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Abstract 

 

Binary program analysis is a critical capability for offensive and defensive 

operations in Cyberspace.  However, many current techniques are ineffective or time-

consuming and few tools can analyze code compiled for embedded processors such as 

those used in network interface cards, control systems and mobile phones. 

This research designs and implements a binary analysis system, called the 

Architecture-independent Binary Abstracting Code Analysis System (ABACAS), which 

reverses the normal program compilation process, lifting binary machine code to the 

Low-Level Virtual Machine (LLVM) compiler’s intermediate representation, thereby 

enabling existing security-related analyses to be applied to binary programs.  The 

prototype targets ARM binaries but can be extended to support other architectures.  

Several programs are translated from ARM binaries and analyzed with existing analysis 

tools.  Programs lifted from ARM binaries are an average of 3.73 times larger than the 

same programs compiled from a high-level language (HLL).  Analysis results are 

equivalent regardless of whether the HLL source or ARM binary version of the program 

is submitted to the system, confirming the hypothesis that LLVM is effective for binary 

analysis.   
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AUTOMATED ANALYSIS OF ARM BINARIES USING THE LOW-LEVEL  

VIRTUAL MACHINE COMPILER FRAMEWORK 

 

I.   Introduction 

When President Barack Obama entered office, he was the first American 

president to insist on keeping his smartphone [CNN09].  A self-proclaimed BlackBerry 

addict, President Obama fought hard to keep his mobile device after his election, viewing 

it as an essential communications link to the outside world.  “They’re going to pry it out 

of my hands,” he said in describing his battle with his security advisors [Zel09].  

President Obama was required to turn in his personal BlackBerry and received an NSA-

approved device in its place.   

The President is not the only one struggling to overcome mobile device security 

issues.  Employees are concerned over the power their company’s IT departments have to 

remote-wipe their personal cell phones to protect company proprietary information 

[Kas10].  iPhone owners filed a lawsuit with Apple and AT&T for using a software 

upgrade, iPhone 1.1.1, to disable devices that had been unlocked by owners [Kei09].    In 

March of 2010, the US Air Force announced changes to BlackBerry services which 

severely restrict the capability of the devices in an attempt to bolster security [Mil10].  

These are but a few examples that demonstrate commercial users, the DoD, the highest 

levels of government and private citizens are all struggling with mobile device security. 

As more and more people use mobile technology for sensitive applications, 

mobile devices become more enticing targets for software attacks.  Mobile devices have 
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several interesting characteristics that make them valuable targets.  First, they are a vast 

storehouse of sensitive information: email, text and voice conversations, communication 

history and passwords are all contained therein.  Second, they can act as mobile, 

networked sensors.  Even low-end devices sold now have cameras, every cell phone has a 

microphone, and many devices now have GPS receivers and even accelerometers.  

Finally, they link to other networks.  Mobile devices are incredibly well-connected and 

communicate over proximity connections like Bluetooth, over physical connections (like 

USB) to a host PC, via wireless internet connection (Wi-Fi or Wi-Max) or on the cellular 

network.  An adversary with control of a victim’s mobile device can gain a lot of 

information about the victim, the victim’s surroundings and could use the device to gain 

access to other networks it communicates with.   

These issues raise many questions about mobile device security.  Why are mobile 

phones so vulnerable to attack?  How do these attacks occur?  How can resources be 

protected against these types of attacks?  How can National Defense organizations use 

these devices and networks to fight and win in the Cyberspace warfighting domain? 

1.1 Problem Background 

Whether the objective is to attack or defend software on mobile devices, analysis 

of the software running on those devices is key to 1) discovering weaknesses to exploit, 

or 2) verifying that no weaknesses are present or that the software correctly conforms to 

some specification—that the software is secure.  The first is vulnerability discovery and 

the second, program verification.   
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Many tools and techniques have been developed that analyze software for these 

purposes, but most of them require the software’s source code—the human-readable 

description of the software in a high-level language.  The source code for many mobile 

device drivers, operating system code and applications is not publicly available.  Of the 

top five operating systems on devices sold worldwide in the first quarter of 2010 

(Symbian, Research In Motion, iPhone OS, Android and Microsoft Windows Mobile), 

only two are open source [Gar10].  Even these have components that are provided only in 

binary form.  Thus, analysis of binary executables is extremely desirable. 

Even when source code is available, any analysis of it may be invalid, since it 

does not actually execute on the processor.  The source code undergoes many changes 

during the compilation and optimization process before being loaded into memory and 

executed on the hardware.  These changes may unintentionally invalidate properties of 

the program verified at the source code level, creating a mismatch between what the 

programmer intended and the machine code that the hardware actually executes [BR10].  

It is also possible that undesirable functionality was intentionally inserted into the 

program during the compilation process by an untrusted compiler [Tho84]. 

Various approaches to binary program analysis have been studied since the early 

days of computing but the field remains relatively immature and most approaches are 

ineffective or impractical. Some key issues in the field include theoretical limitations to 

binary analysis, complexity of modern computing architectures and the inability to reuse 

analyses on multiple computing architectures. 

�  
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1.2 Research Goals 

 The primary goal of this research is to develop an architecture-independent 

platform for automated binary program analysis based on the Low-Level Virtual Machine 

(LLVM) [Lat10], a modern re-targetable, open-source compiler infrastructure.  At the 

heart of the LLVM framework is a simple, well-specified, architecture-independent 

intermediate representation (IR) designed to support robust and efficient program 

analysis, optimization and transformation [LA04].  Many analyses are already available 

for code compiled to LLVM IR [SH10] and several groups have developed LLVM IR 

analyses specifically for program verification, program safety and vulnerability discovery 

[BA08][DKA05][DA06][CDE08][DKA06].  These analyses are typically applied to a 

program after compiling the high-level source code to LLVM IR and before generating 

native machine code for a particular architecture. 

This research develops the architecture, design and prototype implementation for 

an LLVM front-end which lifts binary machine code to the LLVM IR enabling access to 

the ever-growing set of analyses and transformations available for LLVM IRs.  This 

research uses the ARM instruction set, although implementing front-ends for other 

architectures is straightforward.  ARM is the leading producer of embedded 

microprocessors for mobile handheld devices [ARM10] and is therefore a logical choice 

for the analysis of mobile device binaries.  

Additional goals include: 1) verifying the functional correctness of translated code 

and 2) using existing LLVM tools to analyze lifted ARM binaries. 

�  



5�
�

1.3 Document Outline 

Chapter 2 provides a review of the relevant literature for this research.  It also 

provides some background information useful in understanding later chapters.  Chapter 3 

presents the design and implementation of the binary analysis system.  Chapter 4 is the 

experimental methodology for verifying the system performs as desired.  Chapter 5 

presents the results and data analysis of the experiments performed on the system under 

test.  Chapter 6 provides a summary of the contributions of this research, several useful 

applications of the developed system, and describes future work to improve the system. 
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II.   Literature Review 

2.1 Taxonomy of Mobile Device Vulnerabilities 

There are many taxonomies which categorize various aspects of software security.  

Some are collections of threats [Web10][FH08][Hof07], some catalog software coding 

errors [HLV05][TCM05], and some list and categorize vulnerabilities [Mit11][Mitr11].  

The taxonomy herein is not as detailed as those listed above, but it does capture a broad 

range of weaknesses in mobile devices that result in successful attacks. 

Bishop [Bis03] provides a number of useful definitions relating to computer 

security that are summarized here to eliminate any ambiguity in the following taxonomy.  

Computer security is often described in terms of its principle components: confidentiality, 

integrity, and availability.  Confidentiality ensures only authorized subjects are able to 

access information.  Integrity ensures no information is modified without appropriate 

authorization.  Availability ensures the system performs its intended function whenever 

that functionality is required.  Anything that could breach any of these areas is a security 

threat.  Any weakness in a computer system that makes it possible for a threat to actually 

occur is a vulnerability.  A specification that describes what should be and should not be 

allowed to occur with respect to confidentiality, integrity and availability of a system is a 

security policy.   
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Vulnerabilities result from errors in any of four areas: in the security policy, in the 

design intended to satisfy the policy, in the implementation of that design in hardware or 

software, or in the configuration of that hardware or software.  

2.1.1 Scenario 

To facilitate discussion of mobile device security issues and provide concrete 

examples, it is helpful to have a fictitious scenario to refer to.  Suppose Bob has a mobile 

device to communicate with Alice.  He can call Alice, send her text messages and receive 

the same types of communication from her.  He also uses his mobile device to make 

online banking transactions.  Bob does not want anyone to intercept voice or data 

communications between him and Alice.  While he is not pleased when the cell network 

drops his calls, he tolerates it as a minor inconvenience.  He would become extremely 

distraught, however, if he discovered someone had tampered with his online banking 

account using his password, stole his money and locked him out of his own account.  Bob 

has certain security goals for his mobile device.  He wants it to be free of any defects that 

could enable such a breach of security.  But how can Bob know if his mobile device is 

secure?   

2.1.2 Policy 

Since policy defines security for a system, it should be specified at the earliest 

stages of product development when requirements are being defined [McG04].  Ideally, 

mobile device development would include the crafting of a requirements specification 

describing a security policy so the device will adhere to that policy.  Unfortunately, 

security policies are often only informally defined or simply implied.  If designers satisfy 
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an incomplete, incorrect or inadequate policy, their system may not satisfy the actual 

needs of their customers (i.e., they may satisfy the wrong policy).  Thus, in the eyes of 

the customer who has his own policy in mind, the system is vulnerable to attack. 

Another vulnerability arises if a policy is unenforceable.  Mobile devices operate 

in a complex environment of interconnected systems.  Bob’s mobile device might be a 

Nokia phone with an ARM processor running Symbian OS over Verizon’s cell network.  

Bob’s phone also relies on the security of the online banking servers he connects to.  

Who is ultimately responsible for defining and implementing a security policy for this 

“system?”  This issue is captured in a Security Policy Objective which is a statement of 

intent to protect a resource from unauthorized use [Ste91].  “A security policy objective 

is meaningful to an organization only if the organization owns or controls the resource to 

be protected.”  All of the organizations above address security in some fashion.  Some of 

them may have defined formal policies, but they may not be able to enforce them if they 

do not control the resources which their piece of the overall system depends.       

 Finally, when dealing with interconnected systems and systems of systems, 

security depends on a composition of the policies, not on policies of individual systems.  

“A vulnerability arises when the interfaces between any two components do not match; 

that is, the two components do not compose according to the meaning of composition” 

[Win03].   This occurs when one system makes an assumption the other fails to carry out.   

Assume Bob provides feedback to a new mobile device development effort.  He 

tells the development team he wants his sensitive voice, text and internet transactions to 

remain confidential.  The development team formulates a policy that requires all 

connections to entities outside the device to be encrypted.  Even so, Bob’s sensitive text 
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messages and password information may still be vulnerable to an attacker who can gain 

physical access to Bob’s phone. 

2.1.3 Design 

Even if a security policy perfectly captures the desired security properties of a 

device, a vulnerability may still persist if the system design does not completely satisfy 

the policy.  Security policies tend to be ambiguous—they either use a non-formal 

language (like English) or mathematics.  But in either case these policies must be 

implemented via a set of mechanisms.  If the policy is misunderstood or inadequately 

addressed in the design, a vulnerability may result.   

Many of the same design challenges that plague personal computers also lead to 

vulnerabilities in mobile devices.  For instance, although software extensibility enables 

easy updates and extensions in functionality, it also makes it easier for malicious 

functionality to be added [MM00].  This is demonstrated by any number of the mobile 

Trojans that pose as legitimate applications.  Skulls, for example, is a Trojan that targets 

Symbian-based phones.  It claims to be an extended theme manager for the Nokia 7610 

smartphone but renders a device non-functional on installation [FSe09][Hof07].  

Complex interactions between hardware and software components both within and 

outside of the device are another design challenge in mobile devices.  Simply addressing 

security in each component individually without taking into account the entire system can 

lead to architecture and design vulnerabilities because of the composition problem 

[VM04][Win03].  Other design-level vulnerabilities arise from error handling in object-
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oriented code, object sharing and trust issues, unprotected communications and incorrect 

or missing access control mechanisms [PM04]. 

2.1.4 Implementation 

Assuming no security vulnerabilities existed in the policy or design of Bob’s 

smartphone (which is a big assumption), the phone may still be vulnerable if the 

hardware or software does not correctly implement the design.  Software coding errors 

(bugs) receive a great deal of attention in software security.  Coding errors produce the 

types of memory corruption errors that are exploited by self-propagating worms.   

