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OMAN INDUCES ICTOGENESIS IN THE AMYGDALA AND
NTERICTAL ACTIVITY IN THE HIPPOCAMPUS THAT ARE BLOCKED

Y A GluR5 KAINATE RECEPTOR ANTAGONIST IN VITRO
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. P. APLAND,a1 V. ARONIADOU-ANDERJASKAb,c1 AND
. F. M. BRAGAb,c*

Neurotoxicology Branch, USAMRICD, Aberdeen Proving Ground (EA),
D 21010, USA

Department of Anatomy, Physiology and Genetics, Uniformed Services
niversity of the Health Sciences, 4301 Jones Bridge Road, Bethesda,
D 20814, USA

Department of Psychiatry, Uniformed Services University of the Health
ciences, Bethesda, MD 20814, USA

bstract—Exposure to organophosphorus nerve agents in-
uces brain seizures, which can cause profound brain dam-
ge resulting in death or long-term cognitive deficits. The
mygdala and the hippocampus are two of the most seizure-
rone brain structures, but their relative contribution to the
eneration of seizures after nerve agent exposure is unclear.
ere, we report that application of 1 �M soman for 30 min, in

at coronal brain slices containing both the hippocampus and
he amygdala, produces prolonged synchronous neuronal
ischarges (10–40 s duration, 1.5–5 min interval of occur-
ence) resembling ictal activity in the basolateral nucleus of
he amygdala (BLA), but only interictal-like activity (“spikes”
f 100–250 ms duration; 2–5 s interval) in the pyramidal cell

ayer of the CA1 hippocampal area. BLA ictal- and CA1 inter-
ctal-like activity were synaptically driven, as they were
locked by the AMPA/kainate receptor antagonist 6-cyano-7-
itroquinoxaline-2,3-dione. As the expression of the GluR5
ubunit of kainate receptors is high in the amygdala, and
ainate receptors containing this subunit (GluR5KRs) play an
mportant role in the regulation of neuronal excitability in
oth the amygdala and the hippocampus, we tested the effi-
acy of a GluR5KR antagonist against the epileptiform activ-
ty induced by soman. The GluR5KR antagonist UBP302 re-
uced the amplitude of the hippocampal interictal-like spikes,
nd eliminated the seizure-like discharges in the BLA, or
educed their duration and frequency, with no significant
ffect on the evoked field potentials. This is the first study
eporting in vitro ictal-like activity in response to a nerve
gent. Our findings, along with previous literature, suggest
hat the amygdala may play a more important role than the
ippocampus in the generation of seizures following soman
xposure, and provide the first evidence that GluR5KR an-
agonists may be an effective treatment against nerve agent–
nduced seizures. Published by Elsevier Ltd on behalf of
BRO.

These authors have contributed equally to the study.
Correspondence to: M. F. M. Braga, Department of Anatomy, Phys-
ology, and Genetics, Uniformed Services University of the Health
ciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
el: �1-301-295-3524; fax: �1-301-295-3566.
-mail address: mbraga@usuhs.mil (M. F. M. Braga).
bbreviations: ACh, acetylcholine; AChE, acetylcholinesterase;
CSF, artificial cerebrospinal fluid; BLA, basolateral nucleus of the
2
mygdala; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; GluR5KRs,
ainate receptors containing the GluR5 subunit.

306-4522/09 Published by Elsevier Ltd on behalf of IBRO.
oi:10.1016/j.neuroscience.2008.11.053
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ey words: basolateral amygdala, CA1 area, ictogenesis,
luR5 receptors, nerve agents.

rganophosphorus compounds are potent neurotoxic
hemicals that are widely used in industry and agriculture.
sed as insecticides, worldwide, they are responsible for
illions of poisonings annually (Abou-Donia, 1981; Singh
nd Sharma, 2000). Nerve agents are also organophos-
horus compounds, and are the most lethal chemical war-

are agents (Bajgar, 2005). Their primary action is the
rreversible inhibition of acetylcholinesterase (AChE), lead-
ng to accumulation of acetylcholine (ACh) and overstimu-
ation of nicotinic and muscarinic receptors in the CNS and
he periphery (Bajgar, 2005; Barthold and Schier, 2005).
linical manifestations after exposure develop rapidly, and
an result in death or brain damage, with long-term neu-
ological and behavioral consequences (McDonough et al.,
986; Brown and Brix, 1998; Bajgar et al., 2004). Nerve
gent–induced neuronal cell death in the brain is primarily
ue to excitotoxicity and oxidative stress produced by ex-
essive seizure activity (McDonough et al., 1987, 1997;
hih et al., 2003; Baille et al., 2005). Therefore, control of
eizures after exposure to a nerve agent is crucial for
rotection against acute lethality or brain pathology (Shih
t al., 2003). Current medical countermeasures against
erve agent poisoning are not always effective in prevent-

