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1. Introduction 

Urban warfare is one of the deadliest activities our infantry Soldiers must undertake.  Building 
clearing and street fighting in built-up areas expose our troops to enemy combatants at close 
range and with little opportunity to assess the situation before the encounter.  In this 
environment, Soldiers routinely use remotely controlled or teleoperated robots to extend 
situational awareness from nearby defensive positions.  This reduces, but does not eliminate, the 
risk to the Soldier.  Fully autonomous robots could be sent ahead of troops to explore 
environments with minimal supervision.  Mapping the environment, particularly the architectural 
layout and the presence of people, is important information to report to Soldiers before they 
commit to an area.   

The robot is a computer-based machine and must process data from its sensors to extract 
information useful to itself and the Soldier.  In the field of robotic perception, the core challenge 
is to extract meaningful information about an environment based on raw sensor data.  Extracting 
such information is difficult, so the perception scientist must attempt to simplify the general case 
to achieve desired results.  A robot operating in an environment built by and for people can 
benefit from some assumptions about its environment.  One of the most useful assumptions for 
an indoor or urban setting is that the environment is dominated by planar structures (walls, floor, 
ceiling), which are frequently orthogonal.  Furthermore, the location of these architectural 
features is very useful information for situational awareness.  Fortunately, sensors capable of 
responding to these structures have recently become available and are relatively inexpensive. 

The focus of this effort is to extract planar objects, such as walls, from the raw data to assist in 
navigating an unknown environment and to incrementally build maps to assist in planning the 
exploration of the environment.  Section 2 will provide a background of similar work with other 
sensors, a description of the sensor used for these experiments, and a brief background into other 
research involving plane extraction.  The remainder of the report will focus on the constituents of 
the process of extracting, identifying, and locating walls in the data from such a sensor.  Section 
3 will discuss the current state of the research, including the algorithms used to extract and label 
planes, as well as estimating parameters using visualization tools.  Section 4 will present the 
results of the plane-finding algorithm, in both complex and simple static scenes.  Preliminary 
results are presented for a dynamic scene, but efforts to date have been dedicated to building and 
developing the tools rather than rigorously evaluating performance in dynamic situations.  
Finally, section 5 will discuss the conclusions and options to proceed with further research. 
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2. Background 

Two essential characteristics of a wall are that it is planar and vertical.  In the context of the 
interior of a building, a wall may be partially occluded, is typically adjacent to other walls, and 
may be penetrated by doors or windows.  Our robot should not only identify that a wall is 
nearby, but to map the location of the wall.  As our robot is mobile, we need frequent sensor 
updates to add information from the new sensor viewpoint and to confirm information from 
previous viewpoints. 

2.1 Useful Sensors 

While a simple camera can provide this information as long as the robot is moving, location is 
computationally intensive to extract from the essential two-dimensional (2-D) nature of camera 
data.  Stereoscopic cameras help somewhat, but technologies that intrinsically deliver location 
are available.  If the assumptions of a planar, vertical operating environment reliably hold, a 
single-line horizontal-scanning laser range finder is useful and inexpensive.  A device such as the 
SICK LMS-200 or the Hokuyo URG-04LX, also called a “line scanner,” senses a wall as a 
straight line in data converted to Cartesian coordinates.  These sensors sweep a laser range finder 
through a 360° rotation, reporting the range to the scene in a linear frame at an angular resolution 
of fractions of a degree at a rate of up to 30 Hz.  There is an entire body of literature devoted to 
applying this sort of sensor to navigate through hallways and exploring rooms (Durrant-Whyte 
and Bailey, 2006; Gutmann and Schlegel, 1996).   

The reliability of detecting walls is degraded, however, in environments where the floor is not 
smooth.  This is because sensor roll and pitch convert the wall’s straight line data plot to a curve, 
confusing the tracking of features from one frame to another.  Another problem commonly 
occurs when the elevation of the sensor causes it to cast its single sensing beam on a cluttered 
region where occlusions dominate (e.g., the forest of chair legs under a conference table), even 
though planes dominate at another elevation (e.g., above the conference table).   

