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1. BACKGROUND 

 

This joint AFRL and NASA research project was initiated in 1 March 2007 to begin addressing 

the technology and capability deficiencies in reducing the call-up time (time from mission 

notification until launch) to support the Prompt Global Strike (PGS) and on-orbit reconstitution 

missions.  One of the critical call-up issues is loading cryogenic propellants (e.g. liquid oxygen). 

 

Currently loading cryogenic propellants requires special operations and equipment with highly 

trained personnel to prevent vehicle damage and personnel injuries.  Maintaining the required 

skill levels of these people are a key aspect of this process.  The people must recognize problems 

when they arise and make critical decisions.  These decisions not only affect vehicle and the 

people working near the vehicle but this mission as well.  One way to reduce dependency upon 

critical personnel and enable rapid and consistent decisions is to create an automated system with 

built-in health and situation management.  This would enable the personnel to connect the 

equipment and empower the system to perform the propellant loading operation with minimal 

oversight. 

 

Funding for this project was provided by a combination of AFRL and NASA Kennedy Space 

Center. 
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2. APPROACH 

 

The project goal was to develop technology to load cryogenic propellants rapidly, with a 

minimum number of console operators whose engineering skills and cryogenic experience are 

limited, such as a USAF non-commissioned officer (NCO).  To accomplish this intelligent 

monitoring and diagnostics technology for cryogenic propellant loading using model-based 

reasoning software technology was selected.  Model-based reasoning (MBR) is an innovative 

way of determining the dynamic state of a process by examining all available sensors instead of 

just one or a few.  MBR also has the capability to determine the health of the system and predict 

degradations.  Two NASA-developed MBR systems, Knowledge-based Autonomous Test 

Engineer (KATE) and Hybrid Diagnostic Engine (HyDE), were used to explore this capability.   

KATE and HyDE models described the physics of the cryogenic loading process and 

dynamically identified nominal and abnormal behaviors. 

 

 KATE and HyDE models incorporate cryogenic technical and operations knowledge allowing 

nearly autonomous system operation with minimal supervision. The MBR approach provided 

detection of cryogenic loading anomalies, isolation and identification of equipment faults, and 

recovery from failed instrumentation and components.   KATE and HyDE software incorporated 

a physics-based simulation of vehicle propellant tanks, valves, ground loading piping and 

components.  The software included a "reasoner" that compares the behavior of simulated and 

actual propellant-loading components to determine logically which measurements or components 

may have failed in the physical system to account for the symptoms that the control system is 

seeing. 

 

The NASA software simulation final report is attached in Appendix A and a paper in Appendix 

B. 

 

An additional objective was to load a LOX tank with LN2 using the software created above to 

validate the simulation results.  However, an accident at KSC impacted this program and limited 

the LN2 loading experiment to trying to find ways to reduce the about of fluid boiling off and 

venting out of the tank as a gas.  This would be beneficial because it reduces the about of fluid 

required to fill the tank, enables a smaller diameter tank vent line, lowers the pressure build-up 

during the loading process, and conditions the tanks for a rapid fill.  The approaches selected 

focused upon spraying the cryogenic fluid inside of the tank using a shower head like devise to 

chill the interior tank walls down. 

 

The LN2 loading experiment final report is attached in Appendix C. 

 

The project leveraged and synergized with work performed on the Rapid Propellant Loading 

(RPL) test bed at NASA‟s Cryogenics Test Laboratory. 
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3. RESULTS 

 

The software Block Diagram shown in figure 1 depicts the launch site software architecture 

developed for the MBR system.  The KATE and HyDE software runs in the RPL Diagnostics 

Console.  Real world data is supplied to the system via LabView hardware and software.  The 

Internet Communications Engine (Ice) publish/subscribe architecture provides a connection 

between the data source – live, simulated or recorded and the MBR application in the diagnostics 

console.  The RPL OPS console communicates between the USAF mission operations center and 

the launch site.    Advanced Diagnostics and Prognostics Test-bed (ADAPT) API is NASA 

software that enables communication with a variety of diagnostic software. 

 

 

Figure 1 

Software Block Diagram 
 

A "Mini-model" simulation was developed to test the MBR software in two versions, Excel and 

Matlab.   For the final demonstrations, Matlab/Simulink data from the mini-model simulator was 

supplied to KATE and HyDE for diagnosis tests by means of text files.   A schematic diagram of 

the mini model is shown in figure 2.  The model consists of a cryogenic storage tank, two pumps, 

valves and flow/pressure measurements, and a simulated vehicle tank for propellant loading.  

The tank, piping and instrumentation sizes were chosen to correspond to the Rapid Propellant 

Loading (RPL) test bed at NASA‟s Cryogenics Test Laboratory. 

 

A large storage tank holds the propellant. A pump is used to create a pressure differential 

between the two tanks in order to move fluid from the storage tank to the vehicle tank. Flow (F), 

pressure (P), level (L), and valve position (V) sensors are included, as denoted in the above 
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schematic. Note that this simulation represents a simplified propellant loading model. In 

particular, we neglect boiling/condensation processes, heat flow, and temperatures (a constant 

gas temperature is assumed).  
 

Figure 2 

Mini Model 

 

The software team developed a Mini Model use case for nominal propellant loading showing 

how cryogenics would flow through the mini-model during normal operation and three use cases 

illustrating how the control system should respond to typical component faults.  The three fault 

use case scenario‟s are 1) faulty valves, 2) failed flow sensors, and 3) vent valve failure.  The 

Top Level Simulation Mini Model is shown in figure 3. 

 

The values of the inputs are determined by the current filling stage, specified by a set of 

parameters indicating when the various stages begin. The „LN2Control‟ block, which calls 

LN2Control.m, determines the stage. The set of stages are: 

1. Initialization: All manual and discretely-controlled valves are set open, and all flow 

control valves are set at 50%.  The pumps are turned off. 

2. Slow Fill: The pumps are set to 300 RPM. Slow fill begins when the simulation time is 

„tSlow‟. 

3. A4 Test: Valve A4 is set to 10%. This occurs when the simulation time is „tA4‟, which 

should be greater than „tSlow‟. 
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4. Fast Fill: The pumps are set to 2500 RPM. Vent valve C4 is placed into autonomous 

mode, where it will open at 7 psig and close at 2 psig. Fast fill begins when the 

simulation time is „tFast‟, which should be greater than „tA4‟. 

5. Topping: Pump speeds are lowered, A4 is partially opened more than 10%, and A3 is 

controlled to maintain F3 at 20 GPM. Topping occurs when the tank level reaches 980 

gallons, which should occur after „tFast‟. 

6. Replenish: A4 is opened to a greater extent. Vent valve C4 is set open. Replenish begins 

when the tank level reaches 1000 gallons. 

7. Drainback: All flow control valves are set to 100%. The pumps are turned off. Drainback 

occurs when the simulation time is „tDrain‟, which should be after L2 reaches 1000 

gallons. 

8. End: Vent valve C4 is closed. This occurs when L2 reaches 10 gallons. 

 

 
 

Figure 3 

Top Level Simulation Mini Model 
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The mini-model KATE model was constructed as a group of KATE objects Knowledge Base 

(KB).  The KB is made up of two parts:  a) a library of components that are compiled into the 

C++ system, each library object has its input names and output function (a single output function 

for each component is used) and b) a "flatfile" textual description of the model or KB specifying 

library components and how things are connected together as well as parameter values. 

 

Diagnostics are performed using the HyDE software.  HyDE uses fluid flow, fluid pressure, and 

fluid level sensors for diagnostics in these simulations.  Valve position and other sensors are not 

used. 

 

In the first scenario, Flow Control Valve A1 was stuck open during the slow fill stage as shown 

in figure 4 screenshot.  The system begins in the initialization phase, and begins slow fill at 100 

seconds.  Flow sensor F1 measures the flow through the first transfer line. An increase in the 

flow is observed at this time due to the change in control inputs.  At 300 seconds, a fault is 

injected.  A sharp increase in F1 is visible (a dotted black line in the simulation plot indicates the 

nominal value at this point, and the solid blue line indicates the sensor output).  HyDE 

immediately detects and isolates the fault at this time.  At around 330 seconds, the operator 

reconfigures to resume a nominal flow rate through the transfer line by reducing the Pump 1 

input to 275 RPM. 

 

 
 

Figure 4 

Flow Control Valve Stuck Open Scenario 

 

In the second scenario, the vehicle tank vent valve, C4, becomes stuck closed during the slow fill 

stage as shown in figure 5 screenshot.  The system begins in the initialization stage and proceeds 

to slow fill at 100 seconds, and fast fill at 600 seconds.  As the vehicle tank fills, the ullage 

pressure, measured by P7, begins to increase.  In nominal operation, the vent valve C4 

automatically opens when the ullage pressure reaches 7 psig, and closes when the ullage pressure 

reaches 3 psig.  In this way, it maintains the ullage pressure within safe levels.  If the vent valve 
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fails to open at the required time, the ullage pressure may build up to unacceptable levels and an 

abort will have to be issued.  Therefore, it is important to quickly identify such failures.  The 

vent valve C4 becomes stuck closed at 1100 seconds.  At this time, it is supposed to remain 

closed, as the ullage pressure is not yet at 7 psig.  At 1254 seconds, the ullage pressure begins to 

exceed 7 psig.  HyDE immediately recognizes that C4 has failed.  Around 1340 seconds, the 

operator initiates drain back to safe the system.  The pumps are turned off and all valves are fully 

opened. 

