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1. BACKGROUND

This joint AFRL and NASA research project was initiated in 1 March 2007 to begin addressing
the technology and capability deficiencies in reducing the call-up time (time from mission
notification until launch) to support the Prompt Global Strike (PGS) and on-orbit reconstitution
missions. One of the critical call-up issues is loading cryogenic propellants (e.g. liquid oxygen).

Currently loading cryogenic propellants requires special operations and equipment with highly
trained personnel to prevent vehicle damage and personnel injuries. Maintaining the required
skill levels of these people are a key aspect of this process. The people must recognize problems
when they arise and make critical decisions. These decisions not only affect vehicle and the
people working near the vehicle but this mission as well. One way to reduce dependency upon
critical personnel and enable rapid and consistent decisions is to create an automated system with
built-in health and situation management. This would enable the personnel to connect the
equipment and empower the system to perform the propellant loading operation with minimal
oversight.

Funding for this project was provided by a combination of AFRL and NASA Kennedy Space
Center.
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2. APPROACH

The project goal was to develop technology to load cryogenic propellants rapidly, with a
minimum number of console operators whose engineering skills and cryogenic experience are
limited, such as a USAF non-commissioned officer (NCO). To accomplish this intelligent
monitoring and diagnostics technology for cryogenic propellant loading using model-based
reasoning software technology was selected. Model-based reasoning (MBR) is an innovative
way of determining the dynamic state of a process by examining all available sensors instead of
just one or a few. MBR also has the capability to determine the health of the system and predict
degradations. Two NASA-developed MBR systems, Knowledge-based Autonomous Test
Engineer (KATE) and Hybrid Diagnostic Engine (HyDE), were used to explore this capability.
KATE and HyDE models described the physics of the cryogenic loading process and
dynamically identified nominal and abnormal behaviors.

KATE and HyDE models incorporate cryogenic technical and operations knowledge allowing
nearly autonomous system operation with minimal supervision. The MBR approach provided
detection of cryogenic loading anomalies, isolation and identification of equipment faults, and
recovery from failed instrumentation and components. KATE and HyDE software incorporated
a physics-based simulation of vehicle propellant tanks, valves, ground loading piping and
components. The software included a "reasoner" that compares the behavior of simulated and
actual propellant-loading components to determine logically which measurements or components
may have failed in the physical system to account for the symptoms that the control system is
seeing.

The NASA software simulation final report is attached in Appendix A and a paper in Appendix
B.

An additional objective was to load a LOX tank with LN2 using the software created above to
validate the simulation results. However, an accident at KSC impacted this program and limited
the LN2 loading experiment to trying to find ways to reduce the about of fluid boiling off and
venting out of the tank as a gas. This would be beneficial because it reduces the about of fluid
required to fill the tank, enables a smaller diameter tank vent line, lowers the pressure build-up
during the loading process, and conditions the tanks for a rapid fill. The approaches selected
focused upon spraying the cryogenic fluid inside of the tank using a shower head like devise to
chill the interior tank walls down.

The LN2 loading experiment final report is attached in Appendix C.

The project leveraged and synergized with work performed on the Rapid Propellant Loading
(RPL) test bed at NASA’s Cryogenics Test Laboratory.
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3. RESULTS

The software Block Diagram shown in figure 1 depicts the launch site software architecture
developed for the MBR system. The KATE and HyDE software runs in the RPL Diagnostics
Console. Real world data is supplied to the system via LabView hardware and software. The
Internet Communications Engine (Ice) publish/subscribe architecture provides a connection
between the data source — live, simulated or recorded and the MBR application in the diagnostics
console. The RPL OPS console communicates between the USAF mission operations center and
the launch site.  Advanced Diagnostics and Prognostics Test-bed (ADAPT) API is NASA
software that enables communication with a variety of diagnostic software.

RPl _Server Data Archival

RPL OPS RPL Diagnostics == Integration RPL Simulation  and playhack
Consale == Console Console
(] [ (] ]
== —=
| ADAPT API | ADAPT API | | apaptapi | | apapTarr | | ADAPT API | ADAPT APl |
\ 4 4 h 4 A 4 4

Publish/Subscribe (Ice)

* Supervisory Control 1
* Data Acquisition ADAPT API :
1

1

NI SIW X

1
1
* Monitoring :
: f-ah\ignt GUI
-3
e e 1
I NI Control J
| Sensor | | Sensor | | Sensor | Actuator Actuator

Software architecture

Figure 1
Software Block Diagram

A "Mini-model” simulation was developed to test the MBR software in two versions, Excel and
Matlab. For the final demonstrations, Matlab/Simulink data from the mini-model simulator was
supplied to KATE and HyDE for diagnosis tests by means of text files. A schematic diagram of
the mini model is shown in figure 2. The model consists of a cryogenic storage tank, two pumps,
valves and flow/pressure measurements, and a simulated vehicle tank for propellant loading.

The tank, piping and instrumentation sizes were chosen to correspond to the Rapid Propellant
Loading (RPL) test bed at NASA’s Cryogenics Test Laboratory.

A large storage tank holds the propellant. A pump is used to create a pressure differential
between the two tanks in order to move fluid from the storage tank to the vehicle tank. Flow (F),
pressure (P), level (L), and valve position (V) sensors are included, as denoted in the above
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schematic. Note that this simulation represents a simplified propellant loading model. In
particular, we neglect boiling/condensation processes, heat flow, and temperatures (a constant
gas temperature is assumed).
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Figure 2
Mini Model

The software team developed a Mini Model use case for nominal propellant loading showing
how cryogenics would flow through the mini-model during normal operation and three use cases
illustrating how the control system should respond to typical component faults. The three fault
use case scenario’s are 1) faulty valves, 2) failed flow sensors, and 3) vent valve failure. The
Top Level Simulation Mini Model is shown in figure 3.

The values of the inputs are determined by the current filling stage, specified by a set of
parameters indicating when the various stages begin. The ‘LN2Control’ block, which calls
LN2Control.m, determines the stage. The set of stages are:
1. Initialization: All manual and discretely-controlled valves are set open, and all flow
control valves are set at 50%. The pumps are turned off.
2. Slow Fill: The pumps are set to 300 RPM. Slow fill begins when the simulation time is
‘tSlow’.
3. A4 Test: Valve A4 is set to 10%. This occurs when the simulation time is ‘tA4’, which
should be greater than ‘tSlow’.
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4. Fast Fill: The pumps are set to 2500 RPM. Vent valve C4 is placed into autonomous
mode, where it will open at 7 psig and close at 2 psig. Fast fill begins when the
simulation time is ‘tFast’, which should be greater than ‘tA4°.

5. Topping: Pump speeds are lowered, A4 is partially opened more than 10%, and A3 is
controlled to maintain F3 at 20 GPM. Topping occurs when the tank level reaches 980
gallons, which should occur after ‘tFast’.

6. Replenish: A4 is opened to a greater extent. Vent valve C4 is set open. Replenish begins
when the tank level reaches 1000 gallons.

7. Drainback: All flow control valves are set to 100%. The pumps are turned off. Drainback
occurs when the simulation time is ‘tDrain’, which should be after L2 reaches 1000
gallons.

8. End: Vent valve C4 is closed. This occurs when L2 reaches 10 gallons.
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Top Level Simulation Mini Model
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The mini-model KATE model was constructed as a group of KATE objects Knowledge Base
(KB). The KB is made up of two parts: a) a library of components that are compiled into the
C++ system, each library object has its input names and output function (a single output function
for each component is used) and b) a "flatfile™ textual description of the model or KB specifying
library components and how things are connected together as well as parameter values.

Diagnostics are performed using the HyDE software. HyDE uses fluid flow, fluid pressure, and
fluid level sensors for diagnostics in these simulations. Valve position and other sensors are not
used.

In the first scenario, Flow Control Valve Al was stuck open during the slow fill stage as shown
in figure 4 screenshot. The system begins in the initialization phase, and begins slow fill at 100
seconds. Flow sensor F1 measures the flow through the first transfer line. An increase in the
flow is observed at this time due to the change in control inputs. At 300 seconds, a fault is
injected. A sharp increase in F1 is visible (a dotted black line in the simulation plot indicates the
nominal value at this point, and the solid blue line indicates the sensor output). HyDE
immediately detects and isolates the fault at this time. At around 330 seconds, the operator
reconfigures to resume a nominal flow rate through the transfer line by reducing the Pump 1
input to 275 RPM.
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Figure 4
Flow Control Valve Stuck Open Scenario

In the second scenario, the vehicle tank vent valve, C4, becomes stuck closed during the slow fill
stage as shown in figure 5 screenshot. The system begins in the initialization stage and proceeds
to slow fill at 100 seconds, and fast fill at 600 seconds. As the vehicle tank fills, the ullage
pressure, measured by P7, begins to increase. In nominal operation, the vent valve C4
automatically opens when the ullage pressure reaches 7 psig, and closes when the ullage pressure
reaches 3 psig. In this way, it maintains the ullage pressure within safe levels. If the vent valve
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fails to open at the required time, the ullage pressure may build up to unacceptable levels and an
abort will have to be issued. Therefore, it is important to quickly identify such failures. The
vent valve C4 becomes stuck closed at 1100 seconds. At this time, it is supposed to remain
closed, as the ullage pressure is not yet at 7 psig. At 1254 seconds, the ullage pressure begins to
exceed 7 psig. HyDE immediately recognizes that C4 has failed. Around 1340 seconds, the
operator initiates drain back to safe the system. The pumps are turned off and all valves are fully
opened.
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Figure 5
Vehicle Tank Valve Stuck Open Scerario

In the third scenario, two faults occur as shown in figure 6 screenshot. The flow sensor (F1) fails
followed by Pump 1 failure during the slow fill stage. The system begins in the initialization
stage, and begins slow fill at 100 seconds. At 300 seconds, the sensor fails and returns only a
value of zero. HyDE immediately determines that the flow sensor has failed in this way. At this
point, only the remaining flow sensors, F2 and F3, are available for diagnosis. At 350 seconds,
Pump 1 fails. HyDE immediately detects that something else has gone wrong and initially
pinpoints a failure of Al. At the next time step, HyDE corrects its diagnosis and pinpoints Pump
1 as the second failure. (Note that if the pressure and level sensors are also used, HyDE will
immediately diagnose Pump 1 as the second failure, and not A1.) At around 380 seconds, the
operator reconfigures the system to regain nominal flow to the vehicle tank despite the failure of
Pump 1. Valve Al is closed, valve A2 is fully opened, and the RPM of Pump 2 is increased to
375. The flow to the vehicle tank is then restored to the nominal value of about 2.2 GPM.
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Figure 6
Flow Sensor and Pump Failure Scenario

The NASA simulation final report is attached in Appendix A and paper in Appendix B.

The LN2 loading experiment is shown in Figure 7 and spray nozzle in Figure 8. Detailed test set-up and
results are presented in Appendix C “Rapid Propellant Loading (RPL) Cryogenic Tanking
Demonstration”.

Figure 7
LN2 Loading Experiment
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Figure 8
Spay Nozzle Test Hardware
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4. CONCLUSIONS

The simulation results demonstrated that an integrated health and operations management system
can enable safe rapid propellant loading operations with limited operator knowledge and
involvement. A single person loading the propellants with back-shop support to perform
maintenance and repairs appears to be feasible. The next step would be to expand the scale and
scope of the simulation and experimentally validate the results.

