

1

A High Performance Computing Framework for Physics-based

Modeling and Simulation of Military Ground Vehicles

Dan Negrut
a
, David Lamb

b
, David Gorsich

b

a
Dept. of Mechanical Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706

b
US Army Tank Automotive Research, Development and Engr. Center, Warren, MI 48397

ABSTRACT

This paper describes a software infrastructure made up of tools and libraries designed to assist developers in

implementing computational dynamics applications running on heterogeneous and distributed computing environments.

Together, these tools and libraries compose a so called Heterogeneous Computing Template (HCT). The heterogeneous

and distributed computing hardware infrastructure is assumed herein to be made up of a combination of CPUs and

Graphics Processing Units (GPUs). The computational dynamics applications targeted to execute on such a hardware

topology include many-body dynamics, smoothed-particle hydrodynamics (SPH) fluid simulation, and fluid-solid

interaction analysis. The underlying theme of the solution approach embraced by HCT is that of partitioning the domain

of interest into a number of subdomains that are each managed by a separate core/accelerator (CPU/GPU) pair. Five

components at the core of HCT enable the envisioned distributed computing approach to large-scale dynamical system

simulation: (a) the ability to partition the problem according to the one-to-one mapping; i.e., spatial subdivision,

discussed above (pre-processing); (b) a protocol for passing data between any two co-processors; (c) algorithms for

element proximity computation; and (d) the ability to carry out post-processing in a distributed fashion. In this

contribution the components (a) and (b) of the HCT are demonstrated via the example of the Discrete Element Method

(DEM) for rigid body dynamics with friction and contact. The collision detection task required in frictional-contact

dynamics; i.e., task (c) above, is discussed separately and in the context of GPU computing. This task is shown to benefit

of a two order of magnitude gain in efficiency when compared to traditional sequential implementations.

Note: Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer,

or otherwise, does not imply its endorsement, recommendation, or favoring by the United States Army. The views and

opinions of authors expressed herein do not necessarily state or reflect those of the United States Army, and shall not be

used for advertising or product endorsement purposes.

Keywords: physics-based simulation, high performance computing, heterogeneous CPU/GPU computing,

vehicle/terrain interaction, computational dynamics

INTRODUCTION

Over the last five years it has become apparent that future increases in computational speed are not going to be

fueled by advances in sequential computing technology. There are three main walls that the sequential computing model

has hit [1]. Firstly, there is the power dissipation wall caused by the amount of energy that is dissipated per unit area by

ever smaller transistors. On a per unit area basis, the amount of energy dissipated by a Pentium 4 processor comes

slightly short of that associated with a nuclear power plant. Since the amount of power dissipated scales with the square

of the clock frequency, steady further clock frequency increases, which in the past were responsible for most of the

processing speed gains, are unlikely. Forced cooling solutions could increase absolute clock rates, but come at a

prohibitively high price and cannot trump a general trend.

The second wall, that is, the memory wall, arose in sequential computing as a manifestation of the gap between

processing power and memory access speed, a gap that grew wider over the last decade. A single powerful processor will

likely become data starved, idling while information is moved back and forth between the chip and RAM over a bus

typically clocked at 10 to 30 GB/s. Ever larger caches alleviate the problem, yet technological and cost constraints

associated with large caches can’t reverse this trend. This aspect will most likely be addressed by a disruptive technology

such as photonic integrated circuits that promise to provide a new solution to bandwidth demand for on/off-chip

communications [2].

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
25 MAR 2011

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A High Performance Computing Framework for Physics-based
Modeling and Simulation of Military Ground Vehicles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Dan Negrut; David Lamb; David Gorsich

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI
48397-5000, USA Dept. of Mechanical Engineering, Univ. of
Wisconsin-Madison, Madison,WI 53706

8. PERFORMING ORGANIZATION REPORT NUMBER
21630RC

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI
48397-5000, USA

10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC/RDECOM

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
21630RC

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at SPIE 25-29 April 2011 Orlando, Florida, USA, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

SAR

18.
NUMBER
OF PAGES

11

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Thirdly, investments in Instruction Level Parallelism (ILP), which mainly draws on instruction pipelining,

speculative execution, and branch prediction to speed up execution represent an avenue that has already exhausted its

potential. Both processor and compiler designers capitalized on opportunities for improved performance in sequential

computing, which came at no cost to the software developer. Augmenting branch prediction and speculative execution

beyond current instruction horizons comes at a complexity/power price that in many cases increases exponentially with

horizon depth.