To overcome these limitations, it is common to mount the line scanner on a tilt actuator, 
sometimes termed a “nodding” scanner (Harrison and Newman, 2008).  Data is then collected 
from a sequence of planes pivoted at the actuator tilt axis.  The degree of tilt is measured and 
factored into the location computation of the three-dimensional (3-D) point corresponding to a 
range measurement.  This technique retains much of the accuracy of the line scanner and can 
generate a very dense point cloud.  The data frame is a composite of a number of line scanner 
scans, so the frame rate is low, potentially tens of seconds per frame.  Consequently, if a frame is 
collected from a moving robot, the robot motion must also be factored into the computation of a 
3-D point.  Since robot motion is generally known only approximately, the accuracy of the 
generated point cloud suffers.   
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A sensor that has recently become available is the 3-D time-of-flight (TOF) camera, now 
available from at least two makers (Mesa Imaging AG and PMDTechnologies GmbH).  Such a 
camera integrates a modulated light source synchronized with a complementary metal-oxide 
semiconductor (CMOS) imager made of “intelligent” pixels.  Each pixel calculates the phase 
difference between the light incident on it and the illumination modulation.  The difference is 
converted to a time of flight, which in turn is converted to a distance.  The measurements of all 
the pixels, organized as a 2-D array, are termed the “range image.”  The camera reports the 
intensity image, the range image, and an image-structured cloud of Cartesian points with origin 
at the camera, collectively termed a “frame.”  (An element of the frame associated with a single 
“intelligent pixel” will hereafter be called a “pixel.”)  Frames are available at rates up to 30 Hz.  
The expanded vertical field of view (FOV) of this sensor, typically 30°, offers some ability to 
detect and measure sensor pitch and roll effects in observations of the environment.  It also 
enables observations across a span of elevations, potentially including both the chair leg forest 
and the walls above the table, for example.  A final useful attribute of this sort of sensor is that 
frames of data are acquired virtually instantly, so low-frequency sensor motion has little effect 
on the data collected. 

2.2 SwissRanger 

The sensor selected for the study is a 3-D TOF camera, model SR-3000, from Mesa Imaging 
AG, of Zurich, Switzerland.   This sensor is commonly called a SwissRanger.  Specifications 
are shown in table 1.  The sensor is small and requires little power, making it well suited to a 
mobile research robot of modest dimension.  The pixel count and FOV together provide a 
generous resolution at the ranges of which the sensor is capable. 

Table 1.  Excerpts from SwissRanger SR-3000 spec sheet. 

Pixel Array Size 176 × 144 
FOV 47.5° × 39.6°  

Output Data (Per Pixel) Range; x, y, z coordinates; i (intensity) 

Operating Range (m) 0.3 1 2 

X-Y Resolution (1 Pixel) (mm) 1.5 5.0 10.0 

Distance Resolution (mm) 2.5 6 13 
 

Nonambiguity Range 7.5 m (for 20-MHz modulation) 

Illumination Power (Optical) 1 W (average power) at 850 nm 
Adapted from the Mesa Imaging AG SR-3000 Data Sheet, rev. January 2008; www.mesa-imaging.ch/pdf 
/SR3000_Flyer_Jan07.pdf (accessed January 2011). 

 

                                                 
 SwissRanger is a registered trademark of Mesa Imaging AG. 
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The SR-3000 sensor suffers some limitations not apparent in the spec sheet.  The spec sheet cites 
a “non-ambiguous range” distance limitation of 7.5 m, but in practice the limit is usually the 
intensity of the modulated light, which diminishes with distance from the sensor.  Our 
experiments seldom range beyond 5 m.  Another limitation is ambient light.  The spec sheet 
cautions that the sensor is for “indoor operation only.”  Under indoor conditions, distances to an 
undraped window are completely unreliable.  We have not yet attempted to quantify these 
observations but note them as needing further characterization. 

Other effects have been widely studied.  In particular, nonlinearities in the range measurements 
of 3-D TOF cameras have been documented (Lindner and Kolb, 2007; May et al., 2009), along 
with procedures for calibrating out the worst of the error.  These nonlinearities have been 
measured as a diminishing sinusoid, with amplitude as high as 10 cm with a period as short as 
1.5 m.  The measurements of interest in fitting planes are typically among nearby neighbors, 
however, and appear to be highly correlated in the data we have analyzed.  Further effort devoted 
to calibration is likely to improve the accuracy of measurement, but the “factory” calibration has 
shown itself to be sufficiently accurate for our current application.  

