
Employing Human Knowledge to Solve Integrated Coordination Problems

Wei Chen, Kaizhi Tang, David Mihalcik, Yunshen Tang
Intelligent Automation, Inc.

(wchen, dmihalcik, ytang, ktangj@i-a-i.com

Edmund Durfee
University of Michigan

du rfee @utn ich. edit

Melanie Dumas
DARPA/IPTO

Melanie.Dumas@darpa.mil

ABSTRACT

An Integrated Coordination Problem involves solving
multiple related subproblems that collectively satisfy the
requirements of a user, including subproblems that depend
on the user's participation to solve. Fundamental
challenges in solving such a problem include defining
mechanisms to solve the individual subproblems.
formulating the information and control flow between
these mechanisms that supports flexible end-to-end
problem-solving, and providing access for people to
oversee and participate in the problem-solving process. In
this paper, we describe a multi-agent architecture that
addresses these challenges by embodying mechanisms in
computational agents and by treating the collective
problem-solving across agents and people as a
collaborative process. We argue that our approach
exploits concepts that straddle the boundary between
collaborative technologies and multi-agent systems, and
demonstrate its advantages and capabilities in the context
of an emergency medical response scenario.

KEY WORDS: Architectures and Design of
Collaborative Systems, Intelligent & Autonomous Agents
in Collaboration, Multi Agent Systems in Collaboration

1. INTRODUCTION

Multi-Agent Systems (MAS) has grown into an
interdisciplinary field that embraces many previously
distinct research areas, but continues to face challenges of
scalability and real-world problems (see, for example, the
question raised by Hendler of "where are all the intelligent
agents?" [1]). Particularly, MAS/coordination research
investigates the underlying algorithms and mechanisms
that allow intelligent agents to work with each other, and
also possibly with people, to achieve high-level goals that
are beyond their individual capabilities. However, it has
not embodied adequate considerations from the human
users' point of view, which falls into the strength of the
currently separate, yet highly related field of Collaborative

Technologies and Systems (CTS). CTS investigate the
design and development of effective environments or tools
that help human users work together in a distributed
collaborative, possibly virtual, fashion It is notable that
MAS/coordination and CTS share a common driving
question about how multiple entities - intelligent agents
and/or humans- work together to carry out related tasks to
jointly solve problems. Thus, it is natural to combine the
strengths of MAS and CTS to address complex real-world
problems. One particular approach we describe in this
paper is human-agent assisted human-to-human activity
collaboration, which is motivated by real world problems
(i.e., emergency medical scenarios), and is oriented toward
research issues (distributed collaborative problem solving)
that reveal synergies between CTS and MAS.

This paper explores the synergies between these research
areas by detailing the design and development of a solution
to the integrated coordination problem involving humans
and computational agents. This paper describes how we
have elaborated and implemented our previously-reported
conceptual ideas about human agent collaboration (HAC),
as applied to a simulated combat medical scenario (7].
Specifically, we describe the overall system architecture,
information flow and control flow, distributed planning
and scheduling, and an implementation of a human-
centered system integration (HSI) scheme to facilitate the
HAC processes. We demonstrate the HAC system in a
specific scenario of emergency medical response. Our
HAC framework solves the integrated coordination
problem by combining and controlling interactions
between mechanisms for achieving the various previously
separate steps of complex distributed collaborative
problem solving (e.g., knowledge elicitalion, problem
specification and analysis, planning and scheduling
(matchmaking), plan/schedule update, HAC update, etc.).

This paper is organized as follows. Section 2 describes
related efforts in the fields of human-agent collaboration
and human-to-human activity coordination. Section 3
briefly summarizes our previously described conceptual
framework for human-agent collaboration. Section 4
explores how human expertise could/should be

20110519081

incorporated in complex distributed collaborative problem
solving. Section 5 presents the technical details about the
design and implementation of our human-agent
collaboration architecture as a software system, including
its major functional components. Finally, we summarize
our results and discuss our future research directions.

2. RELATED WORK

Human-agent collaboration to support cooperative problem
solving by people is inspired by, and builds upon, several
lineages of research. Computer-supported cooperative
work [3], for example, has over time developed
increasingly sophisticated computational infrastructures for
helping people work together, ranging from concepts as
simple as tools to help people jointly edit documents, to as
complex as so-called collaboratories that streamline joint
research and discovery in various scientific fields [17].
Generally, such collaborative technologies provide the
infrastructure for propagating the impacts of peoples'
decisions among participants to ensure critical joint
awareness and coordination.

Agent technologies emphasize decision-making for
computational entities themselves, where such agents are
tasked with making decisions on behalf of their users in
situations that are dull, complex, fast-paced, or dangerous.
The emphasis in agent research has traditionally been in
endowing agents with the "intelligence" to act
autonomously (without human intervention), and to
coordinate autonomously with other agents to collectively
accomplish goals as a multi-agent system [8][12][17].