Although these implementation errors certainly exist in mobile devices 

[MV06][MM09][HJO08][MN08], they seem to be more difficult to exploit successfully 

due to certain properties of the ARM processor, security features in embedded operating 

systems and lack of adequate tools [Mul08][San05][BFL07].  ARM processors have 

separate instruction and data caches.  Explicit writes to memory are only reflected in the 

data cache.  Additionally, instructions are not executed if they are written to memory that 

has already been cached.  ARM instructions also tend to include many zeros, making it 

more difficult to overflow a buffer with shellcode since any zero is interpreted as a null 

(the end of the string).  The Symbian operating system requires capabilities for each 

privileged activity an application performs.  Applications must be signed with the proper 

capabilities or they will not be installed on the device.  Additionally, the only software 

debuggers available for Symbian are user-mode debuggers which have a limited ability to 

debug privileged code. 

�  
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2.1.5 Configuration 

Finally, even if there are no policy, design or implementation vulnerabilities in a 

mobile device, it may still be vulnerable to attack if misconfigured.  For example, 

Blackberry devices come with a personal firewall which, among other things, controls 

activities of third-party applications.  This is a useful security mechanism but its default 

configuration is insecure.  By default, any third-party application may access sensitive 

data on the device, including: email, SMS messages, personal information (such as the 

calendar, tasks, memos and contacts), and key store (certificates, public/private keys, 

etc.) [Hof07].  If Bob had this kind of firewall configuration and accidentally installed a 

malicious application, it could exfiltrate data from his private emails, text messages and 

even passwords.  

2.2 Security-oriented Program Analysis 

This section discusses methods used for security-oriented program analysis.  It 

focuses more on vulnerability discovery than on formal program verification.  Since 

many of the techniques were developed for x86-based systems, this section speaks 

generally about vulnerability discovery and does not focus specifically on mobile 

devices, although all the techniques will work equally well on mobile devices. 

2.2.1 Black Box Analysis       

 Black box analysis emulates the approach a remote attacker would employ if he 

had no knowledge of the interior workings of a program.  To him, the program is a “black 

box.”  The only options available to him are to supply the program with input and 

observe the results of the operation returned to him as output.  The most basic form of 
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black box analysis is using the program to gain as much knowledge and understanding as 

possible about how it works and how it might be implemented.  Information gained from 

this step can determine what sort of input to provide and what program behavior is 

abnormal or faulty.  Another technique, fault injection, submits spurious data in an 

attempt to either crash the system or to elicit a response that gives more information 

about how the system might be exploited.  Input may be generated manually or in an 

automated fashion.  When automated using pseudorandom data, fault injection is called 

fuzz testing or fuzzing [MFS90].  Fuzz testing is used extensively for finding 

vulnerabilities in code, including those in mobile phone protocols 

[MV06][MM09][HJO08][MN08].  Fuzzing provides information about the presence of 

errors in a program but additional analysis is typically required to determine if such errors 

are exploitable. 

2.2.2 White/Grey Box Analysis       

 White box analysis, targets details of the system implementation to find security 

weaknesses.  This may include source code review or analysis of executables through 

disassembly.  Some approaches combine white box analysis with dynamic, black box 

input [HM04], which is typically referred to as grey box analysis.  Several grey box 

techniques are described in the following sections.  

2.2.3 Dynamic Approaches 

2.2.3.1 Debugging 

Debugging is a popular grey box approach.  It uses special software (a debugger) 

which attaches to another program.  The debugger monitors and controls the attached 
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program.  There are many commercial and freely-available debuggers for various 

platforms.  GDB is a very popular debugger for UNIX/Linux systems.  SoftIce and 

WinDbg are two of the more powerful debuggers for Windows/x86 programs.  IDAPro, a 

very popular disassembler, also includes a debugger for many platforms.  IDAPro 

versions 5.3 and later include a debugger for Symbian applications [Hex08]. 

2.2.3.2 Dynamic Information Flow Tracking        

Dynamic Information Flow Tracking (DIFT) is a technique for tracking input 

through a system at runtime by tagging or tainting this data and anything derived from it 

in the execution path.  As input data flows through the system anything resulting from 

use of that data (e.g., a new value calculated from it, the input data copied to another 

location, etc.) is also tainted because it could potentially exploit a vulnerability in the 

system.  Since vulnerabilities are usually exploited through some type of malicious data 

provided as input to a program, DIFT can identify vulnerabilities that a malicious user 

can reach via program input.  DIFT simplifies the process of searching for vulnerabilities 

by reducing the search space down to a subset of possible execution paths.  It has been 

estimated that there are five to 50 software “bugs” for every thousand lines of source 

code [HM04].  Not all of these are exploitable and not all that are exploitable may be 

exploited remotely.  Nevertheless, DIFT is a powerful technique for narrowing the search 

space to quickly identify dangerous vulnerabilities in a system. 

Several DIFT systems were developed for a particular purpose.  Some 

automatically detect malware at runtime and prevent its execution 

[DKK07][KBA02][SLZ04].  Some also automatically generate signatures for detected 
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malware [NS05].  Other DIFT implementations identify confidential information (CI) 

leaks [ME07] or CI lifetime in the system [CPG04].  BitBlaze [SBY08] is a binary 

analysis platform that combines DIFT and static approaches to perform binary analysis 

on any number of applications to include vulnerability discovery and malware analysis.   

There are two basic approaches used by DIFT systems.  The first relies on 

hardware mechanisms to taint data and propagate taint information [DKK07][SLZ04].  

The second approach uses binary instrumentation through software simulation 

[SBY08][NS05][CPG04][KBA02].  Hardware approaches usually increase the size of 

storage locations (memory and/or registers) by adding bits which encode taint 

information about the data.  They also typically modify the instruction pipeline in some 

way to propagate taint and restrict execution based on taint information.  Simulation-

based approaches use dynamic binary instrumentation (DBI) platforms which add code to 

the binary at runtime to enable taint tracking.  Two variations of DBIs exist: copy-and-

annotate (C&A) and disassemble-and-resynthesize (D&R) [NS07].  The C&A approach 

copies each instruction as-is, annotates its effects for use by instrumentation tools and 

adds instrumentation code interleaved with the original instructions.  The D&R approach 

disassembles small chunks of code at runtime, translates them to an intermediate 

representation, adds instrumentation IR code and generates new machine code from the 

IR which is executed on the processor.  Binary code instrumented into an executable to 

perform checks and maintain a security policy is refered to as an inline reference 

monitor.  
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2.2.4 Static Approaches 

2.2.4.1 Static Analysis of Source Code 

Static analysis of higher-level source code can detect common programming 

errors or security weaknesses such as memory corruption errors [WFB00][LE01] and 

race conditions [Bis96].  These checks are often done at compile time to alert the 

programmer of errors that should be corrected as part of the software development 

process.  In some cases, static source code analysis includes taint tracking to identify 

potentially unsafe uses of untrusted user data through programmer-written compiler 

extensions [AE02], through the use of CQual to specify “tainted” and “untainted” type 

qualifiers [STF01] and by Program Query Language and pointer alias analysis [LML08].  

Commercial tools for static analysis, some specifically targeting embedded applications, 

include Coverity Static Analysis [Cov10], Grammatech CodeSonar [Gra10] and 

MathWorks PolySpace [Mat10]. 

There are several drawbacks to vulnerability discovery using static code analysis.  

First, source code is often simply not available.  Unless the project is open source, most 

designers prefer to protect their intellectual property and not distribute the source code.  

Second, source code is not executed.  It is a representation of the desired functionality of 

the program in a more human-readable form.  For these reasons, several groups are 

developing methods of statically analyzing binary programs. 

2.2.4.2 Manual Static Binary Analysis 

By manually inspecting the binary code of a program, vulnerabilities can be found 

in the code that actually executes on a system.  Since machine code is not directly 
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readable by humans, a disassembler typically parses the file, converting binary op codes 

and operands to their assembly-language equivalents.  This assembly code is reverse-

engineered to understand the functionality of the program.  The reverse engineer must 

generally identify higher-level data structures or code constructs to understand control 

and data flow.  Finally, the reverser begins searching for weaknesses in the program 

design or implementation.  He may begin by looking for common API functions that are 

used insecurely, as is the case with many string manipulation functions.  He may attempt 

to identify locations in the code where the user supplies input to the program and 

manually trace this input to see if it might be used insecurely.  Several good references 

explain this process in detail [KLA04][Kas03][Eag08].  Manual binary analysis can be 

very effective, but it is very time-intensive and relies on the considerable expertise of the 

reverser.  Static information flow analysis tools help automate this process. 

2.2.4.3 Static Binary Information Flow Analysis 

Static binary analysis tools typically convert machine code into a more abstract 

intermediate representation (IR) to simplify analysis.  These tools use multiple stages, 

similar to a compiler framework.  The front-end disassembles machine code into 

assembly language and a separate tool parses the assembly and translates it into the IR.  

The mid-end or back-end contains tools that operate on this IR to perform various 

analyses.  This is the reverse of what most compilers do, as will be described later.  By 

reversing the translation process, converting assembly to a more abstract IR, static 

information flow analysis tools are more conducive to formal program analysis. 
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Even so, static binary analysis tools are not nearly as prevalent as static source 

code analysis tools, but seem to be gaining popularity.  Some compiler frameworks 

contain plugins or utilities to “lift” binary code to an IR.  ROSE [Qui11] is an open 

source compiler infrastructure that incorporates a tool called BinQ [QP09] which 

generates ROSE IR from assembly code output from a disassembler front-end.  ROSE 

uses a high-level abstract syntax tree IR that preserves all information encoded in the 

input source or binary so that the source can be unparsed after transformations have been 

made.  However, this IR is closely linked to the syntax of the input program so it is 

source or architecture-dependent.  The Phoenix [Mic11] compiler framework developed 

by Microsoft lifts binary instructions up to register transfer language (RTL), a low-level 

form of IR.  However, Phoenix only works on binaries compiled with a Microsoft 

compiler and also requires debugging information which greatly limits its usefulness.  

CodeSurfer/x86, a commercial tool, lifts x86 binary code that has been stripped of debug 

and symbol table information to an IR for analysis [BR04].  Although Valgrind is a 

dynamic binary analysis tool [Val10], its open-source libraries for lifting machine code to 

the VEX IR can be used in static binary analysis tools.  Both Vine (the static analysis 

component to BitBlaze) and its successor, Binary Analysis Platform (BAP) use the VEX 

library to convert assembly instructions into VEX IR [SBY08][BJ10].  VEX, however, 

does not model all of the implicit operations and side effects of machine instructions so 

both Vine and BAP add these details to their IRs.  A formal verification approach 

translates binary code to recursive functions expressed in Hoare logic and then verifies 

these using the HOL4 theorem prover [Myr09].  
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Static analysis is challenging primarily due to aliasing and indirect addressing.  

An alias occurs during program execution when two or more variables in the program 

refer to the same location in memory [Lan92].  Two variables may alias if there exists 

some point in a valid execution of a program that they point to the same location.  Two 

variables must alias if they point to the same location for all valid executions of the 

program.  In 1992, Landi proved the undecidability of intraprocedural may alias and the 

uncomputability of intraprocedural must alias for languages with dynamically allocated 

recursive data structures [Lan92].  Alias analysis approaches must, therefore, make 

simplifying assumptions to make analysis tractable [HBC99][And94].  Indirect 

addressing makes static disassembly even more difficult because registers used to 

calculate addresses can have many values. 

One approach to simplify the aliasing problem for binary programs is value set 

analysis (VSA).  VSA uses abstract data objects called abstract locations, or a-locs to 

represent valid locations where a variable could be stored [BR04].  These include any 

storage locations that are known statically—global variables defined in the data segment, 

local variables defined as a specific offset from the base of a stack frame and registers.  

VSA provides an over-approximation of the set of values an a-loc can hold at any point 

during execution.  CodeSurfer/x86, Vine, and BAP all use VSA to calculate indirect 

jumps and for alias analysis [BR04][BJ10]. 

2.3 Compiler Overview 

Compilers allow software to be developed at an abstract level by converting 

programs written in high-level languages to low-level machine code.  This frees the 
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developer to reason and express his/her thoughts and designs in abstract terms without 

having to worry about details of a particular computer hardware architecture.  For 

example, in Object-Oriented programming, programmers design their software in terms 

of the objects in their program, the actions those objects will perform and the 

relationships between objects.  Compilers convert the abstract description of the program 

to a machine-specific implementation described in the target machine’s native instruction 

set.   