2.3 Plane Detection   

Two groups, whose writings we have tracked, have published extensively in the realm of 
extracting planes from point clouds.  One group works out of Jacobs University, Bremen, and is 
anchored by Andreas Birk, Kaustubh Pathak, Jann Popinga, and Narunas Vaskevicius.  This 
group favors 3-D TOF sensors, prefers a region-growing approach to plane extraction without 
using local normals (Vaskevecius et al., 2007), and has described an approach to plane matching 
that supports tracking for simultaneous localization and mapping (SLAM) applications (Pathak 
et al., 2009).    

Another group from Munich Technical University and Willow Garage, including Radu Bogdan 
Rusu and others (Marton et al., 2009; Rusu, 2009), employ random sampling consensus 
(RANSAC)-based approaches to extract planes and other geometric primitives from a point 
cloud data set.  The consensus is built on associations between a planar model and features of a 
given point.  While the simplest associations are made using the 3-D location of a point, a more 
complex method makes use of local point normals as well.  

3. Method 

Region-based growing methods have been researched previously by the authors with the intent 
of developing a fast and robust planar region–growing technique.  The resulting technique 
identifies planar patches given a seed point; rather than the traditional region-growing method of 
identifying all coplanar points to the seed point, the algorithm attempts to quickly find the 
extents of the coplanar patch.  The sacrifice made is that not every point within the extents is 
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tested, and thus less data is used to define a planar patch.  Experiments showed the method to be 
faster than traditional region growing, though the method suffers the same limitations as any 
seed-based algorithm.  That is, automatic selection of good seed points is very difficult to 
achieve; though it is a well-studied topic, it has yet to be solved.  This issue, combined with the 
fact that the software platform (ROS.org, 2011a) supports RANSAC-based approaches over 
region-growing methods, led to the choice to use a RANSAC-based approach to extract planes. 

3.1 Planar Extraction 

In the simplest case of RANSAC-based plane finding, models are built by fitting the best plane 
to a random sampling of points from a point cloud data set.  The model is then verified according 
to how many points have a small point-to-plane distance.  

As shown in figure 1, a plane may be defined by ax + by + cz + d = 0, where n is the unit normal 
vector defined by (a,b,c), and d is the normalized distance to the origin of the reference frame (in 
our case, the origin of the sensor frame).  To find the distance of the plane to a point P, the point-
to-plane distance PD  is derived as follows.  The vector v is the vector between the origin and P, 

and the vector d is the vector from the origin to the closest point on the plane, defined by d = dn.  
The vector w is defined as w = v – d.  The point-to-plane distance is the projection of w onto the 
unit normal n, given as ܦ = w ·  ܞ =  ܖ  · ܖ  െ d. 

 

 

Figure 1.  The point-to-plane distance ܦ between a point P and a plane is 
the projection of the vector w onto the plane’s normal vector n. 
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RANSAC uses the point-to-plane threshold to identify all points that belong to the same plane, 
and the plane with the largest number of points is returned.  The inliers to the plane are removed 
from the original point cloud, and the process is repeated on the outliers of the plane until at least 
two-thirds of the data set has been segmented.  This method requires no preprocessing and is 
therefore fast when compared with methods that require normal vector estimates at each point.  
Figure 2 illustrates a shortcoming of the method.  The largest planes have been properly 
identified, but many points are improperly grouped.  This is due to the fact that they lie on the 
mathematical plane defined in the RANSAC algorithm, but they physically belong to a distinct 
nonparallel plane.  Depending on which planar model is randomly created first, the points might 
belong to one of multiple planes.  

 

 

Figure 2.  Simple RANSAC algorithm compared with using local normals.   

Note:  Top left:  red and yellow planes contain points that should belong to distinct intersecting planes.  Top right:  local normals are 
used to correct these artifacts.  Bottom:  normalized range image of the scene. 
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Though possible postprocessing steps could filter these artifacts out, a more robust method is to 
use local normal estimations at each point for the RANSAC method.  The algorithm works as 
follows.  At each point in a point cloud, principal component analysis is used to estimate the 

point’s normal vector.  For a query point ܲ in a point cloud C, a  x3+k 1  matrix A , composed 

of the 3-D coordinates of ܲ and its k nearest neighbors, is created as shown in equation 1. 

