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A Variational Framework for Exemplar-Based Image
Inpainting

Pablo Arias · Gabriele Facciolo · Vicent Caselles · Guillermo Sapiro

Abstract Non-local methods for image denoising and

inpainting have gained considerable attention in recent

years. This is in part due to their superior performance
in textured images, a known weakness of purely lo-

cal methods. Local methods on the other hand have

demonstrated to be very appropriate for the recovering

of geometric structures such as image edges. The syn-
thesis of both types of methods is a trend in current

research. Variational analysis in particular is an appro-

priate tool for a unified treatment of local and non-local

methods. In this work we propose a general variational

framework non-local image inpainting, from which im-
portant and representative previous inpainting schemes

can be derived, in addition to leading to novel ones. We

explicitly study some of these, relating them to previous

work and showing results on synthetic and real images.

Keywords Inpainting · Variational methods · Self-

similarity · Non-local methods · Exemplar-based
methods

1 Introduction

Image inpainting, also known as image completion or

disocclusion, is an active research area in the image
processing field. The purpose of inpainting is to ob-

tain a visually plausible image interpolation in a region

in which data are missing due to damage or occlusion.
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Usually, to solve this problem, the only available data

is the image outside the region to be inpainted. In ad-

dition to its theoretical interest, image inpainting has
applications to image and video editing and restoration.

Most inpainting methods found in the literature can

be classified into two groups: geometry- and texture-

oriented methods. We now briefly review the develop-
ments in both types of approaches, with emphasis in

texture-oriented methods. This review will helpful for

motivating the proposed formulation.

Geometry-oriented methods. Images are modeled as func-

tions with some degree of smoothness, expressed for in-
stance in terms of the curvature of the level lines or the

total variation of the image. The interpolation is per-

formed by continuing and imposing this model inside

the inpainting domain, usually by means of a partial
differential equation (PDE). Such PDE can be derived

from variational principles, as for instance in [6,19,20,

28,44,45], or inspired by physical processes [8,11,54].

These methods show good performance in propagating

smooth level lines or gradients, but fail in the presence
of texture. They are often referred to as structure or

cartoon inpainting.

Geometry-oriented methods are local in the sense

that the associated PDEs only involve interactions be-

tween neighboring pixels on the image grid. An impli-
cation of this is that among all the data available in the

image, these methods only use that around the bound-

ary of the inpainting domain.

Texture-oriented methods. Texture-oriented inpainting

was born as an application of texture synthesis, e.g., [26,

35]. Its recent development was triggered in part by the
works of Efros and Leung [26] and Wei and Levoy [55]

using non-parametric sampling techniques (parametric

models have also been considered, e.g. [40]). In these
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works texture is modeled as a two dimensional proba-

bilistic graphical model , in which the value of each pixel

is conditioned by its neighborhood. These approaches

rely directly on a sample of the desired texture to per-

form the synthesis.

In practice these methods work progressively by ex-
panding a region of synthesized texture. The value of

a target pixel x is copied from the center of a (square)

patch in the sample image, chosen among those that

best match the available portion of the patch centered

at x. Levina and Bickel [41] provided a probabilistic
theoretical justification for this strategy.

This method (as explained above or with some mod-
ifications) has been extensively used for inpainting [9,

10,22,25,26,48]. As opposed to geometry-oriented in-

painting, these so-called exemplar-based approaches, are

non-local : To determine the value at x, the whole image
may be scanned in the search for a matching patch.

Since these texture approaches are greedy proce-
dures (each hole pixel is visited only once), the results

are very sensitive to the order in which pixels are pro-

cessed [22]. This issue was addressed in [39,56] where

the inpainting problem is stated as a probabilistic infer-
ence problem in a graphical model. In both cases, the

image is modeled using a pair-wise Markov Random

Field (MRF). In [39] an energy considering the over-

lap error of adjacent patches is minimized using belief

propagation. The method in [56] can be seen as an ap-
proximated Expectation-Maximization (EM) method.

A similar scheme was further explored in [38], however

with a different variational justification, closely related

to the models addressed in this work.

The algorithms of [38,56] require an initial com-

pletion which, as it turns out, has a great impact on
the final result. In both cases the authors resort to a

multiscale approach: The image is filtered and subsam-

pled, possibly several times. Starting from the coarsest,

the inpainting algorithm is then applied sequentially
to each scale, using the upsampled result of the pre-

vious scale as initialization. This so-called multiscale

approach yields very good results, and has been also

applied successfully to other exemplar-based methods

[30].

Another variational justification for texture-based

methods was presented in [24], where the inpainting
problem is reformulated as that of finding a correspon-

dence map Γ : O → Oc, O being the inpainting domain

and Oc its complement w.r.t. the image domain. De-

noting the image by u, the inpainted value at position
x ∈ O is then given by u(x) = u(Γ (x)), being Γ (·)
the correspondence map. The authors proposed a con-

tinuous energy functional in which the unknown is the

correspondence map itself:

E(Γ ) =

∫

O

∫

Ωp

(u(Γ (x − y)) − u(Γ (x) − y))2dydx,

where Ωp is the patch domain (centered at (0, 0)). Thus
Γ should map a pixel x and its neighbors in such a way

that the resulting patch is close to the one centered at

Γ (x). This model has been the subject of further anal-

ysis by Aujol et al. [4], where extensions are proposed
and the existence of a solution in the set of piecewise

roto-translation maps Γ is proved. The authors also

discuss the use of different regularizers which include

a regularization of the curvature of the level lines (or

surfaces) of the image. These approaches are theoreti-
cal and no numerical optimization scheme is available

so far.

A different variational model was presented in [49].

Images are modeled as ensembles of patches on a given
patch manifold. For inpainting, the patch manifold can

be learned from the set of patches in the hole’s com-

plement. The method is iterative, with each iteration

having two steps. First, the patches in the hole are pro-

jected onto the manifold. Since this is done for each
patch independently, the projected patches are not nec-

essarily coherent with each other, i.e. overlapping patches

may have different values in the overlap region. There-

fore, in the second step, an image is computed by aver-
aging the patches in the ensemble.

Another front of activity is given by the techniques

based on the sparseland model [1,16], in which the im-

age is restricted to have a sparse representation over an

overcomplete basis or dictionary [1,27,43]. The main
difference between dictionary-based and exemplar-based

methods lies in where the missing information is ob-

tained from. Dictionary based methods look for the

missing data in the dictionary (as a linear combina-
tion of a few atoms), whereas exemplar-based methods

assume that the information needed lies elsewhere in

the image itself (or in a database of images [33]). These

methods perform well in problems with small or scat-

tered inpainting domains, but fail with a large holes.
Exemplar-based methods provide impressive results

in recovering textures and repetitive structures. How-

ever, their ability to recreate the geometry without any

example is limited and not well understood. Therefore,
different strategies have been proposed which combine

geometry and texture inpainting [9,17,25,37]. These

methods usually decompose the image in some sort of

structure and texture components. Structure is recon-

structed using some geometry-oriented scheme, and this
is used to guide the texture inpainting.

Contributions. Despite these combined methods, geom-

etry and texture inpainting are still quite separate fields,
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each one with its own analysis and implementation tools.

Variational models as the one introduced in this pa-

per can provide common tools allowing a unified treat-

ment of both trends. We therefore propose a variational

framework for non-local image inpainting as a contri-
bution to the modeling and analysis of texture-oriented

methods.

Like the non-local means denoising algorithm [5,

14] we encode the image redundancy and self-similarity
(measured as patch similarity) as a non-local weight

function w : O×Oc → R. This function serves as a fuzzy

correspondence, and differs from the works [4,24], al-

though a (eventually multivalued) correspondence map

can be approximated as a limit of our model. The pro-
posed formulation is rather general and different in-

painting schemes can be derived naturally from it, via

the selection of the appropriate patch similarity crite-

rion. In this work we present four of them, patch NL-

means, -medians, -Poisson and -gradient medians, cor-

responding to similarity criterions based on L2- and

L1-norms between patches or their gradients. We pro-

vide an comprehensive empirical comparison on real

and synthetic problems, showing the benefits and limi-
tations of each model.

The patch NL-means is related to the method of [38,

56] and can be interpreted in terms of the mean shift

[21] and the manifold models of [49]. The other schemes
are, to the best of our knowledge, novel. Both gradient-

based methods, patch NL-Poisson and -gradient me-

dians combine the exempar-based interpolation with

local PDE-based diffusion schemes. This results in a

smoother continuation of the information across the
boundary and inside the inpainting domain, and in a

better propagation of structures.

Finally, we also present an initial discussion along

the line of providing a formal modelling of the multi-

scale scheme. We argue that this approach is not just
some heuristic to find a good minimum of the single

scale inpainting functional, but constitutes an inpaint-

ing criterion itself.

Although the focus of this work lies on inpainting,
the framework we are introducing can be adapted for

its application in other contexts. In particular it is re-

lated to graph-based non-local regularizers. Inspired by

graph regularization techniques [57], these approaches

model the image as a graph characterized by the sim-
ilarity weights [32,42]. Recently, our formalism [3] was

extended by Peyré et al. in [51] to provide a variational

justification to the case in which the graph is adaptive.

On the other hand the patch NL-means scheme pro-
vides a model for an iterative version of the non-local

means algorithm with adaptive similarity weights. Sim-

ilar approaches have been applied to denoising [5,52],

super-resolution [53], texture denoising [12], and demo-

saicing [15] among others. We will discuss the relation

with these models in the text.

The rest of this document is organized as follows. In

Section 2 we introduce the proposed variational frame-
work, together with the derivation and the empirical

comparison of the different inpainting schemes. The

links with related work are discussed in Section 3. In

Section 4 we present and discuss the multiscale ap-
proach. And in Section 5 we present experimental re-

sults on real images allowing to compare our results

with the state of the art. Concluding remarks and fu-

ture work is discussed in Section 6.

We note that a preliminary version of this work has
been presented in [3].

Notation. Images are denoted as functions u : Ω → R,

where Ω denotes the image domain, usually a rectangle

in R
2. Pixel positions are denoted by x, x̂, z, ẑ or y,

the latter for positions inside the patch. A patch of u
centered at x is denoted by pu(x) = pu(x, ·) : Ωp → R,

where Ωp is a rectangle centered at (0, 0). The patch is

defined by pu(x, y) = u(x + y), with y ∈ Ωp. O ⊂ Ω

is the hole or inpainting domain, and Oc = Ω \ O. We
still denote by u the part of the image u inside the hole,

while û is the part of u in Oc: û = u|Oc . Additional

notation will be introduced in the text.

