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INTRODUCTION 

Breast cancer is the most common malignancy of women in the Western world, with ~50,000 of those 
afflicted d ying f rom the d isease annually in the United S tates a lone. Although many risk factors are 
associated with t he development and progression of  breast c ancer, di et/nutrition constitutes a  highly 
modifiable risk. The presence of a limited population of undifferentiated cells termed mammary stem 
cells (MaSCs) that ‘sit’ at the top of the mammary epithelial hierarchy and which give rise to distinct 
epithelial compartments with specific functions i s now well-supported b y landmark s tudies that a lso 
provided w ell-characterized s urface m arkers f or M aSC is olation in  h uman a nd mo use ma mmary 
epithelium. While MaSCs are normally involved in  mammary tissue homeostatic renewal processes, 
the intriguing concept that breast cancer maybe initiated by mutations in these cells has recently gained 
much ground. MaSC renewal is tightly regulated; thus, overexpansion of this population may lead to 
increased a ccumulation o f mu tated c ells th at c an in itiate a nd ma intain tu mors w hich e ventually 
metastasize. G iven th at mutated M aSCs maybe t he key t o t he e tiology of br east can cer, a g reater 
understanding of how they arise and novel strategies to limit their self-renewal capacity are warranted 
for effective disease prevention and treatment.  
 

BODY 

The major objective of the current s tudies is to establish the role of 
diet in  th e r egulation o f c ancer s tem c ells le ading to  th e primary 
prevention of  br east c ancer. The l inkage of  di et a nd s tem cells i n 
mammary tu mor d evelopment in itiated b y aberrant W nt s ignaling, 
the la tter a  major contributor to  s tem cell expansion, was addressed 
by u sing ma mmary tu mor v irus ( MMTV)-Wnt-1-transgenic mic e 
(Tg). The study has two Specific Aims. Aim 1 seeks to establish the 
mammary tu mor-prone Tg female m ice as m odel t o ev aluate t he 
protective e ffects o f soy-based diets against Wnt-induced mammary 
tumors. T he pr ediction i s t hat s oy p rotein isolate (SPI), r elative to  
control diet Casein (CAS), will significantly decrease the incidence of 
mammary tumors a nd t he oc currence of  m alignant t umors i n a dult 
females. Aim 2 will e xamine if  a ccumulation o f th e ma mmary 
stem/progenitor c ell p opulation a ssociated with i ncreased W nt 
signaling i n he terozygous T g f emales i s de creased w ith di etary intake o f S PI, relative t o C AS. T he 
prediction is that the tumor stem cell population will be lower in SPI-fed relative to CAS-fed mice. 

To address Aim 1, female Wnt-Tg mice at weaning [postnatal day (PND) 21] were randomly assigned 
to 1 of  2 s emi-purified A IN93G-based i socaloric di ets t hat di ffered onl y by pr otein s ource, na mely 
CAS and SPI. Mice (n=34 for CAS; n=30 for SPI) were given ad libitum access to food and water. 
Mice were monitored for development of tumors by palpation starting at 10 weeks of age, and the age 
of initial appearance of  tumors and initial tumor volume (measured b y caliper) were recorded. Mice 
were n ecropsied t wo w eeks af ter t he i nitial ap pearance o f a  tumor t o de termine t umor gr owth r ate. 

Figure 1. Mammary ductal morphogenesis 
in Wnt-1-Tg mice compared to Wildtype 
mice. Whole mount staining was done on 
mammary glands harvested at PND50 
mice fed the SPI diet beginning at 
weaning. 
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Tumor volume was recorded at tumor collection, and tumor pathology was scored by a board-certified 
pathologist ( Dr. Leah H ennings) a t t he Histology Core Laboratory, D epartment of  P athology of  t he 
University of Arkansas for Medical Sciences.  

Mice expressing Wnt-1 under the control of  the MMTV promoter develop extensive hyperplasias of  
the ma mmary gland. Figure 1 shows w hole mounts of  m ammary glands ha rvested f rom vi rgin 
wildtype ( WT) a nd W nt-Tg m ice o f t he s ame a ge (PND100) f ed th e S PI d iet. W hile th e W T mice 
exhibited n ormal ma mmary d uctal mo rphogenesis, T g mic e d isplayed ma mmary gland h yperplasia 
with excessive ductal side-branching. 

Tumor incidence in control CAS-fed Tg mice was 73.5% (n=34) while that for SPI-fed Tg mice (n=30) 
was 48.3%; P<0.05 by Fisher’s Exact test). Tg mice fed CAS developed tumors within 5-6 months of 
age ( 5.88±0.32 months). S PI-fed T g c ounterparts de veloped t umors e arlier a t 4.6 4±0.44 months 
(P<0.05, relative to CAS). Diet did not alter the rate of tumor growth, with CAS (81.63±9.16%) and 
SPI (83.33±2.95%) showing the same percentage increase in tumor volume 2 weeks after initial tumor 
detection. F inally, hi stopathological a nalyses of  t umors f rom m ice f ed either C AS or  S PI i ndicated 
tumors w ith c omparable m orphologic f eatures ( papillary adenocarcinoma, s olid c arcinoma with 
adenosquamous features). C ollectively, t hese s tudies i ndicated t hat di etary intake of  S PI relative t o 
control diet CAS, is mammary tumor-protective 
in the W nt-Tg m ouse m odel of breast can cer. 
SPI di et r educed t ime of  t umor ons et, 
suggesting S PI effects on t umor pr ogression, 
without a ffecting tu mor s ize a nd tu mor 
pathology.        

To f urther e valuate how  S PI m ay pr omote 
tumor pr ogression c oincident w ith r educing 
tumor in itiation ( i.e., lo wer tu mor in cidence 
relative t o C AS d iet), w e evaluated d ietary 
effects on the expression phenotype of a subset 
of genes in mammary tissues opposite and adjacent 
to s ites of  m ammary t umors. P TEN a nd c -myc 
represent ge nes w hose expression a re a ltered d uring t he de velopment of t umors i n Wnt-Tg m ice, 
whereas Ly6a (Stem cell antigen, Sca-1), Keratin 6a/b (Krt6a/b), and Keratin 8 ( Krt8) are considered 
markers of stem/progenitor cells.  Figure 2 shows that diet had no effect on the expression levels of all 
genes in  mammary tissues in  e ither location relative to  the tumor. These results suggest that d ietary 
effects o n t he ex pression o f t hese genes m ay occur at  an ea rlier s tage d uring mammary tu mor 
development.  

Figure 2. Gene expression in mammary tissues opposite and 
adjacent to tumors of Wnt-1-transgenic mice fed either CAS 
or SPI beginning at weaning. n=6 mice/diet group. 
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The above findings indicated that dietary SPI is tumor-protective in the mouse model of breast cancer 
initiated b y d ysregulation o f th e W nt s ignaling pathway. T he ma mmary tu mor p rotective e ffect o f 
dietary S PI in take in  T g mic e r ecapitulated that obs erved i n t he N MU- and D MBA-models of  r at 
mammary carcinogenesis, where w e previously obs erved 19-26% protection comparable t o t he 25% 
found for Wnt-Tg mic e in th e p resent study. Since d ysregulation of  W nt s ignaling i s obs erved i n 
human breast cancer and given that Wnt-initiated tumor stem cell markers are well-characterized, our 
results e stablish th e Wnt-Tg mic e as an  excellent mo del f or th e s tudy of s tem c ell/diet in teraction 
(Publications 1, 2, 3).  

In Aim 2, w e e xamined w hether S PI d iet w ith ma mmary 
tumor-protective effects altered the frequency of the mammary 
stem cell (MaSC) population, relative to CAS diet. To address 
this, we first evaluated the effects of diet (CAS vs. SPI) on the 
percent o f n ormal MaSC (relative to  to tal in put c ells) in 
mammary glands of  young a dult ( PND100) w ild-type ( WT) 
mice a nd of  pr e-neoplastic ( PND75) W nt-Tg m ice. T he w ell-
characterized m ouse m ammary s tem cells m arkers C D29 an d 
CD24 (CD29hiCD24+) within t he Lineage-negative population 
were used to quantify the abundance of the normal (non-tumor) 
mammary s tem c ell p opulation by fluorescence activated c ell 
sorting. I n 5 i ndependent e xperiments, w ith e ach e xperiment 
using 3 -4 P ND100 WT mice f ed either C AS or S PI diets 
beginning at  weaning (PND21), we found a higher percentage 
of the CD29hiCD24+ population ( by 2.4-fold) in  ma mmary 
glands of mice fed SPI than in those fed CAS. These results are 
consistent with the function of stem cells in tissue homeostatic 
renewal processes. In PND75 Tg mice, however, the percent of 
the CD29hiCD24+ population was lower (by 1.9-fold) in 5 of 10 
independent e xperiments ( n=3-4 m ice f ed ei ther C AS o r S PI 
per experiment), with the rest (5 of 10) showing no di fference 

(SPI/CAS ratio=0.91). The decrease in the population of MaSC 
with S PI di et i n t he t umorigenic environment of  onc ogene 
Wnt-overexpression i s i n l ine w ith t he not ion t hat t he 
protective effects of diet may involve controlling the expansion 
of stem cells that can undergo mutations. We next evaluated the 
percent of  t umorigenic MaSC popul ation i n m ammary glands 
of P ND75 T g (hyperplastic) mice u sing th e s tem c ell-surface 
markers T hy1 an d CD24 (Thy1+CD24+) w ithin th e Lineage-
negative population. We found that i n 6 of  6 i ndependent experiments, Thy1+CD24+Lin- population 
was detected in mammary epithelial cells of Tg mice fed CAS (range of 0.1 t o 1.3%); in contrast, the 
same cell population was not detected in isolated mammary epithelial cells in 3 of 6 Tg mice fed SPI. 
Results identify the MaSC population as a t arget of dietary factors and suggest that dietary protective 
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Figure 3.  Mammosphere formation assay. A) 
Enrichment of MFUs in human mammary 
epithelial cells. B) Effects of GEN on relative 
numbers of MFUs in MCF-7 cells. C) Effects 
of GEN on r elative numbers of MFUs in MDA-
MB231 cells.  
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effects may b e elicited by limiting the MaSC population within a  tumorigenic environment that can  
give rise to  mammary t umors (Publication 1, 3). These exciting and no vel da ta a re currently being 
prepared for publication;a  preliminary report of t he above findings was presented at  the recent San 
Antonio Breast Cancer Symposium in December 2010 (Publication 3).         