The boundary area between these fields has, however, been
explored to some extent, from both directions:
collaborative technologies that can proactively make
routine decisions and agent technologies where agents help
people work together. Indeed, a growing emphasis is in
the area of cognitive assistance, where an agent is closely
paired with a person (or group of people) to help manage
the person's activities and coordinate activities across
people. Examples of such systems include Electric Elves
|5), EPCA/CALO [2|, and Coordinators [13]| 18|.

Our project is in a similar spirit, whose goal is to
coordinate peoples' activities. Our work also, however,
draws on ideas of human-agent collaboration, where a
person and his/her agents work together to combine their
expertise to solve complex problems in a mixed-initiative
manner (where the human and agent each take initiative to
move problem solving forward) [7|. In our work, we draw
on all of these ideas to develop agents that are powerful
problem solvers in their own right, but which are able to
accept (and actively seek) help from people in the course
of problem solving specifically to solve problems of
constructing and managing teams of people who are
themselves cooperatively solving problems in a domain
such as emergency combat medicine.

3. PREVIOUS WORK

In [7], we presented an initial design of and a conceptual
solution to the integrated coordination problem for
employing human knowledge within human-agent
collaboration processes in a simulated combat medical
scenario. The combat medical scenario represents a real-
world problem requiring the location and teaming of
human expertise in an on-demand fashion, and our work
outlined the design of a human-agent collaboration (HAC)
framework for solving this problem. We proposed the
major technical components of the HAC framework
(including a representation of HAC system resources, a
representation of tasks and environments - extended
hierarchical task networks (EHTNs) [3], and an associated
pre-planning toolkit for the EHTNs), and introduced our
ideas for the technical steps necessary to carry out the
HAC process (including team formation, task
decomposition and allocation, negotiated processes
facilitating HAC, etc.).

That early paper focused on the clarification of the
problem domain and the formulation of the core research
issues. Although schematic, this previous effort paved the
way for the subsequent technical design and development
of the functional HAC software system described in this
paper, e.g., the information and control flow among the
proposed technical components, a brief introduction to the
agent communication language (ACL) and communication
protocols to use for the message transfer, the interfaces for
a human actor in different roles (e.g., a user of the HAC
system; a human expert - as a resource - who will be
invited to join a capable team to participate in an HAC
problem solving process; a domain expert who specifies,
possibly EHTN-based, task structures) interacting with the
HAC system, and the actual software development issues
(e.g., the data storage and management scheme), which
will be discussed in detail in this paper.

4. HUMAN ROLES IN HAC

Human-Agent Collaboration embraces the complementary
strengths of humans and computational agents as problem
solvers. As evidenced in the kinds of technologies we are
building in this project, our emphasis in developing
computational agents is in exploiting their abilities to keep
track of vast amounts of information (a database of experts,
complex calendar information, an ontology for various
roles and their relationships, timing and interaction
constraints) and to quickly examine large problem spaces
(assignments of experts to roles, propagation of timing
relationships among activities, optimization of costs, etc.)
to rapidly filler out infeasible options for expert teams.

However, since the experts are (at least often) humans, a
variety of constraints and preferences that have to do with
(sometimes irrational) human nature might prove difficult
to express and use well and often even harder to acquire in

the firsl place [19]. People can have biases and
preferences about with whom they interact and what they
like to do at particular times of the day that they might be
reluctant to articulate due to embarrassment, timidity, or
even fear of retribution. Yet, solutions to expert teaming
problems that fail to respect these are doomed, as people
will find excuses to abandon such teams. Thus, humans
should be engaged in the teaming process to steer it
towards realistic solutions.

The view we adopt in our work is to assume that people
will have preferences and constraints that will be unstated
explicitly, but will be indirectly revealed upon an
opportunity to provide feedback on partial and/or tentative
teaming solutions that the agents identify as satisfying the
articulated parameters of the problem. By expressing
preferences over a handful of proposed solutions, or
pointing out components that need changing in a proposed
solution, for example, people can contribute to the
problem-solving process to formulate better solutions than
the computational agents can do alone. It is in this spirit
that we have been developing our HAC techniques.

5. THE HUMAN AGENT
COLLABORATION (HAC) SYSTEM

Before introducing our HAC system, we have slightly
changed our application domain: instead of emergency
combat medicine, we ground our work in a civilian
medical emergency scenario due to a greater availability
and accessibility of data. A civilian medical emergency
requires similar types of resources (e.g., doctors, nurses),
but can differ in the manner in which experts will
participate in HAC. For example, a civilian medical expert
has more latitude in responding to an HAC request: a
civilian doctor may turn down an HAC request without
elaborating the reason while a military doctor needs to
follow orders. In our system, this kind of difference is
technically trivial thanks to our uniform specification of
experts' profiles (e.g., capabilities and personal schedules).

The input to the HAC system is a medical emergency case
that requires quick response and proper treatment from a
high-quality team, whose members may be dynamically
found from different medical sites. It is the HAC's
responsibility to assist its users with different levels of
medical expertise (e.g., an EMT (emergency medical
technician) with good medical expertise, a firefighter with
only basic medical knowledge, or even a regular guy
passing by reporting this emergency) to evaluate the case,
suggest suitable response steps, form a qualified team to
carry out the steps, determine the ordering and liming of
the steps to generate an agenda, and finally execute and
possibly revise the agenda in response to dynamics,
uncertainties, and contingencies.

