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Abstract 

The United States Coast Guard uses pooled time series analysis to develop a ship and 

aviation fuel requirement forecasting model.  Given the volatility of aviation fuel prices and the 

USAF dependency on foreign oil, alternative fuel sources are a serious consideration and require 

forecasting models when conducting comparison studies.  This research uses the Coast Guard’s 

methodology to develop an Air Force aviation fuel requirements model for the Air Force Cost 

Analysis Agency (AFCAA).  By pooling 1,442 historical consumption time series data points, 

two regression models are developed that predict aviation fuel requirements in gallons.  The 

remaining 356 randomly excluded data points are then used to validate the two regression 

models.  The research shows that 100 percent of the least squares estimated gallons consumed 

fell within a 95 percent confidence interval for the single and the sub macro-level models.  

However, the single and sub macro-level models are fundamentally flawed as both fail the 

underlying linear regression assumptions of normality, constant variance, and independence.  

Although the research produces two models that predict aviation fuel requirements well, the 

application of either the single or sub macro-level models are discourage without proper 

understanding of the underlying statistics provided.      
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I. Introduction 

Problem Statement 

The Air Force Cost Analysis Agency (AFCAA) is searching for a macro-level model that 

will forecast the United States Air Force (USAF) aviation fuel requirement.  The forecasting 

model will serve two purposes.  First, the model provides a cross-check or potential replacement 

to the current technique employed.  Second, given the volatility of aviation fuel prices and the 

USAF dependency on foreign oil, alternative fuel sources are a serious consideration and require 

forecasting models when conducting comparison studies.  This research seeks to determine if 

pooled time series analysis can develop a macro-level model to forecast the baseline Air Force 

aviation fuel requirement for alternative fuel source comparison studies.   

General Issue 

Annually, the AFCAA forecasts the aviation fuel requirement in gallons.  Price factors 

are developed and published by The Office of the Secretary of Defense (OSD) to convert gallons 

to dollars for budgeting purposes.  Currently, the AFCAA uses a five year historical average of 

aviation fuel consumption data to determine the Air Force requirement by mission design series 

(MDS) and major command (MAJCOM).   

In the past, AFCAA has investigated potential predictive relationships using regression 

analysis.  However, data sets at the MDS by MAJCOM levels are small and rarely produced any 

consistent results that are statistically significant.  The lack of data is sometimes a deterrent to 

regression analysis.  The Coast Guard uses a technique that pools detailed data to a macro-level 

increasing the size of the data set under analysis.  By using the pooling technique, the effective 

data set swells to over 1,700 data points.  The data increase will provide a more robust analysis 

to determine if a predictive relationship exists with statistically significant results.    
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Research Approach and Scope 

This research paper uses a quantitative methodology using data pooling and multiple 

regression techniques.  Historical aviation fuel consumption data and a multitude of potential 

explanatory variables, such as flying hours, sorties, mission type, weapon system type, and major 

command are provided by the AFCAA.  However, the AFCAA database only captures nine data 

points for each weapon system within a major command.  Although nine data points is sufficient 

to conduct regression analysis, this research seeks to determine relationships across multiple 

weapon systems and major commands.  By pooling or combining all major commands and 

weapon system data, the potential exists to develop one macro aviation fuel requirement model 

based on known explanatory requirements using multiple regression analysis. 

Several techniques to develop a macro-level forecasting model for aviation fuel 

requirements are available.  In Chapter Two, some of these techniques are discussed.  However, 

this research narrows the scope to the technique of pooled time series analysis in an effort to 

determine the potential application to predicting aviation fuel requirements.        

Research Benefits 

The research seeks to develop a macro-level forecasting model for USAF aviation fuel 

requirements.  The model will either replace or provide a cross-check to the existing method that 

the AFCAA uses to predict aviation fuel requirements.  The model will also serve to conduct 

alternative fuel comparison studies as the need to reduce foreign oil dependency increases.  

Chapter Summary 

This chapter proposes pooled times series analysis as a technique to develop a macro-

level model to forecast USAF aviation fuel requirements.  Chapter Two explores the United 

States and USAF foreign oil dependency and vulnerability, alternative fuel sources, and the 
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Coast Guard’s pooled time series analysis model for forecasting ship and aviation fuel 

requirements.  Chapter Three explains the methodology used to develop and test a potential Air 

Force aviation fuel requirement model using pooled times series analysis.  Chapter Four presents 

the results of the model development.  Chapter Five concludes with model recommendations.     
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II. Literature Review 

Chapter Overview 

The dependency on foreign oil places the United States and USAF in a vulnerable 

position as world competition increases for a global finite resource.  For this reason, the United 

States is searching for alternative sources to fuel the economy and its military machine.  To 

better understand the requirements of aviation fuel and potential alternative fuel source 

comparison studies this research will investigate existing methods or techniques to forecast 

aviation fuel requirements.  Finally, the Coast Guard’s pooled time series analysis ship and 

aviation forecasting model is examined for applicability to forecasting Air Force aviation fuel 

requirements.  

The United States and USAF Dependency and Vulnerability on Foreign Oil  

The United States far outpaces the world in oil consumption, consuming over 25 percent 

(7.6 billion barrels per year) of the world’s 30 billion barrels of oil annually.1

In his 1994 book, The Road to 2015, John Peterson predicted United States dependence 

on Middle East foreign oil.3  Table 1 shows a summary of the top oil importers.  Of particular 

concern are the Organization of the Petroleum Exporting Countries (OPEC) that account for 

almost 50% of the oil imports.4  Since 1989 United States oil imports have steadily increased, a 

favorable trend for the OPEC nations.5  The majority of “world oil is in the Middle East, 

controlled by OPEC, a cartel of unfriendly, unstable regimes that already exercise too much 

  Without oil, 

America’s economy and military machine would come to a screeching halt.  America imports 

roughly 63 percent of its oil.2  Foreign dependency on a high-demand finite resource jeopardizes 

U.S. national security.   
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control over the world oil prices.”6  The reliance on such a vital resource to ensure national 

security is at the mercy of OPEC, which provides a staggering 30% of the United States overall 

demand for oil.7  However, the greater threat is dependence on a finite resource. 

