

AUTOMATED ANALYSIS OF ARM BINARIES USING THE LOW-

LEVEL VIRTUAL MACHINE COMPILER FRAMEWORK

THESIS

Jeffrey B. Scott, Captain, USAF

AFIT/GCO/ENG/11-14

����������	AB	�C�	�D�	BA�E�	
�D�	F�D����D��	

AIR FORCE INSTITUTE OF TECHNOLOGY

����������������	���	B����	 ���!	A���	

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, the Department of Defense, or the

United States Government.

This material is declared a work of the U.S. Government and is not subject to copyright

protection in the United States.

�

AFIT/GCO/ENG/11-14

AUTOMATED ANALYSIS OF ARM BINARIES USING THE LOW-LEVEL

VIRTUAL MACHINE COMPILER FRAMEWORK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Jeffrey B. Scott, B.S.E.E.

Captain, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

�

iv�
�

AFIT/GCO/ENG/11-14

Abstract

Binary program analysis is a critical capability for offensive and defensive

operations in Cyberspace. However, many current techniques are ineffective or time-

consuming and few tools can analyze code compiled for embedded processors such as

those used in network interface cards, control systems and mobile phones.

This research designs and implements a binary analysis system, called the

Architecture-independent Binary Abstracting Code Analysis System (ABACAS), which

reverses the normal program compilation process, lifting binary machine code to the

Low-Level Virtual Machine (LLVM) compiler’s intermediate representation, thereby

enabling existing security-related analyses to be applied to binary programs. The

prototype targets ARM binaries but can be extended to support other architectures.

Several programs are translated from ARM binaries and analyzed with existing analysis

tools. Programs lifted from ARM binaries are an average of 3.73 times larger than the

same programs compiled from a high-level language (HLL). Analysis results are

equivalent regardless of whether the HLL source or ARM binary version of the program

is submitted to the system, confirming the hypothesis that LLVM is effective for binary

analysis.

�

v�
�

Acknowledgements

First I would like to thank my research advisor, Dr. Rusty Baldwin, for giving me

the freedom to pursue research suited to my interests and skills, for reining me in when

my plans became too extravagant and for always being willing to give his time and

expertise to answer questions and provide useful and detailed feedback.

I also want to thank my committee members for their help: Dr. Mullins, for

teaching me how to identify weaknesses in a system by examining it from an attacker’s

perspective, and Mr. Kimball for his stimulating discussions, for pushing me to

investigate static program analysis and for encouraging me to “learn everything there is

to know about ARM.”

Finally, this research would not have been possible without the support of my

wife, who handled things marvelously at home and cared for me and our children while I

completed this research. Her love, faith and understanding have been a constant source

of motivation and strength for me.

vi�
�

Table of Contents

Table of Contents ... vi

List of Figures .. ix

List of Tables .. xi

I. Introduction .. 1

1.1 Problem Background ... 2

1.2 Research Goals .. 4

1.3 Document Outline ... 5

II. Literature Review ... 6

2.1 Taxonomy of Mobile Device Vulnerabilities .. 6

2.1.1 Scenario ... 7

2.1.2 Policy ... 7

2.1.3 Design .. 9

2.1.4 Implementation .. 10

2.1.5 Configuration ... 11

2.2 Security-oriented Program Analysis .. 11

2.2.1 Black Box Analysis ... 11

2.2.2 White/Grey Box Analysis .. 12

2.2.3 Dynamic Approaches .. 12

2.2.4 Static Approaches .. 15

2.3 Compiler Overview ... 18

2.3.1 The Low-Level Virtual Machine ... 20

2.3.2 Mid-end Program Analysis and Transformation ... 21

2.3.3 Back-end Code Generation .. 25

2.4 ARM Architecture Overview .. 26

2.4.1 System Programming .. 26

2.4.2 Memory Architecture .. 28

2.4.3 Instruction Set Architecture ... 29

2.5 Summary ... 32

III. System Design and Implementation .. 33

3.1 System Overview... 33

vii�
�

3.2 Front-end Architecture .. 34

3.2.1 Object File Parser .. 34

3.2.2 Disassembler.. 35

3.2.3 Assembly Parser .. 35

3.2.4 LLVM IR Code Generator .. 35

3.3 Prototype Implementation ... 36

3.3.1 Object File Parser .. 36

3.3.2 Disassembler.. 37

3.3.3 Assembly Parser .. 37

3.3.4 LLVM IR Code Generator .. 41

IV. Experimental Methodology ... 48

4.1 Approach ... 48

4.2 System Boundaries .. 50

4.3 System Services ... 51

4.3.1 Code abstraction .. 51

4.3.2 Code analysis ... 52

4.3.3 Code redocumentation ... 52

4.3.4 Code restructuring ... 53

4.3.5 Code reengineering .. 53

4.4 Workload ... 53

4.5 Performance Metrics ... 54

4.5.1 Code abstraction metrics ... 54

4.5.2 Code analysis and restructuring metrics .. 54

4.5.3 Code redocumentation metrics .. 55

4.5.4 Code reengineering metrics ... 55

4.6 System Parameters... 55

4.7 Workload Parameters .. 56

4.8 Factors ... 57

4.8.1 “Combine instructions” transformation (-instcombine) .. 57

4.8.2 Control-flow constructs ... 58

4.8.3 Source language ... 58

4.9 Evaluation Technique .. 59

viii�
�

4.9.1 Phase I: Validating the model .. 59

4.9.2 Phase II: System performance analysis .. 59

4.9.3 Experimental Configuration. ... 60

4.10 Experimental Design ... 60

4.11 Methodology Summary ... 60

V. Results .. 62

5.1 Phase I: Validating the ARM Model ... 62

5.2 Phase II: ABACAS Performance Analysis ... 64

5.2.1 Impact of source language on LLVM program analysis 64

5.2.2 Impact of source language on size of generated LLVM assembly code. 65

5.2.3 Impact of source language on LLVM restructuring transformations 70

5.2.4 Impact of source language on LLVM program redocumentation 71

5.2.5 Impact of source language on recompilation ... 74

5.3 Summary of results .. 75

VI. Conclusions ... 77

6.1 Research Accomplishments ... 77

6.2 Contributions ... 78

6.3 Applications of this Research .. 78

6.3.1 Automatic vulnerability discovery .. 78

6.3.1 Improved malware analysis ... 79

6.3.2 Software Maintenance ... 79

6.4 Future Work .. 80

6.4.1 Expand object file support ... 80

6.4.2 Expand support for ARM .. 81

6.4.3 Add support for other architectures ... 81

6.4.4 Incorporate LLVM passes to improve system services ... 81

6.5 Conclusion ... 82

 Bibliography ... 84�

� �

ix�
�

�

List of Figures

Figure 1. A retargetable compiler .. 20

Figure 2. C source code of a trivial program. .. 22

Figure 3. LLVM IR of the program. .. 23

Figure 4. A non-SSA program. .. 23

Figure 5. SSA version of the program. .. 24

Figure 6. Control flow a) explicitly stated in LLVM, and b) implied in ARM assembly.

... 25

Figure 7. Organization of general-purpose registers and Program Status Register

[ARM08]. .. 27

Figure 8. Grammar for creating an AST from assembly instructions............................... 36

Figure 9. System under test: ABACAS. .. 51

Figure 10. Executing a lifted LLVM program in the lli interpreter. 62

Figure 11. Loop and dominance frontier analyses on program lifted from ARM machine

code. .. 64

Figure 12. Loop and dominance frontier analyses on same program compiled from C. . 64

Figure 13. Control flow graphs of main function of the Fibonacci 65

Figure 14. main function of Fibonacci program compiled to LLVM IR from C source

code ... 66

Figure 15. C source code of Fibonacci program. ... 66

Figure 16. main function of Fibonacci program lifted from ARM code. 67

Figure 17. ARM assembly code of main function of Fibonacci program. 68

Figure 18. LLVM instructions in programs generated from C source and ARM code. .. 69

Figure 19. Views generated from the Fibonacci program compiled from C source code:

a) the call graph, b) CFG for main function, c) CFG for fib function, d) dominator tree for

main function, and e) dominator tree for fib function. ... 72

x�
�

Figure 20. Views generated from the Fibonacci program lifted from ARM machine code:

a) the call graph, b) CFG for main function, c) CFG for fib function, d) dominator tree for

main function, and e) dominator tree for fib function. ... 73

Figure 21. Conditional branch compiled a) from C to LLVM, and b) from LLVM to

ARM assembly.. 74

Figure 22. Debugging the Fibonacci program a) in an x86 debugger and b) in an ARM

debugger. ... 75

�

xi�
�

List of Tables

Table 1. ARM condition codes [ARM08]. ... 29

Table 2. Factors and factor levels ... 58

Table 3. Branch/call/return instructions validated. .. 63

Table 4. Data-processing instructions validated. ... 63

Table 5. Load/store and load/store multiple instructions validated. 63

Table 6. Instructions eliminated by -instcombine transformation on programs 70

1�
�

AUTOMATED ANALYSIS OF ARM BINARIES USING THE LOW-LEVEL

VIRTUAL MACHINE COMPILER FRAMEWORK

I. Introduction

When President Barack Obama entered office, he was the first American

president to insist on keeping his smartphone [CNN09]. A self-proclaimed BlackBerry

addict, President Obama fought hard to keep his mobile device after his election, viewing

it as an essential communications link to the outside world. “They’re going to pry it out

of my hands,” he said in describing his battle with his security advisors [Zel09].

President Obama was required to turn in his personal BlackBerry and received an NSA-

approved device in its place.

The President is not the only one struggling to overcome mobile device security

issues. Employees are concerned over the power their company’s IT departments have to

remote-wipe their personal cell phones to protect company proprietary information

[Kas10]. iPhone owners filed a lawsuit with Apple and AT&T for using a software

upgrade, iPhone 1.1.1, to disable devices that had been unlocked by owners [Kei09]. In

March of 2010, the US Air Force announced changes to BlackBerry services which

severely restrict the capability of the devices in an attempt to bolster security [Mil10].

These are but a few examples that demonstrate commercial users, the DoD, the highest

levels of government and private citizens are all struggling with mobile device security.

As more and more people use mobile technology for sensitive applications,

mobile devices become more enticing targets for software attacks. Mobile devices have

2�
�

several interesting characteristics that make them valuable targets. First, they are a vast

storehouse of sensitive information: email, text and voice conversations, communication

history and passwords are all contained therein. Second, they can act as mobile,

networked sensors. Even low-end devices sold now have cameras, every cell phone has a

microphone, and many devices now have GPS receivers and even accelerometers.

Finally, they link to other networks. Mobile devices are incredibly well-connected and

communicate over proximity connections like Bluetooth, over physical connections (like

USB) to a host PC, via wireless internet connection (Wi-Fi or Wi-Max) or on the cellular

network. An adversary with control of a victim’s mobile device can gain a lot of

information about the victim, the victim’s surroundings and could use the device to gain

access to other networks it communicates with.

These issues raise many questions about mobile device security. Why are mobile

phones so vulnerable to attack? How do these attacks occur? How can resources be

protected against these types of attacks? How can National Defense organizations use

these devices and networks to fight and win in the Cyberspace warfighting domain?

1.1 Problem Background

Whether the objective is to attack or defend software on mobile devices, analysis

of the software running on those devices is key to 1) discovering weaknesses to exploit,

or 2) verifying that no weaknesses are present or that the software correctly conforms to

some specification—that the software is secure. The first is vulnerability discovery and

the second, program verification.

3�
�

Many tools and techniques have been developed that analyze software for these

purposes, but most of them require the software’s source code—the human-readable

description of the software in a high-level language. The source code for many mobile

device drivers, operating system code and applications is not publicly available. Of the

top five operating systems on devices sold worldwide in the first quarter of 2010

(Symbian, Research In Motion, iPhone OS, Android and Microsoft Windows Mobile),

only two are open source [Gar10]. Even these have components that are provided only in

binary form. Thus, analysis of binary executables is extremely desirable.

Even when source code is available, any analysis of it may be invalid, since it

does not actually execute on the processor. The source code undergoes many changes

during the compilation and optimization process before being loaded into memory and

executed on the hardware. These changes may unintentionally invalidate properties of

the program verified at the source code level, creating a mismatch between what the

programmer intended and the machine code that the hardware actually executes [BR10].

It is also possible that undesirable functionality was intentionally inserted into the

program during the compilation process by an untrusted compiler [Tho84].

Various approaches to binary program analysis have been studied since the early

days of computing but the field remains relatively immature and most approaches are

ineffective or impractical. Some key issues in the field include theoretical limitations to

binary analysis, complexity of modern computing architectures and the inability to reuse

analyses on multiple computing architectures.

�

4�
�

1.2 Research Goals

 The primary goal of this research is to develop an architecture-independent

platform for automated binary program analysis based on the Low-Level Virtual Machine

(LLVM) [Lat10], a modern re-targetable, open-source compiler infrastructure. At the

heart of the LLVM framework is a simple, well-specified, architecture-independent

intermediate representation (IR) designed to support robust and efficient program

analysis, optimization and transformation [LA04]. Many analyses are already available

for code compiled to LLVM IR [SH10] and several groups have developed LLVM IR

analyses specifically for program verification, program safety and vulnerability discovery

[BA08][DKA05][DA06][CDE08][DKA06]. These analyses are typically applied to a

program after compiling the high-level source code to LLVM IR and before generating

native machine code for a particular architecture.

This research develops the architecture, design and prototype implementation for

an LLVM front-end which lifts binary machine code to the LLVM IR enabling access to

the ever-growing set of analyses and transformations available for LLVM IRs. This

research uses the ARM instruction set, although implementing front-ends for other

architectures is straightforward. ARM is the leading producer of embedded

microprocessors for mobile handheld devices [ARM10] and is therefore a logical choice

for the analysis of mobile device binaries.

Additional goals include: 1) verifying the functional correctness of translated code

and 2) using existing LLVM tools to analyze lifted ARM binaries.

�

5�
�

1.3 Document Outline

Chapter 2 provides a review of the relevant literature for this research. It also

provides some background information useful in understanding later chapters. Chapter 3

presents the design and implementation of the binary analysis system. Chapter 4 is the

experimental methodology for verifying the system performs as desired. Chapter 5

presents the results and data analysis of the experiments performed on the system under

test. Chapter 6 provides a summary of the contributions of this research, several useful

applications of the developed system, and describes future work to improve the system.

6�
�

II. Literature Review

2.1 Taxonomy of Mobile Device Vulnerabilities

There are many taxonomies which categorize various aspects of software security.

Some are collections of threats [Web10][FH08][Hof07], some catalog software coding

errors [HLV05][TCM05], and some list and categorize vulnerabilities [Mit11][Mitr11].

The taxonomy herein is not as detailed as those listed above, but it does capture a broad

range of weaknesses in mobile devices that result in successful attacks.

Bishop [Bis03] provides a number of useful definitions relating to computer

security that are summarized here to eliminate any ambiguity in the following taxonomy.

Computer security is often described in terms of its principle components: confidentiality,

integrity, and availability. Confidentiality ensures only authorized subjects are able to

access information. Integrity ensures no information is modified without appropriate

authorization. Availability ensures the system performs its intended function whenever

that functionality is required. Anything that could breach any of these areas is a security

threat. Any weakness in a computer system that makes it possible for a threat to actually

occur is a vulnerability. A specification that describes what should be and should not be

allowed to occur with respect to confidentiality, integrity and availability of a system is a

security policy.