While the sequential computing model paradigm seems to have lost, at least temporarily, its momentum, increases in

flop rate over the next decade are guaranteed by vigorous miniaturization rates. Moore’s law is alive and well, with 22

nm CMOS manufacturing technology slated to be made available by Intel in 2011, 15 nm in 2013, 11 nm in 2015, and 8

nm in 2017 [3]. This packing of more transistors per unit area, which translates into having more cores per chip, stands to

address in the immediate future demands for higher flop rates and larger memory sizes in Scientific Computing. The

success stories of this trend are the recent chip designs, code name Fermi and Knights, released by NVIDIA and Intel,

respectively. The former packs approximately three billion transistors to lead to co-processors with 512 cores. Knights

Ferry, announced in mid 2010, packs 32 cores in what is predicted to be the first in a family of products that belong to

Intel’s Many Integrated Core (MIC) architecture vision and slated to deliver using 22 nm technology a 50 core Knights

Corner co-processor in 2011.

Figure 1. CPU-GPU cluster of the Modeling,

Simulation, and Visualization Consortium at the

University of Wisconsin.

Figure 2. Schematic of CPU-GPU heterogeneous cluster.

The co-processing idea is the enabler of the heterogeneous computing concept advertised recently as the paradigm

capable of delivering exascale flop rates by the end of the decade. In this framework, run-time management tasks in a

Scientific Computing program, such as high level flow control or I/O operations, are executed on the CPU. Conversely,

math intensive computations applied uniformly to a large amount of data are pushed down to the GPU for single

instruction multiple data (SIMD) execution. This heterogeneous computing concept is supported by hardware

configurations such as the one shown in Figure 1. This is a 24 GPU and 48 core CPU heterogeneous cluster with a

3

schematic provided in Figure 2. The cluster runs 64 bit Windows HPC Server 2008, has 48 GB of RAM on each

compute node, and draws on 5,760 Tesla C1060 GPU scalar processors.

A HETEROGENEOUS COMPUTATIONAL TEMPLATE FOR DYNAMICS PROBLEMS

From an abstract perspective, computational dynamics aims at determining how a system of mutually interacting

elements changes in time. Heterogeneous computing becomes relevant when the number of interacting elements is very

large, and partitioning the dynamics simulation for distributed heterogeneous execution becomes attractive since it can

lead to efficiency gains and/or increased problem size. At a space-time physical level, the space in which the system

evolves is split into subdomains. At a virtual level, the simulation is split between available CPU cores, each of which

manages one GPU accelerator. A one-to-one mapping between a spatial subdomain and a CPU core/GPU accelerator

pair is established and maintained over the duration of the simulation leading to a spatial subdivision of the problem.

At a minimum, high performance heterogeneous computational dynamics requires: (a) the ability to partition the

problem according to the one-to-one mapping; i.e., spatial subdivision, discussed above (pre-processing); (b) a protocol

for passing data between any two co-processors; (c) algorithms for element proximity computation; and (d) the ability to

carry out post-processing in a distributed fashion. Requirement (a) is problem specific and is not discussed here.

Requirement (d) is discussed in [4], which details how the visualization for post-processing has been sped up by more

than one order of magnitude through the use of distributed computing and OptiX-enabled rendering on the GPU

accelerators [5].

In terms of (b), we designed and implemented an early version of a Dynamic Data Exchange Protocol (DDEP) that

manages transparently data passing between any two co-processors. Inter co-processor data exchange is mandatory in

any distributed dynamics simulation that relies on spatial subdivision since elements leave one subdomain, which is

virtually mapped to a certain co-processor, to enter a different subdomain. The need for such a protocol, schematically

captured in Figure 3, along with its role can be illustrated easily in the context of a specific computational dynamics

problem, such as molecular dynamics, smoothed particle hydrodynamics, or granular material dynamics. For molecular

dynamics simulation, imagine a large 3D domain in which the motion of the atoms of interest will be investigated. This