In modern compiler design, this translation process is performed modularly in 

successive phases [WM95][ASU88], as shown in Figure 1.  The compiler front-end reads 

the source file as a sequence of characters, decomposes these into the various symbols or 

tokens used by the language (lexical analyzer/screener), parses these tokens to capture the 

syntactic structure of the code (syntax analysis) and converts the parsed code into an 

intermediate representation (intermediate code generation).  Architecture-independent 

optimizations are performed on the IR in the mid-end.  The back-end generates 

architecture-specific machine code from the optimized IR.   

This modular design allows a high degree of programming flexibility and design 

re-use.  Front-ends can be designed for many different source languages that all output 

code in the same intermediate representation.  Once in this form, they can take advantage 

of all the transformations, analyses and optimizations written for the IR.  Target-specific 

back-ends handle all the complexities and intricacies of modern computing architectures.  

Modularity eliminates the need to rewrite the entire toolchain anytime new functionality 

is desired whether that functionality is a new source language, a new optimization, or 

support for a new machine architecture. 
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Figure 1.  A retargetable compiler 

 

2.3.1 The Low-Level Virtual Machine 

The Low-Level Virtual Machine (LLVM) is a modern retargetable compiler that 

focuses on mid-end transformation and back-end code generation while making it easy 

for front-end designers to generate LLVM intermediate code.  LLVM uses a very simple 

instruction set of approximately 50 instructions which capture the key operations of 

ordinary processors.  All instructions obey strict type rules and use a load/store 

architecture. 
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2.3.2 Mid-end Program Analysis and Transformation 

2.3.2.1 LLVM Intermediate Representation 

LLVM intermediate representation (IR) uses an abstract RISC-type instruction set 

consisting of approximately 50 instructions with an infinite set of virtual typed registers 

in static single assignment (SSA) form.  The IR may be represented in three different 

ways:  1) as a human-readable “assembly” language, 2) as executable bytecode on disk or 

3) as an internal representation in memory, suitable for performing compiler 

optimizations.  The internal representation is structured into Module, Function, 

BasicBlock and Instruction instances.  A Module represents an entire program 

compilation unit.  It contains a list of global variables, a list of Functions, a list of 

libraries (i.e., other Modules that the module depends on), a global value symbol table 

and a data type symbol table.  A Function consists of BasicBlocks, a list of 

Arguments and a symbol table of local values.  A BasicBlock is a list of 

Instructions.   

Figure 2 shows the C source code of a trivial program which reads a value from 

stdin, assigns a 0 or a 1 to variable A based on the value read, adds 2 to A and prints the 

result.  Figure 3 is the LLVM IR assembly module of the program.  It consists of two 

global strings used by the scanf and printf function calls respectively (@.str and 

@.str1), one main function defined within the module, and declarations for the two 

externally defined functions, scanf and printf.  The main function consists of four 

basic blocks: entry, bb, bb1, and bb2.  Each basic block is a sequence of one or more 
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instructions which ends in a terminator instruction (i.e., a branch or a return).  Each 

instruction which defines a value is in the form: 

<unique register name> = <instruction mnemonic> <operands> 

For example, the instruction  %X = alloca i32  allocates a 32-bit integer on the 

local stack and assigns the address of the location to a register named X.  

SSA form only allows a register to be assigned, or defined, once [CFR91] and 

each definition must dominate all uses of the register.  In a control flow graph, one node, 

X, dominates another node Y if “X appears on every path from [the entry node] to Y” 

[CFR91].  X and Y may be the same node (i.e., X can dominate itself).  “If X dominates Y 

and X � Y, then X strictly dominates Y” [CFR91].  The dominance frontier of a node X is 

the set of nodes Z in a control flow graph where X dominates an immediate predecessor 

of Z but X does not strictly dominate Z.  Dominance frontiers identify the nodes which 

may require �-functions in SSA form.  A �-function is placed at the beginning of a join 

node to select the value of an incoming variable depending on which branch control 

arrives from.  LLVM implements SSA �-functions with a phi instruction (cf. Figure 3: 

the first instruction in bb2 is a phi instruction).  SSA form makes dataflow explicit by 

exposing def-use information through variable renaming and �-functions. 

 

 
Figure 2.  C source code of a trivial program. 

#include <stdio.h> 

 

int main() { 

  int X, A; 

 

  scanf(“%d”, &X); 

  if (X > 0) 

    A = 0; 

  else 

    A = 1; 

  A = A + 2; 

  printf(“Value of A: %d\n”, A); 

  return A; 

} 
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The C source code in Figure 2 is not in SSA form since variable A is defined more 

than once and neither definition of A in the two branches dominates the use of A in the 

join node.  This is easier to see in Figure 4, the control flow graph of the program.   

 

. 

. 

. 
X > 0? 

A ← 0 A ← 1 

A ← A + 2 
. 
. 
. 

Figure 3.  LLVM IR of the program. 

; ModuleID = 'ssa.ll' 

 

@.str = private constant [3 x i8] c"%d\00", align 1 

@.str1 = private constant [16 x i8] c"Value of A: %d\0A\00", align 1 

 

define i32 @main() nounwind { 

entry: 

  %X = alloca i32 

  %0 = call i32 (i8*, ...)* @"\01__isoc99_scanf"( 

       i8* noalias getelementptr inbounds ([3 x i8]* @.str,  

       i32 0, i32 0), i32* %X) nounwind 

  %1 = load i32* %X, align 4 

  %2 = icmp sgt i32 %1, 0 

  br i1 %2, label %bb, label %bb1 

 

bb:                                                

  br label %bb2 

 

bb1:                                               

  br label %bb2 

 

bb2:                                               

  %A.0 = phi i32 [ 0, %bb ], [ 1, %bb1 ] 

  %3 = add nsw i32 %A.0, 2 

  %4 = call i32 (i8*, ...)* @printf( 

       i8* noalias getelementptr inbounds ([16 x i8]* @.str1,  

       i32 0, i32 0), i32 %3) nounwind 

  ret i32 %3 

} 

 

declare i32 @"\01__isoc99_scanf"(i8* noalias, ...) nounwind 

 

declare i32 @printf(i8* noalias, ...) nounwind 

�

Figure 4.  A non-SSA program. 
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Figure 5 shows the SSA version of the program obtained by giving all variable 

definitions unique names and inserting a �-function to choose the appropriate value of A 

depending on which branch of the graph control is transferred from.   

 

 

LLVM enables efficient program analysis by making everything explicit in the 

language: dataflow is explicit (via SSA form), type information is explicit (all type 

conversions are explicit through several cast instructions), memory accesses are explicit 

(all memory accesses occur through typed pointers), even control flow is explicit since all 

terminator instructions explicitly state their successors.  In many assembly languages, 

only one successor of a basic block is stated explicitly for conditional branches (cf. 

Figure 6b).  If the condition is not satisfied, then control flow falls through implicitly to 

the next instruction.  In LLVM both branch destinations are explicitly stated.  In Figure 

6a, control will transfer to %bb2 if the value of register %4 is true and to %bb3 if %4 is 

false.  

. 

. 

. 
X > 0? 

A1 ← 0 A2 ← 1 

A3 ← �(A1, A2) 

A4 ← A3 + 2 
. 
. 
. 

Figure 5.  SSA version of the program. 
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LLVM is a strongly-typed IR.  The type system is low-level and language-

independent and includes primitive data types of void, integer, floating-point and bool 

and derived types.  Derived types include pointers, arrays, structures and functions.  

High-level or language-specific types are implemented using this low-level type system.  

Weakly-typed source languages must declare type information to generate valid LLVM 

code.  This declared type information may not be reliable but it makes type information, 

even for weakly-typed languages, explicit.  Any type conversions must be performed 

explicitly through LLVM cast instructions. 

2.3.3 Back-end Code Generation 

As part of native code generation, LLVM IR is lowered to an abstract 

architecture-specific representation of machine code consisting of MachineFunction, 

MachineBasicBlock and MachineInstr instances.  Similar to their LLVM IR 

counterparts, MachineFunctions are lists of MachineBasicBlocks, which are lists of 

MachineInstrs.  However, MachineInstrs contain detailed architecture-specific 

information about instructions including the instruction opcode, a list of operands, a list 

of memory operands for instructions that reference memory, and a TargetInstrDesc 

reference which encodes many of the instruction details including the instruction type 

(e.g., branch, call, return, etc.), instruction format, and addressing mode.  This back-end 

cmp     r0, #3

blt     .LBB0_4

%4 = icmp sgt i32 %3, 2 

br i1 %4, label %bb2, label %bb3�

b)a�)�

Figure 6.  Control flow  a) explicitly stated in LLVM, and b) implied in ARM assembly. 
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machine code representation supports valid SSA form but can also be represented in non-

SSA form for manipulation after register allocation has been performed. 

2.4 ARM Architecture Overview 

Since ARM leads the market in processors for mobile computing [ARM10], this 

section briefly covers some core features of the ARM architecture.  The information in 

this section is primarily drawn from the ARM Architecture Reference Manual for ARMv7-

A and ARMv7-R [ARM08] unless cited otherwise. 

2.4.1 System Programming 

Three concepts are central to understanding the ARM architecture from a system-

level perspective: privilege, mode and state.  Privilege is the level and type of access to 

system resources allowed in the current state.  The ARM architecture provides two 

privilege levels, privileged and unprivileged.  Mode is the set of registers available 

combined with the privilege of the executing software.  The ARM architecture supports a 

user mode, a system mode, and up to six exception modes as shown in Figure 7.  User 

mode is unprivileged, all other modes are privileged.  State is the current configuration of 

the system with respect to the instruction set currently being executed (Instruction Set 

State), how the instruction stream is being decoded (Execution State), whether or not 

Security Extensions are currently implemented (Security State), and whether or not the 

processor is being halted for debug purposes (Debug State).  

An ARM processor supports up to four different instruction sets simultaneously.  

The processor can switch states between any one of the four as it is executing to leverage 

the benefits that each can provide.  The four instruction set states include ARM, Thumb, 
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Jazelle and ThumbEE.  Originally, the ARM architecture was designed as a 32-bit, word 

aligned RISC architecture.  ARM still supports this original instruction set, with some 

modifications, but to increase efficiency and reduce code size, which is important in 

many embedded systems applications, a separate instruction set dubbed Thumb, was 

developed.  Thumb instructions are either 16 or 32 bits aligned on a 2-byte boundary.  

ARM and Thumb instructions are encoded differently but implement much of the same 

functionality.  In the Jazelle state, ARM executes Java bytecodes as part of a Java Virtual 

Machine (JVM).  The ThumbEE state is similar to the Jazelle state, but more generic.  It 

supports a variant of the Thumb instruction set that minimizes code size overhead by 

using a Just-In-Time (JIT) compiler.  

 
Figure 7.  Organization of general-purpose registers and Program Status Register [ARM08]. 
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The ARM architecture has 16 core registers (R0-R15) that are available to an 

application at any given time.  Registers R0-R12 are general-purpose registers.  R13 is 

typically a Stack Pointer (SP), R14 is a Link Register (LR) and R15 is the Program 

Counter (PC).  As Figure 7 shows, the current execution mode determines the set of 

ARM core registers currently in use.  Duplicate copies (i.e., banked registers) of the SP 

and LR are provided in each of the exception modes.  Registers R8-R12 are also banked 

in the FIQ mode to enable fast processing of interrupts.  The Current Program Status 

Register (CPSR) contains program status and control information and is also banked 

across each exception mode as a Saved Program Status Register (SPSR). 

Up to 16 coprocessors, CP0-CP15 extend the functionality of the ARM processor.  

However, CP10, CP11, CP14 and CP15 are reserved for the following purposes:  CP10 is 

used for single-precision floating point (FP) operations and configuration/control of 

vector floating point (VFP) and Advanced Single-Instruction, Multiple-Data (SIMD) 

extensions, CP11 performs double-precision FP operations, CP14 supports debug and 

execution environment features, and CP15 is called the System Control Coprocessor 

since it is used for configuration/control of many features of the ARM processor system. 

2.4.2 Memory Architecture 

From an application perspective, the ARM architecture has a flat address space of 

2
32

 bytes which is addressed using either a 32 bit word or 16 bit halfword alignment.  The 

implementation details of this memory space vary depending on the ARM architecture 

version.  ARMv7-A implements a virtual memory system architecture (VMSA) while 

ARMv7-P implements a simplified protected memory system architecture (PMSA).  See 
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the ARM Architecture Reference Manual for more information on these implementations 

[ARM08]. 

