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1.0  INTRODUCTION 

The parallel plate waveguide consisting of two perfectly conducting plates enclosing 
a homogeneous isotropic medium is very well known.  When it is assumed that the z 
direction is the direction of propagation and the plates are located along the x direction 
(at x = 0 and x = a) (see Figure 1), the mode solutions along the x direction are sinusoidal, 

either sin
n x

a

 
 
 

 or cos
n x

a

 
 
 

, where a is the plate separation and n can be any integer.  

These sinusoidal functions are periodic, and higher order modes have nodes that can 
segment the plate separation distance into equidistant parts (Reference 1).  Since n can be 
any integer, the number of such modes at a given frequency can be denumerably infinite. 

 
In this report, a parallel plate waveguide containing an inhomogeneous dielectric (or 

permittivity) function of specific form is considered.  It is found that by assuming an 
exponential dielectric function of position, it is possible to remove one of the waveguide 
conducting plates and still keep the fields closely confined to the remaining plate and 
held within the inhomogeneous region. 

 

2.0  INHOMOGENEOUS PERMITTIVITY 
IN MAXWELL’S EQUATIONS 

Assuming that the propagation direction is along the z-axis and that the z-direction 
dependence and the time dependence are given by  zi k z te  , we start with Maxwell’s 
equations in the form 

 
; 0

and

; 0

E i B B

H i D D





   

    

  
�

  
�

 (1) 

 
Assuming that we have a permittivity function depending on a single transverse 

coordinate and that the permeability is constant, let 
 

0B H 
 

 (2a) 

 
and 
 

 0D x E 
 

 (2b) 
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Furthermore, assuming an infinite flat slab type of geometry (see Figure 1) with 

0
y





, Maxwell’s equations in component form become 

 

0
y

x

E
i H

z
 


 


 (3a) 

 

0
x z

y

E E
i H

z x
  

 
 

 (3b) 

 

0
y

z

E
i H

x
 





 (3c) 

 
and 
 

 0
y

x

H
i x E

z
 





 (4a) 

 

 0
x z

y

H H
i x E

z x
  

  
 

 (4b) 

 

 0
y

z

H
i x E

x
 


 


 (4c) 

 
 

a

0

x

z
 

FIGURE 1.  Parallel Conducting Plates at x = 0 and x = a. 
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Taking the derivative with respect to z of Equation 3a and the derivative with respect 
to x of Equation 3c and substituting the result into Equation 4b, Equation 4b becomes 

 

 
2

2 2
02

0y
z y

d E
k x k E

dx
      (5) 

 
It is assumed throughout that the total field components are given by 

     , zi k z ttot
j jE x z E x e  ; j = x,y,z, and      , zi k z ttot

j jH x z H x e  ; j = x,y,z. 

 
Thus in the above components, only  jE x  and  jH x  must be determined.  This in 

turn leads to ordinary differential equations (ODEs) that need to be solved as opposed to 
partial differential equations (PDEs). 

 
Equation 5 is formally equivalent to a one-dimensional (1D) Schrodinger equation 

with zk  playing the role of an eigenvalue and  x , the potential.  Once we have yE , 
from Equations 3a and 3c we have zH  and xH .  These are transverse electric (TE) modes 
with respect to z.  In general, for inhomogeneous media it is not possible to split modes 
into TE and transverse magnetic (TM) classes, but when the permittivity function is 
transversely dependent on a single variable, it is possible to make this split (References 2 
through 5). 
 

Returning to Equations 3 and 4, we can obtain an ODE for yH  also.  Taking the 
derivative of Equation 4a with respect to z and the derivative of Equation 4c with respect 
to x and substituting the result into Equation 3b gives 
 

 
   

2
2 2
02

0y y
z y

d H dHx
k x k H

dx x dx







       (6) 

 

where    d x
x

dx


   . 