ng seizure-induced brain damage (Layish et al., 2005).
nowledge of which brain regions are primarily responsi-
le for generating seizures in response to nerve agents,
ombined with knowledge of the biochemistry and physi-
logy of these regions, can facilitate the development of
ffective antidotes against nerve agent–induced seizures.
imbic structures, particularly the hippocampus, piriform
ortex, and the amygdala appear to play an important role

n the generation of seizures by nerve agents, as sug-
ested by the rapid increases in extracellular glutamate in

hese brain regions after nerve agent exposure (Lallement
t al., 1991a,b, 1992), and the profound damage they
uffer following exposure (Hayward et al., 1990; Baze,
993; Kadar et al., 1995; Shih et al., 2003). The amygdala,

n particular, displays the earliest and most rapid increase
n extracellular glutamate (Lallement et al., 1991a,b) and
he most extensive damage after nerve agent exposure
Shih et al., 2003).

Soman is a highly toxic nerve agent (Boskovic, 1981),
ith deleterious effects that are very difficult to counteract

Shih and McDonough, 2000; Shih et al., 2003; Bajgar,

005) due, in part, to the rapid aging of soman-inhibited

mailto:mbraga@usuhs.mil
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ChE, which severely limits the reactivatability of the en-
yme (Boskovic, 1981; Bajgar, 2005). In the present study,
e investigated the in vitro effects of soman on the spon-

aneous and evoked neuronal activity in the CA1 hip-
ocampal area and the basolateral nucleus of the amyg-
ala (BLA), which, of the more than 10 nuclei composing

he amygdala (Pitkänen, 2000; McDonald, 2003; Sah et
l., 2003), plays the most central role in the generation and
pread of seizure activity (White and Price, 1993a,b; Mo-
apel et al., 1996; Pitkänen et al., 1998).

Although soman induces seizures primarily via musca-

ig. 1. Soman-induced ictal activity in the BLA and interictal activity
ap-free mode, were simultaneously obtained in the BLA and the strat

n this and the subsequent figures, the stimulus artifacts in the evoked
n the BLA, evoked by stimulation of the external capsule, consisted of
ate components. In the CA1 area, field potentials evoked by stimulatio
as often followed by one or two smaller amplitude, negative comp

b) Exposure to 1 �M soman for 30 min reduced the amplitude of N
euronal discharges resembling brain seizures. In response to soman
voked response, as well as spontaneous, interictal-like bursts. (c) Bath
ynaptically-evoked components of the field potentials, as well as the BLA
inic receptor hyperstimulation (following the inhibition of p
ChE; Harrison et al., 2004), muscarinic receptor antago-
ists are effective against soman-induced seizures only
hen administered soon after exposure (McDonough and
hih, 1993; McDonough et al., 2000). This is part of the
vidence that has led to the view that nerve agent–induced
eizures are initiated by muscarinic receptor hyperstimu-

ation, but they are sustained and reinforced primarily by
lutamatergic activity (McDonough and Shih, 1997). Con-
istent with this view is the finding that glutamate receptor
ntagonists, specifically antagonists of kainate receptors
ontaining the GluR5 subunit (GluR5KRs) block hip-

ippocampus are synaptically driven. Extracellular field recordings, in
idale of the CA1 hippocampal area, in slices containing both regions.
ntials (right panels) are indicated with an asterisk. (a) Field potentials
r negative component (N1), followed by one or more lower-amplitude,
chaffer collaterals consisted of a large population spike (PS1), which

No spontaneous activity was present in the BLA or the CA1 area.
LA, and induced spontaneous, prolonged episodes of synchronous
, the CA1 area produced additional population spikes in the enhanced

on of 10 �M CNQX (an AMPA/kainate receptor antagonist) blocked all
and the CA1 interictal spikes. (d) The effects of CNQX were reversible.
in the h
um pyram
field pote
one majo
n of the S
onents.

1 in the B
exposure
applicati
ocampal epileptiform activity in vitro and limbic seizures



Fig. 2. Soman-induced ictal activity in the BLA is blocked by a GluR5KR antagonist. Extracellular field recordings were simultaneously obtained in
the BLA and the stratum pyramidale of the CA1 hippocampal area, in slices containing both regions. (a) There was no spontaneous activity during
control recordings in either the BLA or the CA1 area. N1 and PS1 of the BLA and CA1 field potentials, evoked by external capsule and Schaffer
collateral pathway stimulation, respectively, were each followed by a smaller amplitude negative component, while a short latency fast component
(non-synaptic; d) was relatively pronounced in both regions, in this slice. (b) Exposure to 1 �M soman reduced the amplitude of N1 in the BLA, and
produced seizure-like activity within 13 min of soman exposure. The first three seizures appeared at a 6 min interval, which was soon reduced to 5
min and then 4 min. Additional late negative components appeared in both the BLA and CA1 evoked field potentials, but no spontaneous activity was
induced in the hippocampus in this slice. (c) The BLA seizures were not affected after soman washout. (d) Perfusion with Ca2�-free ACSF blocked
both the BLA seizures and the synaptically-evoked components of the field potentials, and revealed the non-synaptic nature (fiber volley or antidromic)

