

AFRL-RB-WP-TR-2011-3022

RAPID PROPELLANT LOADING APPROACH

EXPLORATION

Gregory Moster

Systems Integration Branch

Structures Division

NOVEMBER 2010

Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY

AIR VEHICLES DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the u.s.
Govemment. The fact that the Govemment fonnulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation; or
convey any rights or permission to manufacture, use, or sell any patented invention that may
relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public
Affairs Office (PAO) and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://wvvw.dtic.mil).

AFRL-RB-WP-TR-2011-3022 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH THE ASSIGNED DISTRIBUTION STATEMENT.

ER, Program Engineer Aaron
Systems Integ tion Branch Systems Integration Branch
Structures Division Structures Division

This rep011 is published in the interest of scientific and technical infonnation exchange, and its
publication does not constitute the Government's approval or disapproval of its ideas or
findings.

*Disseminated copies will show "IISignaturell" stamped or typed above the signature blocks.

http:http://wvvw.dtic.mil

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

November 2010 Final 11 February 2008 – 15 November 2010

4. TITLE AND SUBTITLE

RAPID PROPELLANT LOADING APPROACH EXPLORATION

5a. CONTRACT NUMBER

In-house

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

0602201

6. AUTHOR(S)

Gregory Moster

5d. PROJECT NUMBER

2401
5e. TASK NUMBER

5f. WORK UNIT NUMBER

 A0FN0A
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Systems Integration Branch

Structures Division

Air Force Research Laboratory, Air Vehicles Directorate

Wright-Patterson Air Force Base, OH 45433-7542

Air Force Materiel Command, United States Air Force

 REPORT NUMBER
AFRL-RB-WP-TR-2011-3022

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory

10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Vehicles Directorate

Wright-Patterson Air Force Base, OH 45433-7542

Air Force Materiel Command

United States Air Force

AFRL/RBSI

11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RB-WP-TR-2011-3022

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

PAO Case Number: 88ABW-2011-2190; Clearance Date: 14 Apr 2011.

This report was co-authored in collaboration with the NASA Kennedy Space Center.

14. ABSTRACT

This effort addresses two aspects of Reusable Military Launch Systems (RMLS). The first aspect is managing ground

operations, and the second is comparing the impact upon ground operations of three configuration options. Ground

operations management was addressed through a series of studies performed by the Air Force Institute of Technology

(AFIT). The configuration options included 1) using a common bulkhead to separate the main liquid oxygen and

kerosene main propellant tanks, 2) using a separate bulkhead to separate the main liquid oxygen and kerosene main

propellant tanks, and 3) adjustments enabling inverted entry flight operations. These configurations were addressed

through analysis by Boeing using their in-house software.

15. SUBJECT TERMS

rapid propellant loading, cryogenic fluids, liquid oxygen

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

88

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

 Gregory Moster
19b. TELEPHONE NUMBER (Include Area Code)

N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

TABLE OF CONTENTS

Section Page

List of Figures ... ii
1. BACKGROUND .. 1
2. APPROACH ... 2
3. RESULTS ... 3
4. CONCLUSIONS ... 10
APPENDIX A “Rapid Propellant Loading Software Final Report” ... 11
APPENDIX B “Applying Model-based Diagnostics to a Rapid Propellant Loading System” 47
APPENDIX C “Rapid Propellant Loading (RPL) Cryogenic Tanking Demonstration” 56
LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS .. 82

i
Approved for public release; distribution unlimited.

List of Figures

Figure Page

1 Software Block Diagram .. 3
2 Mini Model .. 4
3 Top Level LN2 Simulation Model ... 5
4 Flow Control Valve Stuck Open Scenario ... 6
5 Vehicle Tank Vent Valve Stuck Open Scenario .. 7
6 Flow Sensor Failure and Pump Failure Scenario ... 8
 7 LN2 Loading Experiment ... 8
 8 Spray Nozzle Test Hardware .. 9

ii
Approved for public release; distribution unlimited.

1. BACKGROUND

This joint AFRL and NASA research project was initiated in 1 March 2007 to begin addressing

the technology and capability deficiencies in reducing the call-up time (time from mission

notification until launch) to support the Prompt Global Strike (PGS) and on-orbit reconstitution

missions. One of the critical call-up issues is loading cryogenic propellants (e.g. liquid oxygen).

Currently loading cryogenic propellants requires special operations and equipment with highly

trained personnel to prevent vehicle damage and personnel injuries. Maintaining the required

skill levels of these people are a key aspect of this process. The people must recognize problems

when they arise and make critical decisions. These decisions not only affect vehicle and the

people working near the vehicle but this mission as well. One way to reduce dependency upon

critical personnel and enable rapid and consistent decisions is to create an automated system with

built-in health and situation management. This would enable the personnel to connect the

equipment and empower the system to perform the propellant loading operation with minimal

oversight.

Funding for this project was provided by a combination of AFRL and NASA Kennedy Space

Center.

1

Approved for public release; distribution unlimited.

2. APPROACH

The project goal was to develop technology to load cryogenic propellants rapidly, with a

minimum number of console operators whose engineering skills and cryogenic experience are

limited, such as a USAF non-commissioned officer (NCO). To accomplish this intelligent

monitoring and diagnostics technology for cryogenic propellant loading using model-based

reasoning software technology was selected. Model-based reasoning (MBR) is an innovative

way of determining the dynamic state of a process by examining all available sensors instead of

just one or a few. MBR also has the capability to determine the health of the system and predict

degradations. Two NASA-developed MBR systems, Knowledge-based Autonomous Test

Engineer (KATE) and Hybrid Diagnostic Engine (HyDE), were used to explore this capability.

KATE and HyDE models described the physics of the cryogenic loading process and

dynamically identified nominal and abnormal behaviors.

 KATE and HyDE models incorporate cryogenic technical and operations knowledge allowing

nearly autonomous system operation with minimal supervision. The MBR approach provided

detection of cryogenic loading anomalies, isolation and identification of equipment faults, and

recovery from failed instrumentation and components. KATE and HyDE software incorporated

a physics-based simulation of vehicle propellant tanks, valves, ground loading piping and

components. The software included a "reasoner" that compares the behavior of simulated and

actual propellant-loading components to determine logically which measurements or components

may have failed in the physical system to account for the symptoms that the control system is

seeing.

The NASA software simulation final report is attached in Appendix A and a paper in Appendix

B.

An additional objective was to load a LOX tank with LN2 using the software created above to

validate the simulation results. However, an accident at KSC impacted this program and limited

the LN2 loading experiment to trying to find ways to reduce the about of fluid boiling off and

venting out of the tank as a gas. This would be beneficial because it reduces the about of fluid

required to fill the tank, enables a smaller diameter tank vent line, lowers the pressure build-up

during the loading process, and conditions the tanks for a rapid fill. The approaches selected

focused upon spraying the cryogenic fluid inside of the tank using a shower head like devise to

chill the interior tank walls down.

The LN2 loading experiment final report is attached in Appendix C.

The project leveraged and synergized with work performed on the Rapid Propellant Loading

(RPL) test bed at NASA‟s Cryogenics Test Laboratory.

2

Approved for public release; distribution unlimited.

3. RESULTS

The software Block Diagram shown in figure 1 depicts the launch site software architecture

developed for the MBR system. The KATE and HyDE software runs in the RPL Diagnostics

Console. Real world data is supplied to the system via LabView hardware and software. The

Internet Communications Engine (Ice) publish/subscribe architecture provides a connection

between the data source – live, simulated or recorded and the MBR application in the diagnostics

console. The RPL OPS console communicates between the USAF mission operations center and

the launch site. Advanced Diagnostics and Prognostics Test-bed (ADAPT) API is NASA

software that enables communication with a variety of diagnostic software.

Figure 1

Software Block Diagram

A "Mini-model" simulation was developed to test the MBR software in two versions, Excel and

Matlab. For the final demonstrations, Matlab/Simulink data from the mini-model simulator was

supplied to KATE and HyDE for diagnosis tests by means of text files. A schematic diagram of

the mini model is shown in figure 2. The model consists of a cryogenic storage tank, two pumps,

valves and flow/pressure measurements, and a simulated vehicle tank for propellant loading.

The tank, piping and instrumentation sizes were chosen to correspond to the Rapid Propellant

Loading (RPL) test bed at NASA‟s Cryogenics Test Laboratory.

A large storage tank holds the propellant. A pump is used to create a pressure differential

between the two tanks in order to move fluid from the storage tank to the vehicle tank. Flow (F),

pressure (P), level (L), and valve position (V) sensors are included, as denoted in the above

SSeennssoorr SSeennssoorr SSeennssoorr AAccttuuaattoorr AAccttuuaattoorr

SSooffttwwaarree aarrcchhiitteeccttuurree

NNII DDAAQQ NNII CCoonnttrrooll

NNII SS//WW

• Supervisory Control

• Data Acquisition

• Monitoring

GGUUII

LabView

AADDAAPPTT AAPPII

RRPPLL OOPPSS

CCoonnssoollee
RRPPLL DDiiaaggnnoossttiiccss

CCoonnssoollee

RRPPLL SSeerrvveerr IInntteeggrraattiioonn

CCoonnssoollee
RRPPLL SSiimmuullaattiioonn

CCoonnssoollee

DDaattaa AArrcchhiivvaall

aanndd PPllaayybbaacckk

Publish/Subscribe (Ice)

AADDAAPPTT AAPPII AADDAAPPTT AAPPII AADDAAPPTT AAPPII AADDAAPPTT AAPPII AADDAAPPTT AAPPII AADDAAPPTT AAPPII

3

Approved for public release; distribution unlimited.

schematic. Note that this simulation represents a simplified propellant loading model. In

particular, we neglect boiling/condensation processes, heat flow, and temperatures (a constant

gas temperature is assumed).

Figure 2

Mini Model

The software team developed a Mini Model use case for nominal propellant loading showing

how cryogenics would flow through the mini-model during normal operation and three use cases

illustrating how the control system should respond to typical component faults. The three fault

use case scenario‟s are 1) faulty valves, 2) failed flow sensors, and 3) vent valve failure. The

Top Level Simulation Mini Model is shown in figure 3.

The values of the inputs are determined by the current filling stage, specified by a set of

parameters indicating when the various stages begin. The „LN2Control‟ block, which calls

LN2Control.m, determines the stage. The set of stages are:

1. Initialization: All manual and discretely-controlled valves are set open, and all flow

control valves are set at 50%. The pumps are turned off.