 
Because we chose to have the permittivity be a function of x but not the 

permeability, our equations for yE  and yH  are not symmetric.  However from Equations 
3 and 4, if Equation 6 can be solved for yH , then both xE  and zE  follow.  Thus these are 
the TM modes with respect to z, the propagation direction.  
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3.0  EXPONENTIAL PERMITTIVITY 

Let the permittivity be given by 
 

  xx be    (7) 

 
where b is often called the strength or intensity of the function and   is called the range. 
 

3.1  TE CASE 

Substituting Equation 7 into Equation 5, we get 
 

2
2 2
02

0y x
z y

d E
k be k E

dx
       (8) 

 
Solving Equation 8, we obtain for the general solution (Reference 6) 
 

  2 20 0
1 2 2 2

2 22 2
1 1

z z

x xz z
y k k

k b k bk k
E x c J e c J e 

 

 
   

 


                          
 (9) 

 
The J’s are Bessel functions of the first kind.    denotes the Euler gamma function. 
 

We are interested in finite solutions for a conducting parallel plate geometry as in 
Figure 1.  For now, let us assume that one plate is at x = 0 while the other is at x = ∞.  By 
doing this, we see that the first solution of Equation 9 will go to zero as x → ∞ while the 
second solution will have a singularity there. 

 
Thus we throw away the second solution by setting 2 0c   in Equation 9.  The 

electric field will be taken as 
 

20
1 2

2
z

x
y k

k b
E c J e 






    
 

 (10) 

 

with 0k
c


 , the free space wave number, and 

 

1 1

2
1 zk

c c


     
 

 (11) 
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Note that the gamma function in Equation 11 is a function of zk , the eigenvalue, and 

it will change for different modes.  To give Equation 10 a dimensionless form, we 

introduce 
0

zk

k
   where   is the normalized longitudinal propagation constant, and by 

substitution into Equation 10 we have 
 

0

20
1 2

2 x
y k

k b
E c J e 







    
 

 (12) 

 
and 
 

0
1 1

2
1

k
c c




     
 

 (13) 

 
  is dimensionless, and thus as long as   has the same units as 0k  (e.g., 0k and   must 

both have units of 1m  if x is in meters), Equation 12 is now dimensionless. 
 

Now that yE  is known, we can obtain the magnetic field components from 

Equations 3a and c 
 

0

z
x y

k
H E

 


  (14a) 

 
and 
 

0

1 y
z

dE
H

i dx 
  (14b) 

 

Thus xH  is proportional to yE  and by setting 00 22
, , z

k bk
H

 
 

   can be 

written as 
 

   
1

2 2 2
1 1

02
x x x

z

b
c

H e J e J e
i c

  
 


 


  

 


     (15) 

 
Equations 12, 14a, and 15 give the TE (to ẑ ) modes of this inhomogeneous 

geometry. 
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At this point, the boundary conditions must be considered.  The geometry (so far) 

consists of two perfectly conducting parallel plates at x = 0 and x = ∞.  The boundary 
conditions are tangential E


 is zero on x = 0, ∞ and normal B


 is zero on x = 0, ∞.  Also 

0zdH

dn
  on x = 0, ∞ where n refers to the normal to the plates.  These imply 

 

0, 0, and 0 on 0,z
y x

dH
E H x

dx
      (16) 

 
Since yE  and xH  are proportional, if one of them satisfies its boundary condition, 

the other will also.  Bear in mind that 
 

2

2
0

1 yz
d EdH

dx i dx 
  (17) 

 

We see from Equation 8, if 0yE   at some point, 
2

2
0yd E

dx
  there also.  Thus all 

three boundary conditions in Equation 16 are satisfied when 0yE   is satisfied. 

 
Now yE  must be 0 at x = 0 and at x = ∞.  Using Equation 12, yE  is zero at infinity 

automatically without restrictions on either the argument or the order parameters.  Thus 
from Equation 12, we are left with the boundary condition (BC) at x = 0: 

 

0

0
1 2

2
0k

k b
BC J 






 
   

 
 (18) 

 

where 0
0

2 f
k

c


  and 0f  is the linear frequency. 