Unfortunately, cost, test site, and safety constraints levied upon the LN2 loading experiment
restricted the effort sufficiently that the results are not sufficient to assess the spraying techniques
attempted. Another experiment with greater latitude (e.g. tank pressure, tank insulation, &
temperature/fluid level measurements) should be performed to evaluate this technology.
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APPENDIX A
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Al. BACKGROUND

The Air Force Research Laboratory (AFRL) in Dayton, OH is teaming with aerospace
contractors in a program to identify and address technology drivers for responsive, on-demand
access to, through and from space. AFRL requirements call for on-demand, flexible, and cost-
effective operations using reusable rockets. Operability enhancement goals set by AFRL include
rapid turnaround (< 4 hours), lower operations cost, and much higher vehicle and ground support
equipment reliability.
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A2. DESCRIPTION OF GROUND PROCESSING PROBLEMS AND GOALS

Launch vehicle cryogenic propellant loading is one of the most complex and hazardous
operations performed during launch processing. This project demonstrated intelligent
monitoring and diagnostics technology for cryogenic propellant loading using model-based
reasoning software. Model-based reasoning (MBR) is an innovative way of determining the
dynamic state of a process by examining all available sensors instead of just one or a few. MBR
also has the capability to determine the health of the system and predict degradations. Two
NASA-developed MBR systems, Knowledge-based Autonomous Test Engineer (KATE) and
Hybrid Diagnostic Engine (HyDE), were used to explore this capability. KATE and HyDE
models described the physics of the cryogenic loading process and dynamically identified
nominal and abnormal behaviors. The technology was developed and demonstrated under a
Space Act Agreement between KSC and AFRL.
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A3. APPLICABILITY TO AFRL REQUIREMENTS

The project goal was to develop technology to load cryogenic propellants rapidly, with a
minimum number of console operators whose engineering skills and cryogenic experience are
limited, such as a USAF non-commissioned officer (NCO). KATE and HyDE models
incorporate cryogenic technical and operations knowledge allowing nearly autonomous system
operation with minimal supervision. The MBR approach provided detection of cryogenic loading
anomalies, isolation and identification of equipment faults, and recovery from failed
instrumentation and components. KATE and HyDE software incorporated a physics-based
simulation of vehicle propellant tanks, valves, ground loading piping and components. The
software included a "reasoner" that compares the behavior of simulated and actual propellant-
loading components to determine logically which measurements or components may have failed
in the physical system to account for the symptoms that the control system is seeing.

The project leveraged and synergized with work performed on the Rapid Propellant Loading
(RPL) test bed at NASA’s Cryogenics Test Laboratory.
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A4. RELEVANCE TO OTHER AFRL TECHNOLOGY NEEDS

KATE and HyDE software is applicable to a “Reasoner” capability needed for other reusable
rocket technology including active thermal control, purge and pressurization, avionics checkout,
electrical distribution, and the rocket’s main propulsion system. The Reasoner thus provides
Fault Detection, Isolation and Recovery (FDIR) for the launch vehicle and ground support
equipment.

Software Team

ASRC

. Charlie Goodrich — ASRC Software Lead
. David Richter

. Bradley Burns

NASA (KSC)

o Jan Lomnes — Project Manger

. Robert Johnson — NASA Hardware Lead
. Jose Perotti

. Robert Ferrell

. Jared Sass

NASA (ARC)

. Barbara Brown — NASA Software Lead
° Ann Patterson-Hine

. Sriram Narasimhan - University of California, Santa Cruz
o Matthew Daigle — UARC
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A5. SOFTWARE BLOCK DIAGRAM

The following diagram shows the launch site software architecture developed for the MBR
system. The KATE and HyDE software runs in the RPL Diagnostics Console. Real world data
is supplied to the system via LabView hardware and software. The Internet Communications
Engine (Ice) publish/subscribe architecture provides a connection between the data source — live,
simulated or recorded and the MBR application in the diagnostics console. The RPL OPS
console communicates between the USAF mission operations center and the launch site.
ADAPT API is NASA software that allows The Advanced Diagnostics and Prognostics Testbed

(ADAPT) to communicate with a variety of diagnostic software.
Data Archival
RPL OPS RPL Diagnostics BEL e:\:e-r Integration RPL Simulation  nqg Pfayb‘ack

Coeassle =—— Console Console
=

X X X X X X
ADAPT API ADAPT API | apaptapi | | apapTaPl | | ADAPT API | ADAPT API |
\ 4 A 4 A 4 A 4

Publish/Subscribe (Ice)

_____________________________________________

* Supervisory Control

| 1

« Data Acquisition X ADAPT API :

* Monitoring | 1
| 1
I NI SIW X
1

I NI Control J

Vo

| Sensor | | Sensor | | Sensor | Actuator Actuator

Software architecture

Figure A-1
Software Block Diagram

Because of limited funds and time for hardware development the decision was made to test
KATE/HyDE in simulated mode only.
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A6. MINI MODEL

The "Mini-model™ simulation was developed to test the MBR software in two versions, Excel
and Matlab. For the final demonstrations, Matlab/Simulink data from the mini-model simulator
was supplied to KATE and HyDE for diagnosis tests by means of text files. A schematic
diagram of the mini model is shown below:

Rapid Propellant Loading Mini-model
= Vehicle Tank
| Storage Tank @)
DG {1 )
®
DG
B
e
Figure A-2
Mini Model

The model consists of a cryogenic storage tank, two pumps, valves and flow/pressure
measurements, and a simulated vehicle tank for propellant loading. The tank, piping and
instrumentation sizes were chosen to correspond to the Rapid Propellant Loading (RPL) test bed
at NASA’s Cryogenics Test Laboratory.

Testing Strategy for FDIR applications using the mini-model and use cases

The software team developed a use case for nominal propellant loading showing how cryogenics
would flow through the mini-model during normal operation. In addition, the team developed
three additional use cases illustrating how the control system should respond to component faults
that might occur. The three fault use cases are 1) faulty valves; 2) failed flow sensors; and 3)
vent valve failure.
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A7.  KATE-SPECIFIC ITEMS

KATE C++ Code

KATE-C is a FDIR application developed at Kennedy Space Center in 1994. The software is
written in C++. It has been recompiled using up-to-date compilers, state-of-the-art hardware,
and the Linux operating system. KATE-C was tested using application knowledge bases from
1994. A KATE-C knowledge base for the mini-model was completed, and the system was
demonstrated for the USAF in December 2008. A list of changes/fixes made to 1994 version is
included in the installation instructions for KATE-C (below). A narrative for major revisions of
the software made by the development team is part of the software repository that accompanies
this report.

Instructions to compile and run KATE

The installation instructions for KATE (including running a mini-model failure scenario) are
included with the software that accompanies this report. The software was developed under the
version control system known as Subversion. It is provided in two forms. The first is an archive
of the Subversion repository called rpl.repo.tar.gz in the KATE directory. The second is a tarball
of the current "working copy" of the repository called rpl.tar.gz also in the KATE directory. The
installation instructions are included in the following paragraphs for convenience:

//*********************************************

//** * %
//** File: README.install * %
//** * %
//** Original by D. Merchant circa 1994 *x
//** Updated by C. Goodrich and D. Richter **
//**  9-30-2009 *k
//** * %

//*********************************************

Installation instructions for KATE*

Depending on how the KATE source is delivered, either unpack the source tarball
or retrieve the source from a previously-configured Subversion database.

KATE Development Environment:

Note that the original (1994) KATE software used the Motif graphic display
system. When KATE was updated in 2008-2009, developers used Open Motif. The home
page for the Open Motif development project is http://www.openmotif.org/ Motif
is an industry standard toolkit for UNIX systems and Open Motif, based on the
Motif source code, provides a freely available version for open source
developers.

The KATE update project in 2009 also used Red Hat Enterprise Linux as the
operating system platform for development. The system was developed on a Dell
computer using a 64 bit Intel processor. The Motif components of the Red Hat
development environment code were installed using yum, a software installation
tool for Red hat linux and Fedora Linux. Here are the Open Motif components:

openmotif.i386 2.3.1-2.el5
openmotif.x86 64 2.3.1-2.el5
openmotif-devel.i386 2.3.1-2.el5
openmotif-devel.x86 64 2.3.1-2.el5

1) Open a BASH shell and create the root KATE directory (hereafter called KATE)
and change to that directory.
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a) Assuming the source is delivered as KATE.tar, move the tarball to the KATE
directory and untar it: tar xvf KATE.tar

b) Assuming the source resides in a Subversion database, issue the Subversion
command to checkout the source: svn co https://128.217.72.10/svn/rpl/ice/trunk
(modify the URL and path as needed) .

2) Create the following directories, needed in the compilation / linking process:
KATE/sun/lib and KATE/sun/ob7j.

3) Create the /ice directory at root level and move the ice.hosts file into that
directory.

Edit the file and add the local IP and hostname. For example here is a sample
ice.hosts

file for a single machine named "katehost"

#

# Host Database For KATE
#

127.0.0.1 katehost

4) Edit the local .bashrc file and add the following definitions:
export CPP=$ (which g++)
export ICEiDIR="${HOME}/KATE/"
export ICEisRCiDIR="${HOME}/KATE/SIC/"
export ICEiMACiDIR="${HOME}/KATE/Sun/"
export COMPILER="-g -Wno-deprecated -fno-operator-names"
export PATH=$PATH:${HOME}/KATE/sun/exe:.

a) You must redirect the CPP command to use g++, per the above environment
command as the modern cpp command invokes the C preprocessor rather than
the compiler.

b) Ensure that you add the trailing slash to the directory paths.

c) You will need to re-source the .bashrc file for the changes to take effect,
i.e., in your home directory issue the command: source .bashrc

5) Change to the KATE/src directory and make the myMakelIt script executable:
chmod a+x myMakeIt

6) Build the source by executing the myMakeIt script in the KATE/src directory:
myMakeIt.
If the source compiles with no problems you should see the following text:

R R R R R R R R R R R R R R R R R R R R R R R

Compile complete
See: Running ICE-C with the GUI in the README.install file

R R R R R R R R R R R R R R R R R R R R R R R R R

7) To run KATE, change to the KATE/sun/exe directory and issue the command: ui
This will start KATE in the default mode with no windows open. To run KATE with
a previously-saved startup script, issue the command: ui -uienv <script>
(see the discussion of scripts under the topic "Running ICE-C (KATE) with the
GUI" below)

* For historical reasons KATE is also sometimes referred to as ICE or ICE-C.

KATE directory hierarchy:

KATE

data (*.kpd - for KATE processed datafiles)

models
alo
DB
epdc
fcl
instr
lox
lsoc
net
pvd

21
Approved for public release; distribution unlimited.



translator
src

adapt

dm

kb
alo (water tanking system)
common
epdc
fcl (freon coolant loop)
lox (liguid oxygen)
net
ptrespository
pvd (vent doors)

kics

reasoner
diagnoser
fault-detector
monitor
simulator

translator

ui
ICONS

utils

sun

exe

1lib

obj

The KATE system is made up of four modules and a Knowledge Base (KB)

1) The User Interface module (UI) is an X-Window/MOTIF interface that displays
values and provides control access to the other modules.

2) The Reasoning Module (RM) which, as the name suggests, does all the Model-based
Reasoning (MBR) in the system. The four sub-modules with the RM are the
Monitor, Simulator, Fault Detector, and Diagnoser.

3) The Data Module (DM) which is responsible for getting data to the Reasoning
module. There are currently two data providers: a Playback facility that
enables a recorded data file to be played back, and an Ethernet data
provider that allows KATE to connect to PC-GOAL via an ethernet
connection. (Note that this second functionality is not available at
this time.) The Data Module also includes the Record facility which
allows recording of data from any data provider and a Build program for
building PC-GOAL TCID files used to look up FD names with an address.

The input to build is a TCID file and an FD list. This program assumes
the filename extensions .nam, .bsd, and .bsi.

(The TCID build facility developed in 1994 has not been updated to PCGOAL II.)

4) The KICS system is the KATE Interprocess Communication System that
allows all the processes in the system to talk to each other.