J. P. Apland et al. / Neuroscience 159 (2009) 380–389382
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n vivo induced by the muscarinic agonist pilocarpine
Smolders et al., 2002). GluR5KRs are present in the
ippocampus and are exceptionally high in the BLA (Bet-

ler et al., 1990; Li et al., 2001; Braga et al., 2003), where
hey modulate GABAergic and glutamatergic synaptic
ransmission (Huettner, 2003; Braga et al., 2003, 2004;
ogawski et al., 2003; Gryder and Rogawski, 2003; Aro-
iadou-Anderjaska et al., 2007), and are involved in syn-
ptic plasticity (Li et al., 2001; Bortolotto et al., 2005) and
pilepsy (Smolders et al., 2002). The potential anticonvul-
ant properties of GluR5KR antagonists have attracted

nterest because these agents are expected to have min-
mal side effects, as they do not affect normal synaptic
ransmission (Smolders et al., 2002), and their distribution
n the brain is limited (Bettler et al., 1990; Li et al., 2001;
raga et al., 2003). For these reasons, in the present study
e also tested the effectiveness of a GluR5KR antagonist
gainst epileptiform activity induced by soman, in the hip-
ocampus and the amygdala.

EXPERIMENTAL PROCEDURES

oronal slices containing both the amygdala and the hippocam-
us were prepared from male Sprague–Dawley rats, weighing
45–570 g (498.1�8.5, mean�S.E.; n�25; age range: 4–5.5
onths). The rats were deeply anesthetized with isoflurane and
ecapitated. The brain was rapidly removed and placed, for 1–2
in, in ice-cold artificial cerebrospinal fluid (ACSF) consisting of

in mM) 125 NaCl, 3 KCl, 2.0 CaCl2, 2 MgCl2, 25 NaHCO3, 1.25
aH2PO4, and 10 glucose, and bubbled with 95% O2 and 5% CO2

o maintain a pH of 7.4. A block of the brain was prepared, and
00 �m thick coronal slices were cut with a Vibratome (Ted Pella,
edding, CA, USA). Slices were placed in a holding chamber at

oom temperature. After 1–2 h, individual slices were transferred
o a submerged type chamber, where they were superfused at

ml/min with pre-warmed ACSF, maintained at 32.5–33.5 °C.
The composition of the recording buffer was as above, except

or KCl and MgCl2 which were 5 mM and 1 mM, respectively, in
rder to elevate neuronal excitability, which might facilitate induc-

ion of epileptiform activity by soman. In a group of slices, we also
ecorded in medium containing 3 mM KCl (as noted in the Re-
ults). Slices were allowed to equilibrate in the recording chamber
or about 20 min before initiation of recordings. Extracellular re-
ordings were obtained simultaneously from the BLA and the
tratum pyramidale of hippocampal area CA1, with ACSF-filled
lass micropipettes (5–10 M� resistance). Electric stimulation
as applied to the Schaffer collaterals and the external capsule to
voke field potentials in the CA1 area and the BLA, respectively,
sing concentric, bipolar stimulating electrodes (inner diameter
5 �m, total diameter 200 �m; FHC, Bowdoinham, ME, USA).
pontaneous and evoked analog signals from the two recorded
hannels were filtered at 1 Hz and 5 kHz (high and low-pass filter
ettings), and digitized at 3 kHz, using the pClamp10 software
Molecular Devices, Union City, CA, USA). Soman (pinacoyl
ethylphosphonofluoridate) was obtained from Edgewood Chem-

cal Biological Center, Aberdeen Proving Ground, MD, USA, di-
uted in saline, at the concentration of 1.9 mg/ml (10.4 mM). It was
tored at �80 °C. On the day of the experiment it was thawed

f the earliest, short-latency components of the evoked responses. (e
ith normal medium (2 mM Ca2�). (f) Bath application of 20 �M U
ignificantly the evoked field potentials, except for a reduction in the la

n an expanded time base. Oscillations had a higher frequency and amplitude at
f the seizure. The section of the trace within the blue rectangle is shown on t
lowly on ice and diluted to final concentration of 1 �M with
ce-cold ACSF. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) (an
MPA/kainate receptor antagonist) was obtained from Sigma-
ldrich (St. Louis, MO, USA). UPB302 (a GluR5KR antagonist)
as obtained from Tocris Bioscience (Ellisville, MO, USA).

