
An Analytical Model of Nanometer Scale
Viscoelastic Properties of Polymer Surfaces
Measured Using an Atomic Force Microscope

DISSERTATION

Jacob B. Goldberg,

AFIT/DAM/ENC/11-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government.



AFIT/DAM/ENC/11-03

AN ANALYTICAL MODEL OF NANOMETER SCALE VISCOELASTIC

PROPERTIES OF POLYMER SURFACES MEASURED USING AN ATOMIC

FORCE MICROSCOPE

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Jacob B. Goldberg, B.A., M.S.

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT/DAM/ENC/11-03

AN ANALYTICAL MODEL OF NANOMETER SCALE VISCOELASTIC

PROPERTIES OF POLYMER SURFACES MEASURED USING AN ATOMIC

FORCE MICROSCOPE

Jacob B. Goldberg, B.A., M.S.

Approved:

//signed// March 2011

Dr. William Baker
Dissertation Advisor

Date

//signed// March 2011

Dr. Mark Oxley
Committee Member

Date

//signed// March 2011

Dr. Larry Burggraf
Committee Member

Date

//signed// March 2011

Dr. Anthony Palazotto
Committee Member

Date

Accepted:

//signed// March 2011

M. U. Thomas Date
Dean, Graduate School of Engineering and Management



AFIT/DAM/ENC/11-03

Abstract

The United States Air Force and the Department of Defense is increasingly inter-

ested in nanomaterials. To study these materials, one needs to measure the mechanics

of materials on the nanoscale. Over the past few decades the atomic force microscope

(AFM) has been used in various methods to establish local surface properties at the

nanoscale. In particular, surface elasticity measurements are crucial to understanding

nanoscale surface properties. Problems arise, however, when measuring soft surfaces

such as polymers and biological specimens, because these materials have a more com-

plex viscoelastic response.

This research focuses on modeling an AFM dynamic nanoindentation experiment

intended to characterize near-surface viscoelastic material parameters. The exper-

iment uses an AFM in dynamic contact mode with a polymer surface to gather

frequency dependent amplitude and phase data. A three-dimensional, dynamic vis-

coelastic model of the AFM and surface interaction is developed and then analytically

solved in the linear approximation under appropriate physical assumptions based on

the physics of the AFM experimental setup. As an illustrative application, the an-

alytical solution is coupled with experimental data from a polystyrene material to

ascertain surface material properties at the nanoscale. Our solution allows the direct

calculation of the storage and loss modulus from experimental data.
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AN ANALYTICAL MODEL OF NANOMETER SCALE VISCOELASTIC

PROPERTIES OF POLYMER SURFACES MEASURED USING AN ATOMIC

FORCE MICROSCOPE

I. Introduction

The United States Air Force and the Department of Defense is increasingly inter-

ested in nanomaterials [17]. In order to study these materials, one needs to measure

the mechanics of materials on the nanometer scale. With technology’s increasing fo-

cus on the atomic and molecular level, the importance of nanoscale surface physics

and chemistry cannot be understated. Since the invention of the atomic force micro-

scope (AFM) in 1986 [9], there has been substantial growth in its applications. In

particular, the AFM has been used to establish local surface properties such as elastic

modulus, adhesion, surface friction, viscosity, hardness, energy dissipation, and glass

transition temperature [3, 10, 19, 21, 23, 40, 45, 90, 49, 59, 68, 76, 86, 87, 88, 91, 99].

Determining nanoscale surface properties is a challenge at the atomic level because

surface materials behave different from the bulk material. Forces such as adhesion and

van der Waals bond interactions, which are usually unsubstantial at the macro scale,

now become dominant influences. In addition, problems arise when dealing with

softer surfaces such as polymers and biological specimens. One reason is because

these materials have more complex viscoelastic and even plastic responses. Another

important reason is that these materials can have anisotropic responses.

This research focuses on modeling an AFM dynamic nanoindentation experiment

on a viscoelastic surface. In the experiment, an AFM in dynamic contact mode with

a polymer surface is used to gather frequency dependent amplitude and phase data.