Based o n t he results o btained, w e h ave i nitiated additional experiments to  further unde rstand t he 
mechanisms underlying the protective effects o f dietary factors on  the MaSC population. Using two 
human b reast c ancer c ell l ines, namely t he estrogen receptor (ER)-positive MCF-7 and ER-negative 
MDA-MB231, w e ev aluated t he ef fects o f t he p hytoestrogen g enistein (GEN), t he m ajor i soflavone 
component of soy foods, on the ability of these malignant cells to form mammospheres in vitro. The 
mammosphere formation assay is an indirect test of self-renewal and is considered a measure o f the 
presence o f a s ub-population of  e pithelial c ells t hat ha s t he ability t o ‘ seed t umors’. Cells p lated in  
ultralow attachment plates formed mammospheres (mammosphere forming units, MFU) at a frequency 
of 1-2% within 5 days of seeding. The mammospheres collected at the first passage (P1) were enriched 
in the second passage P2 for both cell lines (Fig. 3A), confirming the presence of a cell sub-population 
with th e a bility to  s elf-renew. Treatment with GEN only on da y 1 of  initial pl ating decreased t he 
number of  MFUs in b oth c ell lin es, r elative to  medium (control) alone, a t bot h pa ssages (P1, P 2). 
Importantly, t he l ower, m ore ph ysiologically relevant dos e of  G EN (40 nM ) e licited a greater 
inhibitory effect than the higher (2µM) dose (Fig. 3B, C). These results indicate that GEN may target 
ER-positive and ER-negative breast cancer cells with stem-like properties, suggesting the therapeutic 
relevance of diet and dietary factors in the elimination of tumor-initiating cells (Publications 4, 5).                  

 

KEY RESEARCH ACCOMPLISHMENTS 

• Demonstrated that the Wnt-Tg mouse model of mammary carcinogenesis i s a r elevant model 
for investigating mammary tumor protection by diet 

• Demonstrated that SPI, the major component of soy foods (and soy milk formula) is mammary 
tumor pr otective a t a dulthood, w hen c onsumed be ginning a t pr e-puberty, i ndicating t he 
significant influence of early (healthy) nutrition on mammary cancer risk 

• Demonstrated th at th e mammary stem cell p opulation e xists a nd th at its  f requency can b e  
influenced by diet and dietary factors as shown in in vivo (Wnt-Tg mice) and in vitro (human 
breast cancer cell lines) models 

• Provided s trong s upport f or t he f unctional ( positive) as sociation b etween a h ealthy d iet an d 
numbers (frequency) of normal mammary stem cells  

• Established a functional (negative) association be tween a  he althy di et a nd ‘tumorigenic’ 
mammary stem cell numbers    

• Established t he r elevance o f m ammosphere-forming u nits ( MFUs) in vitro as a  p romising 
diagnostic tool for evaluating dietary factors with mammary tumor-inhibiting potential 
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REPORTABLE OUTCOME 

• Five scientific presentations in national meetings (Abstracts listed below) describing studies on 
the m echanistic l inkage between d iet and b reast can cer r isk w ere supported, in pa rt, by t he 
award. 

• Three publ ications, one  now publ ished i n J  N utritional B iochemistry ( listed be low) and t wo 
currently in preparation were supported, in part, by the award. 

• Omar Rahal, PhD s tudent in t he P I’s r esearch t eam was successfully awarded a p re-doctoral 
fellowship from t he D epartment o f D efense Breast C ancer R esearch P rogram b ased o n 
preliminary studies conducted as part of this award. 

• PI p resented t wo i nvited s eminars d etailing a spects of  t he s tudies conducted a s pa rt of  t he 
award: 1 ) Arkansas Biosciences Research Institute S ymposium (Arkansas S tate University at  
Jonesboro, S eptember 2009) ; a nd 2)  Y eungnam U niversity M olecular Biology a nd 
Biotechnology Symposium (Korea, November 2009).       

CONCLUSIONS 

Our project tested the novel concept that cancer stem/progenitor cells in mammary tissues are targets 
of bioactive dietary factors: We found that diet and dietary factors may confer protection from breast 
cancer b y pr eventing t he e xpansion of  t his uni que c ell popul ation w ith t umorigenic pot ential. O ur 
previous s tudies have demonstrated t hat bioactive components of  soy foods (e.g., GEN) a lter PTEN 
and E-cadherin/Wnt s ignaling pathways in mammary epithelial cells, consistent with their mammary 
tumor protective effects. Given that PTEN and E-cadherin/Wnt signaling regulate stem/progenitor cell 
survival and renewal, our work provides a new paradigm on targets and actions of dietary factors for 
breast c ancer p revention (Publications 3, 4, 6). Further s tudies confirming an i nverse functional 
association between diets known to be protective against breast cancer in the human population and the 
abundance of cancer-initiating (stem) cells will lead to novel dietary strategies for the prevention and 
treatment of breast and other types of cancers, to reduce tumor growth.  

 

PERSONNEL (Supported partly by DoD-BCRP Grant Award) 

1. John Mark P. Pabona, M.D., Postdoctoral Fellow (entire period of grant funding) 
2. Omar Rahal, M.Sc., Ph.D. student (October 2008 to November 2009) 
3. Rosalia C.M. Simmen, Ph.D., Professor (PI)   

 
APPENDICES (Publications supported by DoD-BCRP Grant Award) 
 

1. Simmen RCM, Su Y, Pabona JMP, Rahal O, Simmons C, Hennings L. 2009. Early effects of 
dietary soy and genistein i n rodent models of  mammary tumorigenesis. FASEB J  (Abstract), 
Annual Meeting of Experimental Biology, New Orleans.    

2. Rahal, O .M. a nd Simmen, R .C.M.  2009.  Induction of  P TEN/p53 c rosstalk i n m ammary 
epithelial cells: a novel mechanism of breast cancer prevention by the dietary factor genistein. 
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Cancer Res (Suppl. 3, pp. 695S -696S): Abstract, Annual Meeting o f t he San Antonio Breast 
Cancer Symposium 2009 

3. Rahal. O .M., P abona, J .M.P., S u, Y ., F ox SR, Hennings, L., R ogers, T ., N agarajan, S . a nd 
Simmen, R.C.M.  2010. Expansion of mammary stem cell population with dietary intake of soy 
protein isolate reveals novel mechanisms for diet-mediated control of mammary tumorigenesis.  
Cancer R es ( Suppl. 4) : A bstract, A nnual M eeting of  t he S an A ntonio B reast C ancer 
Symposium 2010. 

4. Montales M T, R ahal O , R ogers T , K ang J , Wu X , Simmen R CM. 2011. R epression of  
Mammosphere Formation in  Breast Cancer Cells by Soy Isoflavone Genistein and Blueberry 
Polyphenols. FASEB J (Abstract, Annual Meeting of the Experimental Biology 2011) 

5. Pabona JMP, Dave B, Rahal O, de Lumen BO, de Mejia E, Simmen RCM. 2011. Soy Peptide 
Lunasin Induces P TEN-mediated A poptosis i n H uman B reast C ancer Cells. FASEB J  
(Abstract, Annual Meeting of the Experimental Biology 2011) 

6. Su Y , S hankar K , R ahal, O , Simmen R CM. 2011.  B idirectional s ignaling of  m ammary 
epithelium and s troma: implications for breast cancer-preventive act ions of d ietary factors.  J  
Nutr Biochem (In press). 



APPENDIX (Publications Listed in Chronological Order) 

Publication 1: Abstract Presented at the Experimental Biology Meeting 2009, New Orleans  

Early Effects of Dietary Soy and Genistein in Rodent Models of Mammary Tumorigenesis. 
Rosalia CM Simmen1,2, Ying Su1,2, John Mark P Pabona1, Omar Rahal2,3, Christian Simmons1, Leah 
Hennings1,4. 1Physiology & Biophysics, 2Interdisciplinary Biomedical Sciences, and 4Pathology, 
University of Arkansas for Medical Sciences, and 2Arkansas Children’s Nutrition Center, Little Rock, 
AR 72202.  

The risk of breast cancer is highly modifiable by diet.  Breast cancer may have its origins during early 
mammary development, thus, the increasing popularity of soy food consumption among pregnant and 
breast-feeding women and early exposure to soy protein and bioactive components through soy infant 
formula could have significant implications on adult incidence of this disease. Since soy protein isolate 
(SPI) and genistein (GEN) diets decreased chemically-induced tumor incidence in adult female rats, 
dietary effects on genetic pathways underlying mammary tumorigenesis were evaluated. In rat 
mammary epithelial cells, SPI and GEN, relative to casein diet increased tumor suppressor PTEN and 
E-cadherin expression; these effects were recapitulated in vitro by GEN.  Dietary SPI also decreased 
lipogenic gene expression in rat mammary stromal adipocytes in vivo, which was mimicked by GEN in 
3T3-L1 adipocytes in vitro. Since Wnt signaling perturbation alters the epithelial hierarchy, MMTV-
Wnt1 mice were investigated for dietary SPI and GEN effects on mammary progenitor cell population 
during disease development. Female mice at weaning were assigned to CAS, SPI- or GEN-based diets 
and mammary tumor incidence was monitored. Diet-mediated changes in mammary transcriptional 
programs and in epithelial subpopulations may underlie protection from developing mammary lesions. 
USDA-CRIS-6251-5100002-06S; DOD-BCRP.     

 

 

 

 

 

 

 

 

 

 

 



Publication 2: Abstract Presented at the San Antonio Breast Cancer Symposium, December 2009 

Induction of PTEN-p53 crosstalk in mammary epithelial cells: a novel mechanism of breast 
cancer prevention by the dietary factor genistein. Omar M Rahal, MS1, 3 and Rosalia CM Simmen, 
PhD1,2, 3.1Interdisciplinary Biomedical Sciences, University of Arkansas for Medical Sciences, Little 
Rock, United States; 2Physiology and Biophysics, University of Arkansas for Medical Sciences and 
3Arkansas Children's Nutrition Center, Little Rock, AR, United States, 72202 