Eigenvalue decomposition of this matrix yields the three principal components of the 
neighborhood around ܲ (equation 2).  Since, for a pure plane, the variability is entirely in two 

directions, the eigenvector associated with the eigenvalue with the smallest absolute value 3λ  is 

also the direction of the plane’s normal vector.  For relatively small noise in the sensor compared 
to the planar size, this association can be extended to estimate the normal direction of the plane 
passing through the neighborhood of points ( 3vn ).  This normal direction constitutes the 

estimated normal direction for ܲ.  The normal vector n and the two major eigenvectors   

defining the plane in the neighborhood of the query point are depicted in figure 3.        
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Figure 3.  Principal component analysis used to estimate local normals.  

Note:  At left, the neighborhood contains coplanar points and a good local normal n is estimated.  At right, the  
presence of a neighbor point with a large offset affects normal estimates.   
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This local normal provides an extra feature to be used for planar identification.  Now, not only 
must a point be within a certain projected distance of a planar model, but its local normal must 
also be approximately parallel to the model normal.  This method is shown to yield improved 
results (also shown in figure 2), though the local normal estimation does increase the complexity 
of the algorithm. 

Both the projected distance threshold and the normal angle distance threshold are input to an 
ROS custom method, derived from the SACSegmentationFromNormals class (ROS.org, 2011b), 
for performing local normal-based RANSAC.  The current default values of these parameters are 
7.5 cm and 0.05, respectively.  These values were determined by qualitative evaluation using 
visualization tools.  

3.2 Visualization 

The local normal information is useful for both plane identification and visualization purposes.  
Visualization is useful for, among other things, approximating a value for the number of 
neighbors k to use for local normal calculation.  Local normal vectors are associated with each 
point in a point cloud, therefore unit vectors can be added to points directly.  A more efficient 
alternative is to form an Extended Gaussian Image (EGI) (Horn, 1984).  

The EGI, for our purposes, is simply a unit sphere that illustrates the distribution of local normal 
directions in a point cloud.  The set of all local normal vectors in a point cloud is oriented such 
that the tails of the unit vectors are all connected at a point.  This point will be the center of a unit 
sphere, with the unit normals intersecting the unit sphere at a point on the sphere.  This point 
provides an intuitive visualization of the direction of a normal, and this representation over the 
entire point cloud is the EGI. 

Examples of the usefulness of the EGI are shown in figure 4.  The same algorithm is run with 
two different values of k.  In a planar region, the EGI should have tight clusters of points.  For 
the given planar region, k is shown to have a strong impact on the EGI.  Since the accurate unit 
normal estimation is a requirement for RANSAC, successful plane finding depends on a well-
chosen k parameter. 

3.3 Labeling and Persisting Planes 

We currently identify the primary planes in a given frame of point cloud data, then attempt to 
associate planes in the current frame with planes from past frames.  Associations between two 
planes are made in an analogous way to the RANSAC method already described.  The two 
parameters required for normal-based RANSAC are the point-to-plane distance threshold and the 
normal angle difference threshold.  The same criteria are used to combine plane i from the list of 
current planes in the current frame, returned by the RANSAC algorithm, with plane j from the 
list of previously identified planes.  Since the algorithm depends on point-to-plane distances, the 
centroid of plane i is projected onto plane j.  Further, the plane normal is compared with those  
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Figure 4.  Extended Gaussian images of the same scene, with different 
thresholds set for number of nearest neighbors (k) to use for local 
normal estimation.   

Note:  At left, k = 20 yields poor results, with sensor measurement noise leading to 
noisy normal estimates.  At right, k = 80 mitigates the effects of sensor errors by 
increasing the neighborhood sample size.  

identified in previous frames.  If no match is found, it is added to a dynamically growing list of 
planes.  The planar definitions, shown in table 2, are much more compact than the point data they 
represent.  The list of planes is broadcast within the ROS environment to any interested node, 
which may wish to use the planar definitions for higher-level processing.  If a plane were defined 
in a previous frame but is not currently visible, it still remains in the plane list in case it is seen 
again in the future.  

Table 2.  Current definition of a plane. 