Data are presented as mean�standard error of the mean.
ample size “n” refers to the number of slices. Statistical signifi-
ance was determined with the use of paired t-test.

In conducting the research described in this report, the inves-
igators adhered to the Guide for the Care and Use of Laboratory
nimals by the Institute of Laboratory Animal Resources, National
esearch Council, in accordance with the stipulation mandated for
n AAALAC accredited facility.

RESULTS

n all of the experiments described below, the recording
lice medium consisted of (in mM) 125 NaCl, 5 KCl, 2.0
aCl2, 1 MgCl2, 25 NaHCO3, 1.25 NaH2PO4, and 10 glu-
ose. All extracellularly recorded signals were collected in
he gap-free mode to capture spontaneous events. Control
ecordings were obtained for 20–40 min before application
f soman. Single stimulus pulses were delivered every
0 s to the external capsule and the Schaffer collaterals to
voke field potentials in the BLA and the CA1 pyramidal
ell layer, respectively. Stimulus intensity was adjusted to
voke a BLA field potential that was 60–80% of the max-

mal response amplitude, and a population spike in the
A1 area (PS1; Fig. 1a) that was 1–2 mV (peak ampli-

ude). BLA field potentials consisted of one major negative
omponent (N1; Fig. 1a); the characteristics of this com-
onent have been described previously (Aroniadou-Ander-

aska et al., 2001). N1 was often followed by one to three
ow amplitude negative components, and was preceded by
n early (less than 3 ms peak latency) low amplitude
egative component generated by non-synaptic (anti-
romic or axonal) activity (see it isolated in Fig. 2d). In the
A1 area, a second, smaller amplitude population spike

ollowed PS1 in 65% of the slices, while a third small
omponent was also present in 25% of the slices. A non-
ynaptic early spike (fiber volley or neuronal firing gener-
ted by direct stimulation of dendrites or axon collaterals)
ometimes preceded PS1 (see Fig. 2d). The late compo-
ents present in the evoked BLA and hippocampal field
otentials were probably indicative of hyperexcitability due

o the relatively high potassium (5 mM) and low magne-
ium (1 mM) in the perfusing medium. Nevertheless, there
as no spontaneous activity during control recordings in
ny of the slices, except for one slice in which the hip-
ocampus displayed persistent low-amplitude, high-fre-
uency activity; this slice was not used.

Soman (1 �M) was bath applied for 30 min. Within 3–5
in of exposure to soman, the N1 component of the BLA

eld potential was consistently reduced (53.6�3.1% re-
uction, n�24; Figs. 1b and 2b), and remained at the

seizures and the evoked field responses returned upon reperfusion
a GluR5KR antagonist) blocked the BLA seizures without affecting
nents. (g) The effects of UBP302 were reversible. (h) A BLA seizure
) The BLA
BP302 (
te compo
the beginning of the seizure, and dissipated gradually over the course
he right with the time base further expanded.
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educed level throughout the 30 min exposure, in all slices.
pontaneous ictal-like activity (as operationally defined by
ebeda et al., 1990; hereafter referred to as ictal activity or
eizures) in the BLA was induced in response to soman in
4 of 24 (61%) slices (Figs. 1b and 2b, c), while there was
o significant effect on spontaneous activity in the remain-

ng 39% of the slices. Seizures appeared within 5–26 min
f soman exposure (14.3�2.7 min, n�12), and in two
lices seizures started at 4 and 7 min after washout of
oman. The frequency of seizure occurrence increased
omewhat during the first 15–20 min of their appearance,
nd then remained relatively stable within a slice, but
aried in different slices from 0.2/min to 0.7/min (interval of
ccurrence: 1.5–5 min; mean interval: 3.4�0.3 min,
�14). Seizures that occurred at lower frequencies tended

o have longer durations. The duration of seizures ranged
rom 10 to 40 s in different slices, while within a slice it
aried by 5–10 s. The frequency of oscillations within a
eizure was greatest within the first few seconds of seizure
nset; then the frequency stabilized and subsequently de-
reased as the seizure dissipated (see Fig. 2h). Measured
uring a 5 s period in about the mid-point of a seizure, the

requency of oscillations ranged from 5.5 Hz to 8 Hz, in
ifferent slices. Seizures were not triggered by the stimulus
ulses (which were delivered every 30 s to sample the
voked field responses), and the frequency of seizures
as not affected when stimulation was turned off. In all
xperiments in which seizures were induced in the BLA,
eizure activity continued after soman washout and
hroughout the recording period (up to 4 h). After washout
f soman, the amplitude of N1 recovered, partially or fully,
hile low amplitude, long-latency components remained
ore pronounced than in control (Fig. 2c, e). There was no

lear correlation between recovery of the field potential
nd expression of seizures, as seizures appeared in some
f the slices in which recovery of the field potential after
oman washout was modest, and did not appear in some
f the slices where recovery was nearly complete.