 

 

Figure 5 

Vehicle Tank Valve Stuck Open Scerario 

 

In the third scenario, two faults occur as shown in figure 6 screenshot.  The flow sensor (F1) fails 

followed by Pump 1 failure during the slow fill stage.  The system begins in the initialization 

stage, and begins slow fill at 100 seconds.  At 300 seconds, the sensor fails and returns only a 

value of zero.  HyDE immediately determines that the flow sensor has failed in this way.  At this 

point, only the remaining flow sensors, F2 and F3, are available for diagnosis.  At 350 seconds, 

Pump 1 fails. HyDE immediately detects that something else has gone wrong and initially 

pinpoints a failure of A1.  At the next time step, HyDE corrects its diagnosis and pinpoints Pump 

1 as the second failure.  (Note that if the pressure and level sensors are also used, HyDE will 

immediately diagnose Pump 1 as the second failure, and not A1.)  At around 380 seconds, the 

operator reconfigures the system to regain nominal flow to the vehicle tank despite the failure of 

Pump 1.  Valve A1 is closed, valve A2 is fully opened, and the RPM of Pump 2 is increased to 

375.  The flow to the vehicle tank is then restored to the nominal value of about 2.2 GPM. 
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Figure 6 

Flow Sensor and Pump Failure Scenario 

 

The NASA simulation final report is attached in Appendix A and paper in Appendix B. 

 
The LN2 loading experiment is shown in Figure 7 and spray nozzle in Figure 8.  Detailed test set-up and 

results are presented in Appendix C “Rapid Propellant Loading (RPL) Cryogenic Tanking 

Demonstration”. 

 

 

Figure 7 

LN2 Loading Experiment 
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Figure 8 

Spay Nozzle Test Hardware 
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Spray Nozzle 



4. CONCLUSIONS 

 

The simulation results demonstrated that an integrated health and operations management system 

can enable safe rapid propellant loading operations with limited operator knowledge and 

involvement.  A single person loading the propellants with back-shop support to perform 

maintenance and repairs appears to be feasible.  The next step would be to expand the scale and 

scope of the simulation and experimentally validate the results. 

 

Unfortunately, cost, test site, and safety constraints levied upon the LN2 loading experiment 

restricted the effort sufficiently that the results are not sufficient to assess the spraying techniques 

attempted.  Another experiment with greater latitude (e.g. tank pressure, tank insulation, & 

temperature/fluid level measurements) should be performed to evaluate this technology. 
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A1. BACKGROUND 

 

The Air Force Research Laboratory (AFRL) in Dayton, OH is teaming with aerospace 

contractors in a program to identify and address technology drivers for responsive, on-demand 

access to, through and from space.  AFRL requirements call for on-demand, flexible, and cost-

effective operations using reusable rockets.  Operability enhancement goals set by AFRL include 

rapid turnaround (< 4 hours), lower operations cost, and much higher vehicle and ground support 

equipment reliability.  
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A2. DESCRIPTION OF GROUND PROCESSING PROBLEMS AND GOALS    

 

Launch vehicle cryogenic propellant loading is one of the most complex and hazardous 

operations performed during launch processing.  This project demonstrated intelligent 

monitoring and diagnostics technology for cryogenic propellant loading using model-based 

reasoning software.  Model-based reasoning (MBR) is an innovative way of determining the 

dynamic state of a process by examining all available sensors instead of just one or a few.  MBR 

also has the capability to determine the health of the system and predict degradations.  Two 

NASA-developed MBR systems, Knowledge-based Autonomous Test Engineer (KATE) and 

Hybrid Diagnostic Engine (HyDE), were used to explore this capability.   KATE and HyDE 

models described the physics of the cryogenic loading process and dynamically identified 

nominal and abnormal behaviors. The technology was developed and demonstrated under a 

Space Act Agreement between KSC and AFRL. 
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A3. APPLICABILITY TO AFRL REQUIREMENTS    

 

The project goal was to develop technology to load cryogenic propellants rapidly, with a 

minimum number of console operators whose engineering skills and cryogenic experience are 

limited, such as a USAF non-commissioned officer (NCO).  KATE and HyDE models 

incorporate cryogenic technical and operations knowledge allowing nearly autonomous system 

operation with minimal supervision. The MBR approach provided detection of cryogenic loading 

anomalies, isolation and identification of equipment faults, and recovery from failed 

instrumentation and components.   KATE and HyDE software incorporated a physics-based 

simulation of vehicle propellant tanks, valves, ground loading piping and components.  The 

software included a "reasoner" that compares the behavior of simulated and actual propellant-

loading components to determine logically which measurements or components may have failed 

in the physical system to account for the symptoms that the control system is seeing. 

 

The project leveraged and synergized with work performed on the Rapid Propellant Loading 

(RPL) test bed at NASA‟s Cryogenics Test Laboratory. 
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A4. RELEVANCE TO OTHER AFRL TECHNOLOGY NEEDS  

 

KATE and HyDE software is applicable to a “Reasoner” capability needed for other reusable 

rocket technology including active thermal control, purge and pressurization, avionics checkout, 

electrical distribution, and the rocket‟s main propulsion system.  The Reasoner thus provides 

Fault Detection, Isolation and Recovery (FDIR) for the launch vehicle and ground support 

equipment. 

 

Software Team 
ASRC 
• Charlie Goodrich – ASRC Software Lead 
• David Richter 
• Bradley Burns 
NASA (KSC) 
• Jan Lomnes – Project Manger 
• Robert Johnson – NASA Hardware Lead 
• Jose Perotti 
• Robert Ferrell 
• Jared Sass 
NASA (ARC) 
• Barbara Brown – NASA Software Lead 
• Ann Patterson-Hine 
• Sriram Narasimhan - University of California, Santa Cruz 
• Matthew Daigle – UARC 
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A5. SOFTWARE BLOCK DIAGRAM 

The following diagram shows the launch site software architecture developed for the MBR 

system.  The KATE and HyDE software runs in the RPL Diagnostics Console.  Real world data 

is supplied to the system via  LabView hardware and software.  The Internet Communications 

Engine (Ice) publish/subscribe architecture provides a connection between the data source – live, 

simulated or recorded and the MBR application in the diagnostics console.  The RPL OPS 

console communicates between the USAF mission operations center and the launch site.    

ADAPT API is NASA software that allows The Advanced Diagnostics and Prognostics Testbed 

(ADAPT) to communicate with a variety of diagnostic software. 

 
                   

 

 

Because of limited funds and time for hardware development the decision was made to test 

KATE/HyDE in simulated mode only. 
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Software Block Diagram 
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A6. MINI MODEL 

The "Mini-model" simulation was developed to test the MBR software in two versions, Excel 

and Matlab.   For the final demonstrations, Matlab/Simulink data from the mini-model simulator 

was supplied to KATE and HyDE for diagnosis tests by means of text files.   A schematic 

diagram of the mini model is shown below: 
    
 

Figure A-2 

Mini Model 
 

The model consists of a cryogenic storage tank, two pumps, valves and flow/pressure 

measurements, and a simulated vehicle tank for propellant loading.  The tank, piping and 

instrumentation sizes were chosen to correspond to the Rapid Propellant Loading (RPL) test bed 

at NASA‟s Cryogenics Test Laboratory. 

 

Testing Strategy for FDIR applications using the mini-model and use cases 

The software team developed a use case for nominal propellant loading showing how cryogenics 

would flow through the mini-model during normal operation.  In addition, the team developed 

three additional use cases illustrating how the control system should respond to component faults 

that might occur.  The three fault use cases are 1) faulty valves; 2) failed flow sensors; and 3) 

vent valve failure. 
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A7. KATE-SPECIFIC ITEMS 

 

KATE C++ Code  

KATE-C is a FDIR application developed at Kennedy Space Center in 1994.  The software is 

written in C++.  It has been recompiled using up-to-date compilers, state-of-the-art hardware, 

and the Linux operating system.  KATE-C was tested using application knowledge bases from 

1994.  A KATE-C knowledge base for the mini-model was completed, and the system was 

demonstrated for the USAF in December 2008.  A list of changes/fixes made to 1994 version is 

included in the installation instructions for KATE-C (below).   A narrative for major revisions of 

the software made by the development team is part of the software repository that accompanies 

this report. 

 

Instructions to compile and run KATE 

The installation instructions for KATE (including running a mini-model failure scenario) are 

included with the software that accompanies this report.  The software was developed under the 

version control system known as Subversion. It is provided in two forms.  The first is an archive 

of the Subversion repository called rpl.repo.tar.gz in the KATE directory.  The second is a tarball 

of the current "working copy" of the repository called rpl.tar.gz also in the KATE directory.  The 

installation instructions are included in the following paragraphs for convenience: 

 
 

//********************************************* 

//**                                         ** 

//**  File:  README.install                  ** 

//**                                         ** 

//**  Original by D. Merchant circa 1994     ** 

//**  Updated by C. Goodrich and D. Richter  ** 

//**  9-30-2009                              ** 

//**                                         ** 

//********************************************* 

 

Installation instructions for KATE* 

 

Depending on how the KATE source is delivered, either unpack the source tarball 

or retrieve the source from a previously-configured Subversion database. 

 

KATE Development Environment: 

 

Note that the original (1994) KATE software used the Motif graphic display 

system. When KATE was updated in 2008-2009, developers used Open Motif. The home 

page for the Open Motif development project is http://www.openmotif.org/ Motif 

is an industry standard toolkit for UNIX systems and Open Motif, based on the 

Motif source code, provides a freely available version for open source 

developers. 

 

The KATE update project in 2009 also used Red Hat Enterprise Linux as the 

operating system platform for development.  The system was developed on a Dell 

computer using a 64 bit Intel processor.  The Motif components of the Red Hat 

development environment code were installed using yum, a software installation 

tool for Red hat linux and Fedora Linux. Here are the Open Motif components: 

openmotif.i386                            2.3.1-2.el5  

openmotif.x86_64                          2.3.1-2.el5  

openmotif-devel.i386                      2.3.1-2.el5  

openmotif-devel.x86_64                    2.3.1-2.el5  

 

 

1) Open a BASH shell and create the root KATE directory (hereafter called KATE) 

   and change to that directory. 
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   a) Assuming the source is delivered as KATE.tar, move the tarball to the KATE 

      directory and untar it: tar xvf KATE.tar 

   b) Assuming the source resides in a Subversion database, issue the Subversion 

      command to checkout the source: svn co https://128.217.72.10/svn/rpl/ice/trunk . 