Planar Data Structure
Field Type Field Name Field Description 

bool is_current 
Distinguishes between planes that exist in the current frame and those that 
were seen previously 

int num_pts Number of points represented by the plane 
int mse Mean-squared error of points (error is measured as point-to-plane distances) 

float* coef Coefficients (a,b,c,d) that define the plane 
float* centr Centroid of the set of points belonging to the plane 
float* conv_hull Convex hull of the set of points belonging to the plane (for future work) 
uint decay Function of time from when plane was last seen (for future work) 

 
Given proper associations between current planes and those of prior frames, a logical progression 
would be to attempt to find the best rotation and translation between the current and previous 
planes, thus providing an ego-motion estimate.  This is a problem currently being researched by 
Pathak et al. (2010), although their plane extraction methods differ from ours.  There are other 
methods currently applied to sets of points that might be extended to sets of planes, such as the 
Iterative Closest Point (ICP) algorithm.  Investigation into these topics is left as future work. 
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4. Experimentation 

Experiments were performed to identify the sources of uncertainty of the planar estimation.  For 
the first experiment, the uncertainty induced by sensor noise is quantified.  For the remainder of 
the experiments, we attempted to isolate uncertainty induced by RANSAC alone vs. the 
uncertainty of the complete process, which incorporates uncertainty from both the sensor data 
and the RANSAC algorithm. 

To isolate the effects of RANSAC, we extract a single frame from the SwissRanger and 
repeatedly run the RANSAC algorithm on it as if it were a live data stream, thus eliminating 
sensor noise as a source of uncertainty.  The variability of planar estimates therefore results 
purely from the random nature of the RANSAC algorithm.  Then, the full algorithm is run with 
live sensor data, and the results are analyzed. 

Statistical measures of variability for each plane are described as follows.  Results using these 
descriptions are reported in tables 3–6. 

• Number of points:  The number of points reported as belonging to the plane, both mean and 
standard deviation (SD), npts_mean and npts_std.  The number of times the plane was 
represented in the results is also reported as percent_id, with a value of 1.0 representing 
100%. 

• Plane angle:  The planar normal, represented in sensor coordinates.  We report the mean 
unit vector normal_means as point coordinates in the sensor coordinate frame and circular 
standard deviation normal_stds of plane normals for the plane over all frames.   

• Centroid:  The mean centr_mean and SD centr_stdXYZ of the centroid of the points 
belonging to the plane.  These statistics are reported as point coordinates in the sensor 
frame.   

• Centroid projection:  The non-negative point-to-plane distance of the plane centroid onto 
the plane defined by the normal_means vector.  The mean centr_proj_mean and SD 
centr_proj_std over all frames are reported. 

• Within-plane point error:  The root mean square error (RMSE) measured along the plane 
normal from a point to its associated plane for an individual plane within a frame.  We 
report the mean RMS_mean of the RMSE over all frames and the corresponding SD 
RMS_std. 

• Distance to corrected plane:  The distance from the sensor center to a plane parallel to the 
mean plane (normal_means) through the frame centroid.  We report the mean distance 
plane_dist_mean and SD plane_dist_std. 
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4.1 Sensor Noise Estimation 

The objective of experiment 1 was to determine the variability of the sensor itself.  The measure 
of variability is the SD across frames of the distance to a static planar target.  The distance 
selected for the measure was not the measured range, but the component of the range along the 
axis of the camera (the “z” component of the Cartesian point in sensor coordinates, reported by 
the 3-D camera).  Use of the Cartesian z component allows easy comparison of a pixel to its 
neighbors in the target frame and is consistent with the intended use as a sensor of planes.   

As shown in figure 5, the SD measure varies in a nonlinear fashion with distance from the center 
pixel.  At distances between 0.5 and 5 m, pixels with SD >5 cm occur only at the corners of the 
image.  The majority of pixels have SD between 0.5 and 2 cm.  This value is near the resolution 
of the sensor claimed in the SwissRanger spec sheet and is consistent with the value reported in 
Kahlmann et al. (2007). 

 

 

Figure 5.  SDs for different distances of an SR-3000 and a vertical plane.   

Note:  For the left and right plots, the distances to the wall are 1.98 and 2.31 m, respectively.  Tests showed that for under 5 m to 
the wall, only the corners of the image had SDs larger than 5 cm. 

4.2 Simple Scene 

In experiments 2 and 3, sensor data from a simple scene containing three strong planes (shown in 
figure 2) was processed by our method of plane extraction.  In experiment 2, planes were 
extracted from a single frame of the simple scene.  This was repeated 30 times using the same 
sensor data.  Since the sensor data is exactly the same in each iteration, the variability in results 
must be a consequence of the RANSAC method of plane extraction.  The results from 
experiment 2 are shown in table 3. 
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Table 3.  Results from experiment 2; the evaluation of RANSAC consistency for a single frame of the simple 
scene shown in figure 2. 