In the hippocampus, at the same time that the field
otential in the BLA was decreased upon exposure to
oman, the PS1 of the hippocampal field potential in-
reased gradually, while additional population spikes were
eveloping during the course of soman exposure (Figs. 1b,
c, 3b). This was observed in all slices. The field potential
emained large with multiple population spikes after wash-
ut of soman, for the duration of the recordings. Sponta-
eous, interictal-like bursts (as defined by Lebeda et al.,
990; hereafter referred to as interictal spikes or interictal
ctivity) in response to soman exposure were observed in
7 of 30 (57%) slices, while there was no significant effect
f soman on spontaneous activity in the remaining 43% of

he slices. Interictal spikes appeared within 5–18 min of
oman exposure (11.1�1.1 min; n�17). Their frequency,
uration, and amplitude increased during the first 10–20
in following their appearance. Although in most slices

nine of 17) the frequency and amplitude of the interictal
ursts were remarkably stable (see for example Fig. 3b), in

he remaining responsive slices (n�8), brief epochs of high

requency interictal activity were interrupted by lower fre- b
uency and lower amplitude interictal spikes (for example,
ig. 1b). Interictal spike frequency, measured when stable

nine slices) or during the epochs of high frequency activity
eight slices), ranged from 0.2 Hz to 0.5 Hz. The duration
f the interictal spikes ranged from 100 to 250 ms in
ifferent slices. There was no correlation between the
ppearance of interictal activity in the CA1 hippocampal
rea and the occurrence of seizures in the BLA. Further-
ore, seizures in the CA1 area and interictal activity in the
LA, after soman exposure, were not observed in any of

he slices. Finally, in those slices that did not display spon-
aneous activity in either the CA1 or the BLA area after
xposure to 1 �M soman, increasing the concentration of
oman to 10 �M for another 30 min had no additional effect
spontaneous epileptiform activity was not induced; n�5).

The BLA seizures were synaptically driven, as they
ere blocked by bath application of 20 �M CNQX (n�6,
ig. 1c) and by perfusion with Ca2�-free medium (ACSF

hat did not include CaCl2; n�3, Fig. 2d). Similarly, the
oman-induced interictal activity in the CA1 area was
locked by CNQX (n�6, Fig. 1c), indicating its depen-
ence on synaptic glutamatergic transmission. Bath appli-
ation of the selective GluR5KR antagonist UBP302 (More
t al., 2004; Partovi and Frerking, 2006) at 20 �M concen-

ration in five of the slices in which soman induced seizures
n the BLA, reversibly reduced the duration of the seizures
from 25–35 s to 5–8 s) and their frequency of occurrence
from 2–3 min to 6–7 min interval of occurrence) in two
lices, and completely blocked the seizures in three slices
Fig. 2f, g). We also tested the effects of UBP302 in some
f the slices in which the frequency and amplitude of the
oman-induced interictal spikes in area CA1 were rela-
ively stable. UBP302, at 20 �M, had no significant effect
n the frequency of interictal spikes, but it reversibly re-
uced their amplitude (absolute amplitude measured from

he positive peak to the negative peak and averaged within
60 s period) from 0.88�0.07 mV to 0.46�0.07 mV (n�5,
�0.01, Fig. 3c, d). At the concentration of 20 �M used in

hese experiments, UBP302 had no effect on N1 or PS1.
It has been previously shown that the pattern of epi-

eptiform activity in vitro (ictal versus interictal-like) is influ-
nced by the concentration of K� in the slice medium. In
he CA3 region of the hippocampus, ictal and interictal
ctivity was present in 5 mM K�, but the probability of
ccurrence of ictal activity was significantly increased
hen the concentration of K� was raised to 7.5 mM

Rutecki and Yang, 1998). In the present study, it was not
ur aim to determine if the distinct pattern of epileptiform
ctivity induced by soman in the BLA versus the CA1 area
as still present when the K� concentration in the slice
edium is substantially above normal. However, as the
otassium-dependence of epileptiform activity observed in

he CA3 area may also apply to other brain regions, we
anted to determine if the ictal discharges observed in the
LA are also observed when the concentration of K� in the

ecording ACSF is reduced to 3 mM, which is the K�

oncentration in physiological cerebrospinal fluid (Reed et
l., 1967). In five of eight slices, ictal activity was induced

y 1 �M soman in the BLA, while interictal activity was
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bserved in area CA1 of three slices. The effects of soman
n the evoked field potentials were very similar to those in

he experiments described above, which were performed
n 5 mM K�. Thus, the different forms of epileptiform
ctivity induced by soman in the BLA versus the CA1 area
re observed whether 3 mM or 5 mM K� is used in the slice
ecording buffer.