1



A mathematical model of the experiment is created and, under several appropriate

physical assumptions, an analytical solution in the linear approximation is achieved

for the penetration depth of the AFM tip into the material. Another model is created

that relates the raw experimental data to the depth of penetration of the AFM tip.

These two models are then equated to ascertain an analytical solution allowing the

calculation of frequency dependent, viscoelastic material properties from the experi-

mental data. As an illustration, viscoelastic properties for a polystyrene material are

calculated and presented using the analytical solution.

This chapter is divided into three sections. The first section contains the motiva-

tion for this research along with other research that has been performed. The second

section gives a brief overview of the experiment that is to be modeled. Finally, we

detail what will be presented in the remaining chapters of this document.

1.1 Motivation

The interest of the United States Air Force and the Department of Defense in

nanomaterials is of key importance in many areas. In particular, high-altitude long-

endurance ISR airships, prompt theater-range ISR/strike systems, direct forward air

delivery and resupply, energy-efficient partially buoyant cargo airlifters, fuel-efficient

hybrid wing-body aircraft, and hyperprecision low-collateral damage munitions [17].

In order to help further research in these areas, nanoscale viscoelastic material prop-

erties are of particular importance. These properties are calculated using both math-

ematical theory and experiment. Though the experiments widely vary, their mathe-

matical approach remains consistent, that is the movement of the indentation/loading

system, whether an AFM or a nanoindenter, is often modeled as a spring-mass sys-

tem [5, 97, 98]. In addition, the contact model of the indentation/loading system with

the material surface is the Sneddon solution [84] extended to the viscoelastic case using

2



the method of functional equations proposed by Lee and Radok [52]. Sneddon’s solu-

tion is derived from a rigid axisymmetric indenter that is indented into a half-space

composed of a homogeneous, isotropic, linearly elastic material. Sneddon’s solution

is based on the quasi-static equilibrium equations and provides the penetration depth

in terms of the indenter’s geometry as well as the load imposed on the indenter in

terms of its geometry. Using the method of functional equations, Sneddon’s solu-

tion is extended to the linearly viscoelastic case provided that the contact area of

the indenter increases monotonically with time. This extended solution provides a

mathematical way of relating monotonically increasing and/or constant load histo-

ries to the complex stiffness of a material given a chosen viscoelastic model [67, 81].

The extended solution, along with a particular viscoelastic model, can also be used

in specific testing procedures such as the load relaxation test or the creep test, to

produce the relaxation modulus or creep compliance, respectively [15, 96, 97].

We model the dynamic nanoindentation experiment in two pieces which, are cou-

pled together using the appropriate boundary conditions. The two pieces of the

experimental setup are the AFM and the material. The AFM is modeled as a one-

dimensional spring-mass system with three driving forces. The driving forces consist

of the static and sinusoidal forcing provided by the AFM system, and the force on

the tip caused from the stress within the surface. The latter force serves to couple

the AFM with the material. The modeling of the AFM as a spring-mass system is

similar to current AFM modeling theory [53, 95].

The material is modeled based on continuum mechanics using a three-dimensional,

linear viscoelastic material model. The generated equations are the elastodynamic

equilibrium equations, i.e., they contain an inertial term. This clearly differs from

the current theories which are based upon the quasi-static equilibrium equations [15,

56, 58, 67, 81, 96]. An axisymmetric indenter, representing the AFM tip, is applied
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to the surface of the material. The application of the indenter is such that there is a

static indentation superposed with a much smaller sinusoidally varying indentation.

This represents the nature of the experiment in that the driving force from the system

contains a static loading which is far greater than the dynamic loading. The related

equations are then analytically solved in the linear approximation under the assump-

tion that the static loading far exceeds the dynamic loading. The analytic solution is

in terms of the penetration depth of the indenter into the material.

