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A Technique for Real-Time Shadowing Adjustment
of RCS Scattering Center Models

Joshua L. Wilson, Brian W. Rybicki, Lea E. Johnson, and Douglas M. Koltenuk

Abstract—A method has been developed to adjust Radar
Cross Section (RCS) scattering models for two-body effects,
particularly shadowing. The method described here involves
using the near field scattering solution of one object to apply
two-body corrections to another. By assuming that the second
object can be represented by a known set of point scatterers,
the fields at these scattering centers are used to calculate the
adjusted RCS in the presence of the shadowing object using
the principle of reciprocity. Since this approximation does not
require a full-wave electromagnetic solution, it is considerably
more computationally efficient than Moment Method solvers or
other similar techniques, and thus could be adapted to real-time
applications.

The results of the method are compared against measurement
and Moment Method simulation for the case of two cylinders,
a cylinder and a cone, and two spheres. Good agreement is
generally obtained between the proposed approximate model and
measurements or Moment Method simulations.

Index Terms—Electromagnetic scattering, Radar cross sec-
tions, Numerical techniques.

I. INTRODUCTION

RADAR scattering involving multiple bodies can often be
treated by superposing the returns from each of the indi-

vidual scatterers in the scene. However, the situation becomes
more complicated when either the geometry of the objects
or their proximity to one another demands that two-body
electromagnetic interactions be taken into account. A number
of radar scenes, such as those encountered in space sensing,
exhibit two-body phenomena. Modeling and understanding
these interactions are necessary to construct an accurate model
of the entire scattering scene.

It has been shown [1] that the reaction theorem can be
applied iteratively to find two-body scattering corrections, and
that even a first-order approximation can yield good results
in many cases. This approach simplifies the computation
significantly from what would be required if a full-wave
simulation were performed with both objects present. A similar
approach was used by Li et al. in [2]. However, the technique
involves integration of the field quantities across the surface
of the object. In this paper, we work with a scattering center
representation of the object, and these scattering centers are
adjusted to account for two-body interactions. We will see
that the technique can be applied to shadowing objects of any
geometry provided that reasonable analytic expressions can
be found for the near-field scattering solution of one of the
objects (e.g., a conducting plate, cylinder, sphere, etc.).

In this paper, we will first show how the known fields from a
single object can be used to adjust a scattering center model to

The authors are with MIT Lincoln Laboratory, Lexington, MA, 02420.

account for two-body interactions. Then, we will present three
examples of one object shadowing another for both TE and
TM polarizations, one case for two finite cylinders, one for a
cylinder and a cone, and finally a case for two spheres. We will
show numerical results compared to static range measurements
as well as simulations carried out in CICERO, a Moment
Method-based solver.

II. TECHNIQUE FOR SCATTERING CENTER ADJUSTMENT

A. Power Adjustment

We assume that the shadowed body can be decomposed into
discrete scattering centers, each of which can be shadowed
independently based on its physical location in space. For a
scattering center at a fixed location r, the radar equation gives

PR =
PTGT
4πr2

σ
1

4πr2
GRλ

2

4π
. (1)

Recognizing PTGT

4πr2 as the magnitude of the incident radiation
intensity at the scatterer of interest Si(r), and PR 4π

GRλ2 as the
magnitude of the intensity at the receiver Sr, we have

|Sr| = |Si(r)|σ
1

4πr2
. (2)

We now associate the intensity vector S with the square of the
value of the magnetic field H, and write

Hr = Hi(r)
√
σ

1
2r
√
π
. (3)

If we now consider the behavior of the scatterer in the presence
of the shadowing object, we first recognize that the incident
radiation at the scattering center at r is no longer Hi(r), but
rather

H ′i(r) = G1Hi(r) (4)

for some G1(r). So, H ′i(r) is the field at r due to an incident
field Hi(r) in the presence of the shadowing object. Hr must
also be adjusted, since the power has to be reradiated from the
scatterer in the presence of the shadowing object, so another
correction must be made to (3):

H ′r = H ′i(r)
√
σG2

1
2r
√
π
, (5)

for some G2(r). So finally we have

H ′r = G1Hi(r)
√
σG2

1
2r
√
π
. (6)

By reciprocity,
G1 = G2 (7)
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so
H ′r = (G1)

2
Hi(r)

√
σ

1
2r
√
π
, (8)

and the adjusted RCS value is
√
σ′ = (G1)

2√
σ. (9)

This simplified case uses scalar power quantities rather than
the actual field vector components; however, this provides a
simple pedagogical starting point which will make the vector
analysis in the next section more clear.