5) The KB is made up of two parts:
a) A library of components that are compiled into the system, each library
object has its input names and output function (a single output

function for each component is used). The class libraries are broken up into

application-specific files and located in KATE/src/kb/<application>,
where <application> is fcl, lox, alo, etc. All application source
libraries are compiled into one complete class library - so there can
be no duplication of class names between applications. The Rapid Propellant
loading class libraries were included in the KATE/src/kb/alo directory.

b) A "flatfile" textual description of the application domain specifying
library components and how things are connected together as well as
parameter values. See KATE/README.flatfile for a brief knowledge base
generation guide.
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Other files to be aware of

1) The GUI can be started with a -uienv option to allow the system to use
a startup script, as previously mentioned: ui -uienv <script>

2) Browser description file. The GUI provides a tabular utility called
the Browser for displaying objects and their model and hardware values
along with the nomenclature if desired. A predefined list of objects to
be displayed need to be in a browser file. This file can be read
in by the startup script or manually by the user through the GUI.

The Browser facility worked in the original Motif graphics
implementation but has not been debugged for use in the Open Motif
environment.

3) $(ICE_DIR)data/playback.kpd - holds the names and locations of playback files
which is used only when running the text ui (pui.C) for playback.

4) S (ICE_SRC_DIR)make.macros - this file is read by all makefiles in the system
and is used to set up preprocessor, compile and linker flags as well as set up
the macros for the directories in the system and define the include paths.

CPPLINK = -Bstatic // Used for static linking (usually for delivery).

5) A file called archive.dat is created when the archiving option on the
simulator is turned on by clicking the radio button under "Diagnoser
Tools" in the reasoner GUI. This file can then be replayed using the
facility (even though the extension is not kpd). Be careful to rename
the file because if an archive.dat file exists it will get overwritten
when archiving is turned on.

6) The file models.list is the list of KB flatfiles used by the rm-ui
(the text user interface for the reasoner). The path for this file
is currently hardcoded as "/ice"; see rm-ui.C to change it.

Using the graphical user interface (GUI) it is not necessary to build a
models.list file since the menu command: File ==> Load KB brings up a
list of all files in the current directory with the .flatfile extension

7) The file $(ICE_SRC _DIR)utils/kate-globals.C defines the services that are
available (client/server). There were five sets
of communication services available in 1994, but this can be increased at
any time. This means that there can be five separate KATE instances running
simultaneously (on the same or different hosts).

Another place that path names are hard coded into the system is rui.C
(the text interface for record). It currently has "/ice" as the default
directory for its files.

The Diagnoser does write out a temporary file during a diagnosis
but this is written to /tmp and then is removed. Check work-bench.C
in $(ICE_SRC_DIR)reasoner/diagnoser if you want to change that.

Note: the "kpd" extension stands for Kate Processed Data and should (though
not required) be the extension for all files that are to be played back to
KATE using the playback facility.

Running ICE-C (KATE) with the GUI:
To run the Graphical User Interface:

The graphical interface may be run with or without scripts. Scripts
provide a shortcut to loading the knowledge base (flatfile) and various
KATE graphical user interface modules such as Reasoner, Data Provider,
Browser, Tree Display and Schematic Viewer. The GUI has a facility to
save this manually-loaded window configuration in a script file so that
the full configuration may be reloaded easily.
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The following example illustrates how to run the GUI with both methods.
After the initial manual run, the full configuation is saved in a
script named TEST1l. Then, the example is re-run using the saved

script.

GUI WITHOUT SCRIPT:

At the command prompt enter:
1) ui <enter>
(The GUI begins executing in a window titled: ICE Version 5.5.)
Enter the following menu commands:

2) File ==> Load KB
(Select rpl.flatfile from the "Select Knowledge Base" pop-up list
and click "OK".)

3) Click "OK" in the pop-up window notifying the user that 107
objects have been loaded.

4) Utilities ==> Open Toolbox ==> Reasoner
(The Reasoner begins executing in its window.)

5) Click the large rectangular box at the bottom of the window
titled "Click Here to Connect"
(The Reasoner window fills in its Monitor, Simulator, Fault Detector
and Diagnoser panes.)

6) In the upper left corner of the window, click "Download KB".
(Several messages appear in the Fault Detector pane of the Reasoner
window informing the user of tolerance settings that have been established.)

7) Utilities ==> Open Toolbox ==> Data Provider
(The Data Provider begins executing in its window.)

8) Click the large rectangular box at the bottom of the window
titled "Click Here to Connect".
(The Data Provider window fills in its Data Source pane including tape
"player" buttons and the status pane.

9) Click the "New" box near the bottom of the Data Source window.

10) Click "alopen.kpd" in the pop-up window that appears and click "OK".
(The status pane fills in with the Start: and Stop: times recorded in
the .kpd data file.)

11) Click Configure ==> 3.
(The window divides into three panes, one large pane on the left and two
smaller panes on the right of the screen.)

12) Click Utilities ==> Reasoner (to designate that the Reasoner should run in
the large left-hand window (Pane 1)).
(The Reasoner begins running in Pane 1.)

13) Click Utilities ==> Data Provider (to designate that the Data Provider
should run in the upper pane of the right-hand window (Pane 2)).
(The Data Provider begins running in Pane 2.)

14) Click the Monitor Status "On" radio button in the Reasoner
pane on the left of the screen.

It only possible to click the Monitor Status "On" radio button within the
Reasoner after the Data Provider has been started. (There is nothing for
the Reasoner to "monitor" until a data source has been specified.)
Turning the Monitor On also instructs the Reasoner to connect to the Data
Provider and vice versa. The connection between the two processes is
indicated by a bright green wavy arrow in the top of the Reasoner and
Data Provider windows.)

Note: The system can be run in "simulate only" mode with no data

provider. In the simulate only mode, archiving can be turned on to
generate an archive.dat file. This file can be renamed "testXYZ.kpd"
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or something similar and subsequent runs can be made using this kpd
file in the Data Provider to test the full-up KATE system with
simulated data. To run in the simulate only mode, do not click the
Monitor status "On" radio button. 1Instead, click the Simulator

Status radio button to "On", then click the Archiving radio button "On".
Click the "Start" button in the upper left of the Reasoner pane and
manipulate commands in the Tree Display Pane as described below.

15) Click the Simulator Status radio button to "On", the Fault
Detector Status radio button to "On", the Diagnoser Status radio
button to "On", and click the "Start" button in the upper left of
the Reasoner pane.

16) Click the green "Play" button in the Data Provider window.

(The Data Provider begins sending data to the reasoner. The GMT: time
display in the middle of the upper pane of the KATE window begins
updating with the time sent by the data provider. After about 50
seconds, the Fault Detector Messages appear informing the user that the
measurements F1l, P6 and P3 are out of tolerance. After 56 seconds

these three measurements are announced as "discrepant" and an automatic
diagnosis begins. Two messages appear in the Diagnoser messages pane

of the Reasoner. The messages name the suspect component ANNIN1 valve
as the cause of the discrepancies and posit two failed VALUES for ANNINL
1.0 (full open) or 0.8 (80% open). Both of these values are consistant
with the current state of the system measurements.)

17) After these messages appear, click "Stop" in the top of the
Reasoner pane to stop KATE's execution.

18) Click File ==> Save UI Environment. Type a name for the UI
Environment file in the File Box popup and click "OK". Any
filename will do. In this example type TEST1 in the Selection window.
(This action saves the UI Environment for use later.)

19) Click File ==> Exit and confirm with "OK" in the Verify Exit
pop-up window.
(The KATE program exits returning the user to the Linux Terminal
window.)

The following example illustrates how to run the GUI with
the TEST1 script that has just been created.

GUI WITH TEST1 SCRIPT FILE:

At the command prompt in the Linux Terminal window enter:
1) ui -uienv TEST1 <enter>

(The GUI begins executing in a window titled: ICE Version 5.5.) The
window has three panes. The large pane on the left is filled with the
Reasoner. The small pane in the upper right is filled with the Data
Provider and the small pane on the lower right is empty. Note that the
KB (knowledge base) rpl.flatfile has already been loaded by the script,
so loading a KB is not necessary.

Enter the following menu commands:
2) Click the large rectangular box at the bottom of the Reasoner window
titled "Click Here to Connect".
(The Reasoner window fills in its Monitor, Simulator, Fault Detector
and Diagnoser panes.)

3) In the upper left corner of the window, click "Download KB".
(Several messages appear in the Fault Detector pane of the Reasoner
window informing the user of tolerance settings that have been established.)

4) Click the large rectangular box at the bottom of the Data
Provider window titled "Click Here to Connect".
(The Data Provider window fills in its Data Source pane including tape
"player" buttons and the status pane.

5) Click the "New" box near the bottom of the Data Source window.
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6) Click "alopen.kpd" in the pop-up window that appears and click "OK".
(The status pane fills in with the Start: and Stop: times recorded in
the .kpd data file.)

7) Click the Monitor Status "On" radio button in the Reasoner
pane on the left of the screen.

(The connection between Data Provider and Reasoner processes is
indicated by a bright green wavy arrow in the top of the Reasoner and
Data Provider windows.)

8) Click the Simulator Status radio button to "On", the Fault
Detector Status radio button to "On", the Diagnoser Status radio
button to "On", and click the "Start" button in the upper left of
the Reasoner pane.

9) Click the green "play" button in the Data Provider window.

(The Data Provider begins sending data to the reasoner, the Fault
Detector and Diagnoser Messages appear as before.)

10) After these messages appear, click "Stop" in the top of the
Reasoner pane to stop KATE's execution.

Running KATE with text ui

The reasoner may be run without the GUI by using the rm-ui program to
control the reasoner. The reasoner and the rm-ui can be run in either
quiet, brief or verbose mode; each level shows more detail on the
messages being sent between the two processes. Typing "m" for any text
ui will provide a menu of options.

reasoner [ -glb|lv ] [ -c channel ]

rm-ui [ -glblv ] [ -c channel ]

A socket or channel is set up between processes in the KATE system the
default channel number is 1. If a reasoning processes 1is already
running the user can specify another channel number to be used.

The reasoner program is started first and then the rm-ui program.

The Data Module process can also be run with its own text user
interface.

Ethernet data provider

edp [ -glblv ] [ -c channel ]

eui [-h hostname] [-c channel] [-s source] [-bf buildfile] [-glbl|v ]
[-run]

The source is the firing room number (sort of), the run option tells the
text ui to start the edp program automatically.

Note: This functionality is not available in the latest version.

Playback data provider

pdp [ -c channel ] [ -1 tapefile] [ -glblv ]

pui [ -h hostname ] [ -c channel ] [ -glblv ]

Other programs:

1) build [-t tcidname] [-bf buildname] [-glb]|v]
The tcidname should be just the name of the TCID without any extension
(e.g., sal65a), the buildname is a name of a file that contains a
list of fds (one on each line) in the system that the application needs.

A valid usage might look like:

build -t sal65a -bf fds.nam -v
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The -v turns on the debugging messages. The above command line will
generate a build file called fds.bld.

2) translator [-1 inputfile] [-o outputfile] [-a]
The translator program takes a KATE database file and outputs a KATE-readable
flatfile. See KATE/src/translator/translator.c for required database format.

Other files

The file fds.nam contains list of fds used as input to the build
program.

TCID files *.bsd *.bsi also used as input to the build program
Note that the build program has not been upgraded to work with PCGOAL2.