A model that relates the raw experimental data to the penetration depth of the

AFM tip is then equated to the analytical solution from the material model. This

allows for the calculation of the frequency dependent storage and loss modulus based

on a generic viscoelastic polynomial model. Our solution allows the direct calcula-

tion of the storage and loss modulus from experimental data. A specific viscoelastic

model can then be chosen to fit the data as accurately as possible in order to attain

specific material parameters. This differs from current solutions in that current so-

lutions have to choose a viscoelastic model before the storage and loss modulus are

calculated [15, 67, 81, 96]. Thus, our model allows for a more varied approach to

choosing a viscoelastic material model.

This concludes the overview of the motivation for our research. The next section

gives an overview of the experimental setup and procedure.

1.2 Experimental Setup

The experiment we are concerned with uses an AFM as a dynamic indentor in

order to glean nanomechanical properties of a sample surface. The representation

of the experimental setup can be seen in Figure 1. In the experiment, the AFM

cantilever tip is moved toward the sample surface by expansion of the piezoelectric

crystal (Piezo). The considered sample consists of a polystyrene layer bonded to a

4



Figure 1. A simplified model of the experimental setup.

silicon base. The silicon base rests atop a piezo. A voltage is applied to the piezo,

which causes the crystal to expand thus raising the sample’s surface into the AFM

tip. This voltage is the DC component of the piezo drive signal. Since the surface

is viscoelastic, there is some initial creep, but after a set amount of time, the system

approaches an equilibrium position.

A laser beam is continuously reflected off the tip end of the cantilever and onto a

detector. The initial voltage measured at the detector is called the preload voltage, or

the static load. The preload voltage is considered the setpoint of the experiment. It

is the voltage which corresponds to a cantilever position around which the cantilever

will be oscillating. This voltage is considered to be the initial start point or zero

point.

A manual bias is set on the detector. The voltage of this manual bias is called

the modulation voltage or forcing amplitude, and its phase is the forcing frequency or

tapping frequency. This forcing never changes and is also our reference amplitude and

phase. A closed-loop, computer controlled feedback system modifies the modulation
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voltage and phase in an attempt to maintain the setpoint within the modulation

voltage bias. The total signal that is input to the piezo is called the piezo drive

signal. A lock-in-amplifier (LIA), which we call the AC component of the piezo drive

signal, measures the exact piezo voltage input and phase. The piezo LIA records a

continuous measurement for all tapping frequencies.

The piezo drive signal forces the piezo to oscillate at a fixed frequency and am-

plitude, causing the movement of the surface relative to its initial position to be of

an oscillatory nature. Since the piezo is a crystal, it takes a set amount of time to

contract or expand to the voltage that is applied to it. This delay in contraction or

expansion is called the piezo delay time, which is in this case frequency dependent.

Consequently, the oscillatory nature of the surface’s relative position occurs at the

piezo drive signal, but it is phase delayed by the piezo delay time.

As the surface’s relative position oscillates, it interacts with the AFM tip and

causes the tip to move in an oscillating pattern. This tip movement is not at the

same amplitude or phase as the piezo drive signal nor is it at the same amplitude and

phase as the modulation voltage. The interaction between the soft sample surface and

the harder AFM tip creates a smaller voltage amplitude and an additional delay time,

called the viscoelastic retardation time, which is manifested in the AFM cantilever

tip’s relative motion. The difference between the actual AFM tip movement and the

piezo modulation voltage is measured by a lock-in-amplifier. We call this the error

LIA. The error LIA continuously measures the AC amplitude and phase difference

for all tapping frequency.

This procedure is performed through a sweep of tapping frequencies from 1000

Hz to 1 Hz, allowing equilibrium to be reached at each frequency. After sweeping

through all the frequencies, the process is started over with a new preload voltage.

Between ten and fifteen different preload voltages are used, ranging from 0.25 V to
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5.4 V. The same experiment is also performed using polystyrene samples of differing

thickness: 30 nm, 70 nm, and 220 nm.

This concludes the discussion on the experimental setup. Our focus will be to

mathematically model the above procedure as closely as possible. Through our pro-

ceedings we will make simplifying assumptions based on the physics of the experiment

in order to achieve an analytical solution but, we will maintain the pertinent physics

needed to fully describe the experiment. The next section of this chapter will detail

the contents contained in the remainder of this dissertation.