The corresponding research issues of HAC are complicated
and consist of many traditionally separate subproblems,
many of which are theoretically and/or practically
intractable by themselves in terms of time and space
complexity, e.g., scheduling. Existing solutions in the
literature to the separate component subproblems cannot be
simply combined to form an overall solution to this
complex problem; rather this is an integrated coordination
problem, and demands a carefully integrated solution.

We define an integrated coordination problem as the
problem of managing a complex distributed collaborative
problem solving process among distinct constituent
components by properly interconnecting the components
and suitably managing their information and control flows
in ways that lead to successful and efficient collaborative
problem solving. Figure 1 is a notional depiction of how
the constituent subproblems can interact in the HAC
integrated coordination problem. The boxes specify the
individual subproblems. The arrows represent the
information flow and control flow. In our emergency
medical scenario, the problem specification and analysis

Problem
pecificntion &

Analysis

Planner
EHTN based COA

Team I Tash
Formation | Allocation

Coordination
' Module "Scheduler'

Execution

Result Analysis'

Figure 1. The Integrated Coordination Problem.

subproblem is to elicit from the HAC user the needed
injury information and evaluate the nature and severity of
the injury. The planning subproblem is to find a suitable
course of actions (COA) to provide medical treatment
based on the specification and analyzed severity of the
injury. The planning subproblem itself is comprised of the
team formation problem which is to identify a team of
capable experts, and the task allocation problem which is
to decide which expert should carry out which particular
action. The next challenge is to decide when the planned
actions should be carried out, accounting for when the
experts are available, and this is the scheduling
subproblem. After the temporal information is specified,
the result becomes an actionable agenda ready for
execution; the execution subproblem is to ensure that the
agenda is carried out, including responding to
contingencies that arise. The execution outcomes, whether
exactly as predicted or significantly different, should be
monitored and analyzed, and the result analysis
subproblem is to interpret the agenda's performance to
identify possible improvements/updates in knowledge to
improve the solutions generated for other subproblems.
Finally, given that the resources are distributed, the
coordination subproblem is to suitably synchronize and
share agents' local views to ensure coordinated behavior,
such as that experts involved in an online joint consultation

join the consultation at the same time. As explained above,
solving the overall integrated coordination problem is
extremely difficult, and thus in this paper we focus on this
overall coordination problem without delving into domain-
dependent details of medical actions and plans.

5.1. HAC System Architecture

Now that we have described the overarching integrated
coordination problem and its component subproblems, we
turn to the specific software architecture that we have
developed for solving the subproblems and for controlling
the information and control flows between them. Our
architecture employs a multi-agent-system-based design
and implementation strategy to create an HAC software
system. The HAC software system includes various
constituent functional components, implemented as agents
(e.g., a case manager, a core HAC agent, a matchmaker,
and a scheduler), the information flow and control flow
among these agents, and the underlying algorithms and
mechanisms realizing the HAC capabilities.

A schematic of our HAC architecture is in Figure 2. The
boxes represent the reasoning agents. The arrows represent
the information and control flow in response to a user's
problem-solving request - referred to as an HAC case. The
numbers with the arrows indicate the order of steps during
a typical HAC process without any exceptions arising.

Case
Manager

Z _^J
en in

Template
Agent

EHTN
Jempjajas
:^Expert^

Database
^Jcache)^,

MM
^*" Agent

^1 is ' """Calendar
"* - _ L_Preferen

Figure 2. HAC Schematic Architecture.

The component capabilities are designed and implemented
as intelligent agents, and a typical HAC process is briefly
explained as follows. An HAC user submits a new medical
case to, and carries out subsequent interaction with, the
HAC through the User GUI agent. The Case Manager
receives the input and collects the case features (case ID,
user profile, patient medical condition, etc.) and then turns
control over to the HAC agent. The HAC Agent is the core
of the HAC system and orchestrates the system
functionalities by finding the best response plan from the
EHTN Template Agent, then Finding candidate experts

(from potentially tens of thousands of people with relevant
expertise) to form the a satisfactorily capable team via the
Matchmaking (MM) Agent, and then setting up the
ordering and timing of the steps by employing the
Scheduler Agent. The EHTN Template database agent
stores various regulated medical response procedures
represented in the form of extended hierarchical task
networks (EHTNs) and provides the most suitable task
structure in response to a given case. The Calendar and
Preference database agent stores experts' personal
scheduling information and biases, if an expert chooses to
provide such information via his/her Expert GUI agent.
The Expert Database agent provides a cache of the
Calendar & Preference Database for the Matchmaking
agent to compute the best team formations with updated
information. Steps 21 and 22 indicate confirmation step to
the experts - not a dead end. The dashed arrow represents
the periodic update of the cache data by automatic
Expertise Crawlers (details omitted because they are
outside the scope of this paper). Overall, Figure 2
summarizes our HAC solution containing both
computational agents and humans. The dashed oval part
indicates the generation and management of an asset
"Internet" to locate human expertise on demand for
distributed collaborative problem solving.