2. Slow Fill: The pumps are set to 300 RPM. Slow fill begins when the simulation time is

„tSlow‟.

3. A4 Test: Valve A4 is set to 10%. This occurs when the simulation time is „tA4‟, which

should be greater than „tSlow‟.

4 4

Approved for public release; distribution unlimited.

4. Fast Fill: The pumps are set to 2500 RPM. Vent valve C4 is placed into autonomous

mode, where it will open at 7 psig and close at 2 psig. Fast fill begins when the

simulation time is „tFast‟, which should be greater than „tA4‟.

5. Topping: Pump speeds are lowered, A4 is partially opened more than 10%, and A3 is

controlled to maintain F3 at 20 GPM. Topping occurs when the tank level reaches 980

gallons, which should occur after „tFast‟.

6. Replenish: A4 is opened to a greater extent. Vent valve C4 is set open. Replenish begins

when the tank level reaches 1000 gallons.

7. Drainback: All flow control valves are set to 100%. The pumps are turned off. Drainback

occurs when the simulation time is „tDrain‟, which should be after L2 reaches 1000

gallons.

8. End: Vent valve C4 is closed. This occurs when L2 reaches 10 gallons.

Figure 3

Top Level Simulation Mini Model

5

Approved for public release; distribution unlimited.

The mini-model KATE model was constructed as a group of KATE objects Knowledge Base

(KB). The KB is made up of two parts: a) a library of components that are compiled into the

C++ system, each library object has its input names and output function (a single output function

for each component is used) and b) a "flatfile" textual description of the model or KB specifying

library components and how things are connected together as well as parameter values.

Diagnostics are performed using the HyDE software. HyDE uses fluid flow, fluid pressure, and

fluid level sensors for diagnostics in these simulations. Valve position and other sensors are not

used.

In the first scenario, Flow Control Valve A1 was stuck open during the slow fill stage as shown

in figure 4 screenshot. The system begins in the initialization phase, and begins slow fill at 100

seconds. Flow sensor F1 measures the flow through the first transfer line. An increase in the

flow is observed at this time due to the change in control inputs. At 300 seconds, a fault is

injected. A sharp increase in F1 is visible (a dotted black line in the simulation plot indicates the

nominal value at this point, and the solid blue line indicates the sensor output). HyDE

immediately detects and isolates the fault at this time. At around 330 seconds, the operator

reconfigures to resume a nominal flow rate through the transfer line by reducing the Pump 1

input to 275 RPM.

Figure 4

Flow Control Valve Stuck Open Scenario

In the second scenario, the vehicle tank vent valve, C4, becomes stuck closed during the slow fill

stage as shown in figure 5 screenshot. The system begins in the initialization stage and proceeds

to slow fill at 100 seconds, and fast fill at 600 seconds. As the vehicle tank fills, the ullage

pressure, measured by P7, begins to increase. In nominal operation, the vent valve C4

automatically opens when the ullage pressure reaches 7 psig, and closes when the ullage pressure

reaches 3 psig. In this way, it maintains the ullage pressure within safe levels. If the vent valve

6

Approved for public release; distribution unlimited.

fails to open at the required time, the ullage pressure may build up to unacceptable levels and an

abort will have to be issued. Therefore, it is important to quickly identify such failures. The

vent valve C4 becomes stuck closed at 1100 seconds. At this time, it is supposed to remain

closed, as the ullage pressure is not yet at 7 psig. At 1254 seconds, the ullage pressure begins to

exceed 7 psig. HyDE immediately recognizes that C4 has failed. Around 1340 seconds, the

operator initiates drain back to safe the system. The pumps are turned off and all valves are fully

opened.

Figure 5

Vehicle Tank Valve Stuck Open Scerario

In the third scenario, two faults occur as shown in figure 6 screenshot. The flow sensor (F1) fails

followed by Pump 1 failure during the slow fill stage. The system begins in the initialization

stage, and begins slow fill at 100 seconds. At 300 seconds, the sensor fails and returns only a

value of zero. HyDE immediately determines that the flow sensor has failed in this way. At this

point, only the remaining flow sensors, F2 and F3, are available for diagnosis. At 350 seconds,

Pump 1 fails. HyDE immediately detects that something else has gone wrong and initially

pinpoints a failure of A1. At the next time step, HyDE corrects its diagnosis and pinpoints Pump

1 as the second failure. (Note that if the pressure and level sensors are also used, HyDE will

immediately diagnose Pump 1 as the second failure, and not A1.) At around 380 seconds, the

operator reconfigures the system to regain nominal flow to the vehicle tank despite the failure of

Pump 1. Valve A1 is closed, valve A2 is fully opened, and the RPM of Pump 2 is increased to

375. The flow to the vehicle tank is then restored to the nominal value of about 2.2 GPM.

7

Approved for public release; distribution unlimited.

Figure 6

Flow Sensor and Pump Failure Scenario

The NASA simulation final report is attached in Appendix A and paper in Appendix B.

The LN2 loading experiment is shown in Figure 7 and spray nozzle in Figure 8. Detailed test set-up and

results are presented in Appendix C “Rapid Propellant Loading (RPL) Cryogenic Tanking

Demonstration”.

Figure 7

LN2 Loading Experiment

7

8

Approved for public release; distribution unlimited.

Figure 8

Spay Nozzle Test Hardware

16

Approved for public release; distribution unlimited.

9

Spray Nozzle

4. CONCLUSIONS

The simulation results demonstrated that an integrated health and operations management system

can enable safe rapid propellant loading operations with limited operator knowledge and

involvement. A single person loading the propellants with back-shop support to perform

maintenance and repairs appears to be feasible. The next step would be to expand the scale and

scope of the simulation and experimentally validate the results.

Unfortunately, cost, test site, and safety constraints levied upon the LN2 loading experiment

restricted the effort sufficiently that the results are not sufficient to assess the spraying techniques

attempted. Another experiment with greater latitude (e.g. tank pressure, tank insulation, &

temperature/fluid level measurements) should be performed to evaluate this technology.

10

Approved for public release; distribution unlimited.

APPENDIX A

11

Approved for public release; distribution unlimited.

Rapid Propellant Loading Software Final Report

October 6, 2009

Prepared by: Contributions by:

Charles Goodrich David Richter

ASRC Aerospace Corporation ASRC Aerospace Corporation
Kennedy Space Center, FL 32899 Kennedy Space Center, FL 32899
321-867-6956 321-867-2032

 Sriram Narasimhan
 University of California Santa Cruz USA

 Matt Daigle

University of California Santa Cruz USA

Submitted to:

Robert G. Johnson Gregory Moster

NASA-KSC, NE-F6 AFRL/RBSD
Kennedy Space Center, FL 32899 Wright-Patterson AFB, OH
(321) 867-7373

Barbara L. Brown Jose M. Perotti
ARC NASA-KSC, KT-C
Ames Research Center, CA Kennedy Space Center, FL 32899
(321)867-1720 (321)867-6746

12

Approved for public release; distribution unlimited.

CONTENTS

A1. Background .. 16

A2. Description of Ground Processing problems and goals ... 16

A3. Applicability to AFRL requirements ... 17

A4. Relevance to other AFRL technology needs ... 19

A5. Software Block Diagram ... 205

A6. Mini Model .. 206

A7. Kate-specific items ... 226

A8. HyDE-specific items .. 30

A9. Simulink/HyDE items .. 31

A10. Rapid Propellant Loading HyDE / Simulink Demonstration ... 28

A11. DX Conference / CRASTE conference paper... 47

A12. Attachments (directory listing of software attachments) .. 47

FIGURES
F

Figure A-1 .. 19
Figure A-2 .. 20
Figure A-3 .. 30
Figure A-4 .. 31
Figure A-5 .. 32
Figure A-6 .. 33
Figure A-7 .. 34
Figure A-8 .. 36
Figure A-9 - Sample Mask Prompt ... 37
Figure A-10 - LN2 Simulation Graphic User Interface .. 41

A1. BACKGROUND

The Air Force Research Laboratory (AFRL) in Dayton, OH is teaming with aerospace

contractors in a program to identify and address technology drivers for responsive, on-demand

access to, through and from space. AFRL requirements call for on-demand, flexible, and cost-

effective operations using reusable rockets. Operability enhancement goals set by AFRL include

rapid turnaround (< 4 hours), lower operations cost, and much higher vehicle and ground support

equipment reliability.

14

Approved for public release; distribution unlimited.

file:///D:/2011-3022.docx%23_Toc293072603

A2. DESCRIPTION OF GROUND PROCESSING PROBLEMS AND GOALS

Launch vehicle cryogenic propellant loading is one of the most complex and hazardous

operations performed during launch processing. This project demonstrated intelligent

monitoring and diagnostics technology for cryogenic propellant loading using model-based

reasoning software. Model-based reasoning (MBR) is an innovative way of determining the

dynamic state of a process by examining all available sensors instead of just one or a few. MBR

also has the capability to determine the health of the system and predict degradations. Two

NASA-developed MBR systems, Knowledge-based Autonomous Test Engineer (KATE) and

Hybrid Diagnostic Engine (HyDE), were used to explore this capability. KATE and HyDE

models described the physics of the cryogenic loading process and dynamically identified

nominal and abnormal behaviors. The technology was developed and demonstrated under a

Space Act Agreement between KSC and AFRL.

15

Approved for public release; distribution unlimited.

A3. APPLICABILITY TO AFRL REQUIREMENTS

The project goal was to develop technology to load cryogenic propellants rapidly, with a

minimum number of console operators whose engineering skills and cryogenic experience are

limited, such as a USAF non-commissioned officer (NCO). KATE and HyDE models

incorporate cryogenic technical and operations knowledge allowing nearly autonomous system

operation with minimal supervision. The MBR approach provided detection of cryogenic loading

anomalies, isolation and identification of equipment faults, and recovery from failed

instrumentation and components. KATE and HyDE software incorporated a physics-based

simulation of vehicle propellant tanks, valves, ground loading piping and components. The

software included a "reasoner" that compares the behavior of simulated and actual propellant-

loading components to determine logically which measurements or components may have failed

in the physical system to account for the symptoms that the control system is seeing.

The project leveraged and synergized with work performed on the Rapid Propellant Loading

(RPL) test bed at NASA‟s Cryogenics Test Laboratory.

16

Approved for public release; distribution unlimited.