      (modify the URL and path as needed). 

 

2) Create the following directories, needed in the compilation / linking process: 

   KATE/sun/lib and KATE/sun/obj. 

 

3) Create the /ice directory at root level and move the ice.hosts file into that 

directory. 

   Edit the file and add the local IP and hostname. For example here is a sample 

ice.hosts 

   file for a single machine named "katehost" 

 

      # 

      # Host Database For KATE 

      # 

      127.0.0.1 katehost 

 

4) Edit the local .bashrc file and add the following definitions: 

   export CPP=$(which g++) 

   export ICE_DIR="${HOME}/KATE/" 

   export ICE_SRC_DIR="${HOME}/KATE/src/" 

   export ICE_MAC_DIR="${HOME}/KATE/sun/" 

   export COMPILER="-g -Wno-deprecated -fno-operator-names" 

   export PATH=$PATH:${HOME}/KATE/sun/exe:. 

 

   a) You must redirect the CPP command to use g++, per the above environment 

      command as the modern cpp command invokes the C preprocessor rather than 

      the compiler. 

   b) Ensure that you add the trailing slash to the directory paths. 

   c) You will need to re-source the .bashrc file for the changes to take effect, 

      i.e., in your home directory issue the command: source .bashrc 

 

5) Change to the KATE/src directory and make the myMakeIt script executable: 

   chmod a+x myMakeIt 

 

6) Build the source by executing the myMakeIt script in the KATE/src directory: 

   myMakeIt. 

   If the source compiles with no problems you should see the following text: 

 

   ************************************************************ 

   Compile complete 

   See: Running ICE-C with the GUI in the README.install file 

   ************************************************************ 

 

7) To run KATE, change to the KATE/sun/exe directory and issue the command: ui 

   This will start KATE in the default mode with no windows open. To run KATE with 

   a previously-saved startup script, issue the command: ui -uienv <script>  

   (see the discussion of scripts under the topic "Running ICE-C (KATE) with the  

    GUI" below) 

 

* For historical reasons KATE is also sometimes referred to as ICE or ICE-C. 

 

-------------------------------------------------------------------------- 

 

KATE directory hierarchy: 

 

    KATE 

        data (*.kpd - for KATE processed datafiles) 

        models 

            alo 

            DB 

            epdc 

            fcl 

            instr 

            lox 

            lsoc 

            net 

            pvd 
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            translator 

        src 

            adapt 

            dm 

            kb 

                alo (water tanking system) 

                common 

                epdc 

                fcl (freon coolant loop) 

                lox (liguid oxygen) 

                net 

                ptrespository 

                pvd (vent doors) 

            kics 

            reasoner 

                diagnoser 

                fault-detector 

                monitor 

                simulator 

            translator 

            ui 

                ICONS 

            utils 

        sun 

            exe 

            lib 

            obj 

 

---------------------------------------------------------------------------- 

 

The KATE system is made up of four modules and a Knowledge Base (KB) 

 

1) The User Interface module (UI) is an X-Window/MOTIF interface that displays 

   values and provides control access to the other modules. 

 

2) The Reasoning Module (RM) which, as the name suggests, does all the Model-based  

   Reasoning (MBR) in the system.  The four sub-modules with the RM are the 

   Monitor, Simulator, Fault Detector, and Diagnoser. 

 

3) The Data Module (DM) which is responsible for getting data to the Reasoning 

   module. There are currently two data providers: a Playback facility that 

   enables a recorded data file to be played back, and an Ethernet data 

   provider that allows KATE to connect to PC-GOAL via an ethernet 

   connection. (Note that this second functionality is not available at 

   this time.) The Data Module also includes the Record facility which 

   allows recording of data from any data provider and a Build program for 

   building PC-GOAL TCID files used to look up FD names with an address. 

 

   The input to build is a TCID file and an FD list. This program assumes 

   the filename extensions .nam, .bsd, and .bsi. 

 

   (The TCID build facility developed in 1994 has not been updated to PCGOAL II.) 

 

4) The KICS system is the KATE Interprocess Communication System that 

   allows all the processes in the system to talk to each other. 

 

5) The KB is made up of two parts: 

   a) A library of components that are compiled into the system, each library 

      object has its input names and output function (a single output 

      function for each component is used).  The class libraries are broken up into 

      application-specific files and located in KATE/src/kb/<application>, 

      where <application> is fcl, lox, alo, etc. All application source 

      libraries are compiled into one complete class library - so there can 

      be no duplication of class names between applications.  The Rapid Propellant  

      loading class libraries were included in the KATE/src/kb/alo directory. 

   b) A "flatfile" textual description of the application domain specifying 

      library components and how things are connected together as well as 

      parameter values. See KATE/README.flatfile for a brief knowledge base 

      generation guide. 

 

-------------------------------------------------------------------------- 
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Other files to be aware of 

 

1) The GUI can be started with a -uienv option to allow the system to use 

   a startup script, as previously mentioned: ui -uienv <script> 

 

2) Browser description file. The GUI provides a tabular utility called 

   the Browser for displaying objects and their model and hardware values 

   along with the nomenclature if desired. A predefined list of objects to 

   be displayed need to be in a browser file. This file can be read 

   in by the startup script or manually by the user through the GUI. 

 

   The Browser facility worked in the original Motif graphics 

   implementation but has not been debugged for use in the Open Motif 

   environment. 

 

3) $(ICE_DIR)data/playback.kpd - holds the names and locations of playback files 

   which is used only when running the text ui (pui.C) for playback. 

 

4) $(ICE_SRC_DIR)make.macros - this file is read by all makefiles in the system 

   and is used to set up preprocessor, compile and linker flags as well as set up 

   the macros for the directories in the system and define the include paths. 

 

   CPPLINK = -Bstatic  // Used for static linking (usually for delivery). 

 

5) A file called archive.dat is created when the archiving option on the 

   simulator is turned on by clicking the radio button under "Diagnoser 

   Tools" in the reasoner GUI.  This file can then be replayed using the 

   facility (even though the extension is not kpd).  Be careful to rename 

   the file because if an archive.dat file exists it will get overwritten 

   when archiving is turned on. 

 

6) The file models.list is the list of KB flatfiles used by the rm-ui 

   (the text user interface for the reasoner). The path for this file 

   is currently hardcoded as "/ice"; see rm-ui.C to change it. 

 

   Using the graphical user interface (GUI) it is not necessary to build a 

   models.list file since the menu command: File ==> Load KB brings up a 

   list of all files in the current directory with the .flatfile extension 

 

7) The file $(ICE_SRC_DIR)utils/kate-globals.C defines the services that are 

   available (client/server).  There were  five sets 

   of communication services available in 1994, but this can be increased at 

   any time.  This means that there can be five separate KATE instances running 

   simultaneously (on the same or different hosts). 

 

   Another place that path names are hard coded into the system is rui.C 

   (the text interface for record). It currently has "/ice" as the default 

   directory for its files. 

 

   The Diagnoser does write out a temporary file during a diagnosis 

   but this is written to /tmp and then is removed. Check work-bench.C 

   in $(ICE_SRC_DIR)reasoner/diagnoser if you want to change that. 

 

Note: the "kpd" extension stands for Kate Processed Data and should (though 

not required) be the extension for all files that are to be played back to 

KATE using the playback facility. 

 

-------------------------------------------------------------------------- 

 

Running ICE-C (KATE) with the GUI: 

 

   To run the Graphical User Interface: 

 

   The graphical interface may be run with or without scripts. Scripts 

   provide a shortcut to loading the knowledge base (flatfile) and various 

   KATE graphical user interface modules such as Reasoner, Data Provider, 

   Browser, Tree Display and Schematic Viewer. The GUI has a facility to 

   save this manually-loaded window configuration in a script file so that 

   the full configuration may be reloaded easily. 
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   The following example illustrates how to run the GUI with both methods. 

   After the initial manual run, the full configuation is saved in a 

   script named TEST1. Then, the example is re-run using the saved 

   script. 

 

GUI WITHOUT SCRIPT: 

 

   At the command prompt enter: 

      1) ui <enter> 

         (The GUI begins executing in a window titled: ICE Version 5.5.) 

         Enter the following menu commands: 

 

      2) File ==> Load KB 

         (Select rpl.flatfile from the "Select Knowledge Base" pop-up list 

          and click "OK".) 

 

      3) Click "OK" in the pop-up window notifying the user that 107 

         objects have been loaded. 

 

      4) Utilities ==> Open Toolbox ==> Reasoner 

         (The Reasoner begins executing in its window.) 

 

      5) Click the large rectangular box at the bottom of the window 

         titled "Click Here to Connect" 

         (The Reasoner window fills in its Monitor, Simulator, Fault Detector 

         and Diagnoser panes.) 

 

      6) In the upper left corner of the window, click "Download KB". 

         (Several messages appear in the Fault Detector pane of the Reasoner 

         window informing the user of tolerance settings that have been established.) 

 

      7) Utilities ==> Open Toolbox ==> Data Provider 

         (The Data Provider begins executing in its window.) 

 

      8) Click the large rectangular box at the bottom of the window 

         titled "Click Here to Connect". 

         (The Data Provider window fills in its Data Source pane including tape 

         "player" buttons and the status pane. 

 

      9) Click the "New" box near the bottom of the Data Source window. 

 

     10) Click "a1open.kpd" in the pop-up window that appears and click "OK". 

         (The status pane fills in with the Start: and Stop: times recorded in 

         the .kpd data file.) 

 

     11) Click Configure ==> 3. 

         (The window divides into three panes, one large pane on the left and two 

         smaller panes on the right of the screen.) 

 

     12) Click Utilities ==> Reasoner (to designate that the Reasoner should run in 

         the large left-hand window (Pane 1)). 

