are required. The K distribution is a compound model which 
consists of Gaussian speckle modulated by a slowly varying mean level, this local mean being 
gamma distributed. A series solution for the probability of detection in Gaussian noise is 
integrated over the gamma distribution for the local clutter power. Gauss-Laguerre quadrature is 
used for the integration, with the nodes and weights calculated using matrix methods, so that a 
general purpose numerical integration routine is not required. The method is implemented in 
Matlab and compared with an approximate solution based on lookup tables. The solution 
described here is slower, but more accurate and more flexible in that it allows for a wider range of 
target fluctuation models. 
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Calculation of Radar Probability of Detection in 
K-Distributed Sea Clutter and Noise     

 
 

Executive Summary    
 
Modelling of the radar returns from the sea is required for operations analysis of maritime 
patrol, in order to calculate probabilities of detection for targets of interest. The detection 
performance of maritime radars is usually limited by sea clutter. A statistical model of the 
clutter is normally used, and the K distribution has become standard for this purpose. 
There is no closed form solution for the probability of detection in K-distributed clutter, so 
numerical methods are required. A method for calculation of the probability of detection 
in K-distributed clutter and noise is described, and compared with other approaches. It is 
faster than direct numerical integration, and more flexible and more accurate, but slower, 
than an approximate method based on interpolation. Faster evaluation is highly desirable 
for simulation models used in operations research. The method described here could be 
used to create tables for interpolation, which should produce the appropriate mix of speed 
and accuracy for operations research simulation models. 
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1. Introduction  

Modelling of the radar returns from the sea is required for operations analysis of maritime 
patrol, in order to calculate probabilities of detection for targets of interest. In this context the 
backscatter from the sea is referred to as sea clutter. A statistical model of the clutter is 
normally used, and the K distribution has become standard for this purpose [1]. Sea clutter 
consists of a rapidly varying speckle component and an underlying mean amplitude which 
varies more slowly. The K distribution provides a compound representation which includes 
both components. Thermal noise, which has Gaussian statistics, must also be considered in 
calculating probabilities of detection. Fluctuations in the target return also need to be taken 
into account, and this is normally done with statistical models based on the gamma 
distribution. 
 
The calculation of the probability of detection in K-distributed clutter and noise is quite 
difficult. An approximate method was developed by Watts and Wicks [2,3]. This method is 
fast, because the probability of detection is obtained by linear interpolation in a table, 
following some preliminary calculations which need only be done once for each set of 
parameters. However, the result is only approximate, and the necessary tables of coefficients 
[3] are only available for the Swerling 1 and 2 target fluctuation models, as well as a non-
fluctuating target (Swerling 0). Alternatively, the probability of detection can be calculated by 
numerical integration over the K distribution. This will give accurate results, but it is slow, 
and therefore impractical for use in simulations where the probability of detection must be 
updated frequently. Another approach is described in [1], and further explored in this report, 
in which the K distribution is separated into its components and only the integration over the 
local clutter power is carried out numerically. 
 
 

2. Probability of Detection  

2.1 The K Distribution 

The K distribution for the clutter intensity can be expressed as 
 

  (1) 
0

( ) ( | ) ( )cP z P z x P x dx
∞

= ∫
where 

 
1( | ) exp( )P z x z x
x

= −  (2) 

and 

 
1
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−

= −
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Equation (3) is the Gamma distribution for the local clutter power x. The mean power is 
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 cp x bν= =  (4) 
 
Equation (1) evaluates to 

 ( ) ( )1

1
2( ) 2
( )
bP z bz K bz

ν

νν
−

−=
Γ

 (5) 

 
The modified Bessel function K in equation (5) gives the distribution its name. However, for 
calculating the probability of detection it is advantageous to keep the speckle and modulation 
components separate, assuming that the local clutter power x remains constant over the beam 
dwell time. 
 
2.2 Probability of Detection Calculation 

The probability of detection in Gaussian noise and speckle is 
 

 ( | , ) ( | , )d RY
P Y x N P s N dµ µ

∞
= ∫  (6) 

 
The threshold Y is normalised by the noise and local clutter power x. 
 