Table 1: 2008 Top Importers from January—August8 
Import Cummulative Barrels in

Top Importers Percent % Imports Thousands
1 Canada 18.6% 18.6% 592,199
2 Suadi Arabia* 12.0% 30.6% 380,632
3 Mexico 10.1% 40.7% 320,789
4 Venezuela* 9.3% 50.0% 295,205
5 Nigeria* 8.2% 58.1% 260,287
6 Iraq* 5.2% 63.3% 164,767
7 Algeria* 4.0% 67.4% 127,981
8 Angola* 4.0% 71.4% 127,651
9 Russia 3.7% 75.1% 118,767
10 Virgin Islands 2.5% 77.6% 79,491
11 Brazil 1.9% 79.5% 59,620
12 United Kingdom 1.7% 81.2% 53,312
13 Ecuador* 1.7% 82.8% 52,675
14 Colombia 1.6% 84.4% 51,190
15 Kuwait* 1.6% 86.0% 50,546

All others** 14.0% 100.0% 444,843
Totals 100.0% 3,179,955

*OPEC Nations
**Non-OPEC importers excluding Libya, Indonesia, and Arab Emirates

Distribution Barrels in
Source of Imports Percent Thousands

OPEC 47% 1,494,364
Non-OPEC 53% 1,685,591

Total 100% 3,179,955  

The amount of oil remaining in the world is still debated.  Although there is no definitive 

answer to “proven” and “unproven” reserves or “peak” production timelines, most agree that oil 

is a finite resource with an increased global demand.  The oil industry currently discovers less 

than 40 percent in new oil necessary to prevent the base reserves from shirking.9  In his book, 

The End of Oil, Paul Roberts predicts that the world will experience a peak in oil production in 

the year 2016 based upon current trends in global consumption and an estimated trillion barrels 

of remaining oil.10  The importance of a peak is that production drastically declines.11   However, 
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the greater concern is that non-OPEC oil is likely peak before OPEC bringing the world supply 

under “the control of a cartel with a history of rash behavior and dubious sympathy for the 

West.”12  A monumental concern for U.S. national security given the world’s ever increasing 

demand for oil.             

China, a distant second to the United States, accounts for only 7.9 percent of the world’s 

consumption or less than a third (2.4 billion barrels per year) of the amount consumed by the 

United States.13  With a population roughly four and a half times larger than the United States 

and an accelerated rate of industrialization, China’s demand for oil is projected to reach 5.8 

billion barrels per year by 2030.14  Other rapidly industrializing nations, like India, are 

experiencing similar growth demands for oil.  As the global demand for oil increases, the rate of 

exhausting reserves accelerates. 

The Department of Defense (DOD) and in particular the USAF is highly dependent on 

oil.  Aviation fuel is a large portion of the Air Force Flying Hour Program funding requirement.  

In fiscal year 2007 the Air Force consumed over two and a half billion gallons while flying over 

two million hours.15  Per capita, only the Virgin Islands and the Netherlands Antilles consume 

more oil than the USAF.16   This scale of consumption requires statistically significant estimates 

for future aviation fuel requirement.   

The USAF has investigated the development of renewable energy sources such as bio-

fuels as an alternative to the non-renewable hydrocarbon sources.17  Some of the bio-fuels 

considered as potential alternatives include ethanol, biodiesel, algae, and biobutanol.18  However, 

an analysis of alternative fuel sources is not the purpose of this study.   This research will 

investigate potential models to forecast the aviation fuel baseline requirement by using multiple 

regression techniques.  In an effort to reduce foreign oil dependency, a predictive model will 
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help the Air Force better understand the baseline requirement necessary for effective alternative 

fuel source comparison studies. 

United States Energy Independence through Alternative Fuel Sources 

The capacity of the United States to become energy independent and still meet current 

increasing demands without alternative energy sources is highly unlikely.  The United States 

ranks third in oil production with 21.4 billion barrels of proven reserves.19  However, an 

exhaustion of reserves would occur in four to five years if the United States relied solely on 

indigenous resources.20  In the wake of constrained budgets, volatile fuel prices, and increased 

oil dependency on adversarial regimes, the United States must look to alternative fuel sources.21  

Although bio-fuels such as ethanol, biodiesel, algae, and biobutanol are not new alternatives, the 

production capacity, transportability, stability, and engine fuel compatibility challenges have not 

created a cost benefit to hydrocarbons.22  However, when alternative fuel technologies satisfy 

USAF criteria the necessity to better understand alternative fuel source comparisons to the 

hydrocarbon baseline will require aviation fuel forecasting models.          

Issues when Forecasting the USAF Aviation Fuel Requirement 

The AFCAA determines the aviation fuels annual requirement.  The current method takes 

an average of the past five fiscal years at the major command weapon system code level.  The 

process is time consuming and very data intensive.  The purpose of this research is to develop a 

macro-level mathematic relationship that forecasts aviation fuel requirements at the total Air 

Force level.  This research employs the Coast Guard’s application of pooled time series analysis 

to determine if known explanatory variables will establish a macro-level relationship to predict 

aviation fuel.   
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The AFCAA conducted a similar research in February of 1998 by developing a fuel 

consumption cost estimating relationship based on explanatory variables such as weight, speed, 

engine type, mission, and others.23  Due to the scope and purpose of this research a full literature 

review is not included.  However, using similar explanatory variables and applying a pooled time 

series methodology is worthy of future research. 

Coast Guard Model Using Pooled Time Series Analysis 

In August of 1999, the United States Coast Guard (USCG) Headquarters contracted the 

Logistics Management Institute (LMI) to develop models that forecast aircraft and ship fuel 

requirements.24  The models that LMI developed used a data pooling technique with linear 

regression known as pooled time series analysis.25  The fundamental components of a linear 

regression model are the intercept, slope, and the independent explanatory variable that explains 

the dependent variable.   This research, like the USCG, investigates independent variables like 

flying hours to explain the fuel consumption or dependent variable.  When data observations of 

the independent and dependent variables occur over time or across different groups, like weapon 

system codes, pooling the time series data is a common model building technique.26  The 

advantage of pooling time series data increases the number of observable data points producing 

more powerful estimates.27  The power comes in the models ability to accurately estimate fuel 

consumption requirements across a number of different platforms. 

The three models LMI developed produced significant explanatory capability.  The 

aircraft model explains 99 percent of the variation of fuel consumption using flying hours as the 

sole predictor.28  The medium- and high-endurance cutter model and below-medium-endurance 

cutter model explained 87 and 90 percent of the variation of fuel consumption respectively using 

vessel hour operations as the sole predictor.29  Although the LMI study declares the three models 
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statistically significant stating the parameter estimate pass the t-tests, the research paper does not 

include the test results for the assumptions of linear regression.  This research will apply the 

same pooled time series analysis employed by LMI to develop a forecasting model for aviation 

fuel requirements for the USAF.     

