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NOMENCLATURE 

 

A , characteristic drainage constant, /m s  

pa , cross-sectional area of channel (Plateau border), 2m  

B , characteristic drainage constant, 2 /m s  

1C , integration constant 

2C , integration constant 

vc , parameter to account for the mobility of channel walls; defined as the ratio of the average 
liquid velocity in a given channel with mobile walls to the average liquid velocity in the 
same channel if the walls are immobile, dimensionless 

bD , diameter of a bubble, m  

Ex , foam expansion ratio, dimensionless 

G , geometrical constant equal to (15 7 5) / 4 7.66+ ≈ , dimensionless 

g , gravitational acceleration, 29.8 /m s  

H , height of foam column, m  

fh , height of moving boundary at the top of the foam, m  

0fh , initial height of the top of the foam, m  

wh , height of the moving boundary at the top of the liquid layer beneath the foam, m  

0wh , initial height of the top of the liquid layer beneath the foam, m  

L , channel (Plateau border) length, m  

dM , mass of liquid drained from the foam, kg  

pn , number of channels (Plateau borders) per bubble, # 

gP , pressure of gas in bubble, Pa  
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lP ,  pressure of liquid in a channel (Plateau border), Pa  

r , radius of curvature of the interface between a gas bubble and a liquid channel, m  

R , radius of cylindrical foam column, m  

S , cross-sectional area of foam column, 2m  

t , time, s  

0t , initial time, s  

indt , induction time, s  

fillt , time required to fill a column with foam, s  

bV , volume of gas within a bubble, 3m  

dV , volume of liquid drained from a foam, 3m  

v , liquid velocity within a channel averaged over the cross-section of a channel (Plateau 
border), /m s  

v , liquid velocity within a channel averaged over the height of the foam layer, /m s  

injv , injection velocity of foam, /m s  

sv , superficial liquid velocity, /m s  

z , vertical coordinate along the height of the foam column, m  

 

GREEK SYMBOLS 

 

α , liquid volume fraction of foam, dimensionless 

α , liquid volume fraction of foam averaged over the height of the foam layer, dimensionless 

fα , liquid volume fraction of foam injected into foam column, dimensionless 

wα , liquid volume fraction at the interface between the foam and drained liquid layers, 
dimensionless 

γ , surface tension, 0.0225 /N m  
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δ , model constant equal to approximately 0.21 , dimensionless 

aδ , model constant equal to 3 / 2 0.161π− ≈ , dimensionless 

η , reciprocal (multiplicative inverse) of α , dimensionless 

θ , model constant for comparing foam drainage models, dimensionless 

µ , viscosity of liquid, 0.000893 /kg ms  

ξ , permeability coefficient, dimensionless 

ρ , mass density of liquid, 3997 /kg m  

Φ , generic function in the standard form of a linear ordinary differential equation 

ψ , generic integration factor used in the analytical solution of a linear ordinary differential 
equation 

Ω , generic function in the standard form of linear ordinary differential equation 
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Liquid Loss from Advancing Aqueous Foams with Very Low Water Content 

 

1.0 INTRODUCTION 

Filling a space with foam is an essential part of foam applications. One filling method is 
to apply foam directly onto a surface from above, where fresh foam is added to the top of the 
advancing foam bed. This method of filling is used, for example, in fire-suppression 
applications. To suppress fires in contained spaces such as warehouses, hangar bays, and 
obstructed areas, aqueous foams with very low water content are applied from foam 
generators located near the ceiling, quickly filling the space. In addition, aqueous foams with 
greater liquid content are sprayed on top of flammable liquids to suppress pool fires and build a 
foam bed above the pool to prevent re-ignition. 

Another method of filling a container with foam is by introducing gas bubbles into a 
liquid solution containing surfactants. The gas bubbles rise to the surface of the liquid solution, 
forming a foam bed above the liquid. In this case, the fresh foam is added to the bottom of the 
column. Examples of applications employing this method include foam fractionation used by 
pharmaceutical and food industries for protein separation, and froth flotation used by the 
mining industry for mineral separation. 

The loss of liquid from foam, also called foam drainage, has a crucial impact on its 
effectiveness in applications. The dominant force responsible for drainage is gravity, which acts 
on the foam from the moment it is generated. However, most drainage models describe the 
drainage of liquid from foam by starting with a stationary foam column of fixed height. This 
approach neglects the effect of gravity during an essential stage of foam applications, the filling 
process. Significant liquid loss could occur over the filling time, which would ultimately alter the 
effectiveness of the foam. 

Modeling efforts aim to understand foam drainage by considering the flow of liquid 
through the foam. The liquid flow in foam depends on the geometry of the liquid contained in 
the interstitial space between foam bubbles. The foam bubbles take on shapes similar to 
polyhedra. In Figure 1, an illustration depicts a bubble shaped as a dodecahedron and the 
surrounding liquid structures: films, channels, and nodes. The films are thin sheets of liquid 
formed where the surfaces of two bubbles meet. The channels are formed at the intersection 
of three bubbles: channels are also called Plateau borders in honor of pioneer foam scientist J. 
A. F. Plateau. The cross section of a channel resembles a triangle with edges curved toward the 
interior. The channels can be considered as a network of pipes that allow liquid to flow through 
the foam. The junctions where the channels intersect are called nodes; and four channels meet 
at a single node. The dimensions of films, channels , and nodes depend on the bubble size and 
the liquid content of the foam. The amount of liquid contained in the foam can be quantified in 
terms of the foam expansion ratio ( )Ex : the ratio of the foam volume to the volume of liquid 
________________
Manuscript approved November 8, 2010. 
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solution used to form the foam; or the liquid volume fraction ( )α : the ratio of liquid volume to 
total foam volume (Note that 1/Ex α= ). 

 

Figure 1: Illustration of films, channels, and nodes for an idealized dodecahedral bubble. 

 

Most of the modeling and experiments on foam drainage have been performed on 
stationary foams with low expansion ratios. Leonard and Lemlich [1] modeled steady-state 
drainage from a foam fractionation column, where foam is continuously formed at the base of 
the column. The modeling approach, which is the basis for most models, involved a description 
of the liquid flow within the channels by considering forces due to gravity, variation in liquid 
(capillary) pressure along the height of the column, and viscous resistance to liquid flow. The 
latter varied with a parameter termed surface viscosity, which was used to quantify the 
mobility of the channel walls. 

Desai and Kumar [2] examined the semi-steady-state liquid fraction as a function of 
height within a column under similar conditions, including the loss of liquid from the films with 
time. The model contained channels with a simplified cross section, an equilateral triangle. A 
parameter was introduced to account for the mobility of the channel walls [3]. The effects of 
viscosity, surface viscosity, and input gas flow rate on the steady-state liquid-fraction profile 
were examined with experiments using the surfactants sodium lauryl sulfate (SDS), lauryl 
alcohol, and Teepol. The average, steady-state Ex  values ranged from about 10 to 100. 
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Ramani, Kumar, and Gandhi [4] proposed a model for drainage from a static foam 
column that accounted for the time-dependent drainage of films into nearly vertical and nearly 
horizontal Plateau borders, where gravity was a driving force only for the liquid contained in 
the nearly vertical channels. The model was compared with experiments using the surfactant 
SDS with 8Ex ≈  and bubble diameters less than 47 10 m−× . Podual, Kumar, and Gandhi [5] 
later changed the bubble geometry from dodecahedral to tetrakaidecahedral along with the 
channel orientation of the model, and the adjustments slightly improved the comparison with 
experiment for small bubble sizes. The experiments included foams with expansion ratios up to 
100 and bubble diameters up to 37 10 m−× . 

The model of Verbist [6] contained a foam drainage equation which included non-
steady-state variation in the cross-sectional area of the foam channels, allowing the liquid 
fraction of the foam to change with both position and time. The ability to calculate a time-
varying liquid fraction including the changing area of the channels allowed the model to study 
the free drainage problem: to describe drainage from a fixed-height column of foam with a 
liquid fraction that is initially uniform. The model viewed the foam channels as a set of 
independent vertical pipes with strictly immobile walls.  As in most recent models of drainage, 
the contribution of the films was neglected. Channels were considered in the equations for the 
conservation of liquid volume and momentum of the model, where an effective viscosity (about 
150 times that of water) was introduced to account for the cross-sectional geometry and 
random orientation of the channels. 

The approach of Koehler [7] viewed foam drainage as the flow of liquid through a 
porous medium, such as a filter. From this perspective, the proportionality between the flow 
rate of liquid through the foam and the pressure gradient that drives the liquid flow is 
determined by a permeability function, which depends on the local liquid fraction. The model 
calculations were compared with experimental results using the surfactant SDS and gaseous 
C2F6 to minimize the diffusion of gas between bubbles. The expansion ratio studied for free 
drainage from a static foam column was 200 and the bubble diameter was approximately 

34 10 m−× . The work suggests, in contrast to the model of Verbist, that the viscous effects could 
be predominantly acting in the nodes rather than the channels for foams with highly mobile 
walls. 

Magrabi et al [8,9] investigated free drainage from AFFF and FFFP compressed-air foams 
used in fire suppression. The foams initially had an expansion ratio of 20  and a bubble 
diameter of approximately 42.6 10 m−× . The model contained a wall mobility parameter similar 
to that of Desai and Kumar [2,3]. The work suggests that an effect not included in the model, 
the increase in average bubble size caused by gaseous diffusion between bubbles, could 
significantly increase the drainage rate in these foams after a few minutes. 

A few recent works have investigated forced and pulsed drainage. These processes 
involve the continuous and finite addition of liquid to the top of a foam, respectively. Drainage 
under these conditions has been studied by the non-steady-state models of Verbist [6] and  
Koehler [7]. In forced drainage, the liquid volume fraction becomes uniform behind a traveling 
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liquid front that moves through the foam at a constant velocity. As shown by the two studies 
[6,7], the front velocity displays different power-law dependence on the liquid fraction 
depending on the surfactant solution used. However, forced and pulsed drainage models do 
not apply to the case of filling a container with foam. 

Bhakta and Ruckenstein [10] have investigated filling a container with foam from the 
bottom, as in the process of foam fractionation. To account for the filling process, the model 
included a single moving boundary, the foam front, and considered the non-steady-state 
behavior of the liquid content within the foam. The experimental data of Germick et al [11] that 
included bubble diameters of about 33 10−×  m to 34 10−×  m were used for comparison. In the 
study, the effect of foam fill rate on the drainage rate was not investigated. 