Knowledge base instructions

The mini-model (see Figure A-1) was constructed as a group of KATE-C objects. The
README flatfile text included with the software describes how to create a KATE model or
knowledge base (KB). As explained in the installation instructions above, the KB is made up of
two parts:

a) A library of components that are compiled into the C++ system, each library object has its
input names and output function (a single output function for each component is used). The
class libraries are broken up into application-specific files and located in
KATE/src/kb/<application>, where <application> is fcl, lox, alo, etc. All application source
libraries are compiled into one complete class library - so there can be no duplication of class
names between applications. The Rapid Propellant loading class libraries were included in the
KATE/src/kb/alo directory.

b) A "flatfile" textual description of the model or KB specifying library components and how
things are connected together as well as parameter values. See KATE/README .flatfile for a
brief knowledge base generation guide.

c) The Rapid propellant loading KB is included in a file in the KATE/sun/exe/ directory called
rpl.db. rpl.db describes each of the components in the mini-model and how they are connected
to the others. Parameters such as tank sizes, tolerances for measurements, flow coefficients,
equipment locations, minimum and maximum values are also included and documented in rpl.db
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A8.

HYDE-SPECIFIC ITEMS

HyDE Software

The HyDE software distribution is included with this report in a WinZip repository named
HyDE.zip. The following directories are in the distribution:

doc contains all the help files, manuals and tutorials describing how to build and save
models, how to build the HyDE tool, how to configure HyDE for diagnosis, and how to
run the HyDE tool.

ModelingParadigm contains the HyDE modeling paradigm as well as three
subdirectories containing model interpreters:

o HyDElInterpreter contains the C++ code that allows user to check and save

models, create, edit and save harness, and run scenarios.

o HyDEGenericDecorator contains the C++ code that decorates the icons for model

entities based on their attributes.

o lib contains the HyDE, HyDE Interpreter, and HyDEGenericDecorator libraries.
models contains all the HyDE models developed using the Generic Modeling
Environment (GME) tool from Vanderbilt University.
src contains all the C++ code that is part of the HyDE Reasoning Engine.
test contains unit tests, system tests and regression tests.

HyDE Rapid Propellant Loading models

Hyde model source code for Rapid Propellant Loading with comments is included in the WinZip
repository named HyDE_AFRL_Models.zip.

The changes that were necessary to configure HyDE for Rapid Propellant Loading are described
in the PowerPoint file named AFRL_Demo-v0.pptx that is included in the HyDE directory with
this report.
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A9.  SIMULINK/HYDE ITEMS

Rapid Propellant Loading HyDE movies

A set of HyDE demonstrations is included with this report as “.avi” movie files. They may be
played with any movie player that supports the .avi format, such as Windows Media Player. The
movies were created using the RPL simulation software. Three scenarios were selected to
highlight the capabilities of HyDE. The movies are included in the Movies directory with the
software accompanying this report.

Demonstration 1: Flow Control Valve Stuck Open

In the first scenario, a flow control valve, A1, becomes stuck open during the slow fill stage.
This scenario is demonstrated in the movie file “HyDE-A1StuckOpen.avi”. The scenario is
illustrated in the screenshot below.
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Figure A-3
Flow Control Valve Stuck Open Scenario

It is important to first note that HyDE does not use the valve sensors, only flow, pressure, and
level sensors are used for diagnosis. The system begins in the initialization phase, and begins
slow fill at 100 seconds. The movie shows the output of flow sensor F1, which measures the
flow through the first transfer line. An increase in the flow is observed at this time due to the
change in control inputs. At 300 seconds, the fault is injected. A sharp increase in F1 is visible
(the dotted black line in the plot indicates the nominal value at this point, and the solid blue line
indicates the sensor output). HyDE immediately detects and isolates the fault at this time. At
around 330 seconds, the operator reconfigures to resume a nominal flow rate through the transfer
line by reducing the Pump 1 input to 275 RPM.
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Demonstration 2: Vehicle Tank Vent Valve Stuck Open

In the second scenario, the vehicle tank vent valve, C4, becomes stuck closed during the slow fill
stage. This scenario is demonstrated in the movie file “HyDE-C4StuckClosed.avi”. The scenario
is illustrated in the screenshot below.
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Figure A-4

Vehicle Tank Vent Valve Stuck Open Scenario

The system begins in the initialization stage and proceeds to slow fill at 100 seconds, and fast fill
at 600 seconds. As the vehicle tank fills, the ullage pressure, measured by P7, begins to increase.
The movie shows the output of P7. In nominal operation, the vent valve C4 automatically opens
when the ullage pressure reaches 7 psig, and closes when the ullage pressure reaches 3 psig. In
this way, it maintains the ullage pressure within safe levels. If the vent valve fails to open at the
required time, the ullage pressure may build up to unacceptable levels and an abort will have to
be issued. Therefore, it is important to quickly identify such failures. The vent valve C4 becomes
stuck closed at 1100 seconds. At this time, it is supposed to remain closed, as the ullage pressure
is not yet at 7 psig. At 1254 seconds, the ullage pressure begins to exceed 7 psig. HyDE
immediately recognizes that C4 has failed. Around 1340 seconds, the operator initiates drain
back to safe the system. The pumps are turned off and all valves are fully opened.

Demonstration 3: Flow Sensor Failure and Pump Failure

In the third scenario, two faults occur. The flow sensor F1 fails, followed by a failure of Pump 1
during the slow fill stage. This scenario is demonstrated in the movie file “HyDE-
F1FailPump1Fail.avi”. The scenario is illustrated in the screenshot below.
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Figure A-5
Flow Sensor Failure and Pump Failure Scenario

The system begins in the initialization stage, and begins slow fill at 100 seconds. The movie
shows the output of flow sensor F1. At 300 seconds, the sensor fails and returns only a value of
zero. HyDE immediately determines that the flow sensor has failed in this way. At this point,
only the remaining flow sensors, F2 and F3, are available for diagnosis. The movie then shows
the output of F3 instead of F1. At 350 seconds, Pump 1 fails. HyDE immediately detects that
something else has gone wrong and initially pinpoints a failure of Al (this is not visible in the
movie). At the next time step, HyDE corrects its diagnosis and pinpoints Pump 1 as the second
failure. (Note that if the pressure and level sensors are also used, HyDE will immediately
diagnose Pump 1 as the second failure, and not A1.) At around 380 seconds, the operator
reconfigures the system to regain nominal flow to the vehicle tank despite the failure of Pump 1.
Valve Al is closed, valve A2 is fully opened, and the RPM of Pump 2 is increased to 375. The
flow to the vehicle tank is then restored to the nominal value of about 2.2 GPM.
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Al10. RAPID PROPELLANT LOADING HYDE / SIMULINK DEMONSTRATION

A set of HyDE software demonstrations is included with this report as Matlab Simulink files.
The files are located in the Matlab Simulink files directory with the software accompanying this

report. They may be executed in the Matlab environment. The following instructions describe
how to run the software:

LN2 Matlab/Simulink Simulation

This section describes the Matlab/Simulink Simulation of the simplified LN2 test bed. The scope
of the model is shown below.
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Figure A-6
LN2 Test Bed Simulation

A large storage tank holds the propellant. A pump is used to create a pressure differential
between the two tanks in order to move fluid from the storage tank to the vehicle tank. Flow (F),
pressure (P), level (L), and valve position (V) sensors are included, as denoted in the above
schematic. Note that this simulation represents a simplified propellant loading model. In

particular, we neglect boiling/condensation processes, heat flow, and temperatures (a constant
gas temperature is assumed).
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Simulation Overview

The simulation consists of a Simulink model, an associated graphical user interface (GUI), and a
set of Matlab scripts and function, which should all be kept in the same directory. The main files
are:

e LN2Sim.mdl: The Simulink model of the simplified LN2 test bed.

e LN2Params.m: A Matlab script that sets the values of model and configuration
parameters.

e LN2GUL.fig: The simulation GUI.
e LN2Control.m: A Matlab function that implements the automatic filling protocol.

The top-level of LN2Sim.mdl is shown below.
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Figure A-7
Top Level LN2 Simulation Model
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The model mainly consists of the control block, which calls LN2Control.m, input blocks, the
main system block (which implements all the physical processes of the simulation), sensor
blocks, and output blocks. Outputs are fed back into the control block for closed-loop control.

The values of the inputs are determined by the current filling stage, specified by a set of
parameters indicating when the various stages begin. The ‘LN2Control’ block, which calls
LN2Control.m, determines the stage. The set of stages are:

e [Initialization: All manual and discretely-controlled valves are set open, and all flow
control valves are set at 50%. The pumps are turned off.

e Slow Fill: The pumps are set to 300 RPM. Slow fill begins when the simulation time is
‘tSlow’.

o A4 Test: Valve A4 is set to 10%. This occurs when the simulation time is ‘tA4’, which
should be greater than ‘tSlow’.

e Fast Fill: The pumps are set to 2500 RPM. Vent valve C4 is placed into autonomous
mode, where it will open at 7 psig and close at 2 psig. Fast fill begins when the
simulation time is ‘tFast’, which should be greater than ‘tA4°.

e Topping: Pump speeds are lowered, A4 is partially opened more than 10%, and A3 is
controlled to maintain F3 at 20 GPM. Topping occurs when the tank level reaches 980
gallons, which should occur after ‘tFast’.

e Replenish: A4 is opened to a greater extent. Vent valve C4 is set open. Replenish begins
when the tank level reaches 1000 gallons.

e Drainback: All flow control valves are set to 100%. The pumps are turned off. Drainback
occurs when the simulation time is ‘tDrain’, which should be after L2 reaches 1000
gallons.

e End: Vent valve C4 is closed. This occurs when L2 reaches 10 gallons.

Component Models

In this section, we describe the models of the system components and their faults. The simulation
model is constructed in a component-based fashion using a component library. In this
framework, a system model is created by instantiating different components and connecting them
appropriately. In this way, different system configurations can be easily developed.
LN2Library.mdl contains the component library. It is shown below.
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LN2 Component Library

The system has been divided into tanks, pipes, control valves, vent valves, pumps, junctions, and
sensors. Each component model is masked, allowing component parameters to be set through a
dialog. Double-clicking on a component model brings up the component dialog. A simple
description of the component is provided in the mask dialog. Expanded descriptions are
available by clicking on the help button on the mask dialog.

Note that the variable names in parentheses shown in the mask prompt are the corresponding
internal variables used by the mask. For example, liquid density is given the variable name of

‘rho’ in many component models. Internal block computations refer to the user-entered value for
liquid density using the variable name ‘rho’.

As an example, the mask prompt for the C1 control valve is shown below.
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Figure A-9 - Sample Mask Prompt

Descriptions of the components are as follows.
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Tank

Computes amount of liquid and gas mass and corresponding pressures. Two mass balance
equations and corresponding state variables are included, one for the liquid, and one for the
gas. State changes between liquid and gas are not modeled and a constant gas temperature is
assumed.

Given the liquid mass, the height of the liquid is computed based on the known liquid density
(rho) and the area of the tank (A). Hydrostatic pressure is computed using the height of the
liquid plus the elevation of the tank using pg(h+e), where p is the liquid density, g is the
acceleration due to gravity, h is the liquid height, and e is the elevation. Given the gas mass,
ullage pressure is added to that total, calculated using the ideal gas law assuming a known
gas temperature.

Pipe

Models a pipe as a capacitance. Includes liquid volume in the pipe as a state variable.
Integrates the sum of flows to obtain volume of liquid in the tank, given the initial volume of
liquid (1). Dividing volume by capacitance (C) provides the pressure:

1 .
p=1+ E_[Af Equation A-1

where Af is the sum of flows (flow from left — flow from right).
Control Valve

Calculates flow rate as function of valve position and square root of pressure difference.
Control signal with value of 0 closes the valve (no flow) and a value of 1 opens the valve
(full flow). A linear flow valve is assumed, where the flow is the linear with the percentage
the valve is open.