domain is partitioned into subdomains; the dynamics of all atoms that are physically present in a subdomain X will be

determined using a host (CPU) thread hX, which in turn manages co-processor (accelerator) aX. DDEP contains the key-

word Dynamic in its syntax since at each time step
n
t the position of each element in the simulation, each atom in this

case, needs to be accounted for. If at time step
n
t the element finds itself outside the bounds of subdomain X, a two step

process ensues: first, based on a global mapping available to each host thread and associated accelerator, the new owner

subdomain Y is identified. Second, all the information that defines the state of the element, which is problem specific but

in the case of molecular dynamics given by the 3D position and generalized velocity of the atom, is loaded into a buffer

that is sent to hY and from there to aY. The hX to hY communication relies on the Message Passing Interface (MPI)

standard [6]; the aX to hX and subsequently hY to aY communication is managed through CUDA calls [7]. The next

release of DDEP will leverage GPUDirect technology [8] in the existing cluster setup to enable a further 30% reduction

in simulation times due to more efficient aX to aY information passing. Essentially, using Mellanox InfiniBand adapters

in conjunction with NVIDIA GPUDirect technology on Windows HPC Server 2008 allows for a skipping of two CPU-

E used to be in X.

Belongs now to Y?

PCI-Move E data to

host ‘out’ buffer for

transfer to target SD

MPI-Send buffers to

target SDs

MPI-Receive ‘in’

data from other SDs;

PCI-move new E

data to ‘this’ SD

Perform calculations

using E data

 NO

Update E state

through numerical

integration or

iteration

YES

tn tn+1 or j j+1

Figure 3. DDEP control flow. E stands for “element”, SD stands for “subdomain”. Diagram captures what happens when advancing

simulation to the next time step
1n n

t t
+

→ or moving from iteration j to 1j + .

4

side memory transactions. Since the CPU-side memory space is shared in a virtual fashion by the co-processor, the page-

locked virtual memory used on the CPU for the aX to hX CUDA and subsequently hX to hY MPI memory transactions can

draw on the same CPU physical memory space. The same holds true on the hY receiving side, where the hY to aY

memory transaction can originate from the same CPU physical memory space that served as the destination to the hX to

hY MPI transaction.

v1

v3

v2

v5

v4

Figure 4. CPU thread hX manages accelerator hX that handles in this figure the time evolution of elements 1, 3, and 4. Although

element 5 is in subdomain Y, its state information needs to be made available to subdomain X.

The decision of sending physical state information from aX to aY in practical applications is complicated by the fact

that X may need to have access to the state information of elements that are actually entirely contained within Y. In

Molecular Dynamics, for instance, this is the case when a fast multipole algorithm is involved [9] due to long rage

interactions; in smoothed particle hydrodynamics when a particle in Y falls within the compact kernel support of a

particle contained in X; and in granular dynamics, when a body entirely contained within Y can collide with a body that

although assigned to X spans the borders between X and Y. The latter scenario is captured in Figure 4, where body 5,

which is entirely contained in the subdomain Y, collides with body 4 whose center of mass is contained in X. The

process of marching in time (numerical time integration) is managed for bodies 4 and 5 by aX and aY, respectively.

Therefore, when aX computes the forces acting on body 4 (needed by the numerical time integration algorithm), it will

have to receive, using DDEP, the state information of body 5; i.e., its location and generalized velocity
5
v . For Discrete

Element Method approaches that use explicit numerical time integration [10], DDEP-enabled communication between X

and Y occurs once per time step. For Differential Variational Inequality approaches state information should be

exchanged using DDEP multiple times during the same time step due to a Cone Complementarity Problem that needs to

be iteratively solved to recover the frictional contact force acting between bodies 4 and 5 [11].

Figure 5. The proposed Heterogeneous Computing Template (HCT) is meant to streamline the development of computational

dynamics applications that leverage CPU/GPU heterogeneous computing. Arrows from box A to box B indicate that box B relies on

functionality/services provided by box A. Notation used: hX/aX, denotes the CPU/GPU pair handling computations associated with one

problem subdomain; PPS represents the set of Partitioned Physics Services that encapsulate the physics of the specific computational

dynamics problem considered. Both DDEP and PPS rely on the library support provided by MPI, OpenMP, and CUDA.