In this work, we present theoretical analysis and experiments for drainage from a foam 
as it fills a container from above. We introduce to the drainage problem an additional time 
scale, the time required to fill the column with foam. This additional time scale changes the 
effect of drainage on the liquid fraction of the foam. Two moving boundaries are treated in the 
problem: the air/foam interface where foam is added at the top and the foam/liquid interface 
where the foam layer meets the drained liquid that collects beneath it. The height of the foam 
bed is therefore controlled by both the rate of foam injection and the rate of liquid drainage. 
We also treat free drainage as a special case of the model, wherein there is a single moving 
boundary at the foam/liquid interface. 

We focus our investigation on one type of aqueous foam used in practice for fire 
suppression generated with a surfactant designed for achieving high expansion (HiEx). The 
foams possess greater expansion-ratio values and bubble sizes than those investigated in most 
previous works. An important aspect of this work is that we provide analytical solutions for the 
liquid drained from the foam and the average liquid fraction of the foam as functions of time. 
The analytical solutions offer the ability to quickly predict drainage and to clearly understand 
how the various parameters influence the behavior. Similar to previous works, the model 
contains an adjustable parameter called a permeability coefficient that accounts for the 
geometry of the channels as well as the mobility of the channel walls. The solutions allow the 
permeability coefficient for a given foam to be calculated by fitting to experimental data. We 
show good agreement with experimental results by treating the permeability coefficient as a 
constant. We use the model to examine the effect of fill rate, expansion ratio, column height, 
and bubble size on the drainage behavior.  

 

2.0 MODEL 

Filling a container from above involves delivering fresh foam to the top of a growing 
foam bed, and the injection of foam is ceased when the container is full. Both during and after 
the filling period, liquid drains out of the foam and forms a liquid layer beneath the foam bed. 
During the process of drainage, bubble films empty a portion of their liquid to the surrounding 
channels. Liquid in the channels moves downward, passing through nodes into lower channels 
repeatedly as it makes its way out of the bottom of the foam. As the liquid content of the foam 
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diminishes, the films reduce in thickness, the nodes shrink in volume, and the cross-sectional 
area of the channels decreases. 

There are several physical factors that drive the flow of liquid in foam.  For the foams of 
interest, the forces governing fluid transport within the foam are not in an equilibrium state 
when the foam is generated. For foam with sufficient liquid content, the gravitational force is 
initially dominant for the liquid in the channels and nodes, driving liquid downward within the 
foam. Liquid flow can also be driven in a foam when there is a spatial variation in capillary 
pressure, the pressure difference between the liquid and gas at the curved surface of a bubble. 
The capillary pressure is caused by the surface tension at the interface of the two phases, gas 
and liquid, within the foam which acts to minimize the surface area of the interface. 

 

Figure 2: Surface tension force at the gas/liquid interface of a bubble. 

  

To see how surface tension gives rise to capillary pressure in a foam, consider the 
illustration of the curved gas/liquid interface at the surface of a channel in Figure 2. The surface 
tension force is directed along the surface and pulls at each end of a surface length element dl . 
The horizontal components of the surface tension acting on a surface length element dl  
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cancel, but the vertical components do not. The net force on each curved interface is directed 
toward the adjacent gas bubble and its magnitude is inversely proportional to the radius of 
curvature of the surface. The surface tension force therefore increases the pressure of the gas 
relative to the surrounding liquid by compressing the bubbles at the curved surfaces of the 
channels. The Young-Laplace law 

 g lP
r

P γ
− =  (1) 

provides a relation between the gas pressure, gP , and the liquid pressure, lP , that is valid at 
the gas/liquid interface. Note that the pressure of the liquid in the films approaches the 
pressure of the surrounding gas bubbles because the films are very flat, i.e. r  is very large. 

The curvature at the surface of channels can vary throughout different regions in a 
foam. Channels with more liquid have a larger radius of curvature, and therefore have a smaller 
capillary pressure, i.e. the liquid pressure gets closer to the gas pressure. In a draining column 
of foam, the liquid content at the top of the foam becomes smaller than that of the bottom. 
Hence, a gradient in the capillary pressure is established, which drives the flow of liquid. For a 
draining column, the flow due to the gradient in capillary pressure opposes the gravitational 
flow.  

Additionally, the flow of liquid through a foam depends on the degree of slip at the 
channel boundaries. Slip is a term used to describe the flow of liquid relative to its bounding 
surface; a no-slip condition in a channel means that the liquid velocity at the channel walls is 
zero. Slow or non-moving liquid at the walls causes a variation in liquid velocity (i.e. stress) 
across the channel cross section, giving rise to viscous drag that impedes flow within the 
channel. The slip condition depends on the mobility of the gas/liquid interface at the surface of 
the bubbles. If the surface of the channel is able to freely move along with the flowing liquid, it 
would cause plug flow, a uniform liquid velocity profile across the channel cross section. The 
slip condition for foam channel flow lies within these extrema and can result in different 
drainage rates for the foam as a whole. Evidence suggests that the mobility of the surface and 
hence the slip condition strongly depends on the surfactant. In fact, studies have shown that 
the drainage rate from a foam can be significantly reduced by adding a different surfactant [12]. 

A suggestion for the physical origin of the mobility of the channel walls is that the liquid 
flowing nearby could shear surfactant molecules from the gas/liquid surface [7]. If the shearing 
creates a concentration gradient on the surface, then diffusion of surfactant on the surface 
could oppose liquid flow. However, if the surfactant in the flowing liquid can move to the 
surface much faster than the rate of shear, then the surfactant can quickly replenish the surface 
without establishing an appreciable concentration gradient. An alternative argument involves 
the idea of viscosity at the surface, which reflects the forces of attraction between surfactant 
molecules. The strength of the interaction could also be so large that the channel flow is not 
strong enough to shear the molecules apart. If one considers the films as stationary, then the 
channel walls would be immobile because they are “anchored” to the films. Weaker 
interactions may allow the surfaces to shear. 
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Further, in a polydisperse foam, bubbles of different sizes differ in their gas pressure. 
Small bubbles exhibit greater pressure and Henry’s law states that the solubility of gas in the 
surrounding liquid will be greater. Neighboring bubbles with lower pressure will have 
surrounding liquid with lower gas solubility. Hence, a concentration gradient of dissolved gas is 
established in the liquid phase, driving the dissolved gas toward the larger bubble(s).  This 
process is called Ostwald ripening and it makes an appreciable contribution to coarsening, the 
process of increasing foam average bubble size over time. The time scale associated with 
coarsening can vary significantly between foams [13]; the study of Magrabi [8] on AFFF foams 
formed with compressed air shows that bubble size begins to increase within just a few 
minutes. Another factor that contributes to coarsening is coalescence, where film rupture 
between two bubbles produces a single, larger bubble.  

In our model, we set up the problem such that the foam is injected at a constant 
velocity. Further, we consider one-dimensional drainage along the z-direction as depicted in 
Figure 3. The drainage problem is reduced to a single dimension because the forces that 
dominate liquid transport are in the vertical direction until the foam approaches equilibrium. 

 

Figure 3: Illustration of drainage model including moving boundaries. 
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We consider two moving boundaries. The first boundary, ( )fz h t= , is the air/foam 
interface that moves towards the top of the foam column at the injection velocity injv , defined 
as the foam injection rate per unit cross-sectional area of the container. The second boundary, 

( )wz h t= , is the foam/liquid interface, where the solution drained from the foam pools beneath 
it. The volume of liquid drained is ( )d wV Sh t= , where S  is the cross-sectional area of the foam 
column. Once foam injection stops, the top of the foam layer is fixed at the height of the 
column, H , and the foam/liquid interface is the only moving boundary. This situation 
corresponds to free drainage of a foam on top of liquid.  

Our goal for the model is to predict the amount of water drained from a foam and the 
change in the foam expansion ratio over time in bench-scale experiments. Hence, for both 
filling drainage and free drainage, the model solves for the height of the moving foam/liquid 
interface, ( )wh t , and the liquid fraction of the foam averaged over the length of the foam layer, 

( )tα . 

Approximations are made in the model for the foam structure. We neglect the drainage 
of liquid from the thin films, and we therefore only consider the channels. For large bubbles, 
the portion of liquid in the films is negligible [14]. Further, the shape of bubbles in this work has 
been approximated as dodecahedral, where the channels are formed at the bubble edges. 
Although the shape leaves a small amount of space unaccounted for, the work of Podual et al. 
[5] indicates that the difference between tetrakaidecahedral and dodecahedral geometries in 
drainage models is negligible for large bubbles. Also, we consider a monodisperse foam, where 
each gas bubble has the same volume. In practice, foams contain a distribution of bubble sizes. 
Similar to the approach of Magrabi et al. [8], we assume that the drainage behavior of a 
polydisperse foam can be captured by modeling the foam as monodisperse, with a bubble size 
equal to the average of the bubble-size distribution. 

We maintain a constant bubble size in the model and therefore neglect the effects of 
both Ostwald ripening and coalescence. For Ostwald ripening to occur, there must be a 
pressure difference between bubbles that yields a concentration gradient in the dissolved gas. 
For larger bubbles, the radii of curvature within the foam will be larger, causing a decrease in 
the capillary pressure. If the dispersity in the bubble-size distribution is not large, then the 
pressure differences between bubbles should be small. Hence, it is likely that the phenomenon 
that drives Ostwald ripening should be less important for large bubbles. By the reasoning 
above, the gas pressure is treated as a constant in the model. The liquid pressure in the 
channels is assumed equal to the pressure of the liquid at the bubble/channel interface, given 
by the Laplace-Young law.  

As for coalescence in the model, recent work [13] shows that the onset of coalescence 
depends primarily on a critical liquid fraction and is independent of bubble size. The surfactants 
investigated in Ref. [13] were TTAB and SDBS; each foam studied exhibited a critical liquid 
fraction less than 0.0008 ( 1250)Ex = . The calculations of our model indicate that this liquid 
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fraction is approached only near the end of the time for which we are interested in simulating 
the drainage process. Assuming that the foams in our study have a similar critical liquid fraction 
for the onset of coalescence, the effect of coalescence should be negligible in our study during 
the drainage period of interest. 

The mobility of the channel walls is not explicitly accounted for in the model. We have 
included an adjustable parameter, the permeability coefficient, which accounts for the mobility 
of the channel walls, random orientation of the channels, and corrections to the geometrical 
approximations of the model. Note that most drainage models include either an adjustable 
parameter for wall mobility or assume that the channel walls are immobile. 