 
For now it is assumed that 0k ,  , b, and   are all real and positive.  This restriction 

can be relaxed later.  In this case,   is not only the propagation constant, it is also the 
eigenvalue of Equation 18.  So the value(s) of   that causes a zero of the Bessel function 
in Equation 18 is found given the frequency as well as b,  , and  . 

 
In order for Equation 18 to have a real solution,  , at all, it is necessary that the 

strength of the dielectric function be greater than a certain limit.  This limit results from 
the fact that the first zero of  J   moves to smaller values of   when   is decreased 

(Reference 7).  When 0  , the order of the Bessel function in Equation 18 is also zero, 
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and the lowest zero of the zeroth order Bessel function is 2.4048.  Thus Equation 18 has a 
real solution only if the argument of Equation 18 

 

02
2.4048

k b


  (19) 

 
or 
 

2
0
2

1.4457
b

k



 
 
 

 (20) 

 
From Equation 20, at lower frequencies b must be large and b can decrease as the 
frequency increases. 
 

3.2  TM CASE 

For the TM modes, we must solve a slightly more complicated equation than the one 
used for the TE case.  Now we must solve Equation 6 when Equation 7 is substituted in.  
Note that Equation 6 is no longer in the form of a 1D Schrodinger equation by virtue of 
the first-order derivative in x.  The equation to solve is 

 
2

2 2
02

0y y x
z y

d H dH
k be k H

dx dx
         (21) 

 

Using 02k b



  as before and 

 
2

202
1 1

k  


     
 

 (22) 

 
the general solution to Equation 21 is (Reference 6) 
 

    2 2 2
1 22

x x x
yH e d J e d J e  

 
    


    (23) 

 
with 
 

   1 1 2 21 , 1d d d d         
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where 1d  and 2d  are general constants.  As previously, we set 2 0d   and eliminate the 

Bessel function of negative order. 
 

Thus the solution we will use is 
 

 2 2
12

x x
yH d e J e 


    (24) 

 
At this point, the TM case must proceed a little differently from the TE case.  

Although we know that 
 

 0

z
x y

k
E H

x 
  (25a) 

 
and 
 

 0

1 y
z

dH
E

i x dx 



 (25b) 

 
we see that we would be dividing both yH  and ydH dx  components by  x  which 
goes to zero (or at least becomes very small at some point).  Thus using the electric 
displacement, D


, at this point, i.e., 

 

0

z
x y

k
D H


  (26a) 

 
and 
 

0

1 y
z

dH
D

i dx



 (26b) 

 
is a better choice. 
 

Thus xD  is proportional to yH , but neither of these components has a boundary 
condition associated with it on a perfect conductor.  zD  can be written as 

 

      2 2 2 21
1 1

0

2
8

x x x x x
z

d
D e J e J e e J e

i
    

  
    


    
 


      (27) 
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Now the only boundary condition we must meet for the TM modes is 0zE   on x = 
0, ∞.  If 0zE   on these boundaries, then 0zD   on the boundaries also. 

 
Thus Equation 27 reduces to (at x = 0) 
 

     2 1 1 2 0BC J J J             (28) 

 
Since   contains the eigenvalue,  , we solve 2BC  for the value(s) of   that cause 

Equation 28 to be zero.  This is a slightly more difficult equation to solve than the one for 
the TE case. 
 

4.0  NUMERICAL RESULTS 

4.1  TE CASE 

For the TE case, yE  is the only nonzero component of the electric field, and xH  and 

zH  are the corresponding nonzero magnetic field components.  Since it has been shown 
in Section 3.0 that all boundary conditions are satisfied, all numerical results will focus 
on yE  alone. 

 
Recall that   is the relative (constant) permeability, b is the relative strength of the 

dielectric function,   is the range of the dielectric function, and 0f  is the linear 
frequency.  Because   and 0k  have the same units (i.e., 1m  or 1cm , etc.) and   and b 
are dimensionless, we solve Equation 18 for  , the normalized propagation constant. 