The flow equation is based on flow through an orifice with area A and flow coefficient C,
where the volume flow rate is given by:

C-A /£|Ap| -sign(Ap) Equation A-2
P

Where C is the flow coefficient, A is the orifice area, Apis the pressure drop and sign is the

direction of flow. Fault injection changes the position of the valve or the orifice area with
'Fault Magnitude' (FM) at 'Fault Time' (FT). Profiles include:

- 'Nominal', where all nominal parameters are used

- 'Stuck’, where the degree open is FM in [0,1]

- 'Blockage’, where actual orifice area = nominal orifice area * FM

- 'Freeze', where the degree open is permanently set at the value one time step (determined
by sampleTime) before the fault
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Vent Valve

Models simplified nonchoked flow of gas through an orifice with area A and discharge
coefficient C. Mode signal of 1 indicates external control/override, O indicates autonomous.
When in controlled mode, the external control signal determines the valve position. When in
autonomous mode, the valve opens when pressure reaches opening pressure (openP) and
closes when pressure reaches closing pressure (closeP).

The gas flow equation used is given by:

C-A/|(p— pAtm)|-sign(p — pAtm), Equation 3

where C is a flow coefficient, A is the orifice area, p is the pressure at the valve (e.g., ullage
pressure), and pAtm is the atmospheric pressure.

Fault injection changes the position of the valve or the orifice area with 'Fault Magnitude'
(FM) at 'Fault Time' (FT). Profiles include:

- 'Nominal', where all nominal parameters are used

- 'Stuck’, where the degree open is FM in [0,1]

- 'Blockage', where actual orifice area = nominal orifice area * FM

- 'Freeze', where the degree open is permanently set at the value before the fault

Pump

Computes pump pressure and flow through the pump given RPM and pump suction and
discharge pressures as input.

The pump pressure is computed as:

2
P oump = pmaxfa) Equation 4
a)max
where pmax IS the maximum pump pressure (in psi), w is the current pump rotation rate (in
RPM, given as input), and wmax IS the rotation at pmax. The pump pressure as computed by
this equation is then converted to Pascals for internal model computations. The pressure
difference is then computed, and the flow is computed using the general equation for
incompressible fluid flow through an orifice, given above.

Fault injection allows changes in the RPM and blockage specified by 'Fault Magnitude' (FM)
and 'Fault Time' (FT). Profiles include:

- 'Nominal', where all nominal parameters are used

- 'RPM’, where actual RPM = input RPM * FM
- 'Blockage’, where actual CA = nominal CA * FM
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e Junction

Junctions are not masked. The library contains only equal-pressure junctions. The input
pressure determines the output pressure. The input flows are summed to compute the output
flows to ensure that the net flow through the junction is zero.

e Sensor

Generic sensor model. Includes additive Gaussian noise specified by 'Noise Mean' and 'Noise
Variance' to the input value to produce the output value. Specify mean and variance as zero
to exclude noise.

Fault injection modifies the input value to one of several profiles (FP), starting at 'Fault Time'
(FT) with magnitude specified by 'Fault Magnitude' (FM). Profiles include:

- 'Nominal', where output=input+noise

- 'Gain', where output=FM*input+noise

- 'Drift', where output=input+FM*(FT-t)+noise

- 'Bias', where output=input+FM-+noise

- 'Stuck’, where output=FM+noise

- 'Freeze', where output=o+noise, and “0” is permanently set at the value one time step
(determined by sampleTime) before the fault

- 'Noise', where output=input+FM*noise

Running the Simulation

To run the simulation, first open LN2Sim.mdl. The GUI will open automatically, and close
automatically when the simulation is closed. When closed, the GUI will reset the simulation to
the nominal scenario unless the simulation is already closed. If the GUI is accidentally closed,
run the LN2GUIL.m function in the command prompt to reopen it. The simulation can be used
without the GUI. To do so, set useGUI=0 in the command prompt. Alternatively, set useGUI=0
in LN2Params.m to make that the default setting.

A screenshot of the GUI is shown below.
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LN2 Simulation Graphic User Interface

The GUI has the following functionality.

e Simulation control: The simulation can be started, stopped, and paused from the GUI.
The GUI will display the current clock time, current fill stage, all measured values, and
all current input values being supplied by the control.

e Input/Output display: The current inputs being supplied to the system and the current set
of sensor values are displayed on the GUI. To manually control the system, enter a new
value in the input’s text box. The text will become bold to indicate that it is being
overridden. Inputs of arbitrary precision can be provided, but it will only be shown up to
two decimal places. When the simulation is started again, individual overrides are turned
off for all inputs. To override all inputs, use the “Override All Inputs” button. This will
put the system into a new fill stage controlled only by the user. All inputs will remain as
they were at the time the button was pressed unless changed by the user. When manual
override is turned off, the system will resume the nominal filling sequence and all inputs
will return to their values for that fill stage, unless previously overridden individually.
The GUI will also plot the data histories for the inputs and sensors. When the simulation
is stopped or paused, the current data history for an input or sensor is plotted by clicking
on the gray box with the input or sensor name.

The valve inputs are specified by a number in the interval [0,1], representing the amount the
valve is open, where 0 refers to fully closed (no flow), and 1 refers to fully open (full flow). The
vent valves (C3 and C4) may be operated in an automatic mode, in which they open and close
depending on ullage pressure. A mode input of 0 refers to the automatic mode, in which the
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signal input is ignored. When the mode input is 1, the signal input determines the position of the
valve. For the pumps, the RPM value is specified. Each input is logged to the workspace.

e Experiment Control: The experiment control panel allows the user to inject faults, set
sensor noise, specify a scenario name for saving data, and set timing parameters.

(@]

Timing parameters: All timing parameters are specified in seconds. The sample
time parameter determines at what interval the GUI is updated, data is logged, and
inputs are supplied to the system. The sleep time parameter specifies how long the
GUI should pause the simulation between updates, in order to slow the simulation
to real-time or some factor faster or slower than real —time. For no pausing, enter
0. For real-time synchronization, enter the current value of sample time. The total
time parameter sets how long the simulation will run (in simulation time, not real
time). The user can still stop the simulation early using the Stop button.

Saving data: Data is saved from the simulation if the scenario name field is
nonempty and the Save Data checkbox is checked. The data will be saved to a
.mat file named by the provided scenario name, in the directory specified in the
directory box. To enter a directory, click on the gray directory box and a folder
selection dialog will appear, and select the desired directory. HyDE and KATE
files will be written with the same filename, only appended with “HyDE” and
“KATE”, respectively, and written in the same directory. If no directory is
specified the files will be saved to the current working directory. Saved data will
be stored in a variable called ‘LN2Data’. When a .mat file is loaded, this is the
variable name that Matlab will assign.

Fault injection: To inject a fault, first select the component from the drop-down
menu. The faults drop-down menu will populate with the list of fault modes for
that component (see the previous section). Set the injection time and magnitude in
the corresponding boxes. Then push the “Add Fault” button. The fault will be
added to the table below and injected into the simulation model. Only one fault
mode per component is allowed. To remove a fault, select it from the table and
push the “Remove Fault” button. To remove all faults, push the “Reset to
Nominal” button.

Sensor noise: The sensor noise is additive white Gaussian noise, and the mean
and variance can be specified. To set the noise of a particular sensor, select it
from the drop-down menu. Enter new values for mean and/or variance. The
simulation model will be updated with the new values. To set the noise of all
sensors to the same mean and variance, enter the desired values in the mean and
variance text boxes and push the “Set Noise All” button.

Saving/Loading Settings: As well as saving simulation data from a scenario, the
settings of the scenario can also be saved in order to repeat the experiment at a
later time. To save settings, push the “Save Settings” button. All the currently
injected faults, current values of sensor noise, and current values of sample time,
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sleep time, and total time will be saved. A file dialog will appear. Enter the
filename as a .mat file to save the settings. To load previously saved settings, push
the “Load Settings” button. A file dialog will appear. Select the previously saved
.mat file to load the settings. An error message box will appear if the file is not in
the correct format (i.e., it was not generated by the “Save Settings” button.

Four settings files are already available for use: “NominalSettings.mat”, which
loads settings for a nominal loading scenario, “A1StuckOpenSettings.mat”, which
loads settings for a stuck-open fault in valve A1, “C4StuckClosedSettings.mat”,
which loads settings for a stuck-closed fault in valve C4, and
“F1FailPump1Fail.mat”, which loads settings for a F1 sensor failure followed by
a Pumpl failure.

e Hybrid Diagnostic Engine: Results from the Hybrid Diagnostic Engine (HyDE) are
displayed on the GUI in tabular format. To enable HyDE, check the “Enable HyDE”
checkbox. If the HyDE executable (HyDEInterface.mexw32) cannot be found, the GUI
will not allow the box to be checked. When HyDE detects a fault, the status indicator
will display “Fault Detected”. When a fault is isolated, the status indicator will display
“Fault Isolated” and the table will populate with the current set of diagnoser results. For
each candidate, a probability and a set of faults with the estimated times of occurrence
will be displayed. For the most probable candidate, the related components will be
automatically highlighted in the schematic. For example, in the GUI shown above, the
Al component is highlighted. Selecting a specific row in the table will also highlight the
components associated with that candidate.

Command Line Interface

In addition to the GUI, there are a set of functions available to access the simulation from the
command line to facilitate running different scenarios and collecting data automatically. The
simulation model must be open for functions that modify or execute the model to succeed. Many
of these functions are also used by the GUI, and specific information can be found be running
“help function” in the Matlab command prompt, where “function” is the name of the function for
which information is needed. Brief summaries are given below.

Most of these functions rely on LN2System.mat, which is generated from LN2System.xIs. The
spreadsheet contains the names of all components, inputs, and outputs, descriptions of each, and
the corresponding names in HyDE and KATE. If changes are made to LN2System.xls,
LN2System.mat can be regenerated using “importSystemFile(‘LN2System.xls’);” at the Matlab
command prompt.

The scripts and functions are as follows. Functions or scripts in bold are those which are top-
level functions that are likely to be called directly. Functions which are not in bold are helper
functions called by the top-level functions and probably do not need to be called directly.

e sim(model)

This is a native Matlab command to run an open Simulink model. Use “sim(‘LN2Sim’);”
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to simulate from the Matlab command line.
LN2Data = saveData(scenario,dir)

This function saves the outputs from LN2Sim to a .mat file into a variable named
‘LN2Data’, which it also returns as output. The “scenario” argument is a string that
specifies the file name, and “dir” specifies the directory.

writeDataHyDE((filename,data)

This function writes the given data to a file specified by “filename” in HyDE’s format.
The “data” should be in the form produced by saveData. Use Matlab’s “load” function to
load a .mat file produced by saveData to bring its data into the workspace, and pass it to
the function.

writeDataKATE(filename,data)

This function works the same as writeDataHyDE, only it writes in KATE’s format.

writeAllData

This script looks for all saved .mat files in the “Experiments” directory, and calls
writeDataHyDE and writeDatakK ATE for each. HyDE files are places in
“Experiments/HyDE” and KATE files are placed in “Experiments/KATE”. These
directories must exist for the script to succeed.

faultList = getFaultList(componentName)

This function returns a cell array of strings containing all the valid fault profiles for the
component with the given name. This function is used by LN2GUI and can be used to
find out which fault profiles are valid without checking the simulation model.

runExperiment(‘Nominal’)
runExperiment(component,faultProfile,injectTime)
runExperiment(component,faultProfile,injectTime,magnitude)
runExperiment({component faultProfile injectTime magnitude}, ...)

These functions simulate LN2Sim for a particular single or multiple fault scenario, saves
the data to a .mat file (by calling saveData), and writes the data as HyDE and KATE files
(by calling their respective writeData functions). The output files are named
automatically based on the provided arguments. The simulation is then reset back to
nominal settings.

The function can be called in multiple ways. To run the nominal scenario, give the single

string argument “’Nominal’”. For single fault experiments, provide “component” which
is the component name (see LN2System.xls), “faultProfile” which is the fault profile (see
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descriptions above, the LN2Library.mdl, LN2GUI, or use the getFaultList function),
“injectTime” which is the time of fault injection, and “magnitude” which is the fault
parameter (see descriptions above). The magnitude argument does not need to be
specified for certain fault profiles, e.g., for the ‘Freeze’ profile. For one or more faults,
the function also accepts cell arrays as arguments (specified using “{* and “}”’), where
each cell array contains the information to inject a new fault, namely, the component,
profile, injection time, and magnitude parameters.