DISCUSSION
revious studies in guinea-pig hippocampal slices have
hown that in the CA1 region, paraoxon (Endres et al.,

ig. 3. Soman-induced interictal spikes in the hippocampus are reduced
rom the pyramidal cell layer of the CA1 hippocampal area; in this experim
his reason, it is not shown. (a) In control conditions there was no spontane
opulation spike. (b) Exposure to 1 �M soman for 30 min increased the n

nterictal-like spikes, within 7 min of exposure; these spikes were unaffec
ith an expanded time base, and the spike within the red rectangle is sho
BP302 reduced the amplitude of the spontaneous spikes, without affec
989; Harrison et al., 2004) and soman (Harrison et al., w
004, 2005; Apland, 2001) induce interictal activity. There
re no previous reports of the effects of nerve agents on
mygdala slices. The in vitro generation of seizure-like
rolonged neuronal discharges by the amygdala in re-
ponse to a nerve agent, when the hippocampus, under
he same conditions, generates only interictal-like bursts is
emonstrated for the first time in the present study. How-
ver, similar observations have been reported when epi-

eptiform activity is induced by 4-aminopyridine; when the
LA was independent from hippocampal inputs, it gener-
ted ictal activity in response to 4-aminopyridine, at a time

R5KR antagonist. The extracellular field recordings presented here are
LA did not produce spontaneous activity in response to soman and, for

ty, while the evoked field potential consisted of PS1 and a second, smaller
population spikes in the evoked field potential and induced spontaneous
man washout. The section of trace b within the blue rectangle is shown
right with the time base further expanded. (c) Bath application of 20 �M

frequency. (d) The effects of UBP302 were reversible.
by a Glu
ent the B

ous activi
umber of
ted by so
wn on the
hen the CA3 hippocampal region generated only interic-
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al activity (Benini et al., 2003). This suggests that the
ifference in the pattern of epileptiform activity generated
y the BLA versus the hippocampus is not associated
xclusively with soman and the mechanisms by which
oman induces epileptiform activity, but, rather, the BLA
ircuitry may have an inherent propensity to generate ictal
euronal discharges in response to convulsants. It is pres-
ntly unclear what features of the anatomy and synaptic
rganization of the BLA neuronal network, and/or its bio-
hemical and physiological substrates, favor the genera-
ion of ictal activity. It seems unlikely that the drive for the
eneration of the BLA seizures, in the present study, orig-

nated from another brain region, because such connec-
ivity is limited in coronal brain slices. It is also unlikely that
he lack of connectivity with the entorhinal cortex, or the
oncentration of soman that we used influenced the form
f epileptiform activity we observed in the CA1 area, as

nterictal-only activity is also seen in horizontal guinea-pig
lices that maintain the hippocampus–entorhinal cortex
onnections, at concentrations of soman ranging from
00 nM to 10 �M (Apland, 2001).

More than half of the slices developed spontaneous
pileptiform activity in response to soman. In previous
tudies, application of nerve agents or other anticholines-
erases to hippocampal slices has yielded a much lower
ercentage of responsive slices in rats (Cole and Nicoll,
984; Williamson and Sarvey, 1985), while in guinea pigs

he reported percentage of slices that developed epilepti-
orm activity has been lower (Apland, 2001) or higher
Endres et al., 1989; Harrison et al., 2004, 2005) than in
he present study. This difficulty that investigators have
xperienced in inducing consistently epileptiform activity

n vitro by AChE inhibitors may relate to the mechanism by
hich these agents initiate seizure activity (increased con-
entration of extracellular ACh), which necessitates the
reservation of a sufficient number of cholinergic afferent
bers in the slices. Other factors that may have affected
he percentage of responsive slices in different studies are
he gender of the animals used, their age, or possible
ifferences between rats and guinea pigs. The concentra-

ion of certain ions in the slice medium can also affect the
ropensity for generation of epileptiform activity (Rutecki
nd Yang, 1998).