 

In Table 1, the ordered roots,  , of Equation 18 are given for 1  , 1b  , as a 

function of frequency.  1  is the eigenvalue for the lowest-order mode, 2  is the 

eigenvalue for the next lowest-order mode, and so on.  As the frequency increases, more 

and more higher-order modes can propagate assuming a fixed   and b .  Figure 2 

shows a plot of frequency versus   also. 
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TABLE 1.  Ordered TE Roots,  , of Equation 18 With 1  , 1b  . 

0f  (GHz) 1  2  3  4  5  6  7  

6 0.0282       

7 0.1206       

8 0.1937       

9 0.2531       

10 0.3026       

11 0.3446       

12 0.3808       

13 0.4124       

14 0.4400 0.0380      

15 0.4649 0.0796      

16 0.4870 0.1169      

17 0.5070 0.1814      

18 0.5251 0.1814      

19 0.5417 0.2088      

20 0.5569 0.2353      

24 0.6069 0.3205 0.0914     

36 0.6991 0.4782 0.3004 0.1457 0.0063   

94 0.8405 0.7223 0.6263 0.5421 0.4656 0.3948 0.3283 
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FIGURE 2.  TE Longitudinal Propagation Constant,  , 

Versus Frequency  1b    . 

 
Figure 2 gives the dispersion curves of this parallel plate geometry with an 

inhomogeneous permittivity of exponential form.  For a given  ,  , and b, once the 
roots of Equation 18 are found at a given frequency, one can plot the normalized electric 
field versus x (cm) (x is the distance along the transverse direction between the plates).  
Notice that so far we have still assumed that the second plate is at x = ∞.  Figures 3(a), 

(b), (c), and (d) show plots of normalized yE  versus x for 1  , 1b  , and 

0 24 GHzf  .  At 24 GHz, there are three real roots of Equation 18 (see Table 1).  Using 

1   in yE  gives Figure 3(a), the lowest-order mode; using 2   in yE  gives 

Figure 3(b), the second mode; and 3   in yE  gives Figures 3(c) and 3(d), the third 

mode.  Figure 3(d) is the same plot as Figure 3(c), only on an expanded scale.  In 
Figure 3(a), note that yE  is highly concentrated near the conducting plate at x = 0 and 

trails off to zero as x increases.  (The asymptotic forms of the fields are given in 
Appendix A.)  The orthogonality property of different propagating modes at a given 
frequency is shown in Appendix B.  Also the Poynting vector and the power flow along 
the inhomogeneous waveguide are derived in Appendix C. 
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(a) Lowest-order mode. 
 

 
 

(b) Second lowest-order mode. 

FIGURE 3.  Normalized Electric Field, yE , Versus x  

for the TE Case  01, 24 GHzb f     . 
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(c) Third lowest-order mode. 
 

 
 

(d) Third lowest-order mode on larger scale. 
 

FIGURE 3.  (Contd.) 
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yE  is not exactly zero unless x = ∞, but we do not need to require this.  We see that 

under the proper conditions, there is actually no need for the second conducting plate at 
all.  The second boundary of the inhomogeneous region can be set at a value of x such 
that the magnitude of the field yE  is less than some prescribed amount, say 610yE   at 

x a . 
 
Thus using Equations 10 and 18, after  , b,   and 0f  are assumed, one substitutes 

into Equation 10 (with the appropriate   from 1BC ) giving 

 

  0
2

2
o

a
y k

k
E x a J b e 







    
 

 (29) 

 
By enforcing a prescribed value such as 610yE  , we can calculate a value of a  

(this is not the position of the second conducting plate).  The second plate has been 
removed, and a  is the distance at which the field is appropriately small. 

 
Figure 4 shows a plot of the normalized electric field (lowest-order mode) versus x 

for a higher frequency, 0 35 GHzf   and 1b    .  As frequency increases, the form 
of yE  becomes narrower and more closely confined to the plate at x = 0.  As frequency 
increases, 610yE   will be enforced by using smaller and smaller values of a .  
However, as the higher-order modes are considered (as in Figure 3), the higher the mode 
at a given frequency, the less tightly it is confined to x = 0 (see Figures 3(c) and 3(d)). 

