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Abstract — Techniques from image-parameter filter 

theory are used to derive frequency dependent 
representations of the characteristic impedance, phase, and 
attenuation of some left-handed and right-handed periodic 
transmission structures, with implications for the design of 
artificial transmission lines composed of a finite number of 
cascaded unit-cell circuits. 

I. INTRODUCTION 

 Recent interest in left-handed materials and their uses 
in microwave and millimeter wave devices [1], [2] has 
prompted investigations into circuit analogs of intrinsic 
left-handed materials [3]. One example is the use of the 
well-known distributed backward-wave transmission line 
concept [4] in quasi-lumped element form to realize left-
handed transmission lines on conventional planar 
substrates [5]. More generally, one current trend is to use 
periodic recurrent structures to realize a variety of filter-
like artificial transmission lines [6]-[10]. 
 The concept of artificial transmission lines formed 
from periodic and composite periodic structures is at least 
as old as filter theory itself, and a large body of 
knowledge exists on the analysis and design of such lines 
[11]-[17]. One objective of this paper is to apply this 
knowledge to review the frequency dependence of some 
of the lowest order left-handed and right-handed 
symmetric unit-cell circuits suitable as building blocks for 
periodic artificial lines. Another objective is to emphasize 
the relevance of image-parameter filter theory [11]-[17] to 
the design and analysis of periodic artificial lines, and to 
suggest that, when contemplating designing periodic 
structures with filter-like properties, it would be beneficial 
to consider designing non-periodic structures by means of 
modern filter synthesis (e.g., [18]), instead. 

II. ANALYSIS OF PERIODIC TRANSMISSION STRUCTURES 

A periodic transmission structure is a recurrent cascade 
of a unit-cell circuit and is ideally terminated in the image 
impedances of its ports, as shown in Fig. 1 [11]. Although 
unit cells need not be symmetric, reciprocal, and lossless, 
for convenience only such unit cells will be considered.  

The properties of a periodic structure can be deduced 
from the properties of its unit cell. The characteristic 
impedance of the periodic artificial line is identical to the 
characteristic impedance (and image impedance) of its 
unit cell, while the phase constant of a periodic artificial 
line is equivalent to the phase constant of its unit cell 
compounded by the number of unit cells in the line. The 
transmission response of a periodic artificial line built 
from distributed-element unit cells typically exhibits 
repeating passbands and stopbands, sometimes termed a 
“band-gap” characteristic. Passbands occur at frequencies 
where the characteristic impedance is purely real, while 
band gaps occur at frequencies where the characteristic 
impedance is purely imaginary (i.e., at frequencies where 
the wave evanesces or disperses rather than propagates).  

When a unit-cell has a ladder-like topology, the most 
convenient means of analysis is by ABCD matrices, [T], 
where the product of the [T] of the individual components 
forms the overall [T] of the unit cell [14]-[18]. For non-
ladder-like unit-cell circuits, the most convenient means 
of analysis is by nodal analysis (summing the currents into 
each circuit node using Kirchhoff’s Current Law and 
solving the simultaneous equations for the characteristic 
of interest) [19].  

Fig. 1. A periodic artificial transmission line composed of a 
sequence of identical unit cells of characteristic impedance, Zu, 
and with matched terminations, Zu. 

Fig. 2. Schematic of a composite Π-T unit cell. 
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Lowest-order symmetric unit cells with both series and 
shunt elements are composed of three lumped and/or 
distributed elements in either a “Π” (“mid-series”) or “T” 
(“mid-shunt”) configuration. For generality, the composite 
unit cell of Fig. 2 is analyzed and constraints are applied 
to determine the properties of specific circuits of interest. 

Lossless distributed elements, whether highpass (e.g., 
waveguide) or lowpass (e.g., coaxial) in nature, can be 
modeled as symmetric Π-networks comprised of shunt 
admittances, Y=j tan(θ/2)/Zo, connected by a series 
impedance, Z=j Zosin(θ) [17], where Zo and θ are the 
element’s characteristic impedance and electrical length. 
Distributed elements simplify to equivalent shunt 
admittances of j tan(θ)/Zo when open circuited and –j/(Zo 
tan(θ)) when short circuited. T-type unit cells with series-
connected distributed elements have a cascaded-Π or 
“M”-type five-element equivalent circuit.  

Results for many different three-element unit cells are 
provided in Table 1 (after [13] and [16]), and comparable 
aspects of the table entries are readily apparent. 

A. The ABCD Matrix 

Using nodal analysis, the elements of the ABCD matrix 
of the lossless reciprocal unit cell of Fig. 2 are  

Since the unit cell is assumed to be lossless, A, D, BI, and 
CI are purely real while B and C are purely imaginary. 