The heterogeneous computing vision is abstracted into a general purpose Heterogeneous Computing Template

(HCT) defined to streamline the implementation of any computational dynamics application (see Figure 5). In this

framework, whose purpose is that of accelerating heterogeneous computing application development, DDEP provides

the conduit between host/accelerator pairs; i.e., the hX/aX pairs. The data that needs to be transmitted using this conduit is

physics specific and the user must provide the specific Partitioned Physics Services (PPS) required by the application.

Proximity computations are always part of these services as seen for molecular dynamics, smoothed particle

5

hydrodynamics, and granular dynamics applications. Applications in the latter two fields motivated our decision to

concentrate on implementing efficient collision detection and nearest neighborhood approaches [12-14].

TEST CASES

A set of three examples are provided to illustrate how GPU computing and/or CPU/GPU computing have been used

for large scale computational dynamics problems. The examples draw on many-body dynamics applications where the

number of elements in the simulation is in the millions. Experimental validation of these simulations is under way with

early results reported in [10, 15].

Distributed Computing Using Multiple CPUs and the Message Passing Interface (MPI) Standard

The HCT concept has been used to implement a rigid-body dynamics simulation leveraging the Discrete Element

Method (DEM). This implementation uses the Message Passing Interface (MPI) for communication between

subdomains. A description of the DEM approach, the MPI implementation, and a numerical experiment are given in the

following sub-sections.

Discrete Element Method.

The Discrete Element Method was proposed by Cundall to model

the mechanical behavior of granular material [16]. The DEM can be

classified as a penalty method, where the force acting between two

colliding bodies is computed based on the associated interpenetration.

In fact, the reaction force is often modeled by a spring-damper

element where the spring and damping coefficients are determined

from continuum mechanics theory or from experimental results [17].

At each time step, the DEM requires the following four computational

steps: i) collision detection to determine pairs of colliding bodies; ii)

computation of contact forces via a constitutive relationship; iii)

solution of Newton’s Second Law to determine the accelerations of all

bodies in the system; and iv) numerical integration to update velocities

and positions.

Numerous contact force models have been developed and used over the years. For the purposes of this overview

paper, a simple linear viscoelastic normal force model has been selected. Figure 6 shows two bodies i and j at positions

qi and qj respectively. The spheres have radii ri, rj, and masses mi, mj. The normal force is modeled as a spring-damper

acting at the interface between the two colliding bodies. The normal force is computed as follows:

F n v
n ij eff n
k mδ γ= − (1)

Here, δ is the normal compression, nij is the unit normal in the direction of qij, vn is the relative normal velocity, k is

the spring stiffness, γ is the damping coefficient, and meff is the effective mass,

()eff i j i j
m mm m m= + .

Inter-Domain Communication via MPI.

In this implementation, a pre-processing step discretizes the simulation domain into a specified number of

subdomains. The subdivision is based on a cubic lattice and is constant throughout the simulation. Separate MPI

processes are mapped to each subdomain. In this way, each process maintains a record of the bodies contained in the

associated subdomain and manages the solution of the DEM problem for those bodies.

Figure 6. Schematic of DEM contact

6

Each body in the simulation can have one of three states. First, it can be

completely contained in a single subdomain (unique). In this case, only one

subdomain needs to know the state of the body. The remaining two states

occur when a body spans the boundary between two subdomains. In this case,

the subdomain containing the center of mass of the body has the master copy

of the body, while any other subdomain containing part of the body has a

slave copy. The MPI process managing a given subdomain uses bodies of all

states for collision detection and computation of collision forces, but the

process only solves the equations of motion for bodies which are unique or

master, as slave bodies will be updated in a different subdomain.

Communication occurs at the end of each time step. Each subdomain is

analyzed to determine if any bodies have moved to different subdomains. The

new positions and velocities of master bodies are sent to any slave copies. If a

body has completely left one subdomain or entered a new subdomain, its data

is sent and received via MPI calls, then the body is added to or removed from

the appropriate subdomain.

Numerical Experiment.