2 Variational framework

Our variational framework is inspired by the following
non-local functional

Fw(u) =

∫

O

∫

Oc

w(x, x̂)(u(x) − û(x̂))2dx̂dx (1)

where w : O × Oc → R
+ is a weight function that

measures the similarity between patches centered in the

inpainting domain and in its complement.
Let us assume for the moment that the weights are

known. The minimum of (1) should have a low pixel

error (u(x) − û(x̂))2 whenever the similarity w(x, x̂) is

high. In this way the similarity weights drive the in-
formation transfer from known to unknown pixels. A

similar functional was proposed in [31] as a non-local

regularization energy in the context of image denois-

ing. It models the non-local means filter [5,14] when

the weights are Gaussian

w(x, x̂) ∝ exp

(
−

1

h
‖pu(x) − pû(x̂)‖2

)
,

where ‖·‖ is a weighted L2-norm in the space of patches

and h is a parameter that determines the selectivity of

the weigths w.
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In [31] the weights are considered known and remain

fixed through all the iterations. While this might be ap-

propriate in applications where they can be estimated

from the noisy image, in the image inpainting scenario

here addressed, the weights are not available and have
to be inferred together with the image (as in [50,53]).

One of the novelties of the proposed framework is the

inclusion of adaptive weights in a variational setting.

For this reason, we will consider the weight function
w as an additional unknown. Instead of prescribing ex-

plicitly the Gaussian functional dependence of w w.r.t.

u, we will do it implicitly, as a component of the opti-

mization process. In doing so, we obtain a simpler func-
tional, avoiding to deal with the complex, non-linear de-

pendence between w and u. In our formulation, w(x, ·)
is a probability density function,

∫

Oc

w(x, x̂)dx̂ = 1,

and can be seen as a relaxation of the one-to-one corre-

spondence map of [4,24], providing a fuzzy correspon-
dence between each x ∈ O and the complement of the

inpainting domain.

In this setting, we propose an energy which contains

two terms, one of them is inspired by (1) and measures
the coherence between the pixels in O and those in Oc,

for a given similarity weight function w. This permits

the estimation of the image u from the weights w. The

second term allows us to compute the weights given the

image. The complete proposed functional is

E(u, w) =
1

h
F̃w(u) −

∫

eO

Hw(x)dx, (2)

where

F̃w(u) =

∫

eO

∫

eOc

w(x, x̂)ε(pu(x) − pû(x̂))dx̂dx, (3)

ε(·) is an error function for image patches, and

Hw(x) = −

∫

eOc

w(x, x̂) log w(x, x̂)dx̂,

is the entropy of the probability w(x, ·).
We take Õ, the extended inpainting domain, as the

set of centers of patches that intersect the hole, i.e.

Õ = O+Ωp = {x ∈ Ω : (x+Ωp)∩O 6= ∅}. Thus, patches

pû(x̂) centered in x̂ ∈ Õc are entirely outside O (Figure

1). Accordingly, we consider that the weight function

w is defined over Õ × Õc and
∫

eOc w(x, x̂)dx̂ = 1. For a

simplified presentation, we assume that Õ + Ωp ⊆ Ω,

i.e. every pixel in Õ supports a patch centered on it

and contained in Ω. Analogously, we also shrink Õc to

have Õc + Ωp ⊆ Ω.

Let us now make some additional comments on the

functional. We observe that the term (u(x) − û(x̂))2 in

(1), that penalizes differences between pixels, is substi-

tuted in (3) by the patch error function ε(pu(x)−pû(x̂)).

This has two consequences. First, minimizing (3) with
respect to the image will force patches pu(x) to be simi-

lar to pu(x̂) for each pair x, x̂ such that w(x, x̂) is large.

The other implication has to be understood together

with the inclusion of the second term, which integrates
the entropy of each probability w(x, ·) over Õ. For a

given completion u, and for each x ∈ Õ, the optimum

weights minimize the mean patch error for pu(x), given

by
∫

eOc

w(x, x̂)ε(pu(x) − pû(x̂))dx̂,

while maximizing the entropy. For instance taking ε as

the squared L2-norm of the patch, then the resulting

weights are Gaussian. This can be related to the princi-

ple of maximum entropy [36], widely used for inference
of probability distributions. The parameter h controls

the trade-off between both terms and is also the selec-

tivity parameter of the Gaussian weights. The trivial

minima of E with w(x, x̂) = 0 everywhere is discarded
by restricting w(x, ·) to be a probability.

The patch error function. Patches are functions defined
on Ωp, and the error function ε : R

Ωp → R
+ is defined

as the weighted sum of pixel-wise errors e : R → R
+

ε(pu(x) − pû(x̂)) :=

∫

Ωp

ga(y)e(u(x + y)− û(x̂ + y))dy,

(4)

where the intra-patch weight function ga is a Gaussian

centered at the origin with standard deviation a. We

will consider the L1- and the squared L2-norms as par-

ticular cases of ε(·), with e(·) = | · | and e(·) = | · |2

respectively.

We will also consider patch error functions involv-

ing the gradient of the image. In an abuse of notation

we will denote the gradient’s patch and pixel-wise error
functions as ε : R

2Ωp → R
+ and e : R

2 → R
+, respec-

tively. It will be clear from the argument which case

is intended, as in this example ε(p∇u(x) − p∇u(x̂)) :=∫
Ωp

ga(y)e(∇u(x + y) −∇û(x̂ + y))dy.

Additionally, we can impose an additive penaliza-
tion of the distance ϕ(x − x̂) as in [38] by modifying

the patch distance function εd(pu(x) − pu(x̂), x, x̂) =

ε(pu(x) − pu(x̂)) + ϕ(x − x̂) to penalize the use of dis-

tant patches. We will not consider this modification in
the current work.

As it will be discussed below, the patch error func-

tion determines not only the similarity criterion but
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also the image synthesis, and thus is a key element in

the proposed framework.

2.1 Minimization of E

We have formulated the inpainting problem as the con-

strained optimization

(u∗, w∗) = argmin
u,w

E(u, w) (5)

subject to

∫

eOc

w(x, x̂)dx̂ = 1 ∀x ∈ Õ,

where E is the inpainting energy defined in (2). For en-
ergies involving image gradients we will consider Dirich-

let conditions at the boundary between the inpainting

domain and the image, and Neumann conditions at the

boundary of the image, i.e. u(x) = û(x) in ∂O\∂Ω and

∇u(x) · n(x) = 0 for x ∈ ∂O ∩ ∂Ω.

To minimize the energy E, we use an alternate min-

imization algorithm. At each iteration, two optimiza-

tion steps are solved: The constrained minimization of

E with respect to w while keeping u fixed; and the
minimization of E with respect to u with w fixed. This

procedure yields the following iterative scheme:

Algorithm 1 Alternate minimization of E(u, w).

Require: Initial Condition u0(x) with x ∈ O.

1: repeat

2: Update Weights : wk = argminw E(uk, w),

s.t.
∫

eOc w(x, x̂)dx̂ = 1.
3: Update Image: uk+1 = arg minu E(u, wk).

4: until Stop Criterion: ‖uk+1 − uk‖ < tolerance.

In the weights update step, the minimization of E

w.r.t. w yields:

wk(x, x̂) =
1

q(x)
exp

(
−

1

h
ε(puk

(x) − pû(x̂))

)
, (6)

where q(x) =
∫

eOc exp
(
− 1

hε(puk
(x) − pû(x̂))

)
is a nor-

malization factor that makes w(x, ·) a probability. For

the functionals defined with gradient patches, the weight

update equation is analogous to (6) replacing the patch

error function with ε(p∇uk
(x) − p∇û(x̂)).

The parameter h determines the selectivity of the

similarity. If h is large, maximizing the entropy be-

comes more relevant, yielding weights which are less

selective. In the limit, when h → ∞, w(x, ·) becomes
a uniform distribution over Õc. On the other hand, a

small h yields weights which concentrate on the patches

similar to pu(x). When h → 0, we compute the weights

as limh→0 w(x, x̂) = 1
|n(x)|δ(x̂−n(x)), where n(x) ⊆ Õc

is the set of nearest neighbors of x, defined as

n(x) = arg min
x̂∈ eO

ε(pu(x) − pû(x̂)).

That is w(x, ·) can be considered as an approxima-

tion to a multivalued correspondence. For simplicity,

in practice we assume that |n(x)| = 1, i.e. the nearest
neighbor is unique.

The image update step deserves more attention and

is described next.

2.1.1 Image update step.

In this section we present the derivation of the im-
age update step corresponding to the four patch er-

ror functions mentioned earlier. First we will present

the cases when image patches are compared using the

squared L2-norm and the L1-norm. We refer to the re-
sulting algorithms as patch-wise non-local means (patch

NL-means), and medians (patch NL-medians). Then

we consider functionals involving the gradients of the

patches both with the squared L2-norm and the L1-

norm. These methods will be referred as patch-wise

non-local Poisson (patch NL-Poisson), and gradient me-

dians (patch NL-GM).

Before moving to the derivation of the these schemes,

let us remark that with the change of variables z =
x + y, ẑ = x + y′, the image energy term can be ex-

pressed as an accumulation of pixel-wise errors:

F̃w(u) =

∫

eO

∫

eOc

w(x, x̂)

∫

Ωp

ga(y)e(u(x + y) − û(x̂ + y))dydx̂dx

=

∫

O

∫

Oc

m(z, ẑ)e(u(z) − û(ẑ))dẑdz + C, (7)

where C is a constant term. We have introduced the
pixel-wise influence weights m : O × Oc → R

+ defined

as

m(z, ẑ) :=

∫

Ωp

χ eOc(ẑ − y)ga(y)w(z − y, ẑ − y)dy. (8)

The function χ eOc takes the value 1 on Õc and 0 on Õ.

An analogous expression can be computed for gradient

patch error functions. This rewriting simplifies the fol-
lowing derivations and provides some insights on the

implications of using patch-wise errors.

For each pair of pixels (z, ẑ) ∈ O × Oc, m(z, ẑ)

weights the effective contribution of the pixel-wise error
between u(z) and û(ẑ) in the total value of the energy.

The quantity m(z, ẑ) is computed by integrating the

similarity w(z−y, ẑ−y) between all patches that overlap
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Fig. 1 Patch-wise non-local inpainting. The value at z ∈ O
is computed using contributions from all the patches that overlap
it, these are patches centered at x ∈ eO such that z = x + y
with y ∈ Ωp. The influence function m(z, ẑ) accumulates all the
contributions w(z − y, ẑ − y) from patches centered at ẑ − y to
z − y.

ẑ and those that overlap z in the same relative position

(shown in Figure 1). It tells us how much evidence there

is supporting a correspondence between the locations z

and ẑ. Also observe that for each z,
∫

Oc m(z, ẑ)dẑ = 1,

then m(z, ·) can also be interpreted as a probability

density function. Note that the energy (7) corresponds
to (1), with the patch similarity weights w being sub-

stituted with the pixel-wise influence weights m, a sort

of spacial convolution of w with kernel ga.