5.2. Information Flow and Control Flow

cas^Mana^< NJ ryqLh^ttHarFTcfckTn)

,_^Jjnfc«_m_*j«(cawId2_

nit n** HAC agynt 3
.JjLJTiMUr.

hj id »*JS~f v».e(all I no»n s*f »K

^a^jnforrn_cW>f_rxo;j. i^

 P2 Plan PvCKi—it

I
I
I
l
I
I
I
I

—1
I

—1
:_'
—i

I
I
I

Figure 3. Communication Flow Diagram Among
HAC Components For Regulating HAC Updates.

Figure 3 provides an admittedly difficult-to-read
screenshot of message exchanges among the constituent

HAC agents. A small portion of the exchanges for HAC
case initialization between an HAC user, the Case Manager
agent, and the HAC agent is magnified, and will be further
clarified in Figure 4. The HAC message exchanges are a
realization of the FIPA ACL (Foundation for Intelligent
Physical Agents, Agent Communication Language) [13) to
achieve interoperability with external systems.

One of the most important features of this information flow
and control flow is the integration of humans in the
process. A human may act as either a user who submits a
medical case to the HAC system, or a domain expert who
is invited to join a team to provide her medical expertise to
the case, or a system engineer in a domain who specifies
the suitable task structures (represented using EHTNs) for
various cases. Computationally, there is no need for
explicit distinction between humans and software agents,
because GUI agents may act as humans' delegates in the
HAC system; logically, humans' responses - not
necessarily modeled with underlying reasons - are
incorporated on the fly during the HAC process. Human
expertise provides guidance to the HAC system to achieve
suitable solutions quickly by filtering out large fractions of
infeasible solution spaces and at the same time
incorporating humans' biases.

5.3 Functional Components

In what follows, we summarize the component agents in
the HAC system, pointing out how their functionality is
achieved, and how they interact with people and other
agents as part of the overall HAC process.

5.3.1 User GUI and Agent
The User GUI agent is the users' delegate to the HAC
system. A user can set up the level of interaction based on
her level of expertise or preference. An experienced user
(e.g., an EMT requesting follow-up emergency treatment
for a traffic accident victim) may wish to monitor/confirm
every HAC step following the message flow in Figure 2.
An inexperienced user (e.g., a helpful bystander who
witnessed the accident) does not have adequate expertise
and thus relies on the HAC system in a largely automated
mode to guide the user through the response processes. In a
fully automated mode, the HAC steps will proceed until
reaching an agenda without any human intervention.

The User GUI screen shots are omitted due to space, but
we adopted a practical design for HAC users in the form of
Wizard Dialogs. A Wizard Dialog [10] box is constructed
from a number of panels, and each panel contains user-
configurable components such as radio buttons, sliders,
text fields, etc., for every HAC reasoning process. The idea
is that a user of the HAC system, by pressing either the
Next or Back buttons, can "flip" across these panels,
entering information on each one until she completes the
entire HAC procedure from the initial problem
specification to the final step of agenda generation.

Given an HAC user needs to set preconditions and
constraints to a particular reasoning step and takes actions
(e.g., confirm, select from, or ask-for-more candidate
solutions at each step) on the results from the previous
step, it is natural to adopt the Wizard-Dialog-style
interactions for human users. Six major steps for HAC
have been designed as sequentially dependent, integrated
procedures:
• User Profile - setting up a user's general preferences or

utility functions that guide the underlying behaviors of
the HAC reasoning;

• Patient Information and Medical Record Form - the user
specifies patient information and domain-dependent
information (e.g., a medical emergency condition);

• Task Structure - the user will have candidate task
structures, a.k.a., courses of actions, as results from the
analysis of a medical case in the previous step, and may
confirm, or choose from, these candidate task structures
for the next step, and can also update the information
embedded in a candidate task structure for further
processing; additionally, the user can specify certain
conditions/constraints on the next step of matchmaking;

• Matchmaking (team formation) - the user will face
possibly multiple candidate team formations based on
resource analysis, will be able to confirm/choose from
the teams for the next step, and can specify conditions/
constraints on the next step of scheduling;

• Scheduling - the user will face possibly multiple
candidate schedules for each of the results from the
previous step, may confirm/choose from the resulting
candidate schedules, and can specify certain
conditions/constraints on the next step if applicable;

• Agenda - The user will confirm with the assets
(including human experts) thai will be ready to perform
the scheduled tasks. An agenda is a confirmed schedule.

With this implementation, an HAC user may choose to
sequentially and manually go through these steps
(generally for experienced users) or may set a suitable user
profile for automatic HAC processing (for inexperienced
users or for time-critical situations), or can participate in
only parts of the process, where the user has knowledge or
insights to contribute that will improve the efficiency
and/or outcome of the HAC process.