7�
�

Vulnerabilities result from errors in any of four areas: in the security policy, in the

design intended to satisfy the policy, in the implementation of that design in hardware or

software, or in the configuration of that hardware or software.

2.1.1 Scenario

To facilitate discussion of mobile device security issues and provide concrete

examples, it is helpful to have a fictitious scenario to refer to. Suppose Bob has a mobile

device to communicate with Alice. He can call Alice, send her text messages and receive

the same types of communication from her. He also uses his mobile device to make

online banking transactions. Bob does not want anyone to intercept voice or data

communications between him and Alice. While he is not pleased when the cell network

drops his calls, he tolerates it as a minor inconvenience. He would become extremely

distraught, however, if he discovered someone had tampered with his online banking

account using his password, stole his money and locked him out of his own account. Bob

has certain security goals for his mobile device. He wants it to be free of any defects that

could enable such a breach of security. But how can Bob know if his mobile device is

secure?

2.1.2 Policy

Since policy defines security for a system, it should be specified at the earliest

stages of product development when requirements are being defined [McG04]. Ideally,

mobile device development would include the crafting of a requirements specification

describing a security policy so the device will adhere to that policy. Unfortunately,

security policies are often only informally defined or simply implied. If designers satisfy

8�
�

an incomplete, incorrect or inadequate policy, their system may not satisfy the actual

needs of their customers (i.e., they may satisfy the wrong policy). Thus, in the eyes of

the customer who has his own policy in mind, the system is vulnerable to attack.

Another vulnerability arises if a policy is unenforceable. Mobile devices operate

in a complex environment of interconnected systems. Bob’s mobile device might be a

Nokia phone with an ARM processor running Symbian OS over Verizon’s cell network.

Bob’s phone also relies on the security of the online banking servers he connects to.

Who is ultimately responsible for defining and implementing a security policy for this

“system?” This issue is captured in a Security Policy Objective which is a statement of

intent to protect a resource from unauthorized use [Ste91]. “A security policy objective

is meaningful to an organization only if the organization owns or controls the resource to

be protected.” All of the organizations above address security in some fashion. Some of

them may have defined formal policies, but they may not be able to enforce them if they

do not control the resources which their piece of the overall system depends.

 Finally, when dealing with interconnected systems and systems of systems,

security depends on a composition of the policies, not on policies of individual systems.

“A vulnerability arises when the interfaces between any two components do not match;

that is, the two components do not compose according to the meaning of composition”

[Win03]. This occurs when one system makes an assumption the other fails to carry out.

Assume Bob provides feedback to a new mobile device development effort. He

tells the development team he wants his sensitive voice, text and internet transactions to

remain confidential. The development team formulates a policy that requires all

connections to entities outside the device to be encrypted. Even so, Bob’s sensitive text

9�
�

messages and password information may still be vulnerable to an attacker who can gain

physical access to Bob’s phone.

2.1.3 Design

Even if a security policy perfectly captures the desired security properties of a

device, a vulnerability may still persist if the system design does not completely satisfy

the policy. Security policies tend to be ambiguous—they either use a non-formal

language (like English) or mathematics. But in either case these policies must be

implemented via a set of mechanisms. If the policy is misunderstood or inadequately

addressed in the design, a vulnerability may result.

Many of the same design challenges that plague personal computers also lead to

vulnerabilities in mobile devices. For instance, although software extensibility enables

easy updates and extensions in functionality, it also makes it easier for malicious

functionality to be added [MM00]. This is demonstrated by any number of the mobile

Trojans that pose as legitimate applications. Skulls, for example, is a Trojan that targets

Symbian-based phones. It claims to be an extended theme manager for the Nokia 7610

smartphone but renders a device non-functional on installation [FSe09][Hof07].

Complex interactions between hardware and software components both within and

outside of the device are another design challenge in mobile devices. Simply addressing

security in each component individually without taking into account the entire system can

lead to architecture and design vulnerabilities because of the composition problem

[VM04][Win03]. Other design-level vulnerabilities arise from error handling in object-

10�
�

oriented code, object sharing and trust issues, unprotected communications and incorrect

or missing access control mechanisms [PM04].

2.1.4 Implementation

Assuming no security vulnerabilities existed in the policy or design of Bob’s

smartphone (which is a big assumption), the phone may still be vulnerable if the

hardware or software does not correctly implement the design. Software coding errors

(bugs) receive a great deal of attention in software security. Coding errors produce the

types of memory corruption errors that are exploited by self-propagating worms.

Although these implementation errors certainly exist in mobile devices

[MV06][MM09][HJO08][MN08], they seem to be more difficult to exploit successfully

due to certain properties of the ARM processor, security features in embedded operating

systems and lack of adequate tools [Mul08][San05][BFL07]. ARM processors have

separate instruction and data caches. Explicit writes to memory are only reflected in the

data cache. Additionally, instructions are not executed if they are written to memory that

has already been cached. ARM instructions also tend to include many zeros, making it

more difficult to overflow a buffer with shellcode since any zero is interpreted as a null

(the end of the string). The Symbian operating system requires capabilities for each

privileged activity an application performs. Applications must be signed with the proper

capabilities or they will not be installed on the device. Additionally, the only software

debuggers available for Symbian are user-mode debuggers which have a limited ability to

debug privileged code.

�

11�
�

2.1.5 Configuration

Finally, even if there are no policy, design or implementation vulnerabilities in a

mobile device, it may still be vulnerable to attack if misconfigured. For example,

Blackberry devices come with a personal firewall which, among other things, controls

activities of third-party applications. This is a useful security mechanism but its default

configuration is insecure. By default, any third-party application may access sensitive

data on the device, including: email, SMS messages, personal information (such as the

calendar, tasks, memos and contacts), and key store (certificates, public/private keys,

etc.) [Hof07]. If Bob had this kind of firewall configuration and accidentally installed a

malicious application, it could exfiltrate data from his private emails, text messages and

even passwords.

2.2 Security-oriented Program Analysis

This section discusses methods used for security-oriented program analysis. It

focuses more on vulnerability discovery than on formal program verification. Since

many of the techniques were developed for x86-based systems, this section speaks

generally about vulnerability discovery and does not focus specifically on mobile

devices, although all the techniques will work equally well on mobile devices.

2.2.1 Black Box Analysis

 Black box analysis emulates the approach a remote attacker would employ if he

had no knowledge of the interior workings of a program. To him, the program is a “black

box.” The only options available to him are to supply the program with input and

observe the results of the operation returned to him as output. The most basic form of

12�
�

black box analysis is using the program to gain as much knowledge and understanding as

possible about how it works and how it might be implemented. Information gained from

this step can determine what sort of input to provide and what program behavior is

abnormal or faulty. Another technique, fault injection, submits spurious data in an

attempt to either crash the system or to elicit a response that gives more information

about how the system might be exploited. Input may be generated manually or in an

automated fashion. When automated using pseudorandom data, fault injection is called

fuzz testing or fuzzing [MFS90]. Fuzz testing is used extensively for finding

vulnerabilities in code, including those in mobile phone protocols

[MV06][MM09][HJO08][MN08]. Fuzzing provides information about the presence of

errors in a program but additional analysis is typically required to determine if such errors

are exploitable.

2.2.2 White/Grey Box Analysis

 White box analysis, targets details of the system implementation to find security

weaknesses. This may include source code review or analysis of executables through

disassembly. Some approaches combine white box analysis with dynamic, black box

input [HM04], which is typically referred to as grey box analysis. Several grey box

techniques are described in the following sections.

2.2.3 Dynamic Approaches

2.2.3.1 Debugging

Debugging is a popular grey box approach. It uses special software (a debugger)

which attaches to another program. The debugger monitors and controls the attached

13�
�

program. There are many commercial and freely-available debuggers for various

platforms. GDB is a very popular debugger for UNIX/Linux systems. SoftIce and

WinDbg are two of the more powerful debuggers for Windows/x86 programs. IDAPro, a

very popular disassembler, also includes a debugger for many platforms. IDAPro

versions 5.3 and later include a debugger for Symbian applications [Hex08].

2.2.3.2 Dynamic Information Flow Tracking

Dynamic Information Flow Tracking (DIFT) is a technique for tracking input

through a system at runtime by tagging or tainting this data and anything derived from it

in the execution path. As input data flows through the system anything resulting from

use of that data (e.g., a new value calculated from it, the input data copied to another

location, etc.) is also tainted because it could potentially exploit a vulnerability in the

system. Since vulnerabilities are usually exploited through some type of malicious data

provided as input to a program, DIFT can identify vulnerabilities that a malicious user

can reach via program input. DIFT simplifies the process of searching for vulnerabilities

by reducing the search space down to a subset of possible execution paths. It has been

estimated that there are five to 50 software “bugs” for every thousand lines of source

code [HM04]. Not all of these are exploitable and not all that are exploitable may be

exploited remotely. Nevertheless, DIFT is a powerful technique for narrowing the search

space to quickly identify dangerous vulnerabilities in a system.

Several DIFT systems were developed for a particular purpose. Some

automatically detect malware at runtime and prevent its execution

[DKK07][KBA02][SLZ04]. Some also automatically generate signatures for detected

14�
�

malware [NS05]. Other DIFT implementations identify confidential information (CI)

leaks [ME07] or CI lifetime in the system [CPG04]. BitBlaze [SBY08] is a binary

analysis platform that combines DIFT and static approaches to perform binary analysis

on any number of applications to include vulnerability discovery and malware analysis.

There are two basic approaches used by DIFT systems. The first relies on

hardware mechanisms to taint data and propagate taint information [DKK07][SLZ04].

The second approach uses binary instrumentation through software simulation

[SBY08][NS05][CPG04][KBA02]. Hardware approaches usually increase the size of

storage locations (memory and/or registers) by adding bits which encode taint

information about the data. They also typically modify the instruction pipeline in some

way to propagate taint and restrict execution based on taint information. Simulation-

based approaches use dynamic binary instrumentation (DBI) platforms which add code to

the binary at runtime to enable taint tracking. Two variations of DBIs exist: copy-and-

annotate (C&A) and disassemble-and-resynthesize (D&R) [NS07]. The C&A approach

copies each instruction as-is, annotates its effects for use by instrumentation tools and

adds instrumentation code interleaved with the original instructions. The D&R approach

disassembles small chunks of code at runtime, translates them to an intermediate

representation, adds instrumentation IR code and generates new machine code from the

IR which is executed on the processor. Binary code instrumented into an executable to

perform checks and maintain a security policy is refered to as an inline reference

monitor.

15�
�

2.2.4 Static Approaches

2.2.4.1 Static Analysis of Source Code

Static analysis of higher-level source code can detect common programming

errors or security weaknesses such as memory corruption errors [WFB00][LE01] and

race conditions [Bis96]. These checks are often done at compile time to alert the

programmer of errors that should be corrected as part of the software development

process. In some cases, static source code analysis includes taint tracking to identify

potentially unsafe uses of untrusted user data through programmer-written compiler

extensions [AE02], through the use of CQual to specify “tainted” and “untainted” type

qualifiers [STF01] and by Program Query Language and pointer alias analysis [LML08].

Commercial tools for static analysis, some specifically targeting embedded applications,

include Coverity Static Analysis [Cov10], Grammatech CodeSonar [Gra10] and

MathWorks PolySpace [Mat10].

There are several drawbacks to vulnerability discovery using static code analysis.

First, source code is often simply not available. Unless the project is open source, most

designers prefer to protect their intellectual property and not distribute the source code.

Second, source code is not executed. It is a representation of the desired functionality of

the program in a more human-readable form. For these reasons, several groups are

developing methods of statically analyzing binary programs.

2.2.4.2 Manual Static Binary Analysis

By manually inspecting the binary code of a program, vulnerabilities can be found

in the code that actually executes on a system. Since machine code is not directly

16�
�

readable by humans, a disassembler typically parses the file, converting binary op codes

and operands to their assembly-language equivalents. This assembly code is reverse-

engineered to understand the functionality of the program. The reverse engineer must

generally identify higher-level data structures or code constructs to understand control

and data flow. Finally, the reverser begins searching for weaknesses in the program

design or implementation. He may begin by looking for common API functions that are

used insecurely, as is the case with many string manipulation functions. He may attempt

to identify locations in the code where the user supplies input to the program and

manually trace this input to see if it might be used insecurely. Several good references

explain this process in detail [KLA04][Kas03][Eag08]. Manual binary analysis can be

very effective, but it is very time-intensive and relies on the considerable expertise of the

reverser. Static information flow analysis tools help automate this process.

2.2.4.3 Static Binary Information Flow Analysis

Static binary analysis tools typically convert machine code into a more abstract

intermediate representation (IR) to simplify analysis. These tools use multiple stages,

similar to a compiler framework. The front-end disassembles machine code into

assembly language and a separate tool parses the assembly and translates it into the IR.

The mid-end or back-end contains tools that operate on this IR to perform various

analyses. This is the reverse of what most compilers do, as will be described later. By

reversing the translation process, converting assembly to a more abstract IR, static

information flow analysis tools are more conducive to formal program analysis.

17�
�

Even so, static binary analysis tools are not nearly as prevalent as static source

code analysis tools, but seem to be gaining popularity. Some compiler frameworks

contain plugins or utilities to “lift” binary code to an IR. ROSE [Qui11] is an open

source compiler infrastructure that incorporates a tool called BinQ [QP09] which

generates ROSE IR from assembly code output from a disassembler front-end. ROSE

uses a high-level abstract syntax tree IR that preserves all information encoded in the

input source or binary so that the source can be unparsed after transformations have been

made. However, this IR is closely linked to the syntax of the input program so it is

source or architecture-dependent. The Phoenix [Mic11] compiler framework developed

by Microsoft lifts binary instructions up to register transfer language (RTL), a low-level

form of IR. However, Phoenix only works on binaries compiled with a Microsoft

compiler and also requires debugging information which greatly limits its usefulness.

CodeSurfer/x86, a commercial tool, lifts x86 binary code that has been stripped of debug

and symbol table information to an IR for analysis [BR04]. Although Valgrind is a

dynamic binary analysis tool [Val10], its open-source libraries for lifting machine code to

the VEX IR can be used in static binary analysis tools. Both Vine (the static analysis

component to BitBlaze) and its successor, Binary Analysis Platform (BAP) use the VEX

library to convert assembly instructions into VEX IR [SBY08][BJ10]. VEX, however,

does not model all of the implicit operations and side effects of machine instructions so

both Vine and BAP add these details to their IRs. A formal verification approach

translates binary code to recursive functions expressed in Hoare logic and then verifies

these using the HOL4 theorem prover [Myr09].

18�
�

Static analysis is challenging primarily due to aliasing and indirect addressing.

An alias occurs during program execution when two or more variables in the program

refer to the same location in memory [Lan92]. Two variables may alias if there exists

some point in a valid execution of a program that they point to the same location. Two

variables must alias if they point to the same location for all valid executions of the

program. In 1992, Landi proved the undecidability of intraprocedural may alias and the

uncomputability of intraprocedural must alias for languages with dynamically allocated

recursive data structures [Lan92]. Alias analysis approaches must, therefore, make

simplifying assumptions to make analysis tractable [HBC99][And94]. Indirect

addressing makes static disassembly even more difficult because registers used to

calculate addresses can have many values.

One approach to simplify the aliasing problem for binary programs is value set

analysis (VSA). VSA uses abstract data objects called abstract locations, or a-locs to

represent valid locations where a variable could be stored [BR04]. These include any

storage locations that are known statically—global variables defined in the data segment,

local variables defined as a specific offset from the base of a stack frame and registers.