Patch non-local means. If we use a weighted squared
L2-norm as a patch error function ε(pu(x) − pû(x̂)) :=∫

Ωp
ga(y)|u(x + y)− û(x̂ + y)|2dy in (3) then the image

energy term (7) is quadratic on u, and its minimum for
fixed weights w can be computed explicitly as a non-

local average:

u(z) =
1

c(z)

∫

Oc

m(z, ẑ)û(ẑ)dẑ, (9)

for z ∈ O, where the normalization constant c(z) :=∫
Oc m(z, ẑ)dẑ. Although c(z) = 1 with the current def-

inition of w and ga, we will keep a generic notation in

the following derivations.

The formal similarity with the non-local means equa-

tion hides some important differences, which are a di-
rect consequence of the use of a patch error function in

the image energy term. To obtain more insight about

this let us expand m to obtain:

u(z) =
1

c(z)

∫

Ωp

ga(y)

∫

eOc

w(z − y, x̂)û(x̂ + y)dx̂dy.

There are two averaging processes involved in the syn-

thesis. The outer integral goes through all patches pu(z−
y) overlapping the target pixel z. Each patch suggests

a value for z resulting from the inner sum: A non-local
average of the pixel at position y in all patches pû(x̂)

in Õc. This sum is weighted by the similarity between

the patch pu(z − y) and each pû(x̂).

Therefore, we can distinguish two types of pixel

interactions. Interactions due to the patch overlap of

nearby pixels in the image lattice and non-local inter-

actions driven by the similarity weights. The latter can

be controlled by the selectivity parameter h, but the
extent of the overlap interactions is given by the patch

size. In particular when h → 0 Eq. (9) yields

u(z) =

∫

Ωp

ga(y)û(n(z − y) + y)dy

(recall we are assuming a unique nearest neighbor). For

each x ∈ Õ, the nearest neighbor of pu(x) is centered
at x and all these patches are averaged according to ga.

This blending may cause some blur, which leads us to

consider the L1-norm in the search of a more robust

image synthesis.
In Appendix A we prove the existence of minima for

the Patch NL-Means energy in the continuous setting.

Patch non-local medians. The L1-norm patch error func-
tion in the image energy term corresponds to taking

e(x) = |x| in (7). The Euler equation for u, given the

influence function m, can be formally written as

[δuF̃w(u)](z) =

∫

Oc

sign[u(z) − û(ẑ)]m(z, ẑ)dẑ ∋ 0.

This expression is multivalued, since sign(r) = r/|r| if
|r| > 0 and sign(r) ∈ [−1, 1] if r = 0. Its solution for

each u(z), z ∈ O is obtained as a weighted median of

the pixels of the complement Oc, with weights m(z, ·).

Both schemes presented so far perform inpainting

by transferring (by averages or medians) known gray
levels into the inpainting domain. As we will see next,

using a patch error function based on the gradient of

the image yields methods which transfer gradients and

compute the resulting image as the solution of a PDE.

This results in better continuation properties of the so-
lution, in particular at the boundary of the inpainting

domain.

Patch non-local Poisson. The squared L2-norm of the

gradient in the image energy term (3) corresponds to

taking e(·) = ‖ · ‖2 in (7), where ‖ · ‖ is the Euclidean

norm in R
2. The energy term becomes

F̃w(u) =

∫

O

∫

Oc

m(z, ẑ)‖∇u(z) −∇û(ẑ)‖2dẑdz. (10)

Recall that we consider Dirichlet conditions at the bound-

ary between the inpainting domain and the known data
region, and Neumann conditions at the boundary of the

image, i.e. u(x) = û(x) in ∂O\∂Ω and ∇u(x) ·n(x) = 0

for x ∈ ∂O ∩ ∂Ω. The Euler equation w.r.t. u is given
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by a non-local Poisson equation, i.e. a Poisson equation

with non-local coefficients:

∇ · [c(z)∇u(z)] = ∇ · [c(z)v(z)], (11)

for all z ∈ O, where u|Oc = û, c(z) =
∫

Oc m(z, ẑ)dẑ and

the field v : O → R
2 is given by

v(z) =
1

c(z)

∫

Oc

m(z, ẑ)∇û(ẑ)dẑ. (12)

The solution of (11) is computed with a conjugate gra-
dient algorithm.

Observe that the solutions of (11) are minimizers of
∫

O

c(z)‖∇u(z) − v(z)‖2dz.

Therefore, u is computed as the image with the closest
gradient (in the L2 sense) to the guiding vector field

v, which corresponds to a non-local weighted average

of the gradients in the complement. See [47] for further

uses of the Poisson equation in image editing.

Patch non-local gradient medians. To complete our study

of the image energy term we consider the L1-norm of

the gradient, that is

F̃w(u) =

∫

O

∫

Oc

m(z, ẑ)‖∇u(z) −∇û(ẑ)‖dẑdz,

with the same boundary conditions as with the patch-

wise NL-Poisson. To minimize it we perform an implicit
gradient descent:

min
ut+1

∫

O

∫

Oc

m(z, ẑ)‖∇ut+1(z) −∇û(ẑ)‖dẑdz+

+
1

2δt
‖ut+1 − ut‖2, (13)

where at each step ut+1 is computed using the fixed

point algorithm described in the Appendix B, based on
the projection method presented in [18].

As patch NL-Poisson, this scheme transfers gradi-

ents and interpolates the gray levels using the bound-

ary conditions. With the use of the L1 error function,
we expect the solution of patch NL-GM to retain more

small scale detail than that of patch NL-Poisson.

Notice that for both gradient-based methods the

patch similarity weights w are computed based only

on the gradients (and thus also the pixel-wise influ-
ence weights m). In most cases however, the gradient

is not a good feature for measuring the patch similar-

ity, and it would be desirable to consider also the gray

level data. This can easily be achieved within our vari-
ational framework by modifying the patch error func-

tion to take into account both gradients and gray level

patches.

Functionals combining intensity and gradients. We can

use any of the gradient-based energies in conjunction

with the patch NL-means energy by considering a linear

combination of the corresponding patch error functions.

This yields

F̃λ(u) =

∫

O

∫

Oc

m(z, ẑ)[(1 − λ)‖∇u(z) −∇û(ẑ)‖p+

+ λ|u(z) − û(ẑ)|2]dẑdz (14)

where the parameter λ ∈ (0, 1) controls the mixture
and p is either 1 or 2. The resulting algorithms update

the weights w considering both the intensity and the

gradient, therefore improving their selectivity.

Regarding the image update, notice that (14) can

be rewritten as

F̃λ(u) ∝

∫

O

∫

Oc

m(z, ẑ)‖∇u(z) −∇û(ẑ)‖pdẑdz

+
λ

1 − λ

∫

O

c(z)|u(z)− f(z)|2dz,

where f(z) = c(z)−1
∫

Oc m(z, ẑ)û(ẑ)dẑ is the solution
of the patch NL-means image update step. Thus we see

that the combination with the squared L2 patch error

function translates into a patch NL-means attachment

term.
For the case of patch NL-Poisson the Euler equation

w.r.t. u becomes:

∇ · [c(z)∇u(z)] −
λ

(1 − λ)
c(z)u(z) =

= ∇ · [c(z)v(z)] −
λ

(1 − λ)
c(z)f(z), (15)

which is linear and can be solved with a conjugate gra-

dient scheme.

The patch NL-GM combined functional has basi-
cally the same form as (13) and therefore can also be

solved with the fixed point scheme described in Ap-

pendix B.

2.2 Comparison of proposed schemes

Let us advance some results on synthetic problems to

highlight the main characteristics of the proposed meth-

ods. First we consider the inpainting of a regular texture

(shown in Figure 2) with two different mean intensities,
where the inpainting domain hides all patches on the

boundary between the dark and bright textures. With

this example we can test the ability of each method

to create an interface between both regions. Situations
like these are common in real inpainting problems, for

instance due to inhomogeneous lighting conditions. We

have also added Gaussian noise with standard deviation
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Fig. 2 Inpainting of a synthetic texture. The initial condition is shown in the first column. The other four columns show a zoom
(region in the red rectangle) of the results of patch NL-means, -medians, -Poisson and -GM. Top row, h = 0, bottom row h = 200,
h = 14, h = 400 and h = 20, respectively. The intra-patch weight kernel ga is shown in the bottom right corner of the initial condition,
it has a standard deviation a = 5 and the patch size is s = 15.

σ = 10 to show the influence of the selectivity param-

eter h. Each column of Figure 2 shows the results of

the four methods described in the previous section. We
have tested each method with h = 0 (top row), and

h > 0, chosen approximately to match the expected

deviation of each patch error due to the noise.

The first notorious difference is on how the meth-

ods handled the transition between the dark and bright

textures. Patch NL-means produces a smooth transi-

tion whereas a sharp step is obtained with the patch
NL-medians. On the other hand, both gradient based

methods yield a much smoother shading of the texture.

This is due to the fact that the image update step is

computed as the solution of a PDE which diffuses the

intensity values present at the boundary of the inpaint-
ing domain. These PDEs are driven by a vector field es-

timated non-locally and therefore combine non-local ex-

emplar based inpainting with local interpolation PDEs.

For the case of patch NL-Poisson this interpolation is
linear, since this is a solution of the homogeneous Pois-

son equation (i.e. Laplace equation).
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Fig. 3 Profiles of the results in Figure 2. The profiles are
taken from an horizontal line going between the circles in Figure
2. Top: results with h = 0 and bottom: results with h > 0.

As expected, the results using a higher h show some

denoising, since for larger h the patch similarity weights

are less selective. This effect can be better appreciated
in the profiles shown in Figure 3, which depict the image

values for a horizontal line between the circles. In the

usual context of inpainting, in which the available data

is not perturbed by noise, this denoising translates into
an undesirable loss of texture quality. For that reason

we use h = 0.

Recall that in the limit when h = 0, the weights

w(x, x̂) converge to a Dirac’s delta function at the set
n(x) of nearest neighbors of pu(x). Even if we assume

that the nearest neighbor is unique, the value of a pixel

is still computed from a population obtained from those

nearest neighbors of all patches that overlap the pixel.

In the case of periodic patterns, once the minimization
has reached a stable state, all values in the population

will be basically the same: patches surrounding a pixel

agree on its value, and in this case all schemes behave

similarly. Differences arise when neighboring patches
cannot agree on their suggested values. Such is the case

of the step in Fig. 2. For non-periodic patterns and ran-

dom textures this disagreements will be common, which

may affect the perceptual similarity of the synthesized

texture with the original.