         (The Reasoner begins running in Pane 1.) 

 

     13) Click Utilities ==> Data Provider (to designate that the Data Provider 

         should run in the upper pane of the right-hand window (Pane 2)). 

         (The Data Provider begins running in Pane 2.) 

 

     14) Click the Monitor Status "On" radio button in the Reasoner 

         pane on the left of the screen. 

 

         It only possible to click the Monitor Status "On" radio button within the 

         Reasoner after the Data Provider has been started. (There is nothing for 

         the Reasoner to "monitor" until a data source has been specified.) 

         Turning the Monitor On also instructs the Reasoner to connect to the Data 

         Provider and vice versa.  The connection between the two processes is 

         indicated by a bright green wavy arrow in the top of the Reasoner and 

         Data Provider windows.) 

 

         Note: The system can be run in "simulate only" mode with no data 

         provider. In the simulate only mode, archiving can be turned on to 

         generate an archive.dat file.  This file can be renamed "testXYZ.kpd" 
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         or something similar and subsequent runs can be made using this kpd 

         file in the Data Provider to test the full-up KATE system with 

         simulated data. To run in the simulate only mode, do not click the 

         Monitor status "On" radio button.  Instead, click the Simulator 

         Status radio button to "On", then click the Archiving radio button "On". 

         Click the "Start" button in the upper left of the Reasoner pane and 

         manipulate commands in the Tree Display Pane as described below. 

 

     15) Click the Simulator Status radio button to "On", the Fault 

         Detector Status radio button to "On", the Diagnoser Status radio 

         button to "On", and click the "Start" button in the upper left of 

         the Reasoner pane. 

 

     16) Click the green "Play" button in the Data Provider window. 

 

         (The Data Provider begins sending data to the reasoner. The GMT: time 

         display in the middle of the upper pane of the KATE window begins 

         updating with the time sent by the data provider. After about 50 

         seconds, the Fault Detector Messages appear informing the user that the 

         measurements F1, P6 and P3 are out of tolerance. After 56 seconds 

         these three measurements are announced as "discrepant" and an automatic 

         diagnosis begins. Two messages appear in the Diagnoser messages pane 

         of the Reasoner.  The messages name the suspect component ANNIN1 valve 

         as the cause of the discrepancies and posit two failed VALUES for ANNIN1 : 

         1.0 (full open) or 0.8 (80% open). Both of these values are consistant 

         with the current state of the system measurements.) 

 

     17) After these messages appear, click "Stop" in the top of the 

         Reasoner pane to stop KATE's execution. 

 

     18) Click File ==> Save UI Environment. Type a name for the UI 

         Environment file in the File Box popup and click "OK". Any 

         filename will do. In this example type TEST1 in the Selection window. 

         (This action saves the UI Environment for use later.) 

 

     19) Click File ==> Exit and confirm with "OK" in the Verify Exit 

         pop-up window. 

         (The KATE program exits returning the user to the Linux Terminal 

         window.) 

 

   The following example illustrates how to run the GUI with 

   the TEST1 script that has just been created. 

 

GUI WITH TEST1 SCRIPT FILE: 

 

   At the command prompt in the Linux Terminal window enter: 

      1) ui -uienv TEST1 <enter> 

 

         (The GUI begins executing in a window titled: ICE Version 5.5.) The 

         window has three panes. The large pane on the left is filled with the 

         Reasoner. The small pane in the upper right is filled with the Data 

         Provider and the small pane on the lower right is empty. Note that the 

         KB (knowledge base) rpl.flatfile has already been loaded by the script, 

         so loading a KB is not necessary. 

 

    Enter the following menu commands: 

      2) Click the large rectangular box at the bottom of the Reasoner window 

         titled "Click Here to Connect". 

         (The Reasoner window fills in its Monitor, Simulator, Fault Detector 

         and Diagnoser panes.) 

 

      3) In the upper left corner of the window, click "Download KB". 

         (Several messages appear in the Fault Detector pane of the Reasoner 

         window informing the user of tolerance settings that have been established.) 

 

      4) Click the large rectangular box at the bottom of the Data 

         Provider window titled "Click Here to Connect". 

         (The Data Provider window fills in its Data Source pane including tape 

         "player" buttons and the status pane. 

 

      5) Click the "New" box near the bottom of the Data Source window. 
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      6) Click "a1open.kpd" in the pop-up window that appears and click "OK". 

         (The status pane fills in with the Start: and Stop: times recorded in 

         the .kpd data file.) 

 

      7) Click the Monitor Status "On" radio button in the Reasoner 

         pane on the left of the screen. 

 

         (The connection between Data Provider and Reasoner processes is 

         indicated by a bright green wavy arrow in the top of the Reasoner and 

         Data Provider windows.) 

 

      8) Click the Simulator Status radio button to "On", the Fault 

         Detector Status radio button to "On", the Diagnoser Status radio 

         button to "On", and click the "Start" button in the upper left of 

         the Reasoner pane. 

 

      9) Click the green "play" button in the Data Provider window. 

 

         (The Data Provider begins sending data to the reasoner, the Fault 

         Detector and Diagnoser Messages appear as before.) 

 

     10) After these messages appear, click "Stop" in the top of the 

         Reasoner pane to stop KATE's execution. 

 

-------------------------------------------------------------------------- 

 

Running KATE with text ui 

 

    The reasoner may be run without the GUI by using the rm-ui program to 

    control the reasoner. The reasoner and the rm-ui can be run in either 

    quiet, brief or verbose mode; each level shows more detail on the 

    messages being sent between the two processes. Typing "m" for any text 

    ui will provide a menu of options. 

 

    reasoner [ -q|b|v ] [ -c channel ] 

 

    rm-ui [ -q|b|v ] [ -c channel ] 

 

    A socket or channel is set up between processes in the KATE system the 

    default channel number is 1.  If a reasoning processes is already 

    running the user can specify another channel number to be used. 

 

    The reasoner program is started first and then the rm-ui program. 

 

    The Data Module process can also be run with its own text user 

    interface. 

 

    Ethernet data provider 

    edp [ -q|b|v ] [ -c channel ] 

    eui [-h hostname] [-c channel] [-s source] [-bf buildfile] [-q|b|v ] 

        [-run] 

 

    The source is the firing room number (sort of), the run option tells the 

    text ui to start the edp program automatically. 

 

    Note: This functionality is not available in the latest version. 

 

    Playback data provider 

    pdp [ -c channel ] [ -l tapefile] [ -q|b|v ] 

    pui [ -h hostname ] [ -c channel ] [ -q|b|v ] 

 

Other programs: 

 

    1) build [-t tcidname] [-bf buildname] [-q|b|v] 

       The tcidname should be just the name of the TCID without any extension 

       (e.g., sa065a), the buildname is a name of a file that contains a 

       list of fds (one on each line) in the system that the application needs. 

       A valid usage might look like: 

 

       build -t sa065a -bf fds.nam -v 
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       The -v turns on the debugging messages.  The above command line will 

       generate a build file called fds.bld. 

 

    2) translator [-i inputfile] [-o outputfile] [-a] 

       The translator program takes a KATE database file and outputs a KATE-readable 

       flatfile. See KATE/src/translator/translator.c for required database format. 

 

Other files 

 

    The file fds.nam contains list of fds used as input to the build 

    program. 

 

    TCID files *.bsd *.bsi also used as input to the build program 

    Note that the build program has not been upgraded to work with PCGOAL2. 

 

Knowledge base instructions 

The mini-model (see Figure A-1) was constructed as a group of KATE-C objects.  The 

README.flatfile text included with the software describes how to create a KATE model or 

knowledge base (KB).  As explained in the installation instructions above, the KB is made up of 

two parts: 

 

   a) A library of components that are compiled into the C++ system, each library object has its 

input names and output function (a single output function for each component is used).  The 

class libraries are broken up into application-specific files and located in 

KATE/src/kb/<application>, where <application> is fcl, lox, alo, etc.  All application source 

libraries are compiled into one complete class library - so there can be no duplication of class 

names between applications.  The Rapid Propellant loading class libraries were included in the 

KATE/src/kb/alo directory. 

 

   b) A "flatfile" textual description of the model or KB specifying library components and how 

things are connected together as well as parameter values.  See KATE/README.flatfile for a 

brief knowledge base generation guide.   

 

  c) The Rapid propellant loading KB is included in a file in the KATE/sun/exe/ directory called 

rpl.db.  rpl.db describes each of the components in the mini-model and how they are connected 

to the others.  Parameters such as tank sizes, tolerances for measurements, flow coefficients, 

equipment locations, minimum and maximum values are also included and documented in rpl.db  
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A8. HYDE-SPECIFIC ITEMS 

 

HyDE Software 

The HyDE software distribution is included with this report in a WinZip repository named 

HyDE.zip.  The following directories are in the distribution: 

 doc contains all the help files, manuals and tutorials describing how to build and save 

models, how to build the HyDE tool, how to configure HyDE for diagnosis, and how to 

run the HyDE tool. 

 ModelingParadigm contains the HyDE modeling paradigm as well as three 

subdirectories containing model interpreters: 

o HyDEInterpreter contains the C++ code that allows user to check and save 

models, create, edit and save harness, and run scenarios. 

o HyDEGenericDecorator contains the C++ code that decorates the icons for model 

entities based on their attributes. 

o lib contains the HyDE, HyDEInterpreter, and HyDEGenericDecorator libraries. 

 models contains all the HyDE models developed using the Generic Modeling 

Environment (GME) tool from Vanderbilt University. 

 src contains all the C++ code that is part of the HyDE Reasoning Engine.  

 test contains unit tests, system tests and regression tests. 

 

HyDE Rapid Propellant Loading models 

Hyde model source code for Rapid Propellant Loading with comments is included in the WinZip 

repository named HyDE_AFRL_Models.zip. 