A simple scenario was created to test the DEM implementation of the

HCT concepts. In this simulation spheres were dropped into a container with

sloped sides. Two subdomains (and two MPI processes) were used. The

bodies entered the simulation in the left subdomain and bounced into the right

subdomain. Bodies in the left subdomain are white, bodies in the right

subdomain are dark grey, and bodies which span the boundary are red. In this

simulation, four spheres were dropped every 0.3 seconds until a total of 100

spheres were added. The simulation used a time step of 1e-5 seconds and

represents 10 seconds of dynamics. The snapshots in Figure 7 show the state

of the system at time 0 s, 3.33 s, 6.66 s, and 10 s.

Tracked-Vehicle Example

 A model of a light tracked vehicle was simulated operating on granular

terrain. The model consisted of two tracks connected rigidly to a chassis (not

shown in Figure 8). Each track contained five road wheels, three support

rollers, one drive sprocket, one front idler, and 46 track shoes. The rollers

were constrained to the chassis with revolute joints and the front idler was

allowed to translate linearly in the plane of the track with a spring to maintain

tension in the track. The collision geometry for this model was created via

spherical decomposition [14]: the complex geometry of each component was

approximated as a union of spheres so that fast parallel collision detection

could be used. The sphere-set approximations of two of the track components

can be seen in Figure 8. In total, the track model was represented using

3,189,816 spheres.

Figure 8. Snapshot from simulation of tracked vehicle on granular terrain (left), and examples of sphere-set collision

geometry for two components of the track model.

Figure 7. Four snapshots of simulation

with two subdomains carried out by

two different computational threads

using MPI.

7

The terrain model was created using a height-map image. The

model contained a total of 284,715 spheres in five layers. Each

sphere had a radius of 0.027 m. The drive sprockets were both given

a constant angular velocity of 1 rad/s. The 12 second long GPU

simulation took 18.53 hours to finish.

Note that the deformable nature of the terrain can be observed in

Figure 9 by considering the vertical positions of the track shoes

while on the bottom of the track. Given that the angular velocity of

the driving gear was low, it was assumed (and qualitatively verified)

that there was no slip in the driving direction. With no slip, the

vertical position of a track shoe would be constant if the terrain was

rigid, so any change in vertical position as the vehicle moves over

the shoe can be attributed to sinkage in the granular terrain. This can

be observed in Figure 9 where the positions of four consecutive track

shoes attain a slight downward slope at about six seconds into the

simulation, before each shoe is picked up in turn by the drive

sprocket to pass to the top span of the track.

Collision Detection Example

Proximity computations are physics; i.e., problem, specific and represent one of the Partitioned Physics Services

(PPS) that underlie the HCT approach. This section reports on a proximity computation, in the form of a collision

detection task that will support granular dynamics and fluid-solid interaction problems in HTC. A first set of numerical

experiments gauged the efficiency of the parallel collision detection algorithm developed. The reference used was a

sequential implementation from Bullet Physics Engine, an open source physics-based simulation engine [18]. The CPU

used in this experiment (relevant for the Bullet results) was AMD Phenom II Black X4 940, a quad core 3.0 GHz

processor that drew on 16 GB of RAM. The GPU used was NVIDIA’s Tesla C1060. The test was meant to gauge the

relative speedup gained with respect to the serial implementation. This test stopped when dealing with about six million

contacts (see horizontal axis of Figure 10), when Bullet ran into memory management issues. The plot illustrates a 180

fold relative speedup when going from sequential Bullet to the GPU-based parallel implementation.

Figure 10. Overall speedup when comparing the CPU algorithm to

the GPU algorithm. The maximum speedup achieved was

approximately 180 times.

In the tracked vehicle simulation example, the proximity computation problem assumes the form of a collision

detection task between elements participating in the model. Therein, due to the discrete representation of the terrain, the

collision detection task requires the identification of several million contacts at each simulation time step. The number of

collisions in granular terrain leads to demanding collision detection jobs; on average, in a cubic meter of sand one can

expect approximately six billion contacts to take place at any instance of time. Heterogeneous computing was

demonstrated to handle such problems effectively. Using four CPU cores and leveraging the OpenMP standard, four

GPUs were used simultaneously to resolve collision detection tasks [12]; the software and hardware stack along with the

scaling of the implementation are illustrated in Figure 11.