VSA provides an over-approximation of the set of values an a-loc can hold at any point

during execution. CodeSurfer/x86, Vine, and BAP all use VSA to calculate indirect

jumps and for alias analysis [BR04][BJ10].

2.3 Compiler Overview

Compilers allow software to be developed at an abstract level by converting

programs written in high-level languages to low-level machine code. This frees the

19�
�

developer to reason and express his/her thoughts and designs in abstract terms without

having to worry about details of a particular computer hardware architecture. For

example, in Object-Oriented programming, programmers design their software in terms

of the objects in their program, the actions those objects will perform and the

relationships between objects. Compilers convert the abstract description of the program

to a machine-specific implementation described in the target machine’s native instruction

set.

In modern compiler design, this translation process is performed modularly in

successive phases [WM95][ASU88], as shown in Figure 1. The compiler front-end reads

the source file as a sequence of characters, decomposes these into the various symbols or

tokens used by the language (lexical analyzer/screener), parses these tokens to capture the

syntactic structure of the code (syntax analysis) and converts the parsed code into an

intermediate representation (intermediate code generation). Architecture-independent

optimizations are performed on the IR in the mid-end. The back-end generates

architecture-specific machine code from the optimized IR.

This modular design allows a high degree of programming flexibility and design

re-use. Front-ends can be designed for many different source languages that all output

code in the same intermediate representation. Once in this form, they can take advantage

of all the transformations, analyses and optimizations written for the IR. Target-specific

back-ends handle all the complexities and intricacies of modern computing architectures.

Modularity eliminates the need to rewrite the entire toolchain anytime new functionality

is desired whether that functionality is a new source language, a new optimization, or

support for a new machine architecture.

20�
�

Figure 1. A retargetable compiler

2.3.1 The Low-Level Virtual Machine

The Low-Level Virtual Machine (LLVM) is a modern retargetable compiler that

focuses on mid-end transformation and back-end code generation while making it easy

for front-end designers to generate LLVM intermediate code. LLVM uses a very simple

instruction set of approximately 50 instructions which capture the key operations of

ordinary processors. All instructions obey strict type rules and use a load/store

architecture.

21�
�

2.3.2 Mid-end Program Analysis and Transformation

2.3.2.1 LLVM Intermediate Representation

LLVM intermediate representation (IR) uses an abstract RISC-type instruction set

consisting of approximately 50 instructions with an infinite set of virtual typed registers

in static single assignment (SSA) form. The IR may be represented in three different

ways: 1) as a human-readable “assembly” language, 2) as executable bytecode on disk or

3) as an internal representation in memory, suitable for performing compiler

optimizations. The internal representation is structured into Module, Function,

BasicBlock and Instruction instances. A Module represents an entire program

compilation unit. It contains a list of global variables, a list of Functions, a list of

libraries (i.e., other Modules that the module depends on), a global value symbol table

and a data type symbol table. A Function consists of BasicBlocks, a list of

Arguments and a symbol table of local values. A BasicBlock is a list of

Instructions.

Figure 2 shows the C source code of a trivial program which reads a value from

stdin, assigns a 0 or a 1 to variable A based on the value read, adds 2 to A and prints the

result. Figure 3 is the LLVM IR assembly module of the program. It consists of two

global strings used by the scanf and printf function calls respectively (@.str and

@.str1), one main function defined within the module, and declarations for the two

externally defined functions, scanf and printf. The main function consists of four

basic blocks: entry, bb, bb1, and bb2. Each basic block is a sequence of one or more

22�
�

instructions which ends in a terminator instruction (i.e., a branch or a return). Each

instruction which defines a value is in the form:

<unique register name> = <instruction mnemonic> <operands>

For example, the instruction %X = alloca i32 allocates a 32-bit integer on the

local stack and assigns the address of the location to a register named X.

SSA form only allows a register to be assigned, or defined, once [CFR91] and

each definition must dominate all uses of the register. In a control flow graph, one node,

X, dominates another node Y if “X appears on every path from [the entry node] to Y”

[CFR91]. X and Y may be the same node (i.e., X can dominate itself). “If X dominates Y

and X � Y, then X strictly dominates Y” [CFR91]. The dominance frontier of a node X is

the set of nodes Z in a control flow graph where X dominates an immediate predecessor

of Z but X does not strictly dominate Z. Dominance frontiers identify the nodes which

may require �-functions in SSA form. A �-function is placed at the beginning of a join

node to select the value of an incoming variable depending on which branch control

arrives from. LLVM implements SSA �-functions with a phi instruction (cf. Figure 3:

the first instruction in bb2 is a phi instruction). SSA form makes dataflow explicit by

exposing def-use information through variable renaming and �-functions.

Figure 2. C source code of a trivial program.

#include <stdio.h>

int main() {

 int X, A;

 scanf(“%d”, &X);

 if (X > 0)

 A = 0;

 else

 A = 1;

 A = A + 2;

 printf(“Value of A: %d\n”, A);

 return A;

}

23�
�

The C source code in Figure 2 is not in SSA form since variable A is defined more

than once and neither definition of A in the two branches dominates the use of A in the

join node. This is easier to see in Figure 4, the control flow graph of the program.

.

.

.
X > 0?

A ← 0 A ← 1

A ← A + 2
.
.
.

Figure 3. LLVM IR of the program.

; ModuleID = 'ssa.ll'

@.str = private constant [3 x i8] c"%d\00", align 1

@.str1 = private constant [16 x i8] c"Value of A: %d\0A\00", align 1

define i32 @main() nounwind {

entry:

 %X = alloca i32

 %0 = call i32 (i8*, ...)* @"\01__isoc99_scanf"(

 i8* noalias getelementptr inbounds ([3 x i8]* @.str,

 i32 0, i32 0), i32* %X) nounwind

 %1 = load i32* %X, align 4

 %2 = icmp sgt i32 %1, 0

 br i1 %2, label %bb, label %bb1

bb:

 br label %bb2

bb1:

 br label %bb2

bb2:

 %A.0 = phi i32 [0, %bb], [1, %bb1]

 %3 = add nsw i32 %A.0, 2

 %4 = call i32 (i8*, ...)* @printf(

 i8* noalias getelementptr inbounds ([16 x i8]* @.str1,

 i32 0, i32 0), i32 %3) nounwind

 ret i32 %3

}

declare i32 @"\01__isoc99_scanf"(i8* noalias, ...) nounwind

declare i32 @printf(i8* noalias, ...) nounwind

�

Figure 4. A non-SSA program.

24�
�

Figure 5 shows the SSA version of the program obtained by giving all variable

definitions unique names and inserting a �-function to choose the appropriate value of A

depending on which branch of the graph control is transferred from.

LLVM enables efficient program analysis by making everything explicit in the

language: dataflow is explicit (via SSA form), type information is explicit (all type

conversions are explicit through several cast instructions), memory accesses are explicit

(all memory accesses occur through typed pointers), even control flow is explicit since all

terminator instructions explicitly state their successors. In many assembly languages,

only one successor of a basic block is stated explicitly for conditional branches (cf.

Figure 6b). If the condition is not satisfied, then control flow falls through implicitly to

the next instruction. In LLVM both branch destinations are explicitly stated. In Figure

6a, control will transfer to %bb2 if the value of register %4 is true and to %bb3 if %4 is

false.

.

.

.
X > 0?

A1 ← 0 A2 ← 1

A3 ← �(A1, A2)

A4 ← A3 + 2
.
.
.

Figure 5. SSA version of the program.

25�
�

LLVM is a strongly-typed IR. The type system is low-level and language-

independent and includes primitive data types of void, integer, floating-point and bool

and derived types. Derived types include pointers, arrays, structures and functions.

High-level or language-specific types are implemented using this low-level type system.

Weakly-typed source languages must declare type information to generate valid LLVM

code. This declared type information may not be reliable but it makes type information,

even for weakly-typed languages, explicit. Any type conversions must be performed

explicitly through LLVM cast instructions.

2.3.3 Back-end Code Generation

As part of native code generation, LLVM IR is lowered to an abstract

architecture-specific representation of machine code consisting of MachineFunction,

MachineBasicBlock and MachineInstr instances. Similar to their LLVM IR

counterparts, MachineFunctions are lists of MachineBasicBlocks, which are lists of

MachineInstrs. However, MachineInstrs contain detailed architecture-specific

information about instructions including the instruction opcode, a list of operands, a list

of memory operands for instructions that reference memory, and a TargetInstrDesc

reference which encodes many of the instruction details including the instruction type

(e.g., branch, call, return, etc.), instruction format, and addressing mode. This back-end

cmp r0, #3

blt .LBB0_4

%4 = icmp sgt i32 %3, 2

br i1 %4, label %bb2, label %bb3�

b)a�)�

Figure 6. Control flow a) explicitly stated in LLVM, and b) implied in ARM assembly.

26�
�

machine code representation supports valid SSA form but can also be represented in non-

SSA form for manipulation after register allocation has been performed.

2.4 ARM Architecture Overview

Since ARM leads the market in processors for mobile computing [ARM10], this

section briefly covers some core features of the ARM architecture. The information in

this section is primarily drawn from the ARM Architecture Reference Manual for ARMv7-

A and ARMv7-R [ARM08] unless cited otherwise.

2.4.1 System Programming

Three concepts are central to understanding the ARM architecture from a system-

level perspective: privilege, mode and state. Privilege is the level and type of access to

system resources allowed in the current state. The ARM architecture provides two

privilege levels, privileged and unprivileged. Mode is the set of registers available

combined with the privilege of the executing software. The ARM architecture supports a

user mode, a system mode, and up to six exception modes as shown in Figure 7. User

mode is unprivileged, all other modes are privileged. State is the current configuration of

the system with respect to the instruction set currently being executed (Instruction Set

State), how the instruction stream is being decoded (Execution State), whether or not

Security Extensions are currently implemented (Security State), and whether or not the

processor is being halted for debug purposes (Debug State).

An ARM processor supports up to four different instruction sets simultaneously.

The processor can switch states between any one of the four as it is executing to leverage

the benefits that each can provide. The four instruction set states include ARM, Thumb,

27�
�

Jazelle and ThumbEE. Originally, the ARM architecture was designed as a 32-bit, word

aligned RISC architecture. ARM still supports this original instruction set, with some

modifications, but to increase efficiency and reduce code size, which is important in

many embedded systems applications, a separate instruction set dubbed Thumb, was

developed. Thumb instructions are either 16 or 32 bits aligned on a 2-byte boundary.

ARM and Thumb instructions are encoded differently but implement much of the same

functionality. In the Jazelle state, ARM executes Java bytecodes as part of a Java Virtual

Machine (JVM). The ThumbEE state is similar to the Jazelle state, but more generic. It

supports a variant of the Thumb instruction set that minimizes code size overhead by

using a Just-In-Time (JIT) compiler.

Figure 7. Organization of general-purpose registers and Program Status Register [ARM08].

28�
�

The ARM architecture has 16 core registers (R0-R15) that are available to an

application at any given time. Registers R0-R12 are general-purpose registers. R13 is

typically a Stack Pointer (SP), R14 is a Link Register (LR) and R15 is the Program

Counter (PC). As Figure 7 shows, the current execution mode determines the set of

ARM core registers currently in use. Duplicate copies (i.e., banked registers) of the SP

and LR are provided in each of the exception modes. Registers R8-R12 are also banked

in the FIQ mode to enable fast processing of interrupts. The Current Program Status

Register (CPSR) contains program status and control information and is also banked

across each exception mode as a Saved Program Status Register (SPSR).

Up to 16 coprocessors, CP0-CP15 extend the functionality of the ARM processor.

However, CP10, CP11, CP14 and CP15 are reserved for the following purposes: CP10 is

used for single-precision floating point (FP) operations and configuration/control of

vector floating point (VFP) and Advanced Single-Instruction, Multiple-Data (SIMD)

extensions, CP11 performs double-precision FP operations, CP14 supports debug and

execution environment features, and CP15 is called the System Control Coprocessor

since it is used for configuration/control of many features of the ARM processor system.

2.4.2 Memory Architecture

From an application perspective, the ARM architecture has a flat address space of

2
32

 bytes which is addressed using either a 32 bit word or 16 bit halfword alignment. The

implementation details of this memory space vary depending on the ARM architecture

version. ARMv7-A implements a virtual memory system architecture (VMSA) while

ARMv7-P implements a simplified protected memory system architecture (PMSA). See

29�
�

the ARM Architecture Reference Manual for more information on these implementations

[ARM08].

2.4.3 Instruction Set Architecture

The ARM architecture supports several instruction sets but this section focuses on

the core ARM instruction set. Most ARM instructions can be conditionally executed—

they only perform their function if the designated condition is satisfied by one of the flags

in the CPSR (cf. Table 1). The following is a basic description of the various ARM

instruction categories.

Table 1. ARM condition codes [ARM08].

�

30�
�

2.4.3.1 Branch Instructions

Only two basic branch instructions are included in the ARM instruction set:

branch to target address, B or a subroutine, BL. Either of these can also optionally

change to a different instruction set (BX and BLX respectively). B and BL accept as an

operand the offset of the target address from the PC value of the branch instruction. BX

accepts the target address as a register operand. BLX may be executed with an

immediate address or an address specified in a register.

2.4.3.2 Data-Processing Instructions

Data-processing instructions include arithmetic and logical instructions, shift

instructions, saturating instructions, packing and unpacking instructions, and parallel

add/subtract instructions. Some of these include the option to automatically shift the

second register operand by either a constant value or a register-specified value. Most can

optionally update the condition flags in the CPSR register based on the result of the

computation.

2.4.3.3 Status Register Access Instructions

The condition flags in the CPSR are typically set during execution of data-

processing instructions. However, they can be set manually with the MSR instruction and

read manually with the MRS instruction.

2.4.3.4 Load/Store Instructions

Load and store addresses are calculated using a base register and an offset. Three

different addressing modes are possible: offset addressing, pre-indexed addressing and

post-indexed addressing. In offset addressing, the memory address is calculated directly

31�
�

by adding or subtracting the offset from the base register while the value of the base

register does not change. In pre-indexed addressing, the same calculation is performed

but the base register is updated with the new address to facilitate indexing through an

array or memory block. Post-indexed addressing uses the base address alone as the first

memory address to be accessed and updates the base address by adding or subtracting the

offset. This facilitates indexing through an array or memory block.

Loads can use the PC in interesting ways. The PC can be loaded directly with the

LDR instruction just as any other general-purpose register. Loads can also use the PC as

the base register for an address calculation. This enables PC-relative addressing for

position-independent code.

The ARM instruction set provides instructions that load or store multiple general-

purpose registers at a time. Consecutive memory locations are accessed relative to a base

register. Load and store multiple instructions support four different addressing modes:

increment before, increment after, decrement before and decrement after. Each of these

addressing modes supports updating the base register with the new value.

2.4.3.5 Exception-Generating/Handling Instructions

Three instructions provide a means for explicitly generating exceptions: the

Supervisor Call (SVC) instruction, the Breakpoint (BKPT) instruction and the Secure

Monitor Call (SMC) instruction. The main mechanism for User mode applications to call

privileged code is through the SVC instruction.

�

32�
�

2.4.3.6 Coprocessor Instructions

There are three types of instructions for communicating with coprocessors:

coprocessor data-processing operations (CDP, CDP2), moving register values between

general-purpose registers and coprocessor registers (MCR, MRC, etc.) and loading or

storing coprocessor registers (LDC, STC, etc.).