A4. RELEVANCE TO OTHER AFRL TECHNOLOGY NEEDS

KATE and HyDE software is applicable to a “Reasoner” capability needed for other reusable

rocket technology including active thermal control, purge and pressurization, avionics checkout,

electrical distribution, and the rocket‟s main propulsion system. The Reasoner thus provides

Fault Detection, Isolation and Recovery (FDIR) for the launch vehicle and ground support

equipment.

Software Team
ASRC
• Charlie Goodrich – ASRC Software Lead
• David Richter
• Bradley Burns
NASA (KSC)
• Jan Lomnes – Project Manger
• Robert Johnson – NASA Hardware Lead
• Jose Perotti
• Robert Ferrell
• Jared Sass
NASA (ARC)
• Barbara Brown – NASA Software Lead
• Ann Patterson-Hine
• Sriram Narasimhan - University of California, Santa Cruz
• Matthew Daigle – UARC

17

Approved for public release; distribution unlimited.

A5. SOFTWARE BLOCK DIAGRAM

The following diagram shows the launch site software architecture developed for the MBR

system. The KATE and HyDE software runs in the RPL Diagnostics Console. Real world data

is supplied to the system via LabView hardware and software. The Internet Communications

Engine (Ice) publish/subscribe architecture provides a connection between the data source – live,

simulated or recorded and the MBR application in the diagnostics console. The RPL OPS

console communicates between the USAF mission operations center and the launch site.

ADAPT API is NASA software that allows The Advanced Diagnostics and Prognostics Testbed

(ADAPT) to communicate with a variety of diagnostic software.

Because of limited funds and time for hardware development the decision was made to test

KATE/HyDE in simulated mode only.

SSeennssoorr SSeennssoorr SSeennssoorr AAccttuuaattoorr AAccttuuaattoorr

SSooffttwwaarree aarrcchhiitteeccttuurree

NNII DDAAQQ NNII CCoonnttrrooll

NNII SS//WW

• Supervisory Control

• Data Acquisition

• Monitoring

GGUUII

LabView

AADDAAPPTT AAPPII

RRPPLL OOPPSS

CCoonnssoollee
RRPPLL DDiiaaggnnoossttiiccss

CCoonnssoollee

RRPPLL SSeerrvveerr IInntteeggrraattiioonn

CCoonnssoollee
RRPPLL SSiimmuullaattiioonn

CCoonnssoollee

DDaattaa AArrcchhiivvaall

aanndd PPllaayybbaacckk

Publish/Subscribe (Ice)

AADDAAPPTT AAPPII AADDAAPPTT AAPPII AADDAAPPTT AAPPII AADDAAPPTT AAPPII AADDAAPPTT AAPPII AADDAAPPTT AAPPII

Figure A-1

Software Block Diagram

18

Approved for public release; distribution unlimited.

A6. MINI MODEL

The "Mini-model" simulation was developed to test the MBR software in two versions, Excel

and Matlab. For the final demonstrations, Matlab/Simulink data from the mini-model simulator

was supplied to KATE and HyDE for diagnosis tests by means of text files. A schematic

diagram of the mini model is shown below:

Figure A-2

Mini Model

The model consists of a cryogenic storage tank, two pumps, valves and flow/pressure

measurements, and a simulated vehicle tank for propellant loading. The tank, piping and

instrumentation sizes were chosen to correspond to the Rapid Propellant Loading (RPL) test bed

at NASA‟s Cryogenics Test Laboratory.

Testing Strategy for FDIR applications using the mini-model and use cases

The software team developed a use case for nominal propellant loading showing how cryogenics

would flow through the mini-model during normal operation. In addition, the team developed

three additional use cases illustrating how the control system should respond to component faults

that might occur. The three fault use cases are 1) faulty valves; 2) failed flow sensors; and 3)

vent valve failure.

17 19

Approved for public release; distribution unlimited.

A7. KATE-SPECIFIC ITEMS

KATE C++ Code

KATE-C is a FDIR application developed at Kennedy Space Center in 1994. The software is

written in C++. It has been recompiled using up-to-date compilers, state-of-the-art hardware,

and the Linux operating system. KATE-C was tested using application knowledge bases from

1994. A KATE-C knowledge base for the mini-model was completed, and the system was

demonstrated for the USAF in December 2008. A list of changes/fixes made to 1994 version is

included in the installation instructions for KATE-C (below). A narrative for major revisions of

the software made by the development team is part of the software repository that accompanies

this report.

Instructions to compile and run KATE

The installation instructions for KATE (including running a mini-model failure scenario) are

included with the software that accompanies this report. The software was developed under the

version control system known as Subversion. It is provided in two forms. The first is an archive

of the Subversion repository called rpl.repo.tar.gz in the KATE directory. The second is a tarball

of the current "working copy" of the repository called rpl.tar.gz also in the KATE directory. The

installation instructions are included in the following paragraphs for convenience:

//***

//** **

//** File: README.install **

//** **

//** Original by D. Merchant circa 1994 **

//** Updated by C. Goodrich and D. Richter **

//** 9-30-2009 **

//** **

//***

Installation instructions for KATE*

Depending on how the KATE source is delivered, either unpack the source tarball

or retrieve the source from a previously-configured Subversion database.

KATE Development Environment:

Note that the original (1994) KATE software used the Motif graphic display

system. When KATE was updated in 2008-2009, developers used Open Motif. The home

page for the Open Motif development project is http://www.openmotif.org/ Motif

is an industry standard toolkit for UNIX systems and Open Motif, based on the

Motif source code, provides a freely available version for open source

developers.

The KATE update project in 2009 also used Red Hat Enterprise Linux as the

operating system platform for development. The system was developed on a Dell

computer using a 64 bit Intel processor. The Motif components of the Red Hat

development environment code were installed using yum, a software installation

tool for Red hat linux and Fedora Linux. Here are the Open Motif components:

openmotif.i386 2.3.1-2.el5

openmotif.x86_64 2.3.1-2.el5

openmotif-devel.i386 2.3.1-2.el5

openmotif-devel.x86_64 2.3.1-2.el5

1) Open a BASH shell and create the root KATE directory (hereafter called KATE)

 and change to that directory.

20

Approved for public release; distribution unlimited.

 a) Assuming the source is delivered as KATE.tar, move the tarball to the KATE

 directory and untar it: tar xvf KATE.tar

 b) Assuming the source resides in a Subversion database, issue the Subversion

 command to checkout the source: svn co https://128.217.72.10/svn/rpl/ice/trunk .

 (modify the URL and path as needed).

2) Create the following directories, needed in the compilation / linking process:

 KATE/sun/lib and KATE/sun/obj.

3) Create the /ice directory at root level and move the ice.hosts file into that

directory.

 Edit the file and add the local IP and hostname. For example here is a sample

ice.hosts

 file for a single machine named "katehost"

 #

 # Host Database For KATE

 #

 127.0.0.1 katehost

4) Edit the local .bashrc file and add the following definitions:

 export CPP=$(which g++)

 export ICE_DIR="${HOME}/KATE/"

 export ICE_SRC_DIR="${HOME}/KATE/src/"

 export ICE_MAC_DIR="${HOME}/KATE/sun/"

 export COMPILER="-g -Wno-deprecated -fno-operator-names"

 export PATH=$PATH:${HOME}/KATE/sun/exe:.

 a) You must redirect the CPP command to use g++, per the above environment

 command as the modern cpp command invokes the C preprocessor rather than

 the compiler.

 b) Ensure that you add the trailing slash to the directory paths.

 c) You will need to re-source the .bashrc file for the changes to take effect,

 i.e., in your home directory issue the command: source .bashrc

5) Change to the KATE/src directory and make the myMakeIt script executable:

 chmod a+x myMakeIt

6) Build the source by executing the myMakeIt script in the KATE/src directory:

 myMakeIt.

 If the source compiles with no problems you should see the following text:

 **

 Compile complete

 See: Running ICE-C with the GUI in the README.install file

 **

7) To run KATE, change to the KATE/sun/exe directory and issue the command: ui

 This will start KATE in the default mode with no windows open. To run KATE with

 a previously-saved startup script, issue the command: ui -uienv <script>

 (see the discussion of scripts under the topic "Running ICE-C (KATE) with the

 GUI" below)

* For historical reasons KATE is also sometimes referred to as ICE or ICE-C.

--

KATE directory hierarchy:

 KATE

 data (*.kpd - for KATE processed datafiles)

 models

 alo

 DB

 epdc

 fcl

 instr

 lox

 lsoc

 net

 pvd

21

Approved for public release; distribution unlimited.

 translator

 src

 adapt

 dm

 kb

 alo (water tanking system)

 common

 epdc

 fcl (freon coolant loop)

 lox (liguid oxygen)

 net

 ptrespository

 pvd (vent doors)

 kics

 reasoner

 diagnoser

 fault-detector

 monitor

 simulator

 translator

 ui

 ICONS

 utils

 sun

 exe

 lib

 obj

--

The KATE system is made up of four modules and a Knowledge Base (KB)

1) The User Interface module (UI) is an X-Window/MOTIF interface that displays

 values and provides control access to the other modules.

2) The Reasoning Module (RM) which, as the name suggests, does all the Model-based

 Reasoning (MBR) in the system. The four sub-modules with the RM are the

 Monitor, Simulator, Fault Detector, and Diagnoser.

3) The Data Module (DM) which is responsible for getting data to the Reasoning

 module. There are currently two data providers: a Playback facility that

 enables a recorded data file to be played back, and an Ethernet data

 provider that allows KATE to connect to PC-GOAL via an ethernet

 connection. (Note that this second functionality is not available at

 this time.) The Data Module also includes the Record facility which

 allows recording of data from any data provider and a Build program for

 building PC-GOAL TCID files used to look up FD names with an address.

 The input to build is a TCID file and an FD list. This program assumes

 the filename extensions .nam, .bsd, and .bsi.

 (The TCID build facility developed in 1994 has not been updated to PCGOAL II.)

4) The KICS system is the KATE Interprocess Communication System that

 allows all the processes in the system to talk to each other.

5) The KB is made up of two parts:

 a) A library of components that are compiled into the system, each library

 object has its input names and output function (a single output

 function for each component is used). The class libraries are broken up into

 application-specific files and located in KATE/src/kb/<application>,

 where <application> is fcl, lox, alo, etc. All application source

 libraries are compiled into one complete class library - so there can

 be no duplication of class names between applications. The Rapid Propellant

 loading class libraries were included in the KATE/src/kb/alo directory.

 b) A "flatfile" textual description of the application domain specifying

 library components and how things are connected together as well as

 parameter values. See KATE/README.flatfile for a brief knowledge base

 generation guide.