Chapter Summary 

This chapter outlines the necessity for a macro-level model to better predict fuel 

requirements and alternative fuel source comparisons.  Based on past research, the Coast Guard 

provides a methodology to develop a model to forecast aviation fuel requirements using pooled 

time series analysis.  The pooling of data technique increases the number of data points.  The 

larger data set creates a more robust regression analysis to better understand the predictive power 

of potential models.   
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III. Methodology 

Chapter Review 

The Coast Guard uses pooled time series analysis to develop mathematical relationships 

to forecasts aviation and ship fuel requirements.  This research seeks to develop and employ 

similar mathematical relationships by applying the pooled time series analysis to forecast Air 

Force aviation fuel requirements.  The chapter explains the data preparation and pooling 

technique, introduces the potential explanatory variables used in the regression analysis, and 

describes the theoretical tests necessary to claim a statistically significant model.  The chapter 

continues by explaining the methodology used to validate the predictive capability of a 

theoretically sound model.  Finally, the method to assess the risk and uncertainty of model 

predictions is explained.  

Preparing and Pooling the Data  

The data used for the regression analysis is provided by the AFCAA.  The composition of 

the historical data includes nine fiscal years of both numerical and categorical predictors that are 

delineated by pre and post 9/11.  The aviation fuel consumption in gallons, flying hours, and 

sorties are the three numerical predictors and the categorical predictors includes MAJCOM, 

weapon system code, weapon system type, and mission type.  The three numerical predictors are 

further delineated into combat or training fuel consumption, flying hours, and sorties.  The 

complete data set provides 2,404 data points for analysis.   However, some of the data points are 

justifiably removed due to recording error or incompleteness.   

The final dataset contains 1,778 data points after removing records that did not have 

flying hours, gallons consumed, or the mission was unknown.  Several hundred of the data points 
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had no recorded PAA and five did not have the number of sorties recorded.  However, because 

the PAA and sorties were not significant predictors those data points remained in the final 

dataset.  Upon completion of the dataset preparation the method of pooling time series analysis is 

employed.   

The term “pooling time series analysis” refers to the data arrangement and the analysis 

technique.  First, “pooling” is the process of combining similar data into one dataset to increase 

the number of observations when conducting the analysis.  Currently, the AFCAA takes an 

historical average of the aviation fuel consumed by a particular weapon system code within a 

particular MAJCOM.  However, nine data points is not ideal when using regression analysis to 

determine statistically significant mathematical relationships.  Although many of the weapon 

systems at the MAJCOM level show strong relationship between gallon consumed and flying 

hours this research seeks to discover a macro-level model to avoid the time consuming process 

of developing a predictive model for each weapon system code with a MAJCOM.   
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Figure 1: ACC B-1B Gallons Consumed by Flying Hours30 
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Figures 1 and 2 illustrate the pooling data technique using the bomber weapon systems.  

Figure 1 shows a strong relationship between gallons consumed and flying hours for the B-1B in 

Air Combat Command (ACC).   Figure 2 shows the method of pooling by combining all of the 

bombing weapon systems across all of the MAJCOMs.  The large data points are the B-1Bs in 

ACC and the remaining data points represent the B-2As, B-52s, and the remaining B-1Bs from 

other applicable MAJCOMs.  The benefit of pooling the data is the creation of one macro-level 

model that forecasts the aviation fuel requirement for bombers given the programmed flying 

hours for any given fiscal year.  The increase in data points enhances the fidelity of the statistical 

significance and the potential predictive power of the mathematical relationship.  The purpose of 

this research is to pool the time series data to develop a macro-level model that is statistically 

significant to justify the use of the model to forecast aviation fuel requirements.      
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Figure 2: Bomber Gallons Consumed by Flying Hours31 

Multiple Regression Analysis 

Multiple regression is used to determine if there is a mathematical relationship between 

gallons of aviation fuel consumed and possible predictors that are known prior to forecasting a 
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new aviation fuel requirement.  To build the fuel requirement regression model, five categorical 

(nominal) and three numerical (continuous) predictor variables are tested for significant 

relationships.32  The five categorical predictors are MAJCOM, weapon system code, weapon 

system type, mission type, and pre or post 911 data (see appendix A, Table 7).  The three 

numerical predictors are the flying hours by MAJCOM and weapon system code, the number of 

sorties flown by MAJCOM and weapon system code, and the primary assigned aircraft (PAA) or 

number of a particular weapon system code with a MAJCOM.  Using JMP Statistical Analysis 

Software, mathematical relationships are investigated and tested for theoretical soundness to 

forecast aviation fuel requirements.   

Statistical Significant Tests 

To test for the statistical reliability of potential regression models an analysis is 

conducted to determine if any influential data points exist that bias selected explanatory variables 

and to test the model assumptions for normality, constant variance, and independence.  The test 

for possible influential data points is achieved by plotting Cook’s D influence statistic which 

indicates observations with large effects on parameter estimates.33  The x-axis labeled “Rows” is 

the number of data points delineated by MAJCOM and weapon system code.     
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Figure 3: Cook’s D Influential Data Points Test Example34 

When values are greater than 0.5 the observation is considered influential.35  Figure 3 displays an 

ideal example of Cook’s D influential statistic plotted showing no outlying data points.  
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Figure 4: Residual Normality Test Example36 

The purpose of testing for normally distributed residuals ensures the validity of the 

overall F and t-tests.  The F-test indicates that the overall model is significant.37  When there are 
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several explanatory variables, the t-test indicates the significance of multiple predictors.  

Additionally, inferences concerning the variability of model parameters hinge upon normally 

distributed residuals.  To determine if the regression model residuals are normally distributed a 

goodness-of-fit (GOF) is conducted.38  The residuals are normally distributed when the p-value is 

greater than 0.05.39  Figure 4 graphically depicts an example of normally distributed residuals 

with a p-value greater than 0.05.  