B. Adjustment of Field Quantities

We must now elaborate on the treatment of the scattering
center adjustment in order to account for both the phase and
polarization of the shadowed return. These quantities proceed
from the time-varying three-dimensional nature of the fields
and are not calculable from the analysis of the previous
section.

We consider as a source a single magnetic dipole located
far away from the target complex, such that the field at the
target can be approximated as a plane wave whose magnetic
field vector is parallel to the direction of the dipole. Thus, it is
possible to construct a dyadic Green’s function in the presence
of a shadowing cylinder at any location r2, such that

H(r2) =
∫∫∫

V

M(r′) · Ḡ(r2, r′)dv′, (10)

which reduces, assuming an impulse source at r1, to

H(r2) = M(r1) · Ḡ(r2, r1). (11)

We will assume a simple object shape so that this Green’s
function can be computed fairly easily. One could also use
the Green’s function for the electric field and electric sources,
though no comparisons have been made thus far between these
two approaches.

The scatterer at r2 will then radiate a scattered field in
response to the impinging field. We can assume that this field
is due to a particular impulse magnetic current M2. Thus,
associating M1 and H1 with the incident fields, and M2 and
H2 with the scattered fields, we have by reciprocity

M1(r1) ·H2(r1) = M2(r2) ·H1(r2). (12)

Substituting the appropriate expressions for H1 and H2 as in
(11),

M1(r1) ·
(
M2(r2) · Ḡ(r1, r2)

)
(13)

= M2(r2) ·
(
M1(r1) · Ḡ(r2, r1)

)
=
(
M1(r1) · Ḡ(r2, r1)

)
·M2(r2)

from which we conclude that

Ḡ(r1, r2) = Ḡ(r2, r1)T . (14)

To complete our formulation of the problem, we must relate
M2(r2) to H1(r2), i.e., how the scatterer responds to an
incident field. We will express the magnetic current at the
scattering center location as an impulse magnetic current. It

k

y

My

M

Hy

H

r
1 -r

2

Fig. 1. Definition of (k, y, ξ) coordinate system.

is well known that a ẑ directed magnetic dipole located at the
origin of magnitude M0 produces a field

Hθ =
jβM0

η04πr
e−jβr sin θ. (15)

We will use two such magnetic currents directed in orthogonal
directions and require that the field emitted from this crossed
dipole pair be equivalent to the scattered field required by the
RCS of the particular scatterer in question. To do this, we first
express the fields in terms of basis vectors k̂, ŷ and ξ̂, defined
as in Fig. 1 such that ξ̂ is in the xz plane and

k̂ × ŷ = ξ̂. (16)

In this convention, the incident magnetic field is directed along
ŷ for the TM or “H” polarization case and along ξ̂ for the
TE or “V” polarization case (wave propagation is along k̂).
We will neglect all sources and fields directed along k̂, since
these will disappear in the far field. Since the vector r1 − r2

is parallel to k̂, we can neglect the sin θ terms, leaving

Hy(r1) =
jβM2y

η04π|r1 − r2|
e−jβ|r1−r2|, (17)

Hξ(r1) =
jβM2ξ

η04π|r1 − r2|
e−jβ|r1−r2|,

where M2 specifies the impulse source at the scattering center
at r2. Therefore,

M2y =
−j4π|r1 − r2|η0Hy(r1)

β
ejβ|r1−r2|, (18)

M2ξ =
−j4π|r1 − r2|η0Hξ(r1)

β
ejβ|r1−r2|.

Hy(r1) and Hξ(r1) can then be related to the field impinging
on the scatterer by invoking the known scatterer RCS:

σ̄ =

 0 0 0
0 HH HV
0 V H V V

 , (19)

where the components of the matrix in the kyξ basis involve
the horizontal and vertical components of the scattering ma-
trix. From the definition of RCS in terms of magnetic field
quantities, one can write

H(r1) =
1

2|r1 − r2|
√
π

H1(r2) ·
√
σ, (20)
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assuming that the distance r1 − r2 is sufficiently large. Note
that the field H(r1) here is the field due to the scattering
center in the absence of a shadowing body. Substituting this
into (18),

M2(r2) = A
(
H1(r2) ·

√
σ
)
, (21)

where

A =
−2j
√
πη0e

jβ|r1−r2|

β
. (22)

Then,

H2(r1) = M2(r2) · Ḡ(r1, r2) (23)

=
(
AH1(r2) ·

√
σ
)
· Ḡ(r1, r2)

=
(
A
(
M1(r1) · Ḡ(r2, r1)

)
·
√
σ
)
· Ḡ(r1, r2)

= AM1(r1) ·
(
Ḡ(r2, r1) ·

√
σ · Ḡ(r1, r2)

)
= AM1(r1) ·

(
Ḡ(r2, r1) ·

√
σ · Ḡ(r2, r1)T

)
.

From

M1(r1) =
−j4π|r1 − r2|η0Hi(r2)ejβ|r1−r2|

β
, (24)

where Hi(r2) is the incident field in the absence of the
shadowing body,

H2(r1) = A
−j4π|r1 − r2|η0ejβ|r1−r2|

β
Hi(r2)· (25)(

Ḡ(r2, r1) ·
√
σ · Ḡ(r2, r1)T

)
=
−8π

3
2 |r1 − r2|η2

0e
2jβ|r1−r2|

β2
Hi(r2)·(

Ḡ(r2, r1) ·
√
σ · Ḡ(r2, r1)T

)
.

Finally, comparing this relation with the formula defining the
adjusted RCS value

H2(r1) =
1

2
√
π|r1 − r2|

Hi(r2) ·
√
σnew, (26)

we conclude

√
σnew =

−16π2|r1 − r2|2η2
0e

2jβ|r1−r2|

β2
× (27)(

Ḡ(r2, r1) ·
√
σ · Ḡ(r2, r1)T

)
.

We can simplify this expression to
√
σnew = Ḡ′(r2, r1) ·

√
σ · Ḡ′(r2, r1)T, (28)

where Ḡ′ is defined such that

Ḡ = Ḡ′ · Ḡ0, (29)

with Ḡ0 being the free space Green’s function. Ḡ′ represents
the ratio of Ḡ to the free space Green’s function as well as
the ratio of the magnetic field at r2 to an incident plane wave
of unity amplitude.

The similarities with the scalar case considered in the last
section are now apparent. Whereas before in (8), we had the
incident and scattered fields related by a real scalar quantity
G
√
σG, we now have them related by a dyadic quantity

Ḡ(r2, r1) ·
√
σ · Ḡ(r2, r1)T . The validity of this technique

hinges on how accurately the point scatterer approximation
represents the true scattering behavior of the second object.
It will be shown in the next section that reasonably accurate
results are possible.

The method could be extended to more than one shadowing
object. In this case, the Green’s function in the presence
of two or more objects would have to be calculated. If the
shadowing objects are far apart and not both along the line-
of-sight, calculation of the combined Green’s function can
generally be approximated by simply applying superposition
to the scattered fields from each object in isolation.

As an example case, let us assume that the entire scattering
scene has rotational symmetry, such as the case of two axially
aligned cylinders considered in the next section. In the (k, y, ξ)
coordinate system,

Ḡ(r2, r1) ·
√
σ · Ḡ(r2, r1)T = (30) 0 0 0

0 gyy gyξ
0 gξy gξξ

 · √σ ·
 0 0 0

0 gyy gξy
0 gyξ gξξ

 .

If we take the rotation axis of the body to be the z axis and the
xz plane as the the plane of incidence, all scattering centers
will lie in the xz plane, and at these observation points we
can argue by symmetry that

gyξ = 0 (31)
gξy = 0.

Likewise, it has been shown [3] that for a body of revolution,
the V H and HV RCS polarization components will be zero
for a monostatic measurement. Therefore, the corrected RCS
for a body of revolution scatterer is

Ḡ(r2, r1) ·
√
σ · Ḡ(r2, r1)T =

 0 0 0
0 g2

yyHH 0
0 0 g2

ξξV V

 .

(32)
As expected, the scattering matrix is diagonalized when ro-
tationally symmetric objects are considered. Moreover, the
corrected V V component has no dependence on the original
HH component, and vice versa. This also implies that for
problems with rotational symmetry, only one field component
has to be computed at the observation point for each incident
polarization.

Some caution must be taken regarding the applicability of
the model for predicting multi-bounce returns. In assuming
that a scattering center is well-defined by its V V , HH , HV ,
and V H components at a particular aspect, we have assumed
that the wave scattered by the shadower and the incident wave
are aligned. If this is not the case (such as in some multi-
bounce situations) the scattering center must be redefined
based on its bistatic response for at least two incident angles.
This problem becomes exponentially more difficult and puts
unrealistic requirements on the input scattering center model.
However, as we will see later, the present technique does apply
fairly well to shadowing corrections. The technique should
also work in cases where the scattering centers are nearly
isotropic.
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Examined 
scattering 
center

Shadowing Cylinder

Shadow Region

Lit Region

Radar 
line-of-
sight

0o180o

Fig. 2. Geometry of narrowband scenario defining aspect angle convention.
The position of the cylinders is fixed and the aspect is varied.

III. RESULTS AND DISCUSSION

To validate the treatment of the two-body problem outlined
in the previous section, comparisons are made with predicted
results generated using first-principle codes as well as mea-
surement results. This will be done through three example
cases: the case of two cylinders, the case of a cylinder and a
cone, and the case of two spheres.

A. Axially Aligned Cylinders

The validation scenario discussed in this section consists
of two axially-aligned cylinders as shown in Fig. 2. The
shadowing cylinder is 1.50 m in length and 0.15 m in radius.
The shadowed cylinder is 0.30 m in length and 0.06 m in
radius. The separation between the two cylinders is 0.15 m.
The primary frequency used to probe the two-body scattering
results is 8.5 GHz.

The scenario dimensions relative to a 0.035 m wavelength at
8.5 GHz require a near-field analysis of the shadowing cylinder
as presented in the Appendix. Method of Moments (MoM)
predictive codes can also be used to represent near-field
scattering phenomenology. Due to the axial symmetry of these
objects, the two-dimensional MoM solver CICERO (Code for
Inhomogeneously Coated Electrically Reflecting Objects) can
be used [4]. The scattering returns for the shadowed cylinder
are first calculated without the shadowing object. These results
can be used to determine scattering center strengths at various
target locations as a function of aspect angle and polarization.
The methods of Section II can be then used to determine the
corrections to the strength of these scatterers due to the fields
of the shadowing object described in the Appendix, and these
corrections can be compared to the predicted results of the
two-body system using CICERO.

A frequency band of 6.5 to 10.5 GHz is used with a 40 MHz
frequency spacing to provide sufficient resolution for extract-
ing scatterer intensity and to minimize interference between
scatterers. The wideband scatterer strengths are extracted from
Inverse Synthetic Aperture Radar (ISAR) images generated
from the predicted complex RCS from CICERO with a six-
degree window of aspect angles. The results are shown in Fig.

x (m)

y 
(m

)

-2 -1 0 1 2

-1

-0.5

0

0.5

RCS
(dBsm)

-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10

Shadowing body Shadowed 
body

Extracted scattering 
center

Radar 
line-of-
sight

Fig. 3. Example image formed from CICERO two-body output, showing
extracted scatterer (HH Polarization). Computed within a 6◦ window centered
at 100.8◦.

3. In this figure, the plane wave can be visualized as coming
from the bottom-left of the picture, corresponding to a 100.8◦

incident angle.
From this wideband image, scatterers can be isolated from

the shadowed target-only prediction, and changes to those
scatterers can be observed when the shadowing object is added
to the simulation. The extracted scatterer strengths are then
compared with the estimations using the methods of Section
II calculated at the center of the imaged band, 8.5 GHz.

There are a few caveats that must be taken into account for
this analysis. The analysis of the fields of a finite cylinder (see
the Appendix) assumed that the shadowing cylinder had no
endcaps. CICERO requires that the modeled objects be closed,
so the results of the two approaches differ as the aspect angle
approaches the symmetry axis. Also, the endcaps produce
significant scattering (including multi-bounce) at certain aspect
angles in the CICERO prediction. To reduce this contribution,
a dielectric absorbing layer has been added to the shadowing
endcap.

1) Narrowband Analysis: The scatterer used for compar-
ison purposes in this section is marked in Fig. 3. Aspect
angle is defined with zero degrees pointing to the base of
the shadowed cylinder. The two-body RCS corrections for
HH and VV polarizations, extracted from a series of images
similar to Fig. 3 have been plotted in Fig. 4. At low aspect
angles, the shadowed object is in front of the shadowing
object and is not shadowed. Beyond 90 degrees aspect, the
scatterer RCS begins to oscillate due to edge diffraction from
the shadowing cylinder. The diffracted ray begins to alternately
interfere constructively and destructively with the line-of-
sight contribution. Between 130 and 150 degrees the scatterer
gradually begins to enter the shadow region as the direct
path between the radar and the scatterer becomes blocked.
Based on a geometric (ray-tracing) analysis, a sharp shadow
boundary at 150 degrees would be observed by the shadowing
cylinder. However, significant diffraction is observed, causing
a blurring of the shadow boundary. Due to the lack of
endcaps on the cylinder the scatterer RCS becomes strong
again near 180 degrees. The predicted correction factors at
8.5 GHz are next added to the CICERO one-body extracted
results and compared to the extracted two-body results. Fig. 5
(HH polarization) and 6 (VV polarization) show the CICERO
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Fig. 4. Two-body corrections predicted by current method for HH and VV
incident polarizations at 8.5 GHz.
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Fig. 5. Comparison of shadowing predictions for HH polarization.

one-body RCS extracted for the scatterer, the CICERO two-
body scatterer RCS, and the CICERO one-body scatterer RCS
adjusted by the present two-body model. The results of the
two-body prediction and the corrected one-body scatterer RCS
are in very good agreement in the critical region near the
classical shadow boundary (from around 110 to 150 degrees),
providing strong validation for the two-body model presented
in this paper. Both CICERO and the two-body model indicate
that the shadowing is greater for VV polarization than for HH
polarization.

2) Broadband Characteristics: To study the correction fac-
tor behavior in wideband, these factors are calculated from
8-12 GHz for a scatterer near a cylinder centered at the origin
with length 3.00 m and radius 0.50 m. The scatterer is placed
0.15 m away from the end of the cylinder (z=1.65 m), and
its radial position (x) is moved from -1 m to 0.5 m at 1 m/s.
This geometry is illustrated in Fig. 7. Fig. 8 shows a Range-

100 120 140 160 180
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-20
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0
VV Polarization
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R
C

S
 (

dB
sm

)

1 body reference
2 body MoM
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Fig. 6. Comparison of shadowing predictions for VV polarization.

Radar line-
of-sight

Scatterer
Range of 
Motion

Shadowing Cylinder

x

Origin
z

Fig. 7. Geometry of broadband scenario, showing scatterer at fixed axial
position and varying radial position.

Time-Intensity (RTI) plot obtained by applying an FFT to the
shadowing correction as calculated at a fixed 30 degree aspect
angle over the entire bandwidth. Note that in this plot time
can be equated to the radial position of the primary scatterer.
Three distinct regions are observed in the RTI. Region 1 is
characterized by two delayed scatterers in addition to the
line-of-sight scatterer. These additional scatterers arise from
the reflected ray paths from the shadowing cylinder to the
physical point scatterer. The range to the middle scatterer
(representing a bounce off the cylinder and a bounce off the
scattering center) has constant RCS, whereas the downrange
scatterer (representing two bounces off the cylinder and one
off the scattering center) moves in-range as x increases.
Some ripple is present as the three scatterers converge. This
interference is a consequence of the finite bandwidth and is not
related to shadowing. Region 2 is dominated by the incident
wave, although some diffraction of the scattered wave from
the cylinder edge is also observed. There is only minimal
correction to the scatterer RCS in this region. In Region 3,
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Fig. 9. Geometry of the cylinder-cone shadowing case, highlighting the
scatterer of interest.

the scatterer is shadowed from both incident and reflected
waves. It is only illuminated by energy diffracting off the
edge of the cylinder. The variable path length introduced by
diffraction also delays the scatterer return so that it appears to
bend outrange before it is fully shadowed.

B. Cylinder-Cone Validation Case

Consider the geometry of Fig. 9. We consider the cylinder
as the shadowing body and the cone as the shadowed body.
In particular, we shall be concerned with the shadowing of
the scatterer corresponding to the nose tip. Using the same
field expressions for the finite cylinder as were used in Section
III-A (found in the Appendix), we can compute the shadowing
correction at the location of the nose tip. The scatterer RCS
from the CICERO prediction for the cone was adjusted as
described in this paper, and the results were compared to the
CICERO prediction of the cylinder-cone complex. The same
frequency band and imaging techniques were used here as in
the two cylinder case.

The results for both linear polarizations are found in Fig. 10.
The present model accurately predicts the scattering behavior
for aspects near the shadow boundary. However, the CICERO
shows a higher scatterer RCS near 180 degrees aspect, where
perfect shadowing would be expected. Upon further examina-
tion, it was discovered that this was due to the specular return
from the cylinder spilling over into the area occupied by the
cone scatterer of interest, and does not represent an actual
increase in the RCS of this scatterer.

C. Two Spheres Validation Case

The theoretical formulation of the shadowing model makes
use of the exact expressions for the scattered near fields of
a perfectly conducting sphere, which are well known [5]. To
get an idea of the shadowing corrections, one can plot the
square of the y-component of the magnetic field assuming
the incident field is also y directed. This is proportional to
g2
yy, which determines the shadowing correction. This quantity,

normalized to the intensity of the incident plane wave, is
plotted over a “screen” placed 2.54 cm (1”) behind a 49.53
cm (19.5”) sphere in Fig. 11. The frequency used for the
shadowing computation is 10 GHz. One can see shadowing
toward the center as expected, and also a bright spot at the
center of the plane, due to constructive interference of the
diffracted rays. Also notable are the ripples seen around the
shadow boundary, also due to diffraction.

In this example case, a 30.48 cm (12”) diameter metal
sphere is placed 2.54 cm behind a 49.53 cm diame-
ter metal sphere, so that the geometry at 0 degrees as-
pect is shown in Fig. 12. The full near fields of the
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Fig. 10. Comparison of shadowing predictions for the cylinder-cone
validation case for HH and VV polarization.
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sphere on a plane 2.54 cm behind the sphere. The incident magnetic field is
along the y direction and propagates in the z direction.

Radar line-
of-sight

30.48 cm49.53 cm

2.54 cm

Fig. 12. Geometry of two spheres test case at 0 degrees aspect angle.

49.53 cm sphere are used by the present technique to
adjust the scatterer intensity from the smaller sphere.
X-band measurements of this target complex were carried out
in the static range. Data were collected and compared to theory
from 9-11 GHz at both VV and HH polarizations.

The spheres were placed with their centers aligned and
rotated horizontally on a turntable in a static range. This
allowed the response across various aspects to be measured.
The magnitude of the point scatterer corresponding to the
leading edge of the 30.48 cm sphere is extracted from the mea-
sured data using wideband imaging techniques. To perform
the extraction, wideband images similar to Fig. 3 were used
with a 5◦ integration window. The scatterer corresponding to
the creeping wave is not considered. The results are shown in
Fig. 13. Both the measurements and the theoretical predictions
are plotted, as well as the MoM prediction.

For higher aspect angles where the 30.48 cm sphere begins
to move in front of the 49.53 cm sphere, the point scatterer
approximation assumed in the model of the 30.48 cm sphere
breaks down, since the double bounce return causing the more
pronounced lobes in the theoretical curve is in reality shielded
by the 30.48 cm sphere. Overall, however, the accuracy of
the current point scatterer shadowing model is reasonably
close to the accuracy of the full wave solver in its prediction
of the shadow boundary, while its implementation is much
simpler. There appeared to be a small angular misalignment
(roughly 1.5 degrees) of the measurement turntable, which was
corrected in Fig. 13.

As was the case for the cylinder, the shadowing is greater
at VV polarization than at HH. This can also be understood
from the appearance of Fig. 11 in which the shadowing is
much more pronounced along the y axis than along the x
axis.

IV. CONCLUSION

A method has been presented to calculate the RCS of a two-
body system where the scattered near fields of one of the two
objects is known. This limits the validation cases to a set of
problems where the shadowing object is a canonical shape
(e.g., a conducting plate of arbitrary dimensions, cylinder,
sphere, etc.). Given a point scatterer model of the other object
(on which no shape restrictions are placed), the fields at
these scattering centers together with reciprocity are used to
calculate the adjusted RCS in the presence of the shadowing
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Fig. 13. Comparison of shadowing predictions for the two spheres validation
case for VV and HH polarization. At zero degrees aspect, the sphere is
shadowed by the 49.53 cm sphere.

body. Although any technique using only information from
scattering center models (without full surface representation)
is approximate, this method offers reasonably accurate scat-
tering center adjustments which can be computed very rapidly
without the need for a full-wave solver.

To validate our methodology, a MoM solver was used to
predict scatterer RCS for a two-cylinder system and a cylinder-
cone system, and static range measurements were compared to
theory for the case of two conducting spheres. Good agreement
was obtained between the shadowing characteristics predicted
by the two-body model and both measurement and Moment
Method simulation.

i

x

y

z

Hi

Ei

a

L/2

L/2

Fig. 14. Geometry for TMz plane wave incident on conducting cylinder of
finite length.

APPENDIX
NEAR FIELDS OF A CONDUCTING CYLINDER

In this section, we calculate the approximate fields due to
a finite, perfectly conducting cylinder, which were used in the
calculations of Section III-A.

A. TM Case

Consider the cylinder of Fig. 14 with some finite length
L. We begin by calculating the surface currents on the finite
cylinder, assuming they are the same as they would be on a
cylinder of infinite extent (thus neglecting endcaps and edge
currents). Assuming TMz incident polarization with

Ei = E0 (x̂ cos θi + ẑ sin θi) e−jβx sin θiejβz cos θi , (33)

we know from [6]

Hs
φ = −jE0

1
η
ejβz cos θi×

∞∑
n=−∞

j−nanH
(2)′

n (βρ sin θi) ejnφ,

Hs
z = 0,

where

an =
−Jn (βa sin θi)

H
(2)
n (βa sin θi)

. (34)

Since the z-component of the scattered magnetic field is
zero, and the ρ component is normal to the surface of the
cylinder, only the φ component contributes to the surface
current density Jz given by

Js = n̂×H = ρ̂×Hφφ̂ = Hφẑ. (35)

We can then calculate the surface current and integrate to find
the fields everywhere. This yields
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Hs
ρ =

a2

4π

∫ 2π

0

dφ′J?z (φ′) sin (φ− φ′)× (36)∫ L
2

−L
2

dz′
−e−jβr (jβr + 1)

r3
ejβz

′ cos (θi)

Hs
φ =
−a
4π

∫ 2π

0

dφ′J?z (φ′) (ρ− a cos (φ− φ′))×∫ L
2

−L
2

dz′
−e−jβr (jβr + 1)

r3
ejβz

′ cos (θi),

where

J?z (φ′) =
E0

η

[
− cosφ′e−jβa cosφ′ sin θi+ (37)

j
∞∑
n=0

εnj
−nH

(2)′

n (βa sin θi)

H
(2)
n (βa sin θi)

Jn (βa sin θi) cos (nφ′)
]
,

εn =
{

2 : n = 0
1 : n 6= 0, (38)

and

r =
√
a2 + ρ2 − 2aρ cos(φ− φ′) + (z − z′)2. (39)

The evaluation of (36) can now be carried out numerically.

B. TE Case

The derivation of the TEz incidence case follows parallel
to that of the TM case. We will see that the induced surface
current density will have both z and φ components. This
produces, in general, fields with ρ, φ, and z components.

We consider an obliquely-incident plane wave with an
incident magnetic field is given by

Hi = H0(x̂ cos θi + ẑ sin θi)e−jβx sin θiejβz cos θi . (40)

Following [6], the scattered fields in cylindrical coordinates
are given by

Hs
ρ = jH0 cos θiejβz cos θi (41)
∞∑

n=−∞
(−j)nbnH(2)′

n (βρ sin θi)ejnφ

Hs
φ = jH0

cot θi
βρ

ejβz cos θi (42)

∞∑
n=−∞

n(−j)n−1bnH
(2)
n (βρ sin θi)ejnφ

Hs
z = H0 sin θiejβz cos θi (43)
∞∑

n=−∞
(−j)nbnH(2)

n (βρ sin θi)ejnφ

where
bn = − J ′n(βa sin θi)

H
(2)′
n (βa sin θi)

. (44)

Differentiation, denoted by the prime, is with respect to the
function’s complete argument. We introduce the quantities

S1(φ) =
∞∑

n=−∞
(−j)n+1 ejnφ

H
(2)′
n (βa sin θi)

(45)

and

S2(φ) =
∞∑

n=−∞
(−j)n [sinφJn(βa sin θi) (46)

− n

βa sin θi
J ′n(βa sin θi)

H
(2)′
n (βa sin θi)

H(2)
n (βa sin θi)

]
ejnφ.

The final expressions for the fields are

Hs
ρ = Hρ1 +Hρ2 (47)

Hs
φ = Hφ1 +Hφ2 ,

where

Hρ1 =
H0a

2

4π
cos θi

∫ 2π

0

dφ′ sin (φ− φ′)S2(φ′)× (48)∫ L/2

−L/2
dz′

1 + jβr

r3
e−jβ(r−z′ cos θi)

Hρ2 =
−H0

2π2β

∫ 2π

0

dφ′ cos (φ− φ′)S1(φ′)×∫ L/2

−L/2
dz′ (z − z′)1 + jβr

r3
e−jβ(r−z′ cos θi)

Hφ1 =
H0a

4π
cos θi

∫ 2π

0

dφ′ [a cos (φ− φ′)− ρ]S2(φ′)×∫ L/2

−L/2
dz′

1 + jβr

r3
e−jβ(r−z′ cos θi)

Hφ2 =
H0

2π2β

∫ 2π

0

dφ′ sin (φ− φ′)S1(φ′)×∫ L/2

−L/2
dz′ (z − z′)1 + jβr

r3
e−jβ(r−z′ cos θi)

Also,

Hz =
−H0

2πβ

∫ 2π

0

dφ′
[
a− ρ cos (φ− φ′)

]
S1(φ′)× (49)∫ L/2

−L/2
dz′ (z − z′)1 + jβr

r3
e−jβ(r−z′ cos θi).
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