From the partial differential equations (PDEs) governing mass and momentum balance 
of the liquid in a foam, we seek ordinary differential equations (ODEs) with time as the 
independent variable to arrive at analytical solutions that describe the drainage process. By 
approximation, we solve for the height of the water layer beneath the foam, wh , and the 
length-averaged liquid fraction of the foam, α . A detailed description of the solution is 
provided below. 

We develop the model by considering the partial differential equations for mass and 
momentum balance in one dimension. Treating the liquid as incompressible, the liquid volume 
balance in the foam is given by  

 ( ) 0v
t z
α α∂ ∂
+ =

∂ ∂
 (2) 

where ( , )z tα α=  is the liquid fraction of the foam and ( , )v v z t= is the liquid velocity. The 
liquid velocity of the model, discussed below, is an effective vertical velocity of the liquid 
averaged over the cross-sectional area of a channel. The superficial liquid velocity is sv vα= , 
which is the volume of liquid flowing through a unit of cross-sectional area of the foam column 
per unit time. As illustrated in Figure 5, the liquid in the channels travels through the channel 
cross section at velocity v , whereas the liquid exiting the foam (or a control volume) travels 
through the foam-column cross section with the velocity sv . The balance in (2) is written for a 
control volume of the foam; for the column considered, the control volume corresponds to a 
disc with the same cross-sectional area of the foam column, but with a small thickness. The 
previous expression states that if the superficial velocity of the liquid coming into the control 
volume is different from the output superficial velocity, there is a corresponding change in the 
liquid fraction within the control volume.  
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Figure 4: Illustration of the flow of liquid within the foam. 
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Figure 5: Illustration of the forces that drive the flow of liquid in foam. 

 

Next, we consider some of the geometrical approximations of the model that will be 
necessary for the momentum conservation equation. The bubble shape in the model is a 
regular pentagonal dodecahedron, and this is used to relate the geometrical parameters of the 
bubble and its corresponding channels to the local liquid fraction of the foam. There are pn  
channels per bubble; for a dodecahedral bubble, the number of channels is equivalent to the 
number of edges that belong to a single dodecahedron, 10pn = .  Each channel has length L  
and area pa , and the liquid volume contained in the channels per bubble is therefore p pn a L . 
We neglect the additional volume of liquid contained in the nodes, which should be very small 
for the high-expansion foams of interest. The volume of gas contained in a dodecahedral 
bubble is 3

bV GL= , where (15 7 5) / 4 7.66G = + ≈ , and the total volume of gas and liquid per 
bubble is the sum of these quantities.  

We view the foam column as a space filled by a collection of bubbles and their 
respective channels, where the liquid fraction of an individual bubble unit is equivalent to the 
liquid fraction of the foam as a whole. We therefore get the expression 
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 .
1

p p p p

p p b b

n L n L
n L V V

a a
a

αα
α

= ⇒ =
−+

 (3) 

For a high expansion ratio, 1α << , and we therefore make the approximation 

 .p p

b

n L
V
a

α=  (4) 

The cross-sectional area of the channel is related to the radius of curvature by 2
p aa rδ= , 

where 3 / 2 0.161aδ π= − ≈ . By substituting this relation and 3
bV GL=  into (4), we have a 

relation between the liquid fraction of the foam and geometrical parameters of the bubbles:  

 
22

3
p a Ln r r
GL L
δ

α δ=  
  

=  (5) 

where 0.21δ ≈ . This approximation was made by Koehler [7] for tetrakaidecahedral bubbles. 
Note that the relationship between cross-sectional area of the channel and local liquid fraction 
is 

 2 .p
p

Ga
n

Lα=  (6) 

To understand the dependence of the channel area in (6), consider the liquid and gas content of 
a single bubble. If the volume of the gas bubble remains constant, increasing the liquid fraction 
of the bubble by adding liquid to the channels will cause the channels to swell, increasing the 
channel cross-sectional area. Also, for a bubble that, regardless of size, maintains a constant 
liquid fraction, the channel volume is proportional to pa L  but the total volume of the bubble is 

proportional to 3L . The liquid volume fraction is therefore proportional to 2/pa L . For the liquid 

fraction to be constant as the bubble size increases,  pa  must also be proportional to 2L . 
Hence, the channel cross-sectional area depends on both the liquid fraction of the bubble and 
the square of the channel length. 

Next, we seek an expression for the momentum balance for a channel that is oriented 
vertically within the foam. For a given liquid and pressure gradient across a channel, the 
velocity of flow through a channel will depend on the channel geometry and the slip condition 
at the channel walls. Deriving an expression for the average liquid velocity in a channel is 
complicated because the cross-section of the channels has a complex shape and we do not 
predict or measure the slip condition. Given the difficulty of the problem, we aim to show, 
under simpler conditions, that the average velocity should be proportional to the channel area. 
In Appendix A, we derive an equation for the average velocity through a cylindrical channel with 
a circular cross section and a no-slip condition at the boundary. The result is quoted here: 
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 +      = =          

  ∇   ∇  − −      

g g  (7) 

The velocity in (7) is very similar to the well-known Hagen-Poiseuille equation for flow in a 
cylindrical pipe.  

The same dependence of v  on pa  is shown in the expression derived by Desai and 
Kumar [2] for general wall mobility in channels with the cross-section of an equilateral triangle 

 
( ) 215 5

.
320 00

7

8 3
vv p l l

LP Pcc a
v g g

z z

α
ρ ρ

µ µ

+∂ ∂   − = −   ∂ ∂
=

    (8) 

The parameter vc  is a velocity coefficient defined as the ratio of the average velocity in a 
channel to the velocity of the same channel if the walls are strictly immobile.  

In both cases, the average velocity in the channel can be described by 

 
2

lPL gv
z

ξα ρ
µ

∂ − ∂ 
=  (9) 

where ξ , defined here as a permeability coefficient, accounts for bubble and channel 
geometry, slip condition, and the orientation of the channels. In this work, ξ  is an adjustable 
parameter of the model. 

We reiterate that the pressure in the liquid is found from the Young-LaPlace law, 

 l gP
r

P γ
= −  (10) 

which, at a gas-liquid interface with surface tension γ , relates the pressure of the gas in the 
bubbles, gP , to the pressure of the surrounding liquid in the channel with radius of curvature, 
r .  

The pressure gradient /lP z∂ ∂   is found by substitution of (5) into (10), 

 1 .l
g

P P
Lz zLz

γ δ γ δ
α α

 ∂ ∂ ∂  = − = −   ∂ ∂ ∂   
 (11) 

An expression for the average velocity in a channel as a function of the liquid fraction then 
becomes 
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2

.1L g
z

v
L

ξα γ δρ
µ α

 ∂  +  ∂   
=  (12) 

Note that, overall, the velocity is proportional to the area of the channel, which is also 
proportional to 2Lα . Meanwhile, the pressure gradient involves the gradient of 1/ r  where the 
radius of curvature pr a L α∝ ∝ . The combined liquid-fraction dependence in the pressure 

gradient term should therefore involve the gradient of the radius of curvature (i.e. α ). This is 
shown by the simplification   

 1
z z

α α
α

∂ ∂   = −   ∂ ∂ 
 (13) 

Substitution of the previous expression in (12) yields an equation for the average liquid velocity 
in a channel 

 ( ) ,B
z

v Aα α∂
−

∂
=  (14) 

where we introduce the constants 

 
2 gA Lξ ρ
µ

=
 
 
 

 (15) 

and 

 .B Lξ γ δ
µ

 
  
 

=  (16) 

The units for A  are m s  (velocity) and for B  are 2m s  (area/time).  

For a given foam, (14) indicates that the average liquid velocity in a channel is 
determined by a dynamic competition between the liquid fraction and its variation along the 
height of the column. Equivalently, this is a competition between the local channel area and the 
vertical gradient in the radius of curvature. For regions of foam with uniform liquid fraction, the 
average velocity is proportional to the corresponding liquid fraction. For cases wherein a foam 
is filled very fast such that the liquid fraction is approximately equal to the input, one should 
expect a constant superficial velocity 2

s fv Aα≈ . For slower filling, the liquid fraction will vary 
along the height of the column, decreasing at the top and increasing near the foam/liquid 
interface. For this case, the effects combine in different regions. At the end of filling, the liquid 
fraction will quickly decrease with column height; the dynamic effects of the liquid fraction and 
its gradient will oppose one another throughout the height of the foam. Drainage ceases at 
equilibrium when these terms are equal in magnitude. 
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The average liquid velocity in a channel also depends on multiple parameters. For any 
case, it is proportional to the permeability coefficient and inversely proportional to the viscosity 
of the liquid. By definition, a greater permeability coefficient increases the velocity of the liquid 
in the channels.  The viscosity plays a role because we are considering the case where the liquid 
at the walls is moving slower than the rest of the liquid in the channel. A more viscous liquid 
will reduce the velocity difference between neighboring liquid “particles”, and therefore reduce 
the average velocity within the channel, overall. For a given liquid-fraction profile, other 
parameters affect the strength of the terms in (14) on the competition that determines the 
velocity. The constant A  is proportional to 2L , reflecting that the term is proportional to the 
channel area 2

pa Lα∝ . Further, the effect of gravity is contained in A , which always acts to 
increase the liquid velocity flowing in a vertical channel. The value of B  determines the 
strength of the effect of liquid fraction variation with height on average channel velocity. In 
contrast with A , B  increases linearly with channel length L , which indicates that A  will be 
dominant for larger bubbles sizes. An essential parameter in B  is the surface tension, γ , which 
is responsible both for the existence and strength of the capillarity effect for a given variation in 
the liquid fraction with height. 

Boundary conditions must be imposed on α . We treat the case for which α  is constant 
at the boundaries. During filling, the top of the foam contains the liquid fraction of the fresh 
input foam, fα . The choice for the liquid fraction at the foam/liquid boundary is less obvious. 
Similar to the approach of Desai and Kumar [3], we assume that the bubbles are close-packed in 
a face-centered cubic (fcc) arrangement. Further, the shape of the bubbles is approximated as 
spherical, and the liquid fraction at this boundary is assumed equal to the void fraction of close-
packed spheres in an fcc arrangement, ( ) 0.26wz hα = = . The boundary conditions are also used 
during free drainage for comparison with the experiments of this work. After filling, the liquid 
volume fraction at the top of the foam significantly decreases from fα . However, we find that 
reducing the value of the liquid fraction at the top boundary below fα  has a negligible effect 
on the predictions of the model. We maintain the same boundary conditions for filling and free 
drainage to avoid unnecessary complication of the model parameters.  