Consumption of soy foods either at an early age or for lifetime has been associated with reduced risk 
for developing breast cancer in humans and in animal models. However, this association continues to 
be controversial and the precise mechanisms for protection remain elusive. Among the soy products, 
the isoflavone genistein (GEN) has been widely suggested to confer mammary tumor protection. 
Previously we demonstrated the increased expression of tumor suppressors PTEN and p53 in 
mammary epithelial cells (MECs) isolated from young adult female rats fed dietary soy protein isolate 
(SPI) or casein (CAS) supplemented with GEN, when compared to MECs from rats fed the control 
(CAS) diet. Since NMU-administered rats fed SPI had reduced tumor incidence and increased tumor 
latency than those fed CAS, PTEN and p53 likely mediate the observed tumor resistance with SPI in 
vivo. We hypothesized that GEN induction of PTEN and p53 in MECs results in the formation of a 
PTEN/p53 functional complex to negatively regulate breast cancer development. Here, we used the 
human non-tumorigenic, ER-negative mammary epithelial cell line, MCF-10A, as an in vitro system to 
mechanistically dissect ER-independent actions of GEN involving PTEN and p53. GEN (40 nM, 2μM) 
augmented PTEN and p53 expression in treated relative to control cells. GEN also induced nuclear co-
localization and physical association of PTEN and p53. To test a functional consequence of GEN-
induced PTEN/p53 cross-talk on mammary epithelial phenotype, we analyzed GEN effects on cell 
cycle progression and acini formation in 3D cultures. Our results showed attenuated cell proliferation 
and lower cyclin D1 and pleiotrophin transcript levels in GEN-treated cells, which were abrogated by 
small interfering RNA to PTEN, indicating PTEN-dependence. Using FACS analysis, we showed that 
GEN induced cell cycle arrest at G0-G1 phase. Treatment with GEN promoted early acini formation of 
MECs grown in Matrigel, which temporally coincided with PTEN-dependent suppression of p21 and 
p27 transcript levels. Further analyses of GEN effects on MECs demonstrated induction by GEN of 
PTEN promoter-luc reporter activity as measured by dual-luciferase assay. Interestingly, treatment 
with siRNA to either PTEN or p53 reduced basal and GEN-induced PTEN promoter activity. Given 
that p53 binds to the PTEN promoter, our results suggest a feed-forward cycle in which dietary factor 
(GEN) induction of nuclear PTEN leads to PTEN promotion of its own signaling. By maintaining a 
stable pool of nuclear p53 to boost its transcription, PTEN ensures its continuous expression in MECs 
to favor cell differentiation. These data elucidate a novel mechanism by which dietary factors with 
PTEN-inducing activity may attenuate breast cancer risk and development. Funding by USDA-CRIS 
6251-5100002-06S and the Department of Defense Breast Cancer Program (0810548). 

 
 
 
 



Publication 3: Abstract Presented at the San Antonio Breast Cancer Symposium, December 2010 

 Expansion of Mammary Stem Cell Population with Dietary Intake of Soy Protein Isolate 
Reveals Novel Mechanisms for Diet-Mediated Control of Mammary Tumorigenesis.  Rahal O, 
Pabona JMP, Su Y, Fox SR, Hennings L, Rogers T, Nagarajan S, Simmen RCM. Arkansas Children’s 
Nutrition Center and University of Arkansas for Medical Sciences, Little Rock, AR   

Breast cancer risk is highly modified by environmental factors including diet. Previously, we showed 
that dietary intake of soy protein isolate (SPI) decreased mammary tumor incidence and increased 
mammary tumor latency in rats relative to those fed a control casein (CAS) diet, when exposed to the 
chemical carcinogen NMU. Mammary tumor preventive effects by SPI were associated with up-
regulation of the tumor suppressor PTEN and down-regulation of the oncogenic Wnt-signaling 
components in mammary epithelial cells (MECs) leading to enhanced differentiation.  Given that 
breast cancer is considered to be initiated by SCs with tumorigenic potential, termed cancer stem cells 
(CSCs), and mammary over-expression of Wnt-1 in mice causes spontaneous breast tumors due to the 
expansion of mammary CSCs, we hypothesized that diet may alter the mammary SC population to 
effect mammary tumor prevention. Here, we investigated SPI effects relative to CAS, on mammary 
tumor development in MMTV-Wnt 1-Transgenic (Tg) female mice and on the mammary SC 
population in virgin wildtype (WT) and pre-neoplastic Tg female mice. Tumor incidence at 8 months 
of age of Tg mice fed SPI (n=32) was lower than those fed CAS (51.6% vs.71%; p=0.08) (n=33).  
Interestingly, tumor latency in SPI-fed Tg mice was shorter than for the CAS-fed group (4.4 vs. 5.6 
months; P<0.05). Tumor growth rate was similar for the diet groups. To evaluate SPI effects relative to 
CAS, on mammary SC population, epithelial cells from mammary tissues were isolated from WT 
(PND 100) and Tg (PND75) mice. The percentage of mammary SCs was quantified by Fluorescence 
activated cell sorting analysis of MECs based on their expression of mouse mammary SC markers 
(CD29 and CD24) within the Lineage negative (Lin-) population (CD45-, TER119-, CD31-).  The Lin-

CD29hiCD24hi subpopulation in MECs was expanded by two-fold in WT mice fed SPI post-weaning 
relative to those fed CAS. Similarly, the SC population was increased by 1.5-fold in MECs of Tg mice 
fed SPI relative to the CAS group. Mammary glands of WT mice exposed to SPI had higher levels of 
tumor suppressor PTEN and E-cadherin proteins at puberty (PND35) and at adulthood (PND50) and 
lower β-catenin protein expression at PND50, over those of the CAS group. Our findings provide the 
first report of dietary effects on the SC population in MECs in vivo. The dichotomy of SPI effects on 
tumor outcome in mammary tissues with dysregulated Wnt signaling maybe related to the loss of the 
complex regulatory grid between PTEN and Wnt/β-catenin pathways, both of which control stem cell 
fate. The possibility that diet can influence tumor progression at the level of the SC population 
suggests the important contribution of nutrition to the etiology of breast cancer and to the early 
management of breast health. Supported by USDA- ARS and Department of Defense Breast Cancer 
Research Program.    

 

 

 



Publication 4: To be presented at the Experimental Biology Meeting 2011, Washington DC 

Repression of Mammosphere Formation in Breast Cancer Cells by Soy Isoflavone Genistein and 
Blueberry Polyphenols. Maria Theresa Montales1,2, Omar Rahal1,3, Theodore Rogers1, Jie Kang1, 
Xianli Wu1 and Rosalia CM Simmen1,2. 1Arkansas Children’s Nutrition Center, 2Physiology & 
Biophysics and 3Interdisciplinary Biomedical Sciences, University of Arkansas for Medical Sciences, 
Little Rock, AR.  

Epidemiological evidence implicates diets rich in fruits and vegetables in breast cancer prevention due 
to their phytochemical components, yet mechanisms underlying their presumed anti-tumor activities 
are not well-understood. A small population of mammary epithelial cells, termed cancer stem cells 
(CSC), may be responsible for initiating and sustaining tumor development. To evaluate dietary 
components that selectively target CSC and thus, provide mammary tumor protection, we utilized the 
estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB231 human breast cancer cell lines. 
Within 5 days of culture, both cell lines formed mammospheres at a frequency (1-2%) consistent with 
a subset of the cell population exhibiting stem cell-like characteristics. The soy isoflavone genistein 
dose-dependently decreased (40 nM > 2 µM; by 2-3-fold) mammosphere numbers from both cell lines, 
relative to medium alone. A mixture of phenolic acids that include hippuric acid, ferrulic acid and 3-
hydroxycinnamic acid, based on concentrations found in sera of rats fed diets containing 10% 
blueberry similarly inhibited (by 2-fold) mammosphere formation in MDA-MB231 but not in MCF-7 
cells. By contrast, leptin and interleukin-6 had no activity in these cells. Results suggest that dietary 
factors may selectively target ER-positive and ER-negative cancer cells with stem-like properties in 
the prevention of breast cancer. 

Grant Funding Source: USDA-CRIS 6251-51000-005-02S; Department of Defense Breast Cancer 
Research Program 0810548             

 

 

 

 

 

 

 

 

 

 



Publication 5: To be presented at the Experimental Biology Meeting 2011, Washington DC 

Soy Peptide Lunasin Induces PTEN-mediated Apoptosis in Human Breast Cancer Cells. John 
Mark P Pabona1,2, Bhuvanesh Dave3, Omar Rahal1,2, Ben O de Lumen4, Elvira de Mejia5, Rosalia CM 
Simmen1,2. 1Arkansas Children’s Nutrition Center, 2University of Arkansas for Medical Sciences, 
Little Rock, AR,3The Methodist Hospital Research Institute, Houston, TX, 4University of California, 
Berkeley, CA,5University of Illinois, Urbana, IL  

The tumor suppressor PTEN inhibits the AKT signaling pathway whose unrestrained activity underlies 
many human malignancies. Previously we showed that dietary intake of soy protein isolate (SPI) 
enhanced PTEN expression in mammary tissue of rats with lower NMU-induced mammary tumor 
incidence relative to those fed casein-based diet. While epidemiological studies corroborate the breast 
cancer protective effects of soy, specifically of the major soy isoflavone genistein (GEN), the identity 
of other bioactive soy components remains relatively unknown. Here we evaluated the effects of 
lunasin, a soybean peptide previously detected in sera of rats and humans consuming soy-rich diets, on 
PTEN-mediated apoptosis of the mammary carcinoma cell line MCF-7. Lunasin (2 µM >50 nM) 
increased PTEN expression and nuclear localization (by 2.5-fold); enhanced PTEN-mediated cellular 
apoptosis (by 10-15-fold); and altered levels of p53 (increased) and p21WAF1 (decreased) transcripts 
(P<0.05). GEN (2 µM >20 nM) elicited similar effects as lunasin on PTEN expression and PTEN-
mediated apoptosis in MCF-7 cells. Lunasin and GEN are known to regulate core histone acetylation 
by which PTEN promoter activity is similarly controlled. Findings suggest that activation of PTEN 
expression by bioactive soy components, possibly via epigenetic mechanisms may underlie breast 
cancer protection. [USDA-CRIS; Department of Defense BCRP]             
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Abstract

The mammary gland is composed of two major cellular compartments: a highly dynamic epithelium that undergoes cycles of proliferation, differentiation
and apoptosis in response to local and endocrine signals and the underlying stroma comprised of fibroblasts, endothelial cells and adipocytes, which collectively
form the mammary fat pad. Breast cancer originates from subversions of normal growth regulatory pathways in mammary epithelial cells due to genetic
mutations and epigenetic modifications in tumor suppressors, oncogenes and DNA repair genes. Diet is considered a highly modifiable determinant of breast
cancer risk; thus, considerable efforts are focused on understanding how certain dietary factors may promote resistance of mammary epithelial cells to growth
dysregulation. The recent indications that stromal cells contribute to the maintenance of the mammary epithelial ‘niche’ and the increasing appreciation for
adipose tissue as an endocrine organ with a complex secretome have led to the novel paradigm that the mammary stromal compartment is itself a relevant
target of bioactive dietary factors. In this review, we address the potential influence of dietary factors on mammary epithelial–stromal bidirectional signaling to
provide mechanistic insights into how dietary factors may promote early mammary epithelial differentiation to decrease adult breast cancer risk.
© 2010 Elsevier Inc. All rights reserved.
Keywords: Mammary gland; Epithelium; Adipocyte; Diet; Breast cancer; Obesity
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1. Introduction

Breast cancer is the most commonly diagnosed cancer and the
second leading cause of cancer deaths among women in the United
States. In 2009 alone, more than 190,000 new cases of invasive breast
cancer were reported, which accounted for ∼25% of all cancers among
women in the United States [1]. Similar to all cancers, breast cancer is
a genetic and epigenetic disease with diverse histopathological and
clinical outcomes [2]. Although the major reasons for breast cancer
deaths are complications arising from metastasis, the natural history
of breast cancer involves progression through defined molecular,
pathological and clinical stages [3,4]. The widely accepted view of
breast tumor progression, known as linear progression [5], assumes
the gradual transition of breast lesions from premalignant, hyper-
plastic states into ductal carcinoma in situ, invasive carcinoma and,
finally, metastatic disease [6]. Recent clinical studies demonstrating
heterogeneity in tumors from breast cancer patients now suggest that
the linear progression model maybe overly simplistic [7,8]. In the
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more recently described diversity evolution model [9], the constant
selection pressures provided by numerous environmental cues or
therapeutic interventions are posited to lead to the high clonal
diversity found in tumors as well as the drug resistance that may
develop during treatment [10].