 

The changes that were necessary to configure HyDE for Rapid Propellant Loading are described 

in the PowerPoint file named AFRL_Demo-v0.pptx that is included in the HyDE directory with 

this report. 
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A9. SIMULINK/HYDE ITEMS 

  

Rapid Propellant Loading HyDE movies 

A set of HyDE demonstrations is included with this report as “.avi” movie files. They may be 

played with any movie player that supports the .avi format, such as Windows Media Player. The 

movies were created using the RPL simulation software. Three scenarios were selected to 

highlight the capabilities of HyDE.   The movies are included in the Movies directory with the 

software accompanying this report. 

Demonstration 1: Flow Control Valve Stuck Open 

In the first scenario, a flow control valve, A1, becomes stuck open during the slow fill stage. 

This scenario is demonstrated in the movie file “HyDE-A1StuckOpen.avi”. The scenario is 

illustrated in the screenshot below. 

 

 

Figure A-3 

Flow Control Valve Stuck Open Scenario 
 

It is important to first note that HyDE does not use the valve sensors, only flow, pressure, and 

level sensors are used for diagnosis.  The system begins in the initialization phase, and begins 

slow fill at 100 seconds.  The movie shows the output of flow sensor F1, which measures the 

flow through the first transfer line.  An increase in the flow is observed at this time due to the 

change in control inputs.  At 300 seconds, the fault is injected.  A sharp increase in F1 is visible 

(the dotted black line in the plot indicates the nominal value at this point, and the solid blue line 

indicates the sensor output).  HyDE immediately detects and isolates the fault at this time.  At 

around 330 seconds, the operator reconfigures to resume a nominal flow rate through the transfer 

line by reducing the Pump 1 input to 275 RPM. 
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Demonstration 2: Vehicle Tank Vent Valve Stuck Open 

In the second scenario, the vehicle tank vent valve, C4, becomes stuck closed during the slow fill 

stage. This scenario is demonstrated in the movie file “HyDE-C4StuckClosed.avi”. The scenario 

is illustrated in the screenshot below. 

 

 

Figure A-4 

Vehicle Tank Vent Valve Stuck Open Scenario 

 

The system begins in the initialization stage and proceeds to slow fill at 100 seconds, and fast fill 

at 600 seconds. As the vehicle tank fills, the ullage pressure, measured by P7, begins to increase. 

The movie shows the output of P7. In nominal operation, the vent valve C4 automatically opens 

when the ullage pressure reaches 7 psig, and closes when the ullage pressure reaches 3 psig. In 

this way, it maintains the ullage pressure within safe levels. If the vent valve fails to open at the 

required time, the ullage pressure may build up to unacceptable levels and an abort will have to 

be issued. Therefore, it is important to quickly identify such failures. The vent valve C4 becomes 

stuck closed at 1100 seconds. At this time, it is supposed to remain closed, as the ullage pressure 

is not yet at 7 psig. At 1254 seconds, the ullage pressure begins to exceed 7 psig. HyDE 

immediately recognizes that C4 has failed. Around 1340 seconds, the operator initiates drain 

back to safe the system. The pumps are turned off and all valves are fully opened. 

 

Demonstration 3: Flow Sensor Failure and Pump Failure 

In the third scenario, two faults occur.  The flow sensor F1 fails, followed by a failure of Pump 1 

during the slow fill stage. This scenario is demonstrated in the movie file “HyDE-

F1FailPump1Fail.avi”.  The scenario is illustrated in the screenshot below. 
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Figure A-5 

Flow Sensor Failure and Pump Failure Scenario 
 

The system begins in the initialization stage, and begins slow fill at 100 seconds.  The movie 

shows the output of flow sensor F1.  At 300 seconds, the sensor fails and returns only a value of 

zero. HyDE immediately determines that the flow sensor has failed in this way.  At this point, 

only the remaining flow sensors, F2 and F3, are available for diagnosis.  The movie then shows 

the output of F3 instead of F1.  At 350 seconds, Pump 1 fails.  HyDE immediately detects that 

something else has gone wrong and initially pinpoints a failure of A1 (this is not visible in the 

movie).  At the next time step, HyDE corrects its diagnosis and pinpoints Pump 1 as the second 

failure. (Note that if the pressure and level sensors are also used, HyDE will immediately 

diagnose Pump 1 as the second failure, and not A1.)  At around 380 seconds, the operator 

reconfigures the system to regain nominal flow to the vehicle tank despite the failure of Pump 1. 

Valve A1 is closed, valve A2 is fully opened, and the RPM of Pump 2 is increased to 375. The 

flow to the vehicle tank is then restored to the nominal value of about 2.2 GPM. 
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A10. RAPID PROPELLANT LOADING HYDE / SIMULINK DEMONSTRATION 

 

A set of HyDE software demonstrations is included with this report as Matlab Simulink files. 

The files are located in the Matlab Simulink files directory with the software accompanying this 

report. They may be executed in the Matlab environment.  The following instructions describe 

how to run the software: 

 

LN2 Matlab/Simulink Simulation 

This section describes the Matlab/Simulink Simulation of the simplified LN2 test bed. The scope 

of the model is shown below. 
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Figure A-6 

LN2 Test Bed Simulation 

 

A large storage tank holds the propellant.  A pump is used to create a pressure differential 

between the two tanks in order to move fluid from the storage tank to the vehicle tank. Flow (F), 

pressure (P), level (L), and valve position (V) sensors are included, as denoted in the above 

schematic.  Note that this simulation represents a simplified propellant loading model.  In 

particular, we neglect boiling/condensation processes, heat flow, and temperatures (a constant 

gas temperature is assumed).  

  

28 

 

32 

 



Simulation Overview 

 

The simulation consists of a Simulink model, an associated graphical user interface (GUI), and a 

set of Matlab scripts and function, which should all be kept in the same directory.  The main files 

are: 

 

 LN2Sim.mdl: The Simulink model of the simplified LN2 test bed. 

 LN2Params.m: A Matlab script that sets the values of model and configuration 

parameters.  

 LN2GUI.fig: The simulation GUI. 

 LN2Control.m: A Matlab function that implements the automatic filling protocol. 

 

The top-level of LN2Sim.mdl is shown below. 

 

Figure A-7 

Top Level LN2 Simulation Model 

33 

 



 

The model mainly consists of the control block, which calls LN2Control.m, input blocks, the 

main system block (which implements all the physical processes of the simulation), sensor 

blocks, and output blocks. Outputs are fed back into the control block for closed-loop control.  

 

The values of the inputs are determined by the current filling stage, specified by a set of 

parameters indicating when the various stages begin. The „LN2Control‟ block, which calls 

LN2Control.m, determines the stage. The set of stages are: 

 

 Initialization: All manual and discretely-controlled valves are set open, and all flow 

control valves are set at 50%.  The pumps are turned off. 

 Slow Fill: The pumps are set to 300 RPM. Slow fill begins when the simulation time is 

„tSlow‟. 

 A4 Test: Valve A4 is set to 10%. This occurs when the simulation time is „tA4‟, which 

should be greater than „tSlow‟. 

 Fast Fill: The pumps are set to 2500 RPM. Vent valve C4 is placed into autonomous 

mode, where it will open at 7 psig and close at 2 psig. Fast fill begins when the 

simulation time is „tFast‟, which should be greater than „tA4‟. 

 Topping: Pump speeds are lowered, A4 is partially opened more than 10%, and A3 is 

controlled to maintain F3 at 20 GPM. Topping occurs when the tank level reaches 980 

gallons, which should occur after „tFast‟. 

 Replenish: A4 is opened to a greater extent. Vent valve C4 is set open. Replenish begins 

when the tank level reaches 1000 gallons. 

 Drainback: All flow control valves are set to 100%. The pumps are turned off. Drainback 

occurs when the simulation time is „tDrain‟, which should be after L2 reaches 1000 

gallons. 

 End: Vent valve C4 is closed. This occurs when L2 reaches 10 gallons. 

 

 

Component Models 
 

In this section, we describe the models of the system components and their faults. The simulation 

model is constructed in a component-based fashion using a component library. In this 

framework, a system model is created by instantiating different components and connecting them 

appropriately. In this way, different system configurations can be easily developed. 

LN2Library.mdl contains the component library. It is shown below. 
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Figure A-8 

LN2 Component Library 
 

The system has been divided into tanks, pipes, control valves, vent valves, pumps, junctions, and 

sensors.  Each component model is masked, allowing component parameters to be set through a 

dialog.  Double-clicking on a component model brings up the component dialog. A simple 

description of the component is provided in the mask dialog.  Expanded descriptions are 

available by clicking on the help button on the mask dialog. 

 

Note that the variable names in parentheses shown in the mask prompt are the corresponding 

internal variables used by the mask.  For example, liquid density is given the variable name of 

„rho‟ in many component models.  Internal block computations refer to the user-entered value for 

liquid density using the variable name „rho‟.  
 

As an example, the mask prompt for the C1 control valve is shown below. 
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Figure A-9 - Sample Mask Prompt 

 

Descriptions of the components are as follows. 
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 Tank 
 

Computes amount of liquid and gas mass and corresponding pressures. Two mass balance 

equations and corresponding state variables are included, one for the liquid, and one for the 

gas. State changes between liquid and gas are not modeled and a constant gas temperature is 

assumed. 

 

Given the liquid mass, the height of the liquid is computed based on the known liquid density 

(rho) and the area of the tank (A). Hydrostatic pressure is computed using the height of the 

liquid plus the elevation of the tank using )( ehg  , where ρ is the liquid density, g is the 

acceleration due to gravity, h is the liquid height, and e is the elevation. Given the gas mass, 

ullage pressure is added to that total, calculated using the ideal gas law assuming a known 

gas temperature. 

 

 Pipe 
 

Models a pipe as a capacitance. Includes liquid volume in the pipe as a state variable. 