The drainage model in this work is similar to other drainage models in the literature [6-
10], and the equations governing the conservation of mass and momentum within the foam 
can be expressed in the same form. The general form is: 

 ( ) [ ] ( )20 ,v gL L
t z z

vα ξα ρ α γ θ α
µ

∂ ∂ ∂ + = − ∂ ∂ ∂
=  

  (17) 

where 0.46θ =  except as noted below. The values of the permeability coefficient ξ  from the 
literature and from this work are provided in Table 1. The large values used to model the 
experiments of Magrabi et al. [8,9] indicate that the foams in their study drain much faster than 
the foams studied in the other works listed, which is assumed to be a result of channel wall 
mobility. The other calculated and empirical values for ξ  are for foams with immobile channel 
walls. For randomly oriented channels, the reported values for ξ  are smaller and vary at most 



16 
 

by about 20%.; the largest contribution to the difference between these values is the bubble 
geometry of the model. In this work, we also calculate ξ  for vertically oriented channels with 
no slip at the channel walls, which is the largest physically reasonable value of ξ  for this slip 
condition. 

Table 1: Permeability coefficients of foam drainage models. 

Work Calculation method ξ  Surfactant (type) 
Bhakta and 
Ruckenstein  
(Ref. [10])* 

Calculated for randomly oriented 
channels with triangular cross 
section and immobile wallsD 

0.0055  Model results compared with 
experimental data of Ref. [11] 
using Bovine Serum Albumin, 
BSA (protein) 

Koehler et al. 
(Ref. [7]) † 

Calculated for randomly oriented 
channels with scalloped-triangular 
cross section and immobile channel 
wallsT 

0.0063 N/A 

Magrabi et al. 
(Ref. [8])* 

Empirically determined from 
drainage theory for randomly 
oriented channels with triangular 
cross section and mobile wallsD 

0.0245‡ Aqueous film-forming foam, 
AFFF: contains perfluoroalkyl 
sulfonate salts (fluorocarbon 
based) 

Magrabi et al. 
(Ref. [9])* 

Empirically determined from 
drainage theory for randomly 
oriented channels with triangular 
cross section and mobile wallsD 

0.0105‡ Film-forming fluoroprotein 
foam, FFFP: contains hydrolized 
proteins and fluorosurfactants 
(fluoroprotein) 

Verbist et al. 
(Ref. [6])◊ 

Calculated for randomly oriented 
channels with scalloped-triangular 
cross section and immobile walls 

0.0051 N/A  

This work Empirically determined from 
drainage theory for randomly 
oriented channels with scalloped-
triangular cross section and 
immobile walls (Ref. [7])D 

0.0051 Buckeye HXF 2.2% High-
Expansion Foam Concentrate: 
contains sodium laureth sulfate 
(hydrocarbon based) 

This work Calculated for vertically oriented 
cylindrical and equilateral triangular 
channels with immobile walls (see 
Appendix A)D 

Cylindrical: 
0.03 
Triangular: 
0.022 

N/A 

*Mathematical form of Eq. (17) obtained when α  <<1 

† 0.41θ =  

‡ξ  for initial liquid volume fraction 0.05 

◊Equation (6) of this work used to relate pa  to α  

DAssumed dodecahedral bubble geometry, L=0.816R 

TAssumed tetrakaidecahedral bubble geometry, L=0.72R 
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The next step in the development of the model is to obtain ordinary differential 
equations from the partial differential equations that describe the balance of liquid volume and 
momentum in the foam. To eliminate the spatial dependence of the equation for liquid volume 
balance, we integrate (2) with respect to the vertical coordinate z  from the height of the liquid 
beneath the foam , wh , to the height at the top of the foam, fh : 

 ( , ) ( , ) ( , ) ( , ) 0 .
f

w

h

f f w w
h

dz h t v h t h t v h t
t
α α α∂

+ − =
∂∫  (18) 

Using Leibniz’s rule and the boundary conditions ( , ) ( , ) 0f wv h t v h t= = , this expression yields 

 ( ) ( ), , 0 .
f

w

h
f w

f w
h

dh dhdz h t h t
dt dt dt
d α α α− + =∫  (19) 

Let us define α  by the expression 

 
( )

( , )
f

w

h

h

f w

z t dz

h h

α
α =

−

∫
 (20) 

where α  represents the length-averaged liquid volume fraction. The quantity α  is useful for 
providing an overall description of the liquid quantity in the foam. Substitution of (20) into (19) 
yields  

 ( ) ( ) ( ), ,f w
f w f w

dh dhh h h t h t
dt dt dt
d α α α − = −   (21) 

where  ( , )fh tα  is the liquid fraction at the top of the foam and ( , )wh tα  is the liquid fraction at 
the bottom. For the present model, the liquid fractions at the boundaries will be considered as 
constants: ( , )f fh tα α=  and ( , )w wh tα α= . We consider that liquid drains from the foam into a 

liquid layer beneath the foam, and therefore we set 1wα =  for the liquid volume balance. The 
left-hand side of Eq. (21) is the time derivative of the liquid content within the foam, which is 
controlled by the quantities on the right-hand side. If we consider free drainage only, 

/ 0fdh dt =  and the rate of water loss can be determined by the rise of the water layer beneath 
the foam. However, by considering the case of filling, / 0fdh dt ≠ , the liquid content in the 
foam is now determined by the competition between filling and drainage. This competition can 
be controlled by the time scale introduced in the model, the fill time. 

Integrating the momentum equation (14), we obtain 
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 ( ).
f f

w w

h h

f w
h h

dz A dz Bv α α α= − −∫ ∫  (22) 

We define the liquid velocity averaged over the height of the foam layer, v , with the following 
expression 

 
( ) .

f

w

h

h

f w

dz
v

h

v

h
=

−

∫
 (23) 

Inserting definitions (20) and (23) into (22) gives the expression 

 ( ) ( ) ( ).f w f w w fv h h A h h Bα α α− = − − −  (24) 

Note that the boundary condition for wα  in the momentum balance is not the same as that for 
the liquid volume balance. The next step is to use these length-averaged quantities to 
determine an expression for the height of the water layer as a function of time, ( )wh t . The time 
derivative of wh  is the volumetric flow rate of liquid from the foam layer into the liquid layer 
per unit area of the foam column. Equivalently, this is the superficial liquid velocity exiting the 
foam, 

 w
s

dh
dt

v= . (25) 

 The liquid velocity and the superficial liquid velocity, both space- and time-dependent, are 
related by sv vα= . If the foam bed were separated into control volumes along the height of the 
column, the superficial velocity of the liquid exiting the foam due to drainage would be 
determined by the liquid balance of the control volume at the bottom of the foam near the 
foam/liquid interface. The superficial velocity of the liquid entering this control volume will 
depend on the balance over the control volume above, and the same is true for each control 
volume in the foam. Our approach does not resolve the foam column into control volumes; 
instead, we seek a description of foam drainage based on the average properties of the foam. 
We therefore make the approximation on the superficial velocity 

 wdh
dt

vα=  (26) 

and we assume that the error introduced in averaging is small. Solving for v  in (24) and 
substituting in the previous expression yields an equation for the rate at which the height of the 
water layer increases 

 2w
w f

f w

A
h

dh B
dt h

αα α α−
 

 =
− 

−


  (27) 
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The expression above is used for both filling and free drainage conditions. 

There are two ordinary differential equations in the model calculations, one for liquid 
volume balance, Eq. (21), and one for momentum balance, Eq. (27), where wh  and α  are 
unknown. In the following sections, two cases are considered for the model: the general case of 
filling and the special case of free drainage. For each, ordinary differential equations are 
presented that can be solved numerically. Additionally, approximations are made to obtain 
analytical solutions, and the conditions for which they are valid are discussed. 

FILLING  

For filling, we integrate Eq. (21) with respect to time to obtain the expression 

 1( )f w f f wh h h h Cα α− = − +  (28) 

where the last term is an integration constant representing the initial conditions, 

 1 0 0 0 0 0( )( )f w f f wC t h h h hα α= − − + . (29) 

The initial height of the water layer is set such that 0 0wh = . To prevent a singularity in Eq. (27), 
the problem is set up at 0t =  such that there is a small amount of foam with height 

0 0.01fh m=  having the same liquid fraction 0( ) ftα α=  as the foam that will fill the column. By 
setting this condition, we sacrifice the description of drainage behavior within the first few 
seconds of foam application, but this is not of interest for this study. Under these initial 
conditions, 1 0C = . The liquid balance in (28) states that the liquid content in the foam is equal 
to the difference between the amount of liquid added to the foam and the amount of liquid 
that has drained out. 

Solving for α  in (28) yields 

 .f f w

f w

h h
hh

α
α

−
=

−
 (30) 

Substitution of this expression in Eq. (27) provides the filling equation 

 
2

2
f f w f f ww

w f
f w f w

h h h h
A

h
dh B
dt h h h

α α
α α

 − −
 =

 
 −
    

−   −  − 
 (31) 

The previous expression is used for the numerical solutions during filling in this work. 
We also provide an analytical solution below. The numerical solutions were determined by the 
function NDSolve (MATHEMATICA, Wolfram Research) with default settings. NDSolve utilizes a 
variant of the Livermore Solver for Ordinary Differential Equations, LSODA, to numerically solve 
ordinary differential equations. Both stiff and non-stiff systems can be detected and solved 



20 
 

using LSODA, where backwards differentiation formula (BDF) methods and Adams methods are 
used, respectively. 

Approximations are necessary in order to obtain an analytical solution for filling. First, 
we perform a Taylor expansion of 2α  about the value fα  

 2 2 22 2f f f f fα α α α α α α α ≈ = + − −  (32) 

The value of 2α  must be greater than zero, so the approximation clearly fails if the condition 
0/ .5fα α >  is not satisfied. Note that this expansion is equivalent to neglecting the term 

proportional to 2( / )w fh h  in Eq. (31). Physically, the approximation is valid when a foam drains 
much less than 50% of its liquid content as it fills. We substitute Eq. (30) into Eq. (32) to obtain  

 2 22 f f w
f f

f wh
h h

h
α

α α α
−

−

 
≈ − 

  
 (33) 

and substitute Eq. (33) into Eq. (27) to obtain 

 2
22 .f f w f f ww

f f w f
f w f w

h h h h
Adh B

dt h hh h

α α
α α α α

 − −
 = −   −  − 

  
 − − 
        

 (34) 

To obtain a linear equation, we make the approximation fh >> wh . The maximum value of wh  is 

f fhα , so the approximation is equivalent to fα <<1. This approximation is valid for high-
expansion foams, where fα  is typically 0.01 or less. Using this approximation, Eq. (34) can be 
expressed as 

 2
2 .