The test for constant variance and independence is determined graphically by using a 

scatter plot of the predicted values versus the residuals values.  When constant variance and 

independence is present the residuals are evenly distributed around the line 0 depicted in Figure 

5.40  When constant variance is not present the fidelity of the predicted values is compromised.  

Transforming the dependent variable is a potential correction for constant variance.      
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Figure 5: Example of Constant Variance in the Residual by Predicted Plot41  

 Model Validation 

To validate the robustness of the regression models, a random sample of 20 percent of the 

data is excluded from the model development.  Once the model is developed and determined 

statistically significant the remaining 20 percent of the randomly selected data is used to test the 
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predictive capability of the model.  The regression model determines what explanatory variables 

are significant.  The same explanatory variables from the excluded data are entered into the 

regression model to produce predictions.  A successful validation is achieved if the model 

predictions fall within a 95 percent prediction interval.  The validation will demonstrate that 

there is not an over-fit of the data to build the regression model.42     

Developing Uncertainty and Risk Analysis 

The purpose of this research is to develop a regression model that predicts the aviation 

fuel requirement.  However, the usefulness of predictions often hinges on the understanding of 

the uncertainty and risk of a model’s output.  Assuming the regression model passes the test of 

normality and constant variance, the mean and standard deviation of the prediction is the basis 

for understanding the uncertainty and risk.  In this case, uncertainty is the range of potential 

outcomes across a normal probability distribution for any one observation defined by the 

model’s mean and standard deviation.  The distribution of uncertainty helps a decision maker 

better understand the probability of potential risks or the probability of an unfavorable outcome.  

Any given prediction of a linear regression model is the mean and has an associated standard 

deviation.  Using Monte Carlo simulation, the model mean prediction and standard deviation 

produce a theoretical normal distribution that will quantify the uncertainty and risk of forecasting 

aviation fuel requirements.     

Chapter Summary 

This chapter explains the proposed methodology to predict aviation fuel requirements.  A 

discussion of preparing and pooling the data provides the background to understanding the 

nature of the dataset that is used for regression analysis.  The tests for statistical significance are 

explained to ensure the fundamental assumptions of linear regression are met.  The method of 
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validating the forecasting model is presented.  Finally, an explanation of the process to assess the 

uncertainty and risk of the model predictions is provided.  
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IV. Results 

Chapter Overview 

Chapter Three outlined the methodology to predict aviation fuel requirements.  This 

chapter presents the results of applying pooled times series analysis to develop a forecasting 

model for aviation fuel requirements.  First, the aviation fuel regression models are displayed and 

explained.  Second, the statistical significant tests are presented.  Finally, the model validation 

results are discussed.    

Single Macro-Level Aviation Fuel Regression Model 

The regression analysis looked at several potential mathematical relationship broken into 

single and sub macro-level models.  The single macro-level model used 80 percent of the data to 

develop a mathematical relationship and the remaining 20 percent is set aside for model 

validation.  This research develops both single and sub macro-level models for comparison 

purposes.  Figure 6 shows a scatter plot of the data used to develop a mathematical relationship 

for the single macro-level model in terms of gallons consumed and flying hours.    
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Figure 6: Single Macro-Level Data Scatter Plot43 
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The scatter plot shows that there is no linear relationship between gallons and flying 

hours alone.  However, Figure 6 does clearly show that there are definite sub groups that 

graphically indicate linear relationships which are discussed later in the chapter.  The purpose of 

this section of the study is to develop a single macro-level model by introducing additional 

predictor variables that will explain actual fuel consumption data.  Figure 7 graphically illustrates 

the least squares estimated gallons in millions by the model’s predicted gallons in millions.  The 

least squares estimated gallons are arranged closely along the model’s predicted gallons 

regression line, demonstrating that our regression model predicts gallons well.  However, a 

closer look at the table of statistics reveals concerns about the soundness of the model. 
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Figure 7: Initial Least Squares Estimated Gallons by Predicted Gallons Plot44  

First, the focus of the table of statistics is the adjusted R2, F-test, t-tests, and variance 

inflation factor (VIF).  The adjusted R2 measures the model’s capability to predict the gallons.  

The adjusted R2 is preferred over the R2 because it compares across models with different 

numbers of parameters by using the degrees of freedom in its computation.45  The F-test 

determines the overall model significance and the t-test determines the significance of each 
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explanatory variable.  When the p-values are less than 0.05 the model or individual predictors are 

considered significant.  The VIF is a statistical measurement that tests for multicollinearity, or 

correlation between predictor variables.46  When the VIF is greater than or equal to 10, 

multicollinearity may exist and could decrease the fidelity of any given point prediction.47   

Table 2: Initial Single Macro-Level Table of Statistics48 
                
  Single Macro-Level Summary of Fit   
  RSquare 

    
0.89304   

  RSquare Adj 
    

0.89251   
  Root Mean Square Error 

   
10.48406   

  Mean of Response 
   

12.01761   
  Observations (or Sum Wgts) 

   
1422   

  Analysis of Variance (ANOVA)   
  Source 

 
DF Σ Squares µ Square F Ratio   

  Model 
 

7 1297698.2 185385 1686.618   
  Error 

 
1414 155420.5 110 Prob > F   

  C. Total 
 

1421 1453118.6   0.0000   
  Parameter Estimates   
  Term Estimate Std Error t Ratio Prob>|t| VIF   
  Intercept -1.82307 0.33588 -5.43 <.0001 --   
  Combat FH(K) 3.25529 0.03900 83.47 0.0000 1.21605   
  Training FH (K) 2.23308 0.07924 28.18 <.0001 22.60263   
  Total Sorties -0.00238 0.00010 -22.96 <.0001 20.24559   
  C-130H -18.39458 1.83450 -10.03 <.0001 1.04525   
  F-15C 14.56145 1.58155 9.21 <.0001 1.01293   
  T-1A -91.29420 4.75890 -19.18 <.0001 1.84264   
  Bombers/Tankers 13.58475 0.96535 14.07 <.0001 1.13089   
                
 

Table 2 presents the results of a potential model.  Combat and training flying hours, C-

130H, F-15C, T-1A, and the group Bombers/Tankers are the significant predictors.  The 

Bomber/Tanker group combines the B-1A, B-2B, B-52H, C-141B, C-17A, C-5A/B/C, and the 

KC-10A.  The adjusted R2 of 0.89 indicates that the model predicts gallons well and is not overly 

affected by the seven predictor variables selected.  The F and t-tests all show p-values that are 
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significant indicating that the overall model and individual predictor variables are statistically 

significant.  However, the training flying hours and total sorties predictors both report VIF values 

well above five suggesting multicollinerity (see Appendix C for predictor variables correlation 

matrix).   Because the training flying hours explain more of the variation, the total sorties 

predictor variable is eliminated from the model.  Figure 8 shows the new least squares estimated 

gallons in millions by the predicted gallons in millions without including total sorties.   
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Figure 8: Final Least Squares Estimated Gallons by Predicted Gallons Plot49  