Integrates the sum of flows to obtain volume of liquid in the tank, given the initial volume of 

liquid (I). Dividing volume by capacitance (C) provides the pressure: 

 f
C

Ip
1

           Equation A-1 

where Δf is the sum of flows (flow from left – flow from right). 

 

 Control Valve 

 

Calculates flow rate as function of valve position and square root of pressure difference. 

Control signal with value of 0 closes the valve (no flow) and a value of 1 opens the valve 

(full flow). A linear flow valve is assumed, where the flow is the linear with the percentage 

the valve is open. 

 

The flow equation is based on flow through an orifice with area A and flow coefficient C, 

where the volume flow rate is given by: 

)(
2

psignpAC 


          Equation A-2 

 

Where C is the flow coefficient, A is the orifice area, p is the pressure drop and sign is the 

direction of flow.  Fault injection changes the position of the valve or the orifice area with 

'Fault Magnitude' (FM) at 'Fault Time' (FT).  Profiles include: 

 

- 'Nominal', where all nominal parameters are used 

- 'Stuck', where the degree open is FM in [0,1] 

- 'Blockage', where actual orifice area = nominal orifice area * FM 

- 'Freeze', where the degree open is permanently set at the value one time step (determined 

by sampleTime) before the fault 
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 Vent Valve 

 

Models simplified nonchoked flow of gas through an orifice with area A and discharge 

coefficient C.  Mode signal of 1 indicates external control/override, 0 indicates autonomous. 

When in controlled mode, the external control signal determines the valve position.  When in 

autonomous mode, the valve opens when pressure reaches opening pressure (openP) and 

closes when pressure reaches closing pressure (closeP). 

 

The gas flow equation used is given by: 

)()( pAtmpsignpAtmpAC  ,          Equation 3 

 

where C is a flow coefficient, A is the orifice area, p is the pressure at the valve (e.g., ullage 

pressure), and pAtm is the atmospheric pressure. 

 

Fault injection changes the position of the valve or the orifice area with 'Fault Magnitude' 

(FM) at 'Fault Time' (FT).  Profiles include: 

 

- 'Nominal', where all nominal parameters are used 

- 'Stuck', where the degree open is FM in [0,1] 

-  'Blockage', where actual orifice area = nominal orifice area * FM 

- 'Freeze', where the degree open is permanently set at the value before the fault 
 

 Pump 

 

Computes pump pressure and flow through the pump given RPM and pump suction and 

discharge pressures as input. 

 

The pump pressure is computed as: 

2

max

2

max






p
p pump ,             Equation 4 

 

where pmax is the maximum pump pressure (in psi), ω is the current pump rotation rate (in 

RPM, given as input), and ωmax is the rotation at pmax.  The pump pressure as computed by 

this equation is then converted to Pascals for internal model computations.  The pressure 

difference is then computed, and the flow is computed using the general equation for 

incompressible fluid flow through an orifice, given above. 

 

Fault injection allows changes in the RPM and blockage specified by 'Fault Magnitude' (FM) 

and 'Fault Time' (FT). Profiles include: 

 

- 'Nominal', where all nominal parameters are used 

- 'RPM‟, where actual RPM = input RPM * FM 

- 'Blockage', where actual CA = nominal CA * FM 

 

38 

 



 Junction 

 

Junctions are not masked. The library contains only equal-pressure junctions. The input 

pressure determines the output pressure. The input flows are summed to compute the output 

flows to ensure that the net flow through the junction is zero. 

 

 Sensor 

 

Generic sensor model. Includes additive Gaussian noise specified by 'Noise Mean' and 'Noise 

Variance' to the input value to produce the output value. Specify mean and variance as zero 

to exclude noise. 

 

Fault injection modifies the input value to one of several profiles (FP), starting at 'Fault Time' 

(FT) with magnitude specified by 'Fault Magnitude' (FM).  Profiles include: 

 

- 'Nominal', where output=input+noise 

- 'Gain', where output=FM*input+noise 

- 'Drift', where output=input+FM*(FT-t)+noise 

- 'Bias', where output=input+FM+noise 

- 'Stuck', where output=FM+noise 

- 'Freeze', where output=o+noise, and “o” is permanently set at the value one time step 

(determined by sampleTime) before the fault 

- 'Noise', where output=input+FM*noise 

 

 

Running the Simulation 

 

To run the simulation, first open LN2Sim.mdl. The GUI will open automatically, and close 

automatically when the simulation is closed. When closed, the GUI will reset the simulation to 

the nominal scenario unless the simulation is already closed. If the GUI is accidentally closed, 

run the LN2GUI.m function in the command prompt to reopen it. The simulation can be used 

without the GUI. To do so, set useGUI=0 in the command prompt. Alternatively, set useGUI=0 

in LN2Params.m to make that the default setting. 

 

A screenshot of the GUI is shown below. 
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Figure A-10 - LN2 Simulation Graphic User Interface 

 

The GUI has the following functionality. 

 

 Simulation control: The simulation can be started, stopped, and paused from the GUI. 

The GUI will display the current clock time, current fill stage, all measured values, and 

all current input values being supplied by the control. 

 

 Input/Output display: The current inputs being supplied to the system and the current set 

of sensor values are displayed on the GUI. To manually control the system, enter a new 

value in the input‟s text box. The text will become bold to indicate that it is being 

overridden. Inputs of arbitrary precision can be provided, but it will only be shown up to 

two decimal places. When the simulation is started again, individual overrides are turned 

off for all inputs. To override all inputs, use the “Override All Inputs” button. This will 

put the system into a new fill stage controlled only by the user. All inputs will remain as 

they were at the time the button was pressed unless changed by the user. When manual 

override is turned off, the system will resume the nominal filling sequence and all inputs 

will return to their values for that fill stage, unless previously overridden individually. 

The GUI will also plot the data histories for the inputs and sensors. When the simulation 

is stopped or paused, the current data history for an input or sensor is plotted by clicking 

on the gray box with the input or sensor name. 

 

The valve inputs are specified by a number in the interval [0,1], representing the amount the 

valve is open, where 0 refers to fully closed (no flow), and 1 refers to fully open (full flow). The 

vent valves (C3 and C4) may be operated in an automatic mode, in which they open and close 

depending on ullage pressure. A mode input of 0 refers to the automatic mode, in which the 
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signal input is ignored. When the mode input is 1, the signal input determines the position of the 

valve. For the pumps, the RPM value is specified. Each input is logged to the workspace.  
 

 Experiment Control: The experiment control panel allows the user to inject faults, set 

sensor noise, specify a scenario name for saving data, and set timing parameters. 

 

o Timing parameters: All timing parameters are specified in seconds. The sample 

time parameter determines at what interval the GUI is updated, data is logged, and 

inputs are supplied to the system. The sleep time parameter specifies how long the 

GUI should pause the simulation between updates, in order to slow the simulation 

to real-time or some factor faster or slower than real –time. For no pausing, enter 

0. For real-time synchronization, enter the current value of sample time. The total 

time parameter sets how long the simulation will run (in simulation time, not real 

time). The user can still stop the simulation early using the Stop button. 

 

o Saving data: Data is saved from the simulation if the scenario name field is 

nonempty and the Save Data checkbox is checked. The data will be saved to a 

.mat file named by the provided scenario name, in the directory specified in the 

directory box. To enter a directory, click on the gray directory box and a folder 

selection dialog will appear, and select the desired directory.  HyDE and KATE 

files will be written with the same filename, only appended with “HyDE” and 

“KATE”, respectively, and written in the same directory. If no directory is 

specified the files will be saved to the current working directory. Saved data will 

be stored in a variable called „LN2Data‟. When a .mat file is loaded, this is the 

variable name that Matlab will assign. 

 

o Fault injection: To inject a fault, first select the component from the drop-down 

menu. The faults drop-down menu will populate with the list of fault modes for 

that component (see the previous section). Set the injection time and magnitude in 

the corresponding boxes. Then push the “Add Fault” button. The fault will be 

added to the table below and injected into the simulation model. Only one fault 

mode per component is allowed. To remove a fault, select it from the table and 

push the “Remove Fault” button. To remove all faults, push the “Reset to 

Nominal” button. 

 

o Sensor noise: The sensor noise is additive white Gaussian noise, and the mean 

and variance can be specified. To set the noise of a particular sensor, select it 

from the drop-down menu. Enter new values for mean and/or variance. The 

simulation model will be updated with the new values. To set the noise of all 

sensors to the same mean and variance, enter the desired values in the mean and 

variance text boxes and push the “Set Noise All” button. 

 

o Saving/Loading Settings: As well as saving simulation data from a scenario, the 

settings of the scenario can also be saved in order to repeat the experiment at a 

later time. To save settings, push the “Save Settings” button. All the currently 

injected faults, current values of sensor noise, and current values of sample time, 
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sleep time, and total time will be saved. A file dialog will appear. Enter the 

filename as a .mat file to save the settings. To load previously saved settings, push 

the “Load Settings” button. A file dialog will appear. Select the previously saved 

.mat file to load the settings. An error message box will appear if the file is not in 

the correct format (i.e., it was not generated by the “Save Settings” button. 

 

Four settings files are already available for use: “NominalSettings.mat”, which 

loads settings for a nominal loading scenario, “A1StuckOpenSettings.mat”, which 

loads settings for a stuck-open fault in valve A1, “C4StuckClosedSettings.mat”, 

which loads settings for a stuck-closed fault in valve C4, and 

“F1FailPump1Fail.mat”, which loads settings for a F1 sensor failure followed by 

a Pump1 failure. 

 

 Hybrid Diagnostic Engine: Results from the Hybrid Diagnostic Engine (HyDE) are 

displayed on the GUI in tabular format. To enable HyDE, check the “Enable HyDE” 

checkbox.  If the HyDE executable (HyDEInterface.mexw32) cannot be found, the GUI 

will not allow the box to be checked.  When HyDE detects a fault, the status indicator 

will display “Fault Detected”.  When a fault is isolated, the status indicator will display 

“Fault Isolated” and the table will populate with the current set of diagnoser results.  For 

each candidate, a probability and a set of faults with the estimated times of occurrence 

will be displayed.  For the most probable candidate, the related components will be 

automatically highlighted in the schematic.  For example, in the GUI shown above, the 

A1 component is highlighted. Selecting a specific row in the table will also highlight the 

components associated with that candidate. 