Figure 4 studies this effect. The image consists of

Gaussian noise. The top row shows the resulting com-

pletions, and the bottom row shows an estimate of the

local variance (computed by smoothing the image of the
squared differences w.r.t. the mean). The red curves re-

quire a brief explanation. Following [7], we use the term

Nearest Neighbor Field (NNF) to refer to the vector

field n(x) − x, defined over Õ, where n(x) ∈ Õc is the

position of the (assumed) unique nearest neighbor of
pu(x). In Figure 4 we show in red the boundaries of the

regions with constant NNF. In those regions patches

are translated rigidly from somewhere in the comple-

ment. We can observe that, for all inpainting schemes,
the resulting completion consists basically of a patch-

work of large regions of rigid translation. The interior of

these regions, away from their boundaries (red curves),
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Fig. 4 Inpainting of random texture. From left to right: patch- NL-means, NL-medians, NL-Poisson and NL-GM. Top row:
inpainting results. Bottom row: local variance estimate of the noise, superimposed with the boundaries between regions of constant
NNF (red curves). Notice the attenuation of the variance over the red curves, specially for L2-based methods.

Fig. 5 Inpainting of structured texture. From left to right: Initial condition, result of path NL-means, -medians, -Poisson and
-GM. Results with s = 15, a = 5 and h = 0. The treatment of color images is described in Section 5.

reproduces an exact copy of the source, and thus the

variance is preserved. The variance decreases along the
red curves, where pixel values are synthesized using in-

coherent contributions. Both for the intensity models or

the gradient models, the L2-norm causes a higher decay

of the variance than with the L1-norm. This effect can

also be observed in figures 2 and 3, where it can be seen
that patch NL-medians and -GM preserve more of the

Gaussian noise than the methods based on L2-norms.

We will refer to the regions of constant NNF as copy

fronts. Recall however that copy occurs only away from
their boundaries.

In Figure 5 we show results on a non-periodic, struc-

tured texture. We can see that patch NL-means and -

Poisson show some smoothing, whereas both L1-based

schemes obtained sharper results. Both intensity based
methods show discontinuities at the boundary of the

inpainting domain. Notice also that for the patch NL-

medians algorithm it is easy to identify the regions in

the complement that have been replicated. Where two
copy fronts meet a seam is produced. With the patch

NL-means the spatial averaging of overlapping patches

creates a smooth blending of the copy fronts.

2.2.1 Combined schemes

Gradient based methods produce smooth interpolations
and enforce the continuity of the image at the boundary

of the inpainting domain, which are generally desirable

features. For this to be done variationally the similar-

ity weights w have to be computed using patches of

the gradient, which in most cases does not provide a
reliable measure of patch similarity. In practice better

results are obtained by combining these methods with

patch NL-means, allowing to take the image values into

account for the computation of the patch error, and to

synthesize the image with a diffusion PDE. This adds
a parameter λ, which controls the mixture.

In Figure 6 we show some results corresponding to

the combination of both gradient schemes with patch

NL-means while varying the mixture coefficient λ. The

image shows a periodic pattern with an illuminance gra-

dient. Most of the dark exemplars are incomplete, and
thus only bright exemplars from the bottom of the im-

age are available. The rightmost detail shows the result

of patch NL-means: the image has been completed us-

ing bright patches and presents a discontinuity on the
upper side of the hole. On the other hand, a completion

using gradients only (see result of the patch NL-GM)

manages to interpolate both the texture and the shad-

ing. The small images on the right show results of both

gradient methods with different values for λ. The value
of the mixing parameter λ should be carefully selected

since it mixes two different magnitudes (norms of gra-

dients and gray levels). With λ ∼ 0.1 for patch NL-

Poisson + NL-means and λ ∼ 0.01 for patch NL-GM
+ NL-means, some of the good continuation properties

are preserved and enough color information is added to

the patch metric.
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Fig. 6 Linear combination of gradient based methods with NL-means. First image starting from the left: Initialization. The
gray rectangle is the inpainting domain. Only patches centered outside the red area are available. Second image: Result obtained with
patch NL-GM, using λ = 0. A similar result is obtained with the patch NL-Poisson with λ = 0 (not shown). Details: Top, from left
to right: results with patch NL-Poisson with λ = 0.01, 0.05, 0.1, 1 (the latter corresponds to patch NL-means). Bottom, patch NL-GM
with λ = 0.001, 0.005, 0.01. All details have been linearly stretched for display. Differences are most noticeable in the top and in the
left of the images.

2.2.2 Geometric interpolation

To evaluate the ability of each method to continue the

geometry of the structures at the boundary of the in-

painting domain, we consider a very simple image with

a gap (shown in Table 1). The inpainting region is ini-
tialized with the background color. For this evaluation

we fix the size of the patch and increase the width of

the gap. For narrow gaps, the method will be able to

join both ends of the green vertical line. When increas-
ing the gap, at a certain width the method is no longer

capable of recovering the vertical line. In these cases

the gray initialization prevails, showing a completion

in which the vertical line is interrupted. The first col-

umn of Table 1 shows the maximum height of the gap
for each method. Observe that the combined schemes

improve the prolongation of geometric structures, and

that the optimal mixing parameter λ for this purpose is

near to the values that we have proposed in the previous
section. Basically these schemes have two propagation

mechanisms: A local one, by diffusion of the intensity

values by the PDE, and a non-local one by transference

of gradients from Oc. When λ > 0 these mechanisms

reinforce each other: the diffused values allow a better
estimation of the weights, and therefore the transfer-

ence of more appropriate gradients, which will help to

diffuse the intensity values further. On the other hand,

intensity based methods depend only on the iteration
of weights computation and image update to propagate

information.

The second column of Table 1 shows the results ob-

tained by incorporating the confidence mask later de-
scribed in Section 2.3. An alternative way to prolong

the geometric structures is to increase the patch size as

will be discussed in Section 4.

GAP GAP

Method tc = 5

P + M λ = 0 13 40
P + M λ = 0.1 16 46

P + M λ = 0.5 11 34

P + M λ = 1 9 29

Md 7 42

GM + M λ = 0 15 > 56

GM + M λ = 0.01 21 > 56

GM + M λ = 0.001 40 > 56

Table 1 Geometric interpolation. The inpainting domain is
shown in white and the patch in the lower right corner (9 × 9
pixels). The table reports the maximum gap width for which the
algorithm is capable of recovering the vertical line. P, M, Md and
GM stand for patch NL-Poisson, -Means, -Medians and -Gradient
Median respectively. The rightmost column shows the maximal
gaps obtained with the use of a confidence masks with decay
tc = 5 (see Section 2.3).

2.3 Extensions

Color images. An energy for color images can be ob-

tained by defining a patch error function for color patches
as the sum of the error functions of the three scalar

components:

ε(pu(x) − pû(x̂)) =
3∑

i=1

ε(pui
(x) − pûi

(x̂)),

where u : Ω → R
3 is the color image, and ui, with

i = 1, 2, 3, its components (analogously for gradient-

based errors). Given the weights, each channel is up-
dated using the corresponding scheme for scalar images.

All channels are updated using the same weights.

Confidence mask. For large inpainting domains, it is

useful to introduce a mask κ : Ω → (0, 1] which assigns
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a confidence value to each pixel, depending on the cer-

tainty of its information (see also [22,39]). This will help

in guiding the flow of information from the boundary

towards the interior of the hole, eliminating some local

minima and reducing the effect of the initial condition.
The resulting image energy term takes the form

F̃w(u) =

∫

eO

∫

eOc

κ(x)w(x, x̂)ε(pu(x) − pû(x̂))dx̂dx,

where κ modulates the penalization of the incoherences

between w and the error ε between patches.
The effect of κ on the image update step can be seen

on the pixel-wise influence weights m

m(z, ẑ) =

∫

Ωp

χ eOc(ẑ−y)ga(y)κ(z−y)w(z−y, ẑ−y)dy.

Thus, the contribution of the patch pu(z − y) to the
evidence function is now weighted by its confidence.

Patches with higher confidence will have a stronger in-

fluence. Notice that with the inclussion of the confi-

dence mask, the normalization coefficient c(z) becomes:

c(z) =

∫

Oc

m(z, ẑ)dẑ =

∫

Ωp

ga(y)κ(z − y)dy.

This does not affect intensity-based methods, but has

implications on the image update step for gradient-

based ones. For example, for patch NL-Poisson the er-

rors with respect to the non-local guiding vector field
‖∇u(z)− v(z)‖ are penalized according to c(z).

On the similarity weights, the confidence mask has

the effect of modifying the selectivity parameter h by

a locally varying h/κ(x). If the confidence is high, the

effective selectivity h/κ(x) will be lower, thus increasing
the selectivity of the similarity measure. When h → 0

the weights tend to a Dirac’s delta independently of

κ. The same reasoning applies to the gradient based

energies.
For the experiments shown in this paper, the confi-

dence mask was set to

κ(x) =

{
(1 − κ0) exp

(
− d(x,∂O)

tc

)
+ κ0 if x ∈ O,

1 if x ∈ Oc,

which shows an exponential decay w.r.t. the distance

to the boundary inside the hole d(·, ∂O). Here tc > 0

is the decay time and κ0 > 0 determines the asymp-

totic value reached far away from the boundary. Setting
tc = 0 amounts to using a constant confidence mask.

Table 1 shows the effect of using a confidence mask with

tc = 5 and κ0 = 0.1, allowing the restoration of the ver-

tical line for much wider gaps, and thus alleviating the
dependence with the gray initial condition.

Other shapes of the confidence mask could be used

for controlling different aspects of the dynamics of the

completion algorithm. For instance controlling the de-

cay of the mask from certain points of the boundary

allow to privilege the continuation of structures from

them.

Interpolation of sparsely sampled images. In this work

we have implicitly assumed the existence of a set of

complete patches Õc, constituting the set of exemplars.

This assumption can be removed by generalizing the

patch error function ε(·) so that it depends on the posi-
tions of the patches. This implies a potentially different

error function for each pair of patches. This has been

explored in [29], applied to the case of interpolation of

sparsely sampled images. In that case the patch error
function was designed to consider only those locations

known in at least one of the two patches.

3 Discussion and connections

In this section we present various issues related to the
variational framework and its connections with other

models.