2.4.3 Instruction Set Architecture 

The ARM architecture supports several instruction sets but this section focuses on 

the core ARM instruction set.  Most ARM instructions can be conditionally executed—

they only perform their function if the designated condition is satisfied by one of the flags 

in the CPSR (cf. Table 1).  The following is a basic description of the various ARM 

instruction categories. 

Table 1. ARM condition codes [ARM08]. 

 

�  
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2.4.3.1 Branch Instructions 

Only two basic branch instructions are included in the ARM instruction set: 

branch to target address, B or a subroutine, BL.  Either of these can also optionally 

change to a different instruction set (BX and BLX respectively).  B and BL accept as an 

operand the offset of the target address from the PC value of the branch instruction.  BX 

accepts the target address as a register operand.  BLX may be executed with an 

immediate address or an address specified in a register.  

2.4.3.2 Data-Processing Instructions 

Data-processing instructions include arithmetic and logical instructions, shift 

instructions, saturating instructions, packing and unpacking instructions, and parallel 

add/subtract instructions.  Some of these include the option to automatically shift the 

second register operand by either a constant value or a register-specified value.  Most can 

optionally update the condition flags in the CPSR register based on the result of the 

computation. 

2.4.3.3 Status Register Access Instructions 

The condition flags in the CPSR are typically set during execution of data-

processing instructions.  However, they can be set manually with the MSR instruction and 

read manually with the MRS instruction. 

2.4.3.4 Load/Store Instructions 

Load and store addresses are calculated using a base register and an offset.  Three 

different addressing modes are possible: offset addressing, pre-indexed addressing and 

post-indexed addressing.  In offset addressing, the memory address is calculated directly 
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by adding or subtracting the offset from the base register while the value of the base 

register does not change.  In pre-indexed addressing, the same calculation is performed 

but the base register is updated with the new address to facilitate indexing through an 

array or memory block.  Post-indexed addressing uses the base address alone as the first 

memory address to be accessed and updates the base address by adding or subtracting the 

offset.  This facilitates indexing through an array or memory block. 

Loads can use the PC in interesting ways.  The PC can be loaded directly with the 

LDR instruction just as any other general-purpose register.  Loads can also use the PC as 

the base register for an address calculation.  This enables PC-relative addressing for 

position-independent code. 

The ARM instruction set provides instructions that load or store multiple general-

purpose registers at a time.  Consecutive memory locations are accessed relative to a base 

register.  Load and store multiple instructions support four different addressing modes: 

increment before, increment after, decrement before and decrement after.  Each of these 

addressing modes supports updating the base register with the new value. 

2.4.3.5 Exception-Generating/Handling Instructions 

Three instructions provide a means for explicitly generating exceptions: the 

Supervisor Call (SVC) instruction, the Breakpoint (BKPT) instruction and the Secure 

Monitor Call (SMC) instruction.  The main mechanism for User mode applications to call 

privileged code is through the SVC instruction. 

�  
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2.4.3.6 Coprocessor Instructions 

There are three types of instructions for communicating with coprocessors: 

coprocessor data-processing operations (CDP, CDP2), moving register values between 

general-purpose registers and coprocessor registers (MCR, MRC, etc.) and loading or 

storing coprocessor registers (LDC, STC, etc.). 

2.5 Summary 

This chapter provides a taxonomy of mobile device vulnerabilities, a review of 

the literature relevant to security-related binary program analysis and some background 

information on the LLVM compiler and the ARM architecture.  The next chapter builds 

on this information and describes the binary analysis system design and implementation 

and the experimental methodology used to test the system. 

� �
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III. System Design and Implementation 

This chapter describes the design and prototype implementation for a system 

which lifts binary machine code to LLVM intermediate representation.  The system is 

called the Architecture-independent Binary Abstracting Code Analysis System, and will 

henceforth be referred to as ABACAS.     

3.1 System Overview  

ABACAS consists of three components: a set of language-specific front-ends, an 

architecture-independent mid-end and a set of architecture-specific back-ends.  Each 

front-end translates a program written in a high-level language (e.g., C++) or machine 

code program (e.g., ARM ELF object file) into the LLVM intermediate representation.  

Analyses and transformations are performed in the mid-end and the back-end transforms 

the IR back to a machine-code program.        

This research effort develops an ARM front-end for ABACAS.  The LLVM 

compiler framework is used without modification for the mid-end and back-end 

components of the system.  Some of the existing mid-end analyses useful in security-

related program analysis include alias analysis, pointer bounds tracking and graphical 

display of control flow graphs and dominator trees.  LLVM back-ends currently support 

reliable code generation for ARM, Power PC and Intel x86 architectures [Lat10]. 

�  
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3.2 Front-end Architecture 

3.2.1 Object File Parser 

ABACAS uses the object file to determine an entry point for the instructions in 

the file, to retrieve all program bytes (both code and data) as a single memory buffer and 

to replace relocated symbolic names with the static addresses of the referenced objects in 

the buffer. 

An object file is a static binary representation of a program.  When a file is 

executed on a system, the operating system loader reads the object file and copies the 

instructions and data into memory so the processor can execute them.  The object file is 

divided into segments, each containing one or more sections for the different types of 

information encoded in the file.  For example, in an ELF file the text segment contains 

several read-only instruction and data sections including the .text section and the .rodata 

section.  Some disassemblers use these divisions as the primary means of identifying 

which parts of the file to disassemble as instructions and which to treat as data.  This is 

problematic, though, because the text segment may contain data and the data segment 

may contain code.  An iterative approach may incorrectly disassemble data and interpret 

it as code and may miss sections of code which are embedded in data segments.   

Object files also contain other information used during the linking process but not 

required by the loader to create or supplement a process image.  The symbol table and 

string tables are examples of this.  While this information is useful for analysts trying to 

understand binary code, ABACAS does not depend on symbol tables, string tables, debug 

information or iterative disassembly of object file sections to decompile machine code to 
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LLVM IR.  This information could be incorporated to improve decompilation but the 

recursive-descent parsing algorithm employed by ABACAS does not require it.   

3.2.2 Disassembler 

Instead of using a lexical analyzer to return the symbols in the source document 

as in a typical compiler front-end, ABACAS uses a disassembler to scan through the raw 

binary input and return individual instructions, each with an assembly opcode and a set of 

operands.  The disassembler used by ABACAS takes as input a reference to a memory 

object and an index into the object to begin disassembly, and returns an assembly code 

representation of the instruction at that location and the length of the instruction in bytes. 

3.2.3 Assembly Parser 

The assembly parser has a recursive-descent predictive parsing algorithm 

[ASU88] driven by a right-recursive context-free grammar to construct an abstract syntax 

tree (AST) of the program.  Figure 8 shows the productions for this grammar.  The parser 

assumes all paths through the program are executable.  This may not be a correct 

assumption, but it is a safe one [Lan92].   

3.2.4 LLVM IR Code Generator 

Once the program has been parsed into an AST, the code generator visits each 

node of the AST and translates the native machine code to LLVM IR using a depth-first 

traversal from left to right, remembering basic blocks previously visited.  Any operations 

of the machine code which are implicit (e.g., conditional execution, setting status flags, 

etc.) are made explicit in the generated LLVM code.  
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Successor ::= 

| 

BasicBlock 

� 

 

InstructionSeq ::= 

| 

| 

 

callInstr   InstructionSeq    

nonTermInstr   InstructionSeq 

� 

 
 

Figure 8. Grammar for creating an AST from assembly instructions. 

 

3.3 Prototype Implementation 

The system architecture is modular and generic enough to be used for binary 

programs compiled for virtually any machine architecture.  However, to facilitate 

analysis of mobile handheld devices, the prototype system is limited to a front-end to lift 

binary programs compiled for the ARM architecture to LLVM.    

3.3.1 Object File Parser 

Object file support in the LLVM framework is still a work in progress so IDA Pro 

5.5 parses the binary file.  IDA Pro is only used as a hex editor and for fixing up 

relocation information.  It is not used for disassembly, symbol information, or any other 

parsing function.  IDA Pro resolves relocation information, provides a series of program 



37�
�

bytes in hexadecimal as well as the index of the first byte to disassemble.  There is an 

effort to create an LLVM API for various binary file formats including COFF, ELF, 

MachO [Spe10] but as yet it is not available.  

3.3.2 Disassembler 

The disassembler provided by the LLVM framework is used but the parsing 

algorithm which directs disassembly is modified.  LLVM includes a command line tool, 

llvm-mc [Latt10], which is a driver for two other underlying tools—a machine code 

assembler and a disassembler.  The machine codes are supplied as an array of 

hexadecimal bytes on the command line and llvm-mc invokes the disassembler one 

instruction at a time, iteratively scanning through the input.  This effort adds a third tool, 

a reverse code generator, which lifts disassembled ARM code to LLVM intermediate 

representation.  The ABACAS prototype modifies the llvm-mc tool so it accepts 

additional command line options which invoke the recursive-descent parser described in 

Sections 3.2.3 and 3.3.3 and to enable or disable optimization passes on the lifted LLVM 

IR as part of the LLVM IR code generation phase. 

3.3.3 Assembly Parser 

The assembly parser directs the disassembler to locations for disassembly and 

creates an AST of MachineFunction, MachineBasicBlock and MachineInstr 

[Lat11] objects using syntax-directed translation [ASU88].  The disassembler outputs an 

MCInst object [Latt10], which represents a machine code instruction as an opcode and a 

list of operands and is primarily used for textual display of assembly code.  The assembly 
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parser converts this to the more expressive MachineInstr representation used in LLVM 

back-ends as part of the native code generation process [Lat11]. 

3.3.3.1 Parsing Basic Blocks 

One of the challenges of using syntax-directed translation of binary code is none 

of the syntax is explicit.  A sequence of bytes must be decoded into an instruction before 

it can be determined how the instruction affects the structure of the program; a single 

instruction alone cannot provide adequate information on the structure of basic blocks.  A 

basic block is a sequence of instructions for which the first instruction is the only entry 

point and the last instruction is the only exit point—all other instructions execute 

consecutively.   The division of basic blocks in a program cannot be determined with 

certainty until every instruction in the program has been decoded, since any instruction 

could be the target of a branch, thereby marking the start of another basic block.   

ABACAS uses a simplified definition of a basic block as described by the 

grammar in Figure 8.  Initially, it considers any sequence of non-terminating instructions 

ending in a terminating instruction (i.e., a branch or call instruction) to be a basic block, 

thus ignoring the requirement that the only entry point be the first instruction.  After 

decoding the target of a branch instruction, and before parsing the target location into a 

new basic block, the following procedure restructures basic blocks as necessary:  

 

If the target location has not yet been parsed, parse the location into a 

new basic block.   

 

If the target location has already been parsed and it is already the address 

of the first instruction in a basic block, do not parse the location again--

just update the predecessors and successors lists for the parent and 

successor basic blocks.   
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3.3.3.2 Parsing Functions 

To speak of “parsing functions” in a machine code program is somewhat of a 

misnomer, since functions are high-level code abstractions that do not exist in binary 

programs.  However, Functions are a fundamental division of programs in LLVM IR.  

Therefore, an appropriate definition of a machine code function is created to facilitate 

correct translation to LLVM:   

 

Let G = G(V, E) be a directed graph representing a machine code 

program where the set of vertices, V, represents all basic blocks in the 

program and the set of all directed edges, E, represents all control flow 

transfers between basic blocks.   

 

Assume all call instructions (e.g., BL, BLX) return normally and are 

allowed in the body of a basic block (i.e., call instructions do not create 

edges in the graph or terminate basic blocks).   

 

Select a vertex, r ∈ V such that r is the destination of a call instruction. 

Let F = F(V’, E’) be a subgraph of G. 

F is a function iff ∀∀∀∀v, v ∈∈∈∈ V’, v is reachable from r  

Otherwise, the target address is somewhere in the middle of an existing 

basic block:   

 

- Create a new basic block 

 

- Copy all instructions from the target address to the end of the 

existing basic block to the new basic block 

 

- Remove these instructions from the existing basic block 

 

- Transfer the list of successors from the existing basic block 

to the new basic block 

 

- Make the new basic block the only successor of the existing 

basic block 

 

- Add the new basic block as a successor of the parent basic 

block (i.e., the one with the branch instruction) 
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3.3.3.3 Handling Stack References 

While not a parsing function per se, to avoid an additional AST traversal, some 

semantic analysis is performed by the assembly parser with respect to stack references.  