2.5 Summary

This chapter provides a taxonomy of mobile device vulnerabilities, a review of

the literature relevant to security-related binary program analysis and some background

information on the LLVM compiler and the ARM architecture. The next chapter builds

on this information and describes the binary analysis system design and implementation

and the experimental methodology used to test the system.

� �

33�
�

III. System Design and Implementation

This chapter describes the design and prototype implementation for a system

which lifts binary machine code to LLVM intermediate representation. The system is

called the Architecture-independent Binary Abstracting Code Analysis System, and will

henceforth be referred to as ABACAS.

3.1 System Overview

ABACAS consists of three components: a set of language-specific front-ends, an

architecture-independent mid-end and a set of architecture-specific back-ends. Each

front-end translates a program written in a high-level language (e.g., C++) or machine

code program (e.g., ARM ELF object file) into the LLVM intermediate representation.

Analyses and transformations are performed in the mid-end and the back-end transforms

the IR back to a machine-code program.

This research effort develops an ARM front-end for ABACAS. The LLVM

compiler framework is used without modification for the mid-end and back-end

components of the system. Some of the existing mid-end analyses useful in security-

related program analysis include alias analysis, pointer bounds tracking and graphical

display of control flow graphs and dominator trees. LLVM back-ends currently support

reliable code generation for ARM, Power PC and Intel x86 architectures [Lat10].

�

34�
�

3.2 Front-end Architecture

3.2.1 Object File Parser

ABACAS uses the object file to determine an entry point for the instructions in

the file, to retrieve all program bytes (both code and data) as a single memory buffer and

to replace relocated symbolic names with the static addresses of the referenced objects in

the buffer.

An object file is a static binary representation of a program. When a file is

executed on a system, the operating system loader reads the object file and copies the

instructions and data into memory so the processor can execute them. The object file is

divided into segments, each containing one or more sections for the different types of

information encoded in the file. For example, in an ELF file the text segment contains

several read-only instruction and data sections including the .text section and the .rodata

section. Some disassemblers use these divisions as the primary means of identifying

which parts of the file to disassemble as instructions and which to treat as data. This is

problematic, though, because the text segment may contain data and the data segment

may contain code. An iterative approach may incorrectly disassemble data and interpret

it as code and may miss sections of code which are embedded in data segments.

Object files also contain other information used during the linking process but not

required by the loader to create or supplement a process image. The symbol table and

string tables are examples of this. While this information is useful for analysts trying to

understand binary code, ABACAS does not depend on symbol tables, string tables, debug

information or iterative disassembly of object file sections to decompile machine code to

35�
�

LLVM IR. This information could be incorporated to improve decompilation but the

recursive-descent parsing algorithm employed by ABACAS does not require it.

3.2.2 Disassembler

Instead of using a lexical analyzer to return the symbols in the source document

as in a typical compiler front-end, ABACAS uses a disassembler to scan through the raw

binary input and return individual instructions, each with an assembly opcode and a set of

operands. The disassembler used by ABACAS takes as input a reference to a memory

object and an index into the object to begin disassembly, and returns an assembly code

representation of the instruction at that location and the length of the instruction in bytes.

3.2.3 Assembly Parser

The assembly parser has a recursive-descent predictive parsing algorithm

[ASU88] driven by a right-recursive context-free grammar to construct an abstract syntax

tree (AST) of the program. Figure 8 shows the productions for this grammar. The parser

assumes all paths through the program are executable. This may not be a correct

assumption, but it is a safe one [Lan92].

3.2.4 LLVM IR Code Generator

Once the program has been parsed into an AST, the code generator visits each

node of the AST and translates the native machine code to LLVM IR using a depth-first

traversal from left to right, remembering basic blocks previously visited. Any operations

of the machine code which are implicit (e.g., conditional execution, setting status flags,

etc.) are made explicit in the generated LLVM code.

36�
�

Module

::=

|

Function Module

�

Function ::=

|

BasicBlock

�

BasicBlock ::=

|

|

|

|

|

returnInstr

indirectBrInstr

uncondBrInstr Successor

condBrInstr Successor Successor

InstructionSeq BasicBlock

�

Successor ::=

|

BasicBlock

�

InstructionSeq ::=

|

|

callInstr InstructionSeq

nonTermInstr InstructionSeq

�

Figure 8. Grammar for creating an AST from assembly instructions.

3.3 Prototype Implementation

The system architecture is modular and generic enough to be used for binary

programs compiled for virtually any machine architecture. However, to facilitate

analysis of mobile handheld devices, the prototype system is limited to a front-end to lift

binary programs compiled for the ARM architecture to LLVM.

3.3.1 Object File Parser

Object file support in the LLVM framework is still a work in progress so IDA Pro

5.5 parses the binary file. IDA Pro is only used as a hex editor and for fixing up

relocation information. It is not used for disassembly, symbol information, or any other

parsing function. IDA Pro resolves relocation information, provides a series of program

37�
�

bytes in hexadecimal as well as the index of the first byte to disassemble. There is an

effort to create an LLVM API for various binary file formats including COFF, ELF,

MachO [Spe10] but as yet it is not available.

3.3.2 Disassembler

The disassembler provided by the LLVM framework is used but the parsing

algorithm which directs disassembly is modified. LLVM includes a command line tool,

llvm-mc [Latt10], which is a driver for two other underlying tools—a machine code

assembler and a disassembler. The machine codes are supplied as an array of

hexadecimal bytes on the command line and llvm-mc invokes the disassembler one

instruction at a time, iteratively scanning through the input. This effort adds a third tool,

a reverse code generator, which lifts disassembled ARM code to LLVM intermediate

representation. The ABACAS prototype modifies the llvm-mc tool so it accepts

additional command line options which invoke the recursive-descent parser described in

Sections 3.2.3 and 3.3.3 and to enable or disable optimization passes on the lifted LLVM

IR as part of the LLVM IR code generation phase.

3.3.3 Assembly Parser

The assembly parser directs the disassembler to locations for disassembly and

creates an AST of MachineFunction, MachineBasicBlock and MachineInstr

[Lat11] objects using syntax-directed translation [ASU88]. The disassembler outputs an

MCInst object [Latt10], which represents a machine code instruction as an opcode and a

list of operands and is primarily used for textual display of assembly code. The assembly

38�
�

parser converts this to the more expressive MachineInstr representation used in LLVM

back-ends as part of the native code generation process [Lat11].

3.3.3.1 Parsing Basic Blocks

One of the challenges of using syntax-directed translation of binary code is none

of the syntax is explicit. A sequence of bytes must be decoded into an instruction before

it can be determined how the instruction affects the structure of the program; a single

instruction alone cannot provide adequate information on the structure of basic blocks. A

basic block is a sequence of instructions for which the first instruction is the only entry

point and the last instruction is the only exit point—all other instructions execute

consecutively. The division of basic blocks in a program cannot be determined with

certainty until every instruction in the program has been decoded, since any instruction

could be the target of a branch, thereby marking the start of another basic block.

ABACAS uses a simplified definition of a basic block as described by the

grammar in Figure 8. Initially, it considers any sequence of non-terminating instructions

ending in a terminating instruction (i.e., a branch or call instruction) to be a basic block,

thus ignoring the requirement that the only entry point be the first instruction. After

decoding the target of a branch instruction, and before parsing the target location into a

new basic block, the following procedure restructures basic blocks as necessary:

If the target location has not yet been parsed, parse the location into a

new basic block.

If the target location has already been parsed and it is already the address

of the first instruction in a basic block, do not parse the location again--

just update the predecessors and successors lists for the parent and

successor basic blocks.

39�
�

3.3.3.2 Parsing Functions

To speak of “parsing functions” in a machine code program is somewhat of a

misnomer, since functions are high-level code abstractions that do not exist in binary

programs. However, Functions are a fundamental division of programs in LLVM IR.

Therefore, an appropriate definition of a machine code function is created to facilitate

correct translation to LLVM:

Let G = G(V, E) be a directed graph representing a machine code

program where the set of vertices, V, represents all basic blocks in the

program and the set of all directed edges, E, represents all control flow

transfers between basic blocks.

Assume all call instructions (e.g., BL, BLX) return normally and are

allowed in the body of a basic block (i.e., call instructions do not create

edges in the graph or terminate basic blocks).

Select a vertex, r ∈ V such that r is the destination of a call instruction.

Let F = F(V’, E’) be a subgraph of G.

F is a function iff ∀∀∀∀v, v ∈∈∈∈ V’, v is reachable from r

Otherwise, the target address is somewhere in the middle of an existing

basic block:

- Create a new basic block

- Copy all instructions from the target address to the end of the

existing basic block to the new basic block

- Remove these instructions from the existing basic block

- Transfer the list of successors from the existing basic block

to the new basic block

- Make the new basic block the only successor of the existing

basic block

- Add the new basic block as a successor of the parent basic

block (i.e., the one with the branch instruction)

40�
�

3.3.3.3 Handling Stack References

While not a parsing function per se, to avoid an additional AST traversal, some

semantic analysis is performed by the assembly parser with respect to stack references.

The MachineFunction class allows information about the stack frame of a machine

code function to be stored via a MachineFrameInfo object. Every time a new

instruction is parsed, it is analyzed to determine if it references the stack via the stack

pointer register, SP. A virtual stack pointer is maintained throughout the parsing phase.

Any time SP is incremented or decremented by an immediate value, the same operation is

performed on the virtual stack pointer. This virtual stack pointer is used to calculate and

record all stack references in the MachineInstr’s memory operand list as an offset

from the value of SP on entry to the function. Each stack offset is also added to a

temporary SRefs vector until all instructions in a function have been parsed. Before

finalizing the function, the SRefs vector is sorted, unique and used to record all known

stack information for the function in the MachineFunction’s MachineFrameInfo

object.

However, this stack information is not guaranteed to be correct for two reasons:

1) if SP is modified indirectly via a register-register arithmetic operation, the value used

to modify SP is unknown so it cannot be mirrored in the virtual stack pointer, and 2) if

the value of SP is copied to another register, instructions could reference the stack

anonymously via this proxy register. The algorithm described above does not attempt to

address these issues.

�

41�
�

3.3.4 LLVM IR Code Generator

Several goals influence the translation strategy used by ABACAS to lift ARM

code to LLVM IR. LLVM is a useful representation for reverse engineering binary code

in that offers forms of its IR both in memory, for efficient analysis, and as a readable

assembly language. Reverse-engineering is typically a directed endeavor where the

reverser makes many decisions a computer is unable to. However, the primary goal of

this research is not decompilation for human understanding, but to enable automated

binary program analysis. When the goals of human readability and functional

equivalence conflict, functional equivalence is chosen over readability. The guiding

principle used in every aspect of translation is to model, as closely as possible, the

machine instructions as they operate on data. In some cases, this results in LLVM code

that seems unnecessarily verbose, but is required to accurately model the target

architecture. After the initial translation is performed, simplifying transformations may

be applied according to the needs of the user.

The code generator actually balances two sets of requirements: 1) those imposed

by the underlying machine architecture, such as memory layout and access; and 2) those

imposed by the LLVM framework, such as SSA form, functions, function arguments and

strict data types. LLVM imposes high-level abstractions which are not present in the

machine code, while the machine code requires accurate modeling of concrete

architecture features which LLVM IR was not designed to model. While much of the

translation process is straight-forward and can be performed by simply re-implementing

the semantics of each ARM instruction explicitly using the LLVM instruction set, some

42�
�

translation challenges arise due to conflicts between these requirements. The following

sections describe how the current implementation overcomes these challenges.

3.3.4.1 Generating Functions

Before a function is generated, the code generator performs semantic analysis of

the MachineFunction in the AST to identify arguments to the function. No attempt is

made to recreate the original arguments of the function as they existed in the high-level

source code. Rather, the translated LLVM function arguments are determined by how

the variables are used by instructions in the function: Any register which is used in the

function before being defined in the function is an argument and any reference to stack

memory at an address equal to or higher than the value of SP on entry to the function is

also an argument to the function, passed via memory.

Once arguments have been discovered, a Function object is created with an

entry BasicBlock corresponding to the first MachineBasicBlock in the

MachineFunction. Each MachineInstr in the basic block is translated into one or

more LLVM Instructions until either a terminator instruction is reached (e.g., a

branch or return) or until all instructions in the MachineBasicBlock are generated

(e.g., the basic block falls through implicitly to its successor block). If the last instruction

is a branch, code for each of the MachineBasicBlock’s successors is generated before

completing code generation of the first MachineBasicBlock. Thus, the BasicBlock

with the longest path from the entry BasicBlock will complete code generation first.

�

43�
�

3.3.4.2 Generating Stack References

Since many software vulnerabilities are a result of memory corruption errors,

ABACAS code generation models ARM memory accesses as accurately as possible.

However, LLVM uses a very abstract representation of a stack frame not well suited for

this purpose. In LLVM, local variables are allocated memory via an alloca instruction

and are freed automatically on return from the function. The allocated variables may not

be contiguous or arranged in any particular order in physical memory. Furthermore, the

process of lifting machine code to LLVM can complicate memory analysis since some

native machine code instructions must be translated using additional alloca

instructions. For example, LLVM does not have a mov instruction to transfer a value

from one register to another. Instead, this is modeled by creating a stack object, via

alloca, to hold the value, storing the value to this object, then loading the value into the

new register. ABACAS translates the ARM instruction

mov r0, #13

into the following LLVM assembly code when no optimizations are used:

%tmp = alloca i32

 store i32 13, i32* %tmp

 %R0_ = load i32* %tmp

To overcome this, ABACAS models the ARM stack by allocating an array of

bytes, which it names %stack_vars, to the LLVM abstract stack using the alloca

instruction. All memory accesses present in the native code operate on this array when

translated to LLVM IR and any additional memory references are allocated with separate

alloca instructions. The array is just large enough to hold all stack objects referenced

in the machine code. These stack objects are identified during the assembly parsing stage

44�
�

as described in Section 3.3.3.3. The ARM stack grows downward in memory, so any

instructions which reference memory within the stack frame will first decrement SP. To

model this behavior, ABACAS uses the LLVM getelementptr instruction to define

SP with the address of the byte just past the end of the array before any other instructions

in the function are translated. This allows stack references in the native ARM code to be

translated directly to similar LLVM instructions operating on the array, ensuring the

generated instructions have a chunk of contiguous memory that they can store to and load

from.

3.3.4.3 Handling arguments passed on the stack

Machine code programs use registers and memory to implement passing

arguments to functions described in high-level source code. In the forward compilation

process, compilers follow procedure call standards or calling conventions to implement

the passing of arguments to functions but hand-coded or obfuscated assembly might not

follow these conventions. The ARM application binary interface (ABI) specification

[ARM09] allows arguments that are 32 bits in size or smaller to be passed via registers

R0-R3. If an argument does not fit in these registers, or if there are more than 4

arguments, the value is spilled to the stack by the caller function and the callee loads the

value directly from the stack location, which is at a positive (or zero) offset from the

value of SP on entry to the callee function. As described in Section 3.3.4.1, ABACAS

does not depend on calling conventions to identify arguments, but relies on register

def/use analysis and stack offsets instead.

45�
�

 Generating LLVM code for arguments passed via registers is straight-forward,

but doing this for arguments passed via memory is more challenging. After performing

the semantic analysis described in Section 3.3.3.3, ABACAS knows the sizes of the local

variables used in the function and knows the addresses of the arguments passed on the

stack, but has no knowledge of the sizes of variables in the caller’s stack passed as

arguments. Although the goal is to model the native code and architecture as accurately

as possible, this is difficult since stack memory is segregated between LLVM functions

and not contiguous as in an ARM-based device.