3.1 Probabilistic-geometric model interpretation

The proposed energy has an interpretation in terms of

a probabilistic model in the space of patches, which

becomes apparent when rewritten using the general-

ized Kullback-Leibler divergence [23]. Given two posi-

tive and integrable functions p, q defined over a certain
measure space X , the generalized Kullback-Leibler di-

vergence is given by:

KL(p, q) =

∫

X

p(s) log

(
p(s)

q(s)

)
ds−

−

∫

X

p(s)ds +

∫

X

q(s)ds,

assuming that the integrals exist. With this notation

(and taking into account that w(x, ·) is a probability)
the functional E can be written as

E(u, w) =

∫

eO

KL (w(x, ·), r(x, ·)) dx−

−

∫

eO

∫

eOc

r(x, x̂)dx̂dx,

where r is the unnormalized Gaussian weight function

r(x, x̂) = exp

(
−

1

h
ε(pu(x) − pû(x̂))

)
.
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The first term integrates the divergence between the

functions w(x, ·) and r(x, ·), for each x ∈ Õ. The second

term can be interpreted by noticing that

q̃(x) =

∫

eOc

r(x, x̂)dx̂ (16)

is a density estimate (in the patch space) of the set of

patches in Oc: The higher the amount of patches in Õc

close to pu(x) (according to the scale parameter h), the
higher the value of q̃.

The minimizers (u∗, w∗) are obtained when for all

(x, x̂) ∈ Õ × Õc, w∗(x, x̂) = r∗(x, x̂)/q̃∗(x), (Gaussian

weights normalized by (16)), and the patches of the in-

painted image are in regions of high density in the patch
space. This provides a geometric intuitive interpreta-

tion of our variational formulation. The image is con-

sidered as an ensemble of overlapping patches. Known

patches in Õc are fixed, forming a patch density model
used to estimate the patches in Õ. The richness of the

framework is given in part by the fact that different

norms in the patch space induce inpainting schemes of

different nature.

3.2 Connections with statistical mechanics

The proposed energy can be given another interpreta-

tion in terms of statistical mechanics, as the Helmholtz

free energy of a system of particles. In this context

we consider that for each “particle” x ∈ Õ there is a

set of possible configurations indexed by the parameter
x̂ ∈ Õc with a probability density w(x, x̂). If we con-

sider that each configuration has an energy U(x, x̂) =

ε(pu(x)− pu(x̂)), then the probability that the particle

at x is in the state x̂ is proportional to

e−βU(x,x̂)/q(x)

with the normalization factor q given by the partition
function

q(x) =
∑

x̂

e−βU(x,x̂).

Then the Helmholtz free energy for a particle x is

H(x) := U(x) + β−1E(x) :=

:=
∑

x̂

U(x, x̂)w(x, x̂) + β−1
∑

x̂

w(x, x̂) log w(x, x̂).

Then the total Helmoltz free energy for the system of
particles is

H :=
∑

x

H(x) =
∑

x

∑

x̂

U(x, x̂)w(x, x̂)+

β−1
∑

x

∑

x̂

w(x, x̂) log w(x, x̂),

where the sums are extended to x ∈ Õ and x̂ ∈ Õc. We

have used the notation β as 1
h .

3.3 Revisiting related work

In this section we will briefly review the connections of
our work with other inpainting algorithms and also with

existing variational models of non-local regularization

which have been proposed in contexts such as image

denoising.

The method in [56] is closely related to the patch

NL-means scheme of Eq. (9). The key difference lies in

the underlying theoretical model. The problem is ad-

dressed as a MRF, where pixels outside the hole are

observable variables, missing pixels in the hole are the
parameters, and the hidden variables are given by the

correspondence Γ : O → Oc, which assigns a patch out-

side the hole to each x in O. The method can be seen

as an approximate EM algorithm for maximizing the
log-likelihood w.r.t. the pixels in O, and some approx-

imations have to be taken to make the optimization

tractable. Based on heuristics, the authors also pro-

pose to use more robust estimators than the mean for

the synthesis of pixels. Within the framework here pro-
posed, robust estimators (as the median) naturally re-

sult from particular choices of the patch error functions

ε(·).

In [38] an energy is presented which can be seen as
a limit case of the patch NL-means energy when h → 0.

The authors propose modifications of the energy which

improve the results, such as some spatial localization of

the similarity weights and brightness invariance. The

latter is achieved by introducing a multiplicative con-
stant that matches the mean illuminance between each

pair of patches.

The patch NL-means algorithm is also related to the

manifold image models of [49]. Eq. (9) can be split into
two steps which are analog to the manifold and image

projection steps used in [49]. First, for each patch cen-

tered in Õ we compute a new patch as a weighted aver-

age of all patches in the complement, according to the

patch similarity weights pMS
u (z) :=

∫
eOc w(z, ẑ)pû(ẑ)dẑ

with z ∈ Õ. Doing this for each hole position yields an

incoherent ensemble of patches. The image is obtained

by averaging these patches: u(z) = 1
A(Ωp)

∫
Ωp

pMS
u (z −

y, y)dy. We use a density model, instead of the manifold

model of [49]. Indeed, pMS
u (x) is the mean shift opera-

tor applied to pu(x). It is known that the iteration of

this operator corresponds to an adaptive gradient as-
cent of the Parzen estimate of a PDF [21], which in

this case is generated by the set of patches in the com-

plement of the hole. The use of a density model entails
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some advantages, mainly from the computational point

of view, learning a manifold model is computationally

costly. Furthermore, the assumption that patches lie on

a manifold is questionable (one could think for instance

in a stratification as a more realistic model), and its di-
mension is hard to determine for real images.

In the following we will comment on the relation of
this model with recent works on non-local regulariza-

tion.

The UINTA algorithm, presented in [5] is a non-

local denoising algorithm that minimizes the entropy

of the patches in the image. Casting this idea to the

context of inpainting the UINTA’s entropy is estimated

as the sample mean

EU (u) = −

∫

eO

log

[∫

eOc

exp(−
1

h
‖pu(x) − pû(x̂)‖2)dx̂

]
dx

where the inner integral is the probability of occurrence

of the patch pu(x) obtained as a Parzen density esti-

mate. The corresponding Euler-Lagrange equation can
be solved with a fixed point iteration which coincides

with the patch NL-means scheme (9). In [5] this en-

ergy is minimized by considering all patches as inde-

pendent (disregarding the overlap between neighboring

patches), and evolving each of them according to a gra-
dient descent of EU . After this, an image is formed with

the centers of these new patches. The repetition of this

process results in an iterative application of pixel-wise

NL-means.

In [13] the authors use a variational principle for

deriving the iterated pixel NL-means regularizer, and
show its application to the restoration of texture. The

underlying energy corresponds to the quadratic penalty

between the solution image u, and a pixel NL-means

type average of the noisy input image û. The weights for

this average are computed using u. Due to the depen-
dence of the weights with the regularized image u, the

minimizer is no longer a weighted average as NL-means,

but the solution of a nonlinear optimization problem.

It is shown that if the derivative of the nonlinear com-
ponent is neglected, the resulting Euler-Lagrange equa-

tion matches the proposed fixed point algorithm: The

iterated NL-means regularizer.

In [52] the authors presented a variational frame-

work for image denoising consisting in non-local regu-

larization and data adjustment terms. Inpainting could

be performed by considering only the data term as fol-
lows:

EP (u) = −

∫

eO

∫

eOc

exp(ε(pu(x) − pû(x̂)))dx̂dx

This energy is the same as the one adapted from the

UINTA algorithm EU , without the logarithm. In [52]

the Euler-Lagrange equation is solved with a fixed point

iteration. This model has two differences with our frame-

work. First it allows to use a more general nonlinearity

for the computation of the weights other than the expo-

nential. Second, even in the case of the exponential, the
methods differ in the normalization, for instance, when

ε is the squared L2-norm, the resulting scheme is as the

patch NL-means, with the unnormalized weights.

After its introduction in [3], our model has been
interpreted as a non-local self-similarity regularizer in

[51], where in conjunction with appropriate data fit-

ting terms it has been applied to the solution of in-

verse problems, including inpainting, super-resolution

and compressive sensing. In [51] a different patch-error
function ε is used, namely the L2-norm between patches

(without squaring it). This choice is motivated as a

patch-wise version of their work [50] on non-local To-

tal Variation [32,42,57] with adaptive weights. This
patch-wise non-local TV is defined as the L1-norm of

the non-local gradient of the patch valued image pu :

Ω → R
Ωp . The non-local gradient is defined as a func-

tion ∇wpu : Ω × Ω → R
Ωp given by ∇wpu(x, x̂) =

w(x, x̂)(pu(x) − pu(x̂)). Thus, the patch-wise non-local
TV reads

‖∇wpu‖ :=

∫

Ω

∫

Ω

w(x, x̂)‖pu(x) − pu(x̂)‖2dx̂dx.

Note that in this sense, the model of the patch-NL me-

dians corresponds an anisotropic version of the non-
local TV where the 2-norm in the integral is replaced

by the 1-norm. Our work and the work of [51] are com-

plementary. In [51] the regularization term is fixed, and

the authors focus on the possibilities given by differ-
ent data terms suited for different applications. On the

other hand in this work we focus on the regularization

term exploring its properties with different patch error

functions ε, and applying them to a problem in which

the data term plays no role at all, since there is no data
to adjust to.

4 Multiscale scheme

Exemplar-based inpainting methods show a critical de-

pendence with the size of the patch. In Figure 7, we

show completions obtained with patch NL-means using

different patch sizes: Two results with a small patch
(a = 4) and one result with a large patch (a = 19). The

latter is able to reproduce the periodic pattern of the

lamps, but the completion is blurry due to the spacial

overlap of the patches and presents many discontinu-
ities at the boundary of the hole.

The results with the small patch do not show these

artifacts, but one of them has failed to reproduce the
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Fig. 7 Mitama Matsuri. Left column: inpainting domain and initial condition. For the rest of the columns, from left to right single
scale inpainting with a 9×9 patch with a = 4, single scale inpainting with a 43×43 patch with a = 19 and multi-scale inpainting, with
S = 2, covering a patch size from 9 × 9 with a = 4 to 43 × 43 with a = 19. All results have been computed with the patch NL-means
scheme. The bottom row shows the regions in which the nearest neighbor offset is constant.

lamps. The only difference between both is the initial-

ization. One of them was initialized with the original

image shown in the bottom left, whereas the other one

with the result obtained with the multiscale approach
described in this section.

Figure 8 shows a synthetic problem with similar

characteristics. The result with a large patch recovers

the shape of the incomplete rectangle, but does not con-

tinue its texture correctly. Three different small scale

results are shown. They are all minima of the energy
with minimal energy, E = 0. Patches are too small to

capture that these completions are different. Which one

is obtained will depend on the initialization.

As done by almost all state of the art exemplar

based inpainting methods (e.g. [38,39,56]), we will in-

corporate a multiscale scheme, described below. This is
usually motivated as an heuristic to avoid local min-

ima, to find a good initialization and/or to alleviate

the computational cost. We believe however (following

[34]) that, as these examples suggest, inpainting is in-
herently a multiscale problem: Images have structures

of different sizes, ranging from large objects to fine scale

textures and edges. The multiscale scheme responds to

the fact that several patch sizes are needed to reproduce

all these structures properly.