 

Command Line Interface 

 

In addition to the GUI, there are a set of functions available to access the simulation from the 

command line to facilitate running different scenarios and collecting data automatically. The 

simulation model must be open for functions that modify or execute the model to succeed. Many 

of these functions are also used by the GUI, and specific information can be found be running 

“help function” in the Matlab command prompt, where “function” is the name of the function for 

which information is needed. Brief summaries are given below. 

 

Most of these functions rely on LN2System.mat, which is generated from LN2System.xls. The 

spreadsheet contains the names of all components, inputs, and outputs, descriptions of each, and 

the corresponding names in HyDE and KATE. If changes are made to LN2System.xls, 

LN2System.mat can be regenerated using “importSystemFile(„LN2System.xls‟);” at the Matlab 

command prompt. 

The scripts and functions are as follows. Functions or scripts in bold are those which are top-

level functions that are likely to be called directly. Functions which are not in bold are helper 

functions called by the top-level functions and probably do not need to be called directly. 

 

 sim(model) 
 

This is a native Matlab command to run an open Simulink model. Use “sim(„LN2Sim‟);” 
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to simulate from the Matlab command line. 

 

 LN2Data = saveData(scenario,dir) 
 

This function saves the outputs from LN2Sim to a .mat file into a variable named 

„LN2Data‟, which it also returns as output. The “scenario” argument is a string that 

specifies the file name, and “dir” specifies the directory. 

 

 writeDataHyDE(filename,data) 
 

This function writes the given data to a file specified by “filename” in HyDE‟s format. 

The “data” should be in the form produced by saveData. Use Matlab‟s “load” function to 

load a .mat file produced by saveData to bring its data into the workspace, and pass it to 

the function. 

 

 writeDataKATE(filename,data) 
 

This function works the same as writeDataHyDE, only it writes in KATE‟s format. 

 

 writeAllData 
 

This script looks for all saved .mat files in the “Experiments” directory, and calls 

writeDataHyDE and writeDataKATE for each. HyDE files are places in 

“Experiments/HyDE” and KATE files are placed in “Experiments/KATE”. These 

directories must exist for the script to succeed. 

 

 faultList = getFaultList(componentName) 

 

This function returns a cell array of strings containing all the valid fault profiles for the 

component with the given name. This function is used by LN2GUI and can be used to 

find out which fault profiles are valid without checking the simulation model. 

 

 runExperiment(‘Nominal’) 

runExperiment(component,faultProfile,injectTime) 

runExperiment(component,faultProfile,injectTime,magnitude) 

runExperiment({component faultProfile injectTime magnitude}, …) 
 

These functions simulate LN2Sim for a particular single or multiple fault scenario, saves 

the data to a .mat file (by calling saveData), and writes the data as HyDE and KATE files 

(by calling their respective writeData functions). The output files are named 

automatically based on the provided arguments. The simulation is then reset back to 

nominal settings. 

 

 The function can be called in multiple ways. To run the nominal scenario, give the single 

string argument “‟Nominal‟”. For single fault experiments, provide “component” which 

is the component name (see LN2System.xls), “faultProfile” which is the fault profile (see 
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descriptions above, the LN2Library.mdl, LN2GUI, or use the getFaultList function), 

“injectTime” which is the time of fault injection, and “magnitude” which is the fault 

parameter (see descriptions above). The magnitude argument does not need to be 

specified for certain fault profiles, e.g., for the „Freeze‟ profile. For one or more faults, 

the function also accepts cell arrays as arguments (specified using “{“ and “}”), where 

each cell array contains the information to inject a new fault, namely, the component, 

profile, injection time, and magnitude parameters. 

 

Data in .mat format is saved in the “Experiments” folder. Data in the HyDE format is 

written in the “Experiments/HyDE” folder, and data in the KATE format is written in the 

“Experiments/KATE” folder. 

 

The useHyDE configuration variable should be set to 0 before this function is called. The 

totalTime variable must also be set. 

 

 runExperiments 
 

This is a script that demonstrates how runExperiment and setNoise can be used. 

 

 setFault(componentName,faultProfile,injectionTime.magnitude) 
 

This is the function used internally by runExperiment, and its arguments are similar. This 

function does not set anything else to nominal first, so multiple calls to setFault can be 

used to set up a multiple fault scenario. 

 

 resetToNominal 
 

This script sets all components to have the „Nominal‟ profile. 

 

 setNoise(sensorNames,mean,variance) 
 

This function sets the mean and variance of the sensors with the given names. The 

sensorNames argument can be a string specifying a single sensor name, a cell array of 

strings containing multiple sensor names, or the special string „all‟ which applies the 

given mean and variance arguments to all sensors. To set only mean, give the empty 

array, [ ], as the variance argument, and to set only variance, give [ ] as the mean 

argument. 

 

 importSystemFile(‘LN2System.xls’) 
 

This function creates the LN2System.mat file from LN2System.xls. If LN2System.mat 

exists and is correct, this function does not need to be called. Make corrections to 

LN2System.mat (e.g., names of system components in HyDE and KATE) in 

LN2System.xls, and then regenerate the .mat file by calling importSystemFile on 

LN2System.xls. 
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object = findInSystem(list, objectName) 
 

This function returns a struct with the information for the object of the given name in the given 

list. The list argument can be one of „components‟, „inputs‟, and „outputs‟. An error will be 

returned if the list argument is not valid or the object with the given name cannot be found in the 

specified list. This is a helper function used by setFault and setNoise and typically does not need 

to be called directly. It used LN2System.mat as generated by importSystemFile on 

LN2System.xls. 

 

 

A11. DX CONFERENCE / CRASTE CONFERENCE PAPER 

 

The results of the software effort on Rapid Propellant Loading were presented at the 20th 

International Workshop on Principles of Diagnosis (DX-09) in Stockholm, Sweden, June 14-17 

2009.  The paper was submitted and accepted as a poster presentation at the conference.  This 

paper has also been accepted for presentation at the 2009 Commercial and Government 

Responsive Access to Space Technology Exchange (CRASTE) October 26-29, in Dayton, Ohio.   

 

The poster presented at DX-09 (MiniModelDiagnosis_DX09.ppt) and the paper for CRASTE 

(MiniModelDiagnosis-Final-Submitted.pdf) are included in the publications directory that 

accompanies this report. 
 
 

  

45 

 



A12. ATTACHMENTS (DIRECTORY LISTING OF SOFTWARE ATTACHMENTS) 
 

/Rapid Propellant Loading Software: 

  drwxrwxrwx    Hyde 

  drwxrwxrwx   KATE 

  drwxrwxrwx    Matlab Simulink files 

  drwxrwxrwx   Movies 

  drwxrwxrwx   Publications 
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LIQUID NITROGEN COLD FLOW TEST 
 

C1. Reference Information 

 

C1.1 Referenced Documents 

Drawing No. Description Revision 

SAC-LN2-RPL-001 Test Setup Leak Check LI 

SAC-LN2-RPL-002 Rapid Propellant Loading (RPL) Cryogenic Tanking Demonstration – Liquid     

Nitrogen (LN2) Cold Flow Test 
LI 
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C2. Scope 

On August 24
th

 2010 a cryogenic loading demonstration was performed on the Rapid Propellant 

Loading (RPL) system.  The test was accomplished by transferring Liquid Nitrogen (LN2) from 

a portable tanker through a cold flow control system and into an instrumented composite test 

tank, using varied cryogenic transfer techniques.  This report documents the results from that 

cryogenic loading demonstration.  
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C3. Test description 

The demonstration consisted of 3 different cryogenic loading techniques: 

 

1. Tank loading using a bottom fill technique (using only a 2” transfer line into the 

bottom of the test tank). 

2. Tank loading using a top fill technique (through a spray nozzle located in the top of 

the test tank).   

3. Tank loading using a combined top fill and bottom fill technique (using both the 

bottom fill line and the top spray nozzle). 

All testing was performed in accordance with procedure# SAC-LN2-RPL-002 “Rapid Propellant 

Loading (RPL) Cryogenic Tanking Demonstration – Liquid Nitrogen (LN2) Cold Flow Test.” 
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C4. Test setup 

The LN2 cold flow test setup mechanical schematic is shown in Figure C-1 below.  The 

mechanical setup consisted of the following major sub-assemblies:  

 

 Pneumatically-actuated 2-position (open/closed) control valves for the top fill and vent 

systems 

 A variable-position flow control valve for the bottom fill system 

 Regulated gaseous nitrogen pneumatic supplies for these valves 

 An interface to connect the system to a portable LN2 tanker 

 Fill, vent & drain line piping for the test tank 

 A delta pressure / orifice apparatus to measure flow-rate in the bottom fill system 

 A circular spray “nozzle” assembly located in the top of the test tank. 
 

The LN2 cold flow test setup electro-mechanical schematic is shown in Figure C-2 below.  The 

electrical / control system consisted of the following major sub-assemblies: 

 

 Solenoid valves to provide gaseous nitrogen actuation pressure for the top fill and vent 

pneumatic valves  

 A current-to-air pneumatic controller for the bottom fill flow control valve  

 Valve position indicators  

 Pressure measurements for the flow-rate orifice  

 An instrumentation mast inside the test tank containing numerous temperature sensors 

 External temperature sensors on the exterior of the tank.   

 

All of the instrumentation and controls were operated via a control coupler apparatus (note: this 

apparatus is incorrectly identified as a PLC on the electro-mechanical schematic).   