2 f w fw w
f w f

f f f

hdh B
dt h

h
h h

A
α α

α α α
 

− −  
 

 = − −        
 (35) 

Putting Eq. (35) in standard form yields 

 2
2

2
,f fw

w f w f w f
f f f

A Bdh B A
dt h h h

h
α α

α α α α α
 

   + − − −    
−


=  (36) 

a linear ODE which can be solved analytically. For mathematical simplicity, we make one more 
approximation in the linear coefficient; we neglect the term 2/( )w f fB hα α −  . Since 

0f f injh h v t= +  is linear with respect to time, the term 12 f fA hα − is inversely proportional to t , 

whereas 2
w f fB hα α − −   is inversely proportional to 2t . Hence, the term 
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2
w f fB hα α − −   quickly becomes much smaller than 12 f fA hα − . The ordinary differential 

equation from which we obtain an analytical solution is therefore 

 22
.f fw

w f w f
f f

A Bdh A
dt h

h
h
α α

α α α
 

 + −    
= −


 (37) 

Eq. (37) can be re-written as  

 2 1 2 fw w
f w f

f f f

Bdh hA
dt h h

α
α α α

α
 

= − −  


−


 
   (38) 

Eq. (38) indicates that the drainage rate will be equal to the difference between the drainage 
rate of a foam that has fα α=  (see Eqs. (26) and (24)) and  a correction factor that depends on 
the “volume per cross section” ratio of the liquid lost to the liquid layer wh  to the total liquid 
added to the foam f fhα . The correction factor accounts for the fact that α  decreases from fα  
as liquid is lost from the foam to the liquid layer beneath. Intuitively, the ratio of the volume of 
liquid in the liquid layer to the volume of liquid in the foam layer will depend on how the rate of 
drainage compares with the rate by which the column is filling with foam. As shown below, the 
competition between these rates is captured in the analytical solution. 

Equation (37) is in the form ( ) ( )/w wdh tt hd t+Φ = Ω . Using the integration factor 

( )exp ( )t dtψ = Φ∫ , the solution is given up to a constant by 1 ( )wh t dtψ ψ− Ω= ∫ . The 

integration factor, using f injh v td d=  , is 

 
2

2 2 21exp exp .lxp ne
f

injf f f
f f f

f inj f i

A
v

nj

dt dh
A A A

h h
h v h v

α
α α α

ψ
     

= = =          
     

= ∫ ∫  (39) 

The solution is given by 
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 (40) 

We use the initial condition 0(0) 0w wh h= =  and 0(0)f fh h=  at time 0t = , which yields 
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which can be used to solve for the integration constant 
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Substitution of (42) into the final expression in (40) yields the analytical solution 
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The value of α  during filling is found by substitution of Eq. (43) into Eq. (30). 

Equation (43) can be simplified by neglecting 0fh . The abbreviated analytical solution 
for filling is given by  
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For cases where the analytical solution is valid, the abbreviated solution given in Eq. (44) shows 
very little difference with the solution of (43) after roughly 10 seconds. The first term in the 
previous expression quickly becomes dominant during the filling process. This indicates that wh  
has a predominantly linear time dependence, and therefore the drainage rate from the foam is 
approximately constant during filling. The first term in Eq. (44) contains injv t , which is the 
height of foam added from the start of filling to the time t . The liquid portion of the added 
foam is f injv tα . The coefficient  
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is therefore a percentage of the added liquid that is drained (and added to wh ) at time t . For a 
given input liquid fraction fα , the key parameters that determine this percentage are injv  and 
A  , which represent the time scales for filling and drainage, respectively. A key point of this 

study is that an appreciable amount of the added liquid can drain when the filling and drainage 
time scales are comparable. However, as one might expect, very little of the added liquid is 
drained during filling if one fills very fast such that inj fv Aα>> . The analytical solution is not 
valid for very slow foam injection such that f injA vα >>  because the condition for the validity of 
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the Taylor expansion of 2α  is not satisfied, i.e. α  will not be much less than 50% of fα . 
However, the case can still be described by numerical solution of Eq. (31). 

 

FREE DRAINAGE 

For free drainage, we set / 0fdh dt =  in Eq. (21) and integrate with respect to time to obtain 

 ( ) 1w wH h h Cα − = − + , (46) 

where we solve for the integration constant  

 ( )1 0 0 0( ) w wC t H h hα= − + . (47) 

Note that free drainage occurs from a column of fixed height, H . Eqns. (46) and (47) simply 
state that the liquid content in the foam is equal to the difference between the initial liquid 
content and the amount of liquid that has drained out, causing the liquid layer to rise by the 
height 0w wh h− . 

We consider the general case for initial conditions on free drainage. Solving for α  in Eq. (46) 
yields 
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Substituting the previous expression into Eq. (27) yields the free-drainage equation 
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 (49) 

Eq. (49) can be solved numerically. However, we calculate an analytical solution that is nearly 
identical to the numerical solution for all cases examined in this study. 

For free drainage, we change the dependent variable of the ordinary differential 
equation to α . Making this change allows the calculation of an analytical solution that is both 
simple to obtain and valid for a greater range of parameters than the solution obtained using 

wh  as the dependent variable. Differentiating Eq. (46) with respect to time yields 

 [ ] .w
w

dhdH h
dt dt
α
=− −  (50) 
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We substitute the previous expression in Eq. (27) to obtain 
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As in the filling case, we make the approximation that the height of the water layer is much less 
than the height of the foam column, wh H<< , and divide by 2α  in Eq. (51) to yield 
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Using the relation 
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and defining 1/η α≡ , we can express Eq. (52) as 
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Eq. (54) is in the form ( )/ ) (d t tdtη η+Φ = Ω . Using the integration factor ( )exp ( )t dtψ = Φ∫ , 

the solution is given up to a constant by 1 ( )t dtη ψ ψ−= Ω∫ . The integration factor is 
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and the solution is given by 
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Using the initial condition ( ) ( )0 01/t tη α=  at time 0t , 
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yields the integration constant 
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The analytical solution for free drainage is therefore 
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and the corresponding value of wh  can be found by solving for α  in Eq. (59) and substituting in 
Eq. (48).  

Let us examine a limiting case of Eq. (59). As t  approaches infinity, we have 
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The value of ( )α ∞  is the equilibrium liquid fraction of the foam as predicted by the model. This 
expression for ( )α ∞  could also be arrived at from Eq. (27) by using the condition / 0wdh dt =  at 
equilibrium and the approximation f wh H h= >> . 

We note that the average expansion ratio of the foam is given by 1/Ex α= . We can 
express Eq. (59) as  

 ( ) [ ]0
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α α −
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−


 (61) 

which shows that the foam progresses from its initial expansion ratio to that of equilibrium on 
an exponential time scale. Note that the exponent controlling the rate at which the initial 
expansion ratio progresses to equilibrium strongly depends on the height of the column; the 
process is slower for taller columns. 
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3.0 EXPERIMENTS 

To generate foam, we created a liquid foam solution by mixing 2.2 parts concentrated 
liquid foam solution (Buckeye HXF 2.2% High-Expansion Foam Concentrate) with 97.8 parts 
distilled water. The surfactant solution is, by weight, 26% water, 29% hexylene glycol, 38% 
sodium laureth sulfate, and 8% proprietary mix of surfactants/stabilizers (refer to MSDS). We 
poured the solution into a liquid chamber and pressurized the chamber with nitrogen gas , N2.  
The liquid solution was fed to the foam-generation device illustrated in Figure 6. The liquid 
solution entered the side of the foam generator and exited downward through a cone-
patterned nozzle (Model 302-C, SureShotsSprayer.com) onto a copper screen with a diameter 
of 6.4 cm and 30x30 mesh cells per inch (40.8% open area) held in place by a rubber gasket. The 
N2 pressure was increased in the liquid chamber such that the nozzle sprayed the liquid solution 
at a fixed volumetric rate of about 60 mL/minute, measured with a calibrated rotameter (Dwyer 
VFA-33 Visi-Float Flowmeter). An in-house source provided air flow into the top of the foam 
generator.  A perforated plate and a bed of tightly packed, plastic straws, 6 cm long with an 
inner (outer) diameter of 0.25 cm (0.32 cm), conditioned the air flow for even distribution over 
the copper screen. Air flow rates of 8 L/min and 20 L/min, as determined by a mass-flow 
controller (Sierra Control Flo-Box Model # 905C-PS-BM-11), were used to generate foams with 
expansion ratios of 100 and 200, respectively.  

A diagram of the drainage experiment is shown in Figure 6.  Foam was generated 
beneath the foam-generation screen, moves through the foam generator, and exits into a 20-
liter, transparent, plastic cylinder with a diameter of 0.213 m and a height of 0.561 m. The base 
of the cylindrical column was formed with a sheet of aluminum foil, sloped slightly downward 
toward the center, where a 1-cm diameter hole allowed the drained liquid to pass out of the 
cylinder. The liquid passing through the hole entered a funnel, collecting the drained liquid into 
a 500 mL graduated cylinder.  A video camera recorded images of the liquid filling the 
graduated cylinder.   

For each foam drainage experiment, the desired air flow was first set followed by the 
liquid. A stopwatch was used to record the times of key events.  The liquid and air combined on 
the screen; the liquid foam solution was manually distributed on  the screen to start foam 
generation. The excess liquid, mostly from the priming process before foam is formed, was 
collected in the passage beneath the screen. Foam exited the generator channel and traveled 
down the side of the cylinder. The beginning of the fill time was recorded when the foam 
moved past the specified height in the collection cylinder. Once the foam reached the bottom 
of the cylinder and touched the aluminum foil, a video camera began recording (Pinnacle Studio 
12) the drained liquid collecting in a graduated cylinder. Once the foam filled the 20-liter 
cylinder, the fill time was recorded, the liquid and air flows were turned off, and the foam 
generator was set aside. A plastic lid was placed on top of the cylinder to minimize foam 
evaporation. The excess liquid in the channel below the foam-generation screen was collected 
and measured in a graduated cylinder. 