4.1 Multiscale scheme

In the following we describe the multiscale method we

adopted in this work, which goes along the lines of what

is customary in the literature [30,38,56]. It consists on
sequentially applying the inpainting scheme on a Gaus-

sian image pyramid, starting from the coarsest scale.

The result at each scale is upsampled and used as ini-

tialization for the next finer scale. The patch size is

constant through scales.

Let us consider S scales, the finest denoted with

s = 0. We will specify the size of the image at the

coarsest level AS−1. Denoting the size of the image at

the finest scale by A0, we compute the sampling rate
as r := (A0/AS−1)

1/(S−1) ∈ (0, 1). The width of the

Gaussian filtering is associated to the subsampling fac-

tor as in [46]. Let a0 be the size of the patch and Ea0

the corresponding energy. We will add the superindex

s = 0, . . . , S − 1 to the variables u and w to denote
the scale. As before, the subindex 0 refers the initial

condition, i.e. us
0 is the initial condition at scale s.

Algorithm 2 Multiscale scheme.

Require: uS
0 , S, a0 and AS−1

1: Initialize: (uS−1, wS−1) = argmin(u,w) Ea0
(u, w)

2: for each scale s = S − 2, . . . , 0 do

3: Upsample us+1 to obtain us
0

4: (us, ws) = arg min(u,w) Ea0
(u, w)

5: end for

The upsampling from s + 1 to s is obtained as in

[56]. The coarse weights ws+1 are first interpolated to
the finer image size, yielding ws

0. These weights are

then used to solve an image update step at the new

scale: us
0 = minu Ea0

(u, ws
0). More conventional up-

sampling schemes by local interpolation (such as bilin-

ear or splines) introduce a bias towards low-frequency
non-textured regions. This exemplar-based upsampling

avoids this bias.

Notice that keeping the patch size constant while

filtering and reducing the image, is almost equivalent

to enlarging the patch domain and filtering an image
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Fig. 8 Single scale inpainting. Synthetic inpainting problem (the red rectangle is the inpainting domain) and several local minima
of a single scale inpainting energy with a small patch.

of constant size. The process can thus be seen as the

sequential minimization of a series of inpainting en-
ergies with varying patch size given by as = 1/rsa0,

s = 0, . . . , S − 1, over a corresponding series of filtered

images.

The scheme starts by the coarsest scale S − 1, in

which a larger portion of the inpainting domain is cov-

ered by partially known patches, which makes the in-

painting task easier, and less dependent on the initial-

ization. The energy at this scale should have fewer local
minima. The dependency of the minimization process

on the initial condition ensures also that each single

scale solution corresponds to a local minimum close to

the coarse scale initialization. Therefore the multiscale
algorithm exploits this dependency to obtain an image

u0 which is approximately self-similar for all scales (or

equivalently, for all patch sizes).

Figure 7 shows a comparison between single and
multiscale results with the patch NL-means scheme.

As expected the multiscale result shows the benefits

of large and small patch sizes. The missing lamps have

been completed with the correct shape and spacing by
the coarser stages, and the fine details are also taken

care off by the finer scales. The bottom row shows the

regions of constant NNF. The single scale result with

a large patch shows an NNF partitioned in relatively

large regions, showing that with a large patch size the
copying is more rigid. The result with a small patch

size shows that the synthesis has been performed based

on small regions. The multiscale’s NNF shows an in-

termediate partition, with some large regions inside of
the hole and a smaller ones around its boundary. The

finer inpaintings work by refining the coarse partition

obtained at coarser scales.

5 Experimental results

In this section we further demonstrate the performance

of the proposed schemes on real inpainting problems.
The images used were obtained from Komodakis and

Tziritas [39] and from the 100 images benchmark pro-

posed by Kawai et al. [38], available at http://yokoya.

naist.jp/research/inpainting/. Due to the lack of

space we focus on the methods presented in this work.
Please refer to [38,39] for a comparison with their ap-

proaches.

5.1 Experimental setting

We consider four inpainting methods, namely patch

NL-means, -medians, -Poisson and -GM. Both gradient

based methods are always combined with patch NL-

means with mixing parameter λ, as in (14). In all cases

we use the multiscale approach. As stated before, to
prevent blurring we set h, the selectivity of the similar-

ity weights w, to h → 0. In this case, the weights select

the nearest neighbors of each patch in Õ. We show re-

sults with the CIE La*b* color space.
The calculation of the weights dominates the com-

putational load of the algorithms. With an exhaustive

search for the exact nearest neighbor, the cost of each it-

eration is O(A(O)×A(Oc)×s2). However, a significant

speed-up can be obtained with approximate searches,
almost without any noticeable decrement in the quality

of the results (see [13] and references therein).

In our implementation we use a modified version

of the PatchMatch algorithm introduced in [7]. Patch-
Match is an iterative algorithm that estimates the NNF

jointly for all patches in the inpainting domain by ex-

ploiting the coherence of natural images. The modifi-
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cation we implemented allows the estimation of a lists

of the L first nearest neighbors of each patch. The al-

gorithm has a computational cost of O(A(O)× s2 ×L)

per iteration. Typically between 5 and 10 iterations are

sufficient to obtain results comparable with the exhaus-
tive search algorithm when using lists of size L ≃ 10.

In Appendix C we describe the modified PatchMatch.

The image update step is fast for the patch NL-
means, -median and -Poisson, but can be time consum-

ing for patch NL-GM, in particular for small values of

the mixing parameter λ. See Appendix B for more de-

tails.

The results are shown in figures 9, 10 and 11. The

first column shows the initialization. The rest of the

columns show the results obtained with patch NL-means,

-medians, -Poisson and -GM in that order. Obtaining
good results requires fixing the following parameters:

Patch size. For almost all experiments we used patches

of size s between 3 × 3 and 9 × 9. We did not use

Gaussian intra-patch weights to shape the patch,

since they need a larger support, which implies less

available exemplars.
Multiscale parameters. The multiscale scheme has two

parameters: the size of the coarsest image AS−1

and the number of scales S. From these, AS−1 is

the most critical parameter. Smaller images with
smaller inpainting domains are easier to complete.

Care must be taken, however, since small images

also imply less available exemplars to copy from. In

these experiments AS−1 was set to a 20% of the

original size when possible. Some cases required less
subsampling. The number of scales S was set such

that the subsampling rate r = (A0/AS−1)
1/(S−1) ≈

(1/2)1/3 ≈ 0.8 as in [56].

Confidence mask. The confidence mask has two param-
eters, the asymptotic value c0 and the decay time tc.

For all experiments we fix c0 = 0.1 and used a decay

time tc = 5 except for small inpainting domains, in

which we set tc = 1.

For the mixing coefficient λ of gradient-based meth-

ods we tested two configurations: Low-λ corresponding
to λ = 0.01 and λ = 0.001 for patch-NL Poisson and -

GM, and high-λ corresponding to λ = 0.1 and λ = 0.01

for patch-NL Poisson and -GM. Recall that lower val-

ues of λ give a higher weight to the gradient compo-

nent of the energy. This is appropriate for structured
images with strong edges. In almost each row of figures

9, 10 and 11 we used the same λ configuration for both

gradient-based schemes.

The rest of the parameters are also the same for

each row in figures 10 and 11. Instead, for many images

in Fig. 9 we used different parameters for intensity- and

gradient-based methods. In these cases, image-based

methods required larger patches than gradient-based

ones.

5.2 Observations and comments

Gradient vs. intensity. Gradient-based methods show a
better reconstruction of structure (Fig. 9) and periodic

patterns (Fig. 11). Intensity-based methods present dis-

continuities at the boundary of the hole and between

copy fronts. Furthermore, gradient-based methods facil-

itate the prolongation of structures and edges, due to
the reinforcement of local PDE diffusion and non-local

propagation (see Section 2.2). This allows to use smaller

patches, which alleviates the computational load and

reflects in more available exemplars and less blending
due to patch overlap (either by averages or medians).

On the other hand, gradient-based methods show
problems with random textures (Fig. 10) and in some

occasions between copy fronts. In these cases, the near-

est neighbors of overlapping patches disagree on the

gradient of a certain pixel. This may result in the atten-

uation or the omission of gradients, causing a “spilling
effect”, particularly for the patch NL-Poisson (e.g. rows

1,3 and 4 of Fig. 9).

Some failures of gradient-based methods on random

textures result from the use of gradients in the patch er-

ror function, as in rows 4 and 6 of Fig. 10. In the former,

for instance, segments of the sky have been reproduced
in the snow. Fig. 12 shows results with an inpainting

scheme in which the weights are computed based only

on the image values (with the squared L2-norm), and

the image is updated using patch NL-Poisson or -GM

with a low value of λ. Such scheme is non-variational
and its convergence its not guaranteed.

We should point out that in many other cases, con-
sidering gradients in the comparison criterion improves

the results. See for instance rows 2 and 4 of Fig. 11.

Means vs. medians. It is notorious that L1-based func-
tionals perform better at the reproduction of fine tex-

ture. The results of the L2 methods are smoothed by

the spatial averaging of overlapping patches. On the

other hand, patch NL-medians creates sharp disconti-

nuities as in Fig. 2 when different copy fronts meet (e.g.
rows 1, 3, 5 and 7 in Fig. 9). These discontinuities are

very noticeable and in these cases some smoothing is

desirable. For the patch NL-GM method, discontinu-

ities between copy fronts occur at the gradient level,
and are eliminated after its integration. The fact that

the gradient is estimated robustly helps in avoiding the

spilling effect of patch NL-Poisson.
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Fig. 9 Results on structured images. From left to right: Original image and mask, patch NL-means, -medians, -Poisson and -GM.
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Fig. 10 Results on random textures. From left to right: Original image and mask, patch NL-means, -medians, -Poisson and -GM.
All images in each row have been generated with the same parameters.

We have observed that L1 methods are more reluc-

tant to make changes during the minimization process.

The same robustness that allows a better performance

with textures and avoids the spilling effect makes them
more greedy. Once a set of neighboring patches have

settled on a locally stable solution (typically a region

of constant NNF), it is hard for the algorithm to change

that local decision. To understand why, imagine a copy

front advancing from the boundary carrying correct in-

formation which meets an already settled copy front,

which has taken an undesirable decision based on a

bad initialization. Pixels on the boundary of the mis-
taken front start receiving contributions from patches in

the advancing front. Initially these contributions will be

outliers in the distribution from which the pixel value is

estimated. The median will discard these outliers, and
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Fig. 11 Results on periodic textures. From left to right: Original image and mask, patch NL-means, -medians, -Poisson and
-GM. All images in each row have been generated with the same parameters.

the pixel value will not change unless of course, patches

in the advancing front outnumber the mistaken ones.