--

22

Approved for public release; distribution unlimited.

Other files to be aware of

1) The GUI can be started with a -uienv option to allow the system to use

 a startup script, as previously mentioned: ui -uienv <script>

2) Browser description file. The GUI provides a tabular utility called

 the Browser for displaying objects and their model and hardware values

 along with the nomenclature if desired. A predefined list of objects to

 be displayed need to be in a browser file. This file can be read

 in by the startup script or manually by the user through the GUI.

 The Browser facility worked in the original Motif graphics

 implementation but has not been debugged for use in the Open Motif

 environment.

3) $(ICE_DIR)data/playback.kpd - holds the names and locations of playback files

 which is used only when running the text ui (pui.C) for playback.

4) $(ICE_SRC_DIR)make.macros - this file is read by all makefiles in the system

 and is used to set up preprocessor, compile and linker flags as well as set up

 the macros for the directories in the system and define the include paths.

 CPPLINK = -Bstatic // Used for static linking (usually for delivery).

5) A file called archive.dat is created when the archiving option on the

 simulator is turned on by clicking the radio button under "Diagnoser

 Tools" in the reasoner GUI. This file can then be replayed using the

 facility (even though the extension is not kpd). Be careful to rename

 the file because if an archive.dat file exists it will get overwritten

 when archiving is turned on.

6) The file models.list is the list of KB flatfiles used by the rm-ui

 (the text user interface for the reasoner). The path for this file

 is currently hardcoded as "/ice"; see rm-ui.C to change it.

 Using the graphical user interface (GUI) it is not necessary to build a

 models.list file since the menu command: File ==> Load KB brings up a

 list of all files in the current directory with the .flatfile extension

7) The file $(ICE_SRC_DIR)utils/kate-globals.C defines the services that are

 available (client/server). There were five sets

 of communication services available in 1994, but this can be increased at

 any time. This means that there can be five separate KATE instances running

 simultaneously (on the same or different hosts).

 Another place that path names are hard coded into the system is rui.C

 (the text interface for record). It currently has "/ice" as the default

 directory for its files.

 The Diagnoser does write out a temporary file during a diagnosis

 but this is written to /tmp and then is removed. Check work-bench.C

 in $(ICE_SRC_DIR)reasoner/diagnoser if you want to change that.

Note: the "kpd" extension stands for Kate Processed Data and should (though

not required) be the extension for all files that are to be played back to

KATE using the playback facility.

--

Running ICE-C (KATE) with the GUI:

 To run the Graphical User Interface:

 The graphical interface may be run with or without scripts. Scripts

 provide a shortcut to loading the knowledge base (flatfile) and various

 KATE graphical user interface modules such as Reasoner, Data Provider,

 Browser, Tree Display and Schematic Viewer. The GUI has a facility to

 save this manually-loaded window configuration in a script file so that

 the full configuration may be reloaded easily.

23

Approved for public release; distribution unlimited.

 The following example illustrates how to run the GUI with both methods.

 After the initial manual run, the full configuation is saved in a

 script named TEST1. Then, the example is re-run using the saved

 script.

GUI WITHOUT SCRIPT:

 At the command prompt enter:

 1) ui <enter>

 (The GUI begins executing in a window titled: ICE Version 5.5.)

 Enter the following menu commands:

 2) File ==> Load KB

 (Select rpl.flatfile from the "Select Knowledge Base" pop-up list

 and click "OK".)

 3) Click "OK" in the pop-up window notifying the user that 107

 objects have been loaded.

 4) Utilities ==> Open Toolbox ==> Reasoner

 (The Reasoner begins executing in its window.)

 5) Click the large rectangular box at the bottom of the window

 titled "Click Here to Connect"

 (The Reasoner window fills in its Monitor, Simulator, Fault Detector

 and Diagnoser panes.)

 6) In the upper left corner of the window, click "Download KB".

 (Several messages appear in the Fault Detector pane of the Reasoner

 window informing the user of tolerance settings that have been established.)

 7) Utilities ==> Open Toolbox ==> Data Provider

 (The Data Provider begins executing in its window.)

 8) Click the large rectangular box at the bottom of the window

 titled "Click Here to Connect".

 (The Data Provider window fills in its Data Source pane including tape

 "player" buttons and the status pane.

 9) Click the "New" box near the bottom of the Data Source window.

 10) Click "a1open.kpd" in the pop-up window that appears and click "OK".

 (The status pane fills in with the Start: and Stop: times recorded in

 the .kpd data file.)

 11) Click Configure ==> 3.

 (The window divides into three panes, one large pane on the left and two

 smaller panes on the right of the screen.)

 12) Click Utilities ==> Reasoner (to designate that the Reasoner should run in

 the large left-hand window (Pane 1)).

 (The Reasoner begins running in Pane 1.)

 13) Click Utilities ==> Data Provider (to designate that the Data Provider

 should run in the upper pane of the right-hand window (Pane 2)).

 (The Data Provider begins running in Pane 2.)

 14) Click the Monitor Status "On" radio button in the Reasoner

 pane on the left of the screen.

 It only possible to click the Monitor Status "On" radio button within the

 Reasoner after the Data Provider has been started. (There is nothing for

 the Reasoner to "monitor" until a data source has been specified.)

 Turning the Monitor On also instructs the Reasoner to connect to the Data

 Provider and vice versa. The connection between the two processes is

 indicated by a bright green wavy arrow in the top of the Reasoner and

 Data Provider windows.)

 Note: The system can be run in "simulate only" mode with no data

 provider. In the simulate only mode, archiving can be turned on to

 generate an archive.dat file. This file can be renamed "testXYZ.kpd"

24

 or something similar and subsequent runs can be made using this kpd

 file in the Data Provider to test the full-up KATE system with

 simulated data. To run in the simulate only mode, do not click the

 Monitor status "On" radio button. Instead, click the Simulator

 Status radio button to "On", then click the Archiving radio button "On".

 Click the "Start" button in the upper left of the Reasoner pane and

 manipulate commands in the Tree Display Pane as described below.

 15) Click the Simulator Status radio button to "On", the Fault

 Detector Status radio button to "On", the Diagnoser Status radio

 button to "On", and click the "Start" button in the upper left of

 the Reasoner pane.

 16) Click the green "Play" button in the Data Provider window.

 (The Data Provider begins sending data to the reasoner. The GMT: time

 display in the middle of the upper pane of the KATE window begins

 updating with the time sent by the data provider. After about 50

 seconds, the Fault Detector Messages appear informing the user that the

 measurements F1, P6 and P3 are out of tolerance. After 56 seconds

 these three measurements are announced as "discrepant" and an automatic

 diagnosis begins. Two messages appear in the Diagnoser messages pane

 of the Reasoner. The messages name the suspect component ANNIN1 valve

 as the cause of the discrepancies and posit two failed VALUES for ANNIN1 :

 1.0 (full open) or 0.8 (80% open). Both of these values are consistant

 with the current state of the system measurements.)

 17) After these messages appear, click "Stop" in the top of the

 Reasoner pane to stop KATE's execution.

 18) Click File ==> Save UI Environment. Type a name for the UI

 Environment file in the File Box popup and click "OK". Any

 filename will do. In this example type TEST1 in the Selection window.

 (This action saves the UI Environment for use later.)

 19) Click File ==> Exit and confirm with "OK" in the Verify Exit

 pop-up window.

 (The KATE program exits returning the user to the Linux Terminal

 window.)

 The following example illustrates how to run the GUI with

 the TEST1 script that has just been created.

GUI WITH TEST1 SCRIPT FILE:

 At the command prompt in the Linux Terminal window enter:

 1) ui -uienv TEST1 <enter>

 (The GUI begins executing in a window titled: ICE Version 5.5.) The

 window has three panes. The large pane on the left is filled with the

 Reasoner. The small pane in the upper right is filled with the Data

 Provider and the small pane on the lower right is empty. Note that the

 KB (knowledge base) rpl.flatfile has already been loaded by the script,

 so loading a KB is not necessary.

 Enter the following menu commands:

 2) Click the large rectangular box at the bottom of the Reasoner window

 titled "Click Here to Connect".

 (The Reasoner window fills in its Monitor, Simulator, Fault Detector

 and Diagnoser panes.)

 3) In the upper left corner of the window, click "Download KB".

 (Several messages appear in the Fault Detector pane of the Reasoner

 window informing the user of tolerance settings that have been established.)

 4) Click the large rectangular box at the bottom of the Data

 Provider window titled "Click Here to Connect".

 (The Data Provider window fills in its Data Source pane including tape

 "player" buttons and the status pane.

 5) Click the "New" box near the bottom of the Data Source window.

25

 6) Click "a1open.kpd" in the pop-up window that appears and click "OK".

 (The status pane fills in with the Start: and Stop: times recorded in

 the .kpd data file.)

 7) Click the Monitor Status "On" radio button in the Reasoner

 pane on the left of the screen.

 (The connection between Data Provider and Reasoner processes is

 indicated by a bright green wavy arrow in the top of the Reasoner and

 Data Provider windows.)

 8) Click the Simulator Status radio button to "On", the Fault

 Detector Status radio button to "On", the Diagnoser Status radio

 button to "On", and click the "Start" button in the upper left of

 the Reasoner pane.

 9) Click the green "play" button in the Data Provider window.

 (The Data Provider begins sending data to the reasoner, the Fault

 Detector and Diagnoser Messages appear as before.)

 10) After these messages appear, click "Stop" in the top of the

 Reasoner pane to stop KATE's execution.

--

Running KATE with text ui

 The reasoner may be run without the GUI by using the rm-ui program to

 control the reasoner. The reasoner and the rm-ui can be run in either

 quiet, brief or verbose mode; each level shows more detail on the

 messages being sent between the two processes. Typing "m" for any text

 ui will provide a menu of options.

 reasoner [-q|b|v] [-c channel]

 rm-ui [-q|b|v] [-c channel]

 A socket or channel is set up between processes in the KATE system the

 default channel number is 1. If a reasoning processes is already

 running the user can specify another channel number to be used.

 The reasoner program is started first and then the rm-ui program.

 The Data Module process can also be run with its own text user

 interface.

 Ethernet data provider

 edp [-q|b|v] [-c channel]

 eui [-h hostname] [-c channel] [-s source] [-bf buildfile] [-q|b|v]

 [-run]

 The source is the firing room number (sort of), the run option tells the

 text ui to start the edp program automatically.