 

Appendix C-A contains photographs of the LN2 cold flow test setup; these photos were taken 

during assembly and pre-test checkout of the apparatus.  After completion of assembly and 

checkout, the apparatus was shipped to the NASA Fire Protection Training Area on Static Test 

Road, where all cryogenic testing was performed. 
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Figure C-1 

System Mechanical Schematic 
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Figure C-2 

Electro-Mechanical Control Diagram 
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C5. Test Results and observations 

C5.1 Run 1: Tank Loading Using Bottom Fill Technique 

The Liquid Nitrogen (LN2) supply trailer was pressurized to approximately 35 psig and LN2 

flow was initiated into the cold flow apparatus.  Initial chill-down of the control skid, as 

evidenced by steady LN2 flow out of drain valve DV-01 took approximately 3 minutes.  At this 

time, DV-01 and top fill control valve FV-01 were closed and liquid was routed into the test tank 

via bottom fill flow control valve PFV-01.  

 

DV-01 was initially set to a mid-range position (approximately 50% open) and subsequently 

opened more fully as tank loading progressed.  The liquid level in the test tank was initially 

monitored by visually watching the ice/frost level on the exterior of the tank.  The exterior tank 

temperature sensors, located at the bottom, middle and top of the tank, were also monitored for 

indications of cryogenic temperatures.  When liquid nitrogen reached the upper levels of the 

tank, it was monitored on the temperature sensors located on the instrumentation mast.  A liquid 

level capacitance probe, also located on the mast, was also monitored during tanking operations, 

but this probe never indicated liquid during tanking. 

 

It became evident very early in the tanking operation that the tanking system was operating near 

its capacity, and that chill-down of the test tank was preceding slower than anticipated.  The 

following specific conditions were observed: 

 

- It was apparent that the test tank was experiencing significant liquid boil-off 

conditions, probably due to a combination of warm ambient temperatures 

(approaching 90 deg. f) and the lack of any external insulation on the tank. 

- LN2 flow into the tank was being limited by the orifice being used to measure LN2 

flow-rate in the bottom fill line.  The 1-inch diameter orifice in the 2-inch diameter 

bottom fill line was evidently limiting the LN2 flow-rate.   

As a result of the above conditions, it was apparent that successfully filling the tank to the 100% 

level would require some adjustments to the loading procedure.  The following steps were taken 

to maximize LN2 flow-rate into the tank:  

 

- LN2 tanker pressure was increased to the maximum tanker operating pressure of 40 

psig  

- Bottom fill flow control valve PFV-01 was opened fully (100%)  

- Top fill control valve FV-01 was opened and LN2 was introduced into the top of the 

tank, in order to facilitate tank chill-down.          

The above steps proved to be successful in facilitating additional LN2 flow into the test tank, and 

liquid levels eventually reached the top of the tank, as monitored on the tank temperature 

sensors.  However, as stated previously, no liquid was ever observed on the capacitance liquid 
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level sensor.  Additionally, no liquid was ever observed at the outlet of the tank vent duct at the 

top of the vessel. 

 

The elapsed time from the end of chill-down to the determination that the test tank was at the 

100% full level was approximately 33 minutes.  It is clear that if the loading procedure 

adjustments discussed previously were employed earlier, the tanking timeline could be 

significantly reduced. 

 

Appendix C-B contains photographs of the RPL LN2 cold flow test setup; these photos were 

taken during Run 1 (Bottom Fill – described above) and Run 2 (Combined Top and Bottom Fill 

– described below).  

 

Appendix C-C contains graphical representations of LN2 tanking data for both Run 1 (Bottom 

Fill – described above) and Run 2 (Combined Top and Bottom Fill – described below).  

 
 

C5.2 Run 2: Tank Loading Using Combined Top and Bottom Fill Techniques 

Following Run 1 (Tank Bottom Fill), the test tank was drained completely and allowed to warm 

to ambient temperature.  Prior to the next tanking operation, the NASA / Contractor test team 

conducted an informal technical review meeting and determined that the next planned tanking 

operation “Tank Loading Using Top Fill Technique” would not be required.  This determination 

was made due to the fact that the top fill line had been utilized during the latter part of Run 1, 

and adequate data had been obtained during that operation.  A decision was made to proceed 

directly to the “Tank Loading Using Combined Top Fill / Bottom Fill Technique” sequence of 

the test procedure.  

 

The test team also determined that it would be advantageous to remove the 1-inch flow 

measurement orifice from the system prior to Run 2, in order to maximize the LN2 flow-rate into 

the test tank.  This work was accomplished and the flow-rate measurement was inoperative 

during Run 2.    

 

Initial chill-down of the control skid was similar to Run 1, with a steady LN2 flow out of drain 

valve DV-01 occurring approximately 3 minutes after the start of LN2 flow.  At this time, drain 

valve DV-01 was closed but top fill control valve FV-01 remained open to facilitate tank chill-

down.  Liquid continued to be routed into the test tank via bottom fill flow control valve PFV-01.   

 

As a result of the lessons learned and procedural adjustments implemented during Run 1, the 

Run 2 tanking timelines were significantly shorter.  The elapsed time from the end of chill-down 

to the determination that the test tank was at the 100% full level was approximately 20 minutes.   

 

The same liquid level monitoring procedure employed during Run 1 was once again utilized 

during Run 2.  The liquid level in the test tank was monitored by visually watching the ice/frost 

level on the exterior of the tank, the exterior tank temperature sensors, located at the bottom, 

middle and top of the tank, were monitored for indications of cryogenic temperatures, and the 

temperature sensors located on the instrumentation mast were monitored.  Unlike Run 1, the 
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liquid level capacitance probe located on the mast momentarily indicated liquid when the test 

tank was completely full, although at lower quantities than anticipated.  

 

A final significant difference from Run 1 was that the increased LN2 flow-rates allowed the 

control system to completely overcome the significant LN2 boil-off conditions.  Therefore, when 

the tank reached the 100% full level, traces of LN2 were evident at the tank vent duct outlet, 

which provided a further verification that the tank was indeed full.      

 

Appendix C-B contains photographs of the RPL LN2 cold flow test setup; these photos were 

taken during Run 1 (Bottom Fill – described above) and Run 2 (Combined Top and Bottom Fill 

– described below).  

 

Appendix C-C contains graphical representations of LN2 tanking data for both Run 1 (Bottom 

Fill – described above) and Run 2 (Combined Top and Bottom Fill – described below).  
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Appendix C-A 

LN2 Cold flow apparatus assembly photographs 
 

 

 

Figure C-3 

Test Apparatus – Front View 
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Figure C-4 

Instrumentation Mast 

 

 

 

 

 

 

Figure C-5 

Flow-rate Orifice 
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Figure C-6 

Test Apparatus Close-up 
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Appendix C-B 

LN2 tanking photographs 

 

 

 

 
 

Figure C-7 

Start Of Chill-down, Run 1 (Bottom Fill) 
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Tank Drain Line 
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Figure C-8 

Tank Venting, Run 1 

 

 

 
 

Figure C-9 

Test Apparatus Overview 

Frost Line 

Vent Duct 
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Figure C-10 

Combined Top and Bottom Fill 

 

Bottom Fill Line 

 

Top Fill Line 
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Figure C-11 

Control Valves, Top and Bottom Fill 
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Figure C-12 

100% Full, Run 2 (Combined Top and Bottom Fill) 
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Figure C-13 

Composite Temperature Graph, Run 1 (Bottom Fill) 
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Figure C-14 

Valve Position Indicators, Run 1 (Bottom Fill) 
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Figure C-15 

Composite Temperature Graph, Run 2 (Combined Top and Bottom Fill) 
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Figure C-16 

Valve Position Indicators, Run 2 (Combined Top and Bottom Fill) 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

 

ACRONYM DESCRIPTION 

ADAPT Advanced Diagnostics and Prognostics Test-bed 

AFRL  Air Force Research Laboratory 

API  Application 

BH  Bulkhead/Connection Point 

C&C  Command and Control System 

CLLS  Capacitive Liquid Level Sensor 

CP  Calibration Port 

CT  Temperature Sensor 

Degf  Degrees Fahrenheit 

DV  Drain Valve 

EEAP  Emergency Evacuation Assembly Point 

EV  Electronic Valve 

FDIR  Fault Detection Isolation and Recovery 

FH  Flex Hose 

FL  Filter 

FM  Flow Meter 

FV/PFV Flow (Control) Valve 

GN/ GN2 Gaseous Nitrogen 

GOX/GO2 Gaseous Oxygen 

HyDE  Hybrid Diagnostics Engine 

ICE  Internet Communications Engine 

KATE  Knowledge Based Test Engineer 

KB  Knowledge Based 

KSC  Kennedy Space Center 

LAIR  Liquid Air 

LI  Latest Issue 

LLS  Liquid Level Sensor 

LN2  Liquid Nitrogen 

LOX/ LO2 Liquid Oxygen 

LRU  Line Replaceable Unit 

MBR  Model Based Reasoning 

MV  Manual Valve 

N/A  Not Applicable 

NASA  National Aeronautics and Space Administration 

NC  Normally Closed 

NO   Normally Open 

NRHOWG  Non-Routine Hazardous Operations Working Group  

O2  Oxygen 

OPS  Operations 

PGS  Prompt Global Strike 

QD  Quick Disconnect 

PG  Pressure Gauge 

POSU  Pre-operation Setup 

83 82 

 



PLC  Programmable Logic Controller 

PPE  Personal Protective Equipment 

Psig  Pounds Per Square Inch (lb/in
2
) Gage  

PT  Pressure Transducer 

PV  Pneumatic Valve 

RB  Air Vehicles Directorate of the Air Force Research Laboratory 

Reg  Regulator 

RPL  Rapid Propellant Loading 

RV  Relief Valve 

SAC  Security Assistance Corporation 

S/O  Shut off 

SMS  System Mechanical Schematic 

SV  Solenoid Valve 

TBD  To Be Determined 

UPS  Uninterruptible Power Supply 

VLV  Valve 
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