Although the confidence mask diminishes this ef-

fect, L1-based methods (specially patch NL-medians)

still show more dependence on the initialization. A re-

sult of this are some misalignments in straight lines,
due to subsampling artifacts of the multiscale scheme.

Also patch NL-medians generally requires the use of

larger patches, particularly for structured images. This

is not always possible, as in row 6 of Fig. 9, where we
could not find a proper set of parameters. However we

found a good result by after 3 iterations of the multi-

scale scheme.

The focus of this work lies more on introducing and

exploring the variational framework than in presenting

a single inpainting algorithm. Still, we would like to
comment on which would be the best method among

the ones presented. Based on the previous observations,

it is clear that the answer to this question will depend

on the characteristics of the inpainting problem. How-

ever, a priori, the patch NL-Poisson seems a reasonable
compromise between quality and computational cost. It

is also able to provide good results for a wider range of

parameters. For cases in which an accurate reproduc-

tion of random textures is important, patch NL-GM
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Fig. 12 Results with a non variational algorithm. The
gradient methods sometimes introduce blurry areas in the solu-
tion. Here we show the results using a non variational version
of the patch NL-Poisson (left column) and patch NL-GM (right
column) for some of those images.

may be a better option, however at a higher computa-

tional cost.

6 Conclusions and future work

In this work we presented a variational framework for

exemplar-based non-local image inpainting. The pro-

posed energy lends itself to intuitive interpretations in
terms of probabilistic models and has connections with

mean shift and statistical mechanics. We minimize it

using a coordinate descent algorithm, alternating be-

tween similarity weights and the image updates. These

processes are coupled through the patch error function,
i.e. the criterion used to compare patches.

We derived from this framework four different in-

painting schemes, corresponding to error functions based

on the combinations of L1- and L2-norms, with image
or gradient patches. After testing these schemes on syn-

thetic and real problems we arrived to the following

conclusions.

1. The robustness of the L1-norm (patch NL-medians

and NL-GM) makes it more appropriate for the re-

production of textures. These schemes are however,

more greedy, or “stiff,” and therefore more depen-

dent on the initialization. Conversely the squared

L2-norm introduces some blur, and show less stiff-

ness.
2. When gradients are considered in the patch error

function, the image update step is computed as the

solution of a (local) diffusion PDE, driven by a non-

locally estimated gradient field. This improves the
synthesis in terms of continuity at the boundary and

attenuation of seams. Also the local interpolation

helps in the propagation of structures, such as edges

at the boundary of the hole.

The proposed functional shows a critical dependence

with the patch size. Furthermore, it is nonconvex and

has many local minima, particularly for small patch
sizes. To tackle these issues we use a multiscale ap-

proach. This is customary in the literature, usually mo-

tivated as a way to obtain a good initialization and

for computational reasons. We believe however that in-

painting is inherently a multiscale problem, and that
underlying the multiscale approach lies an inpainting

criterion. We are currently working on a variational for-

mulation of multiscale inpainting. Other topic of cur-

rent research is the use of other patch error functions
based on the comparison of structure tensors, which

could provide a more robust estimation of the morpho-

logical structure of the image.

A Existence of minima for the functional (2)

Let us consider the model

E(u, w) =
1

h

Z

eO

Z

eOc

w(x, x̂)‖pu(x) − pu(x̂)‖2dx̂dx+ (17)

+

Z

eO

Z

eOc

w(x, x̂) log w(x, x̂)dx̂dx.

In this section we consider the squared L2 patch error function

‖pu(x) − pu(x̂)‖2 =

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))2dy

where ga denotes a smooth integrable kernel whose gradient is
also integrable. Let

P := {w : eO × eOc → R :

Z

eOc

w(x, x̂) dx̂ = 1a.e. x ∈ eO}.

Let us consider the admissible class of functions

AM := {(u, w) : u = û in Oc, |u(x)| ≤ M w ∈ P}.

Proposition 1 Assume that û ∈ BV (Oc). There exists a solu-

tion of the variational problem

min
(u,w)∈AM

E(u, w). (18)
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Proof Let (un, wn) be a minimizing sequence of (18), i.e. a se-
quence such that E(un, wn) → inf(u,w)∈AM

E(u, w). Since Ω is
a bounded domain we have that
Z

eO

Z

eOc

χ{w>1}wn(x, x̂) log wn(x, x̂)dx̂dx

is bounded. Hence wn(1 + log+ wn) is bounded in L1. Then the
sequence wn is relatively weakly compact in L1 and by extract-
ing a subsequence, if necessary, we may assume that wn weakly
converges in L1( eO × eOc) to some w ∈ P. Let us now prove that

∇x+x̂

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))2dy

and

∇x−x̂

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))2dy

are uniformly bounded when |u| ≤ M . Indeed, the boundedness
of the first integral is a consequence of

∇x+x̂

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))2dy

= 2

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))

(∇xu(x + y) −∇x̂u(x̂ + y))dy

= 2

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))

(∇yu(x + y) −∇yu(x̂ + y))dy

= −

Z

Ωp

∇yga(y)(u(x + y) − u(x̂ + y))2dy,

the L1 integrability of ∇yga(y) and the boundedness of u. We are
also assumming that ga vanishes at the boundary of Ωp. Now,

∇x−x̂

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))2dy

= 2

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))

(∇xu(x + y) + ∇x̂u(x̂ + y))dy

= 2

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))

(∇yu(x + y) + ∇yu(x̂ + y))dy

=

Z

Ωp

ga(y)(∇yu(x + y)2 −∇yu(x̂ + y)2)dy

+2

Z

Ωp

ga(y)(u(x + y)∇yu(x̂ + y) − u(x̂ + y)∇yu(x + y))dy

Observe that
Z

Ωp

ga(y)(u(x + y)∇yu(x̂ + y) − u(x̂ + y)∇yu(x + y))dy

= −

Z

Ωp

ga(y)((u(x̂ + y) + 1)∇yu(x + y)

− u(x + y)∇yu(x̂ + y))dy +

Z

Ωp

ga(y)∇yu(x + y)dy

= −

Z

Ωp

ga(y)∇y

„
u(x + y)

(u(x̂ + y) + 1)

«
(u(x̂ + y) + 1)2dy

−

Z

Ωp

∇yga(y)u(x + y)dy

=

Z

Ωp

∇y(ga(y)(u(x̂ + y) + 1)2)
u(x + y)

(u(x̂ + y) + 1)
dy

−

Z

Ωp

∇yga(y)u(x + y)dy

=

Z

Ωp

∇yga(y)(u(x̂ + y) + 1)u(x + y)dy

+2

Z

Ωp

ga(y)∇yu(x̂ + y) u(x + y)dy −

Z

Ωp

∇yga(y)u(x + y)dy.

From our assumptions, the boundedness of the previous integral
holds. Thus, the functions

∇x

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))2dy

and

∇x̂

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))2dy

are uniformly bounded when |u| ≤ M . Thus, modulo the extrac-
tion of a subsequence, we may assume that un → u weakly in
all Lp, 1 ≤ p < +∞ and ga ∗ (un(x + ·) − un(x̂ + ·))2 converges
strongly in all Lp spaces and also in the dual of L Log+L to some
function F . Then by passing to the limit as n → ∞ we have

1

h

Z

eO

Z

eOc

w(x, x̂)F 2 +

Z

eO

Z

eOc

w(x, x̂) log w(x, x̂)dx̂dx

≤ lim inf
n

E(un, wn).

Taking test functions ϕ(x, x̂), integrating in eO × eOc and using
the convexity of the square function, we have

Z

Ωp

ga(y)(u(x + y) − u(x̂ + y))2dy ≤ F.

Then E(u, w) ≤ lim infn E(un, wn). ⊓⊔

B Algorithm for solving Equation (13)

Following [2,18] we derive here a fixed point algorithm for a dis-
crete version of (13).
Discrete formulation. We consider discrete images defined over a
rectangular bounded domain Ω = {0, . . . , N}2. We are given an
inpainting domain O ⊂ Ω and the known portion of an image
û : Oc → R. Let us define Oe as the set of pixels with at least
one neighbor in O (according to the 4-connectivity). If we think
as the discrete image as a lattice of nodes joined by edges, all
variable edges are between nodes in Oe. We will use the notation
[A → B] = {f : A → B}, the set of functions from A to B.

We define ∇ : [Ω → R] → [Ω → R
2] as

∇u1
i,j :=


0 if i = N ,
ui+1,j − ui,j if i < N ,

and similarly for the component ∇u2
i,j . The notation z = (i, j)

refers to for locations on the image. Let us also define a divergence
operator ∇· : [Ω → R

2] → [Ω → R],

∇·pi,j :=

8
><
>:

p1
i,j if i = 0,

−p1
i−1,j if i = N ,

p1
i,j − p1

i−1,j otherwise,

+

8
><
>:

p2
i,j if j = 0,

−p2
i,j−1 if j = N ,

p2
i,j − p2

i,j−1 otherwise.

These operators incorporate Neumann boundary conditions on
the boundary of Ω, and are dual operators, i.e. denoting 〈·, ·〉
the usual scalar products in [Ω → R

2] and [Ω → R
2], 〈∇u, p〉 =

−〈u,∇ · p〉, for all u ∈ [Ω → R], p ∈ [Ω → R
2].

Let us also define U := [Oe → R] and V := [Oe → R
2].

In these spaces we will consider the usual scalar products and
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will denote them as 〈·, ·〉U and 〈·, ·〉V . Notice that, with these
definitions, the gradient and divergence are not dual operators
when restricted to Oe, i.e. in general 〈u,∇ · p〉U 6= −〈∇u, p〉V .

We are looking for a completion u ∈ bU := {u ∈ U : uz =
ûz ,∀z ∈ Oc} as the solution of the following problem:

min
u∈bU

X

z∈Oe

X

ẑ∈D

mzẑ‖∇uz − vẑ‖ +
1

2δt

X

z∈O

cz(uz − fz)2, (19)

where v : D → R
2, m : Oe × D → R

+ ∪ {0}, f : O → R and c :
Oe → R

+ are given. For the sake of generality we consider a
generic domain D instead of the complement Oc

e. This generaliza-
tion is relevant, due for instance to computational considerations
as will be discussed shortly. Let us remark that, since cz > 0 for
z =∈ Oe, the energy is convex and the minimum is unique.

For simplicity we extend f over Oe by defining fz = ûz for
z ∈ Oe\O. We use the fact that for any η ∈ R

2, ‖η‖ = sup‖ε‖<1 η·
ε, and write the energy as:

min
u∈bU

sup
‖εzẑ‖61

X

z∈Oe

X

ẑ∈D

mzẑεzẑ ·(∇uz−vẑ)+
1

2δt

X

z∈Oe

cz(uz−fz)2.