 Note: This functionality is not available in the latest version.

 Playback data provider

 pdp [-c channel] [-l tapefile] [-q|b|v]

 pui [-h hostname] [-c channel] [-q|b|v]

Other programs:

 1) build [-t tcidname] [-bf buildname] [-q|b|v]

 The tcidname should be just the name of the TCID without any extension

 (e.g., sa065a), the buildname is a name of a file that contains a

 list of fds (one on each line) in the system that the application needs.

 A valid usage might look like:

 build -t sa065a -bf fds.nam -v

26

 The -v turns on the debugging messages. The above command line will

 generate a build file called fds.bld.

 2) translator [-i inputfile] [-o outputfile] [-a]

 The translator program takes a KATE database file and outputs a KATE-readable

 flatfile. See KATE/src/translator/translator.c for required database format.

Other files

 The file fds.nam contains list of fds used as input to the build

 program.

 TCID files *.bsd *.bsi also used as input to the build program

 Note that the build program has not been upgraded to work with PCGOAL2.

Knowledge base instructions

The mini-model (see Figure A-1) was constructed as a group of KATE-C objects. The

README.flatfile text included with the software describes how to create a KATE model or

knowledge base (KB). As explained in the installation instructions above, the KB is made up of

two parts:

 a) A library of components that are compiled into the C++ system, each library object has its

input names and output function (a single output function for each component is used). The

class libraries are broken up into application-specific files and located in

KATE/src/kb/<application>, where <application> is fcl, lox, alo, etc. All application source

libraries are compiled into one complete class library - so there can be no duplication of class

names between applications. The Rapid Propellant loading class libraries were included in the

KATE/src/kb/alo directory.

 b) A "flatfile" textual description of the model or KB specifying library components and how

things are connected together as well as parameter values. See KATE/README.flatfile for a

brief knowledge base generation guide.

 c) The Rapid propellant loading KB is included in a file in the KATE/sun/exe/ directory called

rpl.db. rpl.db describes each of the components in the mini-model and how they are connected

to the others. Parameters such as tank sizes, tolerances for measurements, flow coefficients,

equipment locations, minimum and maximum values are also included and documented in rpl.db

27

A8. HYDE-SPECIFIC ITEMS

HyDE Software

The HyDE software distribution is included with this report in a WinZip repository named

HyDE.zip. The following directories are in the distribution:

 doc contains all the help files, manuals and tutorials describing how to build and save

models, how to build the HyDE tool, how to configure HyDE for diagnosis, and how to

run the HyDE tool.

 ModelingParadigm contains the HyDE modeling paradigm as well as three

subdirectories containing model interpreters:

o HyDEInterpreter contains the C++ code that allows user to check and save

models, create, edit and save harness, and run scenarios.

o HyDEGenericDecorator contains the C++ code that decorates the icons for model

entities based on their attributes.

o lib contains the HyDE, HyDEInterpreter, and HyDEGenericDecorator libraries.

 models contains all the HyDE models developed using the Generic Modeling

Environment (GME) tool from Vanderbilt University.

 src contains all the C++ code that is part of the HyDE Reasoning Engine.

 test contains unit tests, system tests and regression tests.

HyDE Rapid Propellant Loading models

Hyde model source code for Rapid Propellant Loading with comments is included in the WinZip

repository named HyDE_AFRL_Models.zip.

The changes that were necessary to configure HyDE for Rapid Propellant Loading are described

in the PowerPoint file named AFRL_Demo-v0.pptx that is included in the HyDE directory with

this report.

28

A9. SIMULINK/HYDE ITEMS

Rapid Propellant Loading HyDE movies

A set of HyDE demonstrations is included with this report as “.avi” movie files. They may be

played with any movie player that supports the .avi format, such as Windows Media Player. The

movies were created using the RPL simulation software. Three scenarios were selected to

highlight the capabilities of HyDE. The movies are included in the Movies directory with the

software accompanying this report.

Demonstration 1: Flow Control Valve Stuck Open

In the first scenario, a flow control valve, A1, becomes stuck open during the slow fill stage.

This scenario is demonstrated in the movie file “HyDE-A1StuckOpen.avi”. The scenario is

illustrated in the screenshot below.

Figure A-3

Flow Control Valve Stuck Open Scenario

It is important to first note that HyDE does not use the valve sensors, only flow, pressure, and

level sensors are used for diagnosis. The system begins in the initialization phase, and begins

slow fill at 100 seconds. The movie shows the output of flow sensor F1, which measures the

flow through the first transfer line. An increase in the flow is observed at this time due to the

change in control inputs. At 300 seconds, the fault is injected. A sharp increase in F1 is visible

(the dotted black line in the plot indicates the nominal value at this point, and the solid blue line

indicates the sensor output). HyDE immediately detects and isolates the fault at this time. At

around 330 seconds, the operator reconfigures to resume a nominal flow rate through the transfer

line by reducing the Pump 1 input to 275 RPM.

29

Demonstration 2: Vehicle Tank Vent Valve Stuck Open

In the second scenario, the vehicle tank vent valve, C4, becomes stuck closed during the slow fill

stage. This scenario is demonstrated in the movie file “HyDE-C4StuckClosed.avi”. The scenario

is illustrated in the screenshot below.

Figure A-4

Vehicle Tank Vent Valve Stuck Open Scenario

The system begins in the initialization stage and proceeds to slow fill at 100 seconds, and fast fill

at 600 seconds. As the vehicle tank fills, the ullage pressure, measured by P7, begins to increase.

The movie shows the output of P7. In nominal operation, the vent valve C4 automatically opens

when the ullage pressure reaches 7 psig, and closes when the ullage pressure reaches 3 psig. In

this way, it maintains the ullage pressure within safe levels. If the vent valve fails to open at the

required time, the ullage pressure may build up to unacceptable levels and an abort will have to

be issued. Therefore, it is important to quickly identify such failures. The vent valve C4 becomes

stuck closed at 1100 seconds. At this time, it is supposed to remain closed, as the ullage pressure

is not yet at 7 psig. At 1254 seconds, the ullage pressure begins to exceed 7 psig. HyDE

immediately recognizes that C4 has failed. Around 1340 seconds, the operator initiates drain

back to safe the system. The pumps are turned off and all valves are fully opened.

Demonstration 3: Flow Sensor Failure and Pump Failure

In the third scenario, two faults occur. The flow sensor F1 fails, followed by a failure of Pump 1

during the slow fill stage. This scenario is demonstrated in the movie file “HyDE-

F1FailPump1Fail.avi”. The scenario is illustrated in the screenshot below.

26

30

Figure A-5

Flow Sensor Failure and Pump Failure Scenario

The system begins in the initialization stage, and begins slow fill at 100 seconds. The movie

shows the output of flow sensor F1. At 300 seconds, the sensor fails and returns only a value of

zero. HyDE immediately determines that the flow sensor has failed in this way. At this point,

only the remaining flow sensors, F2 and F3, are available for diagnosis. The movie then shows

the output of F3 instead of F1. At 350 seconds, Pump 1 fails. HyDE immediately detects that

something else has gone wrong and initially pinpoints a failure of A1 (this is not visible in the

movie). At the next time step, HyDE corrects its diagnosis and pinpoints Pump 1 as the second

failure. (Note that if the pressure and level sensors are also used, HyDE will immediately

diagnose Pump 1 as the second failure, and not A1.) At around 380 seconds, the operator

reconfigures the system to regain nominal flow to the vehicle tank despite the failure of Pump 1.

Valve A1 is closed, valve A2 is fully opened, and the RPM of Pump 2 is increased to 375. The

flow to the vehicle tank is then restored to the nominal value of about 2.2 GPM.

31

A10. RAPID PROPELLANT LOADING HYDE / SIMULINK DEMONSTRATION

A set of HyDE software demonstrations is included with this report as Matlab Simulink files.

The files are located in the Matlab Simulink files directory with the software accompanying this

report. They may be executed in the Matlab environment. The following instructions describe

how to run the software:

LN2 Matlab/Simulink Simulation

This section describes the Matlab/Simulink Simulation of the simplified LN2 test bed. The scope

of the model is shown below.

Storage Tank

Vehicle

Tank

G1 C1
A1

Pump 1

G2 C2
A2

Pump 2

A4

A3

F1

F2

F3

P1

P2
P3

P4
P5

P6

P7

C3

C4

L1

L2

V1

V2

V3

V4

V5

V6

V7

V8

Figure A-6

LN2 Test Bed Simulation

A large storage tank holds the propellant. A pump is used to create a pressure differential

between the two tanks in order to move fluid from the storage tank to the vehicle tank. Flow (F),

pressure (P), level (L), and valve position (V) sensors are included, as denoted in the above

schematic. Note that this simulation represents a simplified propellant loading model. In

particular, we neglect boiling/condensation processes, heat flow, and temperatures (a constant

gas temperature is assumed).

28

32

Simulation Overview

The simulation consists of a Simulink model, an associated graphical user interface (GUI), and a

set of Matlab scripts and function, which should all be kept in the same directory. The main files

are:

 LN2Sim.mdl: The Simulink model of the simplified LN2 test bed.

 LN2Params.m: A Matlab script that sets the values of model and configuration

parameters.

 LN2GUI.fig: The simulation GUI.

 LN2Control.m: A Matlab function that implements the automatic filling protocol.

The top-level of LN2Sim.mdl is shown below.

Figure A-7

Top Level LN2 Simulation Model

33

The model mainly consists of the control block, which calls LN2Control.m, input blocks, the

main system block (which implements all the physical processes of the simulation), sensor

blocks, and output blocks. Outputs are fed back into the control block for closed-loop control.

The values of the inputs are determined by the current filling stage, specified by a set of

parameters indicating when the various stages begin. The „LN2Control‟ block, which calls

LN2Control.m, determines the stage. The set of stages are:

 Initialization: All manual and discretely-controlled valves are set open, and all flow

control valves are set at 50%. The pumps are turned off.

 Slow Fill: The pumps are set to 300 RPM. Slow fill begins when the simulation time is

„tSlow‟.

 A4 Test: Valve A4 is set to 10%. This occurs when the simulation time is „tA4‟, which

should be greater than „tSlow‟.

 Fast Fill: The pumps are set to 2500 RPM. Vent valve C4 is placed into autonomous

mode, where it will open at 7 psig and close at 2 psig. Fast fill begins when the

simulation time is „tFast‟, which should be greater than „tA4‟.