After numerous iterations, no other predictor variables or interactions improve the 

adjusted R2 of 0.853 and maintain significant F and t-tests.  Table 3 reports the new table of 

statistics and shows that the VIF statistic for all six predictor variables are below five indicating 

that multicollinearity is no longer an issue.  The p-value is greater than 0.05 for the t-test 

indicating that the intercept is insignificant.  Therefore the final model is as follows: 
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Table 3: Final Single Macro-Level Table of Statistics50  
                
  Single Macro-Level Summary of Fit   
  RSquare 

    
0.85316   

  RSquare Adj 
    

0.85254   
  Root Mean Square Error 

   
12.28001   

  Mean of Response 
   

12.01761   
  Observations (or Sum Wgts) 

   
1422   

  
      

  
  Analysis of Variance (ANOVA)   
  Source 

 
DF Σ of Squares µ Square F Ratio   

  Model 
 

6 1239738.6 206623 1370.192   
  Error 

 
1415 213380.0 151 Prob > F   

  C. Total 
 

1421 1453118.6   0.0000   
  

      
  

  Parameter Estimates   
  Term Estimate Std Error t Ratio Prob>|t| VIF   
  Intercept -0.37809 0.38645 -0.98 0.3280 --   
  Combat FH(K) 3.18419 0.04554 69.92 0.0000 1.2083829   
  Training FH (K) 0.46814 0.02261 20.7 <.0001 1.3414849   
  C-130H -20.37252 2.14638 -9.49 <.0001 1.0429436   
  F-15C 12.33265 1.84898 6.67 <.0001 1.0091182   
  T-1A -28.32668 4.55575 -6.22 <.0001 1.2308578   
  Bombers_Tankers 18.50742 1.10248 16.79 <.0001 1.0751304   
                
 

The categorical predictors for the model are employed by inputting the counted number 

of MAJCOM representation by weapon system code (C-130H, F-15C, T-1A and 

Bombers/Tankers) that have programmed flying hours.  The Bombers/Tankers categorical 

variable is still employed even if one of the weapon systems (B-1A, B-2B, B-52H, C-141B, C-
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17A, C-5A/B/C, and KC-10A) has no flying hour representation.  For example, if the C-141B no 

longer has programmed flying hours but the other five WSCs are all represented by three 

MAJCOMs, then the input for the Bombers/Tankers variable is 15.  Before claiming the model 

useful to forecast the Air Force aviation fuel requirement, several diagnostics test are performed 

to ensure the assumptions of multiple linear regression are met. 

Single Macro-Level Model Statistical Significant Tests 

The regression model is sound if influential data points do not bias the selected 

explanatory variables and the tests for normality, constant variance, and independence are 

satisfied.  Figure 9 displays the Cook’s D influential statistic values on an overlay plot and 

reveals three influential data points.  The 2006 and 2007 C-17A in Air Mobility Command 

(AMC) and the 2000 T-37B in the Air Education and Training Command (AETC) are the three 

influential data points.  Although statistically influential, there are no logical reasons to exclude 

the three data points.    
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Figure 9: Single Macro-Level Model Test for Influential Data Points51 
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Figure 10 shows the gallons to flying hour relationship for the C-17A.  The stars 

represent the 2006 and 2007 data points.  There is no indication that the two C-17A data points 

are significantly different than the rest of the C-17A data with similar flying hours.  Figure 11 

shows that the C-17A from other MAJCOMs also follows along the same trend line.   
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Figure 10: C-17A Gallons to Flying Hour Relationship for AMC52 
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Figure 11: C-17A Gallons to Flying Hours Relationship across the Air Force53 
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The removal of data requires a sound explanation even if the Cook’s D test indicates 

influential data.  However, both Figure 10 and 11 illustrate that potential data entry errors are not 

plausible.  Figure 12 shows a nearly perfect relationship between gallons and flying hours for the 

T-37B, indicating that the outliers are likely a result of flying more hours than the typical 

weapon system in the data.  To remove the data would decrease the ability to effectively forecast 

the C-17A and T-37B fuel requirement.   
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Figure 12: T-37B Gallons to Flying Hours Relationship for AETC54 

The test for normality is determined by fitting a normal distribution about the residuals 

from the regression model.  Figure 13 displays the residual distribution and the fitted normal 

function.  The residuals are normally distributed when the p-value is greater than 0.05.  The p-

value of 0.00 indicates that the residuals are not normally distributed. 
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Figure 13: Single Macro-Level Model Normality Test55 

The natural log transformation is often a solution to solving normality violations if a 

curve linear relationship exists.  However, no curve linear relationship is evident in the data, thus 

the transformation did not correct the failure of normality.  Although the linear regression model 

predicts a point estimate for gallons well, the point estimate variation inferences are based upon 

the assumptions of normality and constant variance.  Thus, the range and probabilities associated 

with the variation of the model’s prediction are not valid. 

The tests for constant variance and independence are based upon an objective graphical 

view of the model residuals by the predicted gallons plot.  The visual conclusion is that the 

assumption of constant variance and independence both fail.  Figure 14 shows that the values for 

the residuals by predicted gallons are closely massed together with the minority fanning out.  

When constant variance and independence are present, the residuals are evenly distributed 

around the line 0.  The failure of all three assumptions indicates that linear regression is not the 

model to predict aviation fuel requirements at the macro-level.  However, the validation of the 

model’s predictive capability is assessed and the potential for sub macro-level models are 

analyzed. 
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Figure 14: Single Macro-Level Model Test for Constant Variance56  

Single Macro-Level Aviation Fuel Regression Model Validation 

To validate the prediction capability of the single macro-level regression model, a 

random sample of 20 percent of the data was excluded from the original model development.  

The excluded data is fed into the regression model to compare the predictions to the actual 

gallons consumed.  However, this validation is fundamentally flawed because the underlying 

assumptions of linear regression are not true.  Thus, the 95% prediction or confidence intervals 

are theoretically faulty.   

The difference between a prediction and confidence interval is important to understand.  

The confidence interval is the variation associated to the model’s linear regression line.  The 

prediction interval is the variation associated with any given predicted point estimate.  The 

predictability of any single point is far more uncertain than the fitted regression line.  For this 

reason, the prediction interval is always wider than the confidence interval.  Typically, validation 

tests use a prediction interval because the focus is on individual points estimates.   