1.3 Dissertation Contents

Chapter one contains an introduction to nanoscale material modeling, as well as

a description of the experiment and the mathematical model that we will produce.

Chapter two includes a description of AFM modeling theories and the formulation of

a one-dimensional spring-mass model that represents the AFM cantilever. In Chapter

three we present material modeling theories and create a three-dimensional, viscoelas-

tic material model. The one-dimensional AFM model and the three-dimensional ma-

terial model are then nondimensionalized. In Chapter four, we present necessary

background material and then proceed to make physical assumptions that allow us

to simplify the three-dimensional, viscoelastic material model, as well as the one-

dimensional AFM model. This reduced three-dimensional system is then analytically

solved in the linear approximation, and analyzed. Chapter five includes the creation

of a model that describes how the data was collected. This new model is then coupled

to the reduced three-dimensional model; and in conjunction with the experimental

data, a method for determining viscoelastic material properties is produced. Finally,

Chapter six draws conclusions and investigates areas for future work.
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II. The AFM

Atomic force microscopy techniques have been around since its invention in 1986 [9].

Various techniques have been developed ranging from measuring surface details to

modifying surface structures. This chapter focuses on aspects of AFM modeling the-

ory and how the AFM can be coupled to the surface it is in contact with. The chapter

ends by choosing an AFM model with the appropriate surface contact model.

2.1 AFM Modeling Theories

The process of modeling how dynamic atomic force microscopy techniques are

used to determine surface properties, allows us to gain a better understanding of the

mechanical properties of the surface at the nanoscale. An AFM is an instrument

used to produce high resolution, three-dimensional images of sample surfaces on a

nanometer scale. Using a scanning technique the AFM is capable of measuring small

forces between the AFM tip and the sample surface.

The AFM tip is mounted on a cantilevered beam having a very small mass. As the

tip is scanned across the surface, the cantilevered beam flexes based on the surface

topology. The flexing motion can be measured using a variety of techniques including

optical deflection, optical interference, capacitance, and tunneling current. All of

these techniques can be used to produce an image of the sample surface. As an

example, Figure 2 shows a topographical image of nanodots on a polystyrene surface

using an AFM with a silicon nitride tip [54].

Beyond the basic physics of a cantilever system and its forcing, there are three

major methods to model the forces that occur between the AFM tip and the sample

surface. The first method is to model the tip surface interaction by means of a po-

tential function. A potential function is a molecular model with two terms; one term
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Figure 2. A sample topographical image of nanodots created on
a polystyrene surface.

represents the adhesive potential, and one term represents the repulsive potential be-

tween two molecules. It is a simple mathematical model that describes the interaction

force between two molecules based on how far apart they are. An example of a poten-

tial function is the Lennard-Jones potential, which is also called the 6-12 potential.

It can be written as V (r) = A
r12

− B
r6
, where r is the distance between molecules, and

A and B are constants based on properties of the molecular interactions [4].

The second method is a macroscopic method that does not explicitly consider

atomic scale forces. This method is by modeling the surface adhesion between the

tip and the surface, or between the tip and the small layer of condensed water on

the surface [78]. The third method is a continuum model that uses the stress that

is induced within the material by the movement of the AFM tip in contact with the

surface. This stress exerts a force back onto the AFM tip. The effects of one of these

methods to model tip to surface interactions, combined with the properties of the
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surface material and the basic physics of the cantilever system lead to the ability to

measure surface material properties. Therefore, we must choose the most applicable

method to model the interactions in order to capture material properties.

2.1.1 Cantilever Beam Model With A Surface Potential.

An AFM cantilever can be represented by the shape of a rectangular beam with

a length L, a width w (w � L), a thickness h (h � L), and a tip length of Ltip.