The mammary gland is comprised of myoepithelial and luminal
epithelial cells embedded in a complex stromal matrix (‘mammary fat
pad’) comprised predominantly of fibroblasts, adipocytes and
macrophages (Fig. 1). The prevailing concept in the field is that the
discrete mammary epithelial subtypes and neighboring stromal cells
arise, respectively, from the asymmetric division of epithelial and
mesenchymal cells of origin (‘stem cells’) and the subsequent
differentiation of lineage-committed progenitor cells [11,12]. Emerg-
ing data on mammary stem cells have raised the possibility that this
epithelial subpopulation ‘sitting at the top’ of the mammary epithelial
hierarchy serves as initial target of oncogenic agents [11].

The transformation of normal mammary epithelial cells to
malignancy is manifested as aberrant growth and survival responses
to extracellular signals. The latter include those derived from the
endocrine milieu, as well as from the stroma, whose physical
proximity to epithelial cells allows for dynamic paracrine regulation
and the integration of signals from circulating hormones and growth
actors [13,14]. In a recent review, Arendt et al. [15] detailed the

http://dx.doi.org/10.1016/j.jnutbio.2010.09.008
http://dx.doi.org/10.1016/j.jnutbio.2010.09.008
http://dx.doi.org/10.1016/j.jnutbio.2010.09.008
mailto:simmenrosalia@uams.edu
http://dx.doi.org/10.1016/j.jnutbio.2010.09.008
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complex local and systemic contributions of the stromal compart-
ment to normal mammary development and to malignant breast
development. Molecular and phenotypic changes within the stroma
affect their interactions with neighboring cells, resulting in a
microenvironment that can be supportive of epithelial progression
tomalignancy [16–18]. The distinct molecular signatures displayed by
enriched populations of stromal cells underlying epithelial cell
populations from normal breast tissue and invasive cancer [19,20]
provide a convincing molecular rationale for the stromal compart-
ment as instrumental to tumor progression. Increased understanding
of the contribution of underlying stroma to breast cancer, predom-
inantly an epithelial cell phenomenon, provides exciting potential for
manipulating the mammary stromal compartment in the develop-
ment of therapy [15,21]. Given the emerging evidence for dietary
contribution to breast cancer risk [22] through diet-mediated
regulation of mammary epithelial differentiation, proliferation and
apoptosis [23–27] coupled with the recognition that mammary fate
and ductal development are controlled to a large extent by mammary
fibroblastic and adipocyte mesenchyme [15], the prospect that diet-
associated components may equally influence mammary stromal
biology to influence the course of differentiation or neoplastic growth
of the mammary epithelium is not far-fetched.

The invitation to write this minireview was prompted by our
findings thatmammary stromal adipocytes are early biological targets
of dietary factors, specifically of the major isoflavone genistein (GEN)
in vivo [27]. In that report, we showed that limited exposure (i.e., in
utero and lactational only) of female rat offspring to a maternal diet
containing soy protein isolate (SPI) as major protein source resulted
in mammary stromal adipocyte-specific genomic changes (e.g.,
lipogenic gene expression) coincident with increased differentiation
of mammary tissues that were distinct from those exposed to the
control diet with casein as the major protein source. Further, we
showed that the functional consequence of SPI-mediated adipocyte
metabolic changes on neighboring mammary epithelium in vivo can
be recapitulated by GEN in vitro through direct actions on differen-
tiated 3T3-L1 adipocytes, a function likely related to their increased
secretion of the adipokine adiponectin with GEN treatment [27]. Little
is known of the gene pathways and mechanisms by which specific
dietary factors may target the stromal compartment to promote
breast health. We begin this review by highlighting seminal
information on cell signaling mechanisms underlying mammary
tumor protection by dietary factors. Next, we describe howmammary
stromal remodeling has been implicated in underlying epithelial
Fig. 1. The origin and lineage of the different cell types in themammary gland. Themammary ep
designated mammary fat pad) composed predominantly of fibroblasts, adipocytes and immune
types, which are subject to different endocrine and local regulation and which exhibit divers
biology, with a focus on the emerging links between mammary
adiposity and mammary ductal development as an indication of
adipose-directed signaling. Finally, we discuss recently described,
albeit limited, information on stromal-localized molecular targets of
dietary factors, which may serve as paracrine mediators of dietary
factor action on mammary epithelial cells.

2. Dietary factors andmammary epithelial targets in breast cancer
protection

The incidence of breast cancer is high in the United States [1], with
an increasing trend noted globally [28], yet strategies addressing its
prevention remain extremely limited. Indeed, the current emphasis
on the clinical management and treatment of breast cancer
dramatically contrasts with the inadequacy of efforts directed toward
disease prevention. In addition, there is reluctance among the general
populace to embrace the concept that nutrition and lifestyle
constitute highly modifiable risk factors for the prevention of breast
cancer. In part, this may be due to the oftentimes conflicting reports,
based largely on epidemiological studies, of the protective health
benefits of specific diets. For example, high dietary fat intake,
especially high polyunsaturated fatty acids, has been linked to the
promotion of breast cancer in animal models [29,30] but currently not
in humans [31,32]. On the other hand, saturated fat consumption is
linked to breast cancer in women, but this has not been conclusively
demonstrated in animal studies [33]. Similarly, dietary vitamin A,
carotenoid and Vitamin D intake has been individually shown to
prevent breast cancer in a number of human and animal studies,
although a unifying outcome remains lacking [34,35]. The differences
in physiological status of human subjects (prepubertal and post-
pubertal; premenopausal and postmenopausal), source of dietary
factors (from foods or supplements) as well as varying doses and
‘developmental window’ of dietary exposure in the many studies
described in the literature [22,32,36] had preempted conclusive
indications of the breast cancer-preventive benefits of consumption
of any dietary factor. While studies with animal models and cell lines
have been faulted for their simplistic approach toward understanding
dietary prevention of breast cancer susceptibility, given the hetero-
geneity of the human population, these models have been invaluable
in providing mechanistic insights regarding the contributions of
specific bioactive components to breast cancer risk.

Efforts to understand the mechanisms underlying the breast
cancer-preventive effects of dietary factors have focused on their
ithelium (luminal andmyoepithelial) is embedded in the complex stromal matrix (also
cells. The complexity of the mammary gland is a function of its distinct constituent cell

e functions. ER+ve, estrogen receptor positive; ER−ve, estrogen receptor negative.
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biological and genomic consequences on mammary epithelial cells,
where breast cancer arises. In particular, curcumin from turmeric
[37], resveratrol from grape [38], capsaicin from chili pepper [39],
flavonoids such as hesperetin and naringenin in citrus fruits and
tomatoes [40], isoflavones (e.g., GEN, daidzein) from legumes and red
clover [41,42] and epigallocatechin-3-gallate from green tea [43] have
been demonstrated to provide different levels of preventive effects in
rodent and cell culture models. An extensive discussion of the
literature on the numerous mechanisms reported to underlie dietary
prevention of breast cancer is beyond the scope of this current review,
given the excellent recent reviews on this subject [44–48]. Suffice it to
say that commonmechanisms of actions have emerged: these include
carcinogen activation/detoxification bymetabolic enzymes, increased
antioxidant and anti-inflammatory effects, induction of cell cycle
arrest and inhibition of cell proliferation, decreased cell survival,
enhancement of differentiation, increased expression and functional
activation of various genes and corresponding proteins that are
involved in DNA damage repair, tumor suppression and angiogenesis
and down-regulation of oncogenes. Importantly, while the signaling
pathways affected by various dietary factors in mammary epithelial
cells are numerous, these pathways are interrelated, not mutually
exclusive and as expected, utilize similar sets of genes previously
elaborated in other tumor types [49].

Global gene expression profiling of mammary epithelial cells and
subsequent functional annotation of gene expression changes have
proven to be an effective tool for the discovery of novel pathways
mediating dietary factor protection of mammary tumorigenesis. In
studies from our laboratory using Affymetrix GeneChip microarrays
[50], we showed a very low percentage of epithelial genes (∼0.5% of
14,000 genes evaluated) whose expression is altered by exposure to
either SPI or GEN diet beginning in utero to early adult stage
(postnatal day 50), relative to control casein diet. The functional
association of these identified genes with signaling pathways
involved in immune response, protein and carbohydrate metabolism,
growth regulation and stem cell niche (e.g., Wnt and Notch
pathways) has provided invaluable insights into important targets
of SPI-associated bioactive components and, in particular, GEN to
induce epithelial changes for increased resistance to carcinogenic
agents [51,52]. Indeed, our independent identification of the tumor
suppressor PTEN [53] and of E-cadherin/Wnt/β-catenin signaling [54]
as molecular pathways influenced by dietary exposure to SPI and GEN
in vivo and by GEN in vitro has been bolstered by the recently
elaborated linkage between these two signaling pathways in the
regulation of normal and malignant mammary stem/progenitor cells
in vivo and in vitro [55]. Similar support has been provided by other
published studies, including those for epigallocatechin-3-gallate [56],
phytoestrogens [57] and polyunsaturated fatty acids [58]. Taken
together, the cellular pathwaysmediating dietary factor actions in the
context of mammary epithelial growth regulation implicate their
collective opposing actions on the expression and/or activity of tumor
suppressors and oncogenes and their respective downstream targets.