5.3.2 Case Manager
As shown in Figure 4, the Case Manager acts as a broker
between user agents and HAC agents. To initialize a
conversation, or to look up an active HAC agent, a user
agent submits a request to the system's single Case
Manager, which is in turn responsible for finding or
creating an HAC agent that is dedicated to that particular
case. Due to the potential for high demand for its attention,
the case manager service is kept as simple (and thus fast)
as possible. In our current implementation, it performs
HAC agent initialization, provides directory services, and

logs its activities; these may be separated into different
agents in the future.

User

opt

Case Manager

FIPA Rscruttmtnl Protocol
for acquiring MAC agent

Rl N«w Request

|- HllilH, i|

/ a I _ infqrm_agree _

opt J pnltMAq

. *?. iri°.Tr_4°n-*_E,?i i.

User

HAC

Case Manager HAC

Figure 4. Comm. Among User, HAC, & Case Manager.

5.3.3 HAC Agent
The HAC Agent is the point of contact and arbiter of all
interactions relating to the content of the user's request and
its solution process. The HAC Agent communicates with
several service agents to get a set of possible plans,
agendas, and team assignments, possibly with interaction
from other agents who may have information to help
address the request. The HAC agent enlists the identified
experts for the scheduled activities, confirming their
willingness and availability. The HAC agent collects
update information on the execution of the activities and
tasks, and records the success or failure of task executions.

Each HAC agent communicates with three service agents
to build, verify, and clarify the solution to a user's task
request. The EHTN Template agents refine requested tasks
(using our EHTN model) into sequences of actions with
associated constraints. The Matchmaker (a/k/a the
matchmaking agent) assigns resources or experts to the
'Position' parameters of a request, as will be explained
shortly. The Scheduler agent specifies temporal
information that details when the planned actions take
place, ensuring an effective and synchronized timing of
joint actions (e.g., a joint consultation among multiple
experts) at times when those experts are available. After
the problem-solving process reaches agenda stage, the
Expert agents, who track the schedules of their respective
human experts and act as the user interface to their experts,
help to revise a problem, potentially reflecting feedback
from their associated humans about proposed agendas and
teams. Similarly, this process of involving domain experts
will be moderated by the HAC agent for status monitoring
and coordination purposes.

5.3.4 EHTN Template Agent

In our previous paper [7], we discussed the advantages of
employing an expressive task/environment representation,
extended hierarchical task networks (EHTNs), as a solution
to the knowledge representation problem for HAC.
Notably, one case may have multiple corresponding EHTN
structures and the HAC user has a chance to select either
only one or pass all the candidate structures to the
subsequent HAC processes for consideration.

We will not delve into detailed discussion here, but simply
slate that an advanced reasoning solution, which is able to
carry out pre-planning, with the flexibility for human users
to deal with dynamics, uncertainties, and contingencies on
the fly, has the advantages of eliminating human actors' ad
hoc mistakes, providing guidance during complex hard-to-
memorize response procedures to human users (especially
inexperienced users), and still maintaining effective control
over task planning and executions [7] [3].

.0 52i

C ,0 I MAngsthgialC
10 s l (EST.Duration. DL) •si "^MO 30 30)

Figure 6. An EHTN Task Template

Figure 5. Two Templates Corresponding to Medium
and Low Levels of Severity.

The pre-planning function generates task structure
templates, defined as regulated response procedures for
various cases that share common features within the same
category. A sample task template in response to a medical
emergency case is shown in Figure 6. For example, the
response procedures for treating leg trauma with the same

level of severity are the same no matter whether the injury
is in the left or in the right leg or who the particular victim
is. Thus, the procedure is always as shown in Figure 6: (1)
case input - potentially a 911 operator receives and
generates an emergency case, (2) medical status input - the
injury is inspected and described, (3) diagnosis - an initial
assessment of the injury is performed; (4) surgery - if
necessary, the actual surgical treatment is prescribed,
which itself consists of sub-tasks, and finally (5)
rehabilitation- if applicable, therapy and other follow up
treatment to recover from the injury are performed.
However, the severity and the type of an injury may result
in different treatment procedures. For example, a back
trauma may result in a different response procedure than a
leg injury: or a simple scratch on the leg will result in
radically simpler (and less invasive) treatment. Figure 5
shows two different task templates corresponding to
medium and low levels of severity.

5.3.5 Matchmaking Agent
Notably, one EHTN task structure may have multiple
corresponding candidate teams that meet a user's objective
function (e.g., the most capable learn). The user has an
opportunity to choose either one or pass all resulting teams
to subsequent HAC processes. We only address a single
matchmaking execution next.

A matchmaking agent will be responsible for assigning a
set of positions that are grouped by several actions to a set
of available human experts to satisfy the expertise
requirements of the positions and respect the preference
profiles of the experts at the same time. One or more
position with role specifications are placeholders
associated with an action. The position definition
introduces the concept of concurrency to task structure
the positions associated with a common action node
overlap in time. For example, a surgery action contains two
positions: surgical operation (by a surgeon role) and
support operation (by a surgical nurse role) thai should be
assigned to a surgeon and a nurse respectively. This
assignment problem can be modeled as an integer
programming problem and solved by a standard
mathematical programming package.

