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ABSTRACT

The SRI speaker recognition system for the 2010 NIST speaker
recognition evaluation (SRE) incorporates multiple subsystems with
a variety of features and modeling techniques. We describe our
strategy for this year’s evaluation, from the use of speech recogni-
tion and speech segmentation to the individual system descriptions
as well as the final combination. Our results show that under most
conditions, the cepstral systems tend to perform the best, but that
other, non-cepstral systems have the most complementarity. The
combination of several subsystems with the use of adequate side
information gives a 35% improvement on the standard telephone
condition. We also show that a constrained cepstral system based on
nasal syllables tends to be more robust to vocal effort variabilities.

Index Terms— speaker recognition, prosody, high-level model-
ing, system fusion.

1. INTRODUCTION

The NIST SRE 2010 evaluation introduced several challenges com-
pared to earlier SREs. In addition to the variability in speech genre
and microphones found in SRE08, the SRE10 core evaluation con-
dition included speech samples of varying lengths, and vocal effort
was introduced as a dimension of intrinsic variability. Moreover, the
decision cost function (DCF) was redefined to favor a new operating
point aimed at lower false alarm (FA) rates. The new cost function
(termed “newDCF” here) made each FA 1000 times more costly than
a miss error. (We use “oldDCF” to refer to the SRE08 definition for
which the cost ratio was only 10 to 1.) In order to achieve stable
results at very low false alarm rates, anextended evaluation set was
defined, containing an order of magnitude more trials than the orig-
inal set, or about 6 million. The large evaluation set in turn made
efficient scoring methods a necessity.

SRI submitted two systems to SRE10. SRI1 is a static score-
level fusion of three cepstral Gaussian mixture model (GMM) sys-
tems, one system based on maximum likelihood linear regression
(MLLR) transforms, one prosodic system, and one word N-gram
system. SRI2 is an enhancedsystem that adds a constrained cepstral
GMM system, as well as a score combiner that uses signal-to-noise
ratio and amount of detected speech as side information. The SRI
submissions were among the best-performing systems in SRE10.

2. COMMONALITIES

This section describes aspects of our system that were common to all
speakermodeling subsystems,as well as the system fusion approach.
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2.1. Design of the development set

A set of 82 interview speakers (48 females and 34 males) from
SRE08 (both original and follow-up evaluation) was set aside as
additional training data. A development set was created using the
remaining SRE08 data. For each original condition from SRE08,
an extended set was created by pairing every available model with
every available test sample (except where model training and test
sample came from the same recording session). No additional mod-
els were created, and only samples originally used for testing were
used for testing in the extended development set.

Here, we use the following notation for the trial conditions:
trainDuration-testDuration.trainStyle-testStyle.trainChannel-testChannel,
where� Duration: short (shrt) or long (long)� Style: telephone (tel) or interview (int)� Channel: telephone (phn) or alternate microphone (mic)

For the shrt-shrt.tel-tel.phn-phn condition, the target trials were
restricted to be the target trials as defined by NIST. Trials for the
short-long condition (not found in SRE08) were created by using
the long-long condition and replacing the training data with a long
sample from the same speaker using the same microphone. Table 1
gives a summary of the created trials by condition, as well as the
mapping to SRE10 conditions. This mapping, which in some cases
constituted an imperfect match, was used for to training combination
parameters for SRE10 based on data from SRE08. Note that we
redefined “long” as an utterance of up to eight minutes of interview
speech, to match the SRE10 condition, using the first eight minutes
of the long samples in SRE08.

2.2. Waveform preprocessing and segmentation

For both telephone and microphone recordings, utterances were
segmented into short segments containing mostly speech, using a
speech/nonspeech Hidden Markov Model (HMM) decoder and var-
ious duration constraints. For interview recordings, we used a more
complex algorithm to suppress cross-talk from the interviewer’s
speech. The algorithm incorporated elements from LPT’s 2008 pro-
cessing [1], using the NIST-provided automatic speech recognition
(ASR) output for interviews. The steps were as follows.

1. Segment the interviewee channel into speech segments ac-
cording to the NIST ASR output.

2. Segment the interviewee channel with speech/nonspeech
models trained on distant-microphone meeting speech (from
our NIST RT-07 evaluation system), and remove regions that
have ASR output for the interviewer.

3. Intersect the segments from steps 1 and 2.

4. Choose segmentation from step 3 if it comprises at least 40%
of the original waveform duration; or, use output from step 1
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Table 1. Development conditions, the number of trials, and the SRE10 conditions used as training data for the combiner.