We will set up the coordinate system as in Figure 3. Since forces can occur in any

direction, the cantilever tip can deflect in any direction. We will let the displacement

of the beam be represented by �u(t, x, y, z), where �u = [ux, uy, uz]
�. The terms ux, uy,

and uz represent the displacement in the x, y, and z-directions, respectively.

�

�

�
����

�
	




Figure 3. The model cantilever and the coordinate system.

The cantilever tip movement is driven by the forces that act upon it and its

response to these forces. In order to study the cantilever tip movement, we must

first look at the elastic properties of the cantilever. Although the cantilever has

three degrees of freedom, for our simple model, we will only concern ourselves with

the cantilever movement in the z-direction. Thus, we only need the elastic property

of the stiffness in the z-direction, k. So, we will make the following assumptions.

First, we will deal only with static beam loading. Next, we will assume that there

is a vertical point force, Fz, applied downward at the centroid of the beam at the

10



cantilever tip end. This assumption means that there is no beam displacement in

the x-direction. Though there is an indirect displacement in the y-direction from the

bending of the cantilever in response to the vertical force, this displacement is of a

very small magnitude, and we will assume that its contribution is negligible compared

to the displacement in the z-direction. Therefore, �u(t, x, y, z) can be represented by

uz(x, y, z). The coordinates (0, 0, 0) represent the center of the thickness and the

width of the beam at the clamped end of the beam.

Since the cantilever is only bending a very small amount in the vertical direction

and it behaves as a linear-elastic material, the cantilever follows Hooke’s Law. This

states, Fz = kuz, and from Saada [77], we obtain the formula

k =
Ewh3

4L3
, (1)

where E is the Young’s modulus of elasticity for the cantilever material.

To ensure that our model includes all of the important physics of the AFM, we will

calculate the natural frequency of the cantilever. We will assume that our cantilever

is isotropic and has a constant mass density with mass m. Drawing again from Saada,

we see that a statically-loaded cantilever deflected under a vertical load at the free

end, obeys the equation

uz(0, y, 0) =
2Fz

Ewh3
(3L− y)y2. (2)

This equation is for a cantilever under plane stress, and the coordinates (0, y, 0)

represent the center of the thickness and the width of the beam. Also, y = 0 represents

the clamped end of the beam, and y = L represents the free end. Equation (2) assumes

the boundary conditions, uz(0, 0, 0) = 0 and duz

dy
(0, 0, 0) = 0. From here on, we will
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let uz(0, y, 0) = uz(y). So, the cantilever deflection at the free end is

uz(L) =
4FzL

3

Ewh3
. (3)

This leads to

uz(y) =
uz(L)

2

(
3
( y

L

)2

−
( y

L

)3
)
. (4)

If we consider Fz slowly varying with time, then the static beam Equation (4) captures

the dynamic behavior as

uz(t, y) =
uz(t, L)

2

(
3
( y

L

)2

−
( y

L

)3
)
. (5)

We will next calculate the kinetic energy, Ek, and potential energy, Ep, of the

cantilever. First we consider an infinitesimal beam element dy a distance y from the

clamped end. The infinitesimal kinetic energy of such a beam element is described

by the equation

dEk =
1

2
m(u̇z(t, y))

2dy

L
, (6)

where the dot is a derivative with respect to time. Substituting Equation (5) into

Equation (6) and integrating over the length of the cantilever produces

Ek =

∫ L

0

1

2
m(u̇z(t, y))

2dy

L
=

33

140

m

2
(u̇z(t, L))

2. (7)

Since the point force Fz acts only on the free end of the cantilever, Ep is equal to the

work needed to move the free end of the cantilever a distance uz(t, L). Thus,

Ep =

∫ uz(t,L)

0

Fzduz =

∫ uz(t,L)

0

kuzduz =
ku2

z(t, L)

2
. (8)

The total energy of the system, W , is equal to the sum of the kinetic and potential
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energies. If we assume that the cantilever vibrations occur without energy dissipation

then W is constant. If we differentiate W with respect to time under this assumption,

and then divide through by u̇z(t, L), we arrive at

33m

140
üz(t, L) + kuz(t, L) = 0, (9)

which is the equation of movement for the free end of the cantilever.