The camera recorded video for about six minutes after the foam reached the base of the 
cylinder. The video recording was used to determine the amount of liquid drained versus time. 
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After six minutes, the drainage rate slowed significantly, allowing the accumulating liquid 
volume in the graduated cylinder to be measured by visual inspection.  The volume of drained 
liquid was recorded at one-minute intervals until the change in volume was less than 2 mL/min. 
Subsequently, the drained liquid volume was measured in intervals of several minutes until the 
total drainage time reached about an hour. The foam was left in the cylinder overnight to 
completely drain, and this liquid volume was used to calculate the expansion ratio of the foam. 
Additionally, a value of the expansion ratio was also derived from the net amount of liquid 
sprayed into the foam during the filling process. 

 Volume of liquid in foam Liquid flow rate Fill time Excess liquid= × −  (62) 

 Total foam volume
Volume of liquid in foam

Ex =  (63) 
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Figure 6: Experimental apparatus. 

 

Foam bubble sizes were determined using photographs of the bubbles and a ruler taken 
at the top of the foam column immediately after filling. In Figure 7, an example photograph 
shows the centimeter-size bubbles characteristic of HiEx foams. 
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Figure 7: Photograph of foam bubbles for 290Ex = . The ruler markings are in centimeters. 

 

The filling process in the experiment contrasts with the idealized filling process of the 
model, wherein the foam front has a uniform height as it travels upward. In the experiment, the 
foam flows into the cylinder and a portion of it slides along the cylinder wall as it travels 
downward. After it reaches the cylinder base, the foam takes a few seconds to reach the hole 
where liquid can drain into the graduated cylinder. The liquid draining from the foam must 
travel to the hole in the aluminum foil and accumulate to form a drop, and each drop must 
travel down the funnel and into the graduated cylinder.  

The experiment and model also differ at the bottom boundary. In the model, liquid 
accumulates beneath the foam. In the experiment, liquid drained from the foam flows into a 
graduated cylinder beneath the foam column. The differences between the model and 
experiment are discussed below.  

The liquid layer under the foam in the model allows liquid to be transported back into 
the foam from the water layer beneath. Capillary suction is a physical phenomenon that occurs 
when the pressure of the liquid in the foam is less than the pressure of the liquid with which it 
comes into contact. The suction of liquid can occur in the model at the beginning of the filling 
process to some extent, depending on the parameters of the foam. In the experiment, 
however, there is no liquid layer beneath the foam. Under the experimental conditions, the 
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model predicts that there only would be a small amount of liquid drawn into the foam over a 
short period of time were the foam sitting on liquid. However, for much smaller bubble sizes 
and/or much greater expansion ratios than were experimentally studied, the model predicts 
that capillary suction is no longer negligible. Boundary conditions have been included in other 
modeling works [8,9] to eliminate capillary suction and introduce an induction period during 
which liquid does not drain from the foam. Because the amount and duration of capillary 
suction predicted by the model for the experiments of this work are very small, we do not 
correct the boundary conditions to eliminate the suction. 

The liquid drained during filling is enough to form a very small liquid layer beneath the 
foam as it drains; thus the experimental bottom boundary condition during filling should be 
similar to that of the model. However, the experimental foam may not have a thin layer of 
liquid present during the free drainage period. As a result, the model could slightly overpredict 
the effect of capillarity during the free drainage process. Additionally, the model considers the 
reduction of the length of the foam layer due to the increasing height of the water layer. The 
corresponding reduction in height is negligible for HiEx foams because the height of the water 
layer is very small compared to the height of the foam layer, i.e. w fh h<< . This is an 
approximation made in the analytical solutions of the model. 

Finally, the foams generated in experiments have a distribution of bubble radii, whereas 
the model assumes all bubbles are equal in size. A direct comparison between polydisperse and 
monodisperse foams is not possible, and it is not clear what averaging procedure will provide a 
mean bubble radius that will correlate with the experimental drainage data for the polydisperse 
foam. Magrabi et al. [8] propose that the appropriate average bubble size is calculated from the 
bubble-size dependence of the liquid flow rate through a channel. In their work, the average 
liquid flow rate through a channel in a polydisperse foam is calculated by the fourth moment of 
the bubble radius distribution because the flow rate is proportional to the fourth power of the 
bubble radius. In our experiments, we did not obtain a reliable bubble-size distribution function 
that would enable us to calculate an average bubble radius. Instead, we adjusted the bubble 
radius to fit the experimental data for each foam, and the bubble radius obtained from the fit 
was compared to the range of bubble radii obtained from photographs such as that shown in 
Figure 7. For all experiments, the bubble radius obtained from the fit was within the range of 
bubble radii observed in the photographs. 

 

4.0 RESULTS AND DISCUSSION 

An example case of foam drainage during filling is shown in Figure 8. At the start of 
filling, there is a relatively large pressure gradient caused by the small foam height and 
boundary conditions on α  that competes with gravity. The drainage behavior during this initial 
period strongly depends on the choice of parameters. As the foam height increases, the force of 
gravity becomes dominant and drives liquid out of the foam. A constant drainage rate from the 
foam quickly develops, and the height of the water layer increases linearly with time. During 
this period, the average liquid fraction of the foam decreases to a steady-state value. For the 
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example case shown, the average liquid fraction decreases from an input value of 0.005 
( 200)Ex =  to a steady-state value of about 0.00425 ( 235)Ex = . The foam loses about 15% of 
its original liquid during the filling process. 

Under other conditions, such as slower injection velocities, very high expansion ratios, 
and/or small bubble sizes, wh  decreases from zero at the beginning of the filling process. During 
this time, the pressure gradient dominates gravity and causes liquid suction into the foam from 
the water layer beneath. This behavior is also reflected in the behavior of α , which rises above 
its initial value at the start of filling.  

 

Figure 8: Model prediction of liquid drained during foam filling. 
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Figure 9: Model prediction of liquid drained during and after foam filling. 

 

At the end of filling, the free drainage period begins. Figure 9 extends the computation 
in Figure 8 to include the free drainage behavior after filling. The foam continues to drain, but is 
no longer receiving liquid from input foam. When filling is ceased, the drainage rate begins to 
decrease slightly and the average liquid fraction decreases abruptly. In the foam, the channels 
contract in response to the reduced liquid content, and the drainage rate will approaches zero 
as the driving forces for liquid flow come into equilibrium. During this process, the height of the 
water layer approaches its equilibrium value at an exponential rate, and the average liquid 
fraction behaves in a similar fashion.  

The analytical solutions of this work are valid only for a subset of the conditions for 
which their original differential equations can be solved by numerical methods. For the filling 
case, the approximations made in the analytical solution are valid when the average liquid 
fraction decreases from the input liquid fraction by much less than 50%. It is difficult to predict 
a priori when this condition will be satisfied. To show the important parameters to consider 
when deciding whether to use the analytical solution, we consider Eq. (30) when w fh h<<  and 
the linear term in Eq. (43) to yield the approximation 
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From the previous expression, it can be seen that the quantity affecting the reduction in α  
from the input liquid fraction is /inj fv Aα . By comparison of the drainage rate as predicted by 
the numerical and analytical solutions, we see that the difference for Ex  up to 200 is around 
2% when we use the condition 5/inj fv Aα ≈ . Note that for Ex up to 600, a slightly greater value 
of 8 is needed to achieve the same accuracy. Substitution of this value in Eq. (64) indicates that 
the average liquid fraction should not decrease from the input value by much more than about 
15% for the analytical solution to maintain this accuracy. For our experiments, the value of 

/inj fv Aα  ranges from about 0.5 to 2, and the analytical solution does not provide the drainage 
rate with sufficient accuracy. 

It is important to note that the analytical expression is valid for field cases, where the fill 
rate is much faster. For a foam delivered to a room with a standard ceiling height of 2.5H m≈  
that must be filled within 120 s , one obtains / 10inj fv Aα ≈  when using conditions similar to 
our experimental values, 0.45 /A m s≈  and 1/ 200fα = . In Figure 10, we show how the 
analytical solution compares with the numerical solution for bench-scale and large-scale values 
of /inj fv Aα . 
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Figure 10: Comparison of numerical and analytical solutions for the height of the liquid layer 
as a function of time during filling for large-scale and bench-scale conditions. The parameters 
for the large scale are 0.05 /injv m s=  and 0.002fα = . The large-scale injection velocity is 
calculated based on a 6 m column height and a 120 s fill time. The parameters for the bench 
scale are 0.0022 /injv m s=  and 0.0083fα = .  In both calculations, the parameters 0.0066ξ =  

and 0.006bD m=  are used. 

 

The analytical solution for free drainage is in excellent agreement with the numerical 
solution to the original differential equation. In Figure 11, we show the drainage behavior for 
different bubble sizes in the case of initial 200Ex = ; the solutions are nearly identical. Initial 
expansion ratio values were also varied independently of bubble size from 20Ex =  to 600  and 
the same excellent agreement was obtained. 
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Figure 11: Comparison of numerical and analytical solutions for the height of the drained 
liquid for free drainage for different bubble sizes. 

 

Shown in Figure 12 is a comparison of solutions for filling and free drainage combined. 
The analytical solutions using the large-scale parameters are identical to the numerical 
solutions. However, the analytical solutions calculated with the bench-scale parameters exhibit 
significant differences during both filling and free drainage periods. The overprediction for 
drainage during filling is responsible for the underprediction in the free drainage period 
compared to the numerical solution. The initial conditions for wh  and α  in the analytical free-
drainage solution are equal to the corresponding values of the filling analytical solution at the 
end of the filling process. Hence, it is necessary to accurately calculate the filling solution to also 
accurately predict the magnitude of the liquid drained during the free-drainage period.  

The model indicates that the drainage rate from the filling solution approaches the 
initial drainage rate of the free drainage solution at large values of /inj fv Aα . The difference 
between the initial drainage rates at 20/inj fv Aα =  is about 10%, and at 40/inj fv Aα = , the 
difference is about 5%. This suggests that filling can be ignored at very high injection velocities 
because the analytical free-drainage solution provides a reasonable approximation to the entire 
drainage process. 
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Figure 12: Comparison of numerical and analytical solution both during and after the filling 
process. The parameters for the large scale are 0.05 /injv m s= , 120fillt s= , 6H m= , and 

0.002fα = . The parameters for the bench scale are 0.0022 /injv m s= , 259fillt s= , 
0.561H m= , and 0.0083fα = . In both calculations, the parameters 0.0066ξ =  and 

0.006bD m=  are used. 