The MachineFunction class allows information about the stack frame of a machine 

code function to be stored via a MachineFrameInfo object.  Every time a new 

instruction is parsed, it is analyzed to determine if it references the stack via the stack 

pointer register, SP.  A virtual stack pointer is maintained throughout the parsing phase.  

Any time SP is incremented or decremented by an immediate value, the same operation is 

performed on the virtual stack pointer.  This virtual stack pointer is used to calculate and 

record all stack references in the MachineInstr’s memory operand list as an offset 

from the value of SP on entry to the function.  Each stack offset is also added to a 

temporary SRefs vector until all instructions in a function have been parsed.  Before 

finalizing the function, the SRefs vector is sorted, unique and used to record all known 

stack information for the function in the MachineFunction’s MachineFrameInfo 

object.   

However, this stack information is not guaranteed to be correct for two reasons:  

1) if SP is modified indirectly via a register-register arithmetic operation, the value used 

to modify SP is unknown so it cannot be mirrored in the virtual stack pointer, and 2) if 

the value of SP is copied to another register, instructions could reference the stack 

anonymously via this proxy register.  The algorithm described above does not attempt to 

address these issues. 

�  
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3.3.4 LLVM IR Code Generator 

Several goals influence the translation strategy used by ABACAS to lift ARM 

code to LLVM IR.  LLVM is a useful representation for reverse engineering binary code 

in that offers forms of its IR both in memory, for efficient analysis, and as a readable 

assembly language.  Reverse-engineering is typically a directed endeavor where the 

reverser makes many decisions a computer is unable to.  However, the primary goal of 

this research is not decompilation for human understanding, but to enable automated 

binary program analysis.  When the goals of human readability and functional 

equivalence conflict, functional equivalence is chosen over readability.  The guiding 

principle used in every aspect of translation is to model, as closely as possible, the 

machine instructions as they operate on data.  In some cases, this results in LLVM code 

that seems unnecessarily verbose, but is required to accurately model the target 

architecture.  After the initial translation is performed, simplifying transformations may 

be applied according to the needs of the user. 

The code generator actually balances two sets of requirements: 1) those imposed 

by the underlying machine architecture, such as memory layout and access; and 2) those 

imposed by the LLVM framework, such as SSA form, functions, function arguments and 

strict data types.  LLVM imposes high-level abstractions which are not present in the 

machine code, while the machine code requires accurate modeling of concrete 

architecture features which LLVM IR was not designed to model.  While much of the 

translation process is straight-forward and can be performed by simply re-implementing 

the semantics of each ARM instruction explicitly using the LLVM instruction set, some 
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translation challenges arise due to conflicts between these requirements.  The following 

sections describe how the current implementation overcomes these challenges. 

3.3.4.1 Generating Functions 

Before a function is generated, the code generator performs semantic analysis of 

the MachineFunction in the AST to identify arguments to the function.  No attempt is 

made to recreate the original arguments of the function as they existed in the high-level 

source code.  Rather, the translated LLVM function arguments are determined by how 

the variables are used by instructions in the function:  Any register which is used in the 

function before being defined in the function is an argument and any reference to stack 

memory at an address equal to or higher than the value of SP on entry to the function is 

also an argument to the function, passed via memory. 

Once arguments have been discovered, a Function object is created with an 

entry BasicBlock corresponding to the first MachineBasicBlock in the 

MachineFunction.  Each MachineInstr in the basic block is translated into one or 

more LLVM Instructions until either a terminator instruction is reached (e.g., a 

branch or return) or until all instructions in the MachineBasicBlock are generated 

(e.g., the basic block falls through implicitly to its successor block).  If the last instruction 

is a branch, code for each of the MachineBasicBlock’s successors is generated before 

completing code generation of the first MachineBasicBlock.  Thus, the BasicBlock 

with the longest path from the entry BasicBlock will complete code generation first. 

�  
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3.3.4.2 Generating Stack References 

Since many software vulnerabilities are a result of memory corruption errors, 

ABACAS code generation models ARM memory accesses as accurately as possible.  

However, LLVM uses a very abstract representation of a stack frame not well suited for 

this purpose.  In LLVM, local variables are allocated memory via an alloca instruction 

and are freed automatically on return from the function.  The allocated variables may not 

be contiguous or arranged in any particular order in physical memory.  Furthermore, the 

process of lifting machine code to LLVM can complicate memory analysis since some 

native machine code instructions must be translated using additional alloca 

instructions.  For example, LLVM does not have a mov instruction to transfer a value 

from one register to another.  Instead, this is modeled by creating a stack object, via 

alloca, to hold the value, storing the value to this object, then loading the value into the 

new register.  ABACAS translates the ARM instruction 

mov   r0, #13 

into the following LLVM assembly code when no optimizations are used: 

%tmp = alloca i32 

      store i32 13, i32* %tmp 

    %R0_ = load i32* %tmp 

 

To overcome this, ABACAS models the ARM stack by allocating an array of 

bytes, which it names %stack_vars, to the LLVM abstract stack using the alloca 

instruction.  All memory accesses present in the native code operate on this array when 

translated to LLVM IR and any additional memory references are allocated with separate 

alloca instructions.  The array is just large enough to hold all stack objects referenced 

in the machine code.  These stack objects are identified during the assembly parsing stage 



44�
�

as described in Section 3.3.3.3.  The ARM stack grows downward in memory, so any 

instructions which reference memory within the stack frame will first decrement SP.  To 

model this behavior, ABACAS uses the LLVM getelementptr instruction to define 

SP with the address of the byte just past the end of the array before any other instructions 

in the function are translated.  This allows stack references in the native ARM code to be 

translated directly to similar LLVM instructions operating on the array, ensuring the 

generated instructions have a chunk of contiguous memory that they can store to and load 

from.   

3.3.4.3 Handling arguments passed on the stack 

Machine code programs use registers and memory to implement passing 

arguments to functions described in high-level source code.  In the forward compilation 

process, compilers follow procedure call standards or calling conventions to implement 

the passing of arguments to functions but hand-coded or obfuscated assembly might not 

follow these conventions.  The ARM application binary interface (ABI) specification 

[ARM09] allows arguments that are 32 bits in size or smaller to be passed via registers 

R0-R3.  If an argument does not fit in these registers, or if there are more than 4 

arguments, the value is spilled to the stack by the caller function and the callee loads the 

value directly from the stack location, which is at a positive (or zero) offset from the 

value of SP on entry to the callee function.  As described in Section 3.3.4.1, ABACAS 

does not depend on calling conventions to identify arguments, but relies on register 

def/use analysis and stack offsets instead. 
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 Generating LLVM code for arguments passed via registers is straight-forward, 

but doing this for arguments passed via memory is more challenging.  After performing 

the semantic analysis described in Section 3.3.3.3, ABACAS knows the sizes of the local 

variables used in the function and knows the addresses of the arguments passed on the 

stack, but has no knowledge of the sizes of variables in the caller’s stack passed as 

arguments.  Although the goal is to model the native code and architecture as accurately 

as possible, this is difficult since stack memory is segregated between LLVM functions 

and not contiguous as in an ARM-based device.  

 ABACAS generates stack arguments by passing the address of the variable in the 

caller’s stack as an argument to the callee function.  When stack_vars is generated (cf. 

Section 3.3.4.2), four bytes are added to hold the four byte address of each argument 

passed on the stack and SP is set to the array index equal to the size, in bytes, of all local 

stack variables in the callee function.  For example, if the callee function references four 

local variables, each four bytes in length, and two stack arguments, stack_vars will be 

24 bytes in size and SP will initially point to the byte at index 16 (the first byte of the first 

argument).  Any time a reference is made to a variable at a stack offset (from the value of 

SP on entry to the function) greater than or equal to zero, it is dereferenced first using an 

additional load instead of being used directly since the callee’s stack only holds the 

address of the argument, not the value as it would be on a real ARM device. 

3.3.4.4 Type inference 

Another challenge of generating LLVM IR from ARM machine code arises from 

the fact that LLVM IR is a strongly-typed language but machine code does not include 
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any explicit type information.  LLVM was designed to support strongly-typed and 

weakly-typed languages [LA04] and includes several type conversion instructions to aid 

in code generation.  LLVM also uses a very low-level type system designed so that a 

wide variety of data types can be implemented in LLVM.  

Here, too, ABACAS uses a translation philosophy which makes as few 

assumptions about the nature of the code as possible.  Data types are selected and refined 

according to how the machine instructions use the data.  When a new type must be 

specified and ABACAS already knows what instructions operate on the data, it chooses 

the most concrete, valid data type for that instruction.  In many cases, this is a 32 bit 

integer (LLVM type i32) since the ARM general-purpose registers are 32 bits in size and 

most data processing instructions operate on the entire value in the register.  Some ARM 

instructions operate on other sizes, including 8, 16 or 64 bit data values (e.g., LDRB, 

LDRH, LDRD respectively), but these instructions have not been implemented in 

ABACAS.  If the data value is known to be a memory location, then a pointer type is 

selected.   

Once a type is selected, cast instructions are generated as necessary to meet the 

requirements of other instructions operating on the data.  This is similar to how the 

machine code operates on data—an ARM instruction does not care if the data it operates 

on is a 32-bit integer, a 32-bit pointer to integer, or a 32-bit pointer to a character, but it 

does not explicitly cast the data from one type to another.  In LLVM, everything must be 

explicit.  For example, if a value is used as the destination operand of a store instruction it 

must be cast to a pointer if it is not a pointer already since the destination of a store 

instruction is a memory location. 
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Sometimes a data type must be generated before any information is available to 

aid in selecting a valid data type.  Fortunately, LLVM includes an Opaque abstract type 

which allows the code generator to postpone selecting a more concrete type.  When more 

information is known, the Opaque type is refined to a concrete type and every value 

which uses the type is updated automatically.  ABACAS uses Opaque types for function 

declarations since the return type is not known until the entire function has been 

generated.  Whenever ABACAS employs Opaque types, it refines them at the earliest 

opportunity. 

�  
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IV. Experimental Methodology 

The overarching goal of this effort is to develop an architecture-independent 

platform for automated analysis of binary programs.  The experimental goals are twofold: 

1) to create a front-end for the Low-Level Virtual Machine (LLVM) compiler framework 

[Lat10] that correctly translates ARM machine code into the LLVM intermediate 

representation, and 2) to determine the effectiveness of the system for performing 

automatic program analyses on binary programs compiled for the ARM architecture.  

Existing LLVM analyses and transformations performed on LLVM IR generated from 

the prototype ARM front-end are expected to produce comparable results to the same 

analyses and transformations run on LLVM IR compiled from the high-level source code 

of the same program.  This chapter describes the methodology for evaluating the system 

and thus verifying the research goals have been met.      

4.1 Approach 

In modern compiler design, multiple stages convert source code to architecture-

specific machine code [WM95].  The front-end reads the source file as a sequence of 

characters, decomposes these into the various symbols or tokens used by the language, 

parses these tokens to capture the syntactic structure of the code and converts the parsed 

code into an IR.  Optimizations are performed on the IR in the mid-end and the back-end 

generates architecture-specific machine code from the optimized IR.   
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This research leverages the modular design, flexible, architecture-independent IR 

and efficient program analysis capabilities of the LLVM compiler infrastructure to create 

ABACAS, an architecture-independent binary program analysis system.  Specifically, the 

typical high-level source code front-end (e.g., llvm-gcc, a C-to-LLVM front end) is 

replaced with an ARM-to-LLVM front end and the mid-end and back-ends are used to 

analyze and transform the ARM binaries.   

The ARM front end uses three phases to lift binary programs to LLVM IR: an 

object file parsing phase, an abstract syntax tree (AST) creation phase and a code 

generation phase.  In the first phase, the object file is parsed to retrieve the necessary 

information for the AST creation phase.  At a minimum, this includes providing a single 

buffer of all program bytes (both instruction and data) and the index within the buffer of 

the first instruction to disassemble.  Relocation information must be resolved with 

appropriate offsets within this buffer.  The AST creation phase employs a recursive-

descent parsing algorithm to disassemble and parse the input buffer into an AST, 

beginning at the entry point supplied by the object file parsing phase.  The final code 

generation phase performs a depth-first traversal of the AST and generates LLVM IR for 

each node.    