The sum of N radar returns, normalised by the noise and local clutter power is 
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The sum of the target powers from the N pulses is 
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The probability density function for the sum µ of N radar returns from a fixed target in 
Gaussian noise is the multilook Rice distribution, 
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The series form of equation (9) is obtained using the series expansion for the Bessel function 
[4, §8.445]: 
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The integral in equation (6) can be evaluated to give the double sum formula for the 
probability of detection for a fixed target [5,6,7]: 
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The manipulation of the series in equation (11) makes use of the result 
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Target fluctuations are modelled using the Gamma distribution for the sum of target returns s: 
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where 

 
2

n
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S

x p
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+
 (14) 

 
The Gamma distribution encompasses all the Marcum-Swerling and Weinstock target models 
[8],[9, Section B] as shown in the table below: 
 

Weinstock 0 < k < 1 
Swerling 1 k = 1 
Swerling 2 k = N 
Swerling 3 k = 2 
Swerling 4 k = 2N 
Swerling 0 k → ∞ 

 
A non-fluctuating target (Swerling 0) corresponds to k → ∞ or s = S. 
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The probability of detection for a fluctuating target is [9, Section B] 
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Numerical calculation of the probability of detection from equations (11) and (15) is not 
straightforward, due to underflow and loss of significance. Appendix A gives some insight 
into the nature of the series in these equations, and shows why it is not always possible to 
begin the summation with the first term, even with high precision arithmetic. Shnidman 
[5,6,7,9,10] has developed methods to carry out these calculations efficiently, and coded the 
resulting algorithms in Matlab 1. Chernoff bounds (Appendix B) are used to avoid 
unnecessary calculations. 
 
2.3 Integration over the Clutter Power 

The probability of detection in K-distributed clutter with a single pulse threshold yn and local 
clutter power x is 

  (16) 
0

( , ) ( | , ) ( )d n d cP y N P Y x N P x dx
∞

= ∫
 
where Pd(Y|x) is calculated as for detection in noise, equation (6), and Pc(x) is the Gamma 
distribution (3). The threshold yn is normalised by the sum of the noise power pn and the mean 
clutter power pc. At first sight, numerical integration over the local clutter power seems 
unlikely to provide a fast and efficient method for calculating the probability of detection. 
However, if we make the substitution t = bx in the Gamma distribution (3) this becomes 
 

 
1

( ) ( )
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t

c c
t eP x dx P t dt dt
ν

ν

− −

= =
Γ

 (17) 

 
In terms of the mean clutter power pc, t = νx/pc. Equation (16) becomes 
 

 1

0

1( , ) ( | , )
( )

t
d n dP y N P Y t N t e dtν

ν
∞ − −=

Γ ∫  (18) 

 
This integral is readily evaluated using Gauss-Laguerre quadrature [11, Section 4.5].  The 
Laguerre polynomials are generated from a recurrence relation, and the nodes and weights 
are calculated from the eigenvalues and eigenvectors of a symmetric tridiagonal matrix. 
Gautschi [12] has written Matlab code to do this. In most cases sufficient accuracy in Pd is 
                                                      
1 Private communication. 
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obtained with only 10 quadrature points. The exception is low thresholds and ν < 1, where 
many more points are needed to cope with the singularity at the origin. However, this 
situation is not of much practical importance, because a high threshold is needed to achieve a 
satisfactory probability of false alarm when ν is small.  The maximum value of ν for which this 
method of integration can be used in Matlab is 171, because it requires Г(ν) to be less than the 
largest floating point number which can be represented, i.e. Г(ν) < 10308. As ν → ∞ the clutter 
becomes noise like, so integration over the Gamma distribution is not required. There is a very 
small, but perceptible, difference between the probability of detection calculated for ν = 170 
and the Rayleigh limit where the clutter is treated as noise. 
 
2.4 Normalisation 

The threshold Y is normalised by the noise and local clutter power. In terms of a single pulse, 
unnormalised threshold y 
 

 
n

NyY
x p

=
+

 (19) 

 
We would like to express this in terms of the clutter to noise ratio CNR and the integration 
variable t. 
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where yn is the single pulse threshold normalised by the mean clutter plus noise power. 
 