The results are impressive but deceiving.  Of the 356 point estimates, 100% fell within a 

95 percent confidence interval and well within the 95 percent prediction interval.  At the macro-
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level, the model predicted a requirement of 4,428.27 million gallons versus the actual 

consumption of 4,486.18 million gallons, a difference of 57.91 million gallons, or only 1.29 

percent.  The lower and upper confidence levels are 3,998.79 and 4,857.75 millions of gallons 

respectively.  The range of uncertainty defined by the 95 percent confidence interval (three 

standard deviations) is 856.96 millions of gallons or plus or minus 9.7 percent of the prediction.   

The 95 percent prediction interval reveals the evidence of extreme or influential data 

points with a lower and upper bound of a negative 4,166.49 and 13,023.03 million gallons 

respectively.  This equates to a range of 17,189 millions of gallons or plus or minus 194.1 

percent of the prediction.  The range of uncertainty is unrealistic and meaningless rendering a 

lack of confidence in the point estimate.   The lower bound reveals the unrealistic nature of the 

model reporting a negative requirement for aviation fuel.  Although the results are impressive, 

the single macro-level model application is discouraged without caution or understanding of the 

underlying statistics.  For this reason, the research investigates potential sub macro-level models. 

Sub Macro-Level Aviation Fuel Regression Models 

The sub macro-level research attempts to group the data into like pools to alleviate the 

impact of influential data points and to satisfy the assumptions of linear regression.  Figure 15 

displays the same scatter plot shown in Figure 6, but identifies like sub-pooled groups of data.  

The same methodology is employed to each sub macro-level model and tested for the same 

underlying assumptions of linear regression.   
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Figure 15: Scatter Plot Sub Macro-Level Pooled Data57 

The Bomber and Tanker pooled group (B-1A, B-2B, B-52H, C-141B, C-17A, C-5A/B/C, 

and KC-10A) is the first set of data analyzed for a linear relationship.  Figure 16 displays the 

relationship between gallons consumed and flying hours showing an initial concern with outliers, 

the massing of data at the lower gallons consumed, and the variation increasing as more hours 

are flown.  The same concerns are prevalent in the single macro-level model.  However, the test 

for a linear relationship and the theoretical assumptions are conducted to determine if the sub-

level model is statistically significant.   
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Figure 16: Scatter Plot of the Bomber and Tanker Group58   

Figure 17 reports the least squares estimated gallons by the predicted gallons showing a 

strong relationship between gallons and flying hours with an adjusted R2 of 0.986.  Flying hours 

is the only significant explanatory variable when predicting gallons consumed explaining 

roughly 99 percent of the variation.  The final Bomber and Tanker model is displayed as: 
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Figure 17: Bomber/Tanker Least Squares Estimated Gallons by Predicted Gallons Plot59 

Table 4 displays the table of statistics with acceptable an F-test with a p-value less than 

0.05 and the VIF less than five.  Although the linear relationship is extremely strong, the 

theoretical assumptions of linear regression are tested for model soundness.  The tests for 

influential data points, constant variance, independence, and normality follow. 

Table 4: Bomber/Tanker Table of Statistics60 
Single Macro-Level Summary of Fit 
RSquare 

    
0.98567 

RSquare Adj 
    

0.98557 
Root Mean Square Error 

   
9.61852 

Mean of Response 
   

46.02283 
Observations (or Sum Wgts) 

   
149 

Analysis of Variance (ANOVA) 
Source 

 
DF Σ of Squares µ Square F Ratio 

Model 
 

1 935233.8 935234 10108.9 
Error 

 
147 13599.8 93 Prob > F 

C. Total 
 

148 948833.7   <0.0001 
Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| VIF 
Intercept 2.5394719 0.898863 2.83 0.0054 -- 
Flying Hours (K) 2.7548227 0.027399 100.54 <0.0001        1.0000  
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Sub Macro-Level Model Statistical Significant Tests 

Figure 18 reveals that the 2002 and 2003 C-17A in AMC are the two influential data 

points using Cook’s D influential statistic values on an overlay plot.  Although statistically 

influential, there are no logical reasons to exclude the two data points.  The C-17A data is 

influential because of the higher flying hours and gallons consumed compared to the rest of the 

data set.      
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Figure 18: Bomber/Tanker Model Test for Influential Data Points61  

When the influential data points are removed Table 5 shows insignificant change in the 

linear relationship or the parameter estimates.  A significant improvement in the adjusted R2 

would indicate that the C-17A data is causing the “lone ranger effect” or regressing two 

significantly separate clusters of data.  Essentially, regressing two different clusters of data is like 

regressing two data points.  However, the adjusted R2 drops 2.3 percent from 0.986 to 0.963 

indicating that the C-17A data points have a small improvement effect on the linear relationship.  

The initial parameter estimate of 2.755 only drops to 2.749 when the two C-17A data point are 
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removed.  The parameter estimates are virtually the same, indicating that the C-17A data falls on 

the same regression line as the majority of the data.  Thus, the C-17A data should remain in the 

dataset.          

Table 5: Bomber/Tanker Table of Statistics Excluding Influential Data Points62 
Single Macro-Level Summary of Fit 
RSquare 

    
0.96375 

RSquare Adj 
    

0.96345 
Root Mean Square Error 

   
9.23697 

Mean of Response 
   

34.06246 
Observations (or Sum Wgts) 

   
144 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| VIF 
Intercept 2.5639255 0.924818 2.77 0.0063 -- 
Flying Hours (K) 2.7492339 0.044742 61.45 <0.0001        1.0000  

 

The test for normality is determined by fitting a normal distribution about the residuals 

from the Bomber and Tanker regression model.  The residuals are normally distributed when the 

p-value is greater than 0.05.  The p-value of 0.00 indicates that the residuals are not normal 

distributed displayed in Figure 19. 
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Figure 19: Bomber/Tanker Macro-Level Model Normality Test63 
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Based upon an objective graphical view of the Bomber and Tanker model residuals by 

the predicted gallons plot in Figure 20, the visual conclusion is that the assumption of constant 

variance and independence both fail.  The residuals should follow an even distribution about the 

line 0 across both the x and y axis.  However, Figure 20 clearly shows the majority of the data is 

gathered at the lower end of the gallons predicted scale and then fans out abruptly.  Like the 

single macro-level model, the sub macro-level model does not solve the linear regression 

assumption failures of normality, constant variance, and independence.   Therefore, the variation 

inferences derived from linear regression are faulty.  However, the linear regression model is 

highly accurate at predicting gallons consumed as shown in the Bomber and Tanker model 

validation.   
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Figure 20: Bomber/Tanker Model Test for Constant Variance64 

Sub Macro-Level Aviation Fuel Regression Model Validations 

The same single macro-level model methodology is employed to validate the prediction 

capability of the Bomber and Tanker sub macro-level regression model.  Like the single macro-

level model, validation is fundamentally flawed because the underlying assumptions of linear 
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regression are not true.  However, the results are provided to show the predictive capability of 

the Bomber and Tanker model.   