DEV Condition # target trials # impostor trials SRE10 conditions(* means any value for that setting)

long-long.int-int.mic-mic 9,774 319,956 long-long.int-int.mic-mic
long-shrt.int-int.mic-mic 32,248 1,054,592 long-shrt.int-*.mic-mic
long-shrt.int-tel.mic-phn 1,362 754,729 long-shrt.int-tel.mic-phn
shrt-long.int-int.mic-mic 10,234 336,437 shrt-long.int-int.mic-mic
shrt-shrt.int-int.mic-mic 33,743 1,108,882 shrt-shrt.*-*.mic-mic
shrt-shrt.int-tel.mic-phn 1,459 797,812 shrt-shrt.int-tel.mic-phn
shrt-shrt.tel-tel.phn-phn 1,108 1,453,237 shrt-shrt.tel-tel.phn-phn

if it comprises at least 40% of the original waveform; other-
wise, use output from step 2.

5. Merge segments separated by no more than 0.5s and pad with
0.04s at the start and end of the merged segments.

2.3. Speech recognition system

Several of the speaker verification models described below relied
on word and sub-word recognition hypotheses obtained by ASR.
We used a fast version of SRI’s conversational telephone recogni-
tion system with modifications for the SRE data. With this method,
the first recognition pass generated lattices using a bigram Language
Model (LM) and acoustic models based on MFCC features with
fMPE transforms, augmented with MLP phone posterior features.
The lattices were then rescored with a 4-gram LM. A second recog-
nition pass used speaker-adapted fMPE-PLP models, generating N-
best lists that were then further rescored with pronunciation and du-
ration models. The acoustic models were trained on Switchboard
and Fisher Phase 1 data (with additional text and web data for lan-
guage model training). Extra weight was given to nonnative Fisher
training data to achieve more balanced performance on nonnative
speakers. The word error rate on the transcribed portions of the
Mixer corpus was 23.0% for native speakers and 36.1% for non-
natives. Non-telephone (microphone) data was preprocessed with
the ICSI/Qualcomm Aurora Wiener filter implementation, and then
recognized with the telephone ASR system. The word error rate
measured on SRE06 alternate microphone data (transcribed at ICSI)
was 28.8.

2.4. Scoring mechanism

To deal with the extremely large trial set in SRE10, as well as with
the development set of similar size, all the systems described in Sec-
tion 3 used a dot-product-like approach for computing verification
scores. We found that regardless of the number of training and test-
ing utterances, performing the full matrix scoring (i.e., scores from
all models against all test utterances) was always faster. The use of
optimized linear algebra libraries, such as BLAS, was critical to that
end. All systems based on the JFA paradigm used the fast likelihood
computation described in [2]. The support vector machine (SVM)
systems all used a linear kernel, which can be evaluated as a dot
product by appending the model hyperplane offset to the hyperplane
vector, and a constant 1 to the test feature vector.

2.5. System combination

The combination of systems was performed using linear logistic re-
gression separately for each condition, as given in Table 1. In addi-
tion, the SRI2 system use the method proposed in [3] to use side-
information, specifically to compensate for score biases as a func-

tion amount of speech and SNR of the signals. SNR was computed
on each session and thresholded at 15 dB to generate two categories:
“low” and “high” SNR. Similarly, the number of words in the session
was obtained by ASR and thresholded at 200 to generate two cate-
gories: “short” and “long” sessions. Finally, the category for each
trial was define as the cross-product of the word-count and SNR cate-
gories for the training and test sessions, creating a total of 16 possible
categories. A regularization parameter encouraged small category-
dependent weights. After combination, the scores were assumed to
be calibrated likelihood ratios. Therefore, a fixed threshold, given by
the theoretically optimal value for the target DCF, was used to make
hard detection decisions.

3. INDIVIDUAL SYSTEM DESCRIPTIONS

In this section we describe the component subsystems and their as-
sociated speaker modeling approaches.

3.1. Cepstral GMM-JFA systems

3.1.1. Standard cepstral system: cep

The cepstral GMM system used a 300-3300 Hz bandwidth fron-
tend, consisting of 24 Mel filters to compute 20 cepstral coefficients
and their delta and double delta coefficients, producing a 60 dimen-
sional feature vector. The resulting features were mean and variance
normalized over the utterance. The feature vectors were modeled
by a 1024-component, gender-independent GMM. The background
GMM was trained using data from the SRE04, SRE05, and SR08 de-
velopment data. We used a full Joint Factor Analysis model (JFA) in
which 600 eigenvoices were trained using SRE data from 2004 and
2005, and the Switchboard-II corpus. By training two subspacessep-
arately on telephone and interview data, 500 eigenchannels were ob-
tained. The diagonal term was trained with the same data as speaker
factors. Scores were normalized using gender-dependent ZTnorm.