We have defined the unit field ε ∈ W := {ε : Oe × D → R
2}.

Interchanging the minimum with the supremum, we obtain
the following expression for u in the inpainting domain

u∗
z = fz + δtc−1

z ∇ · Lεz, z ∈ O. (20)

where we have defined the linear operator L : W → V as Lεz =P
ẑ∈D mzẑεzẑ.

We can extend expression (20) to Oe, by defining a new di-
vergence operator ∇· : V → U as ∇·εz := χO

z ∇·εz. Here χO
z = 1

if z ∈ O and χO
z = 0 otherwise. We also define a modified gra-

dient ∇· : U → V as the negative adjoint operator of ∇· , given
by ∇uz := ∇[χO

z uz]. Besides allowing to extend (20) these op-
erators are relevant since, as opposed to the usual gradient and
divergence operators, they are still dual when they are restricted
to functions over Oe: 〈∇ · p, u〉U = −〈p,∇u〉V .

Substituting expression (20) in the energy, we arrive to the
following dual formulation:

min
‖εzẑ‖61

−
X

z∈Oe

δt

„
Lεz · ∇

ˆ
c−1∇ · Lε

˜
z

+
1

2
c−1[∇ · Lεz]2

«

−
X

z∈Oe

2
4Lεz · ∇fz −

X

ẑ∈D

mzẑεzẑ · vẑ

3
5 .

Using that ∇[c−1∇ · Lε]z = ∇[c−1∇ · Lε]z for all z ∈ Ω, we can
rewrite the dual problem with the more compact expression

min
‖εzẑ‖61

X

z∈Oe

2
4 δt

2
c−1
z [∇ · Lεz]2−Lεz · ∇fz +

X

ẑ∈D

mzẑεzẑ · vẑ

3
5 .

(21)

Adding the Lagrange multipliers corresponding to the restric-
tions ‖εzẑ‖ 6 1,

P
z,ẑ∈Oe×D λzẑ(‖εzẑ‖

2 − 1), and deriving with
respect to ε we get the Euler equation

mzẑ [−∇fz + vẑ − δt∇[c−1∇ · Lε]z] + λzẑεzẑ = 0. (22)

The Karush-Kuhn-Tucker Theorem yields the existence of the
Lagrange multipliers with values λzẑ = mzẑ‖ − ∇fz + vẑ −
δt∇(c−1∇ · Lε)z‖. The solution of (21) is computed with the
semi-implicit scheme

εt+1
zẑ =

εt
zẑ + ν mzẑ[−∇fz + vẑ − δt∇[c−1∇ · Lεt]z]

1 + ν mzẑ‖ −∇fz + vẑ − δt∇[c−1∇ · Lεt]z‖
, (23)

where ν is a time step small enough for assuring the convergence
of the fixed point iteration. Lastly the solution to the primal
problem is recovered with (20).

Convergence. Let us first observe that ∇fz − ∇fz = ∇[(1 −

χO
z )fz ] = ∇[χ

Oe\O
z fz ] for all z ∈ Ω, which allows to express

the dual energy (21) as

J∗(ε) =
δt

2
‖c−1/2∇ · Lε + c1/2f/δt‖2

U + 〈h, ε〉W , (24)

where hzẑ := mzẑ(vẑ − ∇[χ
Oe\O
z fz ]) and 〈·, ·〉W is the usual

scalar product in W . This expression shows that, since cz > 0,
there is a unique minimum value for ∇ · Lε. We prove now that
the sequence defined in (23) converges to that minimum.

Proposition 2 If cz =
P

ẑ∈D mzẑ 6 1 for z ∈ Oe and the time

step ν verifies ν < 1
4δtK

, with

K := max
i,j∈Oe


χO

i,j +
ci,j

ci+1,j
χO

i+1,j ; χ
O
i,j +

ci,j

ci,j+1
χO

i,j+1

ff
, (25)

the sequence (εt) defined in (23) converges to a minimum of the

energy (24).

Proof For reasons of space, we only sketch the main steps of
the proof. The derivations are similar to those in [2,18]. Let us
first show that if ν < 1

4δtK
, the energy J∗ decreases. Defining

η := ν−1(εt+1 − εt) for a given t > 0, we have that the variation
in the energy can be bounded by

J∗(εt+1) 6J∗(εt) +
1

2
ν(νδt‖c−1/2∇ · Lη‖2

U − ‖η‖2
W )

6J∗(εt) +
1

2
‖η‖2

W ν(4νδtK − 1), (26)

where K is a constant such that 4K‖η‖2
W > ‖c−1/2∇ · Lη‖2

U for
all η ∈ W . We will derive this constant later.

Therefore, by choosing ν < (4δtK)−1 the energy decreases
with εt. Let m = limt→∞ J∗(εt) > 0. Let us prove now that
εt also converges. Since ‖εt

zẑ‖ 6 1 for all z ∈ Oe, ẑ ∈ D, t >

0, there exists a subsequence (εtk ) converging to ε. From (23)
we see that (εtk+1) converges as well. Let ε′ = limtk→∞ εtk+1.
Defining η := (ε′ − ε)/ν, we see that in the limit when tk → ∞
J∗(ε′) 6 J∗(ε)+ 1

2
‖η‖2

W ν(4νδtK −1). Since J∗(ε′) = J∗(ε) = m
we can conclude that η = 0 and therefore ε = ε′. This implies
that the whole sequence (εt) converges. Furthermore the limit ε
verifies the Euler equation (22), and thus is a minimizer of the
dual energy J∗.

We now sketch the derivation of the expression for K. Let us
define the following c-weighted norms: ‖u‖2

c := 〈c−1u, u〉U for u ∈

U , ‖ξ‖2
c := 〈c−1ξ, ξ〉V for ξ ∈ V and ‖A‖2

cc := supξ∈V


‖Aξ‖2

c

‖ξ‖2
c

ff

for operators A : V → U . For any η ∈ W we can write

‖c−1/2∇ · Lη‖2
U = ‖∇ · Lη‖2

c 6 ‖∇ · ‖2
cc‖Lη‖2

c .

On one hand we have that

‖Lη‖2
c 6 ‖η‖2

W sup
z∈Oe

8
<
:c−1

z

X

ẑ∈D

m2
zẑ

9
=
; 6 ‖η‖2

W ,

where first inequality is an application of Cauchy-Schwarz, then
we have used that

P
i a2

i 6 (
P

i |ai|)2, and the fact that cz =P
ẑ∈D mzẑ 6 1.

On the other hand, from the definition of the divergence op-
erator, it can be shown that ‖∇ · ‖2

cc 6 4K. ⊓⊔
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Computational considerations. Let us remark that for the case
of inpainting (D = Oc

e) the domain of the dual variable ε is
Oe × Oc

e ⊂ R
4, and therefore the direct implementation of this

algorithm is prohibitive (for large images with large inpainting
domains ε will not fit in memory). To circumvent this problem
we threshold the pixel-wise influence weights mzẑ , so as to keep
for each z only the M highest contributions. This reduces the
size of ε to M |Oe|. Indeed, when h → 0 the m funcion is already
sparse w.r.t. ẑ, being the number of non-zero elements less or
equal than the patch size (in pixels). In our experiments we set
M to the size of the patch, capturing exactly the function m.

C Computation of the Nearest Neighbor Field

The computation of the nearest neighbor (or of the weight func-
tion w) is the most time consuming step of an exemplar-based
algorithm. Two key observations allow to reduce the computa-
tional load for this task. The first one is that, the nearest neighbor
search can be approximated without compromising the quality of
the output, allowing to trade precision for speed (see for instance
[13] and references therein). The second one, as noted in [7], is
that due to the coherence of natural images, nearest neighbors
of patches centered on nearby pixels are likely to be located at
nearby positions.

PatchMatch is a very efficient algorithm for computing ap-
proximate nearest neighbors proposed in [7]. The authors in [7]
consider two regions O and Oc of the same or different images.
The objective is to find for each patch centered in x ∈ O the
location of the best match n(x) ∈ Oc. The authors define the
Nearest Neighbor Field (NNF) as the function x 7→ (n(x) − x)
defined over O. Instead of searching for the nearest neighbor of
each query patch independently, PatchMatch computes the NNF
simultaneously for all query patches. It exploits the fact that since
query patches overlapp, the offset n(x) − x of a good match for
at x is likely to lead to a good match for the adjacent points
of x as well. It is an iterative algorithm which starting from a
random initialization, alternates between steps of propagation of
good offsets and random search (see [7] for details). For most ap-
plications with natural images, a few iterations after a random
initialization are often sufficient.

We extended this algorithm following a suggestion in [7]. In-
stead of storing a single offset for each query patch, we store
queues of L offsets in an L-Nearest Neighbors Field (L-NNF).

Thus the number of initial random guesses gets multiplied by L.
During the propagation step adjacent queues are merged in to
a temporal queue of length 2L from which only the best L off-
sets are kept. This allows to preserve and transfer non optimal
offsets that may in turn be optimal for farther positions. Our
implementation of the random search is essentially as in [7].

The use of queues represents a significant improvement of
performance with respect to the original PatchMatch. Figure 13
shows the evolution of the nearest neighbor’s error measured asP

x∈O ‖pu(x) − pu(n(x))‖2 with time, using queues of different
lengths. Even L = 2 allows to achieve results of similar quality
in less time. Clearly L cannot grow unbounded: with L = 30 the
first iteration got to a higher precision but it took more than 10
seconds. In practice we set L ≤ 10 and perform a small number
of iterations.

Let us remark that each queue is an approximated neighbor-
hood of the query patch in the patch space. This neighborhood
can be interpreted as a truncated representation of the function
w(x, ·) for each pixel x, which is useful in the non-degenerated
case when h > 0 in (6).

There is an interesting parallelism between this algorithm
and the mechanic of Genetic Algorithms. The L-NNF problem
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Fig. 13 Performance of the modified PatchMatch. The
graph shows the evolution of the nearest neighbor’s error with the
iterations of the algorithm. Each graph corresponds to a different
size L of the sets (L = 1 corresponds to the original PatchMatch
[7]). The dots indicate the completion of an iteration.

can be seen as the simultaneous minimization of many fitness
functions, one for each pixel in O. Each fitness function is defined
as the sum of the patch errors over the corresponding queue. If
we identify the individuals with the queues for each pixel in O,
then the population for single problem is composed by the queue
at the pixel and its immediate neighbors (5 individuals). The ran-
dom search can be interpreted as mutations, the propagation as
an optimal crossover between individuals (queues). The popula-
tion overlap of neighboring problems responds to the fact that
adjacent problems are likely to the have similar solutions.
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49. Peyré, G.: Manifold models for signals and images. Comp.
Vis. and Im. Unders. 113(2), 249–260 (2009)
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