Measures of Variability Plane_1 Plane_2 Plane_3 
npts_mean 8.5877e+03 1.9456e+03 1.1906e+03 

npts_std 14.5150 120.3187 101.0541 
percent_id 1 1 0.6667 

normal_means (m) 
0.4854 –0.7549 –0.8054 

7.1067e–05 0.0431 0.0380 
–0.8743 –0.6544 –0.5928 

normal_stds (deg) 0.7014 4.0932 4.9233 

centr_mean (m) 
–0.8943 1.1677 2.1528 
0.1480 0.1796 0.9314 
3.3595 5.3273 5.9246 

centr_stdXYZ (m) 
0.0016 0.0347 0.0132 

8.1630e–04 0.0450 0.0699 
8.8596e–04 0.0373 0.0194 

centr_proj_mean (m) 6.2594e–05 0.0071 0.0046 
center_proj_std (m) 5.9724e–05 0.0052 0.0037 

RMS_mean (m) 0.0181 0.0360 0.0345 
RMS_std (m) 0.0053 0.0046 0.0089 

plane_dist_mean (m) 3.3713 4.3600 5.2085 
plane_dist_std (m) 8.7293e–05 0.0089 0.0060 

 
 
In experiment 3, planes were extracted from a stream of 10 frames of the simple static scene.  In 
addition to RANSAC variability, the variability of the sensor affects results.  However, the 
simplicity of the scene makes matching errors unlikely.  The results of experiment 3 are shown 
in table 4.   
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Table 4.  Results from experiment 3; a stream of data from the simple static scene shown in figure 2.   

Measures of Variability Plane_1 Plane_2 Plane_3 
npts_mean 8.5732e+03 1.9339e+03 1.2723e+03 

npts_std 22.2351 185.4798 53.1890 
percent_id 1 1 0.6000 

normal_means (m) 
0.4889 –0.7433 –0.7906 

1.7207e–04 0.0433 0.0555 
–0.8723 –0.6675 –0.6098 

normal_stds (deg) 1.1525 4.4461 3.1046 

centr_mean (m) 
0.8976 1.1689 2.1455 
0.1454 0.1500 0.9238 
3.3636 5.3328 5.9169 

centr_stdXYZ (m) 
0.0041 0.0302 0.0045 
0.0015 0.0825 0.0196 
0.0026 0.0428 0.0089 

centr_proj_mean (m) 0.0011 0.0085 0.0045 
center_proj_std (m) 0.0015 0.0050 0.0023 

RMS_mean (m) 0.0189 0.0363 0.0344 
RMS_std (m) 0.0080 0.0076 0.0065 

plane_dist_mean (m) 3.3730 4.4222 5.2530 
plane_dist_std (m) 0.0019 0.0103 0.0055 

 

4.3 Complex Scene 

In experiments 4 and 5, sensor data from a complex scene containing a number of planes was 
processed by our plane extraction method.  The complex scene used for testing is shown in 
figure 6.  Figure 6 also shows a top-down orthogonal view, to illustrate the depth offset of the 
vertical planes and a range image.    

In experiment 4, planes were extracted from an archive of 30 frames of the complex scene.  This 
experiment presents the algorithm with a stronger challenge in matching, but because the data is 
identical from frame to frame, the only error can come from the random nature of the RANSAC 
algorithm.  The results of experiment 4 are shown in table 5. 

In experiment 5, planes were extracted from a stream of 10 frames of a complex scene.  As in 
experiment 3, errors from both RANSAC and the sensor affect results.  In this experiment, a new 
measure of variability is added:  the number of new (different from any encountered in the 
previous frame) planes encountered in a frame.  The scene is static, so the number of planes 
should remain constant after initialization.  If a plane is found for which there is no existing 
match, it is recorded as a new but different plane.  In a static scene such as this one, this indicates 
a matching error.  A frame-to-frame plot of this measure, as well as the total number of planes 
discovered in experiment 5, is presented in the fourth quadrant of figure 6.  Other results of 
experiment 5 are shown in table 6. 
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Figure 6.  Results from a complex scene.   