 

The analytical solutions of this work, containing many approximations, can be used to 
calculate drainage behavior in good agreement with numerical solutions of the partial 
differential equations from which the model is derived. To show this, we compare our results 
with those of another model that has been used to describe free drainage, that of Magrabi et 
al. [8], which uses similar starting equations.  

Magrabi et al. [8] studied free drainage from foam with an initial expansion ratio of 20 
( 0.05)α = . In Figure 13, we compare their modeling results with modeling results using our 
simplified analytical solution for free drainage. The parameters are listed in Appendix B. 

For comparison, we use the data from Ref. [8] for the mass of water drained as a 
function of time to calculate the corresponding value of wh , the volume of liquid drained per 
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unit area of the foam column used in the experimental work. Using the liquid density and foam-
column geometry reported in Ref. [8], we transform the drained-mass data to water height via 

 2

( ) ( )( ) d d
w

V t M th t
S Rρπ

==  (65) 

where ( )dV t  is the volume of liquid drained from the foam, S  is the cross-sectional area of the 
foam column, ( )dM t  is the mass of liquid drained, ρ  is the intrinsic liquid density, and R  is the 
radius of the cylindrical foam column. 

We shifted by the respective induction times as reported in Ref. [8] of Magrabi et al. In 
the work, there was a no-flow boundary condition at the bottom of the foam column until that 
boundary reached a liquid fraction of 0.26. Our model, however, has a constant bottom 
boundary condition of 0.26wα = . The induction time predicted by our model is much smaller, 
in comparison. 

 

Figure 13: Height of drained liquid for free drainage (experimental and modeling results from 
Ref. [8] and modeling results of this work). The induction time of Ref. [8] is 240indt s= .for 

266bD mµ=  and 20indt s≈  for 540bD mµ= . The induction time for our modeling results is 
0indt s= . 
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As shown in Figure 13, the experimental data of Ref. [8] disagree with the predictions of 
their model. The authors argue that coarsening is the effect responsible for the disagreement, 
which is supported by measurements of average bubble radius that increase significantly during 
the first 960 s after foam formation. The effect of coarsening was not considered in their 
model, but it was shown that by increasing the bubble size from the initial value to the value 
measured after 960 s, the model predicts a greater drainage rate that increases the agreement 
with the experimental data. However, bubble sizes are difficult to measure during drainage 
because the distribution evolves over time. Further, the physics responsible for the evolution of 
bubble size in foam is not well understood. 

Although our model calculations of their conditions show disagreement with their 
experimental data, our modeling calculations are in reasonable agreement. The experimental 
foam in Ref. [8] contained a low expansion ratio of 20 and a bubble diameter less than a 
millimeter; our model was designed specifically to treat high-expansion foams ( 100)Ex >  with 
bubble diameters ranging from several millimeters to a few centimeters. Coarsening will have 
much less of an effect on the drainage behavior for our foams with bubble diameters an order 
of magnitude larger. Additionally, our model predicts a smaller drainage rate than their model. 
The largest contribution to the difference in the model predictions is that we consider the 
length-averaged behavior of the liquid volume fraction and liquid velocity by integrating the 
conservation equations. The resulting simplification of the model was expected to introduce 
some error. However, the clear advantage of considering the average behavior is that it allows 
the calculation of analytical solutions to describe the drainage behavior as a function of time. 

The liquid fraction predictions of the two models are compared in Figure 14. The figure 
shows how the height-averaged liquid fraction predicted in this work compares to the 
predictions of a height-resolved model at various heights within a column. From visual 
inspection, our analytical solution appears to capture the length-averaged behavior reasonably 
well.  
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Figure 14: Comparison of length-averaged liquid fraction α  of this work with model 
predictions of liquid fractions at four positions along the height of the column from Ref. [8]. 
Note that z/H=0 is the bottom of the column and z/H=1 is at the top. 

 

Next, we provide a comparison of our model with experimental drainage measurements 
during both filling and free drainage. We reiterate that the analytical solution for filling is not 
valid for the relatively slow injection velocities in the bench-scale experiments of this work, 
although it is valid for large-scale field conditions. Therefore, during the filling portion of the 
experiments, we numerically solve Eq. (31) to obtain wh  as a function of time from 0t =  until 
the fill time. On the other hand, the analytical solution for free drainage is valid for the bench-
scale experiments, and we use the analytical solutions for t  greater than the fill time. 
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Figure 15: Comparison of model and experiment during the foam-filling period. The induction 
time is denoted indt . 

 

The modeling and experimental data of this study for filling are shown in Figure 15. The 
experimental data suggest that the height of the water layer increases linearly with time, as 
predicted by the model. Note that there is an induction time of approximately 20 s in the 
experiments of this work, but the model underpredicts this value.  

Note the appreciable drainage that occurs during filling in Figure 15. For the Ex=183 
case, the length-averaged liquid fraction decreases from about 0.0055 ( 183)Ex =  to 
approximately 0.00425 ( 235)Ex =  during the filling period of 103 s. In the 120Ex =  case, the 
liquid fraction decreases from 0.0083 ( 120)Ex =  to about 0.0046 ( 217)Ex =  during the filling 
period of 259 s. The expansion ratio increases by about 28% and 81%, respectively, during the 
filling period. This shows that the drainage occurring during the filling process can significantly 
affect the expansion ratio of the foam.  

The model contains the adjustable parameter ξ . We assume that the HiEx foams of this 
study have immobile channel walls and we use a permeability constant for these conditions 
that has been calculated in Ref. [7]. Also, the bubble diameter for the model calculations is fit to 
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the experimental data of liquid drained versus time. We fit the filling portion of the 
experimental drainage curve because we use a modified Hagen-Poiseuille equation, valid for 
fully developed, steady-state flow. There is a wide distribution in the experimental bubble size, 
ranging in diameter from about a millimeter to a couple of centimeters. The average bubble 
size from fitting the experimental data was shown to be within the bubble-size distribution 
from the photographs. The effect of bubble size on drainage behavior is examined below and 
the bubble-size range within the distribution observed in the experiments is investigated.  

 

Figure 16: Comparison of model with experimental data for Ex= 183 for filling and free 
drainage periods. 

 

The experimental data and model predictions for the entire drainage period including 
both filling and free drainage are shown in Figure 16 and Figure 17 for the cases of 183Ex =  
and 120Ex = , respectively. After the filling period, the drainage rate in the experiment 
decreases. Good agreement is shown between the model and experiment during the free 
drainage period, which suggests that the data fits well to the exponential dependence of the 
model.  
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Figure 17: Comparison of model and experimental data for Ex=120 during filling and free 
drainage periods. 

  

Comparison of model and experiment results of this work show better agreement than 
the model and experiment results comparison of Magrabi et al [8]. In the latter, the predicted 
value of wh  at equilibrium is 50% smaller than the experimental value. Our predicted value of 

wh  at equilibrium is very close to the experimental value. To understand the difference, we 
compare the ratio of the equilibrium average liquid fraction to the initial liquid fraction for the 
two experiments. We use Eq. (60) to calculate 

 
( )
( ) ( ) ( )

.
0 0 0

w f w f

gH

B

AH L

α α γ δ α αα
α α ρ α

− −∞
= =

   
     (66) 

Note that this is also equal to the ratio of the liquid volume of the foam at equilibrium to the 
initial liquid volume in the foam. Using the parameters of Magrabi et al. [8] for a bubble radius 
of 133 µm and f wα α<< , this ratio is approximately 0.5; only 50% of the water is drained 

from the foam. Note that the equilibrium experimental value in Ref. [8] is approximately equal 
to (0) 0.05 0.2 0.01H m mα = × = , the total liquid volume in the foam per unit area of the foam 
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column, and therefore the experiment indicates that nearly 100% of the liquid in the foam is 
drained at equilibrium. The prediction of the percent of liquid drained at equilibrium using Eq,. 
(66) is consistent with the model data shown in Figure 13; the value of wh  is about 50% of the 
experimental value. On the other hand, this ratio is approximately 0.02 for the parameters of 
this study; only 2% of the initial liquid remains in the foam. The main contribution to the 
difference in the α  values is the very large difference in bubble size between the two studies. 

 

Table 2: Model parameters for comparison with experimental data. 

γ  Surface tension 22.25 10 N
m

−×  

µ  Liquid viscosity 48.94 10
m s
kg−×  

ξ  Permeability constant 0.0051  

ρ  Liquid density 3997 kg
m

 

wα  
Liquid fraction at foam/liquid interface 

(mass balance) 1 

wα  
Liquid fraction at foam/liquid interface 

(momentum balance) 0.26  

 

Table 3: Initial conditions for filling solution 

0wh  Initial height of liquid layer 0 m  

0fh  Initial height of foam layer 0.01 m  

0t  Starting time 0 s  

 

An advantage of the analytical solutions of this work is that they can be used to easily fit 
the permeability coefficient to experimental data for a given foam. In this work, the 
permeability coefficient appears to be constant between two experiments where the expansion 
ratio is varied from 183 to 120 and the fill time is varied from 103 s to 259 s in a foam column of 
height 0.561 m. Further work is necessary to determine the range in foam parameters for which 
the permeability coefficient remains approximately constant. Note that previous models [6,7] 
which assume that the viscous force is predominantly located in channels with immobile walls 
also have an effective permeability coefficient that is constant, regardless of foam parameters. 
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Figure 18: Effect of fill rate on drainage. 

 

EFFECT OF MODEL PARAMETERS ON FOAM DRAINAGE BEHAVIOR 

A. Fill Rate 

The effect of fill rate on drainage is shown in Figure 18. A case with a very small fill time 
of 5 s is compared with cases with slower injection velocities corresponding to fill times of 120 s 
and 600 s (10 minutes). For the height of foam column and parameters considered, the 
drainage-time difference between filling in 5 s and 120 s is small. However, spaces for which 
HiEx foams are typically used for fire suppression have higher ceilings and thus the foam 
column heights are potentially taller by an order of magnitude. Hence, the fill times could be 
much larger. The curve corresponding to a 600s fill time shows a clear difference from the other 
curves; this difference cannot be predicted using a free-drainage model. 
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Figure 19: Effect of bubble size on drainage. 