Data in .mat format is saved in the “Experiments” folder. Data in the HyDE format is
written in the “Experiments/HyDE” folder, and data in the KATE format is written in the
“Experiments/KATE” folder.

The useHyDE configuration variable should be set to 0 before this function is called. The
total Time variable must also be set.

runExperiments

This is a script that demonstrates how runExperiment and setNoise can be used.

setFault(componentName,faultProfile,injectionTime.magnitude)

This is the function used internally by runExperiment, and its arguments are similar. This
function does not set anything else to nominal first, so multiple calls to setFault can be
used to set up a multiple fault scenario.

resetToNominal
This script sets all components to have the ‘Nominal’ profile.
setNoise(sensorNames,mean,variance)

This function sets the mean and variance of the sensors with the given names. The
sensorNames argument can be a string specifying a single sensor name, a cell array of
strings containing multiple sensor names, or the special string ‘all” which applies the
given mean and variance arguments to all sensors. To set only mean, give the empty
array, [ ], as the variance argument, and to set only variance, give [ ] as the mean
argument.

importSystemFile(‘LN2System.xls’)

This function creates the LN2System.mat file from LN2System.xls. If LN2System.mat
exists and is correct, this function does not need to be called. Make corrections to
LN2System.mat (e.g., names of system components in HyDE and KATE) in
LN2System.xls, and then regenerate the .mat file by calling importSystemFile on
LN2System.xls.
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object = findInSystem(list, objectName)

This function returns a struct with the information for the object of the given name in the given
list. The list argument can be one of ‘components’, ‘inputs’, and ‘outputs’. An error will be
returned if the list argument is not valid or the object with the given name cannot be found in the
specified list. This is a helper function used by setFault and setNoise and typically does not need
to be called directly. It used LN2System.mat as generated by importSystemFile on
LN2System.xls.

All. DX CONFERENCE /CRASTE CONFERENCE PAPER

The results of the software effort on Rapid Propellant Loading were presented at the 20th
International Workshop on Principles of Diagnosis (DX-09) in Stockholm, Sweden, June 14-17
2009. The paper was submitted and accepted as a poster presentation at the conference. This
paper has also been accepted for presentation at the 2009 Commercial and Government
Responsive Access to Space Technology Exchange (CRASTE) October 26-29, in Dayton, Ohio.

The poster presented at DX-09 (MiniModelDiagnosis_DX09.ppt) and the paper for CRASTE

(MiniModelDiagnosis-Final-Submitted.pdf) are included in the publications directory that
accompanies this report.
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Al2. ATTACHMENTS (DIRECTORY LISTING OF SOFTWARE ATTACHMENTS)

/Rapid Propellant Loading Software:
drwxrwxrwx Hyde

drwxrwxrwx KATE

drwxrwxrwx Matlab Simulink files
drwxrwxrwx Movies
drwxrwxrwx Publications
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Applying Model-based Diagnosis to a Rapid Propellant Loading System
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Abstract: The overall objective of the US Air Force Research Laboratory (AFRL) Rapid Propellant
Loading (RPL) Program is to develop a launch vehicle, payload and ground support equipment that can
support a rapid propellant load and launch within one hour. NASA Kennedy Space Center (KSC) has been
funded by AFRL to develop hardware and software to demonstrate this capability. The key features of the
software would be the ability to recognize and adapt to failures in the physical hardware components,
advise operators of equipment faults and workarounds, and put the system in a safe configuration if unable
to fly. In December 2008 NASA KSC and NASA Ames Research Center (ARC) demonstrated model-
based simulation and diagnosis capabilities for a scaled-down configuration of the RPL hardware. In this
paper we present a description of the model-based technologies that were included as part of this
demonstration and the results that were achieved. In continuation of this work we are currently testing the
technologies on a simulation of the complete RPL system. Later in the year, when the RPL hardware is
ready, we will be integrating these technologies with the real-time operation of the system to provide live
state estimates. In future years we will be developing the capability to recover from faulty conditions via

redundancy and reconfiguration.

1. INTRODUCTION

Rapid propellant loading deals with transferring large
amounts (~50,000 gallons) of cryogenic propellant from a
storage tank to a vehicle tank. = The vehicle tank, though
large, is relatively fragile. The vehicle designers have
prescribed strict pressure limits for the tank and associated
valves. When the cold cryogen liquid first contacts the warm
tank and connecting piping, it boils and vaporizes, generating
large volumes of gas. This translates to high flow rates and
pressures. For this reason, cryogen loading is generally done
very slowly using a very structured sequence of events:
chilling the cryogen pumps and associated transfer pipes,
chilling the vehicle with cold gas, followed by small
quantities of cryogen liquid, slow filling of the vehicle with
liquid to a predefined level, fast filling the tank to near
operating level, slowly topping off the tank to the maximum
quantity and incremental replenishment of cryogen liquid that
constantly boils off from the vehicle tank prior to launch.

Normally, the process takes about 2-3 hours and a crew of 4
to 8 engineers watches all the equipment on the ground and in
the vehicle during this sequence. The engineers are familiar
with the physics of cryogenic liquid flow, the pressures and
temperatures involved, typical faults that occur with
temperature and flow measurements, stuck valves, faulty
position indicators, high or low pressure measurements and
occasional blown fuses and open circuit breakers. They stand
ready to diagnose problems and devise workarounds for
faults to complete the loading process and launch the vehicle.
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The US Air Force would like to build some of the
engineering expertise of the cryogen loading team into the
computer system that controls the loading operation. They
would like to launch the rocket with a crew of three sergeant-
level personnel who may have no engineering experience and
limited training in cryogen operations. To this end, the US
Air Force Research Laboratory (AFRL) has funded a
prototype project at NASA Kennedy Space Center (KSC) to
explore rapid cryogenic propellant loading (RPL). The task
has two primary goals:

1. Reduce the entire loading operation time to 45 minutes
(as opposed to the normal 2-3 hours).
2. Develop software that automates the loading of the

vehicle tank with cryogens with minimum operator
supervision.

The project is expected to proceed in three phases. In Phase I
a small-scale hardware test bed will be built. Supporting
software that performs passive diagnosis and some implicit
fault accommodation and recovery will also be developed.
Phase II will deal with building a larger scale hardware which
would include fuel and oxidizer and perform automated
umbilical mating and leak detection. Phase III would be a
flight demonstration of the developed hardware and software.

The software task of the Phase I project had the following
objectives:



1. Development
configuration

2. Development
configuration

3. Development of a simulation model of the
preliminary cryogenic test configuration (a “mini-
model”) to conduct tests using the preliminary
configuration and use cases

4. Evaluation of the fault detection isolation and
recovery (FDIR) application development tools
using the mini-model and use cases

5. Development of the RPL Control Architecture

6. Update of the mini-model to the demonstration test
bed simulation

7. Testing of the selected Control Architecture with the
demonstration test bed simulation.

8. Integration of the Control Architecture with the
actual cryogenic test bed hardware

9. Testing of the Control Architecture with the
cryogenic hardware

of a preliminary cryogenic test

of use cases for the preliminary

Requirements 1-4 were completed and demonstrated to
AFRL in December 2008. In this paper we describe the work
that was done in completing the requirements, the setup for
the demonstration and some representative scenarios and
results.

Our approach to solving this problem was to use model-based
technologies where the models themselves would be
component-based. The primary reason for this approach was
that we would be testing diagnosis algorithms on different
systems from the same domain (preliminary configuration,
complete RPL configuration, actual hardware). Moreover the
models were built while the system configuration was being
finalized. Hence component-based models would allow us to
compose different system configurations by instantiating
appropriate components and connecting them according to
the system structure. This approach also allows us to tie
anomalous behavior to component faults in a straightforward
way.

We selected MATLAB/Simulink® as the language of choice
for the simulation model. To support requirement 4, it was
decided to evaluate two model-based diagnosis technologies,
namely, Hybrid Diagnosis Engine (HyDE) (Narasimhan and
Brownston 2007) and Knowledge-based Autonomous Test
Engineer (KATE) (Jamieson et al. 1985, Scarl et al. 1987,
Goodrich 1995). These two technologies were chosen
because of the availability of developers of the two systems.
Other technologies may be considered in future years.

The rest of the paper is organized as follows. Section 2
describes the mini-model configuration and faults selected for
testing based on use-cases analysis (Requirements 1 and 2).
Section 3 describes the MATLAB/Simulink models with
fault injection capabilities that were used to generate data for
testing (Requirement 3). Section 4 describes HyDE and how
models of the mini-model were built in HyDE. Section 5
describes KATE and the efforts to create the mini-model
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configuration in KATE. Section 6 presents the experimental
setup (which was exactly what was demonstrated) that was
used to test HyDE and KATE on nominal and faulty data
from the simulation and the results from a few representative
scenarios.

2. MINI-MODEL CONFIGURATION

2.1 Preliminary Test Configuration

Fig. 1 presents the preliminary cryogenic test configuration
(referred to as the mini-model) used for evaluating the model-
based diagnosis technologies. The storage tank and vehicle
tank both have vent valves (C3 and C4) to regulate the ullage
pressure. Three transfer lines connect the tanks to regulate
flow between. The main transfer line (top most) and the
auxiliary transfer line (second from top) contain pumps that
can be controlled to regulate the flows at various rates
depending on pump RPM. Both lines contain manually
operated valves (G1, G2), remotely operated valves (C1, C2)
and flow control valves (Al, A2) to control the flow. The
manually and remotely operated valves can be full open or
full closed only, whereas the flow control valves can be
controlled to be open to any desired percentage. A re-
circulation line (bottom most) controlled only by a flow
control valve is used to send back excess liquid to the storage
tank. The path to the vehicle tank is also controlled by a flow
control valve to regulate the ratio of flow going to the vehicle
tank and the flow re-circulating to the storage tank.

2.2 Definition of Nominal Operation and Fault Scenarios

Experienced propellant loading engineers stipulated the
components and their capacity and likely scenarios for
nominal loading operation satisfying the requirements put
forth by AFRL. For the sake of the preliminary testing, we
decided to ignore the chill down phase, assuming instead that
all components were already ready for transferring cryogens.
The stages of nominal operations were identified as (i)
initialization (ii) slow fill (iii) fast fill (iv) topping (v)
replenish and (iv) drain-back in the event of a launch scrub. It
was assumed the system would follow this pre-determined
sequence except when recovery actions required changes to
the sequence.

Engineers also specified likely sensor and component failures
based on general knowledge about the components involved
and also on prior experience with liquid oxygen loading for
the Space Shuttle. The typical faults were identified as sensor
(pressure and flow) failures, pump failures and valve (stuck
open or stuck closed failures). Some other common failures
involving power and data acquisiton modules were not
included for this initial configuration.

Since we were using a simulation to generate data we had the
flexibility of defining which values of the system could be
sensed. Typical quantities like flows, pressures, valve
positions and tank levels were included corresponding to
typical measurement points in the actual hardware. Selected
observation points are marked with white circles in Fig. 1.
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Fig. 1. Mini-model configuration

We were able to take advantage of the flexibility to test the
sensitivity of model-based diagnosis tools when faced with
different sets of sensor observations. In the future, we hope to
use this as a valuable tool to determine sensor placement and
diagnosability.

3. MATLAB SIMULATION

In order to evaluate our model-based diagnosis tools, we
developed a simulation of the system. The simulation serves
as a virtual test bed where we can easily study a large number
of fault scenarios to develop our diagnosis models and test
our algorithms. Clearly, if an accurate and realistic simulation
is developed, then less work is required in migrating
diagnosis algorithms to the actual system.