Figure 9. Positions of four track shoes during

simulation on deformable granular terrain.

8

Figure 11. Software and hardware stack for collision detection algorithm (left). Computation time versus number of

contacts, showing linear scaling up to six billion contacts (right).

DISCUSSION. WHAT COMES NEXT?

When compared to simulation results obtained using sequential computing, one of the examples considered in

section 3 illustrated reductions in simulation times by a factor of 180. Recent granular dynamics results [11] indicate

reduction in simulation times on the order of 50-60, and a factor of 60-70 for collision detection of ellipsoids [19].

Discrete Element Method simulation results reported by [10] suggest more than two orders of magnitude speedup when

going from sequential to GPU-enabled parallel computing.

How are these speedups possible given that the difference in flop rate between GPU and CPU computing is,

according to results in Figure 12, less than ten-fold? A first point that should be made is that the timing results report

single (on the GPU) versus double precision (on the CPU) performance. Since for the latest Fermi generation of NVIDIA

GPU cards [20], going from single to double precision arithmetic incurs a 2X slow down, this is an aspect that reduces

any relative speedup by the same factor. Moreover, one might claim that aggressive tuning of the sequential code would

significantly reduce sequential execution times, which has been shown to be the case in many applications.

Figure 12. Evolution of flop rate, comparison CPU vs. GPU. Squares ■ on a curve indicate single precision floating

point performance. Triangles ▲ on a curve indicate double precision floating point performance. The TESLA 20-

series represents the latest generation of GPU cards Fermi [20].

In regards to the first point, single versus double precision issues should be brought into the picture only for

applications where double precision accuracy is crucial. In particular, for collision detection, validation tests carried out

with hundreds of thousands of elements revealed no difference between the CPU double precision and GPU single

precision results [12]. With respect to the second point, its lesson certainly applies for parallel executables as well:

aggressive tuning of the parallel implementation can significantly reduce the parallel simulation times. If there is truly a

point to be made it is that professional code, which most often assumes the form of libraries, should be used whenever

possible, both for sequential and parallel programs. Yet this is easier said than done, since Scientific Computing, defined

9

as the arena in which scientists and engineers use simulation to carry out novel research and solve challenging problems,

is a niche where professional grade code has a relatively small foot print. This leads in many cases to ad-hoc

implementations that see limited profiling and subsequent code optimization.

The efficiency gap between the sequential and parallel implementations can be traced back to several

microprocessor design features: hardware-implemented context switching, large memory bandwidth, and a relatively

large number of registers per stream multiprocessor, which all place the GPU at an advantage. Of the factors mentioned,

the most relevant is the fast context switching, which has to do with the ability of the scheduler to swap between warps

of threads. It enables switching the execution with virtually no overhead from a warp of threads that must wait for a

memory transaction to a warp of threads that is ready for execution. As an example, for the Tesla C1060 NVIDIA model,

the GPU has 30 stream multiprocessors (SMs), each with eight scalar multiprocessors (SPs). Each SM highly

overcommits its resources, by managing for execution up to 1024 parallel threads, which are organized as 32 warps of 32

parallel execution threads each. The fast context switching and the SM’s overcommitment decrease the likelihood of the

eight SPs to idle. Therefore, when the execution code displays enough fine grain data parallelism, the fast context

switching becomes an effective mechanism to hide high latency global memory accesses. This approach has permeated

CPU designs in the form of the so called HTT, hyper-threading technology, where two execution threads are juggled by

the CPU to hide memory latency. In addition to HTT, CPUs usually rely on large caches, albeit to a limited degree of

success for applications where fine grain data parallelism can be exposed, a scenario where GPU computing excels.

Figure 13. Evolution of memory bandwidth, comparison CPU (diamond markers, ◆) vs. GPU. (square markers, ■).