 Topping: Pump speeds are lowered, A4 is partially opened more than 10%, and A3 is

controlled to maintain F3 at 20 GPM. Topping occurs when the tank level reaches 980

gallons, which should occur after „tFast‟.

 Replenish: A4 is opened to a greater extent. Vent valve C4 is set open. Replenish begins

when the tank level reaches 1000 gallons.

 Drainback: All flow control valves are set to 100%. The pumps are turned off. Drainback

occurs when the simulation time is „tDrain‟, which should be after L2 reaches 1000

gallons.

 End: Vent valve C4 is closed. This occurs when L2 reaches 10 gallons.

Component Models

In this section, we describe the models of the system components and their faults. The simulation

model is constructed in a component-based fashion using a component library. In this

framework, a system model is created by instantiating different components and connecting them

appropriately. In this way, different system configurations can be easily developed.

LN2Library.mdl contains the component library. It is shown below.

31

34

Figure A-8

LN2 Component Library

The system has been divided into tanks, pipes, control valves, vent valves, pumps, junctions, and

sensors. Each component model is masked, allowing component parameters to be set through a

dialog. Double-clicking on a component model brings up the component dialog. A simple

description of the component is provided in the mask dialog. Expanded descriptions are

available by clicking on the help button on the mask dialog.

Note that the variable names in parentheses shown in the mask prompt are the corresponding

internal variables used by the mask. For example, liquid density is given the variable name of

„rho‟ in many component models. Internal block computations refer to the user-entered value for

liquid density using the variable name „rho‟.

As an example, the mask prompt for the C1 control valve is shown below.

35

Figure A-9 - Sample Mask Prompt

Descriptions of the components are as follows.

36

 Tank

Computes amount of liquid and gas mass and corresponding pressures. Two mass balance

equations and corresponding state variables are included, one for the liquid, and one for the

gas. State changes between liquid and gas are not modeled and a constant gas temperature is

assumed.

Given the liquid mass, the height of the liquid is computed based on the known liquid density

(rho) and the area of the tank (A). Hydrostatic pressure is computed using the height of the

liquid plus the elevation of the tank using)(ehg , where ρ is the liquid density, g is the

acceleration due to gravity, h is the liquid height, and e is the elevation. Given the gas mass,

ullage pressure is added to that total, calculated using the ideal gas law assuming a known

gas temperature.

 Pipe

Models a pipe as a capacitance. Includes liquid volume in the pipe as a state variable.

Integrates the sum of flows to obtain volume of liquid in the tank, given the initial volume of

liquid (I). Dividing volume by capacitance (C) provides the pressure:

 f
C

Ip
1

 Equation A-1

where Δf is the sum of flows (flow from left – flow from right).

 Control Valve

Calculates flow rate as function of valve position and square root of pressure difference.

Control signal with value of 0 closes the valve (no flow) and a value of 1 opens the valve

(full flow). A linear flow valve is assumed, where the flow is the linear with the percentage

the valve is open.

The flow equation is based on flow through an orifice with area A and flow coefficient C,

where the volume flow rate is given by:

)(
2

psignpAC

 Equation A-2

Where C is the flow coefficient, A is the orifice area, p is the pressure drop and sign is the

direction of flow. Fault injection changes the position of the valve or the orifice area with

'Fault Magnitude' (FM) at 'Fault Time' (FT). Profiles include:

- 'Nominal', where all nominal parameters are used

- 'Stuck', where the degree open is FM in [0,1]

- 'Blockage', where actual orifice area = nominal orifice area * FM

- 'Freeze', where the degree open is permanently set at the value one time step (determined

by sampleTime) before the fault

37

 Vent Valve

Models simplified nonchoked flow of gas through an orifice with area A and discharge

coefficient C. Mode signal of 1 indicates external control/override, 0 indicates autonomous.

When in controlled mode, the external control signal determines the valve position. When in

autonomous mode, the valve opens when pressure reaches opening pressure (openP) and

closes when pressure reaches closing pressure (closeP).

The gas flow equation used is given by:

)()(pAtmpsignpAtmpAC , Equation 3

where C is a flow coefficient, A is the orifice area, p is the pressure at the valve (e.g., ullage

pressure), and pAtm is the atmospheric pressure.

Fault injection changes the position of the valve or the orifice area with 'Fault Magnitude'

(FM) at 'Fault Time' (FT). Profiles include:

- 'Nominal', where all nominal parameters are used

- 'Stuck', where the degree open is FM in [0,1]

- 'Blockage', where actual orifice area = nominal orifice area * FM

- 'Freeze', where the degree open is permanently set at the value before the fault

 Pump

Computes pump pressure and flow through the pump given RPM and pump suction and

discharge pressures as input.

The pump pressure is computed as:

2

max

2

max

p
p pump , Equation 4

where pmax is the maximum pump pressure (in psi), ω is the current pump rotation rate (in

RPM, given as input), and ωmax is the rotation at pmax. The pump pressure as computed by

this equation is then converted to Pascals for internal model computations. The pressure

difference is then computed, and the flow is computed using the general equation for

incompressible fluid flow through an orifice, given above.

Fault injection allows changes in the RPM and blockage specified by 'Fault Magnitude' (FM)

and 'Fault Time' (FT). Profiles include:

- 'Nominal', where all nominal parameters are used

- 'RPM‟, where actual RPM = input RPM * FM

- 'Blockage', where actual CA = nominal CA * FM

38

 Junction

Junctions are not masked. The library contains only equal-pressure junctions. The input

pressure determines the output pressure. The input flows are summed to compute the output

flows to ensure that the net flow through the junction is zero.

 Sensor

Generic sensor model. Includes additive Gaussian noise specified by 'Noise Mean' and 'Noise

Variance' to the input value to produce the output value. Specify mean and variance as zero

to exclude noise.

Fault injection modifies the input value to one of several profiles (FP), starting at 'Fault Time'

(FT) with magnitude specified by 'Fault Magnitude' (FM). Profiles include:

- 'Nominal', where output=input+noise

- 'Gain', where output=FM*input+noise

- 'Drift', where output=input+FM*(FT-t)+noise

- 'Bias', where output=input+FM+noise

- 'Stuck', where output=FM+noise

- 'Freeze', where output=o+noise, and “o” is permanently set at the value one time step

(determined by sampleTime) before the fault

- 'Noise', where output=input+FM*noise

Running the Simulation

To run the simulation, first open LN2Sim.mdl. The GUI will open automatically, and close

automatically when the simulation is closed. When closed, the GUI will reset the simulation to

the nominal scenario unless the simulation is already closed. If the GUI is accidentally closed,

run the LN2GUI.m function in the command prompt to reopen it. The simulation can be used

without the GUI. To do so, set useGUI=0 in the command prompt. Alternatively, set useGUI=0

in LN2Params.m to make that the default setting.

A screenshot of the GUI is shown below.

39

Figure A-10 - LN2 Simulation Graphic User Interface

The GUI has the following functionality.

 Simulation control: The simulation can be started, stopped, and paused from the GUI.

The GUI will display the current clock time, current fill stage, all measured values, and

all current input values being supplied by the control.

 Input/Output display: The current inputs being supplied to the system and the current set

of sensor values are displayed on the GUI. To manually control the system, enter a new

value in the input‟s text box. The text will become bold to indicate that it is being

overridden. Inputs of arbitrary precision can be provided, but it will only be shown up to

two decimal places. When the simulation is started again, individual overrides are turned

off for all inputs. To override all inputs, use the “Override All Inputs” button. This will

put the system into a new fill stage controlled only by the user. All inputs will remain as

they were at the time the button was pressed unless changed by the user. When manual

override is turned off, the system will resume the nominal filling sequence and all inputs

will return to their values for that fill stage, unless previously overridden individually.

The GUI will also plot the data histories for the inputs and sensors. When the simulation

is stopped or paused, the current data history for an input or sensor is plotted by clicking

on the gray box with the input or sensor name.

The valve inputs are specified by a number in the interval [0,1], representing the amount the

valve is open, where 0 refers to fully closed (no flow), and 1 refers to fully open (full flow). The

vent valves (C3 and C4) may be operated in an automatic mode, in which they open and close

depending on ullage pressure. A mode input of 0 refers to the automatic mode, in which the

40

signal input is ignored. When the mode input is 1, the signal input determines the position of the

valve. For the pumps, the RPM value is specified. Each input is logged to the workspace.

 Experiment Control: The experiment control panel allows the user to inject faults, set

sensor noise, specify a scenario name for saving data, and set timing parameters.

o Timing parameters: All timing parameters are specified in seconds. The sample

time parameter determines at what interval the GUI is updated, data is logged, and

inputs are supplied to the system. The sleep time parameter specifies how long the

GUI should pause the simulation between updates, in order to slow the simulation

to real-time or some factor faster or slower than real –time. For no pausing, enter

0. For real-time synchronization, enter the current value of sample time. The total

time parameter sets how long the simulation will run (in simulation time, not real

time). The user can still stop the simulation early using the Stop button.

o Saving data: Data is saved from the simulation if the scenario name field is

nonempty and the Save Data checkbox is checked. The data will be saved to a

.mat file named by the provided scenario name, in the directory specified in the

directory box. To enter a directory, click on the gray directory box and a folder

selection dialog will appear, and select the desired directory. HyDE and KATE

files will be written with the same filename, only appended with “HyDE” and

“KATE”, respectively, and written in the same directory. If no directory is

specified the files will be saved to the current working directory. Saved data will

be stored in a variable called „LN2Data‟. When a .mat file is loaded, this is the

variable name that Matlab will assign.

o Fault injection: To inject a fault, first select the component from the drop-down

menu. The faults drop-down menu will populate with the list of fault modes for

that component (see the previous section). Set the injection time and magnitude in

the corresponding boxes. Then push the “Add Fault” button. The fault will be

added to the table below and injected into the simulation model. Only one fault

mode per component is allowed. To remove a fault, select it from the table and

push the “Remove Fault” button. To remove all faults, push the “Reset to

Nominal” button.

o Sensor noise: The sensor noise is additive white Gaussian noise, and the mean

and variance can be specified. To set the noise of a particular sensor, select it

from the drop-down menu. Enter new values for mean and/or variance. The

simulation model will be updated with the new values. To set the noise of all

sensors to the same mean and variance, enter the desired values in the mean and

variance text boxes and push the “Set Noise All” button.

o Saving/Loading Settings: As well as saving simulation data from a scenario, the

settings of the scenario can also be saved in order to repeat the experiment at a

later time. To save settings, push the “Save Settings” button. All the currently

injected faults, current values of sensor noise, and current values of sample time,

41

sleep time, and total time will be saved. A file dialog will appear. Enter the

filename as a .mat file to save the settings. To load previously saved settings, push

the “Load Settings” button. A file dialog will appear. Select the previously saved

.mat file to load the settings. An error message box will appear if the file is not in

the correct format (i.e., it was not generated by the “Save Settings” button.