3.1.2. Nasal syllable constrained cepstral system: nasals

The SRI submission contained a single constrained cepstral sys-
tem [4] that uses features computed as in 3.1.1 but restricted to
frames occurring in syllables that contained the recognized phone
[n] or [ng]. Syllables were based on an automatic maximum-onset-
based cross-word syllabification of ASR output. The resulting
frames comprised about 18% of the total speech-aligned frames
used in the standard system. UBM, JFA parameters, and score
normalization techniques were the same as for the standardcep
system.



Table 2. Results of the SRI submission and subsystems on the required core conditions of NIST SRE 2010 extended set. Results are given as
newDCF/oldDCF

# Condition cep plp foc mllr ngram nasals pros SRI 1 SRI 2
1 Int SameMic .43/.09 .67/.16 .50/.10 .58/.26 1./.93 .67/.27 1./.60 .36/.06 .33/.05
2 Int DiffMic .51/.13 .71/.24 .61/.17 .68/.35 1./.95 .81/.41 1./.71 .44/.10 .42/.10
3 Int Tel .47/.14 .61/.21 .61/.18 .54/.26 1./.95 .84/.38 1./.74 .30/.10 .28/.08
4 Int Mic .39/.11 .51/.17 .46/.13 .50/.23 1./.94 .67/.28 1./.56 .24/.07 .22/.07
5 Tel Tel .47/.14 .47/.14 .57/.16 .47/.18 1./.90 .73/.32 .99/.62 .31/.09 .29/.08
6 Tel High Vocal Effort .83/.26 .80/.24 .86/.30 .99/.32 1./.91 .91/.48 1./.88 .72/.17 .71/.17
7 Mic High Vocal Effort .90/.24 .88/.33 .87/.28 .88/.35 .99/.87 .86/.40 1./.91 .87/.23 .81/.21
8 Tel Low Vocal Effort .45/.11 .53/.13 .62/.15 .65/.17 1./.90 .76/.33 .99/.65 .33/.07 .32/.07
9 Mic Low Vocal Effort .27/.06 .39/.11 .33/.07 .31/.11 1./.89 .67/.19 .95/.38 .17/.05 .17/.04

3.1.3. Class-dependent cepstrum: foc

This second MFCC-based system differed with respect tocep by its
use of gender-dependent UBM models, eigenvoices, and eigenchan-
nels, and by eliminating the JFA diagonal term. Another difference
was that the ZTnorm process was condition-dependent, in the sense
that normalization data was matched to the target testing condition.
For example, for the long-shrt.int-tel.mic-phn condition, Tnorm used
only short telephone data, while Znorm used only interview data.
This approach proved useful in all conditions except for the tel-tel
condition, for which it seemed that the more data, the better the re-
sult. Condition-dependent eigenvoices and eigenchannels gave no
gains.

3.1.4. Class-dependent PLP-SAT cepstrum: plp

This system used the exact same setup asfoc. However, the input
features were generated by the PLP frontend of the ASR system.
After 13 PLP feature were computed, the first, second, and third
derivatives were appended, and the following normalizations and
transformations were applied: vocal tract normalization; mean and
variance normalization; LDA; MLLT (from 52 dimensions to 39);
and a feature transform estimated by constrained MLLR, as used in
speaker-adaptive training (SAT). These feature normalizations used
gender-dependent reference models and transformations. The fron-
tend was optimized for telephone ASR.

3.2. MLLR-SVM system: mllr

The MLLR-SVM system used the speaker adaptation transforms
from the speech recognition system as features for speaker verifi-
cation. A total of 16 affine 39x40 transforms were used to map
the Gaussian mean vectors from speaker-independent to speaker-
dependent speech models; eight transforms each were estimated
relative to the male and female recognition models, respectively.
The within-speaker variance was estimated on SRE04 telephone
data, SRE05 microphone data, SRE08 and SRE10 sample data, and
SRE08 speakers designated for training. The impostor (background)
data for SVM training was from SRE06 telephone and microphone
sessions, as well as from SRE08 data designated for training. For
more details on MLLR-SVM modeling, see [5].

3.3. Word N-gram SVM system:ngram

This system used the relative frequencies of word N-grams as a
sparse feature vector, and SVMs as speaker models. The impos-
tor/background data was drawn from SRE04 and SRE05, plus

SRE08 data reserved for training. The 9000 most frequent word bi-
grams and trigrams from the training data were included as features.
No score normalization was applied.

3.4. Prosodic system:pros

The prosodic system was composed of a total of 10 individual sys-
tems combined at the score level with fixed weights. All individual
systems used the same type of feature: the coefficients of the Leg-
endre polynomial approximation of order 5 of the pitch and energy
signals over a certain region, plus the duration of the region [6]. The
region definition varied across systems. Additionally, some systems
modeled sequences of two consecutive feature vectors [7]. Each in-
dividual system was modeled in a gender-dependent way using JFA,
with 50 channel factors and 100 speaker factors. The three region
definitions are: (1) Energy-valley regions: defined by the valley in
the energy profile restricted to voiced regions; (2) Syllable regions:
defined by automatic syllabification of the phone alignments pro-
duced by our speech recognizer; (3) Uniform regions: defined over
speech regions to shift by a fixed amount of frames (15) and be of
a fixed frame length (30). The Uniform regions definition was in-
spired by the work in [8]. For the first two regions, four systems were
created: System (1) for the features over the nonpause regions (uni-
grams); System (2) for the concatenatedfeatures of two, consecutive,
nonpause regions (ff bigrams); System (3) for the duration of a pause
concatenated with the features of the following nonpause region (pf
bigrams); and System (4) for the features of a nonpause region con-
catenated with the duration of the following pause (fp bigrams). For
the Uniform regions definition, we found that Systems (3) and (4)
added nothing to the overall combination; hence, only Systems (1)
and (2) were used for these regions. The 10 systems were combined
by giving a weight of 1.0 to the unigrams and the ff bigrams, and a
weight of 0.5 to the pf and fp bigrams. The weights for the syllable
region scores were set to half of those weights. These weights were
obtained by first training a combiner using logistic regression and
then performing a very rough exploration of manual weights that led
to similar results. Pitch and energy features signals for each con-
versation side were obtained using theget f0 code from the freely
available Snack toolkit [9]. The waveforms were preprocessed with
a bandpass filter (250-3500 Hz) to make the spectral content of all
channels similar to that of the telephone bandwidth.



Fig. 1. N-best combination system results on Condition (from left
to right, top to bottom, 2 3 4 5 6 7. The overall newDCF (with 7
subsystems) appears in the upper left corner of each table. While not
appearing as the best subsystemindividually, high-level systems like
mllr andnasal are key to the overall performance.

4. SPEAKER DETECTION RESULTS

4.1. Standalone results

Table 2 shows the results of the SRI submission and subsystems on
the core conditions in the SRE10 extended set. The reader should
refer to the NIST evaluation plan [10] for a more detailed description
of the conditions.

First, on the traditional tel-tel condition, both the SRI1 and
SRI 2 combinations outperformed the individual systems by approx-
imately 35%. We also note that SRI2 outperformed SRI1 by ap-
proximately 5%, which reflects the addition of the SNR and the word
count as side information, and the nasals system. The standard cep-
stral systemcep performed the best for most conditions. However,
the plp system has an advantage for the conditions involving tele-
phone data, possibly because its ASR frontend based was optimized
and trained for telephone speech. The combination of these two sys-
tems resulted in significant gains (not shown here for lack of space).
Thenasals system placed first for Condition 7—outperforming the
standard JFA system—and, for Condition 6, gave better results than
the MLLR system. While using 18% of the data, the nasal sylla-
ble regions seemed relatively robust to high vocal effort. A more
detailed study of this phenomena seems in order.

4.2. N-best combination results

The previous section has highlighted the results of individual sys-
tems, but the key for good overall performance is identifying mod-
els that give complementary information. Figure 1 illustrates results
from oracle-basedN -best combination to get the best performance,
with N from 1 to 4 on Conditions 2 to 7. Here, an interesting trend
appears, in which the cepstral systems—while usually showing the
best results—were not the second choice in combination. Indeed,
the mllr system was usually the second best for most conditions.
The prosodic system helped most for Condition 4, while the word
N-gram system helped for Conditions 5 and 6.

5. CONCLUSIONS

The SRI submissions for NIST SRE 2010 were composed of sev-
eral subsystems using both low- and high-level features. We showed
that the GMM/JFA based systems tended to perform best for most
test conditions. A PLP-based system, using a telephone speech ASR
frontend, tended to outperform the classic MFCC system for tele-
phone data. The MLLR-SVM system had very good performance
in terms of newDCF (relative to oldDCF) and gave excellent gains
in combination with the frame-based cepstral systems. The nasal-
syllable constrained cepstral system was especially useful for the
high-vocal effort conditions, and even outperformed the standard
JFA system in one condition. We also found that using SNR and
word count as side information (in addition to the evaluation condi-
tion) for the combiner yielded gains over a static combiner.
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