B. Characteristic Impedance 

The characteristic impedance, Zu, of the ideal periodic 
artificial line is identical to the image impedance of its 
unit cell. For a symmetric unit cell [14]-[17], 

( )5/ CBXjRZ uuu =+=  
with Zu=Ru in the passbands and Zu=jXu in the stopbands. 
For a symmetrical T-section (Zb = ∞, Yd = 0) [17] 

( ) ( )6,/2 caau YZZZ +=  
for a symmetrical Π-section (Za = ∞, Yc = 0) [17] 

( ) ( )7,/2/1 bddu ZYYZ +=  
and for a symmetrical M-section (Zb = ∞ ) 

( ) ( ) ( )( ) ( )8./1/2/1//2 dcaaddcau YYZZYYYZZ ++++=  
 Band-edge frequencies of the artificial line occur when 
sign changes occur within the square roots of the 
corresponding unit cell’s Zu, as is evident by inspection of 

the equations for Zu in Table 1. For cells with distributed 
elements, band edges can also occur at frequencies where 
tan(θ) changes sign, depending on the cell parameters. 

C. Image Propagation, Attenuation, & Phase 

 The image attenuation, αu, and the image phase, βu, are 
the real and imaginary parts of the image propagation 
function, γu, of the unit cell, where [14]-[17] 

( ) ( )9.2/11sinh2sinh 11
uuu −+==+= −− CBCBj βαγ  

In the passbands [14]-[17], αu = 0 and βu is 
( ) ( )10,2/11sin2sin 1

II
1

u CBCB +−−== −−β  
while in the stopbands [17], βu is frequency-independent 
and a multiple of π, or odd multiple of π/2, and αu is 

( )11.sin 1
u CB−−=α  

For a symmetrical T-section [17] 
( )12,2/sinh2 1

cau YZ−=γ  
for a symmetrical Π-section [17] 

( )13,2/sinh2 1
dbu YZ−=γ  

and for a symmetrical M-section 
( )( )( ) ( )14.2/2sinh2 1

dacadacau YZYZYZYZ ++= −γ  

D. Phase 

The passband phase angle, ϕ, of the ideal periodic 
artificial line is identical to the phase angle, ϕu, of the unit 
cell multiplied by the number of cells in the line: )1(,
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( )15,u unn ϕβϕ =−=  

( ) ( )16.2/11sin2 1 CBu +−= −ϕ  
Note that ϕu = –βu and ϕ = –β (where β is the phase 
constant of the periodic artificial line). From (12), for a 
symmetrical T-section 

( ) ( )17,2/sin2 1
u ca YZj−=ϕ  

from (13), for a symmetrical Π-section 
( ) ( )18,2/sin2 1

u db YZj−=ϕ  
and from (14), for a symmetric M-section 

( )( )( )( ) ( )19.2/2sin2 1
dacadacau YZYZYZYZj ++= −ϕ  

 The resulting unit cell phase equations provided in 
Table 1 are correct for the first passbands, but the sign of 
the phase can be in error for higher order passbands due to 
sign ambiguities inherent in the form of the equations. The 
correct sign is that for which the phase slope is negative, 
ensuring positive group delay. 

E. Non-Ideal Terminations 

When a periodic structure composed of a cascade of 
identical unit cells is not terminated in its frequency-
dependent characteristic impedance, but, as is common, is 
terminated in a frequency-independent real impedance R, 
such as 50Ω, then the passband will suffer from loss due 
to the mismatched impedances. The mismatched passband 
loss and band-gap attenuation are represented by  
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which in the passbands becomes [15] 

and in the band gaps becomes [16] 

Note that minimum passband loss occurs for β = mπ/n and 
maximum passband loss occurs for β = (2m–1)π/(2n), 
where m is an integer [17].  
 There are several methods of reducing passband loss 
due to mismatched terminations. The simplest method is 
to choose Ru=R at a frequency removed from the “center” 
of the passband such that maximum LP is minimized [16], 
while a more effective method is to add impedance 
transformers to the ends of the periodic line such that the 
line impedance is transformed to more closely match the 
termination impedance [16],[17]. When no attempt at 
impedance matching is made, one can expect relatively 
poor passband insertion loss and return loss, as 
demonstrated by the highpass lines in [7, Fig. 3]. 
 The most promising alternative for designing a well-
matched artificial transmission line is to abandon a 
periodic structure altogether and employ modern filter 
synthesis [e.g., 18] to realize an artificial line with 
optimum frequency and loss characteristics for a given 
number of components. However, if other considerations 
force a cascaded unit-cell approach, hopefully the 
information in this paper and in [11]-[17] will be of use. 

III. CONCLUSION 

Image-parameter filter theory is a convenient tool for 
investigating the frequency dependence of periodic 
transmission structures composed of cascades of identical 
unit cells. Some aspects of image parameter theory have 
been reviewed, and, using image parameter approaches, 
properties of a variety of simple left-handed and right-
handed unit-cell circuit structures have been tabulated. 
However, if economy and performance are valued, 
artificial-transmission-line designers would do well to 
consider abandoning periodic image-parameter filters 
terminated by mismatched impedances, as filter designers 
have, in favor of non-periodic filter structures synthesized 
for prescribed termination impedances and a prescribed 
frequency and/or phase response using a minimum 
number of components. 
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Table 1. 
  Properties of some three-element T and Π unit-cell circuits. 
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Note: k is an integer and θ  = ω l /v and θ 1 = ω l1/v1, where l and l1 are physical lengths, and v and v1 are propagation velocities, of the 
transmission line segments with characteristic impedances Z and Z 1. 
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