 
Figure 5 indicates what happens when 1    but b is increased to 4 at 

0 35 GHzf  .  By increasing either   or b, one can confine the field even more tightly to 
x = 0 (note that Figure 5 only runs to x = 2.0, whereas Figures 3 and 4 run to x = 4.0). 
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FIGURE 4.  Normalized Electric Field, yE , Versus x for the TE Case 

 01, 35 GHzb f      (Lowest-Order Mode). 

 

FIGURE 5.  Normalized Electric Field, yE , Versus x for the TE Case 

 01, 4, 35 GHzb f      (Lowest-Order Mode). 
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The cutoff frequency for each mode occurs at 0   or from Equation 19, 
 

  0, ; 1, 2,3
4

co

j c
f

b


 

      (30) 

 
where 0,j   are the zeros of the zeroth order Bessel function.  Thus (see Figure 2), the 

cutoff frequency of the lowest-order mode is given by the lowest zero of  0 0,1J j  (and 

with 1 b    ) 
 

 

 

1

2

5.74 GHz

13.18 GHz

co

co

f

f




 

 
and so on for the higher-order modes. 
 

4.2  TM CASE 

For the TM case, yH  is the only nonzero component of the magnetic field, and xE  

and zE  are the corresponding nonzero electric field components.  However, in this case 

there is no boundary condition that yH  (a tangential component) must obey.  Thus, we 

work with zE  since zE  must be zero on both parallel plates.  (As discussed in 

Section 3.0, we use zD ).  In this case, Equation 28 is solved for  , the normalized 

propagation constant for the TM modes.  In Table 2, the ordered TM roots,  , of 

Equation 28 are given for 1  , 1b  , as a function of frequency.  As the frequency 

increases, more and more higher-order modes can propagate assuming a fixed   and 

b .  Figure 6 is a plot of frequency versus   for the TM case.  In general, the  ’s for 

the TM case are higher than those for the TE case at the same frequency.  Figures 7(a), 
(b), and (c) show a plot of zD  (normalized) versus x in cm for the first three TM modes 

with 1b     and 0 24 GHzf  .  The normalized zD  component is also tightly 

confined to the conducting plate at x = 0 and goes to 0 as x increases, again holding the 
TM fields within the inhomogeneous region. 
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TABLE 2.  Ordered TM Roots,  , of Equation 28 With 1  , 1b  . 

0f  (GHz) 1  2  3  4  5  6  7  

6 0.1788       

7 0.3678       

8 0.4639       

9 0.5283       

10 0.5758       

11 0.6128       

12 0.6426       

13 0.6674       

14 0.6882 0.1281      

15 0.7061 0.1907      

16 0.7217 0.2367      

17 0.7354 0.2743      

18 0.7475 0.3064      

19 0.7584 0.3345      

20 0.7682 0.3595      

24 0.7993 0.4384 0.1706     

36 0.8526 0.5756 0.3782 0.2089 0.0302   

94 0.9263 0.7773 0.6719 0.5823 0.5022 0.4286 0.3599 
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FIGURE 6.  TM Longitudinal Propagation Constant,  , 

Versus Frequency  1b    . 

 

 
(a) 

FIGURE 7.  Normalized Electric Displacement, zD  Versus x. 

Figures 7(a), (b), and (c) are the three lowest-order TM modes 
 01, 24 GHzb f     . 
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(b) 

 

 
(c) 

 
FIGURE 7.  (Contd.) 
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The TM mode cutoff frequencies are found when 0   or 1  .  Using 1   in 
Equation 28, Equation 28 becomes 

 

     0 2 12 0J J J         (31) 

 

Writing      1
2 0

2J
J J


 


  , Equation 31 gives 

 
 0 0J    (32) 

 
as the cutoff condition.  Thus the TM mode cutoff condition is the same as that for the TE 
modes given by Equation 30.  (This can also be seen numerically from Figures 2 and 6.) 
 