We describe this problem with a small example as shown
in Figure 6. Suppose that an HAC problem has n positions
(the black boxes) that are associated with m actions (the
bottom level nodes). The membership matrix («,y) denotes

the association between the actions and positions, where
11, if position i belongs to action j

'' JO otherwise

V/e[l,4ye[l,m]

It is required that each position can only be assigned to one
action, such that

£«„=1 V/e[u]

Suppose that there are p roles and each position has a

specific required role. Let the matrix [bu\ denote the

association relationship between positions and roles, where
[l, if position i requests role j , ,

Vie[l,nlje[l,p]
0 otherwise

It is required that each position can request only one role,
such that

i>=> V/e [l,/;]
/-i

Suppose that we have o experts. Each expert has a
capability profile, preference profile, and availability
profile. The capability profile denotes the expert's level of
expertise for each of the roles. Lei the matrix (c«J denote

the capability profile, where c« is a number normalized

from 0 to 10, denoting the expertise level of expert / for
role j . Forc',y = 0 , expert / definitely has no expertise for

role j, and should never be assigned to play lhat role. The

preference profile is similar to the capability profile,
denoting the preference level of an expert for each of the
possible roles. Let the matrix (i«) denote the preference

profile, where rtj is a number from 0 from 10, denoting the

preference level of expert i for role j . For r« =0, expert

/ definitely does not want lo perform Ihe role j. Clearly,

the matrix {r») is correlated with the matrix {c,y} in that an

expert who is incapable of performing a role should want
to avoid it: r,; = 0 => rt: = 0 .

The availability profile is a comprehensive metric on the
remaining free time of an expert o\er the scheduling
period. To reduce the complexity of solving Ihe planning
and scheduling problem in HAC, we decompose the
problem into two sequential problems: a matchmaking
problem and a scheduling problem. The scheduling
problem has hard constraints on the time slots to assign
tasks (that is, the positions). However, we first arc solving
the matchmaking problem, without considering the
experts' scheduling constraints. This can easily make the
scheduling problem infeasible. To reduce the probability of
schedule infeasibility, we introduce the availability profile.
We require that an availability metric should reflect the
amount of remaining unscheduled time for an expert over
the future scheduling period and the number of positions
for which he or she is already scheduled. Note that the
availability profile is not exact information for the
availability of the expert, but rather a statistical
summarization of availability. Otherwise, the matchmaking

xij

problem must deal with the scheduling information, which
will make the problem difficult to solve.

Let the vector {>•,} denote the availability profile where

each element is a value between 0 and 1 that denotes the
fraction of time during the scheduling period that the
expert i is still free.

Since availability is critical, our matchmaking formulates
the optimization problem as maximizing the product of
availabilities for the assigned experts (roughly
corresponding to finding the combination of experts with
the highest joint probability of being scheduled, where this
uses the simplifying assumption that their schedules are
independent) to the positions and at the same time to put
thresholds on the capabilities and preferences for the
assigned experts.

Let Xii denote the matchmaking results, indicating whether

the position i is assigned to expert j, where

[1, if position i is assigned to expert j;

[fj, otherwise.
V/e[l,4je[l,»l

We formulate the matchmaking problem as an integer
programming problem.

n p o
maxZ Ti ZV**»

,=i j=\ *=i

sJ. J]j£ft=l, Vfe[l,n] (1)
k =)

n

^flgjtftSl, y/e[l,wUe[l,o](2)
M

££v#jii»**-v/€kBi (3)
j = \ k = \

EIV^^' W€[U] (4)
j=\ k=\

Xfk 6 {0,1}

Constraint (1) requires that every position must be assigned
to an expert. Constraint (2) enforces that no expert can act
in multiple positions for the same action. Constraint (3)
means that the total capability levels of the assigned expert
to each position must be above a certain threshold.
Constraint (4) implies that the combined preference levels
of the assigned expert to each position must be above a
certain threshold.

5.3.6 Scheduling Agent

A single team formation may have multiple corresponding
candidate schedules that meet a user's objective function
(e.g., the earliest deadline). The user has an opportunity to
choose either one of these or pass all resulting schedules to
subsequent HAC processes, if applicable. We only address
a single scheduling execution next.

The scheduling agent assigns time slots (respecting
sequential ordering constraints) to a set of positions
distributed among several actions that have been assigned
to a group of experts as a result of matchmaking.
Considering the existing schedules for those experts, a
scheduling agent must satisfy the constraints that no
additional positions will be assigned to any time slot that
has already been assigned. In this paper, since we address
medical emergency problems, the goal of a scheduling
agent is to attempt to provide emergency treatment as soon
as possible. From the perspective of optimization, the
above goal suggests the tentative objective of minimizing
the summation of the starting times of all the positions. An
alternative goal may be to minimize the makespan.

An HAC scheduling problem can also be modeled as a
mathematical programming problem using the same
techniques as for the matchmaking problem. However, an
HAC scheduling problem is much more difficult to model
and solve than the matchmaking problem.