To this end, we developed a physics-based simulation of the
system in MATLAB/Simulink. We adopted a component-
based modeling paradigm, where parameterized simulation
models of generic components including tanks, valves, pipes,
pumps, and sensors were developed within a component
library.  The overall system model is constructed by
instantiating the different components from the component
library, specifying their parameters, and connecting the
components to each other in the appropriate fashion. The top
level of the Simulink model which corresponds to the mini-
model schematic is illustrated in Fig. 2.

00 He Hoe

Each component model includes their associated fault modes.
For example, a control valve may become stuck at a
particular position, or its orifice may become partially
blocked. The fault mode, time of fault injection, and fault
magnitude (where applicable) can all be specified. In general,
each fault mode is mapped to a change in component mode
and a fault-dependent magnitude parameter. Because each
fault mode is parameterized within the Simulink model, a
fault can be injected programmatically (i.e., the fault mode,
injection time, and magnitude are specified) either at the
beginning of the simulation, or while the simulation is
running. The component model of a valve with fault injection
capabilities is shown in Fig. 3.

4. HYDE

4.1 Description

Hybrid Diagnosis Engine (HyDE) is a model-based reasoning
engine for hybrid (discrete + continuous) diagnosis. HyDE is
able to diagnose multiple discrete faults using consistency
checking between prediction from hybrid models and sensor
observations. HyDE models are component-based and are
similar to simulation models. Component models are
expressed in terms of behavior in different modes of
operation (called locations) including faulty modes with
transitions representing the conditions under which the
system changes locations. The system model is composed by
connecting shared variables between the various components.
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The HyDE reasoning engine uses the model both for
simulation and candidate generation. A set of consistent
candidates, each of which may include multiple hypothesized
faults, represents the diagnosis. At each time step the
candidates are tested for consistency against sensor
observations (using simulation) and if found inconsistent new
candidates are generated (using candidate generation). For
details please refer to (Narasimhan and Brownston 2007).

4.2 HyDE Models of Mini-model Configuration

The HyDE model for the mini-model configuration (Fig. 4)
was constructed to look like the Simulink model described
earlier. Each component and subsystem in the Simulink
model is replicated in the HyDE model. Variables inside each

HyDE - AFRL - [LN2System

AFRL/AFRL

state automata with equations in each state). This was done
by identifying the modes of operation of the components
including the fault modes based on fault injection
capabilities. The equations within each mode can be
determined by substituting appropriate parameter values
corresponding to the different modes as specified in the
MATLAB model. The HyDE model of a valve is illustrated
in Fig. 5.

The reasoning parameters for HyDE had to be fine-tuned to
provide the best performance. The fixed-step Runge-Kutta
ODE solver was implemented to simulate behavior across
time-steps. There were still some numerical problems since
numerical precision used in MATLAB was far superior. As a
result the tolerance for fault detection had to be increased (the
default was 2%) for some observed variables. For fault
isolation the maximum fault size was set to 3 (indicating a
maximum of 3 faults in the system). The diagnostic results
from HyDE are presented in Section 6.
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subsystem 1s able to provide system health status.

- Diagnosis: When a discrepancy between the predicted
and actual sensor values is detected, the diagnosis
subsystem exploits the structural and functional
relationships of the components in the model to
determine the failed component(s) that would explain the

- Monitoring: by comparing the predicted sensor values discrepancy.
generated by the simulation subsystem with the actual
sensor readings of the application system, the monitoring

- Simulation: using a component-based model of a
system, the simulation subsystem generates a prediction
of behavior of the application system.
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3.2 KATE models of mini-model configuration

The KATE model for the mini-model configuration was built
by identifying all the components in the mini-model and
considering their likely failure modes. The components
include propellant tanks, pumps, valves and sensors. The
mini-model uses component behavior defined for the Space
Shuttle’ KATE LOX application developed in 1986 and
refined in 1994. Additional component models were used
from a USAF Advanced Launch Operations demonstration
developed in 1993. KATE's mini-model was constructed by
defining connections between components selected from
these pre-existing libraries. Some modifications of the C++
code in the libraries were made to account for the parallel
pumping defined in the mini-model.

The resulting "flat file"” model simply specified mini-model
components from the libraries and connections between the
components. KATE was able to diagnose faults by reading
data generated by the Matlab simulation. The diagnostic
results from KATE are presented in the next section.

6. EXPERIMENTAL SETUP, DEMO AND SCENARIOS

In order to demonstrate the simulation and diagnosis
capabilities we created command line and visual interfaces.
Using the command line interface, the user can specify an
experiment, parameterized by a set of faults to inject, the
amount of noise for each sensor, and the sample time of the
sensors. The simulation is then automatically executed with
these parameters, and the resulting input and output data is
written to files for input to the diagnostic tools. Currently we
support the creation of data files recognized by HyDE and
KATE tools.

The visual interface, a MATLAB GUI linked to the Simulink
model, provides an overview schematic of the mini-model

configuration and allows the user to setup the experiment. It
sends the user specified parameters to Simulink and runs the
simulation for the specified time. All input and output values
are updated on the GUI as the simulation progresses. The
user can also change the inputs online to recover from
failures, and click on any variable in the GUI to see a time
series plot. Fig. 7 shows the GUI in action.

In addition, we have also implemented an interface from the
GUI/Simulink to HyDE. This was achieved by creating a
MEX function in C++ that acts as the interface. The MEX
function, which is linked to HyDE static library, creates an
instance of HyDE, loads the appropriate model and
configuration parameters into HyDE and then executes HyDE
API functions in step with the simulation. Command and
sensor data from the simulation is sent to HyDE at each time
step. The diagnosis candidates from HyDE are listed in the
GUI (lower left side). When the user clicks on each
candidate, faulty components are colored red in the schematic
to provide a visual indication.

Due to lack of time, an interface between the GUI and KATE
was not created. We chose instead to exercise KATE using
the data files generated (either using the command line
interface or the GUT).

We present and discuss results from 4 scenarios. These were
the same 4 scenarios used in the demonstration. The nominal
operational sequence was selected to mimic the stages of a
realistic cryogenic propellant loading. The first scenario was
the complete nominal scenario with the goal of validating the
realism of the simulated data. Three fault scenarios were
selected based on use case analysis that determined some
common failures (discussed in Section 2). Note that HyDE
did not use the valve position sensors in any of the scenarios.

The first fault scenario was a flow control valve (Al) stuck
open during the slow fill stage (at 300 s). The flow control
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valves can be controlled on a continuous scale from 0 to 1 to
regulate the flow. There is a flow control valve in the main
and auxiliary lines and in the common discharge line leading
to the vehicle tank (Fig. 1). When one of these valves is stuck
open it is necessary to regulate the flow in that line using
other means. HyDE and KATE are able to diagnose this
situation right after observations for time 300 s are available.
We determined that the recovery action for this fault was to
regulate the flow by decreasing the Pump 1 speed to 275
RPM during slow fill to achieve the required net flow to the
vehicle tank. Fig. 8 shows the profiles of some key
measurements for this scenario.

The second fault scenario was a vent valve failure (stuck
closed). The operation of this valve is modeled as an
autonomous mode change (is not externally commanded). Its
nominal behavior is to regulate the ullage pressure of the
vehicle tank between 2 and 7 psig. Because the state of the
valve is not directly commanded, this adds a level of
difficulty to the reasoning process. Further, this was a critical
fault scenario because if nothing was done, then the ullage
pressure in the tank would keep increasing, resulting in
catastrophic failure. The other interesting feature of this
failure is that it can only be detected when the vent valve is
predicted to be in open state since the behavior when the
valve is in the closed state and the stuck closed state is
identical. The scenario chosen failed the valve when it is in
the closed state (1100 s). At 1254 s, the ullage pressure (P7)
exceeds 7 psig, and the valve should have opened. At this
point, HyDE and KATE are able to diagnose that the valve is
stuck closed, although they cannot determine the time at
which the failure occurred since it may have occurred at any
time during which the valve was in the closed state. In this
situation, the system is unsafe and loading operations must be
aborted. Therefore, the recovery action is to drain the
propellant back from the vehicle tank to the storage tank by
shutting down the pumps and opening up all the valves. Fig.
9 illustrates the profiles of some key measurements in this
scenario.

The third fault scenario was a double fault case where a pump
(Pump 1) and a down stream flow sensor (F1) failed. Only
HyDE was run on this scenario since KATE currently does
not support multiple fault diagnosis. Additionally, we also
decided to use only flow sensors to demonstrate the sensor
fusion capabilities of HyDE when limited sensing is
available. When the pump in the main transfer line fails, it is
expected that the flow sensor in the main transfer line would
indicate this failure. However, if the flow sensor has failed, it
is necessary to use other sensors (namely flow sensors in the
auxiliary transfer line and the vehicle tank subsystem) to
diagnose the pump failure. HyDE is able to do exactly that
albeit taking a couple of time-steps since the effects on the
other flow sensors are not immediately seen. The recovery
action for this situation was determined to be increasing the
pump RPM in the auxiliary transfer line to 375 RPM and
opening up the flow control valve in that line completely, in
order to regain the nominal flow into the vehicle tank. Fig. 10
shows the profiles of some key measurements for this
scenario.

54

Although we presented only three fault scenarios, we tested
HyDE and KATE extensively by varying the number of
faults injected (only single faults for KATE), the time at
which the faults are injected, the sensor noise, and which
sensor observations were available to the diagnosis engines.
For KATE we tested only the scenarios described earlier in
this section. However for HyDE we performed more
systematic tests. There were 25 components that could be
faulted with approximately 2 fault modes each. This in
combination with 6 operating regions (Section 2.2) gave us
300 interesting single fault cases. We also tested ~100 double
fault cases, all of which were a combination of a component
and a sensor fault. All the single faults were diagnosed but
there were 2 double fault cases that could not be diagnosed
by HyDE. In one case a combination of a vent valve failure
and corresponding pressure sensor failure resulted in fault
effects not being seen until a few time steps later. In another
scenario, HyDE was not able to distinguish between manual
operated valve failure and remotely operated valve failure
(position sensors were not used) and picked the wrong one
because it had higher prior probability of failure.

7. CONCLUSIONS AND FUTURE WORK

In this paper we presented an application of model-based
simulation and diagnosis work to a scaled-down version of a
rapid propellant loading system. We demonstrated the
detection and isolation of some common failure scenarios. In
the process we also developed a component-based simulation
in MATLAB and showed its usefulness in testing and
evaluating FDIR applications.

The next steps in the project involve the completion of
requirements 5-9 detailed in the introduction. We are in the
process of developing a software architecture based on the
Internet Communication Engine (ICE) (Henning 2004) to
support requirement 5. ICE uses a ‘“publish-subscribe”
protocol for communication. In the architecture which was
adopted from the Advance Diagnostics and Prognostics Test
bed (ADAPT) (Poll et al. 2007), the MATLAB simulation
will subscribe to the user inputs (including commands) and
publish sensor data. The operation of the simulation is similar
to the Virtual ADAPT simulation. HyDE and KATE will
subscribe to the user inputs and sensor data and publish
diagnosis results. The MATLAB model is being updated to
reflect the hardware test bed being constructed (requirement
6). HyDE and KATE models will be built for the new
configuration and a demonstration of the results is scheduled
for late April 2009 (Requirement 7). When the test bed
hardware has been built, the control architecture can be easily
modified by replacing the MATLAB simulation with the
LABVIEW module performing the data acquisition on the
hardware (requirement 8). HyDE and KATE models can then
be tested against data generated from the actual hardware
(requirement 9).