Four settings files are already available for use: “NominalSettings.mat”, which

loads settings for a nominal loading scenario, “A1StuckOpenSettings.mat”, which

loads settings for a stuck-open fault in valve A1, “C4StuckClosedSettings.mat”,

which loads settings for a stuck-closed fault in valve C4, and

“F1FailPump1Fail.mat”, which loads settings for a F1 sensor failure followed by

a Pump1 failure.

 Hybrid Diagnostic Engine: Results from the Hybrid Diagnostic Engine (HyDE) are

displayed on the GUI in tabular format. To enable HyDE, check the “Enable HyDE”

checkbox. If the HyDE executable (HyDEInterface.mexw32) cannot be found, the GUI

will not allow the box to be checked. When HyDE detects a fault, the status indicator

will display “Fault Detected”. When a fault is isolated, the status indicator will display

“Fault Isolated” and the table will populate with the current set of diagnoser results. For

each candidate, a probability and a set of faults with the estimated times of occurrence

will be displayed. For the most probable candidate, the related components will be

automatically highlighted in the schematic. For example, in the GUI shown above, the

A1 component is highlighted. Selecting a specific row in the table will also highlight the

components associated with that candidate.

Command Line Interface

In addition to the GUI, there are a set of functions available to access the simulation from the

command line to facilitate running different scenarios and collecting data automatically. The

simulation model must be open for functions that modify or execute the model to succeed. Many

of these functions are also used by the GUI, and specific information can be found be running

“help function” in the Matlab command prompt, where “function” is the name of the function for

which information is needed. Brief summaries are given below.

Most of these functions rely on LN2System.mat, which is generated from LN2System.xls. The

spreadsheet contains the names of all components, inputs, and outputs, descriptions of each, and

the corresponding names in HyDE and KATE. If changes are made to LN2System.xls,

LN2System.mat can be regenerated using “importSystemFile(„LN2System.xls‟);” at the Matlab

command prompt.

The scripts and functions are as follows. Functions or scripts in bold are those which are top-

level functions that are likely to be called directly. Functions which are not in bold are helper

functions called by the top-level functions and probably do not need to be called directly.

 sim(model)

This is a native Matlab command to run an open Simulink model. Use “sim(„LN2Sim‟);”

42

to simulate from the Matlab command line.

 LN2Data = saveData(scenario,dir)

This function saves the outputs from LN2Sim to a .mat file into a variable named

„LN2Data‟, which it also returns as output. The “scenario” argument is a string that

specifies the file name, and “dir” specifies the directory.

 writeDataHyDE(filename,data)

This function writes the given data to a file specified by “filename” in HyDE‟s format.

The “data” should be in the form produced by saveData. Use Matlab‟s “load” function to

load a .mat file produced by saveData to bring its data into the workspace, and pass it to

the function.

 writeDataKATE(filename,data)

This function works the same as writeDataHyDE, only it writes in KATE‟s format.

 writeAllData

This script looks for all saved .mat files in the “Experiments” directory, and calls

writeDataHyDE and writeDataKATE for each. HyDE files are places in

“Experiments/HyDE” and KATE files are placed in “Experiments/KATE”. These

directories must exist for the script to succeed.

 faultList = getFaultList(componentName)

This function returns a cell array of strings containing all the valid fault profiles for the

component with the given name. This function is used by LN2GUI and can be used to

find out which fault profiles are valid without checking the simulation model.

 runExperiment(‘Nominal’)

runExperiment(component,faultProfile,injectTime)

runExperiment(component,faultProfile,injectTime,magnitude)

runExperiment({component faultProfile injectTime magnitude}, …)

These functions simulate LN2Sim for a particular single or multiple fault scenario, saves

the data to a .mat file (by calling saveData), and writes the data as HyDE and KATE files

(by calling their respective writeData functions). The output files are named

automatically based on the provided arguments. The simulation is then reset back to

nominal settings.

 The function can be called in multiple ways. To run the nominal scenario, give the single

string argument “‟Nominal‟”. For single fault experiments, provide “component” which

is the component name (see LN2System.xls), “faultProfile” which is the fault profile (see

43

descriptions above, the LN2Library.mdl, LN2GUI, or use the getFaultList function),

“injectTime” which is the time of fault injection, and “magnitude” which is the fault

parameter (see descriptions above). The magnitude argument does not need to be

specified for certain fault profiles, e.g., for the „Freeze‟ profile. For one or more faults,

the function also accepts cell arrays as arguments (specified using “{“ and “}”), where

each cell array contains the information to inject a new fault, namely, the component,

profile, injection time, and magnitude parameters.

Data in .mat format is saved in the “Experiments” folder. Data in the HyDE format is

written in the “Experiments/HyDE” folder, and data in the KATE format is written in the

“Experiments/KATE” folder.

The useHyDE configuration variable should be set to 0 before this function is called. The

totalTime variable must also be set.

 runExperiments

This is a script that demonstrates how runExperiment and setNoise can be used.

 setFault(componentName,faultProfile,injectionTime.magnitude)

This is the function used internally by runExperiment, and its arguments are similar. This

function does not set anything else to nominal first, so multiple calls to setFault can be

used to set up a multiple fault scenario.

 resetToNominal

This script sets all components to have the „Nominal‟ profile.

 setNoise(sensorNames,mean,variance)

This function sets the mean and variance of the sensors with the given names. The

sensorNames argument can be a string specifying a single sensor name, a cell array of

strings containing multiple sensor names, or the special string „all‟ which applies the

given mean and variance arguments to all sensors. To set only mean, give the empty

array, [], as the variance argument, and to set only variance, give [] as the mean

argument.

 importSystemFile(‘LN2System.xls’)

This function creates the LN2System.mat file from LN2System.xls. If LN2System.mat

exists and is correct, this function does not need to be called. Make corrections to

LN2System.mat (e.g., names of system components in HyDE and KATE) in

LN2System.xls, and then regenerate the .mat file by calling importSystemFile on

LN2System.xls.

43

44

object = findInSystem(list, objectName)

This function returns a struct with the information for the object of the given name in the given

list. The list argument can be one of „components‟, „inputs‟, and „outputs‟. An error will be

returned if the list argument is not valid or the object with the given name cannot be found in the

specified list. This is a helper function used by setFault and setNoise and typically does not need

to be called directly. It used LN2System.mat as generated by importSystemFile on

LN2System.xls.

A11. DX CONFERENCE / CRASTE CONFERENCE PAPER

The results of the software effort on Rapid Propellant Loading were presented at the 20th

International Workshop on Principles of Diagnosis (DX-09) in Stockholm, Sweden, June 14-17

2009. The paper was submitted and accepted as a poster presentation at the conference. This

paper has also been accepted for presentation at the 2009 Commercial and Government

Responsive Access to Space Technology Exchange (CRASTE) October 26-29, in Dayton, Ohio.

The poster presented at DX-09 (MiniModelDiagnosis_DX09.ppt) and the paper for CRASTE

(MiniModelDiagnosis-Final-Submitted.pdf) are included in the publications directory that

accompanies this report.

45

A12. ATTACHMENTS (DIRECTORY LISTING OF SOFTWARE ATTACHMENTS)

/Rapid Propellant Loading Software:

 drwxrwxrwx Hyde

 drwxrwxrwx KATE

 drwxrwxrwx Matlab Simulink files

 drwxrwxrwx Movies

 drwxrwxrwx Publications

46

APPENDIX B

47

48

49

50

51

52

53

54

55

APPENDIX C

56

RAPID PROPELLANT LOADING (RPL)
CRYOGENIC TANKING DEMONSTRATION

LIQUID NITROGEN (LN2) COLD FLOW TEST
FINAL REPORT

SAC-RPL-LN2-003

57

58

RECORD OF REVISIONS/CHANGES

REV

LTR

CHANGE

NO.
DESCRIPTION DATE

Basic Initial Release November 1, 2010

59

TABLE OF CONTENTS

Section Page

C1. Reference Information ... 61

C2. Scope ... 62

C3. Test Description .. 63

C4. Test Setup .. 64

C5. Test Results and Observations .. 67

APPENDIX C-A ... 70

APPENDIX C-B ... 73

60

LIQUID NITROGEN COLD FLOW TEST

C1. Reference Information

C1.1 Referenced Documents

Drawing No. Description Revision

SAC-LN2-RPL-001 Test Setup Leak Check LI

SAC-LN2-RPL-002 Rapid Propellant Loading (RPL) Cryogenic Tanking Demonstration – Liquid

Nitrogen (LN2) Cold Flow Test
LI

61

61

C2. Scope

On August 24
th

 2010 a cryogenic loading demonstration was performed on the Rapid Propellant

Loading (RPL) system. The test was accomplished by transferring Liquid Nitrogen (LN2) from

a portable tanker through a cold flow control system and into an instrumented composite test

tank, using varied cryogenic transfer techniques. This report documents the results from that

cryogenic loading demonstration.

62

C3. Test description

The demonstration consisted of 3 different cryogenic loading techniques:

1. Tank loading using a bottom fill technique (using only a 2” transfer line into the

bottom of the test tank).

2. Tank loading using a top fill technique (through a spray nozzle located in the top of

the test tank).

3. Tank loading using a combined top fill and bottom fill technique (using both the

bottom fill line and the top spray nozzle).

All testing was performed in accordance with procedure# SAC-LN2-RPL-002 “Rapid Propellant

Loading (RPL) Cryogenic Tanking Demonstration – Liquid Nitrogen (LN2) Cold Flow Test.”

63

C4. Test setup

The LN2 cold flow test setup mechanical schematic is shown in Figure C-1 below. The

mechanical setup consisted of the following major sub-assemblies:

 Pneumatically-actuated 2-position (open/closed) control valves for the top fill and vent

systems

 A variable-position flow control valve for the bottom fill system

 Regulated gaseous nitrogen pneumatic supplies for these valves

 An interface to connect the system to a portable LN2 tanker

 Fill, vent & drain line piping for the test tank

 A delta pressure / orifice apparatus to measure flow-rate in the bottom fill system

 A circular spray “nozzle” assembly located in the top of the test tank.