 ABACAS generates stack arguments by passing the address of the variable in the

caller’s stack as an argument to the callee function. When stack_vars is generated (cf.

Section 3.3.4.2), four bytes are added to hold the four byte address of each argument

passed on the stack and SP is set to the array index equal to the size, in bytes, of all local

stack variables in the callee function. For example, if the callee function references four

local variables, each four bytes in length, and two stack arguments, stack_vars will be

24 bytes in size and SP will initially point to the byte at index 16 (the first byte of the first

argument). Any time a reference is made to a variable at a stack offset (from the value of

SP on entry to the function) greater than or equal to zero, it is dereferenced first using an

additional load instead of being used directly since the callee’s stack only holds the

address of the argument, not the value as it would be on a real ARM device.

3.3.4.4 Type inference

Another challenge of generating LLVM IR from ARM machine code arises from

the fact that LLVM IR is a strongly-typed language but machine code does not include

46�
�

any explicit type information. LLVM was designed to support strongly-typed and

weakly-typed languages [LA04] and includes several type conversion instructions to aid

in code generation. LLVM also uses a very low-level type system designed so that a

wide variety of data types can be implemented in LLVM.

Here, too, ABACAS uses a translation philosophy which makes as few

assumptions about the nature of the code as possible. Data types are selected and refined

according to how the machine instructions use the data. When a new type must be

specified and ABACAS already knows what instructions operate on the data, it chooses

the most concrete, valid data type for that instruction. In many cases, this is a 32 bit

integer (LLVM type i32) since the ARM general-purpose registers are 32 bits in size and

most data processing instructions operate on the entire value in the register. Some ARM

instructions operate on other sizes, including 8, 16 or 64 bit data values (e.g., LDRB,

LDRH, LDRD respectively), but these instructions have not been implemented in

ABACAS. If the data value is known to be a memory location, then a pointer type is

selected.

Once a type is selected, cast instructions are generated as necessary to meet the

requirements of other instructions operating on the data. This is similar to how the

machine code operates on data—an ARM instruction does not care if the data it operates

on is a 32-bit integer, a 32-bit pointer to integer, or a 32-bit pointer to a character, but it

does not explicitly cast the data from one type to another. In LLVM, everything must be

explicit. For example, if a value is used as the destination operand of a store instruction it

must be cast to a pointer if it is not a pointer already since the destination of a store

instruction is a memory location.

47�
�

Sometimes a data type must be generated before any information is available to

aid in selecting a valid data type. Fortunately, LLVM includes an Opaque abstract type

which allows the code generator to postpone selecting a more concrete type. When more

information is known, the Opaque type is refined to a concrete type and every value

which uses the type is updated automatically. ABACAS uses Opaque types for function

declarations since the return type is not known until the entire function has been

generated. Whenever ABACAS employs Opaque types, it refines them at the earliest

opportunity.

�

48�
�

IV. Experimental Methodology

The overarching goal of this effort is to develop an architecture-independent

platform for automated analysis of binary programs. The experimental goals are twofold:

1) to create a front-end for the Low-Level Virtual Machine (LLVM) compiler framework

[Lat10] that correctly translates ARM machine code into the LLVM intermediate

representation, and 2) to determine the effectiveness of the system for performing

automatic program analyses on binary programs compiled for the ARM architecture.

Existing LLVM analyses and transformations performed on LLVM IR generated from

the prototype ARM front-end are expected to produce comparable results to the same

analyses and transformations run on LLVM IR compiled from the high-level source code

of the same program. This chapter describes the methodology for evaluating the system

and thus verifying the research goals have been met.

4.1 Approach

In modern compiler design, multiple stages convert source code to architecture-

specific machine code [WM95]. The front-end reads the source file as a sequence of

characters, decomposes these into the various symbols or tokens used by the language,

parses these tokens to capture the syntactic structure of the code and converts the parsed

code into an IR. Optimizations are performed on the IR in the mid-end and the back-end

generates architecture-specific machine code from the optimized IR.

49�
�

This research leverages the modular design, flexible, architecture-independent IR

and efficient program analysis capabilities of the LLVM compiler infrastructure to create

ABACAS, an architecture-independent binary program analysis system. Specifically, the

typical high-level source code front-end (e.g., llvm-gcc, a C-to-LLVM front end) is

replaced with an ARM-to-LLVM front end and the mid-end and back-ends are used to

analyze and transform the ARM binaries.

The ARM front end uses three phases to lift binary programs to LLVM IR: an

object file parsing phase, an abstract syntax tree (AST) creation phase and a code

generation phase. In the first phase, the object file is parsed to retrieve the necessary

information for the AST creation phase. At a minimum, this includes providing a single

buffer of all program bytes (both instruction and data) and the index within the buffer of

the first instruction to disassemble. Relocation information must be resolved with

appropriate offsets within this buffer. The AST creation phase employs a recursive-

descent parsing algorithm to disassemble and parse the input buffer into an AST,

beginning at the entry point supplied by the object file parsing phase. The final code

generation phase performs a depth-first traversal of the AST and generates LLVM IR for

each node.

After validating ABACAS translates individual ARM instructions correctly, the

performance of the system is tested by measuring its response to several ARM binary

programs submitted as a workload to the system. Finally the system’s response to ARM

binary programs is compared with response to the same programs submitted in their high-

level-language formats.

50�
�

4.2 System Boundaries

The system under test (SUT), dubbed the Architecture-independent Binary

Abstracting Code Analysis System (ABACAS), is composed of a set of language-specific

front-ends, a mid-end and a back-end as shown in Figure 9. Although part of the

ABACAS back-end, the assembler and linker are shown as separate components because

they are external to the LLVM back-end. The workload is shown on the left in dashed

boxes as a program submitted in three different formats corresponding to three different

levels of abstraction: binary object code, LLVM assembly code, and high-level source

code. Lighter boxes indicate a more abstract format and darker boxes indicate a more

concrete format. The dashed boxes on the right side of the diagram represent the system

responses, also corresponding to different abstraction levels. The system service

responses, workload and system parameters are described in Sections 4.3, 4.4, and 4.6

respectively.

The prototype currently only recognizes a subset of ARM instructions to

demonstrate the viability of this approach and demonstrate its ability to perform static

program analysis on binary programs lifted to the LLVM intermediate representation.

This ARM-to-LLVM front-end is the component under test (CUT). The prototype lifts a

subset of branch instructions, data-processing instructions and load/store instructions.

Support for status register access instructions, exception-generating/handling instructions

and coprocessor instructions has not been implemented. ABACAS currently supports

loads and stores for stack memory; global and heap memory accesses are not

implemented. Furthermore, only ARM-specific encodings of the instructions are

handled. No Thumb, ThumbEE or Jazelle instructions are supported.

51�
�

The SUT does not include the user of the system, testing software or target

hardware (such as a smartphone or PC). Although these hardware and software

components are used to verify the correct operation of the system during development,

they do not provide any of the system services and are therefore excluded from the SUT.

��������	A�B�C���D

������������	�AB�C�AB�A�DE�AF��	�����F���A�D

��B�D�AF�����D������D��E�����

���	�����D�����F�D

�F���A�D������

��B	�AB
 F����	�AB�C�AB�A�D

FAF�����DFABD

��FA�!���F���A

EF�"	�AB
#�	���C��F���AD��D

AF����D��B�

���������

��A"��

EF��F	�	���	A�B�C���D

�F���A�D��B�

$��A�	�AB

%��F��������

��������D&F����

����D'#D��B�D

(�A��F���

)�*���D$���D&F����

)�*���D��B�

+��"��FB ������D#��C�A���

����D

��������D��B�

,���	�����D

������D��B�

,���	�����D�FA��F��D

$��A�	�AB

���C���BD��D

#�	���C���BD

)�*���D$���

 �FA�!����BD

����D

��������D��B�

�����AF��D

&����F�D�����

�AF�����D

#������

$
��
A
�	
�
A
B
D

�
�
��
�
��
�
A

E
F
�
"
	�
A
B
D

�
�
��
�
��
�
A

%
��
F
�
�
�
�
�
��
D

�
C
C
��
F
�
�

)
�
*�
�
�D
$
���
D

�
�
C
C
�
��

�
�
�
�
D�
�
��
��
A

�
A
F
��
�
�
�
D

-
A
F
�
��
B

�F
A
�
!�
��
F
��
�
A
�
D

-
A
F
�
��
B

�
��
�
�
D-
A
F
�
��
B

������D&F�F������

Figure 9. System under test: ABACAS.

4.3 System Services

ABACAS provides the following services.

4.3.1 Code abstraction

This service converts code from one representation to a semantically equivalent

representation at a higher level of abstraction. Two examples of this include disassembly

52�
�

from binary machine code to ARM assembly and reverse code generation from ARM

assembly to LLVM IR. Only reverse code generation is considered in this thesis and

assumes the disassembly phase has no errors. Possible outcomes of this service are: 1)

transformation successful, 2) successful with errors (representations are not semantically

equivalent) and 3) unsuccessful.

4.3.2 Code analysis

Code analysis traverses some portion of a program and computes information for

use by other analysis or transformation passes, for debugging purposes, or for program

visualization [Lat10]. LLVM provides many different analysis passes. Only two are

tested: a loop detection pass and a pass which calculates dominance frontiers. Possible

outcomes of this service include: 1) analysis completed successfully, 2) analysis

completed with errors, and 3) unsuccessful. Only outcomes 1) and 3) are considered

since these analysis passes are already provided by the LLVM compiler. It is beyond the

scope of this effort to determine the correctness of core LLVM functionality.

4.3.3 Code redocumentation

Redocumentation is “the creation or revision of a semantically equivalent

representation within the same relative abstraction level” [CC90]. By lifting machine

code to LLVM IR, ABACAS enables viewing the program in many different forms: as

LLVM assembly language, as a control-flow graph, as a call graph and as a dominator

tree. These representations improve program understanding in one way or another.

Possible outcomes of this service include: 1) view created successfully, 2) view created

53�
�

with errors, and 3) unsuccessful. Again, only outcomes 1) and 3) are considered since

these views are already provided by the LLVM compiler.

4.3.4 Code restructuring

Code restructuring transforms code from one form to another semantically

equivalent form at the same level of abstraction [CC90]. Most LLVM IR transformations

fall into this category. Possible outcomes of this service include: 1) transformation

completed successfully, 2) transformation completed with errors and 3) unsuccessful.

Again, only outcomes 1) and 3) are considered since these are already provided by the

LLVM compiler.

4.3.5 Code reengineering

Code reengineering combines reverse engineering and forward software

engineering to either restructure or otherwise transform and re-implement code to meet

new requirements [CC90]. Possible outcomes of this service include: 1) re-

implementation completed successfully, 2) re-implementation completed with errors and

3) unsuccessful.

4.4 Workload

ABACAS supports three different types of users at three different levels of

abstraction: users submitting high-level source code, those submitting code already in

LLVM IR form and those submitting ARM object code. These users may be interested in

analyzing their code to gain information, in transforming their code to a different form at

a higher, lower or equivalent level of abstraction or in combining code from multiple

54�
�

levels of abstraction and re-compiling the new program into a native machine-code

format.

4.5 Performance Metrics

Seven metrics compare performance of the system in terms of the five primary

services provided by the system.

4.5.1 Code abstraction metrics

Instruction set coverage (%Cov): A measure of how completely the machine-to-

IR front-end translation is performed. It is measured as a percentage of instructions

translated out of the total number of instructions in an instruction category. Instruction

categories include branch instructions, data processing instructions, status register access

instructions, load/store instructions, exception generating/handling instructions and

coprocessor instructions.

4.5.2 Code analysis and restructuring metrics

Loop detection rate (LDR): A measure of the system’s accuracy in detecting

loops in a program, measured as a ratio of loops detected out of total number of loops in a

program.

Dominance frontier detection rate (DDR): A measure of the system’s accuracy in

calculating dominance frontiers in lifted and/or transformed IR, measured as ratio of

dominance frontiers detected out of total number of dominance frontiers in a program.

Instructions (ITotal): A count of the number of LLVM instructions in a program.

Instruction reduction rate (IRR): A measure of the effectiveness of a program

transformation at reducing code size, measured as the following ratio:

55�
�

� � � � � � � � � � (1)

where IElim is the number of instructions eliminated by the transformation and ITotal is the

total number of instructions in the program before transformation.

4.5.3 Code redocumentation metrics

View generation rate (VGR): A measure of the system’s ability to present the

code in different ways, measured as a ratio of views displayed out of views attempted.

4.5.4 Code reengineering metrics

Recompilation success rate (RSR): A measure of the system’s ability to recompile

modified programs lifted from ARM binaries back to executable programs. RSR is

measured as a ratio of the number of recompiled programs which execute correctly out of

the number of programs recompiled.

4.6 System Parameters

The following parameters affect system performance:

Analysis passes enabled: Some analyses are expected to produce significantly

different results when performed on the lifted IR compared to the IR generated from the

original source code, while some analyses are expected to produce very similar results.

For example, the lifted code is expected to have significantly higher instruction count

than the original IR but to have very similar loop construction results.

IRR =
�����

����	�

56�
�

Transformation passes enabled: Transformations impact the size and readability

of lifted code. Restructuring transformations should not impact the semantics of the

code.

Views enabled: Different views help the user understand the code.

Back-end code generators used: Backend code generators affect performance of

the reengineering service by enabling recompilation to different machine architectures.

Front-end languages supported: Front-ends determine what programs can be

submitted as input to the system.

Disassembly approach: Disassembly in a front-end could be performed

recursively or iteratively. Both techniques have performance implications, especially in

the presence of anti-disassembly features.

Object file support: Object file support determines what binary file formats the

system accepts.

LLVM version: Different versions affect what analysis and optimization passes

are available. Older versions also contain bugs that are fixed in newer versions.

4.7 Workload Parameters

Service requests to the SUT come in the form of programs to be analyzed. Each

program has several different parameters which are described below:

Control flow constructs: Programming languages use different high-level

constructs to control execution of a program. More complex control flow constructs in

the source program results in more complex control flow in the machine code that is

more difficult to lift to IR.

57�
�

Source language: The real value of ABACAS is its ability to analyze code written

in both machine languages and high-level languages. The more languages supported in

the front-end, the more programs can be analyzed.

Program size: Program size is an indication of program complexity. More

complex code is more difficult to analyze.

 Anti-reverse engineering: Some software designers and malware writers employ

an array of techniques to prevent reverse-engineering of their code. Some of these

techniques include: obfuscation, self-modifying code, anti-disassembling and anti-

debugging. Any of these may affect the performance of an automated reverse

engineering system.

4.8 Factors

Three parameters are selected as factors to test the performance of the system.

These are summarized in Table 2 and described below:

4.8.1 “Combine instructions” transformation (-instcombine)

This transformation reduces program size by combining instructions into fewer,

simple instructions. This should make it easy to quantify changes in a program and

compare transformations in IR generated from source code and IR lifted from ARM

machine code. Although the transformations should result in semantically-equivalent

programs, it is possible that they will affect the outcomes of analyses, views or the ability

to recompile to native code.

58�
�

This pass is expected to significantly reduce the code size of IR lifted from

machine code since the ARM-to-LLVM translation strategy makes no attempt at

generating code efficiently. This factor has two levels: enabled and disabled.