How did soman induce the observed epileptiform ac-
ivity? Muscarinic rather than nicotinic receptor activation
ppears to be responsible for induction of epileptiform
ctivity following inhibition of AChE by soman, at least in

he hippocampus (Harrison et al., 2004). Muscarinic recep-
ors are present at postsynaptic sites where they mediate
he excitatory effects of ACh, such as blockade of various
otassium conductances (Cole and Nicoll, 1984; Madison
t al., 1987; Washburn and Moises, 1992; Womble and
oises, 1992) or activation of a calcium-sensitive non-

pecific cation current (Egorov et al., 2006), but also on
resynaptic terminals where they modulate the release of
lutamate (Yajeya et al., 2000; Fernández de Sevilla and
uño, 2003) and GABA (Fukudome et al., 2004; Salgado
t al., 2007). Thus, overstimulation of muscarinic receptors

isrupts the balance of glutamatergic and GABAergic activity m
Wade et al., 1987; Lallement et al., 1991b; McDonough and
hih, 1997). The effects of soman on GABA release are
ot quite clear, as suppression of GABAergic transmission
Santos et al., 2003), and also an increase in extracellular
oncentrations of GABA (Grasshoff et al., 2003) have been
eported in different brain regions. In regard to glutamate
elease, intracranial microdialysis studies have shown in-
reases in extracellular glutamate during soman-induced sei-
ures, in the amygdala (Lallement et al., 1991a), hippocam-
us (Lallement et al., 1991a,b) and piriform cortex (Wade et
l., 1987), which are brain regions that suffer extensive
amage by nerve agent exposure (McDonough et al.,
987, 1997; Shih et al., 2003). Thus, the current view is

hat cholinergic hyperactivity mediated by muscarinic re-
eptors initiates nerve agent–induced seizures, and trig-
ers glutamatergic hyperactivity, which sustains and
einforces seizures, and is ultimately responsible for
xcitotoxic neuronal damage (Lallement et al., 1991c;
cDonough and Shih, 1997).

It is not clear how the increase in glutamate release in
he amygdala (Lallement et al., 1991a) and hippocampus
Lallement et al., 1991a,b) following soman exposure rec-
nciles with the suppressive, presynaptic effects of mus-
arinic activation on evoked glutamatergic transmission in
he BLA (Yajeya et al., 2000) and hippocampal area CA1
Fernández de Sevilla and Buño, 2003). Consistent with
he muscarinic receptor–mediated suppression of excita-
ory postsynaptic potentials in the BLA (Yajeya et al.,
000), the major component of the BLA field potential (N1)
as suppressed by soman; however, in most slices, this
as accompanied by the appearance of ictal activity. Per-
aps the rapid massive increase in glutamate release in

he amygdala following soman exposure (Lallement et al.,
991a), which could be primarily due to postsynaptic ef-

ects of the increased ACh, reduces the available gluta-
ate at synaptic sites. This effect, along with a presynaptic

nhibition of glutamate release (Yajeya et al., 2000) sup-
resses evoked excitatory synaptic transmission, at the
ame time that spontaneous activity is increased due to
igh levels of extracellular glutamate. In contrast to the
ffects of soman on the BLA field potential, the population
pike in area CA1 (PS1) was increased by soman; similar
bservations have been reported in response to paraoxon
Endres et al., 1989). This seems consistent with the per-
istent enhancement of glutamatergic transmission in area
A1 when the levels of ACh are increased, in vivo, by
dministration of muscarinic autoreceptor antagonists (Li
t al., 2007; Hayes et al., 2008). Thus, the excitatory
ostsynaptic effects of increased ACh may override the

nhibitory presynaptic (Fernández de Sevilla and Buño,
003) effects, in the CA1 area.

In the present study, the blockade of both the BLA and
he CA1 soman-induced epileptiform activity by CNQX
upports the view that glutamatergic mechanisms play a
ajor role in driving nerve agent–induced epileptiform ac-

ivity, but does not exclude the involvement of cell-intrinsic
embrane conductances, whether these conductances

ome into play by muscarinic stimulation, or by other

echanisms triggered secondarily. The generation of ictal
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nd interictal activity involves a complex interplay between
number of parameters, such as recurrent glutamatergic

ynaptic interactions, GABAergic inhibition, and intrinsic
embrane conductances that participate in or are respon-

ible for dendritic calcium spikes, generation of bursting
ctivity, or sustained depolarization (Traub and Jefferys,
994; Rutecki and Yang, 1998; McCormick and Contreras,
001; Hadar et al., 2002; Rutecki et al., 2002). However,

he relative contribution of these parameters to the gener-
tion of epileptiform activity, how it differs in different brain
egions, and the factors determining the generation of ictal
ersus interictal activity are still not well understood.