3. Mammary stromal signaling in breast cancer prevention

How does the mammary stroma compartment potentiate resis-
tance of its neighboring preneoplastic cells to tumor-initiating
events? Much insight has emerged from studies on carcinoma-
associated stromal fibroblasts, which can transdifferentiate into
myofibroblasts and which have been demonstrated to promote
primary tumor growth in human xenograft models when compared
to noncancerous stromas [19,20]. The altered activity of tumor-
associated stromal fibroblastic cells was associated with genetic and
epigenetic alterations in specific gene subsets including that of the
tumor suppressor p53, leading to increased expression of growth
factors, cytokines and extracellular matrix components and which, by
paracrine signaling, promoted neoangiogenesis and epithelial-to-
mesenchymal transition in neighboring cells [19,59]. In an elegant
recent study by Trimboli et al. [60], the conditional inactivation of the
tumor suppressor PTEN in stromal fibroblasts of mouse mammary
glands was shown to promote the initiation, progression and
malignant transformation of mammary epithelium. PTEN loss was
linked to increased extracellular matrix component deposition and
innate immune infiltration, two key events associated with tumor
malignancy and with activation of Ras, JNK and Akt growth-
regulatory pathways [60]. This and similar studies [61–63] strongly
support the notion that altered signaling in the tumor stroma, in this
case, stromal fibroblasts, elicits aberrant epithelial growth regulation,
leading to tumor manifestation.

Adipocytes constitute a significant component of the mammary
stromal compartment and, similar to fibroblasts, are considered
essential for mammary tumor growth and survival. While the mouse
mammary fat pad consists primarily of adipocytes, this is not the case
for the human mammary gland, where the developing mammary
epithelium is closely sheathed by stromal fibroblasts. Nevertheless,
the proximity of adipocytes to the epithelium and their high
secretome activity [64,65] suggest significant influence. Indeed, the
findings that (1) obesity, a disorder arising from altered gene–
nutrient interactions, is a risk factor for breast cancer development
[66], (2) diet-induced obesity in mice results in enlarged mammary
glands and suppression of normal ductal development [67], and (3)
adipose tissue from obese human subjects synthesize high and low
levels of the adipokines leptin and adiponectin, respectively [68,69],
which display opposing effects (promotion by leptin; inhibition by
adiponectin) on mammary epithelial proliferation and which have
been associated with regulation of mammary tumor development in
mice [70], provide strong support for the influence of mammary
adipocytes on breast cancer progression.

Interestingly, despite the increasing focus on obesity and nutri-
tion/diet as major determinants of mammary epithelial oncogenesis,
the connection between dietary factors with putative mammary
tumor-protective effects and normalmammary adipose tissue biology
has not been directly demonstrated. Two studies have recently
appeared that highlight this association, albeit indirectly. Cho et al.
[71] reported that the polyphenol (−)-catechin, among the many
polyphenols present in green tea, enhanced the expression and
secretion of adiponectin in 3T3-L1 adipocytes in vitro. The increase in
adiponectin secretion by (−)-catechin was accompanied by in-
creased insulin-dependent glucose uptake in differentiated adipo-
cytes and decreased expression of the transcription factor Kruppel-
like 7, which inhibits adiponectin expression [71]. While these in vitro
findings did not directly address the consequence(s) of (−)-catechin
promotion of adiponectin expression and secretion on mammary
epithelial growth regulation, they are consistent with previous
indications that green tea extracts have antiobesogenic activity [72]
and inhibit mammary tumor initiation and progression in animal
models of breast cancer [73]. In the second study by our group [27],
we incorporated in vivo and in vitro strategies to link genomic and
functional consequences in rat mammary glands upon in utero/
lactational exposure to dietary SPI with paracrine signals from GEN-
treated 3T3-L1 adipocytes to induce mammary epithelial differenti-
ation. While our studies did not identify the paracrine signal(s)
mediating the enhanced differentiation of mammary epithelial cells,
we posited that one likely candidate is adiponectin, given the
increased secretion of this adipokine in differentiated adipocytes
treated with GEN at physiological doses [27]. Preliminary findings
provide support to the latter, based on the higher adiponectin protein
levels in the mammary glands of young adult female rat offspring
exposed to SPI following the above dietary regimen, in the absence of
changes in systemic levels of this adipokine (O. Rahal and R.C.M.
Simmen, unpublished observations). Given that early only and
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lifelong exposure to soy-enriched diets are mammary tumor-
preventive in rodent models of carcinogenesis [52,74], findings that
were borne out by epidemiological studies [75], the ‘chicken-or-the-
egg” question as to which mammary compartment (stromal or
epithelial) is initially targeted by dietary factors to achieve the final
outcome of increased mammary epithelial differentiation for de-
creased sensitivity to oncogenic agents, may constitute a fruitful
direction for future investigation.

While the aforementioned studies investigated aspects of dietary
influences on lipogenic and adipogenic regulators in the mammary
adipocyte, mechanisms for dietary regulation at the level of adipocyte
differentiation are also plausible. A great deal of our understanding of
the molecular basis of adipocyte differentiation has been gained from
studies of clonal fibroblastic preadipocyte cell lines (3T3-L1, 3T3-
442A) and ex vivo studies of stromal vascular cells isolated from
animals [76,77]. Committed preadipocytes, upon hormonal induction
in vitro and via elusive in vivo signals, begin the differentiation
program involving CREB-mediated phosphorylation of the transcrip-
tion factor CAAAT-enhancer binding protein-β [77–79], followed by
mitotic clonal expansion and activation of CAAAT-enhancer binding
protein-α and peroxisome proliferator-activated receptor (PPAR)-γ.
These, along with the sterol regulatory element binding protein-1c,
transactivate a number of adipocyte-specific genes that maintain the
adipocyte phenotype [80,81]. Throughout life, adipose tissue mass is
regulated by a balance between formation (via hypertrophy of
existing adipocytes and hyperplasia) and lipolysis. While the
molecular events underlying adipocyte differentiation from precursor
cells have been extensively studied, the precise origins of the adipose
tissue in vivo are still poorly understood. In this context, two
important recent advances in our understanding are noteworthy.
First, using novel PPAR-γ reporter mouse strains (PPAR-γ-Rosa26
reporter and PPAR-γ-TRE-H2B-GFP) where endogenous PPAR-γ
promoter leads to indelible marking of daughter cells with LacZ or
GFP, Tang et al. [82], performed cell lineage tracing experiments.
These elegant studies revealed that most adipocytes reside in the
mural cell compartment in close to the adipose vasculature and are
already committed to an adipocyte fate in utero or early postnatal life.
The second major advance in this area has been the identification of
early adipocyte progenitor cells in the adipose tissue using flow
cytometry. Using fluorescence-activated cell sorting, Rodeheffer et al.
[83] identified cells that are Lin-CD29+CD34+Sca1+CD24+ residing in
the adipose tissue and that likely represent early adipocyte precursors
since they can reconstitute a normal adipose tissuewhen injected into
‘fat-less’ lipodystrophic mice. It should be noted that the origin of
adipocytes in the mammary fat pad has not been examined to date. In
light of these studies, it is important to begin to address whether diet/
dietary factor-associated cancer protection may be linked with
altered commitment/differentiation of mammary preadipocytes.

4. Dietary factors and candidate mammary stromal targets for
breast cancer prevention

While there is a paucity of information to directly link the targeting
of specific mammary stromal cell types by known dietary factors to
neighboring mammary epithelial growth regulation, a few candidate
mediators have emerged. The most relevant are the adipokines
adiponectin and leptin, which, because of their mammary adipocyte
source, demonstrated regulation of mammary epithelial proliferation,
differentiation and apoptosis though distinct mechanisms [70,84–86],
and the negative and positive association of their expression levels,
respectively, with breast cancer risk and adiposity [87–89]. In vitro, the
isoflavone GEN has been shown to enhance secretion (hence,
availability as endocrine/paracrine signals) of adiponectin [27] and to
inhibit that of leptin [90]. The bioactive component chitosan from
edible mushrooms, which was found to demonstrate antiobesogenic
activity in rats [91], similarly reduced visceral adipose tissue leptin
levels inmice consuming chitosan-supplemented diet [92]. Further, the
short-chain fatty acid propionic acid, which is produced by the colonic
fermentation of dietary fiber known to be preventive for the
development of obesity [93], was shown to increase leptin messenger
RNA expression and corresponding protein secretion, in the absence of
coincident effects on adiponectin, in human omental and subcutaneous
adipose tissue explants [94]. While the increased secretion of leptin by
propionic acid appears counterintuitive to its antiobesity and, by
extension, anticipated antimammary tumorigenic effects, this was
accompanied by the reduced expression of the proinflammatory factor
adipokine resistin, suggesting that the repertoire of adipokines
presented to target cells may predict the final growth/proliferative
outcome. In this regard, a recent study has shown significantly elevated
plasma resistin levels in patients with breast cancer relative to those
without disease [95], consistent with the link between inflammation
and breast cancer risk.

Our group's approach to mechanistically address the directional
signaling from stromal to epithelial cells initiated by bioactive dietary
factor targeting of mammary fat pad involves (1) defining the in vivo
measures of mammary epithelial and stromal differentiation upon
early dietary SPI exposure and (2) recapitulating these responses in
nontumorigenic mammary epithelial cells exposed to conditioned
medium from differentiated 3T3-L1 adipocyte treated with GEN
in vitro [27]. While our experiments constitute proof of concept, there
are caveats that require further scrutiny. Our studies did not
unequivocally identify GEN-specific gene targets in stromal fibro-
blasts and adipocytes distinct from those of epithelial cells, since the
gene expression analyses were carried out using whole mammary
tissues. Moreover, the biological and molecular outcomes observed in
vitro with GEN precluded the contribution of other SPI-associated
bioactive components, whichmay elicit more direct effects than could
be attributed to GEN alone. Finally, it was not possible to demonstrate
the converse directional signaling (i.e., from epithelial to stromal
compartment) that may equally underlie mammary tumor preven-
tion. In support of the existence of epithelial-to-stromal dialog, it was
shown that during the development of breast cancer, the stromal
compartment responded to signals from tumorigenic cells, leading to
a more ‘reactive’ stroma and amplification of the tumorigenic state
[96]. Additional studies using isolated adipocytes and fibroblastic cells
derived from mammary fat pad or in vivo sampling of mammary fat
pad followed by proteomic analyses [65,97], as a function of whole
diets and purified bioactive components, will provide a ‘glimpse’ of
the mammary secretome and presumably regulators of mammary
stromal mediated epithelial changes.