In the same way we would like to express the signal S in terms of the signal to noise ratio 
SNR, the clutter to noise ratio CNR and the integration variable t. From equation (14), 
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For the clutter only case we have pn = 0 or CNR → ∞ so 
 

 andn
N NY y S SCR
t t
ν ν

= =  (22) 

 
where SCR is the signal to clutter ratio. 
 
2.5 Probability of False Alarm 

The probability of false alarm is obtained from equation (11) with s = 0 (note that 00 ≡ 1) 
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Y NP Y x N e
j N
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= =
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 (23) 

 
In terms of the Matlab incomplete gamma function, Pfa = 1 – gammainc(Y,N). 
 
In order to calculate the probability of detection for a given probability of false alarm, the 
threshold must be determined from the probability of false alarm. This can be done using the 
Matlab root finding function fzero. This function requires either a starting estimate for the 
root, or an interval which brackets the root. In the first case fzero searches for the starting 
interval itself, which tends to cause it to fail, because the probability of false alarm is 
undefined for negative thresholds, and underflows to zero for large positive thresholds. A 
starting interval of 0.1 to 1100 for yn was found to be satisfactory. Integration over the local 
clutter power does not impede the calculation much, because the nodes and weights depend 
only on ν, so they don’t need to be recalculated during the root finding process. 
 
In the case of a single pulse return from clutter, the integral over the clutter power can be 
evaluated to give 
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This solution is used in Section 3.4 to assess the accuracy of the numerical integration with 
different numbers of quadrature points. 
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3. Sample Calculations 

3.1 Probability of False Alarm 

Figure 1 shows the probability of false alarm for a single pulse return from K-distributed 
clutter, for different values of the shape parameter ν. Figure 1 reproduces Figure 8.6 from 
reference [1]. 
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Figure 1 Probability of false alarm for a single pulse return from K-distributed clutter, for different 

values of the shape parameter ν 

 
3.2 Probability of Detection 

Figure 2 shows the probability of detection for a single pulse return from a fixed target in 
K-distributed clutter with ν = 10, for different probabilities of false alarm. Figure 2 reproduces 
the top graph in Figure 8.11 from reference [1]. Figure 3 shows the probability of detection for 
the incoherent sum of 10 pulses from a Swerling 1 target in K-distributed clutter with ν = 0.1, 
for different probabilities of false alarm. Figure 3 reproduces the bottom graph in Figure 8.14 
from reference [1]. 
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Figure 2  Probability of detection for a single pulse return from a fixed target in K-distributed clutter 

with ν = 10, for different probabilities of false alarm 
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Figure 3  Probability of detection for the incoherent sum of 10 pulses from a Swerling 1 target in 

K-distributed clutter with ν = 0.1, for different probabilities of false alarm 
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3.3 Target Fluctuation Models 

Figure 4 shows the probability of detection for the Swerling target models in noise following 
incoherent integration of 16 pulses. Figure 4 reproduces the top graph in Figure 8.17 from 
reference [1]. 
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Figure 4 Probability of detection for Swerling target models in noise following incoherent integration 

of 16 pulses, with a probability of false alarm of 10-4

 
3.4 Convergence of the Integral over the Clutter Power 

Gaussian quadrature with n points is exact for an integrand in the form of a polynomial of 
order 2n [11, Section 4.5]. The integrand here is not a simple polynomial, so the number of 
quadrature points required for a sufficiently accurate result needs to be established. Figure 5 
shows the probability of false alarm for a single pulse return from K-distributed clutter with 
ν = 0.1, for different numbers of quadrature points, along with the analytic solution. Figure 6 
shows the relative error in the probability of false alarm in Figure 5. It is noticeable that the 
number of points required to reduce the relative error to a satisfactory level is greater for low 
thresholds. Figure 7 shows the probability of detection for a single pulse return from a 
Swerling 2 target in K-distributed clutter with ν = 0.1 and a probability of false alarm of 10-2, 
calculated with different numbers of quadrature points. Figure 8 shows the absolute error in 
the probability of detection in Figure 7, estimated as the difference between the Pd for the set 
number of quadrature points and that using 150 points. The absolute error with 10 quadrature 
points is less than 10-2 for all signal to clutter ratios. 

UNCLASSIFIED 
9 



UNCLASSIFIED  
DSTO-TN-1000 

0 5 10 15 20 25 30
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Threshold (dB)

lo
g 10

(P
FA

)

 

 
4
10
20
100

∞

 
Figure 5  Probability of false alarm for a single pulse return from K-distributed clutter with ν = 0.1, 

for different numbers of quadrature points. The infinite limit is the analytic solution, 
equation  (24). 
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Figure 6 Relative error in the probability of false alarm in Figure 5 
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Figure 7  Probability of detection for a single pulse return from a Swerling 2 target in K-distributed 

clutter with ν = 0.1 and a probability of false alarm of 10-2, calculated with different 
numbers of quadrature points 
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Figure 8 Absolute error in the probability of detection in Figure 7 
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3.5 Rayleigh Limit 

Figure 9 shows the probability of detection for the incoherent sum of 10 pulses from a 
Swerling 2 target in K-distributed clutter, for different values of the clutter shape parameter ν.  
As noted in Section 2.3, the largest value of ν for which the integration over the clutter power 
can be done in Matlab is 171. Figure 9 shows this is not quite the same as the Rayleigh limit of 
ν → ∞ where the clutter can be treated as noise. 
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Figure 9  Probability of detection for the incoherent sum of 10 pulses from a Swerling 2 target in 

K-distributed clutter, for different values of the clutter shape parameter ν and a probability 
of false alarm of 10-4

 
3.6 Comparison with the Method of Watts and Wicks 

Figure 10 shows the probability of detection for the incoherent sum of 5 pulses from a 
Swerling 2 target in K-distributed clutter, for different values of the clutter shape parameter ν. 
Figure 10 reproduces Figure 6 from reference [3]. Calculation of 182 data points in Matlab 
required 0.11 s using the method of Section 2 (the curves in Figure 10) and 0.04 s using the 
method of Watts and Wicks [2,3] (dots in Figure 10) 2. The speed comparison is quite 
favourable because the nodes and weights for the numerical integration only need to be 
calculated once for each curve in Figure 10. In a simulation model the clutter shape parameter 
will normally be different for each data point, so the nodes and weights must be recalculated 
every time. In this situation the method described here is slower than the method of Watts 

                                                      
2 Calculations carried out with Matlab R2009b on a 32 bit desktop computer with a 3.2 GHz dual core 
Pentium processor, running Windows XP. 
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and Wicks by a factor of about 30. The method of Watts and Wicks is an approximation which 
involves only linear interpolation in a table, following some preliminary calculations. The 
method described here is slower, but more accurate and more flexible in that it allows a wider 
range of target fluctuation models with no additional work. The coefficients required for the 
method of Watts and Wicks have only been published for Swerling 0, 1 and 2 targets [3]; 
calculation of the necessary coefficients for other target models would be quite laborious. 
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Figure 10  Probability of detection for the incoherent sum of 5 pulses from a Swerling 2 target in 

K-distributed clutter, for different values of the clutter shape parameter ν and a probability 
of false alarm of 10-4. The curves are calculated using the method described in Section 2, and 
the dots are calculated using the method of Watts and Wicks [2,3].  

 
3.7 Interpolation Scheme 

Faster evaluation is highly desirable for simulation models used in operations research. The 
method of calculation described here could be used to create interpolation tables for Pd, which 
may assist in speeding up computation in some situations. A possible interpolation scheme is 
explored in Appendix C. 
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4. Possible Extensions 

4.1 Constant False Alarm Rate Processing 

Constant false alarm rate (CFAR) processing is often used to adapt the detection threshold to 
the changing clutter background. A variety of schemes are used [1, Chapter 9], some more 
amenable to mathematical analysis than others. The limiting case is ‘ideal CFAR’ in which the 
threshold follows the clutter background exactly. Ideal CFAR can be modelled by adapting 
the calculations described above, but the resulting probability of detection is unrealistically 
high, particularly for spiky clutter (small ν) [1, Section 9.2.3.7]. The fixed threshold calculation 
is more useful for operations analysis because it gives an estimate of worst case performance. 
Another approach is to calculate the detection performance for a fixed threshold and then 
apply a separately calculated CFAR loss [1]. Shnidman [9] has devised mathematical 
expressions for cell averaging CFAR, but these are based on a non-central chi-square 
distribution for the clutter [13] instead of the K distribution. 
 
4.2 KK Distribution 

The KK distribution is a linear combination of two K distributions with different parameters, 
used when non-Rayleigh white caps or sea spikes extend the tail of the distribution [14,15]. It 
should be straightforward to extend the method of calculation described here to the 
KK distribution, simply by replacing equation (1) with the sum of two integrals, one for each 
component of the distribution. 
 
4.3 Clutter Correlations 

The method described by Ward, Tough and Watts [1] allows for pulse to pulse correlation in 
the clutter speckle with an effective number of looks L which is less than N, the number of 
pulses integrated. In the case of fixed frequency operation, where the clutter speckle is 
constant from pulse to pulse, L = 1. Military radars generally use frequency agility to 
decorrelate the clutter from pulse to pulse. Residual correlation in the clutter can be accounted 
for with the effective number of looks L < N, with L not necessarily an integer [16]. The basic 
framework of the calculation is similar, but the clutter speckle is included with the target 
fluctuations instead of adding it to the noise. The integration over the local clutter power 
remains the same, but the probability of detection in equations (11) and (15) is replaced with 
more complicated expressions [1, Chapter 8] 3. 
 
4.4 Target Models 

Shnidman [17] has further expanded on the Swerling target models by including a persistent 
component in the target reflection, which is modelled using either the non-central gamma or 
the non-central gamma-gamma distribution. These expanded models are intended for targets 

                                                      
3 The author has coded these expressions in Matlab, and reproduced Figures 8.7, 8.15 and 8.16 from [1], 
but the code is rather slow and inefficient. It is not clear if (or how) the method can be applied in the 
clutter only case, when the noise power is zero. 
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where the Swerling cases do not work well for high signal to noise ratios, and the Weibull or 
log-normal distributions have previously been used to model the signal fluctuations. In 
operations analysis we are mainly concerned with finding the performance limit for low 
signal to interference ratios, and the target models provided by the gamma distribution 
should be sufficient for this. 
 
 

5. Conclusion 

A method for calculation of the probability of detection in K-distributed clutter and noise has 
been described. The probability of detection in the local clutter power plus noise is obtained 
from a series solution, and this solution is integrated over the gamma distribution for the local 
clutter power. The method is faster than direct numerical integration over the K distribution, 
and it may be suitable for use in simulation models for operations research. It is slower, but 
more flexible and more accurate, than the method of Watts and Wicks, an approximate 
method based on interpolation. Faster evaluation is highly desirable for simulation models 
used in operations research. The method described here could be used to create tables for 
interpolation, which should produce the appropriate mix of speed and accuracy for 
operations research simulation models. 
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Appendix A:  The Series Expansion for the Probability 
of Detection in Noise 

Some insight into the nature of the series for the probability of detection in noise can be 
gained using the Stirling approximation for the gamma function [18, equation (7.141)]: 
 

 
1 1
2 2

! 2( ) ( 1)!

or ln ( ) ln ln(2 ) ln( )

z zzz z z e
z z

z z z z z
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 (25) 

 
The terms in the first sum from equations (11) and (15) are in the form 
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and 

 
( )( )21

2exp

2
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m

Y m
p

mπ

− −
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so for large Y the series terms form a normal distribution with mean Y and variance m. It 
follows that the number of terms required to obtain a desired accuracy in Pd is proportional to 
the square root of Y, and the required terms are centred around m = Y. If Y is large the terms 
are very small for small m, so it is not possible to start the series evaluation at m = 0, because 
the first term will underflow to zero. The approximation (28) is only valid for large Y and m. 
The problem of finding a suitable starting value for m is addressed by Shnidman [6] using the 
approximation 
 

 ( ) ( )2 1
2

1 exp where 2
2mp u u Y m
π

≈ − = − − − 1
2m −  (29) 

 
which is valid for m < 2Y and m >> ½. This is derived from an approximation for the 
non-central chi-square distribution [19]. 
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Appendix B:  Chernoff Bounds 

If the precision of the computer arithmetic is ε, Pd evaluates to 1 for Pd > 1 – ε. Similarly, Pd 
evaluates to zero for Pd < εm, where εm is the smallest number which can be represented on the 
computer. For the double precision arithmetic in Matlab, ε ~ 10-15 and εm ~ 10-308. Chernoff 
bounds [9, Section IV B],[20] provide a means to avoid unnecessary calculations in these cases. 
We use ε for the lower bound and 1 – ε for the upper bound. 
 
The unit step function can be bounded from above by exp(λ(x-t)), and from below by 
1 - exp(-λ(x-t)), for positive λ (Figure 11). 
 

x

1

el Hx - tL

1 - e-l Hx - tL

t

 
Figure 11 Upper and lower bounds to the unit step function 

 
Since 

 
0

( ) ( ) ( )
t

f x dx u x t f x dx
∞ ∞

= −∫ ∫  (30) 

 
we can bound this integral from above or below by replacing the unit step function with the 
appropriate bound. These bounds are generally easier to evaluate than the original integral, 
and the parameter λ can be chosen to give the closest bound. 
 
From equations (6) and (9), the probability of detection for N radar returns from a fixed target 
in noise is 

 ( )
( 1)/2
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The Chernoff bound for this case is 
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The value of λ which gives the closest bound is obtained by solving 
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for λ. Equation (33) can be rearranged to form a quadratic in λ with the solution 
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where the negative square root is chosen to give the correct sign for λ0. The bounds on the 
probability of detection are 
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The Chernoff bound CB is calculated for each set of parameter values. If it is less than ε, the 
probability of detection is set to 0 for Y > s + N, or 1 for Y < s + N. 
 
The probability of detection for a fluctuating target in noise is 
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 (37) 

 
where 1F1(a;c;z) is the confluent hypergeometric function [4, §9.210/1]. This result was 
obtained by Swerling [8, equation (54)]. It also appears as equation (9) in reference [5], but the 
latter version contains several typographical errors. 
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The Chernoff bound for this case is 
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Equation (38) is evaluated using a definite integral of the confluent hypergeometric function 
[4, §7.621/5]: 
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The value of λ which gives the closest bound is obtained by solving 
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for λ. Equation (40) can be rearranged to form a quadratic in λ with the solution 
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Appendix C:  Interpolation Scheme 

In a calculation of radar performance as a function of ground range, the signal to noise ratio, 
the clutter to noise ratio and the grazing angle all vary from point to point. The clutter shape 
parameter ν also changes, because it depends on the grazing angle. Thus the nodes and 
weights for the integration over the clutter power, which depend on ν, must be recalculated at 
every point. This makes the calculation method described here rather slow for calculations of 
radar performance such as those in [22]. It may be preferable to tabulate the probability of 
detection as a function of signal to interference ratio (SIR) 4 for different values of ν, and then 
use interpolation in this table for the radar performance calculation. 
 
The probability of detection table has three variable parameters: SIR, CNR and ν. Variations in 
many parameters of interest, such as sea surface wind speed and direction, and platform 
altitude, speed and heading, affect only these three variables. Other radar parameters such as 
the false alarm number and the number of pulses integrated remain constant, however if they 
are changed the table must be recalculated.  
 
Linear interpolation is satisfactory if a logarithmic scale is used for the variable parameters, 
and it is convenient to use the built-in Matlab function for interpolation in three dimensions 
for this purpose. Instead of interpolating log(ν), it may be advantageous to interpolate the 
quantity 
 
 ( )0

10log 1 ν
νη = +  (43) 

 
The SIR for Pd = 0.5 is approximately linear in η (Figure 12), and the Rayleigh case (ν → ∞) 
corresponds to η = 0, which enables interpolation between this case and finite values of ν. (The 
main effect of varying ν is a shift of the Pd curve to higher signal to interference ratios as ν 
decreases, which is quantified by the SIR required for Pd = 0.5.) Watts and Wicks [2] use an 
empirical expression in the form (43) for the signal to clutter ratio for Pd = 0.5. In their 
expression ν0 depends on the false alarm number and the target fluctuation model, but for the 
purposes of interpolation it is sufficient to use a constant. If we take ν0 = 9.9, η ranges from 0 to 
2 as ν varies from infinity down to 0.1. 
 