The LN2 cold flow test setup electro-mechanical schematic is shown in Figure C-2 below. The

electrical / control system consisted of the following major sub-assemblies:

 Solenoid valves to provide gaseous nitrogen actuation pressure for the top fill and vent

pneumatic valves

 A current-to-air pneumatic controller for the bottom fill flow control valve

 Valve position indicators

 Pressure measurements for the flow-rate orifice

 An instrumentation mast inside the test tank containing numerous temperature sensors

 External temperature sensors on the exterior of the tank.

All of the instrumentation and controls were operated via a control coupler apparatus (note: this

apparatus is incorrectly identified as a PLC on the electro-mechanical schematic).

Appendix C-A contains photographs of the LN2 cold flow test setup; these photos were taken

during assembly and pre-test checkout of the apparatus. After completion of assembly and

checkout, the apparatus was shipped to the NASA Fire Protection Training Area on Static Test

Road, where all cryogenic testing was performed.

65

64

Figure C-1

System Mechanical Schematic

65

Figure C-2

Electro-Mechanical Control Diagram

66

C5. Test Results and observations

C5.1 Run 1: Tank Loading Using Bottom Fill Technique

The Liquid Nitrogen (LN2) supply trailer was pressurized to approximately 35 psig and LN2

flow was initiated into the cold flow apparatus. Initial chill-down of the control skid, as

evidenced by steady LN2 flow out of drain valve DV-01 took approximately 3 minutes. At this

time, DV-01 and top fill control valve FV-01 were closed and liquid was routed into the test tank

via bottom fill flow control valve PFV-01.

DV-01 was initially set to a mid-range position (approximately 50% open) and subsequently

opened more fully as tank loading progressed. The liquid level in the test tank was initially

monitored by visually watching the ice/frost level on the exterior of the tank. The exterior tank

temperature sensors, located at the bottom, middle and top of the tank, were also monitored for

indications of cryogenic temperatures. When liquid nitrogen reached the upper levels of the

tank, it was monitored on the temperature sensors located on the instrumentation mast. A liquid

level capacitance probe, also located on the mast, was also monitored during tanking operations,

but this probe never indicated liquid during tanking.

It became evident very early in the tanking operation that the tanking system was operating near

its capacity, and that chill-down of the test tank was preceding slower than anticipated. The

following specific conditions were observed:

- It was apparent that the test tank was experiencing significant liquid boil-off

conditions, probably due to a combination of warm ambient temperatures

(approaching 90 deg. f) and the lack of any external insulation on the tank.

- LN2 flow into the tank was being limited by the orifice being used to measure LN2

flow-rate in the bottom fill line. The 1-inch diameter orifice in the 2-inch diameter

bottom fill line was evidently limiting the LN2 flow-rate.

As a result of the above conditions, it was apparent that successfully filling the tank to the 100%

level would require some adjustments to the loading procedure. The following steps were taken

to maximize LN2 flow-rate into the tank:

- LN2 tanker pressure was increased to the maximum tanker operating pressure of 40

psig

- Bottom fill flow control valve PFV-01 was opened fully (100%)

- Top fill control valve FV-01 was opened and LN2 was introduced into the top of the

tank, in order to facilitate tank chill-down.

The above steps proved to be successful in facilitating additional LN2 flow into the test tank, and

liquid levels eventually reached the top of the tank, as monitored on the tank temperature

sensors. However, as stated previously, no liquid was ever observed on the capacitance liquid

67

level sensor. Additionally, no liquid was ever observed at the outlet of the tank vent duct at the

top of the vessel.

The elapsed time from the end of chill-down to the determination that the test tank was at the

100% full level was approximately 33 minutes. It is clear that if the loading procedure

adjustments discussed previously were employed earlier, the tanking timeline could be

significantly reduced.

Appendix C-B contains photographs of the RPL LN2 cold flow test setup; these photos were

taken during Run 1 (Bottom Fill – described above) and Run 2 (Combined Top and Bottom Fill

– described below).

Appendix C-C contains graphical representations of LN2 tanking data for both Run 1 (Bottom

Fill – described above) and Run 2 (Combined Top and Bottom Fill – described below).

C5.2 Run 2: Tank Loading Using Combined Top and Bottom Fill Techniques

Following Run 1 (Tank Bottom Fill), the test tank was drained completely and allowed to warm

to ambient temperature. Prior to the next tanking operation, the NASA / Contractor test team

conducted an informal technical review meeting and determined that the next planned tanking

operation “Tank Loading Using Top Fill Technique” would not be required. This determination

was made due to the fact that the top fill line had been utilized during the latter part of Run 1,

and adequate data had been obtained during that operation. A decision was made to proceed

directly to the “Tank Loading Using Combined Top Fill / Bottom Fill Technique” sequence of

the test procedure.

The test team also determined that it would be advantageous to remove the 1-inch flow

measurement orifice from the system prior to Run 2, in order to maximize the LN2 flow-rate into

the test tank. This work was accomplished and the flow-rate measurement was inoperative

during Run 2.

Initial chill-down of the control skid was similar to Run 1, with a steady LN2 flow out of drain

valve DV-01 occurring approximately 3 minutes after the start of LN2 flow. At this time, drain

valve DV-01 was closed but top fill control valve FV-01 remained open to facilitate tank chill-

down. Liquid continued to be routed into the test tank via bottom fill flow control valve PFV-01.

As a result of the lessons learned and procedural adjustments implemented during Run 1, the

Run 2 tanking timelines were significantly shorter. The elapsed time from the end of chill-down

to the determination that the test tank was at the 100% full level was approximately 20 minutes.

The same liquid level monitoring procedure employed during Run 1 was once again utilized

during Run 2. The liquid level in the test tank was monitored by visually watching the ice/frost

level on the exterior of the tank, the exterior tank temperature sensors, located at the bottom,

middle and top of the tank, were monitored for indications of cryogenic temperatures, and the

temperature sensors located on the instrumentation mast were monitored. Unlike Run 1, the

68

liquid level capacitance probe located on the mast momentarily indicated liquid when the test

tank was completely full, although at lower quantities than anticipated.

A final significant difference from Run 1 was that the increased LN2 flow-rates allowed the

control system to completely overcome the significant LN2 boil-off conditions. Therefore, when

the tank reached the 100% full level, traces of LN2 were evident at the tank vent duct outlet,

which provided a further verification that the tank was indeed full.

Appendix C-B contains photographs of the RPL LN2 cold flow test setup; these photos were

taken during Run 1 (Bottom Fill – described above) and Run 2 (Combined Top and Bottom Fill

– described below).

Appendix C-C contains graphical representations of LN2 tanking data for both Run 1 (Bottom

Fill – described above) and Run 2 (Combined Top and Bottom Fill – described below).

69

Appendix C-A

LN2 Cold flow apparatus assembly photographs

Figure C-3

Test Apparatus – Front View

LN2 Tanker Interface Flex-hose

Test Tank

Control Valves

70

Figure C-4

Instrumentation Mast

Figure C-5

Flow-rate Orifice

Flow Orifice

Pressure Xdcr

Top Fill Line Connection

Liquid Level Sensor

Spray Nozzle

Temperature Sensor (typ)

71

Figure C-6

Test Apparatus Close-up

Bottom Fill Flow

Control Valve

Drain Valve

Top Fill Valve

71

72

Appendix C-B

LN2 tanking photographs

Figure C-7

Start Of Chill-down, Run 1 (Bottom Fill)

LN2 Discharge From

Tank Drain Line

73

Figure C-8

Tank Venting, Run 1

Figure C-9

Test Apparatus Overview

Frost Line

Vent Duct

74

Figure C-10

Combined Top and Bottom Fill

Bottom Fill Line

Top Fill Line

75

Figure C-11

Control Valves, Top and Bottom Fill

Top Fill Valve

Bottom Fill Valve

Drain Valve

75

76

Figure C-12

100% Full, Run 2 (Combined Top and Bottom Fill)

77

Figure C-13

Composite Temperature Graph, Run 1 (Bottom Fill)

78

Figure C-14

Valve Position Indicators, Run 1 (Bottom Fill)

79

Figure C-15

Composite Temperature Graph, Run 2 (Combined Top and Bottom Fill)

80

Figure C-16

Valve Position Indicators, Run 2 (Combined Top and Bottom Fill)

81

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ACRONYM DESCRIPTION

ADAPT Advanced Diagnostics and Prognostics Test-bed

AFRL Air Force Research Laboratory

API Application

BH Bulkhead/Connection Point

C&C Command and Control System

CLLS Capacitive Liquid Level Sensor

CP Calibration Port

CT Temperature Sensor

Degf Degrees Fahrenheit

DV Drain Valve

EEAP Emergency Evacuation Assembly Point

EV Electronic Valve

FDIR Fault Detection Isolation and Recovery

FH Flex Hose

FL Filter

FM Flow Meter

FV/PFV Flow (Control) Valve

GN/ GN2 Gaseous Nitrogen

GOX/GO2 Gaseous Oxygen

HyDE Hybrid Diagnostics Engine

ICE Internet Communications Engine

KATE Knowledge Based Test Engineer

KB Knowledge Based

KSC Kennedy Space Center

LAIR Liquid Air

LI Latest Issue

LLS Liquid Level Sensor

LN2 Liquid Nitrogen

LOX/ LO2 Liquid Oxygen

LRU Line Replaceable Unit

MBR Model Based Reasoning

MV Manual Valve

N/A Not Applicable

NASA National Aeronautics and Space Administration

NC Normally Closed

NO Normally Open

NRHOWG Non-Routine Hazardous Operations Working Group

O2 Oxygen

OPS Operations

PGS Prompt Global Strike

QD Quick Disconnect

PG Pressure Gauge

POSU Pre-operation Setup

83 82

PLC Programmable Logic Controller

PPE Personal Protective Equipment

Psig Pounds Per Square Inch (lb/in
2
) Gage

PT Pressure Transducer

PV Pneumatic Valve

RB Air Vehicles Directorate of the Air Force Research Laboratory

Reg Regulator

RPL Rapid Propellant Loading

RV Relief Valve

SAC Security Assistance Corporation

S/O Shut off

SMS System Mechanical Schematic

SV Solenoid Valve

TBD To Be Determined

UPS Uninterruptible Power Supply

VLV Valve

83