After validating ABACAS translates individual ARM instructions correctly, the 

performance of the system is tested by measuring its response to several ARM binary 

programs submitted as a workload to the system.  Finally the system’s response to ARM 

binary programs is compared with response to the same programs submitted in their high-

level-language formats. 
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4.2 System Boundaries 

The system under test (SUT), dubbed the Architecture-independent Binary 

Abstracting Code Analysis System (ABACAS), is composed of a set of language-specific 

front-ends, a mid-end and a back-end as shown in Figure 9.  Although part of the 

ABACAS back-end, the assembler and linker are shown as separate components because 

they are external to the LLVM back-end.  The workload is shown on the left in dashed 

boxes as a program submitted in three different formats corresponding to three different 

levels of abstraction: binary object code, LLVM assembly code, and high-level source 

code.  Lighter boxes indicate a more abstract format and darker boxes indicate a more 

concrete format.  The dashed boxes on the right side of the diagram represent the system 

responses, also corresponding to different abstraction levels.  The system service 

responses, workload and system parameters are described in Sections 4.3, 4.4, and 4.6 

respectively.  

The prototype currently only recognizes a subset of ARM instructions to 

demonstrate the viability of this approach and demonstrate its ability to perform static 

program analysis on binary programs lifted to the LLVM intermediate representation.  

This ARM-to-LLVM front-end is the component under test (CUT).  The prototype lifts a 

subset of branch instructions, data-processing instructions and load/store instructions.  

Support for status register access instructions, exception-generating/handling instructions 

and coprocessor instructions has not been implemented.  ABACAS currently supports 

loads and stores for stack memory; global and heap memory accesses are not 

implemented.  Furthermore, only ARM-specific encodings of the instructions are 

handled.  No Thumb, ThumbEE or Jazelle instructions are supported.   
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The SUT does not include the user of the system, testing software or target 

hardware (such as a smartphone or PC).  Although these hardware and software 

components are used to verify the correct operation of the system during development, 

they do not provide any of the system services and are therefore excluded from the SUT. 
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Figure 9.  System under test: ABACAS. 

4.3 System Services  

ABACAS provides the following services. 

4.3.1 Code abstraction   

This service converts code from one representation to a semantically equivalent 

representation at a higher level of abstraction.  Two examples of this include disassembly 
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from binary machine code to ARM assembly and reverse code generation from ARM 

assembly to LLVM IR.  Only reverse code generation is considered in this thesis and 

assumes the disassembly phase has no errors.  Possible outcomes of this service are: 1) 

transformation successful, 2) successful with errors (representations are not semantically 

equivalent) and 3) unsuccessful. 

4.3.2 Code analysis 

Code analysis traverses some portion of a program and computes information for 

use by other analysis or transformation passes, for debugging purposes, or for program 

visualization [Lat10].  LLVM provides many different analysis passes.  Only two are 

tested: a loop detection pass and a pass which calculates dominance frontiers.  Possible 

outcomes of this service include: 1) analysis completed successfully, 2) analysis 

completed with errors, and 3) unsuccessful.  Only outcomes 1) and 3) are considered 

since these analysis passes are already provided by the LLVM compiler.  It is beyond the 

scope of this effort to determine the correctness of core LLVM functionality. 

4.3.3 Code redocumentation  

Redocumentation is “the creation or revision of a semantically equivalent 

representation within the same relative abstraction level” [CC90]. By lifting machine 

code to LLVM IR, ABACAS enables viewing the program in many different forms:  as 

LLVM assembly language, as a control-flow graph, as a call graph and as a dominator 

tree.  These representations improve program understanding in one way or another.  

Possible outcomes of this service include: 1) view created successfully, 2) view created 
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with errors, and 3) unsuccessful.  Again, only outcomes 1) and 3) are considered since 

these views are already provided by the LLVM compiler.   

4.3.4 Code restructuring  

Code restructuring transforms code from one form to another semantically 

equivalent form at the same level of abstraction [CC90].  Most LLVM IR transformations 

fall into this category.  Possible outcomes of this service include: 1) transformation 

completed successfully, 2) transformation completed with errors and 3) unsuccessful.  

Again, only outcomes 1) and 3) are considered since these are already provided by the 

LLVM compiler.   

4.3.5 Code reengineering  

Code reengineering combines reverse engineering and forward software 

engineering to either restructure or otherwise transform and re-implement code to meet 

new requirements [CC90].  Possible outcomes of this service include: 1) re-

implementation completed successfully, 2) re-implementation completed with errors and 

3) unsuccessful.   

4.4 Workload 

ABACAS supports three different types of users at three different levels of 

abstraction: users submitting high-level source code, those submitting code already in 

LLVM IR form and those submitting ARM object code.  These users may be interested in 

analyzing their code to gain information, in transforming their code to a different form at 

a higher, lower or equivalent level of abstraction or in combining code from multiple 
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levels of abstraction and re-compiling the new program into a native machine-code 

format. 

4.5 Performance Metrics  

Seven metrics compare performance of the system in terms of the five primary 

services provided by the system.  

4.5.1 Code abstraction metrics 

Instruction set coverage (%Cov):  A measure of how completely the machine-to-

IR front-end translation is performed.  It is measured as a percentage of instructions 

translated out of the total number of instructions in an instruction category.  Instruction 

categories include branch instructions, data processing instructions, status register access 

instructions, load/store instructions, exception generating/handling instructions and 

coprocessor instructions.  

4.5.2 Code analysis and restructuring metrics 

Loop detection rate (LDR):  A measure of the system’s accuracy in detecting 

loops in a program, measured as a ratio of loops detected out of total number of loops in a 

program. 

Dominance frontier detection rate (DDR):  A measure of the system’s accuracy in 

calculating dominance frontiers in lifted and/or transformed IR, measured as ratio of 

dominance frontiers detected out of total number of dominance frontiers in a program.   

Instructions (ITotal):  A count of the number of LLVM instructions in a program. 

Instruction reduction rate (IRR):  A measure of the effectiveness of a program 

transformation at reducing code size, measured as the following ratio: 
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� � � � � � � � � � (1) 

 

where IElim is the number of instructions eliminated by the transformation and ITotal is the 

total number of instructions in the program before transformation. 

4.5.3 Code redocumentation metrics 

View generation rate (VGR):  A measure of the system’s ability to present the 

code in different ways, measured as a ratio of views displayed out of views attempted. 

4.5.4 Code reengineering metrics 

Recompilation success rate (RSR):  A measure of the system’s ability to recompile 

modified programs lifted from ARM binaries back to executable programs.  RSR is 

measured as a ratio of the number of recompiled programs which execute correctly out of 

the number of programs recompiled. 

4.6 System Parameters 

The following parameters affect system performance: 

Analysis passes enabled:  Some analyses are expected to produce significantly 

different results when performed on the lifted IR compared to the IR generated from the 

original source code, while some analyses are expected to produce very similar results.  

For example, the lifted code is expected to have significantly higher instruction count 

than the original IR but to have very similar loop construction results.  

IRR = 
�����

����	�
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Transformation passes enabled:  Transformations impact the size and readability 

of lifted code.  Restructuring transformations should not impact the semantics of the 

code. 

Views enabled:  Different views help the user understand the code. 

Back-end code generators used:  Backend code generators affect performance of 

the reengineering service by enabling recompilation to different machine architectures. 

Front-end languages supported:  Front-ends determine what programs can be 

submitted as input to the system. 

Disassembly approach:  Disassembly in a front-end could be performed 

recursively or iteratively.  Both techniques have performance implications, especially in 

the presence of anti-disassembly features. 

Object file support:  Object file support determines what binary file formats the 

system accepts. 

LLVM version:  Different versions affect what analysis and optimization passes 

are available. Older versions also contain bugs that are fixed in newer versions. 

4.7 Workload Parameters 

Service requests to the SUT come in the form of programs to be analyzed.  Each 

program has several different parameters which are described below: 

Control flow constructs:  Programming languages use different high-level 

constructs to control execution of a program.  More complex control flow constructs in 

the source program results in more complex control flow in the machine code that is 

more difficult to lift to IR. 
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Source language:  The real value of ABACAS is its ability to analyze code written 

in both machine languages and high-level languages.  The more languages supported in 

the front-end, the more programs can be analyzed. 

Program size:  Program size is an indication of program complexity.  More 

complex code is more difficult to analyze. 

 Anti-reverse engineering:  Some software designers and malware writers employ 

an array of techniques to prevent reverse-engineering of their code.  Some of these 

techniques include: obfuscation, self-modifying code, anti-disassembling and anti-

debugging.  Any of these may affect the performance of an automated reverse 

engineering system. 

4.8 Factors  

Three parameters are selected as factors to test the performance of the system.  

These are summarized in Table 2 and described below: 

4.8.1 “Combine instructions” transformation (-instcombine) 

This transformation reduces program size by combining instructions into fewer, 

simple instructions.  This should make it easy to quantify changes in a program and 

compare transformations in IR generated from source code and IR lifted from ARM 

machine code.  Although the transformations should result in semantically-equivalent 

programs, it is possible that they will affect the outcomes of analyses, views or the ability 

to recompile to native code.   
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This pass is expected to significantly reduce the code size of IR lifted from 

machine code since the ARM-to-LLVM translation strategy makes no attempt at 

generating code efficiently.  This factor has two levels: enabled and disabled. 

4.8.2 Control-flow constructs 

Each of the following control-flow constructs add complexity to a program.  A 

program with all four constructs is expected to be the most difficult to translate correctly. 

Conditionals:  These include if-then statements in high-level languages and 

introduce conditional branches in machine code. 

Loops:  These add more complications to SSA construction. 

Recursion:  Recursive function calls could cause depth-first algorithms, like the 

parser and code generator employed by ABACAS, not to terminate if they are not 

implemented correctly.  

4.8.3 Source language 

Two source languages are demonstrated, one high-level language and one 

machine language: 

C code:  Generated with the llvm-gcc front-end 

ARM machine code:  Generated with the ABACAS ARM-to-llvm front-end 

Table 2. Factors and factor levels 

 

 

 

Levels 
Transformation  

(-instcombine) 

Source 

Language 

Control-flow 

Constructs 

1 Disabled C Conditionals 

2 Enabled ARM Loops 

3   Recursion 



59�
�

4.9 Evaluation Technique  

Two separate phases are used to evaluate performance of the system.  The ARM 

front-end defines a model of the ARM architecture in LLVM which captures the 

semantics of each instruction modeled.  The first phase validates this model against both 

a simulation and measurement of an emulated system in operation.  The second phase 

compares performance of the system using programs translated with this model and 

programs translated from C source code.   

4.9.1 Phase I: Validating the model 

A modified version of the LLVM interpreter, lli, simulates each modeled 

instruction and prints the value of the instruction in a trace capture file.  The results of 

this simulation are compared to execution of the native ARM code in a debugger on an 

emulated ARM processor.  Corrections to the model are made as necessary. 

4.9.2 Phase II:  System performance analysis 

Once the model has been validated, programs are submitted as a workload to the 

system.  Workload programs written in two different source languages are submitted: 

programs written in C and the same programs compiled to ARM machine code.  Various 

configurations of the system and workload parameters are tested and the results analyzed 

to determine if there is a significant difference between analyses performed on IR from C 

source code and IR from ARM machine code.  Programs recompiled to a machine 

architecture are executed in a debugger and compared with the baseline ARM code, also 

executed in a debugger. 

�  



60�
�

4.9.3 Experimental Configuration.   

ABACAS is based on the LLVM framework and is hosted on a 2.00GHz Intel 

Core2 Duo CPU with 2GB of RAM running the Ubuntu 9.10 operating system.  A pre-

LLVM 2.8 release version of LLVM is used from the main development trunk, revision 

116203.  To validate the modeled ARM instructions, Qemu Manager 7.0 is used to run an 

emulated ARM Versatile/PB (ARM926EJ-S) processor with Ubuntu 5.0, kernel 2.6.26-2.  

The ARM assembly files output from LLVM’s llc tool are compiled to native ARM code 

on the emulated ARM processor using gcc 4.3.2 and debugged using gdb 6.8.  Intel x86 

assembly files output from llc are compiled to native code with gcc 4.4.1 and debugged 

with gdb 7.0.   

4.10 Experimental Design  

A full factorial design is used for Phase II of this experiment.  There are three 

factors with 2, 2 and 3 levels respectively.  This results in 2 × 2 × 3 = 12 required 

experiments.  The variance in system response is anticipated to be very low.  A 

sufficiently narrow confidence interval at the 95% confidence level should be achieved 

with approximately 3 replications.  Therefore, a total of 12 × 3 = 36 experiments are 

required.   