Note:  Top left:  predominant planes are displayed along with extended Gaussian image.  Top right:  same data from top-down view.  
Bottom left:  range image corresponding to this frame.  Bottom right:  the number of new planes entering the scene is tracked, 
along with the number of current planes in a given frame.  The step in both graphs at frame 3 demonstrates that a new plane was 
identified in frame 3 but then disappeared in frame 4.  This is the result of a tracking error in experiment 5. 
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Table 5.  Results from experiment 4; the evaluation of RANSAC consistency for a single frame of the 
complex scene shown in figure 6. 

Measures of Variability Plane_1 Plane_2 Plane_3 
npts_mean 5.2804e+03 4.7081e+03 2.6738e+03 

npts_std 74.1241 82.7101 213.8191 
percent_id 1 1 1 

normal_means (m) 
–0.5936 –0.8128 –0.6961 
0.0415 0.0155 0.0596 

–0.8037 –0.5824 –0.7155 
normal_stds (deg) 1.1573 1.5767 2.6868 

centr_mean (m) 
0.4010 –0.5047 –0.1621 
0.9685 0.0878 –0.3424 
4.1867 3.2650 3.6768 

centr_stdXYZ (m) 
0.0331 0.0333 0.0755 
0.0197 0.0062 0.0308 
0.0269 0.0538 0.0770 

centr_proj_mean (m) 0.0015 0.0033 0.0043 
center_proj_std (m) 0.0014 0.0032 0.0054 

RMS_mean (m) 0.0289 0.0265 0.0348 
RMS_std (m) 0.0065 0.0130 0.0420 

plane_dist_mean (m) 3.5625 1.4900 2.5382 
plane_dist_std (m) 0.0021 0.0046 0.0069 

 

Table 6.  Results of experiment 5 from a stream of data from the complex scene shown in figure 6. 

Measures of Variability Plane_1 Plane_2 Plane_3 
npts_mean 5.3143e+03 4.9971e+03 2.8782e+03 

npts_std 88.8495 173.4964 188.5623 
percent_id 1 1 1 

normal_means (m) 
–0.5826 –0.8005 –0.6846 
0.0485 0.0160 0.0417 

–0.8113 –0.5991 –0.7277 
normal_stds (deg) 1.2900 2.2566 1.8974 

centr_mean (m) 
0.4051 –0.5689 –0.2208 
0.9210 0.0597 –0.3495 
3.9899 3.1275 3.5251 

centr_stdXYZ (m) 
0.0274 0.0320 0.0623 
0.0156 0.0162 0.0107 
0.1237 0.1174 0.1020 

centr_proj_mean (m) 0.0742 0.0611 0.0700 
center_proj_std (m) 0.0476 0.0408 0.0449 

RMS_mean (m) 0.0279 0.0273 0.0290 
RMS_std (m) 0.0080 0.0134 0.0079 

plane_dist_mean (m) 3.4284 1.4174 2.4288 
plane_dist_std (m) 0.0915 0.0762 0.0863 
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4.4 Dynamic Scene 

Finally, in experiment 6, planes were extracted from a stream of 10 frames of a complex scene 
(the interior of an office divided into cubicles) in which the sensor moves slowly, with both 
rotational and translational components.  The sensor has no component reporting its pose, and all 
sensor measurements are in the sensor reference frame, so when the sensor moves, it perceives 
that the scene and all its components have moved.  This experiment challenges the robustness of 
the tracking algorithm, since the tracking uses the prior definition of the plane with no a priori 
motion estimation to associate planes.  

Figure 7 shows two consecutive frames from experiment 6 that differ visibly as a consequence of 
sensor motion.  Surfaces that change color from one frame to the next indicate that our primitive 
tracking algorithm was unable to associate a plane from the earlier frame to a plane in its 
successor.  The “new plane” plot also shows evidence of difficulties in matching planes frame-
to-frame.  While small values of the ”new plane” plot may indicate that a planar object has 
entered or exited the FOV or that a matching error has occurred, large values of the number of 
new planes probably indicate that sensor motion between frames was too rapid to be 
accommodated by the algorithm.  One can see from the two colored frames shown that the far 
wall is consistently tracked while the side wall and ceiling are mismatched.   