The ability to hide memory latency with arithmetic operations through fast context switching, combined with a

global memory bandwidth clocked at 140 GB/s (see Figure 13) that feeds the scalar processors on each stream

multiprocessor are factors that motivated the Scientific Computing community to take a close look at heterogeneous

computing as an alternative to traditional cluster-based supercomputing. The most aggressive adopter of this strategy is

China, which over the last year deployed two of the fastest five supercomputers in the world: Tianhe at number one and

Nebulae at number three. Both systems rely on GPU co-processing and use Intel Xeon processors cards and NVIDIA

Tesla C2050 GPUs. In spite of a theoretical peak capability of almost 3 Petaflop/s, Nebulae clocked at 1.271 PFlop/s

when running the Linpack benchmark, which puts it behind Jaguar of Oak Ridge National Lab, a Cray supercomputer

that achieved 1.75 PFlop/s [21]. This apparent contradiction points out the current weakness of CPU-GPU heterogeneous

systems: the CPU to/from GPU data transfer, typically an asynchronous process that can overlap computation on the

accelerator, might represent a bottleneck that adversely impacts the overall performance of the system. Thus, in addition

to overhead stemming from MPI communication over Infiniband Interconnect, or, for lesser systems, over Gigabit

Ethernet, CPU-GPU heterogeneous systems require an additional layer of communication. It occurs over a PCI Express

2.0 interconnect clocked at 8 GB/s each way, and it represents a serious bottleneck that is partially alleviated by

overlapping GPU execution and communication when using page lock memory transfers and virtual memory

transactions. GPUDirect technology [8], briefly mentioned before, alleviates the transfer process through a protocol for

the CPU-side memory management that stitches the virtual memory spaces associated with CPU-to-GPU and CPU-to-

CPU data transfer. Yet it is clear that this represents a cumbersome and temporary solution that, given the potential of

10

heterogeneous computing, will soon be replaced by hardware designs that eliminate the CPU-to-GPU PCI conduit. The

most notable efforts in this direction are AMD’s Accelerated Processor Unit (APU), which through its Fusion concept

aims at CPU and GPU same-die integration [22], and a similar NVIDIA initiative called the “Denver project”. GPU

access to a broader memory space that is physically shared by all die processors represents a side benefit of such

integration. On top of the line GPUs, such as Fermi, this would extend the 4 GB of global memory that is often

insufficient for keeping busy more than 500 scalar processors.

CONCLUSIONS

This paper provides an overview of the emerging paradigm of heterogeneous computing and summarizes a

heterogeneous computing template (HCT) that promises to facilitate application development for large-scale

computational dynamics problems. GPU computing opens up new avenues for the analysis at an unprecedented level of

accuracy of large and challenging dynamic systems. This has been illustrated herein by problems with a large number of

rigid bodies. Two order of magnitude reductions in simulation times and increases in problem size are demonstrated

when using heterogeneous CPU/GPU computing for collision detection, where problems with up to six billion collision

events were solved in less than three minutes. Although not discussed here, heterogeneous computing has motivated

research into numerical methods for the parallel solution of large differential variational inequality problems [11], and

has also been used very effectively in distributed visualization tasks where post-processing times for simulation

visualization were reduced by more than one order of magnitude [4].

Beyond its immediate relevance in solving many-body dynamics problems, heterogeneous CPU-GPU computing

promises to become a computational paradigm that can address stringent efficiency needs in Scientific Computing

applications in diverse fields such as climate modeling, quantum chemistry, fluid dynamics, and biochemistry. This

emerging computational paradigm is anticipated to become fully mature in the 2012-2013 timeframe, when the 22 nm

technology is anticipated to enable same die CPU-GPU integration. To fully capitalize on the potential of heterogeneous

computing, a focused and long term software design and implementation effort remains to address aspects specific to this

new paradigm. In this context, OpenCL [23] represents an attempt at generating a programming framework for

heterogeneous computing. However, it is not widely adopted and therefore a lack of software that draws on this standard

and is aimed at computational dynamics problems continues to translate in ad-hoc implementations that fail to leverage

the full potential of heterogeneous computing.

ACKNOWLEDGEMENTS

Financial support for this work was provided in part by an US Army grant. The first author was financially

supported in part by the National Science Foundation under grant NSF-CMMI-0840442.

REFERENCES

[1] Manferdelli, J.L., The Many-Core Inflection Point for Mass Market Computer Systems. CTWatch Qtrly, 2007. 3(1).