Let M = 33m
140

represent the effective mass of the cantilever. We will suppress the

L and subscript z symbols and let u(t) = uz(t, L). Making the above substitutions

in Equation (9) gives

Mü(t) + ku(t) = 0. (10)

Furthermore, the natural frequency of the cantilever is ω0 =
√

k
M
.

Next, we examine the force of internal damping within the cantilever itself. The

internal damping is caused mainly by internal interatomic friction. At small velocities

of oscillation, v, the force of internal damping is modeled proportional to the velocity

itself, i.e., Fd = −β0v = −β0u̇, where β0 is a positive constant. When the force of

internal damping is included in Equation (10) we obtain

Mü+ β0u̇+ ku = 0. (11)

Dividing Equation (11) by M and make the substitution δ = β0

2M
, we arrive at

ü+ 2δu̇+ ω2
0u = 0. (12)

The quality factor of the system, or Q-factor, is a dimensionless parameter that

is related to the loss within the AFM cantilever itself [8]. It is proportional to the

ratio of the stored energy of a system, E(t), versus the energy lost in that system
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over a period of time T . If �ET = E(t)− E(t + T ), then it is positive when energy

is dissipated. The Q-factor characterizes the rate of energy transformation in the

cantilever, and is defined by

Q =
2πE(t)

�ET

. (13)

When there is very little internal damping (ω0 � δ) the total energy of the system

is

E(t) = Eie
−2δt, (14)

where Ei =
1
2
Mω2

0Z
2 is the initial magnitude of the stored energy in the system and

Z =

√√√√u2(0) +

(
u̇(0) + δu(0)√

ω2
0 − δ2

)2

. (15)

Now, by combining Equations (13) and (14) and expanding the exponential function,

we get

Q =
2π

1− e−2δT
=

2π

1− (1− 2δT + 2(δT )2 + · · · ) ≈ π

δT
=

Ω

2δ
≈ ω0

2δ
, (16)

where Ω = 2π
T

=
√

ω2
0 − δ2 and δT � 1. Therefore, the Q-factor defines the internal

damping of the oscillations in the system. Thus, Equation (11) can be rewritten as

Mü+
Mω0

Q
u̇+ ku = 0. (17)

Now, we need to add the oscillations of the cantilever into the model. There are

three main methods to create the cantilever tapping. The first method is by tuning

the feedback control voltage on the AFM piezo crystal near the ringing conditions.

The second is by applying an alternating voltage to the piezo crystal in the z-direction.

The third method is to illuminate the cantilever with a modulated laser at appro-
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Figure 4. The 2-dimensional cantilever system with a free end
oscillation of B sin(ωt).

priate frequencies. For the sake of simplicity, all of the preceding methods can be

mathematically represented by B sin(ωt), where B is the amplitude of oscillation and

ω is the frequency of oscillation.

If we oscillate the free end of the cantilever, and we translate the coordinate system

by shifting the beam in the positive z-direction a distance u0, as shown in Figure 4,

we get the free end displacement equation

Mü+ β0u̇+ ku = k(u0 + B sin(ωt)). (18)

Next, we will assume that the height of the surface can be represented by the

function f(y) as shown in Figure 4. We will also assume that the surface has a

potential, V , that is homogeneous in the y-direction, i.e., the potential only depends

on the height above the surface and not on the location along the surface. We are

adding a potential into the model in order to obtain a parameter to control the

interaction force between the beam tip and the surface. This force can come from
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a number of sources including molecular attractions and repulsions. We note that

−∇V is the force from the potential but, the only pertinent force for our equation

is that which is in the z-direction. Thus, adding the force from this potential to

Equation (18) gives

Mü+ β0u̇+ ku = k(u0 + B sin(ωt))− V ′(u− u0 − f(y)), (19)

where the prime means the derivative with respect to the argument.