First, more decision variables are needed to model the
relative sequences between positions, some of which
represent the occupied time slots. This adds complexity to
the scheduling problem that is similar to the notorious
vehicle routing problem |8), where pickup time or delivery
time and their sequences are very similar to sequences and
starting times in the HAC scheduling problem. Let

xki.denote whether expert k has in its schedule that it will

perform position / immediately followed by position j ,

where
if position i is followed by position

j in the schedule of expert k
0 otherwise

Ae[l,wl,V/E [(ln + \\je[Q,n + \],

Without the matchmaking results, the HAC scheduling
problem will be an NP-hard problem and difficult to solve
for large-scale problems. With the matchmaking results,
the complexity of the HAC scheduling problem has been
reduced with suitable approximation into an optimization
problem within a constrained local problem space.

Second, continuous variables (starting times) and integer
variables (sequences) are mixed together. Such a mixture
makes the optimization search process difficult, because
the search methods for integer and continuous variables

can be very different. The mixture of these two search
methods may require more time to converge.

Third, the HAC scheduling problem expresses
nonlinearity. To check whether a position (with the
associated execution duration) can be inserted before
another position, the product of a sequence variable and
starting time must be considered. This will cause additional
nonlinear constraints. The following equation specifies that
if a position follows another position in the schedule of an
expert, the starting time of this position must be greater
than or equal to the finishing time of the previous position.

n + l

XX*S * (,< + di > -'/ V/e l°>" + 4 «/* =1' 1*°
n

As a summary, an HAC scheduling problem is a nonlinear
mixed integer programming problem, which is challenging
to solve. Due to the provided matchmaking results, the
complexity of the HAC scheduling problem has been
reduced significantly.

5.3.7 Expert GUI and Agent
An expert has two main interaction points - a profile view
and an agenda view. By editing the profile, the expert can
control what kind of requests she receives. Through the
agenda view, the expert responds to an HAC request
allocated to her, works to design appropriate response
plans, and reports the success or failure of tasks.

Expert Profiles
The goal of each expert is to get the most relevant and
interesting jobs available. To support that, the expert
profile interface allows experts to modify how both the
user and the system select them. Most importantly, the
profile editor allows an expert to modify his or her
capabilities and preferences. This will make the user - and
the system - more likely to select the expert for a specific
task. Additionally, to avoid unwanted requests, the expert
can edit his or her work schedule and preference settings to
indicate the likelihood of accepting an HAC request.

Job Matching and Monitoring
While modifying the expert preferences and capabilities
will steer appropriate requests to the expert, the major part
of the collaboration comes after an expert is offered a task.
From here, the expert may agree to the task, refuse the
task, or attempt to alter the task. At this point, the selection
of a team and agenda from the expert's point of view
moves from being a largely computer-dominated task to an
interactive, collaborative task. After an expert agrees to a
task, the task may be updated with changes to the team
composition or other tasks; if the expert's assignment is
unchanged, the expert is assumed to still be committed.
However, if the expert's task assignment or requested
schedule changes due to a conflict or a request by another
expert, the expert must re-acknowledge the commitment.

Experts may only alter their own tasks; for joint tasks,
either expert may request a change of time slot.

5.3.8 Databases and Services
For a complex large-scale distributed collaborative
problem-solving system, like HAC, it is imperative to
manage its data effectively and efficiently. We target to
develop a smart network of heterogeneous human expertise
taking advantage of the internet infrastructure. We have
designed and developed an Expert GUI that can be
executed on heterogeneous devices (e.g.,
computers/laptops, PDAs) for domain experts to register
their expertise and personal schedules - if they want - that
will be cached and further synchronized with an HAC
Expert (or expertise) database. Expertise information will
be inserted either by domain experts via the GUIs
manually or by expertise crawlers (not fully implemented
yet) automatically. Compared with the large database size
(e.g., the number of health care providers in a medium-size
city in the U.S. easily exceeds several thousand), a team
for a single medical emergency usually requires no more
than two dozen medical experts. It is difficult to find the
best two dozen team members from the several thousands
of candidates in addition to the feasibility check (whether
the task plan can achieve the goal as requested) and the
availability check (the team members are all available for
action at the time requested).

In response to the above challenges, we designed and
implemented an underlying Expert database and the
corresponding database service agent. A database service
agent is a persistent entity that provides results to regulated
database queries (e.g., please give me a list of the surgeons
with a capability level above N with a flexible schedule
between time points TA and TH and within a 2 mile range)
to support the HAC processes. How to generate and
manage the underlying data for HAC is an implementation
issue. Our effort ensures data management via reliable
services and provides a reasonable problem space for the
optimizations described in the previous subsections.

6. CONCLUSION AND FUTURE WORK

We have introduced and implemented a human agent
collaboration (HAC) system for facilitating human-to-
human activity coordination. The focus of this paper has
been the technical details of the software architecture, the
information and control, the functionalities of the
constituent components, and their associated underlying
algorithms. A unique feature of the HAC system is the
integration of human expertise in the problem-solving
process, incorporating humans" biases, personal schedules,
and the flexibility for manual responses considering the
kind of information not present or not explicitly articulated
in real-world scenarios.