[2] Chan, J., G. Hendry, A. Biberman, and K. Bergman, Architectural Exploration of Chip-Scale Photonic

Interconnection Network Designs Using Physical-Layer Analysis. J. Lightwave Technol., 2010. 28: p. 1305-1315.

[3] Skaugen, K., Petascale to Exascale: Extending Intel's HPC Commitment:

http://download.intel.com/pressroom/archive/reference/ISC_2010_Skaugen_keynote.pdf in International

Supercomputer Conference. 2010.

[4] Hill, J., H. Mazhar, and D. Negrut, Using OptiX and Windows HPC Server 2008 for Fast Rendering on a GPU

Cluster: Technical Report TR-2010-02. 2010, Simulation-Based Engineering Laboratory, University of Wisconsin:

Madison, WI.

[5] OptiX. Interactive ray tracing on NVIDIA Quadro professional graphics solutions:

http://www.nvidia.com/object/optix.html. 2010 [cited 2010 August 27].

[6] Gropp, W., E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with the message-passing

interface. 1999: MIT Press.

11

[7] NVIDIA. Compute Unified Device Architecture Programming Guide 3.1:

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide_3.1.pdf.

2010.

[8] GPUDirect. Technical Brief - NVIDIA GPUDirect Techonology: Accelerating GPU-based Systems:

http://www.mellanox.com/pdf/whitepapers/ TB_GPU_Direct.pdf. 2010 [cited 2010 August 30].

[9] Greengard, L. and V. Rokhlin, A fast algorithm for particle simulations. Journal of Computational Physics, 1987.

73(2): p. 325-348.

[10] Tupy, M., A Study on the Dynamics of Granular Material with a Comparison of DVI and DEM Approaches, M.S.

Thesis, in Mechanical Engineering. 2010, University of Wisconsin-Madison: Madison.

[11] Negrut, D., A. Tasora, M. Anitescu, H. Mazhar, T. Heyn, and A. Pazouki, Solving Large Multi-Body Dynamics

Problems on the GPU, book chapter in GPU Gems 4, W. Hwu, Editor. 2010, Addison Wesley.

[12] Mazhar, H., T. Heyn, and D. Negrut, Large Scale Parallel Collision Detection on the Graphics Processing Unit.

Multibody System Dynamics, DOI: 10.1007/s11044-011-9246-y, 2011.

[13] Hahn, P., On the Use of Meshless Methods in Acoustic Simulations - M.S. Thesis, in Mechanical Engineering. 2009,

University of Wisconsin-Madison: Madison.

[14] Heyn, T., Simulation of tracked vehicles on granular terrain leveraging GPU computing, M.S. Thesis, in

Mechanical Engineering. 2009, University of Wisconsin-Madison: Madison.

[15] Melanz, D., M. Tupy, B. Smith, T. Kevin, and D. Negrut, On the Validation of a DVI Approach for the Dynamics of

Granular Material, in ASME 2010 International Design Engineering Technical Conferences (IDETC) and

Computers and Information in Engineering Conference (CIE) 2010, American Society of Mechanical Engineers:

Montreal, Canada.

[16] Cundall, P. and O. Strack, A discrete element model for granular assemblies. Geotechnique, 1979. 29(1): p. 47-65.

[17] Johnson, K.L., Contact Mechanics. 1987, Cambridge: University Press.

[18] Erwin, C. Physics Simulation Forum. 2010 [cited 2010 January 15]; Available from:

http://www.bulletphysics.com/Bullet/wordpress/.

[19] Pazouki, A., H. Mazhar, and D. Negrut, Parallel Contact Detection between Ellipsoids with Applications in

Granular Dynamics. Mathematics and Computers in Simulation, Submitted, 2010.

[20] NVIDIA. Fermi: Next Generation CUDA Architecture. 2010 [cited 2010 January 30]; Available from:

http://www.nvidia.com/object/fermi_architecture.html.

[21] TOP-500. Top 500 Supercomputers June 2010: http://www.top500.org/lists/2010/06. 2010 [cited 2010 August 31].

[22] AMD-Fusion. The AMD Family of APUs: http://sites.amd.com/us/fusion/APU/Pages/fusion.aspx. 2010 [cited 2010

August 30].

[23] Munshi, A., The OpenCL Specification. Khronos OpenCL Working Group, 2008.