4.8.2 Control-flow constructs

Each of the following control-flow constructs add complexity to a program. A

program with all four constructs is expected to be the most difficult to translate correctly.

Conditionals: These include if-then statements in high-level languages and

introduce conditional branches in machine code.

Loops: These add more complications to SSA construction.

Recursion: Recursive function calls could cause depth-first algorithms, like the

parser and code generator employed by ABACAS, not to terminate if they are not

implemented correctly.

4.8.3 Source language

Two source languages are demonstrated, one high-level language and one

machine language:

C code: Generated with the llvm-gcc front-end

ARM machine code: Generated with the ABACAS ARM-to-llvm front-end

Table 2. Factors and factor levels

Levels
Transformation

(-instcombine)

Source

Language

Control-flow

Constructs

1 Disabled C Conditionals

2 Enabled ARM Loops

3 Recursion

59�
�

4.9 Evaluation Technique

Two separate phases are used to evaluate performance of the system. The ARM

front-end defines a model of the ARM architecture in LLVM which captures the

semantics of each instruction modeled. The first phase validates this model against both

a simulation and measurement of an emulated system in operation. The second phase

compares performance of the system using programs translated with this model and

programs translated from C source code.

4.9.1 Phase I: Validating the model

A modified version of the LLVM interpreter, lli, simulates each modeled

instruction and prints the value of the instruction in a trace capture file. The results of

this simulation are compared to execution of the native ARM code in a debugger on an

emulated ARM processor. Corrections to the model are made as necessary.

4.9.2 Phase II: System performance analysis

Once the model has been validated, programs are submitted as a workload to the

system. Workload programs written in two different source languages are submitted:

programs written in C and the same programs compiled to ARM machine code. Various

configurations of the system and workload parameters are tested and the results analyzed

to determine if there is a significant difference between analyses performed on IR from C

source code and IR from ARM machine code. Programs recompiled to a machine

architecture are executed in a debugger and compared with the baseline ARM code, also

executed in a debugger.

�

60�
�

4.9.3 Experimental Configuration.

ABACAS is based on the LLVM framework and is hosted on a 2.00GHz Intel

Core2 Duo CPU with 2GB of RAM running the Ubuntu 9.10 operating system. A pre-

LLVM 2.8 release version of LLVM is used from the main development trunk, revision

116203. To validate the modeled ARM instructions, Qemu Manager 7.0 is used to run an

emulated ARM Versatile/PB (ARM926EJ-S) processor with Ubuntu 5.0, kernel 2.6.26-2.

The ARM assembly files output from LLVM’s llc tool are compiled to native ARM code

on the emulated ARM processor using gcc 4.3.2 and debugged using gdb 6.8. Intel x86

assembly files output from llc are compiled to native code with gcc 4.4.1 and debugged

with gdb 7.0.

4.10 Experimental Design

A full factorial design is used for Phase II of this experiment. There are three

factors with 2, 2 and 3 levels respectively. This results in 2 × 2 × 3 = 12 required

experiments. The variance in system response is anticipated to be very low. A

sufficiently narrow confidence interval at the 95% confidence level should be achieved

with approximately 3 replications. Therefore, a total of 12 × 3 = 36 experiments are

required.

4.11 Methodology Summary

A modern optimizing compiler framework like LLVM which provides a platform-

independent IR is a promising framework for platform-independent program analysis and

reverse engineering. This chapter presents a methodology for determining the

61�
�

effectiveness of such a framework by creating an ARM-to-LLVM front-end translator.

This allows the same analyses to be performed on the IR independent of program format.

� �

62�
�

V. Results

The performance metrics described in Section 4.5 characterize the performance of

ABACAS in terms of the five system services, code abstraction, code analysis, code

redocumentation, code restructuring and code reengineering. Code abstraction

performance is presented in Section 5.1, although it is also demonstrated implicitly in the

ability of the system to provide the other four services. Section 5.2 describes the results

of the performance analysis for the remaining four services.

5.1 Phase I: Validating the ARM Model

The model of the ARM architecture used by the front-end to translate ARM code

to LLVM is validated using the LLVM interpreter (lli) and gdb. A set of ARM assembly

test programs is hand-coded to exercise the instructions implemented in the model.

These programs are executed in lli (cf. Figure 10) and in an ARM debugger and the

results compared to verify the instructions were translated correctly.

Figure 10. Executing a lifted LLVM program in the lli interpreter.

63�
�

Table 3, Table 4 and Table 5 summarize the instructions validated in the

prototype implementation of ABACAS. The current prototype implements 75% of

branch instructions, 10% of data processing instructions and 8% of load/store and

load/store multiple instructions.

Table 3. Branch/call/return instructions validated.

Branch/Call/Return Instructions

Opcode Condition Codes

B AL, NE, LE, LT

BL AL

BX AL

Table 4. Data-processing instructions validated.

Data Processing Instructions

Opcode
Operand Types

Imm Reg

ADD X X

CMP X

MOV X X

SUB X X

Table 5. Load/store and load/store multiple instructions validated.

Load/Store and Load/Store Multiple Instructions

Opcode

Operand Types Addressing Modes

Imm Reg Offset
Pre-

indexed

Post-

indexed
IA IB DA DB

Write-

back

LDR X X X X n/a n/a n/a n/a n/a

STR X X X X n/a n/a n/a n/a n/a

LDM n/a n/a n/a n/a n/a X X

STM n/a n/a n/a n/a n/a X X

The ARM model is valid for all instructions marked with an X in Table 4 and

Table 5, for all unconditional B, BL and BX instructions, and for BNE, BLE and BLT

conditional branch instructions. Conditional execution of other instructions has not been

validated.

64�
�

5.2 Phase II: ABACAS Performance Analysis

5.2.1 Impact of source language on LLVM program analysis

A comparison of proportions determines if there is a statistically significant

difference between analyses performed on LLVM programs compiled from C versus

programs lifted from ARM machine code of the same programs. Two different analysis

passes are executed on the programs, one to identify the number of loops in the programs

and the second to identify dominance frontiers in the programs. Both the loop detection

rate (LDR) and the dominance frontier detection rate (DDR) are 1, meaning both analyses

identified all elements in programs translated from both source languages. There is no

evidence of a difference in detection rates for either analysis.

Figure 11 and Figure 12 show the output from ABACAS for analysis of the main

functions of a program which recursively calculates the first 10 numbers of the Fibonacci

sequence.

Figure 11. Loop and dominance frontier analyses on program lifted from ARM machine code.

Figure 12. Loop and dominance frontier analyses on same program compiled from C.

65�
�

Figure 13 shows the control flow graphs of these two functions. The loop

identified in Figure 11 between basic blocks BB<140> and BB<120> is clearly visible in

Figure 13a and corresponds to the loop identified in Figure 12 between blocks bb1 and bb

and visible in Figure 13b. The dominance frontiers identified in Figure 11 and Figure 12

include equivalent nodes BB<140> and bb1 respectively.

Figure 13. Control flow graphs of main function of the Fibonacci

program a) lifted from ARM code and b) compiled from C.

5.2.2 Impact of source language on size of generated LLVM assembly code.

Figure 14 and Figure 16 show two versions of the Fibonacci program translated to

LLVM from two different source languages. The version in Figure 14 was compiled

from the C source code shown in Figure 15 and the version in Figure 16 was lifted from

ARM machine code. The ARM assembly which produced the ARM machine code is

shown in Figure 17. The instruction count of LLVM IR lifted from machine code is

66�
�

much greater for this program than LLVM IR generated from the C code. A similar

result is observed in every sample program submitted to the system.

define i32 @main() nounwind {

entry:

 %retval = alloca i32

 %0 = alloca i32

 %i = alloca i32

 %value = alloca i32

 %"alloca point" = bitcast i32 0 to i32

 store i32 0, i32* %i, align 4

 br label %bb1

bb:

 %1 = load i32* %i, align 4

 %2 = call i32 @fib(i32 %1) nounwind

 store i32 %2, i32* %value, align 4

 %3 = load i32* %i, align 4

 %4 = add nsw i32 %3, 1

 store i32 %4, i32* %i, align 4

 br label %bb1

bb1:

 %5 = load i32* %i, align 4

 %6 = icmp sle i32 %5, 9

 br i1 %6, label %bb, label %bb2

bb2:

 %7 = load i32* %value, align 4

 store i32 %7, i32* %0, align 4

 %8 = load i32* %0, align 4

 store i32 %8, i32* %retval, align 4

 br label %return

return:

 %retval3 = load i32* %retval

 ret i32 %retval3
}�

int fib(int x) {

 if (!x)

 return 0;

 if (x > 2)

 return (fib(x - 1) + fib(x - 2));

 return 1;

}

int main() {

 int i, value;

 for (i = 0; i < 10; i++) {

 value = fib(i);

 }

 return value;
}�

Figure 14. main function of Fibonacci program

compiled to LLVM IR from C source code

Figure 15. C source code of Fibonacci program.

67�
�

define i32 @main() {

entry:

 %stack_vars = alloca [20 x i8]

 %SP_ = getelementptr inbounds [20 x i8]* %stack_vars, i32 0, i32 20

 %0 = ptrtoint i8* %SP_ to i32

 %1 = sub i32 %0, 4

 %SP_5 = inttoptr i32 %1 to i8*

 %2 = bitcast i8* %SP_5 to i32*

 store i32 undef, i32* %2

 %SP_8 = ptrtoint i8* %SP_5 to i32

 %SP_9 = sub i32 %SP_8, 16

 %SP_10 = inttoptr i32 %SP_9 to i8*

 br label %"BB<140>"

"BB<140>":

 %R0_11.0 = phi i32 [0, %entry], [%R0_50, %"BB<120>"]

 %CPSR_.0 = phi i32 [undef, %entry], [%CPSR_18, %"BB<120>"]

 %3 = ptrtoint i8* %SP_10 to i32

 %4 = add i32 %3, 4

 %5 = inttoptr i32 %4 to i8*

 %6 = bitcast i8* %5 to i32*

 store i32 %R0_11.0, i32* %6

 %7 = ptrtoint i8* %SP_10 to i32

 %8 = add i32 %7, 4

 %9 = inttoptr i32 %8 to i32*

 %R0_15 = load i32* %9

 %CPSR_18 = call i32 @arm_cmp(i32 %CPSR_.0, i32 %R0_15, i32 10)

 %CPSR_V = and i32 %CPSR_18, 268435456

 %V = icmp eq i32 %CPSR_V, 268435456

 %CPSR_N = and i32 %CPSR_18, -2147483648

 %N = icmp eq i32 %CPSR_N, -2147483648

 %CPSR_LT = icmp ne i1 %N, %V

 br i1 %CPSR_LT, label %"BB<120>", label %"BB<156>"

"BB<156>":

 %10 = ptrtoint i8* %SP_10 to i32

 %11 = add i32 %10, 0

 %12 = inttoptr i32 %11 to i32*

 %R0_20 = load i32* %12

 %13 = ptrtoint i8* %SP_10 to i32

 %14 = add i32 %13, 12

 %15 = inttoptr i32 %14 to i8*

 %16 = bitcast i8* %15 to i32*

 store i32 %R0_20, i32* %16

 %17 = ptrtoint i8* %SP_10 to i32

 %18 = add i32 %17, 8

 %19 = inttoptr i32 %18 to i8*

 %20 = bitcast i8* %19 to i32*

 store i32 %R0_20, i32* %20

 %21 = ptrtoint i8* %SP_10 to i32

 %22 = add i32 %21, 12

 %23 = inttoptr i32 %22 to i32*

 %R0_26 = load i32* %23

 %SP_28 = ptrtoint i8* %SP_10 to i32

 %SP_29 = add i32 %SP_28, 16

 %SP_30 = inttoptr i32 %SP_29 to i8*

 %24 = bitcast i8* %SP_30 to i32*

 %LR_32 = load i32* %24

 %25 = ptrtoint i8* %SP_30 to i32

 %26 = add i32 %25, 4

 %SP_33 = inttoptr i32 %26 to i8*

 br label %return

"BB<120>":

 %27 = ptrtoint i8* %SP_10 to i32

 %28 = add i32 %27, 4

 %29 = inttoptr i32 %28 to i32*

 %R0_36 = load i32* %29

 %R0_44 = call i32 @"func<0>"(i32 %CPSR_18, i32 undef, i32 %R0_36, i32 undef)

 %30 = ptrtoint i8* %SP_10 to i32

 %31 = add i32 %30, 4

 %32 = inttoptr i32 %31 to i32*

 %R1_ = load i32* %32

 %33 = ptrtoint i8* %SP_10 to i32

 %34 = add i32 %33, 0

 %35 = inttoptr i32 %34 to i8*

 %36 = bitcast i8* %35 to i32*

 store i32 %R0_44, i32* %36

 %R0_50 = add i32 %R1_, 1

 br label %"BB<140>"

return:

 ret i32 %R0_26

}

Figure 16. main function of Fibonacci program lifted from ARM code.

68�
�

Figure 18 is box plots of LLVM instruction count in programs compiled from C

and programs lifted from ARM machine code. A two-sample t-test is used to determine

if there is a statistically-significant difference between the two groups. With a one-sided

p-value of 9.90 x 10
-12

there is convincing evidence that programs lifted by ABACAS

from ARM code are larger than those compiled from C source code. The difference in

log-means is estimated to be 1.3165. Transforming back to an instruction count, the size

of LLVM programs lifted from ARM code is estimated to be an average of 3.73 times

greater than programs generated from C with a 95% confidence interval of (2.84, 4.90).

main:

@ BB#0:

 str lr, [sp, #-4]!

 sub sp, sp, #16

 mov r0, #0

 b .LBB1_2

.LBB1_1:

 ldr r0, [sp, #4]

 bl fib

 ldr r1, [sp, #4]

 str r0, [sp]

 add r0, r1, #1

.LBB1_2:

 str r0, [sp, #4]

 ldr r0, [sp, #4]

 cmp r0, #10

 blt .LBB1_1

@ BB#3:

 ldr r0, [sp]

 str r0, [sp, #12]

 str r0, [sp, #8]

 ldr r0, [sp, #12]

 add sp, sp, #16

 ldr lr, [sp], #4

 bx lr�

Figure 17. ARM assembly code of main function of Fibonacci program.

�

Figure 18. LLVM instru

5.2.2.1 Interpr

The results indicate

source language from which

the ARM machine code versi

the same program. For exa

consists of four C statement

same function consists of 20

is not only concerned with fu

69�

ructions in programs generated from C source and ARM

pretation of results

 that the difference in mean program size is ca

ch the program is translated. This is likely due to

rsion of each program is much larger than the C so

example, the main function of the Fibonacci p

ents (cf. Figure 15) whereas the ARM assembly

20 instructions (cf. Figure 17). It could also be th

 functional correctness of the generated code, but o

M code.

 caused by the

 to the fact that

 source code of

 program only

ly code of the

 that ABACAS

t on preserving

70�
�

architectural details present in the ARM code such as the layout of data in memory and

use of specific registers like the CPSR, SP and LR to enable valid security analyses. This

modeling of ARM architectural details adds additional overhead in size of the generated

code.

Although causality can be inferred for the set of programs tested, the results

cannot be inferred to a wider population of programs, since those tested were not

randomly selected.

5.2.3 Impact of source language on LLVM restructuring transformations

To determine the effectiveness of transformations on LLVM programs lifted by

ABACAS from ARM machine code versus transformations on code compiled from C

source, the rates of instructions removed by the -instcombine transformation are

compared. Table 6 shows the total number of instructions eliminated by the

transformation for each group of programs.