4.5 Discussion 

The degree to which two planes agree may be determined from a comparison of their normal 
vectors and distances to the origin.  Since a plane’s distance to the origin depends on the estimate 
of the normal, which in turn depends on the location of the points belonging to the plane, we use 
the decoupled centroid projection measure to assess precision. 

For the simple scene, the results from the single data set and the stream of data indicate 
consistent plane extraction.  Differences between the mean normal vectors of each plane in table 
3 with associated planes in table 4 are all <2°, and differences between the projected centroids 
are all <3 cm, which is on the order of magnitude of sensor noise. 

For the complex scene, the mean normal vectors are also <2° different between the single data 
set and the data stream cases, but the projected centroid measures differ significantly between the 
two cases.  The single frame results are more consistent, as expected, than those of the data 
stream.  The SD of the centroid projection for the data stream is almost 5 cm for each plane. 

A few large outlier points would normally explain such variability; however, this is not likely to 
be the case since large outliers are filtered by the RANSAC distance threshold.  Another possible 
explanation is that a larger number of small outliers (those belonging to a parallel but offset 
plane) contribute to the uncertainty.  This is consistent with the scene, shown in figure 6, where 
drawers or walls separated by a door may or may not be classified as belonging to a common 
plane. 
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Figure 7.  Results from a complex dynamic scene as well as planar tracking plots.   

Note:  Top left:  results for a frame of the scene.  Top right:  results for a subsequent frame.  The side wall is incorrectly added as a new 
plane (from blue to yellow), while the far wall is tracked properly.  Bottom left:  range image of the scene.  Bottom right:  plots of 
the number of current planes in a scene as well as the number of new planes in the scene.  Large discontinuities in the plots are due 
to high rates of rotation and translation.  

Comparisons of descriptive statistics collected on plane parameters (centroid and plane normal) 
showed no apparent pattern of difference between results from repeated treatments of a single 
frame and results from treatments of multiple frames from a single static scene (sections 4.2 and 
4.3).  It is not clear that the measures are adequate to differentiate between noise from RANSAC 
and noise from the sensor itself.  It may be desirable in subsequent work to lump these two 
sources of variability, as the results of our plane-finding approach appear “good enough” for the 
intended use.  
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5. Conclusions 

A method for finding predominant planes in a scene using a 3-D TOF camera has been 
presented.  We have demonstrated the ability to find and track planes in a predominantly planar 
scene, with potential for real-time robotic applications (depending on the parameter 
configuration, the entire process runs at 2–10 Hz).  Much of the code is not optimized, and there 
are currently costly routines that exist for visualization purposes only.  

The effort to date has largely constituted familiarization with the literature, the sensor, and the 
toolkit selected.  The conclusion is that the ROS framework provides useful tools for extracting 
planes, and that plane extraction using SwissRanger data is sufficient to begin investigating 
methods to improve performance in dynamic scenes.   

The current state of the research presents various options for future work, which require some 
prioritization.  Using the estimates in tracking will require a robust matching algorithm to deal 
with the variability in the plane estimates.  

Also, to properly test the ability of a robot to track planes in a dynamic environment, localization 
measurements are needed to estimate egomotion.  Motion capture systems can be used for 
precise motion measurement, or onboard sensors could independently provide validation using 
localization techniques.  

Alternatively, localization techniques usually applied to point or pixel features in a scene might 
be extended to the case of a small number of plane features.  This would reduce the 
computational complexity of an ICP-based approach, and the planar features should be less 
prone to false registration than a large point cloud.  If localization is achievable, then a plane-
based SLAM technique could be developed. 

As mentioned earlier, automatic seed selection for region growing techniques could be 
investigated for the purpose of improving plane-finding performance compared with local 
normal-based RANSAC.  Possible approaches could include gradient-based processing on either 
the point cloud data or the associated range/intensity image to identify relatively nonunique 
points, which make good seed candidates. 

Furthermore, although we are currently concerned with extracting planes from a data set, similar 
methods are shown by Rusu (2009) to successfully extract other geometric primitives.  These 
geometric primitives are often used to build semantic maps of an environment, which use 
geometric primitives to abstract higher-level object definitions, such as tables, doors, or ceilings 
for the planar primitive. 
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Finally, experiments should be run that quantitatively identify good parameters to use to 
optimize plane extraction and matching.  This will likely require a study of RANSAC 
parameters.  Quality will be assessed in terms of (at least) extraction accuracy and process 
runtime. 
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