On the technical front, one of our current research
directions is to explore an even more integrated approach
to team formation (matchmaking) and scheduling. We
have formulated these two problems within the Hybrid
Scheduling Problem (HSP) framework [16]. This allows
us to apply state-of-the-art algorithms [3; 10] to
simultaneously solving selection and scheduling problems.
We plan to exploit our multi-agent architecture to inject a
new HSP-based agent into the system which can
potentially find schedulable teams of experts faster, and
thus seed the more time-consuming schedule optimization
process with a team assignment that is known to be
feasible, thus reducing backtracking.

Another of our future efforts is to test the applicability of
the HAC system in an extended set of domain applications.
The HAC is a meta-level problem-solving system
independent of domain-specific reasoning. We expect the
HAC solution to be applicable to more domains that share
the challenge of large-scale distributed collaborative
problem solving, e.g., the scenario of cultural expertise on
demand that originally motivated this HAC research [7],
the combat medical scenario with realistic data, and
commercial applications (such as case management in
health care, emergency management, and disaster relief).
The HAC system has been implemented for users' manual
operation. Large scale simulation and experimentation will
be carried out in our future work.

ACKNOWLEDGEMENT

The work presented in this paper was partially funded by
DARPA through contract* W31P4Q-08-C-0318. The
views, opinions, and/or findings contained in this
article/presentation are those of the author/presenter and
should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of
Defense. Distribution Statement: Approved for Public-
Release, Distribution Unlimited.

REFERENCES

[1] "The Challenge of Finding Intelligent Agents," IEEE
Intelligent Systems, vol. 22, no. 4, pp. 3-5, 7, July/Aug. 2007,
doi:10.1109/MIS.2007.78

[2] P. Berry et. al. "Conflict Negotiation Among Personal
Calendar Agents". AAMAS'06, pp. 1564-1571, May 2006, Japan.

13] J. Bocrkoel and E. Durfee (2009). "Evaluating Hybrid
Constraint Tightening for Scheduling Agents". In Proc. of
AAMAS 2009, pages 673-680.

[4] P. Carstensen & K. Schmidt. "Computer Supported
Cooperative Work: New Challenges to Systems Design", p.
619—636. In K. Itoh (Ed.), Handbook of Human Factors, 1999.

[5] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lcrman. J. Oh, D.
V. Pynadath, T. A. Russ, and M. Tambe (2001). "Electric elves:
Applying agent technology to support human organizations." In
Proc. of the Conf. on Industrial Applications of Al, Seattle, WA.

[6] W. Chen & K. Decker. "Analyzing characteristics of task
structures to develop GPGP coordination mechanisms". 5th Intl.
Joint Conf. on Autonomous Agent and Multi-Agent Systems,
pages 662-669, Hakodate, Japan, May 2006.

[7] W. Chen. E. Durfee, and M. Dumas. "Human Agent
Collaboration in a Simulated Combat Medical Scenario". In Proc.
of the International Symposium on Collaborative Technologies
and Systems, pages 367-375. Baltimore, USA, May 2009.

[8] R. Kohout & K. Erol. "In-time agent-based vehicle routing
with a stochastic improvement heuristic". Ilth Conf. on
Innovative Applications of Al. 1999. Orlando, FL.

[9] K. Decker and J. Li. "Coordinating mutually exclusive
resources using GPGP". The Journal of Autonomous Agents and
Multi-Agent Systems, 3(2): 133-158, 2000.

[10] R. Eckstein. "Java technical documentation."
http://java.sun.com/developer/technicalArticles/GUI/swing/wizard/

[11] L. de Moura and N. Bj0rner (2008). "Z3: An efficient SMT
solver". In Proc. OfTACACS-2008, 337-340.

[12] E. Durfee and T. Montgomery. "Coordination as Distributed
Search in a Hierarchical Behavior Space." IEEE Transactions on
Systems, Man, and Cybernetics, Special Issue on DAI, SMC,
21(6): 1363-1378, November 1991.

[13] Foundation for Intelligent Physical Agents (FIPA), Agent
Communication specifications, http://www.fipa.org

114] R. Maheswaran, et. al., "Predictability & Criticality Metrics
for Coordination in Complex Environments," Proc. of the 7th
AAMAS, pages 647-654, Estoril, Portugal, May 12 16, 2008.

[15] G. Olson, A. Zimmerman & N. Bos (Ed.), et. al. "Scientific-
Collaboration on the Internet", MIT Press, November 2008.

[16] P., Schwartz (2007). "Managing Complex Scheduling
Problems with Dynamic and Hybrid Constraints". PhD. Diss.,
Computer Science and Engin., Univ. of Mich., Ann Arbor.

[17] M. Tambe. "Agent architectures for flexible, practical
teamwork". 4th National Conf. on Al. p. 22-28, Providence, 1997.

[18] T. Wagner (2005). "DARPA COORDINATORS".
http://www.darpa.mil/ipto/programs/coordinators/

[19] K. Wiegand. "Information theory and human behavior:
uncertainty as a fundamental variable in information-processing
tasks". DTR, AD0423557. TIC, Oct. 1963.