The elegant study by Lam et al. [70] demonstrating the precise role
of adiponectin in mammary carcinogenesis can serve as a paradigm for
mechanistically elucidating the role of adipocyte-specific gene targets
of diet and dietary factors on mammary tumor prevention. In that
study, MMTV-polyomavirus middle T-antigen transgenic mice with
reduced adiponectin expression were generated to test the effects of
adiponectin haploinsufficiency on the promotion of mammary tumors.
Similar kinds of studies could be performed to test the function of
candidate mammary adipocyte genes that are identified from gene
expression analyses of tissues from rodent models under different
dietary programs. In this regard, the recent report on the characteriza-
tion of a 5.4-kb adiponectin promoter/5′ regulatory region that confers
adipocyte-specific expression of target genes may provide an avenue
for studying gene function in the context of bidirectional signaling in
the mammary gland [98]. While it is unknown whether mammary
adipose tissue exhibits specialized responses to extracellular signals or
displays gene expression patterns distinct from retroperitoneal
(subcutaneous) adipose tissue, an earlier study showed that the lipid
composition in adipose tissue of virgin rat mammary glands resemble
that of the retroperitoneal adipose [99].
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5. Concluding remarks

The notion that the mammary fat pad is a direct target of
bioactive dietary factors for mammary tumor protection is not
difficult to envision, given that in any biological system, nothing
stands alone. It is perhaps paradoxical that studies to address this
remain relatively limited and the concept that bidirectional
signaling within the mammary microenvironment for breast cancer
prevention remains an intriguing observation. While the stromal
compartment is not the main target of carcinogens [100], the
possibility that a very early event upon carcinogenic insult is the
sensing by stromal cells of ‘something amiss’ in adjacent epithelial
cells is not unlikely. If this is the case, the identification of
mammary fibroblast- and adipocyte-specific ‘early’ molecular
targets by bioactive components in model systems may eventually
provide biomarkers for the very early stages of the disease. The
recent characterization of a mammary stromal fibroblastic cell line
from mice that can differentiate to a preadipocyte lineage [101] in
coculture studies with nontumorigenic or tumorigenic mammary
epithelial cells will enable a proof-of-principle evaluation of the
epithelial/stromal adipocyte dialog and associated mediators.

The findings that mammary stroma can reprogram testicular and
neural stem cells to produce progeny committed to a mammary
epithelial cell fate [102,103] and that a precancerous mammary
stem cell may be programmed to become breast cancer [104]
suggest the possibility that direct dietary factor effects on
mammary stroma may alter stem cell behavior to inhibit neoplastic
transformation. Thus, while mammary stem cells may constitute
direct targets of bioactive dietary components as recently suggested
by the report that curcumin added in vitro can induce mammo-
Fig. 2. A proposed model of cellular processes regulated by dietary factors in mammary epith
indicate an ongoing dialog between the mammary compartments. Mammary epithelial and m
The composite actions of each mammary cell type result in the enhanced differentiation and, h
decreased breast cancer risk.
sphere-forming ability in normal and malignant breast cells [105], a
dual effect of dietary factors on mesenchymal and epithelial stem
cells is also likely.

Further, dietary factors may directly influence the stem cell
compartment in mammary stroma at the levels of the preadipocyte
pool and the number of multipotent stem cells that enter the adipocyte
lineage. The effects of obesity, high fat diets and other dietary factors on
mammary preadipocyte populations remain unknown. It has been
suggested that the inability of a particular adipose depot to expandmay
be causative in the accumulation of hypertrophic adipocytes and a
predisposing factor in metabolic disease. Hence, it is possible that
certain diets or dietary factors may mediate indirect beneficial actions
on mammary epithelial cells via their modulation of preadipocyte
commitment and/or differentiation of new mammary adipocytes. A
recent report that in utero exposure to the environmental agent
tributylin induced multipotent stem cells to differentiate into adipo-
cytes provides strong support to this possibility [106].

Finally, while the contribution of inflammatory/immune cells
found in mammary stroma is not included in the present review,
their relevance as dietary factor targets to mediate epithelial
proliferation and differentiation cannot be ignored, given that
local inflammation associated with solid tumors is partly a
consequence of immune cells in the tumor stroma [107]. Indeed,
we observed that immune-related genes constitute major targets of
dietary exposure to SPI and GEN in mammary epithelial cells of
young adult rats [50]. The down-regulated expression of epithelial
genes involved in antigen presentation, antigen processing and
inflammation, including that of interleukin 17β, a homolog of
interleukin 17, which is linked to neutrophil chemotaxis, suggests
the possibility of similar specific targeting of immune cells localized
elial and stromal compartments for breast cancer protection. The bidirectional arrows
esenchymal stem cells are considered to represent cells of origin for each compartment.
ence, increased resistance of mammary epithelial cells to carcinogenic insults, leading to
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to stroma and is consistent with promotion by the immune
microenvironment of tumor progression [107].

In summary, bidirectional signaling between mammary stroma
and epithelial cells promoted by bioactive dietary components
constitutes a relevant biological event for mammary tumor preven-
tion (Fig. 2). Thus, it is essential that, in future studies where dietary
factor effects are described for mammary tumor prevention, their
contributions to the phenotype and molecular profiles of mammary
stromal fibroblasts and adipocytes are investigated coincident with
those of neighboring epithelium. Gaining a better understanding of
the complex interrelationships among the different mammary
compartments in response to environmental (‘dietary’) cues may
expand nutritional strategies for breast cancer prevention and
therapeutic interventions.
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Abstract

The mammary gland is composed of two major cellular compartments: a highly dynamic epithelium that undergoes cycles of proliferation, differentiation
and apoptosis in response to local and endocrine signals and the underlying stroma comprised of fibroblasts, endothelial cells and adipocytes, which collectively
form the mammary fat pad. Breast cancer originates from subversions of normal growth regulatory pathways in mammary epithelial cells due to genetic
mutations and epigenetic modifications in tumor suppressors, oncogenes and DNA repair genes. Diet is considered a highly modifiable determinant of breast
cancer risk; thus, considerable efforts are focused on understanding how certain dietary factors may promote resistance of mammary epithelial cells to growth
dysregulation. The recent indications that stromal cells contribute to the maintenance of the mammary epithelial ‘niche’ and the increasing appreciation for
adipose tissue as an endocrine organ with a complex secretome have led to the novel paradigm that the mammary stromal compartment is itself a relevant
target of bioactive dietary factors. In this review, we address the potential influence of dietary factors on mammary epithelial–stromal bidirectional signaling to
provide mechanistic insights into how dietary factors may promote early mammary epithelial differentiation to decrease adult breast cancer risk.
© 2010 Elsevier Inc. All rights reserved.
Keywords: Mammary gland; Epithelium; Adipocyte; Diet; Breast cancer; Obesity
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59
1. Introduction

Breast cancer is the most commonly diagnosed cancer and the
second leading cause of cancer deaths among women in the United
States. In 2009 alone, more than 190,000 new cases of invasive breast
cancer were reported, which accounted for ∼25% of all cancers among
women in the United States [1]. Similar to all cancers, breast cancer is
a genetic and epigenetic disease with diverse histopathological and
clinical outcomes [2]. Although the major reasons for breast cancer
deaths are complications arising from metastasis, the natural history
of breast cancer involves progression through defined molecular,
pathological and clinical stages [3,4]. The widely accepted view of
breast tumor progression, known as linear progression [5], assumes
the gradual transition of breast lesions from premalignant, hyper-
plastic states into ductal carcinoma in situ, invasive carcinoma and,
finally, metastatic disease [6]. Recent clinical studies demonstrating
heterogeneity in tumors from breast cancer patients now suggest that
the linear progression model maybe overly simplistic [7,8]. In the
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more recently described diversity evolution model [9], the constant
selection pressures provided by numerous environmental cues or
therapeutic interventions are posited to lead to the high clonal
diversity found in tumors as well as the drug resistance that may
develop during treatment [10].

The mammary gland is comprised of myoepithelial and luminal
epithelial cells embedded in a complex stromal matrix (‘mammary fat
pad’) comprised predominantly of fibroblasts, adipocytes and
macrophages (Fig. 1). The prevailing concept in the field is that the
discrete mammary epithelial subtypes and neighboring stromal cells
arise, respectively, from the asymmetric division of epithelial and
mesenchymal cells of origin (‘stem cells’) and the subsequent
differentiation of lineage-committed progenitor cells [11,12]. Emerg-
ing data on mammary stem cells have raised the possibility that this
epithelial subpopulation ‘sitting at the top’ of the mammary epithelial
hierarchy serves as initial target of oncogenic agents [11].

The transformation of normal mammary epithelial cells to
malignancy is manifested as aberrant growth and survival responses
to extracellular signals. The latter include those derived from the
endocrine milieu, as well as from the stroma, whose physical
proximity to epithelial cells allows for dynamic paracrine regulation
and the integration of signals from circulating hormones and growth
actors [13,14]. In a recent review, Arendt et al. [15] detailed the

http://dx.doi.org/10.1016/j.jnutbio.2010.09.008
http://dx.doi.org/10.1016/j.jnutbio.2010.09.008
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complex local and systemic contributions of the stromal compart-
ment to normal mammary development and to malignant breast
development. Molecular and phenotypic changes within the stroma
affect their interactions with neighboring cells, resulting in a
microenvironment that can be supportive of epithelial progression
tomalignancy [16–18]. The distinct molecular signatures displayed by
enriched populations of stromal cells underlying epithelial cell
populations from normal breast tissue and invasive cancer [19,20]
provide a convincing molecular rationale for the stromal compart-
ment as instrumental to tumor progression. Increased understanding
of the contribution of underlying stroma to breast cancer, predom-
inantly an epithelial cell phenomenon, provides exciting potential for
manipulating the mammary stromal compartment in the develop-
ment of therapy [15,21]. Given the emerging evidence for dietary
contribution to breast cancer risk [22] through diet-mediated
regulation of mammary epithelial differentiation, proliferation and
apoptosis [23–27] coupled with the recognition that mammary fate
and ductal development are controlled to a large extent by mammary
fibroblastic and adipocyte mesenchyme [15], the prospect that diet-
associated components may equally influence mammary stromal
biology to influence the course of differentiation or neoplastic growth
of the mammary epithelium is not far-fetched.

The invitation to write this minireview was prompted by our
findings thatmammary stromal adipocytes are early biological targets
of dietary factors, specifically of the major isoflavone genistein (GEN)
in vivo [27]. In that report, we showed that limited exposure (i.e., in
utero and lactational only) of female rat offspring to a maternal diet
containing soy protein isolate (SPI) as major protein source resulted
in mammary stromal adipocyte-specific genomic changes (e.g.,
lipogenic gene expression) coincident with increased differentiation
of mammary tissues that were distinct from those exposed to the
control diet with casein as the major protein source. Further, we
showed that the functional consequence of SPI-mediated adipocyte
metabolic changes on neighboring mammary epithelium in vivo can
be recapitulated by GEN in vitro through direct actions on differen-
tiated 3T3-L1 adipocytes, a function likely related to their increased
secretion of the adipokine adiponectin with GEN treatment [27]. Little
is known of the gene pathways and mechanisms by which specific
dietary factors may target the stromal compartment to promote
breast health. We begin this review by highlighting seminal
information on cell signaling mechanisms underlying mammary
tumor protection by dietary factors. Next, we describe howmammary
stromal remodeling has been implicated in underlying epithelial
Fig. 1. The origin and lineage of the different cell types in themammary gland. Themammary ep
designated mammary fat pad) composed predominantly of fibroblasts, adipocytes and immune
types, which are subject to different endocrine and local regulation and which exhibit divers
biology, with a focus on the emerging links between mammary
adiposity and mammary ductal development as an indication of
adipose-directed signaling. Finally, we discuss recently described,
albeit limited, information on stromal-localized molecular targets of
dietary factors, which may serve as paracrine mediators of dietary
factor action on mammary epithelial cells.

2. Dietary factors andmammary epithelial targets in breast cancer
protection

The incidence of breast cancer is high in the United States [1], with
an increasing trend noted globally [28], yet strategies addressing its
prevention remain extremely limited. Indeed, the current emphasis
on the clinical management and treatment of breast cancer
dramatically contrasts with the inadequacy of efforts directed toward
disease prevention. In addition, there is reluctance among the general
populace to embrace the concept that nutrition and lifestyle
constitute highly modifiable risk factors for the prevention of breast
cancer. In part, this may be due to the oftentimes conflicting reports,
based largely on epidemiological studies, of the protective health
benefits of specific diets. For example, high dietary fat intake,
especially high polyunsaturated fatty acids, has been linked to the
promotion of breast cancer in animal models [29,30] but currently not
in humans [31,32]. On the other hand, saturated fat consumption is
linked to breast cancer in women, but this has not been conclusively
demonstrated in animal studies [33]. Similarly, dietary vitamin A,
carotenoid and Vitamin D intake has been individually shown to
prevent breast cancer in a number of human and animal studies,
although a unifying outcome remains lacking [34,35]. The differences
in physiological status of human subjects (prepubertal and post-
pubertal; premenopausal and postmenopausal), source of dietary
factors (from foods or supplements) as well as varying doses and
‘developmental window’ of dietary exposure in the many studies
described in the literature [22,32,36] had preempted conclusive
indications of the breast cancer-preventive benefits of consumption
of any dietary factor. While studies with animal models and cell lines
have been faulted for their simplistic approach toward understanding
dietary prevention of breast cancer susceptibility, given the hetero-
geneity of the human population, these models have been invaluable
in providing mechanistic insights regarding the contributions of
specific bioactive components to breast cancer risk.

Efforts to understand the mechanisms underlying the breast
cancer-preventive effects of dietary factors have focused on their
ithelium (luminal andmyoepithelial) is embedded in the complex stromal matrix (also
cells. The complexity of the mammary gland is a function of its distinct constituent cell

e functions. ER+ve, estrogen receptor positive; ER−ve, estrogen receptor negative.
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biological and genomic consequences on mammary epithelial cells,
where breast cancer arises. In particular, curcumin from turmeric
[37], resveratrol from grape [38], capsaicin from chili pepper [39],
flavonoids such as hesperetin and naringenin in citrus fruits and
tomatoes [40], isoflavones (e.g., GEN, daidzein) from legumes and red
clover [41,42] and epigallocatechin-3-gallate from green tea [43] have
been demonstrated to provide different levels of preventive effects in
rodent and cell culture models. An extensive discussion of the
literature on the numerous mechanisms reported to underlie dietary
prevention of breast cancer is beyond the scope of this current review,
given the excellent recent reviews on this subject [44–48]. Suffice it to
say that commonmechanisms of actions have emerged: these include
carcinogen activation/detoxification bymetabolic enzymes, increased
antioxidant and anti-inflammatory effects, induction of cell cycle
arrest and inhibition of cell proliferation, decreased cell survival,
enhancement of differentiation, increased expression and functional
activation of various genes and corresponding proteins that are
involved in DNA damage repair, tumor suppression and angiogenesis
and down-regulation of oncogenes. Importantly, while the signaling
pathways affected by various dietary factors in mammary epithelial
cells are numerous, these pathways are interrelated, not mutually
exclusive and as expected, utilize similar sets of genes previously
elaborated in other tumor types [49].

Global gene expression profiling of mammary epithelial cells and
subsequent functional annotation of gene expression changes have
proven to be an effective tool for the discovery of novel pathways
mediating dietary factor protection of mammary tumorigenesis. In
studies from our laboratory using Affymetrix GeneChip microarrays
[50], we showed a very low percentage of epithelial genes (∼0.5% of
14,000 genes evaluated) whose expression is altered by exposure to
either SPI or GEN diet beginning in utero to early adult stage
(postnatal day 50), relative to control casein diet. The functional
association of these identified genes with signaling pathways
involved in immune response, protein and carbohydrate metabolism,
growth regulation and stem cell niche (e.g., Wnt and Notch
pathways) has provided invaluable insights into important targets
of SPI-associated bioactive components and, in particular, GEN to
induce epithelial changes for increased resistance to carcinogenic
agents [51,52]. Indeed, our independent identification of the tumor
suppressor PTEN [53] and of E-cadherin/Wnt/β-catenin signaling [54]
as molecular pathways influenced by dietary exposure to SPI and GEN
in vivo and by GEN in vitro has been bolstered by the recently
elaborated linkage between these two signaling pathways in the
regulation of normal and malignant mammary stem/progenitor cells
in vivo and in vitro [55]. Similar support has been provided by other
published studies, including those for epigallocatechin-3-gallate [56],
phytoestrogens [57] and polyunsaturated fatty acids [58]. Taken
together, the cellular pathwaysmediating dietary factor actions in the
context of mammary epithelial growth regulation implicate their
collective opposing actions on the expression and/or activity of tumor
suppressors and oncogenes and their respective downstream targets.

3. Mammary stromal signaling in breast cancer prevention

How does the mammary stroma compartment potentiate resis-
tance of its neighboring preneoplastic cells to tumor-initiating
events? Much insight has emerged from studies on carcinoma-
associated stromal fibroblasts, which can transdifferentiate into
myofibroblasts and which have been demonstrated to promote
primary tumor growth in human xenograft models when compared
to noncancerous stromas [19,20]. The altered activity of tumor-
associated stromal fibroblastic cells was associated with genetic and
epigenetic alterations in specific gene subsets including that of the
tumor suppressor p53, leading to increased expression of growth
factors, cytokines and extracellular matrix components and which, by
paracrine signaling, promoted neoangiogenesis and epithelial-to-
mesenchymal transition in neighboring cells [19,59]. In an elegant
recent study by Trimboli et al. [60], the conditional inactivation of the
tumor suppressor PTEN in stromal fibroblasts of mouse mammary
glands was shown to promote the initiation, progression and
malignant transformation of mammary epithelium. PTEN loss was
linked to increased extracellular matrix component deposition and
innate immune infiltration, two key events associated with tumor
malignancy and with activation of Ras, JNK and Akt growth-
regulatory pathways [60]. This and similar studies [61–63] strongly
support the notion that altered signaling in the tumor stroma, in this
case, stromal fibroblasts, elicits aberrant epithelial growth regulation,
leading to tumor manifestation.

Adipocytes constitute a significant component of the mammary
stromal compartment and, similar to fibroblasts, are considered
essential for mammary tumor growth and survival. While the mouse
mammary fat pad consists primarily of adipocytes, this is not the case
for the human mammary gland, where the developing mammary
epithelium is closely sheathed by stromal fibroblasts. Nevertheless,
the proximity of adipocytes to the epithelium and their high
secretome activity [64,65] suggest significant influence. Indeed, the
findings that (1) obesity, a disorder arising from altered gene–
nutrient interactions, is a risk factor for breast cancer development
[66], (2) diet-induced obesity in mice results in enlarged mammary
glands and suppression of normal ductal development [67], and (3)
adipose tissue from obese human subjects synthesize high and low
levels of the adipokines leptin and adiponectin, respectively [68,69],
which display opposing effects (promotion by leptin; inhibition by
adiponectin) on mammary epithelial proliferation and which have
been associated with regulation of mammary tumor development in
mice [70], provide strong support for the influence of mammary
adipocytes on breast cancer progression.

Interestingly, despite the increasing focus on obesity and nutri-
tion/diet as major determinants of mammary epithelial oncogenesis,
the connection between dietary factors with putative mammary
tumor-protective effects and normalmammary adipose tissue biology
has not been directly demonstrated. Two studies have recently
appeared that highlight this association, albeit indirectly. Cho et al.
[71] reported that the polyphenol (−)-catechin, among the many
polyphenols present in green tea, enhanced the expression and
secretion of adiponectin in 3T3-L1 adipocytes in vitro. The increase in
adiponectin secretion by (−)-catechin was accompanied by in-
creased insulin-dependent glucose uptake in differentiated adipo-
cytes and decreased expression of the transcription factor Kruppel-
like 7, which inhibits adiponectin expression [71]. While these in vitro
findings did not directly address the consequence(s) of (−)-catechin
promotion of adiponectin expression and secretion on mammary
epithelial growth regulation, they are consistent with previous
indications that green tea extracts have antiobesogenic activity [72]
and inhibit mammary tumor initiation and progression in animal
models of breast cancer [73]. In the second study by our group [27],
we incorporated in vivo and in vitro strategies to link genomic and
functional consequences in rat mammary glands upon in utero/
lactational exposure to dietary SPI with paracrine signals from GEN-
treated 3T3-L1 adipocytes to induce mammary epithelial differenti-
ation. While our studies did not identify the paracrine signal(s)
mediating the enhanced differentiation of mammary epithelial cells,
we posited that one likely candidate is adiponectin, given the
increased secretion of this adipokine in differentiated adipocytes
treated with GEN at physiological doses [27]. Preliminary findings
provide support to the latter, based on the higher adiponectin protein
levels in the mammary glands of young adult female rat offspring
exposed to SPI following the above dietary regimen, in the absence of
changes in systemic levels of this adipokine (O. Rahal and R.C.M.
Simmen, unpublished observations). Given that early only and
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lifelong exposure to soy-enriched diets are mammary tumor-
preventive in rodent models of carcinogenesis [52,74], findings that
were borne out by epidemiological studies [75], the ‘chicken-or-the-
egg” question as to which mammary compartment (stromal or
epithelial) is initially targeted by dietary factors to achieve the final
outcome of increased mammary epithelial differentiation for de-
creased sensitivity to oncogenic agents, may constitute a fruitful
direction for future investigation.

While the aforementioned studies investigated aspects of dietary
influences on lipogenic and adipogenic regulators in the mammary
adipocyte, mechanisms for dietary regulation at the level of adipocyte
differentiation are also plausible. A great deal of our understanding of
the molecular basis of adipocyte differentiation has been gained from
studies of clonal fibroblastic preadipocyte cell lines (3T3-L1, 3T3-
442A) and ex vivo studies of stromal vascular cells isolated from
animals [76,77]. Committed preadipocytes, upon hormonal induction
in vitro and via elusive in vivo signals, begin the differentiation
program involving CREB-mediated phosphorylation of the transcrip-
tion factor CAAAT-enhancer binding protein-β [77–79], followed by
mitotic clonal expansion and activation of CAAAT-enhancer binding
protein-α and peroxisome proliferator-activated receptor (PPAR)-γ.
These, along with the sterol regulatory element binding protein-1c,
transactivate a number of adipocyte-specific genes that maintain the
adipocyte phenotype [80,81]. Throughout life, adipose tissue mass is
regulated by a balance between formation (via hypertrophy of
existing adipocytes and hyperplasia) and lipolysis. While the
molecular events underlying adipocyte differentiation from precursor
cells have been extensively studied, the precise origins of the adipose
tissue in vivo are still poorly understood. In this context, two
important recent advances in our understanding are noteworthy.
First, using novel PPAR-γ reporter mouse strains (PPAR-γ-Rosa26
reporter and PPAR-γ-TRE-H2B-GFP) where endogenous PPAR-γ
promoter leads to indelible marking of daughter cells with LacZ or
GFP, Tang et al. [82], performed cell lineage tracing experiments.
These elegant studies revealed that most adipocytes reside in the
mural cell compartment in close to the adipose vasculature and are
already committed to an adipocyte fate in utero or early postnatal life.
The second major advance in this area has been the identification of
early adipocyte progenitor cells in the adipose tissue using flow
cytometry. Using fluorescence-activated cell sorting, Rodeheffer et al.
[83] identified cells that are Lin-CD29+CD34+Sca1+CD24+ residing in
the adipose tissue and that likely represent early adipocyte precursors
since they can reconstitute a normal adipose tissuewhen injected into
‘fat-less’ lipodystrophic mice. It should be noted that the origin of
adipocytes in the mammary fat pad has not been examined to date. In
light of these studies, it is important to begin to address whether diet/
dietary factor-associated cancer protection may be linked with
altered commitment/differentiation of mammary preadipocytes.

4. Dietary factors and candidate mammary stromal targets for
breast cancer prevention

While there is a paucity of information to directly link the targeting
of specific mammary stromal cell types by known dietary factors to
neighboring mammary epithelial growth regulation, a few candidate
mediators have emerged. The most relevant are the adipokines
adiponectin and leptin, which, because of their mammary adipocyte
source, demonstrated regulation of mammary epithelial proliferation,
differentiation and apoptosis though distinct mechanisms [70,84–86],
and the negative and positive association of their expression levels,
respectively, with breast cancer risk and adiposity [87–89]. In vitro, the
isoflavone GEN has been shown to enhance secretion (hence,
availability as endocrine/paracrine signals) of adiponectin [27] and to
inhibit that of leptin [90]. The bioactive component chitosan from
edible mushrooms, which was found to demonstrate antiobesogenic
activity in rats [91], similarly reduced visceral adipose tissue leptin
levels inmice consuming chitosan-supplemented diet [92]. Further, the
short-chain fatty acid propionic acid, which is produced by the colonic
fermentation of dietary fiber known to be preventive for the
development of obesity [93], was shown to increase leptin messenger
RNA expression and corresponding protein secretion, in the absence of
coincident effects on adiponectin, in human omental and subcutaneous
adipose tissue explants [94]. While the increased secretion of leptin by
propionic acid appears counterintuitive to its antiobesity and, by
extension, anticipated antimammary tumorigenic effects, this was
accompanied by the reduced expression of the proinflammatory factor
adipokine resistin, suggesting that the repertoire of adipokines
presented to target cells may predict the final growth/proliferative
outcome. In this regard, a recent study has shown significantly elevated
plasma resistin levels in patients with breast cancer relative to those
without disease [95], consistent with the link between inflammation
and breast cancer risk.

Our group's approach to mechanistically address the directional
signaling from stromal to epithelial cells initiated by bioactive dietary
factor targeting of mammary fat pad involves (1) defining the in vivo
measures of mammary epithelial and stromal differentiation upon
early dietary SPI exposure and (2) recapitulating these responses in
nontumorigenic mammary epithelial cells exposed to conditioned
medium from differentiated 3T3-L1 adipocyte treated with GEN
in vitro [27]. While our experiments constitute proof of concept, there
are caveats that require further scrutiny. Our studies did not
unequivocally identify GEN-specific gene targets in stromal fibro-
blasts and adipocytes distinct from those of epithelial cells, since the
gene expression analyses were carried out using whole mammary
tissues. Moreover, the biological and molecular outcomes observed in
vitro with GEN precluded the contribution of other SPI-associated
bioactive components, whichmay elicit more direct effects than could
be attributed to GEN alone. Finally, it was not possible to demonstrate
the converse directional signaling (i.e., from epithelial to stromal
compartment) that may equally underlie mammary tumor preven-
tion. In support of the existence of epithelial-to-stromal dialog, it was
shown that during the development of breast cancer, the stromal
compartment responded to signals from tumorigenic cells, leading to
a more ‘reactive’ stroma and amplification of the tumorigenic state
[96]. Additional studies using isolated adipocytes and fibroblastic cells
derived from mammary fat pad or in vivo sampling of mammary fat
pad followed by proteomic analyses [65,97], as a function of whole
diets and purified bioactive components, will provide a ‘glimpse’ of
the mammary secretome and presumably regulators of mammary
stromal mediated epithelial changes.

The elegant study by Lam et al. [70] demonstrating the precise role
of adiponectin in mammary carcinogenesis can serve as a paradigm for
mechanistically elucidating the role of adipocyte-specific gene targets
of diet and dietary factors on mammary tumor prevention. In that
study, MMTV-polyomavirus middle T-antigen transgenic mice with
reduced adiponectin expression were generated to test the effects of
adiponectin haploinsufficiency on the promotion of mammary tumors.
Similar kinds of studies could be performed to test the function of
candidate mammary adipocyte genes that are identified from gene
expression analyses of tissues from rodent models under different
dietary programs. In this regard, the recent report on the characteriza-
tion of a 5.4-kb adiponectin promoter/5′ regulatory region that confers
adipocyte-specific expression of target genes may provide an avenue
for studying gene function in the context of bidirectional signaling in
the mammary gland [98]. While it is unknown whether mammary
adipose tissue exhibits specialized responses to extracellular signals or
displays gene expression patterns distinct from retroperitoneal
(subcutaneous) adipose tissue, an earlier study showed that the lipid
composition in adipose tissue of virgin rat mammary glands resemble
that of the retroperitoneal adipose [99].
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5. Concluding remarks

The notion that the mammary fat pad is a direct target of
bioactive dietary factors for mammary tumor protection is not
difficult to envision, given that in any biological system, nothing
stands alone. It is perhaps paradoxical that studies to address this
remain relatively limited and the concept that bidirectional
signaling within the mammary microenvironment for breast cancer
prevention remains an intriguing observation. While the stromal
compartment is not the main target of carcinogens [100], the
possibility that a very early event upon carcinogenic insult is the
sensing by stromal cells of ‘something amiss’ in adjacent epithelial
cells is not unlikely. If this is the case, the identification of
mammary fibroblast- and adipocyte-specific ‘early’ molecular
targets by bioactive components in model systems may eventually
provide biomarkers for the very early stages of the disease. The
recent characterization of a mammary stromal fibroblastic cell line
from mice that can differentiate to a preadipocyte lineage [101] in
coculture studies with nontumorigenic or tumorigenic mammary
epithelial cells will enable a proof-of-principle evaluation of the
epithelial/stromal adipocyte dialog and associated mediators.

The findings that mammary stroma can reprogram testicular and
neural stem cells to produce progeny committed to a mammary
epithelial cell fate [102,103] and that a precancerous mammary
stem cell may be programmed to become breast cancer [104]
suggest the possibility that direct dietary factor effects on
mammary stroma may alter stem cell behavior to inhibit neoplastic
transformation. Thus, while mammary stem cells may constitute
direct targets of bioactive dietary components as recently suggested
by the report that curcumin added in vitro can induce mammo-
Fig. 2. A proposed model of cellular processes regulated by dietary factors in mammary epith
indicate an ongoing dialog between the mammary compartments. Mammary epithelial and m
The composite actions of each mammary cell type result in the enhanced differentiation and, h
decreased breast cancer risk.
sphere-forming ability in normal and malignant breast cells [105], a
dual effect of dietary factors on mesenchymal and epithelial stem
cells is also likely.

Further, dietary factors may directly influence the stem cell
compartment in mammary stroma at the levels of the preadipocyte
pool and the number of multipotent stem cells that enter the adipocyte
lineage. The effects of obesity, high fat diets and other dietary factors on
mammary preadipocyte populations remain unknown. It has been
suggested that the inability of a particular adipose depot to expandmay
be causative in the accumulation of hypertrophic adipocytes and a
predisposing factor in metabolic disease. Hence, it is possible that
certain diets or dietary factors may mediate indirect beneficial actions
on mammary epithelial cells via their modulation of preadipocyte
commitment and/or differentiation of new mammary adipocytes. A
recent report that in utero exposure to the environmental agent
tributylin induced multipotent stem cells to differentiate into adipo-
cytes provides strong support to this possibility [106].

Finally, while the contribution of inflammatory/immune cells
found in mammary stroma is not included in the present review,
their relevance as dietary factor targets to mediate epithelial
proliferation and differentiation cannot be ignored, given that
local inflammation associated with solid tumors is partly a
consequence of immune cells in the tumor stroma [107]. Indeed,
we observed that immune-related genes constitute major targets of
dietary exposure to SPI and GEN in mammary epithelial cells of
young adult rats [50]. The down-regulated expression of epithelial
genes involved in antigen presentation, antigen processing and
inflammation, including that of interleukin 17β, a homolog of
interleukin 17, which is linked to neutrophil chemotaxis, suggests
the possibility of similar specific targeting of immune cells localized
elial and stromal compartments for breast cancer protection. The bidirectional arrows
esenchymal stem cells are considered to represent cells of origin for each compartment.
ence, increased resistance of mammary epithelial cells to carcinogenic insults, leading to
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to stroma and is consistent with promotion by the immune
microenvironment of tumor progression [107].

In summary, bidirectional signaling between mammary stroma
and epithelial cells promoted by bioactive dietary components
constitutes a relevant biological event for mammary tumor preven-
tion (Fig. 2). Thus, it is essential that, in future studies where dietary
factor effects are described for mammary tumor prevention, their
contributions to the phenotype and molecular profiles of mammary
stromal fibroblasts and adipocytes are investigated coincident with
those of neighboring epithelium. Gaining a better understanding of
the complex interrelationships among the different mammary
compartments in response to environmental (‘dietary’) cues may
expand nutritional strategies for breast cancer prevention and
therapeutic interventions.
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