4.11 Methodology Summary  

A modern optimizing compiler framework like LLVM which provides a platform-

independent IR is a promising framework for platform-independent program analysis and 

reverse engineering.  This chapter presents a methodology for determining the 
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effectiveness of such a framework by creating an ARM-to-LLVM front-end translator.  

This allows the same analyses to be performed on the IR independent of program format.   

� �
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V. Results 

The performance metrics described in Section 4.5 characterize the performance of 

ABACAS in terms of the five system services, code abstraction, code analysis, code 

redocumentation, code restructuring and code reengineering.  Code abstraction 

performance is presented in Section 5.1, although it is also demonstrated implicitly in the 

ability of the system to provide the other four services.  Section 5.2 describes the results 

of the performance analysis for the remaining four services.   

5.1 Phase I: Validating the ARM Model 

The model of the ARM architecture used by the front-end to translate ARM code 

to LLVM is validated using the LLVM interpreter (lli) and gdb.  A set of ARM assembly 

test programs is hand-coded to exercise the instructions implemented in the model.  

These programs are executed in lli (cf. Figure 10) and in an ARM debugger and the 

results compared to verify the instructions were translated correctly.   

 

Figure 10.  Executing a lifted LLVM program in the lli interpreter. 
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Table 3, Table 4 and Table 5 summarize the instructions validated in the 

prototype implementation of ABACAS.  The current prototype implements 75% of 

branch instructions, 10% of data processing instructions and 8% of load/store and 

load/store multiple instructions. 

Table 3.  Branch/call/return instructions validated. 

Branch/Call/Return Instructions 

Opcode Condition Codes 

B AL, NE, LE, LT 

BL AL 

BX AL 

 

Table 4.  Data-processing instructions validated. 

Data Processing Instructions 

Opcode 
Operand Types 

Imm Reg 

ADD X X 

CMP X  

MOV X X 

SUB X X 

 

Table 5.  Load/store and load/store multiple instructions validated. 

Load/Store and Load/Store Multiple Instructions 

Opcode 

Operand Types Addressing Modes 

Imm Reg Offset 
Pre-

indexed 

Post-

indexed 
IA IB DA DB 

Write-

back 

LDR X  X X X n/a n/a n/a n/a n/a 

STR X  X X X n/a n/a n/a n/a n/a 

LDM n/a n/a n/a n/a n/a X    X 

STM n/a n/a n/a n/a n/a    X X 

 

The ARM model is valid for all instructions marked with an X in Table 4 and 

Table 5, for all unconditional B, BL and BX instructions, and for BNE, BLE and BLT 

conditional branch instructions.  Conditional execution of other instructions has not been 

validated. 
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5.2 Phase II: ABACAS Performance Analysis 

5.2.1 Impact of source language on LLVM program analysis 

A comparison of proportions determines if there is a statistically significant 

difference between analyses performed on LLVM programs compiled from C versus 

programs lifted from ARM machine code of the same programs.  Two different analysis 

passes are executed on the programs, one to identify the number of loops in the programs 

and the second to identify dominance frontiers in the programs.  Both the loop detection 

rate (LDR) and the dominance frontier detection rate (DDR) are 1, meaning both analyses 

identified all elements in programs translated from both source languages.  There is no 

evidence of a difference in detection rates for either analysis.   

Figure 11 and Figure 12 show the output from ABACAS for analysis of the main 

functions of a program which recursively calculates the first 10 numbers of the Fibonacci 

sequence. 

 

Figure 11.  Loop and dominance frontier analyses on program lifted from ARM machine code. 

 

 

Figure 12.  Loop and dominance frontier analyses on same program compiled from C. 
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Figure 13 shows the control flow graphs of these two functions.  The loop 

identified in Figure 11 between basic blocks BB<140> and BB<120> is clearly visible in 

Figure 13a and corresponds to the loop identified in Figure 12 between blocks bb1 and bb 

and visible in Figure 13b.  The dominance frontiers identified in Figure 11 and Figure 12 

include equivalent nodes BB<140> and bb1 respectively. 

 

 

Figure 13.  Control flow graphs of main function of the Fibonacci  

program a) lifted from ARM code and b) compiled from C. 

 

5.2.2 Impact of source language on size of generated LLVM assembly code. 

Figure 14 and Figure 16 show two versions of the Fibonacci program translated to 

LLVM from two different source languages.  The version in Figure 14 was compiled 

from the C source code shown in Figure 15 and the version in Figure 16 was lifted from 

ARM machine code.  The ARM assembly which produced the ARM machine code is 

shown in Figure 17.  The instruction count of LLVM IR lifted from machine code is 
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much greater for this program than LLVM IR generated from the C code.  A similar 

result is observed in every sample program submitted to the system. 

 

 
 

 

 

 

define i32 @main() nounwind { 

entry: 

  %retval = alloca i32  

  %0 = alloca i32      

  %i = alloca i32                         

  %value = alloca i32                    

  %"alloca point" = bitcast i32 0 to i32   

  store i32 0, i32* %i, align 4 

  br label %bb1 

 

bb:                                      

  %1 = load i32* %i, align 4             

  %2 = call i32 @fib(i32 %1) nounwind    

  store i32 %2, i32* %value, align 4 

  %3 = load i32* %i, align 4             

  %4 = add nsw i32 %3, 1                 

  store i32 %4, i32* %i, align 4 

  br label %bb1 

 

bb1:                                     

  %5 = load i32* %i, align 4             

  %6 = icmp sle i32 %5, 9                

  br i1 %6, label %bb, label %bb2 

 

bb2:                                     

  %7 = load i32* %value, align 4         

  store i32 %7, i32* %0, align 4 

  %8 = load i32* %0, align 4             

  store i32 %8, i32* %retval, align 4 

  br label %return 

 

return:                                  

  %retval3 = load i32* %retval           

  ret i32 %retval3 
}�

int fib(int x) { 

  if (!x)  

    return 0; 

  if (x > 2) 

    return (fib(x - 1) + fib(x - 2)); 

  return 1; 

} 

 

int main() { 

  int i, value; 

   

  for (i = 0; i < 10; i++) { 

    value = fib(i); 

  } 

  return value; 
}�

Figure 14.  main function of Fibonacci program 

compiled to LLVM IR from C source code 

Figure 15.  C source code of Fibonacci program. 
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define i32 @main() { 

entry: 

  %stack_vars = alloca [20 x i8] 

  %SP_ = getelementptr inbounds [20 x i8]* %stack_vars, i32 0, i32 20 

  %0 = ptrtoint i8* %SP_ to i32 

  %1 = sub i32 %0, 4 

  %SP_5 = inttoptr i32 %1 to i8* 

  %2 = bitcast i8* %SP_5 to i32* 

  store i32 undef, i32* %2 

  %SP_8 = ptrtoint i8* %SP_5 to i32 

  %SP_9 = sub i32 %SP_8, 16 

  %SP_10 = inttoptr i32 %SP_9 to i8* 

  br label %"BB<140>" 

 

"BB<140>":                                         

  %R0_11.0 = phi i32 [ 0, %entry ], [ %R0_50, %"BB<120>" ] 

  %CPSR_.0 = phi i32 [ undef, %entry ], [ %CPSR_18, %"BB<120>" ] 

  %3 = ptrtoint i8* %SP_10 to i32 

  %4 = add i32 %3, 4 

  %5 = inttoptr i32 %4 to i8* 

  %6 = bitcast i8* %5 to i32* 

  store i32 %R0_11.0, i32* %6 

  %7 = ptrtoint i8* %SP_10 to i32 

  %8 = add i32 %7, 4 

  %9 = inttoptr i32 %8 to i32* 

  %R0_15 = load i32* %9 

  %CPSR_18 = call i32 @arm_cmp(i32 %CPSR_.0, i32 %R0_15, i32 10) 

  %CPSR_V = and i32 %CPSR_18, 268435456 

  %V = icmp eq i32 %CPSR_V, 268435456 

  %CPSR_N = and i32 %CPSR_18, -2147483648 

  %N = icmp eq i32 %CPSR_N, -2147483648 

  %CPSR_LT = icmp ne i1 %N, %V 

  br i1 %CPSR_LT, label %"BB<120>", label %"BB<156>" 

 

"BB<156>":                                        

  %10 = ptrtoint i8* %SP_10 to i32 

  %11 = add i32 %10, 0 

  %12 = inttoptr i32 %11 to i32* 

  %R0_20 = load i32* %12 

  %13 = ptrtoint i8* %SP_10 to i32 

  %14 = add i32 %13, 12 

  %15 = inttoptr i32 %14 to i8* 

  %16 = bitcast i8* %15 to i32* 

  store i32 %R0_20, i32* %16 

  %17 = ptrtoint i8* %SP_10 to i32 

  %18 = add i32 %17, 8 

  %19 = inttoptr i32 %18 to i8* 

  %20 = bitcast i8* %19 to i32* 

  store i32 %R0_20, i32* %20 

  %21 = ptrtoint i8* %SP_10 to i32 

  %22 = add i32 %21, 12 

  %23 = inttoptr i32 %22 to i32* 

  %R0_26 = load i32* %23 

  %SP_28 = ptrtoint i8* %SP_10 to i32 

  %SP_29 = add i32 %SP_28, 16 

  %SP_30 = inttoptr i32 %SP_29 to i8* 

  %24 = bitcast i8* %SP_30 to i32* 

  %LR_32 = load i32* %24 

  %25 = ptrtoint i8* %SP_30 to i32 

  %26 = add i32 %25, 4 

  %SP_33 = inttoptr i32 %26 to i8* 

  br label %return 

 

"BB<120>":                                        

  %27 = ptrtoint i8* %SP_10 to i32 

  %28 = add i32 %27, 4 

  %29 = inttoptr i32 %28 to i32* 

  %R0_36 = load i32* %29 

  %R0_44 = call i32 @"func<0>"(i32 %CPSR_18, i32 undef, i32 %R0_36, i32 undef) 

  %30 = ptrtoint i8* %SP_10 to i32 

  %31 = add i32 %30, 4 

  %32 = inttoptr i32 %31 to i32* 

  %R1_ = load i32* %32 

  %33 = ptrtoint i8* %SP_10 to i32 

  %34 = add i32 %33, 0 

  %35 = inttoptr i32 %34 to i8* 

  %36 = bitcast i8* %35 to i32* 

  store i32 %R0_44, i32* %36 

  %R0_50 = add i32 %R1_, 1 

  br label %"BB<140>" 

 

return:                                           

  ret i32 %R0_26 

} 

Figure 16.  main function of Fibonacci program lifted from ARM code. 
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Figure 18 is box plots of LLVM instruction count in programs compiled from C 

and programs lifted from ARM machine code.  A two-sample t-test is used to determine 

if there is a statistically-significant difference between the two groups.  With a one-sided 

p-value of 9.90 x 10
-12 

there is convincing evidence that programs lifted by ABACAS 

from ARM code are larger than those compiled from C source code.  The difference in 

log-means is estimated to be 1.3165.  Transforming back to an instruction count, the size 

of LLVM programs lifted from ARM code is estimated to be an average of 3.73 times 

greater than programs generated from C with a 95% confidence interval of (2.84, 4.90). 

main:                          

@ BB#0:         

                

 str lr, [sp, #-4]! 

 sub sp, sp, #16 

 mov r0, #0 

 b .LBB1_2 

.LBB1_1:               

         

 ldr r0, [sp, #4] 

 bl fib 

 ldr r1, [sp, #4] 

 str r0, [sp] 

 add r0, r1, #1 

.LBB1_2:                       

 

 str r0, [sp, #4] 

 ldr r0, [sp, #4] 

 cmp r0, #10 

 blt .LBB1_1 

@ BB#3:                        

 

 ldr r0, [sp] 

 str r0, [sp, #12] 

 str r0, [sp, #8] 

 ldr r0, [sp, #12] 

 add sp, sp, #16 

 ldr lr, [sp], #4 

 bx lr�

Figure 17.  ARM assembly code of main function of Fibonacci program. 
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architectural details present in the ARM code such as the layout of data in memory and 

use of specific registers like the CPSR, SP and LR to enable valid security analyses.  This 

modeling of ARM architectural details adds additional overhead in size of the generated 

code.   

Although causality can be inferred for the set of programs tested, the results 

cannot be inferred to a wider population of programs, since those tested were not 

randomly selected. 

5.2.3 Impact of source language on LLVM restructuring transformations  

To determine the effectiveness of transformations on LLVM programs lifted by 

ABACAS from ARM machine code versus transformations on code compiled from C 

source, the rates of instructions removed by the -instcombine transformation are 

compared.  Table 6 shows the total number of instructions eliminated by the 

transformation for each group of programs. 

Table 6.  Instructions eliminated by -instcombine transformation on programs 

compiled from C source code and those lifted from ARM machine code. 

 

 Instructions Eliminated    

 Eliminated Not Eliminated Totals IRR 

C Source Code 66 289 355 0.19 

ARM Code 186 1062 1248 0.15 

Totals 252 1351 1603  

 

There is no conclusive evidence that the instruction reduction rate (IRR) is greater 

for programs compiled from C code.  The estimated difference of 0.037 has a chi-squared 

statistic of 2.8368 and a one-sided p-value of 0.0461.  However, the 95% confidence 

interval for the difference in proportions is (-0.00816, 0.08191), which includes 0. 
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A Mantel-Haenszel test provides an estimate of the common odds ratio while 

accounting for the control-flow constructs factor.  The estimated common odds ratio is 

1.304 with a 95% confidence interval of (0.9577, 1.7759).  Since the confidence interval 

includes 1, with only a moderately low p-value of 0.0450, there is still no conclusive 

evidence that the odds of eliminating instructions are higher for programs compiled from 

C even after accounting for the different control-flow constructs in the tested programs.   

5.2.3.1 Interpretation of results 

The results provide no evidence that the LLVM programs compiled from C have 

a higher IRR than those translated from ARM.  However, the set of programs analyzed 

was not selected randomly so inference cannot be made to a wider population.  Moreover, 

this one transformation is not representative of all possible instruction-reducing 

transformations available on LLVM IR.  More tests are required to determine how other 

transformations perform on ARM machine code. 

5.2.4 Impact of source language on LLVM program redocumentation  

All views attempted were successfully displayed in programs translated from both 

source languages.  These include a call graph, a control flow graph (CFG) for each 

function in the program and a dominator tree for each function in the program.  As the 

view generation rate (VGR) is 1 for both groups, there is no evidence of a difference in 

proportions of views generated.  Figure 19 and Figure 20 show these views generated 

from the Fibonacci program translated from C and from ARM.   
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block if the register is less than 3.  Although the conditions are reversed, the branch 

destinations are reversed as well so the programs are functionally equivalent.  ABACAS 

generates code from the ARM instructions, thus the apparent difference in the CFGs.   

 

 

5.2.5 Impact of source language on recompilation  

Another comparison of proportions determines whether source language of the 

input program significantly impacts the ability to compile the IR to multiple 

architectures.  The LLVM programs, translated from C source code and ARM machine 

code are recompiled to two different binaries, one targeting the ARM architecture and 

one targeting the Intel x86 architecture.  Both programs are executed in debuggers and 

the outputs analyzed to determine the recompilation success rates (RSRs).  Figure 22 

shows one of these programs being debugged in an x86 debugger and an ARM debugger.   

The program recursively calculates the first 10 numbers in the Fibonacci 

sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, and 34.  In Figure 22a, the x86 version of the 

program, register $ecx holds the iteration value (ranging from 0 to 9) and register $eax 

contains the Fibonacci number calculated for that iteration.  In Figure 22b, register $r1 

holds the iteration value and register $r0 holds the Fibonacci number for that iteration.  

Both programs return 34, the 10
th

 Fibonacci number, via registers $eax and $r0 

respectively. 

 

Figure 21.  Conditional branch compiled a) from C to LLVM, and b) from LLVM to ARM assembly. 

cmp     r0�, #3

blt     .LBB0_4�

%4 = icmp sgt i32 %3, 2 

br i1 %4, label %bb2, label %bb3�

b)a�)�
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All programs correctly executed on both ARM and x86 machines regardless of 

whether the input program was translated to LLVM from C source code or from ARM 

machine code.  There is no evidence of a difference in RSRs for the programs tested. 

5.3 Summary of results 

The experimental results demonstrate that ABACAS successfully provides its 

system services, which include code abstraction, code analysis, code redocumentation, 

Figure 22.  Debugging the Fibonacci program a) in an x86 debugger and b) in an ARM debugger. 

a) b) 
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code restructuring and code reengineering, for the submitted workload.  Analysis passes 

performed on LLVM assembly code abstracted from ARM binary code produce the same 

loop detection and dominance frontier detection rates as analysis passes performed on 

LLVM assembly compiled from C source code.  Equivalent views of the programs, 

including call graphs, control flow graphs and dominance trees, are demonstrated on 

LLVM code translated from the two different sources.  One restructuring transformation 

applied to LLVM programs translated from the two different sources is successfully 

demonstrated on programs translated from both sources.  Finally, the ability to reengineer 

a program is demonstrated by lifting several simple programs from ARM machine code 

to LLVM IR, performing restructuring transformations to reduce redundant instructions 

in the generated code, recompiling the transformed programs to a different machine 

architecture (Intel x86) and executing the programs in an x86 debugger. 

� �
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VI. Conclusions 

6.1 Research Accomplishments 

The ABACAS architecture is based on the Low-level Virtual Machine compiler 

framework and analyzes programs with a very wide range of abstraction.  The prototype 

front-end designed and developed herein lifts binary executables compiled for the ARM 

architecture to the LLVM IR.  More specifically, a machine code parser is implemented 

which uses a recursive-descent predictive parsing algorithm to produce an abstract syntax 

tree (AST) of an ARM executable.  This parsing approach allows ABACAS to lift 

binaries devoid of symbol table, string table and debugging information.  A code 

generator is implemented to translate a subset of ARM instructions into valid LLVM IR.  

The prototype currently supports 75% of ARM branch instructions, 10% of ARM data-

processing instructions and 8% of load/store instructions. 

By lifting binary executables to the LLVM intermediate representation, ABACAS 

exploits the program analysis, program transformation, code visualization and forward 

compilation capabilities of the LLVM open-source compiler framework.  The 

experiments in Chapters 4 and 5 demonstrate a subset of these capabilities on programs 

lifted from ARM machine code, including two analysis passes, three different graphical 

views of the programs, one program transformation and recompilation of the programs to 

two target processor architectures, ARM and Intel x86.  

�  
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6.2 Contributions 

The primary contribution of this research is the translation of binary machine code 

directly into an architecture-independent compiler IR such that all typical compiler 

functions can be applied just as if the IR was compiled from a high-level-language.  

There have been attempts to use other compiler systems in this way as described in 

Section 2.2.4.3 but these do not offer the architecture-independence of LLVM and levy 

impractical requirements on the binary itself.  ABACAS does not require the binary to be 

compiled using any particular compiler or to have any special symbol information 

present. 

Other contributions of this research derive from the ability to translate binary 

machine code into LLVM IR.  This research makes nearly all existing and future LLVM 

analysis and transformation passes available for ARM binary programs that can be lifted 

by ABACAS.  This is also one of the few successful static binary-to-binary translators 

developed. 

6.3 Applications of this Research 

6.3.1 Automatic vulnerability discovery 

ABACAS could be used to detect vulnerabilities in binary programs.  The LLVM 

pass framework makes it easy to leverage existing analyses and to write new ones by 

chaining analysis passes together.  The SAFECode project [DKA06] includes passes that 

may be useful for detecting possible memory corruption errors.  The KLEE symbolic 

execution engine [CDE08] could traverse as many execution paths through the code as 
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possible, test for program bugs and automatically generate test cases which exercise the 

discovered errors to determine if they are true vulnerabilities.  

6.3.1 Improved malware analysis 

Automated binary abstraction and analysis services provided by ABACAS may 

be helpful in reverse-engineering and analyzing malware.  When a new worm is released 

in the “wild” which exploits a previously unknown software bug, the malware must be 

quickly reverse-engineered to identify the vulnerability, then a software patch must be 

developed that corrects the vulnerability without introducing new vulnerabilities into the 

software.  ABACAS’ code abstraction, code analysis and code reengineering services are 

well suited to these tasks.  

6.3.2 Software Maintenance  

ABACAS offers a level of flexibility in software development that would be very 

useful later in the software engineering life cycle.  New functionality could be added to 

an existing executable program by programming the functionality in a high-level 

language, compiling it to LLVM, lifting the existing native machine code to LLVM, 

modify the LLVM code of the original program to call the new functions, link the LLVM 

files and compile back to native code.  Software maintenance costs are estimated to be 

50% to 90% of the total lifecycle costs of software [CC90].  Tools such ABACAS which 

help automate reverse-engineering, analyzing and modifying code could be crucial in 

reducing these costs. 

�  
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6.3.2.1 Binary rewriting for improved code security 

ABACAS could be used to modify a binary program to eliminate detected 

vulnerabilities.  After lifting the binary to LLVM, modifications could be made directly 

in LLVM and the program re-tested.  After the entire program is “hardened,” it could be 

recompiled back to native code.   

6.3.2.2 Port software to new machine architectures without source code 

The code reengineering experiment described in Chapters 4 and 5 demonstrated 

the ability to lift a program compiled for one architecture and recompile it to another 

machine architecture.  It may be possible to do this on a larger scale for other programs or 

libraries when source code is not available. 

6.4 Future Work 

6.4.1 Expand object file support 

The ABACAS prototype relies on IDA Pro to retrieve the hexadecimal program 

bytes required by the parser and disassembler and to resolve all relocation information.  

The current approach has several disadvantages: 1) relying on IDA Pro, an external, 

commercial program, prevents ABACAS from being a self-contained system and adds 

unnecessary steps to manually retrieve the program information before feeding it into the 

parser.  This significantly slows down the process of analyzing binaries and would 

greatly benefit from a native object file parsing capability within ABACAS, 2) ABACAS 

does not currently use any imported function information from the object file.  This 

means only self-contained programs can be lifted.  Virtually every real-world program 

uses imported libraries so this is an essential capability, 3) although it is good that 
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ABACAS does not depend on symbol table, string table or debugging information, this 

information could vastly improve the quality and readability of lifted code and should be 

incorporated as supplementary information. 

6.4.2 Expand support for ARM 

One obvious necessity in the development of ABACAS is to expand support for 

the ARM architecture.  Only a very small subset of instructions is currently implemented, 

severely limiting the programs which can be analyzed.  Support for each instruction is 

manually coded in an ad-hoc fashion in the prototype ARM front-end.  A more rigorous 

approach would be to capture all the features of a machine architecture required for 

translation in a description file and utilize LLVM’s TableGen framework [Lat10] to auto-

generate lookup tables to facilitate translation from the architecture-specific instructions 

to LLVM code. 

6.4.3 Add support for other architectures 

Adding support for other machine architectures would require little effort in the 

parser, but significant work in the code generator.  Again, utilizing TableGen would help 

condense architecture-specific code primarily to the description file for each architecture.  

Intel’s x86 architecture is an obvious next choice for an ABACAS front-end. 

6.4.4 Incorporate LLVM passes to improve system services 

6.4.4.1 Improve re-compilation through a stack lowering pass 

All memory references that are translated to references in the modeled stack (the 

%stack_vars array) could be converted to allocas, loads and stores to the LLVM stack 
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frame for the function.  This would eliminate unnecessary overhead and make powerful 

transformations available that operate on alloca instructions (such as the mem2reg pass). 

6.4.4.2 Improve decompilation to LLVM IR through iteration and analysis 

One of the problems that plagues recursive-descent disassembly is the inability to 

handle indirect branch addresses.  LLVM analysis passes, including alias analysis and 

constant propagation, could be run after the first translation pass to attempt to resolve as 

many indirect addresses as possible before performing an additional translation pass with 

the new information.  A third translation pass could even be implemented which catches 

missed code through iterative disassembly of the text segment in the object file. 

6.4.4.3 Improve program analysis by writing security-related passes 

Analysis passes should be written to enable vulnerability discovery in binary 

programs.  These could include memory access checks such as array bounds checking, 

propagation of taint information from user inputs and marking certain program inputs as 

symbolic to enable symbolic execution of the program [CDE08]. 

6.5 Conclusion 

A modern optimizing compiler framework like LLVM, which provides a 

platform-independent IR, is a promising framework for architecture-independent program 

analysis, transformation and recompilation of binary programs.  This research presents 

the design, implementation and demonstration of one such system, the Architecture-

independent Binary Abstracting Code Analysis System (ABACAS).  Although the 

prototype has many limitations and only implements a small subset of ARM instructions, 
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the results are still profound.  Existing analysis, transformation, redocumentation and 

compilation capabilities are applied directly to programs lifted from binary format.  

These capabilities are crucial for protecting, hardening and attacking mobile devices and 

other modern systems which operate in the Cyber warfighting domain. 
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