Again, the results are impressive but deceiving.  Of the 42 point estimates, 100% fell 

within a 95 percent confidence interval and well within the 95 percent prediction interval.  At the 

macro-level, the model predicted a requirement of 1,732.03 million gallons versus the actual 

consumption of 1,817.47 million gallons, a difference of 85.44 million gallons or only 4.70 

percent.  The lower and upper confidence levels are 1,655.14 and 1,808.91 millions of gallons 

respectively.  The range of uncertainty defined by the 95 percent confidence interval (three 

standard deviations) is 153.77 millions of gallons or plus or minus 4.4 percent of the prediction.   

The 95 percent prediction interval reveals the evidence of extreme or influential data 

points with a lower and upper bound of 929.77 and 2,534.29 million gallons respectively.  This 

equates to a range of 1,604.51 millions of gallons or plus or minus 46.3 percent of the prediction.  

The range of uncertainty is unrealistic and meaningless indicating a lack of confidence in point 

estimate predictions.   Although the linear relationship is impressive, the Bomber and Tanker sub 

macro-level model application is discouraged without caution or understanding of the underlying 

statistics.   

Table 6 reports a summarized table of the six sub macro-level models and the single 

macro-level model.  The remaining five sub macro-level models have strong linear relationship 

but fail the theoretical assumptions of linear regression.  Appendix B displays the graphical 

linear regression assumption test results of all six sub macro-level models.  The single macro-

level model predicted the actual aviation fuel gallons consumed better than the summation of the 

six sub macro-level models.  However, the variation of the single macro-level model is over four 
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times wider than the sub macro-level model.  Both models are potentially useful to provide 

secondary estimates to aviation fuel requirements.   

Table 6: Summary of Linear Regression Models  
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The failure of the theoretical assumptions indicates that linear regression is not the ideal 

method to forecast aviation fuel requirements.  Although the sub and single macro-level models 

predict the actual gallons consumed well, the forecasted point estimate is highly uncertain due to 

the failure of fundamental linear regression assumptions.  Further analysis was conducted to 

separate the data into categories according to the number of flying hours.  This produced 

favorable results for weapon systems that flew over 10 million hours, producing a statistically 

significant model that met linear regression assumptions.  However, the model proved 

incomplete as the lower flying hour data points did not realize statistically significant models or 

pass the linear regression assumptions.  Thus, pooling time series data to employ linear multiple 

regression is not the preferred model building method to forecast aviation fuel requirements.       

Chapter Summary 

This chapter provides the results of applying the methodology to 1,778 pooled data points 

of gallons consumed by weapons systems.  The methodology is applied first to a single macro-

level model which perfectly predicts gallons within a 95 percent confidence interval.  However, 

the underlying assumptions of the single macro-level linear regression model are faulty.  For this 

reason, the data is divided into sub-pooled sets and the methodology is reapplied.  The sub 

macro-level models also perfectly predict gallons within a 95 percent confidence interval.  

Unfortunately, the sub macro-level model also suffers from the same shortcomings, failing the 

tests of normality, constant variance, and independence.  Although both models prove valid as 

capable prediction models based upon a 95 percent prediction and confidence interval, the 

statistics that provide the basis for the variation calculations are not founded upon sound linear 

regression assumptions.  Thus, the application of the single and sub macro-level linear 
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relationship models application is discouraged without caution or understanding of the 

underlying statistics.  Chapter Five summarizes and concludes this research effort. 
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V. Conclusion 

Chapter Overview 

This chapter summarizes the findings and conclusions of developing a model to forecast 

aviation fuel requirements using pooled times series analysis.  Chapters One, Two, and Three are 

summarized and a summary of the results of Chapter Four are presented.  Finally, the limitations 

of this research are presented and recommendations are provided for future research efforts.   

Research Summary 

Chapter One introduces the AFCAA search for a macro-level model that will forecast the 

United States Air Force (USAF) aviation fuel requirement.  The AFCAA would like a macro-

level model that will provide a cross-check to current aviation fuel estimates or potentially 

replace the current technique employed.  In the wake of volatile aviation fuel prices and the 

USAF’s dependency on foreign oil, a macro-level model will provide the AFCAA with a 

forecasting model to conduct alternative fuel source comparisons.  The chapter concludes with 

the AFCAA desire for this research to determine if pooled time series analysis can develop a 

macro-level model to forecast the baseline Air Force aviation fuel requirement for alternative 

fuel source comparison studies.   

Chapter Two describes the United States and USAF’s dependency on foreign oil and the 

vulnerabilities associated when competing for a global finite resource.  A brief summary of 

potential alternative fuel sources are reviewed.  The chapter then focuses on existing methods or 

techniques to forecast aviation fuel requirements.  Finally, the Coast Guard’s pooled time series 

analysis ship and aviation forecasting model is examined for applicability to forecasting Air 

Force aviation fuel requirements. 
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Chapter Three describes the pooled time series analysis methodology used by the Coast 

Guard to develop mathematical relationships to forecasts aviation and ship fuel requirements.  

An explanation of the data preparation and pooling technique is provided.  The chapter 

introduces the potential explanatory variables used in the regression analysis, and describes the 

theoretical tests necessary to claim a statistically significant model.  The chapter continues by 

explaining the methodology used to validate the predictive capability of a theoretically sound 

model.  Finally, the method to assess the risk and uncertainty of model predictions is explained. 

Chapter Four presents the results of the pooled times series analysis methodology applied 

to 1,778 pooled data points of gallons consumed by weapons systems.  Two models are 

developed and explained.  The first is the single macro-level model which perfectly predicts 

gallons within a 95 percent confidence interval.  The second is the sub macro-level model which 

also perfectly predicts gallons within a 95 percent confidence interval.  The chapter explains that 

both models predicted actual historical consumption well, however, both model’s failed the 

underlying assumptions of linear regression.  For this reason, the single and sub macro-level 

linear relationship models application is discouraged without caution or understanding of the 

underlying statistics. 