Table 6. Instructions eliminated by -instcombine transformation on programs

compiled from C source code and those lifted from ARM machine code.

 Instructions Eliminated

 Eliminated Not Eliminated Totals IRR

C Source Code 66 289 355 0.19

ARM Code 186 1062 1248 0.15

Totals 252 1351 1603

There is no conclusive evidence that the instruction reduction rate (IRR) is greater

for programs compiled from C code. The estimated difference of 0.037 has a chi-squared

statistic of 2.8368 and a one-sided p-value of 0.0461. However, the 95% confidence

interval for the difference in proportions is (-0.00816, 0.08191), which includes 0.

71�
�

A Mantel-Haenszel test provides an estimate of the common odds ratio while

accounting for the control-flow constructs factor. The estimated common odds ratio is

1.304 with a 95% confidence interval of (0.9577, 1.7759). Since the confidence interval

includes 1, with only a moderately low p-value of 0.0450, there is still no conclusive

evidence that the odds of eliminating instructions are higher for programs compiled from

C even after accounting for the different control-flow constructs in the tested programs.

5.2.3.1 Interpretation of results

The results provide no evidence that the LLVM programs compiled from C have

a higher IRR than those translated from ARM. However, the set of programs analyzed

was not selected randomly so inference cannot be made to a wider population. Moreover,

this one transformation is not representative of all possible instruction-reducing

transformations available on LLVM IR. More tests are required to determine how other

transformations perform on ARM machine code.

5.2.4 Impact of source language on LLVM program redocumentation

All views attempted were successfully displayed in programs translated from both

source languages. These include a call graph, a control flow graph (CFG) for each

function in the program and a dominator tree for each function in the program. As the

view generation rate (VGR) is 1 for both groups, there is no evidence of a difference in

proportions of views generated. Figure 19 and Figure 20 show these views generated

from the Fibonacci program translated from C and from ARM.

�

Figure 19. Views generated fro

graph, b) CFG for main function

Two apparent differen

the program lifted from ARM

the call graph of the C-com

strategy for the ARM CMP

the current program status re

Subsequent conditional inst

ABACAS models this funct

72�

rom the Fibonacci program compiled from C source cod

on, c) CFG for fib function, d) dominator tree for main

e) dominator tree for fib function.

rences in the views require explanation. First, the

RM code includes several function calls that are n

ompiled program. This is a result of ABACAS

P instruction. The ARM architecture sets variou

 register (CPSR) according to the result of a CMP

structions execute if the relevant CPSR flag

nctionality by translating the CMP instruction a

ode: a) the call

n function, and

he call graph of

e not present in

AS’ translation

ous flag bits in

MP instruction.

g bits are set.

 as a separate

�

function call to the arm_cm

register, and two registers to

flag bits set. This approach c

size and improving readabilit

Figure 20. Views generated from

graph, b) CFG for main function

Second, the true/false

functions for each program (

LLVM back-end compiles L

Figure 21a branch to %bb2

compiles these to the ARM

73�

mp function. This function takes as paramete

to compare and returns the value of CPSR with th

h correctly models the ARM architecture while re

ility of the generated code.

om the Fibonacci program lifted from ARM machine co

on, c) CFG for fib function, d) dominator tree for main

e) dominator tree for fib function.

lse conditions appear to be reversed in the CFG

 (cf. Figure 19c and Figure 20c). This is due to

s LLVM IR to ARM assembly. The LLVM in

 if the value of register %3 is greater than 2. T

M instructions in Figure 21b, which branch to

ters the CPSR

 the appropriate

 reducing code

 code: a) the call

n function, and

G for the fib

 to the way the

 instructions in

The back-end

to the opposite

74�
�

block if the register is less than 3. Although the conditions are reversed, the branch

destinations are reversed as well so the programs are functionally equivalent. ABACAS

generates code from the ARM instructions, thus the apparent difference in the CFGs.

5.2.5 Impact of source language on recompilation

Another comparison of proportions determines whether source language of the

input program significantly impacts the ability to compile the IR to multiple

architectures. The LLVM programs, translated from C source code and ARM machine

code are recompiled to two different binaries, one targeting the ARM architecture and

one targeting the Intel x86 architecture. Both programs are executed in debuggers and

the outputs analyzed to determine the recompilation success rates (RSRs). Figure 22

shows one of these programs being debugged in an x86 debugger and an ARM debugger.

The program recursively calculates the first 10 numbers in the Fibonacci

sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, and 34. In Figure 22a, the x86 version of the

program, register $ecx holds the iteration value (ranging from 0 to 9) and register $eax

contains the Fibonacci number calculated for that iteration. In Figure 22b, register $r1

holds the iteration value and register $r0 holds the Fibonacci number for that iteration.

Both programs return 34, the 10
th

 Fibonacci number, via registers $eax and $r0

respectively.

Figure 21. Conditional branch compiled a) from C to LLVM, and b) from LLVM to ARM assembly.

cmp r0�, #3

blt .LBB0_4�

%4 = icmp sgt i32 %3, 2

br i1 %4, label %bb2, label %bb3�

b)a�)�

75�
�

All programs correctly executed on both ARM and x86 machines regardless of

whether the input program was translated to LLVM from C source code or from ARM

machine code. There is no evidence of a difference in RSRs for the programs tested.

5.3 Summary of results

The experimental results demonstrate that ABACAS successfully provides its

system services, which include code abstraction, code analysis, code redocumentation,

Figure 22. Debugging the Fibonacci program a) in an x86 debugger and b) in an ARM debugger.

a) b)

76�
�

code restructuring and code reengineering, for the submitted workload. Analysis passes

performed on LLVM assembly code abstracted from ARM binary code produce the same

loop detection and dominance frontier detection rates as analysis passes performed on

LLVM assembly compiled from C source code. Equivalent views of the programs,

including call graphs, control flow graphs and dominance trees, are demonstrated on

LLVM code translated from the two different sources. One restructuring transformation

applied to LLVM programs translated from the two different sources is successfully

demonstrated on programs translated from both sources. Finally, the ability to reengineer

a program is demonstrated by lifting several simple programs from ARM machine code

to LLVM IR, performing restructuring transformations to reduce redundant instructions

in the generated code, recompiling the transformed programs to a different machine

architecture (Intel x86) and executing the programs in an x86 debugger.

� �

77�
�

VI. Conclusions

6.1 Research Accomplishments

The ABACAS architecture is based on the Low-level Virtual Machine compiler

framework and analyzes programs with a very wide range of abstraction. The prototype

front-end designed and developed herein lifts binary executables compiled for the ARM

architecture to the LLVM IR. More specifically, a machine code parser is implemented

which uses a recursive-descent predictive parsing algorithm to produce an abstract syntax

tree (AST) of an ARM executable. This parsing approach allows ABACAS to lift

binaries devoid of symbol table, string table and debugging information. A code

generator is implemented to translate a subset of ARM instructions into valid LLVM IR.

The prototype currently supports 75% of ARM branch instructions, 10% of ARM data-

processing instructions and 8% of load/store instructions.

By lifting binary executables to the LLVM intermediate representation, ABACAS

exploits the program analysis, program transformation, code visualization and forward

compilation capabilities of the LLVM open-source compiler framework. The

experiments in Chapters 4 and 5 demonstrate a subset of these capabilities on programs

lifted from ARM machine code, including two analysis passes, three different graphical

views of the programs, one program transformation and recompilation of the programs to

two target processor architectures, ARM and Intel x86.

�

78�
�

6.2 Contributions

The primary contribution of this research is the translation of binary machine code

directly into an architecture-independent compiler IR such that all typical compiler

functions can be applied just as if the IR was compiled from a high-level-language.

There have been attempts to use other compiler systems in this way as described in

Section 2.2.4.3 but these do not offer the architecture-independence of LLVM and levy

impractical requirements on the binary itself. ABACAS does not require the binary to be

compiled using any particular compiler or to have any special symbol information

present.

Other contributions of this research derive from the ability to translate binary

machine code into LLVM IR. This research makes nearly all existing and future LLVM

analysis and transformation passes available for ARM binary programs that can be lifted

by ABACAS. This is also one of the few successful static binary-to-binary translators

developed.

6.3 Applications of this Research

6.3.1 Automatic vulnerability discovery

ABACAS could be used to detect vulnerabilities in binary programs. The LLVM

pass framework makes it easy to leverage existing analyses and to write new ones by

chaining analysis passes together. The SAFECode project [DKA06] includes passes that

may be useful for detecting possible memory corruption errors. The KLEE symbolic

execution engine [CDE08] could traverse as many execution paths through the code as

79�
�

possible, test for program bugs and automatically generate test cases which exercise the

discovered errors to determine if they are true vulnerabilities.

6.3.1 Improved malware analysis

Automated binary abstraction and analysis services provided by ABACAS may

be helpful in reverse-engineering and analyzing malware. When a new worm is released

in the “wild” which exploits a previously unknown software bug, the malware must be

quickly reverse-engineered to identify the vulnerability, then a software patch must be

developed that corrects the vulnerability without introducing new vulnerabilities into the

software. ABACAS’ code abstraction, code analysis and code reengineering services are

well suited to these tasks.

6.3.2 Software Maintenance

ABACAS offers a level of flexibility in software development that would be very

useful later in the software engineering life cycle. New functionality could be added to

an existing executable program by programming the functionality in a high-level

language, compiling it to LLVM, lifting the existing native machine code to LLVM,

modify the LLVM code of the original program to call the new functions, link the LLVM

files and compile back to native code. Software maintenance costs are estimated to be

50% to 90% of the total lifecycle costs of software [CC90]. Tools such ABACAS which

help automate reverse-engineering, analyzing and modifying code could be crucial in

reducing these costs.

�

80�
�

6.3.2.1 Binary rewriting for improved code security

ABACAS could be used to modify a binary program to eliminate detected

vulnerabilities. After lifting the binary to LLVM, modifications could be made directly

in LLVM and the program re-tested. After the entire program is “hardened,” it could be

recompiled back to native code.

6.3.2.2 Port software to new machine architectures without source code

The code reengineering experiment described in Chapters 4 and 5 demonstrated

the ability to lift a program compiled for one architecture and recompile it to another

machine architecture. It may be possible to do this on a larger scale for other programs or

libraries when source code is not available.

6.4 Future Work

6.4.1 Expand object file support

The ABACAS prototype relies on IDA Pro to retrieve the hexadecimal program

bytes required by the parser and disassembler and to resolve all relocation information.

The current approach has several disadvantages: 1) relying on IDA Pro, an external,

commercial program, prevents ABACAS from being a self-contained system and adds

unnecessary steps to manually retrieve the program information before feeding it into the

parser. This significantly slows down the process of analyzing binaries and would

greatly benefit from a native object file parsing capability within ABACAS, 2) ABACAS

does not currently use any imported function information from the object file. This

means only self-contained programs can be lifted. Virtually every real-world program

uses imported libraries so this is an essential capability, 3) although it is good that

81�
�

ABACAS does not depend on symbol table, string table or debugging information, this

information could vastly improve the quality and readability of lifted code and should be

incorporated as supplementary information.

6.4.2 Expand support for ARM

One obvious necessity in the development of ABACAS is to expand support for

the ARM architecture. Only a very small subset of instructions is currently implemented,

severely limiting the programs which can be analyzed. Support for each instruction is

manually coded in an ad-hoc fashion in the prototype ARM front-end. A more rigorous

approach would be to capture all the features of a machine architecture required for

translation in a description file and utilize LLVM’s TableGen framework [Lat10] to auto-

generate lookup tables to facilitate translation from the architecture-specific instructions

to LLVM code.

6.4.3 Add support for other architectures

Adding support for other machine architectures would require little effort in the

parser, but significant work in the code generator. Again, utilizing TableGen would help

condense architecture-specific code primarily to the description file for each architecture.

Intel’s x86 architecture is an obvious next choice for an ABACAS front-end.

6.4.4 Incorporate LLVM passes to improve system services

6.4.4.1 Improve re-compilation through a stack lowering pass

All memory references that are translated to references in the modeled stack (the

%stack_vars array) could be converted to allocas, loads and stores to the LLVM stack

82�
�

frame for the function. This would eliminate unnecessary overhead and make powerful

transformations available that operate on alloca instructions (such as the mem2reg pass).

6.4.4.2 Improve decompilation to LLVM IR through iteration and analysis

One of the problems that plagues recursive-descent disassembly is the inability to

handle indirect branch addresses. LLVM analysis passes, including alias analysis and

constant propagation, could be run after the first translation pass to attempt to resolve as

many indirect addresses as possible before performing an additional translation pass with

the new information. A third translation pass could even be implemented which catches

missed code through iterative disassembly of the text segment in the object file.

6.4.4.3 Improve program analysis by writing security-related passes

Analysis passes should be written to enable vulnerability discovery in binary

programs. These could include memory access checks such as array bounds checking,

propagation of taint information from user inputs and marking certain program inputs as

symbolic to enable symbolic execution of the program [CDE08].

6.5 Conclusion

A modern optimizing compiler framework like LLVM, which provides a

platform-independent IR, is a promising framework for architecture-independent program

analysis, transformation and recompilation of binary programs. This research presents

the design, implementation and demonstration of one such system, the Architecture-

independent Binary Abstracting Code Analysis System (ABACAS). Although the

prototype has many limitations and only implements a small subset of ARM instructions,

83�
�

the results are still profound. Existing analysis, transformation, redocumentation and

compilation capabilities are applied directly to programs lifted from binary format.

These capabilities are crucial for protecting, hardening and attacking mobile devices and

other modern systems which operate in the Cyber warfighting domain.

� �

84�
�

 Bibliography�

[AE02] K. Ashcraft and D. Engler, “Using programmer-written compiler extensions to catch

security holes,” in Proceedings of the 2002 IEEE symposium on security and privacy,

Berkeley, CA, 2002, pp. 143-159.

[And94] Lars Ole Andersen, “Program analysis and specialization for the C programming

language,” DIKU, University of Copenhagen, Copenhagen, Denmark, Ph.D. Thesis

1994.

[ARM08] ARM, ARM Architecture Reference Manual ARMv7-A and ARMv7-R: ARM Ltd,

2004-2008.

[ARM09] ARM Limited, “Procedure call standard for the ARM architecture,” ARM Limited,

ARM ABI release 2.08 2009.

[ARM10] ARM. “Annual Report and Accounts 2009.” (2010) ARM.com. [Online].

http://www.arm.com/annualreport09/overview/industry-dynamics.html

[ASU88] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: principles, techniques,

and tools, James T. DeWolf, Ed. Reading, MA, USA: Addison-Wesley, 1988.

[BA08] Domagoj Babic and Alan J. Hu, “Calysto: Scalable and Precise Extended Static

Checking,” in Proceedings of the 13th international conference on Architectural

support for programming languages and operating systems (ASPLOS'08), Leipzig,

Germany, Mar. 2008, pp. 211-220.

[BFL07] Michael Becher, Felix C. Freiling, and Boris Leider, “On the effort to create

smartphone worms in windows mobile,” in Proceedings from the 8th annual IEEE

SMC Information Assurance Workshop, IAW '07, USMA, West Point, NY, 2007.

[Bis96] Matt Bishop, “Checking for race conditions in file accesses,” Computing Systems, vol.

9, no. 2, pp. 131-152, Spring 1996.

[Bis03] Matt Bishop, Computer security: art and science. Boston: Addison-Wesley, 2003.