 

B. Bubble Size 

The effect of the bubble size on drainage is shown in Figure 19. The model predicts that 
foams with larger bubbles drain at a faster rate and drain more liquid before reaching 
equilibrium. This effect has been observed in previous studies at lower expansion ratios near 20 
and bubble sizes less than a millimeter [9]. At a given liquid fraction, a foam with larger bubbles 
will have channels with greater cross-sectional area. Because the average velocity in the 
channel is proportional to the channel area, the drainage rate from the foam will be greater. 

In Figure 19, drainage is predicted for a bubble diameter of 0.001 m (1 mm). In studies 
of low-expansion foams, the bubble diameters are typically smaller. The model indicates that 
HiEx foams do not drain appreciably for these smaller bubble sizes. However, the foams used in 
practice for HiEx can have bubble diameters up to a few centimeters. As Figure 19 indicates, 
HiEx foams drain appreciably during and after the filling process for the bubble sizes used in 
practice. 



47 
 

 

Figure 20: Effect of input expansion ratio on drainage. 

 

C. Expansion Ratio 

The effect of varying the expansion ratio of the input foam on drainage behavior is 
displayed in Figure 20. For a given bubble size, the area of the channels will decrease with 
increasing expansion ratio. The drainage rate is therefore reduced in foams with higher 
expansion ratios. 
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Figure 21: Effect of column height on drainage. 

 

D. Column Height 

The effect of column height on drainage is shown in Figure 21. As the height of the foam 
column increases, the time required to reach equilibrium also increases. Further, the liquid 
fraction at equilibrium also decreases with increasing column height. This behavior is caused by 
the pressure gradient of the model, which decreases with increasing column height. The effect 
of capillarity on the column will therefore be smaller for taller columns, allowing a greater 
percentage of liquid to drain before equilibrium is reached.  
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Figure 22: Effect of permeability coefficient on drainage. 

 

E. Permeability Coefficient 

The effect of varying the permeability coefficient on drainage is plotted in Figure 22. The 
drainage behavior for the permeability constant 0.0066ξ =  is shown along with greater values, 
0.013 and 0.030. These values correspond approximately to conditions that have been reported 
in the literature. Koehler et al. [7] reported a calculated value of a permeability constant for 
channels with immobile walls, 0.0063ξ ≈ , which is the similar in value to the permeability 
constant used in our work. Magrabi et al. [9] used a permeability coefficient of about 0.025 and 
0.01 to model foams at an expansion ratio of 20 made from the surfactant solutions aqueous 
film-forming foam (AFFF) and film-forming fluoroprotein foam (FFFP), respectively. 

 

5.0 CONCLUSIONS 

We have developed a model to describe the loss of liquid from foam that includes an 
essential process of industrial foam applications: the process of filling a space with foam. The 
model solves for the time evolution of liquid drained from the foam and the average liquid 
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content within the foam. Introducing the filling process adds a new time scale, the fill time, to 
the drainage problem that has a significant effect on the drainage behavior.  

An important aspect of the work is that approximations in the model equations that 
describe the drainage of liquid from foam are made to provide simple analytical solutions. The 
analytical solutions indicate that the drainage rate remains constant during the filling process 
and, after filling, decays exponentially.  

The investigation is aimed at describing drainage from foams with very low liquid 
content, such as those used in high-expansion (HiEx) foam fire-suppression applications. Model 
results are in good agreement with the experimental data from bench-scale experiments on 
HiEx foams. Although numerical solutions were needed for the model equations to obtain 
sufficient accuracy under the bench-scale conditions, the simple analytical solutions of the 
model are shown to be valid for field conditions.  

Modeling predictions were compared with experimental data using a permeability 
coefficient, 35.1 10ξ −= × , that was calculated from the permeability derived in Ref. [7] for a no-
slip condition at the channel walls. The model was fit to experimental data by adjusting the 
bubble size. The bubble size that provided the best fit to experiment results was within the 
bubble-size distribution obtained by photographs of the experimental foams. Fill rate, bubble 
size, input-foam expansion ratio, column height, and permeability coefficient each have a 
substantial impact on the foam drainage behavior predicted by the model.  
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APPENDIX A: Calculation of the superficial liquid velocity for a cylindrical channel 

In order to treat liquid flow in foam, we first assume the foam is composed of a network 
of cylindrical channels. We calculate the superficial liquid velocity for a cylindrical channel to 
show its dependence on the channel area. In the calculation, we consider steady-state flow. 
Also, we assume that the walls are immobile, i.e. there is a no-slip condition at the surface of 
the channels. This gives rise to a parabolic velocity profile. The velocity of the liquid within the 
channel at a distance r  from the axis can be described by the equation 

 1z max
p

rv v
r

 
= − 

  
 (67) 

where pr  is the radius of the channel.  

The stress at a distance r  is given by  
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2 .1 maxz
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µτ µ µ
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

 



∂ ∂
= − = 

∂ ∂   
 (68) 

We are interested in modeling the stress at the surface of the channel as an interaction 
between phases in the multiphase momentum equation. Hence, we want the value of the 
stress at pr r=  

 
2( ) .max

rz p
p

r v
r
µτ =  (69) 

We must calculate the force from this stress by integrating over the surface area of the channel 

 22 4max
rz rz p max

p

F
r
vdA r L v Lµτ π πµ = = = ∫  (70) 

where 2 pr Lπ  is the surface area of the channel. Eq. (70) gives the force in a single channel. In 
order to find the total force per unit volume of the simplified foam, we need to multiply by the 
number of channels per unit volume.  

For dodecahedral geometry, there are 10pn =  channels per bubble. For this case, the frictional 

force per unit volume, fF , is  

 10f rz p b rz bF F N Nn F==    (71) 
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where bN  is the number of bubbles per unit volume. We can calculate the total number of 
bubbles, bN , by 

 f
b

b

V
N

V
=  (72) 

where fV  is the total volume of the foam and bV  is the volume per bubble. Dividing the 
previous expression by fV  yields 
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The force per unit volume due to friction at the surface of the channels is therefore  
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We want to model this frictional force as an interaction between phases in the liquid-phase 
momentum equation. The momentum equation, ignoring the inertial and accumulation terms, 
for the liquid phase (denoted by l ) within a two-phase mixture including gas (denoted by a ) is 
given by 

 ( )( )( ) ( ) ( )0 ·
ll l l la

laF vP vτ ρ ρ = − − +∇ + ∇ −g  (75) 

where ( )lρ αρ=  is the effective density of the liquid within the mixture and ( )l
lP Pα=  is the 

effective liquid pressure. The last term in the previous expression is the interaction between 
the gas and liquid phases, and this is the term for which we want to model the friction between 
liquid and gas in a foam using ( )( ) .a

l la
f lFF v vρ −=  The quantity laF  is termed a time constant 

for the interaction between the phases. The interaction term has the form 

 
( ) 2

160
1 7 55

la max
sv

L
vF πµαρ

+
− =  (76) 

when we consider the gas velocity 0av = . We also express the liquid velocity in terms of the 
superficial velocity, sv . To relate maxv  to sv , let us consider the pore velocity, pv , which is the 
average liquid velocity within a channel. The average velocity, pv , is related to the maximum 
velocity, maxv , by a constant; let us make the relation 

 .max pv cv=  (77) 
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We are considering steady-state flow in cylindrical channels, and therefore 2c =  for the 
resulting parabolic velocity profile. We also must relate the channel velocity to the superficial 
velocity. We achieve this by means of a mass balance in a foam column at the interface 
between a foam and liquid layers. Let us denote pN  as the total number of channels that are 
connected and drain directly to the foam layer, each having a flow rate of p pa v . The liquid 

drained from the foam causes the liquid layer to rise, and the flow rate of the liquid is sv A , 
where A  is the cross-sectional area of the foam column. Balancing these flow rates, we have 
the relation 

 .p p p s p s
p p

AN
N

a v v A v v
a

 
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 
 (78) 

A common equation in porous media is s pv v=  , where   is the porosity of the medium. If we 
consider foam as a porous media with liquid filling the pores, then α= . This allows the 
relation /p pN a Aα = . The time constant is therefore 
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Our momentum equation for the liquid phase is  
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Solving for sv  yields 
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If we set /p pN a A α= , then 
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The superficial velocity in terms of Darcy’s law is given by 

 ( ) .s lgkv
u

Pρ −∇=  (83) 
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Assuming that ( ) /l lP Pα α∇ ≈ ∇ , the previous expression can be used to find the permeability of 
the foam with cylindrical cross-section using Eq. (82), yielding 
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This shows that the permeability (and the superficial velocity) is proportional to the square of 
α . The permeability constant for this case is 
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The case considered here is for vertically oriented cylindrical channels with immobile walls. By 
considering the equation for Hagen-Poiseuille flow in a cylindrical channel  

 ( )
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v cylindriP

z
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π
∂
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=  (86) 

and the equation for flow in a channel with equilateral-triangular cross section derived by Desai 
and Kumar 

 ( ) ,
320
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v a
z

∂
∂

=  (87) 

we calculate a correction factor, / 20 3 268 0.7π ≈ , that can correct the value in Eq. (85) for 
vertically oriented cylindrical channels to yield ξ  for vertically oriented channels with 
equilateral triangular cross section: 

 0.03 0.726 0. .(022 )equ trii ala ngtera ull arξ ≈ × ≈  (88) 

The channels in foam have a cross-sectional area that is shaped like a triangle wherein the three 
edges are curved in a concave manner, i.e. a scalloped-triangular shape. We expect that the 
value of ξ  for vertically oriented channels with scalloped-triangular cross section and immobile 
walls is slightly less than the value provided in Eq. (88). 
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APPENDIX B: Parameters for comparison with Reference [8]. 

The following parameters were used to compare the model in this work with the model 
calculations reported in Ref. [8] as shown in Figure 13 and Figure 14. 

γ  Surface tension 22.25 10 N
m

−×  

µ  Liquid viscosity 48.94 10
m s
kg−×  

ξ  Permeability constant 0.0245  

L  
Plateau border length 

Note: 0.408 bL D=  

411.09 0 m−×  
( )42.66 10bD m−= ×   

412.20 0 m−×  
( )45.40 10bD m−= ×  

ρ  Liquid density 3997 kg
m

 

H  Column height 0.2 m  

0( )fα α=  Liquid fraction of input foam 0.05  

wα  
Liquid fraction at foam/liquid 

interface (mass balance) 1 

wα  
Liquid fraction at foam/liquid 

interface (momentum balance) 0.26  

0t  Starting time  0 s  
 