5.0  COMPARISON OF INHOMOGENEOUS AND HOMOGENEOUS 
PARALLEL PLATE WAVEGUIDES 

5.1  TE CASE 

It is very interesting to compare the simple parallel plate waveguide containing a 
homogeneous medium and the parallel plate waveguide containing a medium with 
inhomogeneous permittivity in exponential form.  The TE electric field in the 
homogeneous case is given by Reference 1 

 

0 sin ; 1,2,3zik z i t
y

m x
E E e e m

a
     (33) 

 
for the TE modes, while in the inhomogeneous case, it is given by Equation 10.  yE  
given by Equation 33 is a sinusoid that is periodic.  yE  is zero at x = 0, but there must be 
a second conductor at x = a in order to have the field go to zero there.  The higher order 
modes split the interval from x = 0 to a into equal subintervals.  An infinite series of these 
guides could be placed along x = 0, a; x = a to 2a; x = 2a to 3a, and so on.  The 
dispersion relation for the homogeneous parallel plate waveguide is given by 
 

2
2 2

0z

m
k k

a

    
 

 (34) 
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A plot of zk  versus 0k  is shown in Reference 1 on page 135.  It is pointed out that 

for the mth mode at some point, zk  will become imaginary if 0

m
k

a




 .  The wave 

then becomes evanescent and attenuates exponentially in the longitudinal direction. 
 
Compare this with the dispersion relation for the inhomogeneous case 
 

0

0
2

2
0k

k
J b






   
 

 (35) 

 
 0zk k   

 
The homogeneous dispersion relation is explicitly known while the one above 

(Equation 35) is implicit.  But while zk  in Equation 34 can become purely imaginary for 

0

m
k

a




 , if   is assumed to be imaginary in Equation 35, consider what happens. 

 
Let i  ,  �  and then the dispersion relation becomes 
 

0

0
2

2
0k i

k
J b






   
 

 (36) 

 
But this equation is complex, and while its real and imaginary parts do have zeros, 

they are not the same zeros.  Thus there are no purely imaginary solutions i  to the 
above (for  ,  , b positive and real).  For the inhomogeneous parallel plate waveguide, 
there are no evanescent waves that purely attenuate along ẑ  when  ,  , and b are 
assumed to be positive and real.  When both the order and the argument of Equation 35 
are assumed to be complex, complex roots will occur (References 8 and 9).  This is 
interesting in that for the TE case, the homogeneous guide containing a lossless isotropic 
medium has a denumerably infinite set of modes at any given frequency, most of which 
are evanescent and thus cut off with a few (or perhaps only one) propagating modes.  The 
inhomogeneous waveguide containing a lossless isotropic inhomogeneous medium has a 
spectrum at any given frequency that is completely real and finite.  At a given frequency 
(above the first cutoff) one has a finite number of propagating modes.  Purely evanescent 
modes do not exist. 
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For the homogeneous parallel plate waveguide, the cutoff frequency is (References 1 
and 10) 

 
  ; 1, 2,3,

2
m

co

mc
f m

a 
    (37) 

 
where c is the speed of light.  There are two ways to lower this cutoff frequency.  One is 
by increasing   and  , and the other is by making a, the plate separation, larger.  
Similarly, when considering Equation 30, which gives the cutoff frequencies of the 
inhomogeneous parallel plate waveguide, the only way to lower the inhomogeneous 
cutoff frequencies is to either increase   and b (analogous to increasing   and   in 
Equation 37) or to decrease the value of   which governs the range of the permittivity.  
From Equation 29, decreasing   implies that a  must be increased to give the prescribed 
value of 610yE   at x a . 

 

5.2  TM CASE 

In the TM case, the homogeneous parallel plate waveguide has a zD  component 

given by Reference 1 
 

 0 sin zi k z tx
z x

H ik
D k xe 




  (38) 

 

where x

m
k

a


  (just as in the TE case except that m can be zero in the TM case).  The 

zD  component in the inhomogeneous case is given by Equation 27.  The TM dispersion 

relation for the homogeneous parallel plate waveguide is the same as for the TE case.  
The TM dispersion relation for the inhomogeneous guide is given by Equation 28. 
 

Again, as with the TE case, zk  in Equation 34 can become purely imaginary for 

0

m
k

a




 .  We look at Equation 28 to see what would happen if   were assumed to be 

purely imaginary.  For i  ,  � , 
 

2

02
1

k i


   
 

 (39) 

 
or 
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2

02
1

k 


   
 

 (40) 

 

Thus, while   will still be real if 02
1

k 


 , substitution of i   into Equation 28 

does not result in real solutions for  .  Although we have only considered a limited 

number of cases, no roots,  , have been found that satisfy Equation 28.  For 02
1

k 


 , 

  becomes imaginary and again no roots,  , have been found that satisfy Equation 28 
for  , b,   real and positive.  (Thus, the inhomogeneous parallel plate waveguide 
spectrum again is completely real and finite, and there are no purely evanescent TM 
modes.)  If any of  , b, or   is allowed to be complex, again complex roots can occur. 

 

6.0  CONCLUSION 

A parallel plate waveguide containing a region with a transverse exponential 
permittivity function of position has been analyzed.  It has been shown that it is possible 
to eliminate one of the waveguide conducting plates and still keep the electromagnetic 
field closely confined to the remaining plate and held within the inhomogeneous region.  
A comparison between the inhomogeneous parallel plate geometry and the well-known 
homogeneous parallel plate waveguide shows a number of interesting differences. 

 
First, for lossless media (i.e.,  ,  , b positive and real), the eigenvalue spectrum of 

the inhomogeneous parallel plate waveguide is real and finite at a given frequency as 
opposed to the spectrum of the homogeneous waveguide, which is denumerably infinite 
at a given frequency and composed of eigenvalues that are either purely real (propagating 
modes) or purely imaginary (attenuated modes).  Thus, the inhomogeneous case has no 
purely attenuated modes. 

 
Second, the eigenfunctions of the inhomogeneous case are not periodic sinusoids but 

are Bessel functions containing an exponential argument which decrease in amplitude as 
the transverse distance increases.  While the eigenfunctions of the homogeneous parallel 
plate waveguide divide the interval between the plates into equidistant sections, the 
eigenfunctions of the inhomogeneous case can have nodes at any point along the interval 
from 0x   to x a , and the number of nodes is small.  All fields in the transverse 
direction attenuate exponentially.  This sharp amplitude decrease allows the removal of 
the second conducting plate and causes the field components to be closely confined to the 
remaining plate. 
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Third, the cutoff frequencies for the inhomogeneous case are dependent on the zeros 
of the zeroth order Bessel function, while the cutoff frequencies for the homogeneous 
case are dependent on the set of positive integers.  

 
All numerical results have been based on the assumption of lossless media.  In future 

work, lossy media (  and b complex) will be considered.  Also,   complex will be 
assumed, which changes the purely exponentially attenuating permittivity function into 
one that is sinusoidally oscillating and damped. 
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Appendix A 
 

ASYMPTOTIC FORM OF Ey AND Hy 
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For the TE case, yE  is given by Equations 10 and 11.  For large x, the argument in 

Equation 10 becomes very small, and  2xJ e 
    can be approximated by the first term 

of its series expansion.  Thus for large x, 
 

 
2

1 2

x

y

e
E x c

  
  

 
 (A-1) 

 
or 
 

  2
1 2

x
yE x c e


    

 
 (A-2) 

 
The total field becomes 

 

 0 00
1

k x ik z i ttotal
y

k
E c e


  


     

 
 (A-3) 

 
where  ,  ,   are assumed to be both positive and real. 
 

For the TM case, for large x, 
 

   
1

1 20
1

x
y

k
H x d e


 




    

 
 (A-4) 

 

where 2 1    and  , and   are given by Equation 22 and previously.  The total 
asymptotic field 
 

  0
1

1
20

1

x
ik z i t

total
y

k
H d e


   



          
 

 (A-5) 

 
For large x, all field components fall off as exponentials. 
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Appendix B 
 

ORTHOGONALITY OF FIELD COMPONENTS FOR 
THE INHOMOGENEOUS PERMITTIVITY (x) = be-x 
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In the TE case, the electric field has only a y component, 
 

 2
1

x
yE c J e 

    (B-1) 

 
with   and   given in Section 3.0. 
 

For large enough frequencies, it is possible to have more than one   value 

satisfying the boundary condition at x = 0 given by Equation 18.  When 0k , b,  ,   are 

real, positive, and have fixed values, if there are two solutions to Equation 18 (i.e., 1  

and 2 ), then the corresponding eigenfunctions are 

 
     

1

1 1 2
1

x
yE c J e 

    (B-2a) 

 

with 0 1
1

2k 


 , 02k b



   

 
and 
 

     
2

2 2 2
1

x
yE c J e 

    (B-2b) 

 

with 0 2
2

2k 


 ,   as above.  

 
 1
yE  and  2

yE  are orthogonal if 

 

         1 2

0

0y yE x E x w x dx


  (B-3) 

 
where  w x  is some weighting function. 

 
For now we set   1w x  . 

 
Let 
 

               
1 2

1 2 1 2 2 2
1 1

0 0

x x
y yI E x E x dx c c J e J e dx 

  
 

      (B-4) 
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Making the variable change, 
 

2xu e   (B-5) 
 
we obtain 
 

2 du
dx

u
   (B-6) 

 
Substitution of Equations B-5 and B-6 into Equation B-4 gives 

 

       
1 2

1
1 2

1 1

0

2 J u J u du
I c c

u
  


     
    (B-7) 

 
Upon integration, I becomes 

 

   

              1 2 1 2 2

1
1 2

1 1

1 1 1 22 2
1 2

0

2

v

c c
I u J u J u J u u J u J u   

         
   

 
     

 (B-8) 

 
Since  

1
0J   , and  

2
0J    from the boundary condition, upon evaluation at 

the limits, I reduces to zero.  Thus, two eigenfunctions with different  ’s at the same 
frequency are orthogonal.  The TM case is more complicated but done similarly. 

 
If the orders of the eigenfunctions are different and the arguments are different also, 

orthogonality does not hold. 
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Appendix C 
 

THE POYNTING VECTOR AND POWER FLOW 
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TE CASE 
 

The complex Poynting vector is 
 

S


 *E H 
 

 (C-1) 
 

 * *ˆ ˆ ˆy x zE y H x H z      (C-2) 

 
 * * ˆˆy x y zE H z E H x    (C-3) 

 
where * implies complex conjugate.  yE  is given by Equation 12, xH  and zH  by 

Equation 14.  With  , b,  , 0k , and   all real and positive 

 

 2
1 ,x

yE c J e 
    (C-4) 

 

 * 20
1

0

x
x

k
H c J e 
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and *

zH  is given by the complex conjugate of Equation 15.  (The z and time dependencies 

have cancelled.) 
 

From Equations C-3, C-4, and C-5, we see that the z component of the Poynting 
vector is real, i.e., 

 

 
2

2 21 0

0

x
z

c k
S J e 


 

 



  (C-6) 

 
while the x component of the Poynting vector is imaginary. 
 

Because the power is defined as 
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the power flowing in the ẑ -direction is 
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C-4 

or using the same variable substitution as in Appendix B, 
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Upon integration the power becomes 
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 (C-10) 

 
where 2 3F  is a generalized hypergeometric function with two numeratorial parameters 

and three denominatorial ones as defined in Mathematica. 
 
 
TM CASE 
 

In this case, the complex Poynting vector is 
 

* * ˆˆx y z yS E H z E H x 


 (C-11) 

 
Assuming all variables real and positive, *

yH  is given by Equation 24 and xE  and 

zE  by Equation 25.  The z component of the Poynting vector is real and given by 
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or 
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Using Equation C-7 and the same procedure as in the TE case, the power for a TM 

mode is 
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