[BJ10] David Brumley and Ivan Jager. (2009, May) The BAP Handbook. [Online].

http://bap.ece.cmu.edu/doc/bap.pdf

[BR04] Gogul Balakrishnan and Thomas Reps, “Analyzing memory accesses in x86

executables,” in Proceedings of the 13th international conference on compiler

construction, Barcelona, Spain, 2004, pp. 5-23.

� �

85�
�

[BR10] Gogul Balakrishnan and Thomas Reps, “WYSINWYX: What you see is not what you

eXecute,” ACM Transactions on Programming Languages and Systems, vol. 32, no. 6,

August 2010.

[CC90] Elliot J. Chikofsky and James H. Cross II, “Reverse Engineering and Design Recovery:

A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, Jan./Feb. 1990.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler, “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs,” in

Proceedings of the 8th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 2008), San Diego, CA, December 2008.

[CFR91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck, “Efficiently computing static single assignment form and the control

dependence graph,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 13, no. 4, pp. 451-490, Oct. 1991.

[CNN09] CNN. “Obama to get spy-proof smartphone.” (2009, January) CNN Politics.com.

[Online]. http://www.cnn.com/2009/POLITICS/01/22/obama.blackberry/index.html

[CPG04] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum,

“Understanding data lifetime via whole system simulation,” in Proceedings of the 13th

USENIX security symposium, San Diego, CA, 2004, pp. 22-22.

[Cov10] Coverity. (2010) Coverity Static Analysis. [Online].

http://www.coverity.com/products/static-analysis.html

[DKK07] Michael Dalton, Hari Kannan, and Christos Kozyrakis, “Raksha: A flexible

information flow architecture for software security,” in Proceedings of the 34th annual

international symposium on computer architecture, ISCA '07, New York, NY, 2007,

pp. 482-493.

[DA06] Dinakar Dhurjati and Vikram Adve, “Backwards-Compatible Array Bounds Checking

for C with Very Low Overhead,” in Proceedings of the 28th International Conference

on Software Engineering (ICSE '06), Shanghai, China, May 2006.

[DKA05] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner, “Memory Safety

Without Garbage Collection for Embedded Applications,” ACM Transactions in

Embedded Computing Systems (TECS), vol. 4, no. 1, pp. 73-111, Feb 2005.

� �

86�
�

[DKA06] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve, “SAFECode: Enforcing Alias

Analysis for Weakly Typed Languages,” in Proceedings of the 2006 ACM SIGPLAN

Conference on Software Engineering (ICSE '06), Shanghai, China, May 2006, pp. 144-

157.

[Eag08] Chris Eagle, The IDA pro book: the unofficial guide to the world's most popular

disassembler, Megan Dunchak, Ed. San Francisco, U.S.A.: No Starch Press, 2008.

[FH08] Jon Friedman and Daniel V. Hoffman, “Protecting data on mobile devices: a taxonomy

of security threats to mobile computing and review of applicable defenses,”

Information Knowledge Systems Management , vol. 7, no. 1/2, pp. 159-180, 2008.

[FSe09] F-Secure. (2009) Trojan: SymbOS/Skulls.A. [Online]. http://www.f-secure.com/v-

descs/skulls.shtml

[Gar10] Gartner. “Gartner Says Worldwide Mobile Phone Sales Grew 17 Per Cent in First

Quarter 2010.” (2010, May) Gartner. [Online].

http://www.gartner.com/it/page.jsp?id=1372013

[Gra10] Grammatech. (2010) CodeSonar. [Online].

http://www.grammatech.com/products/codesonar/overview.html

[HBC99] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi, “Interprocedural

pointer alias analysis,” ACM transactions on programming languages and systems,

vol. 21, no. 4, pp. 848-894, July 1999.

[Hex08] Hex-Rays SA. (2008) Debugging Symbian applications with IDA Pro. [Online].

http://www.hex-rays.com/idapro/debugger/symbian_primer.pdf

[HJO08] Sheikh Mahbub Habib, Cyril Jacob, and Tomas Olovsson, “A Practical Analysis of the

Robustness and Stability of the Network Stack in Smartphones,” in Proceedings of

11th International Conference on Computer and Information Technology (ICCIT

2008), Khulna, Bangladesh, 2008, pp. 393-398.

[HLV05] Michael Howard, David LeBlanc, and John Viega, 19 Deadly Sins of Software Security

Programming Flaws and How to Fix Them.: McGraw-Hill Osborne Media, 2005.

[HM04] Greg Hoglund and Gary McGraw, Exploiting software: how to break code. Boston,

Massachusetts, U.S.A.: Addison-Wesley, 2004.

[Hof07] Daniel V. Hoffman, Blackjacking: security threats to blackberry devices, PDAs and

cell phones in the enterprise. Indianapolis, Indiana, U.S.A.: Wiley Publishing, 2007.

87�
�

[Kas03] Kris Kaspersky, Hacker disassembling uncovered, Natalia Tarkova, Ed. Wayne, PA,

U.S.A.: A-List, 2003.

[Kas10] Martin Kaste. “Wipeout: When Your Company Kills Your iPhone.” (2010, November)

NPR.org. [Online]. http://www.npr.org/2010/11/22/131511381/wipeout-when-your-

company-kills-your-iphone

[KBA02] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe, “Secure execution via

program shepherding,” in Proceedings of the 11th USENIX Security Symposium,

Berkeley, CA, 2002, pp. 191-206.

[Kei09] Gregg Keizer. “iPhone owners demand to see Apple source code.” (2009, November)

Computerworld. [Online].

http://www.computerworld.com/s/article/9141222/iPhone_owners_demand_to_see_Ap

ple_source_code

[KLA04] Jack Koziol et al., The Shellcoder's Handbook. Indianapolis, Indiana, U.S.A.: Wiley,

2004.

[LA04] Chris Lattner and Vikram Adve, “LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation,” in Proceedings of the 2004 International

Symposium on Code Generation and Optimization (CGO-04), Palo Alto, CA, Mar.

2004.

[Lan92] William Landi, “Undecidability of Static Analysis,” ACM letters on programming

languages and systems, vol. 1, no. 4, pp. 323-337, December 1992.

[Lat10] Chris Lattner. (2010, July) The LLVM Compiler Infrastructure. [Online].

http://llvm.org/

[Latt10] Chris Lattner. (2010, April) Intro to the LLVM MC project. [Online].

http://blog.llvm.org/2010/04/intro-to-llvm-mc-project.html#more

[Lat11] Chris Lattner. (2011, January) The LLVM target-independent code generator. [Online].

http://llvm.org/docs/CodeGenerator.html#codegendesc

[LE01] David Larochelle and David Evans, “Statically detecting likely buffer overflow

vulnerabilities,” in Proceedings of the 10th USENIX security symposium, Washington,

D.C., 2001, pp. 14-14.

� �

88�
�

[LML08] Monica S. Lam, Michael Martin, Benjamin Livshits, and John Whaley, “Securing web

applications with static and dynamic information flow tracking,” in Proceedings of the

2008 ACM SIGPLAN symposium on partial evaluation and semantics-based program

manipulation, San Francisco, CA, 2008, pp. 3-12.

[Mat10] MathWorks. (2010) PolySpace Embedded Software Verification. [Online].

http://www.mathworks.com/products/polyspace/

[McG04] Gary McGraw, “Software Security,” IEEE Security and Privacy, vol. 2, no. 2, pp. 80-

83, March/April 2004.

[ME07] Stephen McCamant and Michael D. Ernst, “A simulation-based proof technique for

dynamic information flow,” in Proceedings of the 2007 workshop on programming

languages and analysis for security, PLAS '07, San Diego, California, 2007, pp. 41

[MFS90] Barton P. Miller, Louis Fredriksen, and Bryan So, “An empirical study of the

reliability of UNIX utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32-44,

Dec. 1990.

[Mic11] Microsoft. (2011) Phoenix Connect. [Online]. https://connect.microsoft.com/Phoenix

[Mil10] Capt. Christine D. Millette. “Air Force to implement handheld device changes.” (2010,

March) Air Force Space Command. [Online].

http://www.afspc.af.mil/news/story.asp?id=123195273

[Mit11] MITRE Corp. Common vulnerabilities and exposures. [Online]. http://cve.mitre.org/

[Mitr11] MITRE Corp. Common Weakness Enumeration. [Online]. http://cwe.mitre.org/

[MM00] Gary McGraw and Greg Morrisett, "Attacking malicious code: a report to the infosec

research council," IEEE Software, vol. 17, no. 5, pp. 33-41, September/October 2000.

[MM09] Collin Mulliner and Charlie Miller, “Injecting SMS Messages into Smart Phones for

Security Analysis,” in Proceedings of the 3rd USENIX conference on offensive

technologies, WOOT '09, Montreal, Canada, 2009, pp. 5-5.

[MN08] Manuel Mendonca and Nuno Neves, “Fuzzing Wi-Fi Drivers to Locate Security

Vulnerabilities,” in Proceedings of the 2008 Seventh European Dependable Computing

Conference, EDCC-7 '08, Washington, DC, 2008, pp. 110-119.

[Mul08] Collin Mulliner, “Exploiting Symbian: Symbian exploitation and shellcode

development (presentation),” in Proceedings of the 25th Chaos Communication

Congress (25C3), Berlin, Germany, 2008.

89�
�

[MV06] Collin Mulliner and Giovanni Vigna, “Vulnerability Analysis of MMS User Agents,”

in Proceedings of the 22nd Annual Computer Security Applications Conference,

ACSAC '06, Miami Beach, Florida, 2006, pp. 77-88.

[Myr09] Magnus O. Myreen, “Formal verification of machine-code programs,” University of

Cambridge, Cambridge, United Kingdom, PhD Dissertation ISSN 1476-2986, 2009.

[NS07] Nicholas Nethercote and Julian Seward, “Valgrind: a framework for heavyweight

dynamic binary instrumentation,” Proceedings of the SIGPLAN conference on

programming language design and implementation, vol. 42, no. 6, pp. 89-100, June

2007.

[NS05] James Newsome and Dawn Song, “Dynamic taint analysis for automatic detection,

analysis and signature generation of exploits on commodity software,” in Proceedings

of the 12th annual network and distributed systems security symposium, San Diego,

CA, 2005.

[PM04] Bruce Potter and Gary McGraw, “Software security testing,” IEEE Security and

Privacy, vol. 2, no. 5, pp. 81-85, September/October 2004.

[QP09] Daniel Quinlan and Thomas Panas, “Source code and binary analysis of software

defects,” in Proceedings of the 5th annual workshop on cyber security and information

intelligence research, Oak Ridge, Tennessee, 2009, pp. 40:1-40:4.

[Qui11] Dan Quinlan. (2011, January) ROSE. [Online]. http://rosecompiler.org/

[San05] San, “Hacking Windows CE,” Phrack Magazine, vol. 11, no. 63, Phile #0x06 of 0x14,

July 2005.

[SBY08] Dawn Song et al., “BitBlaze: A new approach to computer security via binary

analysis,” in Proceedings of the 4th international conference on information systems

security, Berlin, Heidelberg, 2008, pp. 1-25.

[SH10] Reid Spencer and Gordon Henriksen. “LLVM's Analysis and Transform Passes.”

(2010, October) LLVM.org. [Online]. http://llvm.org/docs/Passes.html

[SLZ04] Edward G. Suh, Jaewook Lee, David Zhang, and Srinivas Devadas, “Secure program

execution via dynamic information flow tracking,” SIGARCH Computer Architecture

News, vol. 32, no. 5, pp. 85-96, October 2004.

[Spe10] Michael Spencer. (2010, November) “Object files in LLVM.” Presentation at the 2010

LLVM developers' meeting. [Online]. http://llvm.org/devmtg/2010-11/Spencer-

ObjectFiles.pdf

90�
�

[Ste91] Daniel F. Sterne, “On the buzzword “security policy”,” in Proceedings of the 1991

IEEE Symposium on Security and Privacy, Oakland, California, 1991, p. 219.

[STF01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner, “Detecting

Format String Vulnerabilities with Type Qualifiers,” in Proceedings of the 10th

USENIX Security Symposium, Washington, D.C., 2001, pp. 16-16.

[TCM05] Katrina Tsipenyuk, Brian Chess, and Gary McGraw, “Seven pernicious kingdoms: a

taxonomy of software security errors,” IEEE Security and Privacy, vol. 3, no. 6, pp.

81-84, November/December 2005.

[Tho84] Ken Thompson, “Reflections on trusting trust,” Communications of the ACM, vol. 27,

no. 8, Aug 1984.

[Val10] Valgrind Developers. (2010) Valgrind. [Online]. http://valgrind.org/

[VM04] Denis Verdon and Gary McGraw, “Risk analysis in software design,” IEEE Security

and Privacy, vol. 2, no. 4, pp. 79-84, July/August 2004.

[Web10] Web Application Security Consortium. WASC Threat Classification. [Online].

http://projects.webappsec.org/Threat-Classification

[WFB00] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken, “A first step

towards automated detection of buffer overrun vulnerabilites,” in Proceedings of the

network and distributed system security symposium, NDSS '00, San Diego, CA, 2000,

pp. 3-17.

[Win03] Jeannette M. Wing, “A call to action: look beyond the horizon,” IEEE Security and

Privacy, vol. 1, no. 6, pp. 62-67, November/December 2003.

[WM95] Reinhard Wilhelm and Dieter Maurer, Compiler Design, Stephen S. Wilson, Ed.

Harlow, England: Addison-Wesley, 1995.

[Zel09] Jeff Zeleny. “Obama Digs In for His BlackBerry.” (2009, January) The New York

Times. [Online]. http://www.nytimes.com/2009/01/08/us/politics/08berry.html

�

�

�

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
24-03-2011

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sep 2009 – Mar 2011

4. TITLE AND SUBTITLE

Automated Analysis of ARM Binaries using the Low-Level Virtual Machine Compiler Framework

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jeffrey B. Scott, Capt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way

WPAFB OH 45433-7765�

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/GCO/ENG/11-14

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

�

INTENTIONALLY LEFT BLANK

�

10. SPONSOR/MONITOR’S
ACRONYM(S)

�

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. This material is declared a work of the U.S. Government and is not subject to

copyright protection in the United States.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Binary program analysis is a critical capability for offensive and defensive operations in Cyberspace. However, many current techniques are ineffective or

time-consuming and few tools can analyze code compiled for embedded processors such as those used in network interface cards, control systems and mobile

phones.

This research designs and implements a binary analysis system, called the Architecture-independent Binary Abstracting Code Analysis System (ABACAS),

which reverses the normal program compilation process, lifting binary machine code to the Low-Level Virtual Machine (LLVM) compiler’s intermediate

representation, thereby enabling existing security-related analyses to be applied to binary programs. The prototype targets ARM binaries but can be extended

to support other architectures. Several programs are translated from ARM binaries and analyzed with existing analysis tools. Programs lifted from ARM

binaries are an average of 3.73 times larger than the same programs compiled from a high-level language (HLL). Analysis results are equivalent regardless of

whether the HLL source or ARM binary version of the program is submitted to the system, confirming the hypothesis that LLVM is effective for binary

analysis.�

15. SUBJECT TERMS
Binary analysis, reverse engineering, program analysis, vulnerability discovery, static analysis, cell phone security, mobile device security

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

103

19a. NAME OF RESPONSIBLE PERSON

Dr. Rusty O. Baldwin, ENG
REPORT

U
ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565 x4445; Rusty.Baldwin@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18�

�

