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Abstract—Multistatic radars utilize multiple transmitter and 
receiver sites to provide several different monostatic and bistatic 
channels of observation. Multistatic passive and active systems 
can offer many advantages in terms of coverage and accuracy in 
the estimation of target signal parameters but unfortunately 
their performances are heavily sensitive to the position of 
receivers (RX) and transmitters (TX) with respect to the target 
trajectory. As known, geometry factors play an important role 
in the shape of the ambiguity function (AF) which is often used 
to measure the possible global resolution and large error 
properties of the target parameters estimates. Exploiting the 
relation between the ambiguity function and the Cramér-Rao 
lower bound (CRLB), in this work we propose an algorithm for 
choosing in a multistatic scenario, along the trajectory of the 
tracked target, the pair TX-RX with the best asymptotic 
performance calculated in terms of CRLB on estimation 
accuracy. 

I. INTRODUCTION 
Recently, great interest has been devoted to systems 

making use of illuminators of opportunity, such as broadcast 
or communications signals, tracking targets by range and 
Doppler information. These techniques are known as Passive 
Coherent Location (PCL), and have the advantage that the 
receivers do not need any transmitter hardware of their own, 
and are completely passive, and hence undetectable. Among 
all the transmitters of opportunity available in the 
environment, broadcast transmitters represent some of the 
most attractive for surveillance purposes, owing to their high 
powers and excellent coverage.  

Furthermore, Passive Coherent Location techniques can be 
extended to Multistatic radar systems where multiple 
transmitter and receiver sites are used to provide several 
different bistatic channels of observation, leading to an 
increase in the information on a particular area of surveillance. 
The information gain obtained through this spatial diversity 
can give rise to a number of advantages in typical radar 
functions, such as detection, parameter estimation, tracking 
and identification. The performance of each bistatic channel 
heavily depends upon the geometry of the scenario and the 

position of the target with respect to each receiver and 
transmitter. 

In this paper we approach the problem of optimally 
selecting the transmitter-receiver (TX-RX) pair, through 
calculation of the ambiguity function (AF) and of the  
Cramér-Rao lower bounds (CRLBs) for the bistatic geometry 
of each TX-RX pair. The best pair is defined as that exhibiting 
the lowest bistatic CRLB for the target velocity or range. 
These results can be used for the dynamical selection of the 
TX-RX signals for the tracking of a radar target moving along 
a trajectory in a multistatic scenario. The multistatic scenario 
analyzed in this work is composed by a transmitter and four 
receivers. The results reported here have been obtained 
considering a single frequency modulated (FM) commercial 
radio station as transmitter of opportunity [1]. 

II. BISTATIC GEOMETRY 
Before starting our study, it is necessary to describe the 

coordinate system used to represent a bistatic radar geometry. 
Figure 1 shows the coordinate system and its parameters. The 
positions of the TX, RX and target are generic. Considering an 
ordinary Cartesian grid, the TX is located at point Tx, whose 
coordinates are (xT, yT), the RX is at point Rx in (xR, yR) and 
the target is located at point B, whose coordinates are (x, y).  

The triangle formed by the transmitter, the receiver and the 
target is called the bistatic triangle. As shown in Figure 1, the 
sides of the bistatic triangle are RT, RR and L, where RT  is the 
range from transmitter to target, RR is the range from receiver 
to target and L is the baseline between the transmitter and the 
receiver. The internal angles of the bistatic triangle that, 
without lack of generality, are assumed to be positive, are α, δ 
and γ. In particular, the bistatic angle δ is the angle at the apex 
of the bistatic triangle, at the vertex which represents the 
target. Assuming that the coordinates of the transmitter, the 
receiver and the target are known, it is possible to calculate all 
the parameters of the bistatic triangle. θT and θR are the look 
angle of the transmitter and the look angle of the receiver, 
respectively, they are measured positive clockwise from the 
vector normal to the baseline pointing forward the target. 
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Figure 1.  Bistatic geometry 

 

From Figure 1, we have that: θT=π/2−α, θR=γ−π/2,  
δ=π−α−γ=θT−θR, and from the cosine law we obtain: 
RT

2=RR
2+L2−2RRLsinθR, which gives the range from 

transmitter to target RT, as a function of the range from 
receiver to target RR and the look angle of the receiver θR. In 
Figure 1 we plot also the target velocity vector V ; φ  is the 
angle between the target velocity vector and the bistatic 
bisector, which is measured in a positive clockwise direction 
from the bisector. In particular the bistatic bisector is 
represented by the vector BI , where I is the incenter of the 
bistatic triangle, whose coordinates are (xI, yI). 

In the bistatic geometries, an important parameter is the 
radial velocity Va, which is the target velocity component 
along the bistatic bisector. From the observation of Figure 1, 
we obtain cosaV V BI BI V φ= ⋅ = . 

III. BISTATIC AMBIGUITY FUNCTION 
In our study we suppose that the complex envelope of the 

signal transmitted by the FM commercial radio station is the 
unitary power pulse given by:  
 

  
( )0sin 21

( ) 2
0

j f t Te t
u t T

elsewhere

β π ϕ+⎧ ≤⎪= ⎨
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 (1) 

 
that is a signal which instantaneous frequency is a sinusoidal 
oscillation è [2-3]. In particular, T is the observation time, β is 
the modulation index and 1/f0 is the period of the 
instantaneous frequency. In other words, we assumed that, 
during the observation time, the modulating signal 
transmitted by a radio station can be approximated by a 
sinusoidal oscillation. This can be justified considering that in 
a typical FM radio, the program content is speech and/or 
music, which are often modelled as periodic vibrations. 
Moreover, the chosen signal is a mathematically tractable 

model that makes it feasible to study the analyzed scenario 
rigorously.  

As widely known, the complex ambiguity function (CAF) 
of a pulse u(t) represents the response of a filter matched to a 
given finite energy signal when the signal is received with a 
delay τa and a Doppler shift νa relative to the nominal values 
τH and νH expected by the receiver. Therefore, the CAF 
definition is [4-5]: 
 

  ( ) ( ) ( )2*, , , ( ) H aj t
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In eq. (2), τa and νa are the actual delay and Doppler 
frequency of the radar target, respectively, and τH  and νH are 
the hypothesized delay and frequency. In the monostatic case 
there is a linear relation between τa and νa and the target range 
position Ra and radial velocity Va , i.e. τa =2Ra/c and  
νa = 2VafC/c, where fC is the carrier frequency of the reference 
signal u(t). Similar relations hold for τH and νH. Clearly, 
|X(τH,τa,νH,νa)| is maximum for τH = τa and νH = νa.  
Based upon definition (2) we can calculate the monostatic 
CAF for the signal ( )u t  in eq. (1). In particular, after some 
manipulation, it is possible to write 
 

( ) ( ) ( ) ( ) ( )( )02
1 0, ,j n k j kf

n k
n k
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τ ν
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−
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for |τ| ≤ T and 0 elsewhere, where we set τ =τH − τa, ν =νH − νa 
and Jn(β) is the nth order Bessel function of the first kind.  
As an example, Figures 2-4 show the Ambiguity Function 
(AF), that is the absolute value of the CAF, of the signal in 
eq. (1) when f0=15kHz, β=5, T=2/f0 and φ=π/2. In particular, 
the 0-Doppler cut is characterized by the presence of two 
secondary lobes. Considering T=k/f0 and k ∈ , the number 
of secondary lobes is 2(k-1). 

 

 

Figure 2.  AF of u(t), 3D-plot; f0=15kHz, β=5, T=2/f0, φ=π/2. 
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Figure 3.  AF of u(t), contour plot; f0=15kHz, β=5, T=2/f0, φ=π/2. 

 

Figure 4.  AF of u(t), 0-Doppler cut; f0=15kHz, β=5, T=2/f0, φ=π/2. 

 

Figure 5.  AF of u(t), 0-delay cut; f0=15kHz, β=5, T=2/f0, φ=π/2. 

The presence of secondary lobes is due to the periodicity of 
the analyzed pulse. Moreover, for k>1, the AF has a T-
periodic behavior along the delay axis. Obviously, if Tf0 1, 
u(t) tends to a rectangular pulse and its CAF tends to X1(τ,ν) 
in eq. (4). 

To refer eq. (3)-(4) to the bistatic geometry of Fig.1 and to 
obtain the expression of the bistatic ambiguity function, we 
must replace τH and νH in (3)-(4) with the following formulas 
[6],[7]: 
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 Unlike the ambiguity function, which provides 
information on the global resolution, the CRLBs are a local 
measure of estimation accuracy. Anyway, both can be used to 
asses the error properties of the estimates of the signal 
parameters. In [8] the author derived a relationship between 
CRLB and AF, which has been successfully used in the 
analysis of passive and active arrays [5]. In the monostatic 
configuration, [8] claims that for the Fisher Information 
Matrix (FIM) the following relationship holds: 
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where SNR is the signal-to-noise power ratio at the receiver.  
Using the results obtained in [8], it is also possible to 
demonstrate that  
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After some algebra, it is possible to verify that: 
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From eq. (7) the CRLBs follow:  
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1,1
CRLB( ) ,a M a aτ τ ν−⎡ ⎤= ⎣ ⎦J  and ( )1
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As an example, assuming T=k/f0 ( k ∈ ) and considering 
that π2k2/3>>sin2(φ), the Root-CRLBs are approximated by 
 

  1 1RCRLB( ) CRLB( )
2a a

CBSNR
τ τ

π
=  (14) 

  1 3RCRLB( ) CRLB( )
2a a TSNR

ν ν=  (15) 

 
where Bc 2βf0 is Carson’s Bandwidth1 of u(t). It is 
interesting to observe that RCRLB(νa) is inversely 
proportional to the time duration of the reference signal, 
while RCRLB(τa) is inversely proportional to its bandwidth. 
From this result we can observe that the best performance is 
obtained with modulating signals with high spectral content, 
such as rock music, and poorest performance is obtained with 
slow varying modulating signals, such as speech signals.  

In the bistatic configuration we should express the 
ambiguity function in terms of the bistatic τ(RR,θR,L) and 
ν(RR,VB,θR,L), and derive the AF with respect to the useful 
parameters RR and VB, as follows: 
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Using the derivative chain rule and letting RR=Ra and VB=Va, 
after some algebra it is possible to verify that [5]:  
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 For L=0 the bistatic CRLBs coincide with the monostatic 
CRLBs. To highlight the differences between monostatic and 
bistatic domain, Figures 6 and 7 show the RCRLBs as a 
function of the baseline length L and the angle θR.  
 It is evident that, for all the parameter values we tested, 
the bistatic RCRLBs are higher than the monostatic RCRLBs. 
The bistatic RCRLBs get even worse when the target 
approaches the baseline, that is when RR ≤ L and θR 
approaches −π/2. In this case, the resulting delay is L/c and 
the radial velocity is zero, therefore resolution is totally lost 
and the RCRLBs tend to infinity. 

                                                           
1 Carson's bandwidth rule defines the approximate bandwidth of an angle-
modulated signal and is expressed by the relation Bc=2(Δf+B) where Δf is the 
peak frequency deviation, and B is the bandwidth of the modulating signal. 
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Figure 6.  RCRLBs as a function of the look angle θR; L=50km, RR=30Km, 
VB=250m/sec, f0=15kHz, β=5, T=20/f0, φ=π/2, fC=100MHz, SNR=20dB. 
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Figure 7.  RCRLBs as a function of the look angle θR; L=50km, RR=30Km, 
VB=250m/sec, f0=15kHz, β=5, T=20/f0, φ=π/2, fC=100MHz, SNR=20dB. 

IV. OPTIMAL SELECTION OF THE TX-RX PAIR 
In our scenario we considered a surveillance map of 

dimension Lx=100km and Ly=100km where we placed  
1 transmitter and 4 receivers.  

In particular, we placed the transmitter at coordinates 
T=(Lx/2, Ly/2) and the receivers at coordinates R(1)=(Lx/4, 
Ly/2), R(2)=(Lx/2, 3Ly/4), R(3)=(Lx/2, Ly/4) and R(4)=(3Lx/4, 
Ly/2). Therefore, there are 4 pairs of TX–RX that we 
considered as independent bistatic systems. The results have 
been obtained considering a non co-operative frequency 
modulated (FM) commercial radio station as transmitter of 
opportunity and modelling the reference signal using the 
pulse in eq. (1). The carrier frequency of the system was fixed 
to fC = 100MHz, which falls within the VHF part of the radio 
spectrum in which FM is used for broadcasting.  
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In order to fix the values of f0 and β, we considered that 
the signal emitted by a FM commercial radio station is an 
audio signal (speech and/or music), therefore the frequency of 
the modulating signal f0 has to belong to the range of audio 
frequencies, whose accepted standard range is from 20Hz to 
20kHz. Moreover, FM commercial radio stations use 
bandwidth of about 150kHz, therefore, according to Carson’s 
rule, we fixed f0=15kHz and β=5. 

In the analyzed scenario we also considered an omni-
directional antenna for the transmitter and directive antennas 
for the receivers. In particular, we considered that the 
antennas of the receivers have the same power gain: 

  

2 22 2
2 2( )

2
2

R
R

RG
elsewhere

θ ππ εθ π
π ε εθ

π
π ε

⎧ +
+ ≤⎪⎪ −= ⎨

⎪
⎪ −⎩

 (20) 

 
that is, the receiver antenna power gain is constant for all 

the directions, has a notch towards the transmitter (θR=−π/2) 
and linearly decreases when the receiver look angle belongs 
to the range [−π/2−ε/2;−π/2+ε/2]. In our simulation we fixed 
ε=π/6. We choose this receiver antenna power gain because in 
a real case scenario the receiver antennas are designed in 
order to maximize the power ratio between the target echo 
and the Line of Sight co-channel interference. 

For each point of the analyzed area and for each of the 4 
bistatic channels we calculated RCRLBs on the target range 
and velocity estimation accuracy. In particular, we assumed 
that, in each point of the analyzed area, the target has a 
velocity vector aligned to the x axis with intensity 250 m/sec. 
The RCRLBs of target range and velocity are a function of 
the range from the receiver to the target RR, the baseline L, 
the look angle of the receiver θR, the radial velocity Va, and 
the Signal-to-Noise Power Ratio (SNR). All these parameters 
depend on the configuration of the bistatic triangle, that is, on 
the coordinates of target, TX and RX. Bistatic geometry also 
affects the received echo power, because the path loss factor 
is (RTRR)2. In particular, the SNR can be written as 
SNR=G(θR)SNRC(Lx

2+Ly
2)2/(RTRR)2, where SNRC is a constant 

parameter. We assumed that SNRC =20dB. That is, we 
assumed that if both the transmitter and the receiver are 
located in (0,0) and the target is located in (Lx,Ly), then 
SNR=G(θR)|dB+20dB.  

Figures 8 and 11 are colour coded maps which represent 
the RCRLBs of the target range and the target velocity in 
each point of the analyzed area for the 4th bistatic system. In 
particular, Figure 8 represents the RCRLB of the target range, 
in dBm while Figure 11 represents the RCRLB of the target 
velocity in dBm/sec.  

As apparent from the results, the RCRLBs of the bistatic 
system are strongly related to the bistatic geometry. It is 
evident that the effects of geometry factors are more 
prominent as the target is in the same direction of the 
transmitter, in this case the resolution is totally lost. This is 
clearly due to the geometrical factors discusses in the 
previous section and to the choice of the receiver antenna 
power gain in eq. (20). However, the effects of the bistatic 

geometry are less prominent when the distance to the target 
increases; in this case the bistatic system behaves more and 
more as a monostatic system. 

 

 

Figure 8.  RCRLB of the target Range [dBm], 4th pair. 

 

Figure 9.  Minimum RCRLB of the target range [dBm]. 

 

Figure 10.  Optimum pair map for target range estimation. 
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Figure 11.  RCRLB of the target velocity [dBm/sec], 4th pair. 

 

Figure 12.  Minimum RCRLB of the target velocity [dBm/sec]. 

 

Figure 13.  Optimum pair map for target velocity estimation. 

 
Therefore, the performances of each bistatic system are 

strongly related to the configuration of the bistatic triangle, 
that is, to the positions of the transmitter, the receiver and the 
target. Using different transmitting and receiving systems, the 
target can be seen by different bistatic configurations. 

Then, knowing the coordinates of each transmitter and 
each receiver of the whole system, it is possible to find, for 
each point of the analyzed area, the TX-RX pair having the 
best performance, in terms of the lowest RCRLB.  

Figures 10 and 13 show, in a colour coded map, the 
transmitter-receiver pair which has the minimum RCRLB for 
each point of the analyzed area. The color-map of these 
figures is divided into 4 colours, each of which is associated 
with one of the 4 analyzed bistatic systems. Figures 9 and 11 
show the minimum RCRLB of the target range and the target 
velocity, respectively, that is the value of the RCRLB which 
is provided by the transmitter-receiver pair which has the 
minimum RCRLB. 

V. CONCLUSIONS 
In this paper, we exploited the relation between the AF and 

the CRLB to calculate the bistatic CRLBs of target range and 
velocity. The bistatic CRLBs provide a local measure of the 
estimation accuracy of these parameters. Then, we used the 
information gained through the calculation of the bistatic 
CRLBs for the choice of the optimum transmit-receive pair in 
a multistatic radar system. The performance of each bistatic 
channel heavily depends upon the geometry of the scenario 
and the position of the target with respect to each receiver and 
transmitter. We approach the problem of optimally selecting 
the TX-RX pair based upon the CRLB for the bistatic 
geometry of each pair. The optimal pair was defined as that 
exhibiting the lowest bistatic CRLB for the target velocity or 
range. These results can be used for the dynamical selection of 
the TX-RX signals for the tracking of a radar target moving 
along a trajectory in a multistatic scenario. Ongoing research 
focuses on dynamic reconfiguration of selected TX-RX as a 
function of RCRLBs as well as tracking accuracy. The results 
reported here have been obtained considering a scenario 
composed of Passive Coherent Radars which exploit a single 
non FM commercial radio station as transmitter of 
opportunity. 
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