The suppression of epileptiform activity in both the BLA
nd the CA1 area by the GluR5KR antagonist UBP302
lso supports the view that glutamatergic hyperactivity
ustains soman-induced seizures. GluR5KRs modulate
xcitatory and inhibitory transmission in both the BLA
Braga et al., 2003, 2004; Gryder and Rogawski, 2003;
roniadou-Anderjaska et al., 2007) and the hippocampus

Clarke et al., 1997; Huettner, 2003; Lerma, 2003), and
heir expression is particularly high in the BLA (Braga et al.,
003; Li et al., 2001). These receptors are also involved in
pilepsy (Smolders et al., 2002; Rogawski et al., 2003;
raga et al., 2004; Kaminski et al., 2004). Most relevant to

he present study is the demonstration that GluR5KR an-
agonists block pilocarpine-induced epileptiform activity in
ippocampal slices, and limbic seizures in vivo. Pilocarpine,

ike soman, initiates seizures by excessive muscarinic recep-
or activation (Smolders et al., 2002), which, as discussed
bove, is followed by glutamatergic hyperactivity.

How can the effectiveness of GluR5KR antagonists
gainst epileptiform/seizure activity be explained? A com-
lete answer is not available because not all of the func-

ions of the GluR5KRs are clear at present. Based on
xisting knowledge we can suggest that during epilepti-

orm activity, elevated levels of glutamate acting via pre-
ynaptic GluR5KRs will reduce GABA release in the amyg-
ala (Braga et al., 2003) and the hippocampus (Clarke et
l., 1997), and will contribute to hyperexcitation of pyrami-
al cells, at least in the BLA where it is known that principal
ells have functional somatodendritic GluR5KRs (Gryder
nd Rogawski, 2003). Somatodendritic GluR5KRs are also
resent on GABAergic neurons (Clarke et al., 1997; Braga
t al., 2003), however, at least in the BLA, the net effect of
trong GluR5KR activation is excitatory, producing strong
pileptiform activity (Aroniadou-Anderjaska et al., 2008).
lockade of the excitatory postsynaptic effects on prin-
ipal neurons and the suppressive, presynaptic effect of
luR5KR activation on GABA release by a GluR5KR an-

agonist—which will enhance inhibition—could produce or
ontribute to the reduction in the amplitude of the CA1

nterictal spikes, observed in the present study, and the re-
uction in the frequency and duration or the complete elimi-
ation of the BLA seizures. In addition, GluR5KRs are per-
eable to Ca2�, particularly when they contain the uned-

ted version of the GluR5 subunit, which confers high Ca2�

ermeability (Burnashev et al., 1996; Savidge et al., 1997;
hittajallu et al., 1999); approximately 30% of the GluR5

RNA remains in the unedited form in the adult hippocam- 1
us (Bernard and Khrestchatisky, 1994) and amygdala (Li
t al., 2001). Therefore, Ca2� influx through GluR5KRs
ould contribute to epileptiform activity; this may occur by
arious mechanisms, including stimulation of Ca2� release
rom intracellular stores which appears to be necessary for
ctal activity (Hadar et al., 2002; Rutecki et al., 2002).

One of the reasons that GluR5KRs have attracted
trong interest as a potential pharmacological target for the
revention and treatment of epilepsy is that GluR5KR an-

agonists are unlikely to have significant side effects (see
or example Sang et al., 2004). This is because the distri-
ution of GluR5KRs in the brain is relatively limited (Bettler
t al., 1990; Li et al., 2001; Braga et al., 2003), and
luR5KR antagonists have no significant effect on normal
xcitatory synaptic transmission (Smolders et al., 2002).

ndeed, in the present study, 20 �M UBP302 had no
ignificant effect on N1 or PS1, although it reduced the late
omponents of the evoked field potentials, an effect that
eems consistent with the enhancement of GABAergic
ynaptic transmission suggested above.

Previous findings have hinted that the amygdala may
lay the most central role in the generation of brain sei-
ures after nerve agent exposure, by showing that after

n vivo exposure to soman, the amygdala displays the
arliest and most rapid increase in extracellular glutamate
suggesting an early involvement in the development of
eizures; Lallement et al., 1991a,b), and suffers the
ost extensive damage (Shih et al., 2003). The present

ndings that the amygdala generates spontaneous, pro-
onged, synchronous neuronal discharges resembling
rain seizures following soman exposure, while the hip-
ocampus generates only interictal-like activity, may
uggest that it is primarily from the amygdala rather than
rom the hippocampus that seizures spread to other
rain regions culminating to status epilepticus after so-
an exposure, and potentially identify the most impor-

ant brain structure that should be targeted pharmaco-
ogically for the suppression of soman-induced seizures.
owever, it remains to be determined if the in vitro
ndings also apply in vivo. The significance of the so-
an-induced interictal-like activity in the hippocampus,

een in our in vitro conditions, and its potential contri-
ution to triggering seizure activity require investigation,
articularly considering that hippocampal interictal dis-
harges restrain rather than facilitate ictal activity in the
LA and entorhinal cortex (Benini et al., 2003).
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