Phase II of the project would deal with the implementation of
automated synthesis of recovery actions based on the current
state of the system. This may have to be interleaved with the
diagnosis process for 2 reasons: (i) the diagnosis engine
frequently reports ambiguities and recovery actions may have
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to be taken to avoid catastrophic effects of any faults
reported, if time is taken to wait for further disambiguation
(ii) in some cases recovery actions may be used to provide
information helpful in disambiguating faults.
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LIQUID NITROGEN COLD FLOW TEST

Cl1. Reference Information

Cl.1 Referenced Documents

Drawing No. Description Revision
SAC-LN2-RPL-001 [Test Setup Leak Check LI
SAC-LN2-RPL-002 (Rapid Propellant Loading (RPL) Cryogenic Tanking Demonstration — Liquid LI

Nitrogen (LN2) Cold Flow Test
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C2.  Scope

On August 24™ 2010 a cryogenic loading demonstration was performed on the Rapid Propellant
Loading (RPL) system. The test was accomplished by transferring Liquid Nitrogen (LN2) from
a portable tanker through a cold flow control system and into an instrumented composite test
tank, using varied cryogenic transfer techniques. This report documents the results from that
cryogenic loading demonstration.
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C3.  Test description

The demonstration consisted of 3 different cryogenic loading techniques:

1. Tank loading using a bottom fill technique (using only a 2” transfer line into the
bottom of the test tank).

2. Tank loading using a top fill technique (through a spray nozzle located in the top of
the test tank).

3. Tank loading using a combined top fill and bottom fill technique (using both the
bottom fill line and the top spray nozzle).

All testing was performed in accordance with procedure# SAC-LN2-RPL-002 “Rapid Propellant
Loading (RPL) Cryogenic Tanking Demonstration — Liquid Nitrogen (LN2) Cold Flow Test.”
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C4.  Test setup

The LN2 cold flow test setup mechanical schematic is shown in Figure C-1 below. The
mechanical setup consisted of the following major sub-assemblies:

e Pneumatically-actuated 2-position (open/closed) control valves for the top fill and vent
systems

e A variable-position flow control valve for the bottom fill system

e Regulated gaseous nitrogen pneumatic supplies for these valves

An interface to connect the system to a portable LN2 tanker

Fill, vent & drain line piping for the test tank

A delta pressure / orifice apparatus to measure flow-rate in the bottom fill system

A circular spray “nozzle” assembly located in the top of the test tank.

The LN2 cold flow test setup electro-mechanical schematic is shown in Figure C-2 below. The
electrical / control system consisted of the following major sub-assemblies:

e Solenoid valves to provide gaseous nitrogen actuation pressure for the top fill and vent
pneumatic valves

A current-to-air pneumatic controller for the bottom fill flow control valve

Valve position indicators

Pressure measurements for the flow-rate orifice

An instrumentation mast inside the test tank containing numerous temperature sensors
External temperature sensors on the exterior of the tank.

All of the instrumentation and controls were operated via a control coupler apparatus (note: this
apparatus is incorrectly identified as a PLC on the electro-mechanical schematic).

Appendix C-A contains photographs of the LN2 cold flow test setup; these photos were taken
during assembly and pre-test checkout of the apparatus. After completion of assembly and
checkout, the apparatus was shipped to the NASA Fire Protection Training Area on Static Test
Road, where all cryogenic testing was performed.
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C5.  Test Results and observations
C5.1 Run1: Tank Loading Using Bottom Fill Technique

The Liquid Nitrogen (LN2) supply trailer was pressurized to approximately 35 psig and LN2
flow was initiated into the cold flow apparatus. Initial chill-down of the control skid, as
evidenced by steady LN2 flow out of drain valve DV-01 took approximately 3 minutes. At this
time, DV-01 and top fill control valve FV-01 were closed and liquid was routed into the test tank
via bottom fill flow control valve PFV-01.

DV-01 was initially set to a mid-range position (approximately 50% open) and subsequently
opened more fully as tank loading progressed. The liquid level in the test tank was initially
monitored by visually watching the ice/frost level on the exterior of the tank. The exterior tank
temperature sensors, located at the bottom, middle and top of the tank, were also monitored for
indications of cryogenic temperatures. When liquid nitrogen reached the upper levels of the
tank, it was monitored on the temperature sensors located on the instrumentation mast. A liquid
level capacitance probe, also located on the mast, was also monitored during tanking operations,
but this probe never indicated liquid during tanking.

It became evident very early in the tanking operation that the tanking system was operating near
its capacity, and that chill-down of the test tank was preceding slower than anticipated. The
following specific conditions were observed:

- It was apparent that the test tank was experiencing significant liquid boil-off
conditions, probably due to a combination of warm ambient temperatures
(approaching 90 deg. f) and the lack of any external insulation on the tank.

- LN2 flow into the tank was being limited by the orifice being used to measure LN2
flow-rate in the bottom fill line. The 1-inch diameter orifice in the 2-inch diameter
bottom fill line was evidently limiting the LN2 flow-rate.

As a result of the above conditions, it was apparent that successfully filling the tank to the 100%
level would require some adjustments to the loading procedure. The following steps were taken
to maximize LN2 flow-rate into the tank:

- LN2 tanker pressure was increased to the maximum tanker operating pressure of 40
psig

- Bottom fill flow control valve PFV-01 was opened fully (100%)

- Top fill control valve FV-01 was opened and LN2 was introduced into the top of the
tank, in order to facilitate tank chill-down.

The above steps proved to be successful in facilitating additional LN2 flow into the test tank, and
liquid levels eventually reached the top of the tank, as monitored on the tank temperature
sensors. However, as stated previously, no liquid was ever observed on the capacitance liquid
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level sensor. Additionally, no liquid was ever observed at the outlet of the tank vent duct at the
top of the vessel.

The elapsed time from the end of chill-down to the determination that the test tank was at the
100% full level was approximately 33 minutes. It is clear that if the loading procedure
adjustments discussed previously were employed earlier, the tanking timeline could be
significantly reduced.

Appendix C-B contains photographs of the RPL LN2 cold flow test setup; these photos were
taken during Run 1 (Bottom Fill — described above) and Run 2 (Combined Top and Bottom Fill
— described below).

Appendix C-C contains graphical representations of LN2 tanking data for both Run 1 (Bottom
Fill — described above) and Run 2 (Combined Top and Bottom Fill — described below).

C5.2 Run 2: Tank Loading Using Combined Top and Bottom Fill Techniques

Following Run 1 (Tank Bottom Fill), the test tank was drained completely and allowed to warm
to ambient temperature. Prior to the next tanking operation, the NASA / Contractor test team
conducted an informal technical review meeting and determined that the next planned tanking
operation “Tank Loading Using Top Fill Technique” would not be required. This determination
was made due to the fact that the top fill line had been utilized during the latter part of Run 1,
and adequate data had been obtained during that operation. A decision was made to proceed
directly to the “Tank Loading Using Combined Top Fill / Bottom Fill Technique” sequence of
the test procedure.

The test team also determined that it would be advantageous to remove the 1-inch flow
measurement orifice from the system prior to Run 2, in order to maximize the LN2 flow-rate into
the test tank. This work was accomplished and the flow-rate measurement was inoperative
during Run 2.

Initial chill-down of the control skid was similar to Run 1, with a steady LN2 flow out of drain
valve DV-01 occurring approximately 3 minutes after the start of LN2 flow. At this time, drain
valve DV-01 was closed but top fill control valve FV-01 remained open to facilitate tank chill-
down. Liquid continued to be routed into the test tank via bottom fill flow control valve PFV-01.

As a result of the lessons learned and procedural adjustments implemented during Run 1, the
Run 2 tanking timelines were significantly shorter. The elapsed time from the end of chill-down
to the determination that the test tank was at the 100% full level was approximately 20 minutes.

The same liquid level monitoring procedure employed during Run 1 was once again utilized
during Run 2. The liquid level in the test tank was monitored by visually watching the ice/frost
level on the exterior of the tank, the exterior tank temperature sensors, located at the bottom,
middle and top of the tank, were monitored for indications of cryogenic temperatures, and the
temperature sensors located on the instrumentation mast were monitored. Unlike Run 1, the
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liquid level capacitance probe located on the mast momentarily indicated liquid when the test
tank was completely full, although at lower quantities than anticipated.

A final significant difference from Run 1 was that the increased LN2 flow-rates allowed the
control system to completely overcome the significant LN2 boil-off conditions. Therefore, when
the tank reached the 100% full level, traces of LN2 were evident at the tank vent duct outlet,
which provided a further verification that the tank was indeed full.

Appendix C-B contains photographs of the RPL LN2 cold flow test setup; these photos were
taken during Run 1 (Bottom Fill — described above) and Run 2 (Combined Top and Bottom Fill
— described below).

Appendix C-C contains graphical representations of LN2 tanking data for both Run 1 (Bottom
Fill — described above) and Run 2 (Combined Top and Bottom Fill — described below).
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Appendix C-A
LN2 Cold flow apparatus assembly photographs
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Figure C-3
Test Apparatus — Front View
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Figure C-4
Instrumentation Mast

Figure C-5
Flow-rate Orifice
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Appendix C-B
LN2 tanking photographs

Figure C-7
Start Of Chill-down, Run 1 (Bottom Fill)
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Figure C-8
Tank Venting, Run 1

Figure C-9
Test Apparatus Overview
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Bottom Fill Line

Figure C-10
Combined Top and Bottom Fill
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Figure C-11
Control Valves, Top and Bottom Fill
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Figure C-12
100% Full, Run 2 (Combined Top and Bottom Fill)
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Figure C-13
Composite Temperature Graph, Run 1 (Bottom Fill)
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Figure C-14
Valve Position Indicators, Run 1 (Bottom Fill)
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Figure C-15
Composite Temperature Graph, Run 2 (Combined Top and Bottom Fill)
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ACRONYM

ADAPT
AFRL
API

BH
C&C
CLLS
CP

CT
Degf
DV
EEAP
EV
FDIR
FH

FL

FM
FVIPFV
GN/ GN2
GOX/GO2
HyDE
ICE
KATE
KB
KSC
LAIR

LI

LLS
LN2
LOX/ LO2
LRU
MBR
MV
N/A
NASA
NC

NO
NRHOWG
02

OPS
PGS
QD

PG
POSU

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

DESCRIPTION

Advanced Diagnostics and Prognostics Test-bed
Air Force Research Laboratory
Application

Bulkhead/Connection Point

Command and Control System
Capacitive Liquid Level Sensor
Calibration Port

Temperature Sensor

Degrees Fahrenheit

Drain Valve

Emergency Evacuation Assembly Point
Electronic Valve

Fault Detection Isolation and Recovery
Flex Hose

Filter

Flow Meter

Flow (Control) Valve

Gaseous Nitrogen

Gaseous Oxygen

Hybrid Diagnostics Engine

Internet Communications Engine
Knowledge Based Test Engineer
Knowledge Based

Kennedy Space Center

Liquid Air

Latest Issue

Liquid Level Sensor

Liquid Nitrogen

Liquid Oxygen

Line Replaceable Unit

Model Based Reasoning

Manual Valve

Not Applicable

National Aeronautics and Space Administration
Normally Closed

Normally Open

Non-Routine Hazardous Operations Working Group
Oxygen

Operations

Prompt Global Strike

Quick Disconnect

Pressure Gauge

Pre-operation Setup
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PLC
PPE
Psig
PT
PV
RB
Reg
RPL
RV
SAC
S/O
SMS
SV
TBD
UPS
VLV

Programmable Logic Controller
Personal Protective Equipment
Pounds Per Square Inch (Ib/in?) Gage
Pressure Transducer

Pneumatic Valve

Air Vehicles Directorate of the Air Force Research Laboratory
Regulator

Rapid Propellant Loading

Relief VValve

Security Assistance Corporation

Shut off

System Mechanical Schematic
Solenoid Valve

To Be Determined

Uninterruptible Power Supply

Valve
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