Model Application and Limitations 

The application of either the single or sub macro-level model to forecast aviation fuel 

requirements is discouraged.  Both models suffer from the same statistical limitations in that the 

underlying assumptions of linear regression are violated.  However, applying the models as a 

cross-check to current aviation fuel requirement estimates will provide another layer of 

validation to the both model’s predictive capability.         
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Future Research 

The research indicates that linear multiple regression, even when pooling the data, is not 

the best method to develop a macro-level aviation fuel requirements model.  Further analysis to 

find better explanatory variables may produce favorable results using linear regression.  As 

stated earlier in Chapter Two, the AFCAA’s 1998 fuel consumption cost estimating relationship 

study reveals other possible explanatory variables that may better predict aviation fuel 

consumption when employing pooled times series analysis.  Future investigations of other 

potential methodologies are worth researching such as maximum likelihood regression or non-

linear estimation techniques. 

Conclusions 

This research developed a macro-level model that predicted aviation fuel requirements 

well using a pooled time series analysis methodology.  The validation tests proved impressive as 

the model predicted historical gallons consumed 100 percent of the time within a 95 percent 

confidence and prediction interval.  The results are impressive but deceiving for two major 

reasons.   

First, although the macro-level regression model predicts historical aviation fuel 

requirements well, the theoretical assumptions for linear regression fail.  The underlying linear 

regression assumptions of normality, constant variance, and independence are the foundation to a 

statistically significant liner regression model.  The macro-level model fails the three 

assumptions, thus bringing into question the accuracy of individual predictions for future gallon 

consumption requirements.  Although the validation tests report that the models predict historical 

gallons consumed 100 percent of the time within a 95 percent confidence and prediction interval, 

both intervals are based upon the same test failures essential to linear regression.  Thus, the 
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validation results are fundamentally faulty.  The research investigated the potential of breaking 

the macro-level pooled data into sub macro-levels to correct for the linear regression assumption 

failures.  However, the sub macro-level models revealed the same theoretical failures indicating 

that linear regression is not the ideal methodology to develop a model to predict aviation fuel 

requirements.   

Second, the confidence and prediction intervals provide the basis to conduct uncertainty 

and risk analysis.  However, the standard deviation or variance statistics that determine the 

intervals are only valid if the fundamental assumptions of linear regression are satisfied.  Thus, 

using the mean and standard deviation parameters for a Monte Carlo simulation to determine the 

quantitative uncertainty or risk in the models predictions is fundamentally flawed.  Therefore, the 

research concludes that the application of either the single or sub macro-level models is 

discourage without proper understanding of the underlying statistics provided.     



 

43 
 

 

Appendix A: Categorical Predictors 

Table 7: Detailed List of Categorical Predictors 
Weapon System Codes (WSC)

1 A-10A 20 C-20A 39 E-4B 58 HC-130P 77 RC-135W
2 AC-130H 21 C-20B 40 E-8C 59 HH-60G 78 RQ-4A
3 AC-130U 22 C-21A 41 EC-130E 60 KC-10A 79 T-37B
4 AT-38B 23 C-22B 42 EC-130H 61 KC-135D 80 T-38A
5 B-1B 24 C-26A 43 EC-135K 62 KC-135E 81 T-38C
6 B-2A 25 C-26B 44 EC-135N 63 KC-135R 82 T-39B
7 B-52H 26 C-32A 45 F-117A 64 KC-135T 83 T-6A
8 C-12C 27 C-32B 46 F-15A 65 LC-130H 84 TC-130H
9 C-12F 28 C-37A 47 F-15B 66 MC-130E 85 TC-135S
10 C-12J 29 C-38A 48 F-15C 67 MC-130H 86 TE-8A
11 C-130E 30 C-40B 49 F-15D 68 MC-130P 87 U-2S
12 C-130H 31 C-40C 50 F-15E 69 MH-53M 88 UH-1N
13 C-130J 32 C-5A 51 F-16A 70 MQ-9A 89 UH-1V
14 C-135B 33 C-5B 52 F-16B 71 NC-130H 90 VC-25A
15 C-135C 34 C-5C 53 F-16C 72 NKC-135E 91 WC-130H
16 C-135E 35 C-9A 54 F-16D 73 OA-10A 92 WC-135C
17 C-141B 36 C-9C 55 F-22A 74 OC-135B
18 C-141C 37 E-3B 56 F-4F 75 RC-135U
19 C-17A 38 E-3C 57 HC-130N 76 RC-135V

Major Commands (MAJCOMs) Mission Type
1 Air Combat Command (ACC) 1 Bombers
2 Air Education and Training Command (AETC) 2 Fighters
3 Air Force Materiel Command (AFMC) 3 Command and Control
4 Air Force Reserve Command (AFRC) 4 Combat Search & Rescue
5 Air Force Space Command (AFSPC) 5 Electronic Warfare
6 Air Force Special Operations Command (AFSOC) 6 ISR
7 Air Mobility Command (AMC) 7 Special Operations
8 Air National Guard (ANG) 8 Strategic Lift
9 Pacific Air Force (PACAF) 9 Tactical Lift
10 United State Air Force in Europe (USAFE) 10 Tanker

11 Trainer
Weapon System Type

1 Bombers
2 Fighters
3 Helicopters
4 Reconnaissance
5 Special Duty
6 Trainers
7 Tanker Transport
8 Unmanned Aerial Systems  
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Appendix B: Statistical Tests for the Sub Macro-Level Models 
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Figure 21: Sub Macro-Level Models Predicted by Actual Gallons Plot65 
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Figure 22: Sub Macro-Level Models Test for Influential Data Points66  
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Figure 23: Sub Macro-Level Models Test for Normality67  
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Figure 24: Sub Macro-Level Models Test for Constant Variance68 
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Appendix C: Correlation Matrix for Macro-Level Model 

Table 8: Correlation Matrix for Predictor Variables69 
Correlation 
Maxtrix 

Combat 
FH(K) 

Training 
FH(K) 

Total 
Sorties C-130H F-15C T-1A 

Bombers/ 
Tankers 

Combat FH(K) 1.000 0.278 0.296 0.171 (0.018) (0.014) 0.233 
Training FH(K) 0.278 1.000 0.960 0.079 0.044 0.410 0.006 
Total Sorties 0.296 0.960 1.000 0.099 0.064 0.247 (0.038) 
C-130H 0.171 0.079 0.099 1.000 (0.029) (0.013) (0.054) 
F-15C (0.018) 0.044 0.064 (0.029) 1.000 (0.015) (0.063) 
T-1A (0.014) 0.410 0.247 (0.013) (0.015) 1.000 (0.027) 
Bombers_Tankers 0.233 0.006 (0.038) (0.054) (0.063) (0.027) 1.000 
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Figure 25: Macro-Level Model Correlation Matrix Scatter Plot70 
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