                                                      
4 SIR = SNR/(1+CNR) in clutter and noise; SIR = SCR  in clutter only. 
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Figure 12 Signal to interference ratio for Pd = 0.5 plotted against the parameter η (equation (43)). 

This example is for the incoherent sum of 5 pulses from a Swerling 2 target in K-distributed 
clutter, with a probability of false alarm of 10-4. 

 
The effect of CNR on the Pd curve is highly non-linear. It also depends on ν: if ν is small, 
varying CNR has a significant effect, whereas if ν is large the clutter is noise-like so varying 
CNR has little effect (Figure 13). The dependence on ν makes it difficult to linearise the effect 
of CNR, but the quantity 
 

 10 1

9log 1
1 CNR

ξ
⎛ ⎞

= +⎜ +⎝ ⎠
⎟  (44) 

 
is useful for interpolation. As CNR varies from 0 to ∞, ξ ranges from 0 to 1. 
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Figure 13  Signal to interference ratio for Pd = 0.5 plotted against the parameter ξ (equation (44)), for 

different values of the clutter shape parameter ν. This example is for the incoherent sum of 5 
pulses from a Swerling 2 target in K-distributed clutter, with a probability of false alarm of 
10-4. 

 
Steps of 0.5 dB in SIR, steps of 0.125 in η, and steps of 0.0625 in ξ were found to be sufficient to 
create a table for successful interpolation of the probability of detection for fluctuating targets. 
The interpolation table contained a total of 81×17×17 = 23409 points, with SIR ranging from -
5 dB to 35 dB. Many points in the interpolation table lie outside the Chernoff bounds 
(Appendix B), and Pd is set to 0 or 1 without calculation at these points. The nodes and 
weights for integration only need to be calculated once for each value of ν in the table, and the 
detection threshold only needs to be calculated once for each combination of ν and CNR. 
Preparation of the table in this way took 3.7 s, compared with 50.7 s to calculate the same set 
of Pd values individually, with the nodes and weights for integration and the detection 
threshold computed separately for every point 5. Clearly interpolation is only worthwhile if 
creating the interpolation table takes less time than direct calculation of Pd at the required 
points. The Matlab interpolation functions are much more efficient if the entire matrix of 
required data points is interpolated with a single function call, rather than interpolating the 
points one by one in a nested loop. Interpolation of 23120 points took 0.01 s with a single 
function call. 
 

                                                      
5 Calculations carried out with Matlab R2010a on a 32 bit desktop computer with a 2.66 GHz quad core 
Pentium processor, running Windows XP. 
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The Pd curves for fixed targets can be very steep, so a finer grid is needed for successful 
interpolation; steps of 0.1 dB in SIR, steps of 0.1 in η, and steps of 0.0625 in ξ were used, for a 
total of 401×21×17 = 143157 points. Computation of this larger table took 12.3 s (306 s with the 
nodes and weights for integration and the detection threshold computed separately for every 
value of Pd). 
 
The number of variables for interpolation can be reduced to two if ν is replaced by 
 
 ( )211eff CNRν ν= +  (45) 
 
In this case the calculation is done for clutter only, so the probability of detection is tabulated 
as a function of SCR and η, with ν replaced by νeff in equation (43). Equation (45) is derived in 
Appendix D. This approximation is satisfactory for a clutter to noise ratio of ~10 dB or greater, 
or for any CNR if ν is ~10 or greater. It does not work so well for spiky clutter (small ν) and 
low CNR [1, Section 9.3.3.1]. 
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Appendix D:  Effective Shape Parameter 

The effective shape parameter νeff for the clutter plus noise distribution is obtained by 
matching the normalised second intensity moment of the combined distribution to that of the 
K distribution for clutter alone [21]. The first two moments of the clutter plus noise 
distribution are ([1], p113 with b = ν/pc): 
 
 ccn nz p p= +  (46) 
 
 ( )2 2 12 1 4 2c c ncn

z p p pν= + + + 2
np  (47) 

 
For the clutter only distribution we have 
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The normalised second intensity moment is 
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For the clutter plus noise distribution we have, making use of equations (46) and (47), 
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