Since we are only interested in the movement at the tip, we will make the substi-

tution, u(t) = y(t) + Ltip, where Ltip is the length of the AFM tip. Note, that u̇ = ẏ

and ü = ÿ. Thus, the equation of tip motion is

Mÿ + β0ẏ + k(y + Ltip) = k(u0 + B sin(ωt))− V ′(y(t) + Ltip − u0 − f(y)). (20)

We will now make the assumption that our cantilever tip is always in direct con-

tact with the surface, which means that u0 = Ltip. Making this substitution into

Equation (20) and rearranging terms yields

Mÿ + β0ẏ + ky = kB sin(ωt)− V ′(y(t)− f(y)). (21)

Equation (21) is the one-dimensional, simplified equation of motion for the AFM

movement with a potential function.

The initial conditions are chosen so that the tip has no initial displacement and no

initial velocity, i.e., y(0) = ẏ(0) = 0. This means the surface, f(y), is assumed to pass

through the point (y, z) = (0, 0). Now, divide Equation (21) by M , and substitute
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β0 =
Mω0

Q
and ω0 =

√
k
M
. This yields

ÿ +
ω0

Q
ẏ + ω2

0y = ω2
0B sin(ωt)− 1

M
V ′(y(t)− f(y)). (22)

Next, introduce the dimensionless time, τ = ω0t, and define the new dependent

variable x(τ) = y(t). Note that ẏ = ω0ẋ and ÿ = ω2
0ẍ, where the dot is differentiation

with respect to the argument. After making this change of variables, and dividing

through by ω2
0, we obtain

ẍ(τ) +
1

Q
ẋ(τ) + x(τ) = B sin

(
ω

ω0

τ

)
− 1

k
V ′ (x(τ)− f(y)) . (23)

Further, the initial conditions become x(0) = ẋ(0) = 0, and are still quiescent.

Equation (23) with the above initial conditions can be converted to a nonlinear

Volterra integral equation of the second kind. In Equation (23) we assume thatQ > 1
2
,

which is feasible because as we saw earlier in Equation (16), Q ≈ π
δT
, where δT � 1.

Hence, our integral equation is

x(τ) =

∫ τ

0

1√
1− (1/2Q)2

F (x(ξ), ξ)e
−1
2Q

(τ−ξ) sin
(√

1− (1/2Q)2(τ − ξ)
)
dξ, (24)

where

F (x(ξ), ξ) = B sin

(
ω

ω0

ξ

)
− 1

k
V ′ (x(ξ)− f(y)) . (25)

Equations (24) and (25) represent the cantilever tip position in terms of an os-

cillating forcing function and a potential function. We will now proceed to look at

modeling the tip to surface interaction through adhesive forces.
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Figure 5. A diagram of the contact of two spheres.

2.1.2 Surface Adhesion.

Another method to model the AFM tip’s interaction with the surface is through

adhesion. Adhesion is when two surfaces in contact with each other, stick together

based on the differing nature of their materials. There have been several different

surface adhesion theories developed. The major difference between these theories is

the way in which they idealize the contact interaction between two surfaces.

Before contending with adhesive models, we will examine the Hertz model for the

contact between two curved surfaces. The Hertzian contact model [39] was developed

by Heinrich Hertz in 1882. It models the contact stresses and deformation that occur

when two curved surfaces are pressed together under a constant loading. The model

assumes that the deformation of the two surfaces is small compared to their radii of

curvature, and that the materials of the two surfaces are isotropic and elastic. An
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elastic isotropic material means that the material has properties that are identical in

any direction, and each material can be described by only two elastic parameters.

The Hertzian contact model says that the penetration depth, h, is equal to the

square of the contact area radius, ca, divided by the effective radius, R = R1R2

R1+R2
. This

gives

h =
c2a
R
, (26)

where R1 and R2 are the radii of each of the spheres. A diagram of this is shown in

Figure 5. Hertz also related the loading force, F , to the contact area radius by

F =
κc3a
R

, (27)

where κ is the effective Young’s modulus of the two materials. The effective Young’s

modulus, κ, can be calculated from the equation

1

κ
=

3

4

[
1− μ2

1

E1

+
1− μ2

2

E2

]
, (28)

where μ1 and μ2 are the Poisson’s ratios of each of the spheres, and E1 and E2 are

the Young’s moduli of the spheres. The Hertz model is an elastic model which does

not contain adhesion. So, with this model as our basis, we will now turn our focus

toward adhesive models.

Johnson, Kendall, and Roberts (JKR) [48] used an energy balance approach to

create the first model of adhesive forces between two elastic spheres. The force of

adhesion, Fadh, can be written as

Fadh =
κc3a
R

−
√

6πWaκc3a, (29)

where R = R1R2

R1+R2
is the effective radius, κ is the effective Young’s modulus, Wa is the
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work of adhesion, and ca is the contact area radius. The effective Young’s modulus, κ,

is defined by Equation (28). It is important to note that ca is parametrically defined

by Equation (29) and the equation

h =
c2a
R

− 2

3

√
6πWaca

κ
, (30)

where h is the penetration depth.

The work of adhesion is defined as

Wa = γ1 + γ2 + γ12, (31)

where γ1 and γ2 are the surface energies of the two adhering spheres, and γ12 is the

interfacial energy between the two spheres. Surface energy is a material property

that is defined as the minimum energy per unit area to form a surface from the bulk.

Higher surface energies indicate stronger intermolecular forces. The interfacial energy

between two solids is the energy between the interface of the two solids per unit area.

While surface energies are easier to measure, the interfacial energies depend on what

two surfaces are adhering and are much harder to obtain. Therefore, we often estimate

the work of adhesion. Berthelot [80] used the geometric mean to estimate the work

of adhesion as

Wa ≈
√

W11W22, (32)

where W11 and W22 are the works of cohesion of the two solids. The work of cohesion

is the work per unit area to break the bonds of a solid with itself. So, W11 = 2γ1 and

W22 = 2γ2. Thus, Equation (32) can be rewritten as

Wa ≈ 2
√
γ1γ2. (33)
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The JKR model applies to tips with large radius of curvature and cantilevers of

small stiffness. The model works well for highly adhesive systems [34]. The surface

forces involved within the JKR model act only within the contact area and include

the influence of van der Waals’ forces. The model is based on the assumption that

the cohesive zone is infinitesimally small. The cohesive zone is the area just outside

the region of contact that is subjected to adhesive traction.

Later, Derjaguin, Muller, and Toporov (DMT) [18] also solved the problem of the

adhesive forces between two elastic spheres. The force of adhesion for DMT can be

written as

Fadh =
κc3a
R

− 2πRWa, (34)

where all the quantities are defined the same as in JKR except the contact area radius,

ca, which is simply defined as

ca =
√
hR. (35)

The DMT model applies to tips with small radius of curvature and cantilevers of

high stiffness. The model works well for low adhesion systems [34]. The surface forces

involved within the DMT model act only outside the contact area and do not include

the influence of van der Waals’ forces.

Maugis [62] then showed that JKR and DMT were on opposite sides of the solution

spectrum, and he also came up with an analytical solution to span the transition from

JKR to DMT. The Maugis solution can be applied to any system spanning the high

to low adhesion range. The amount of adhesion is determined by the parameter

λ =
2.06

ξ0

(
RWa

2

πκ2

) 1
3

, (36)

where ξ0 is the equilibrium interatomic distance between the two spheres. As λ → 0

the system adhesion decreases and the stiffness of the materials increases so, the
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model behaves like DMT. As λ → ∞ the system adhesion increases and the materials

become more compliant so, the model behaves like JKR. Maugis’ model assumes that

the adhesion force acts within an annulus at the contact area border.

Now, we will go back to Equation (21). From here we will insert the force of

adhesion from JKR in place of the potential function. Since, we are dealing with the

cantilever tip radius in contact with a surface which when compared to the cantilever

tip, can be taken to be flat, i.e., R2 = ∞, then R = R1. Including the force of

adhesion in the one-dimensional AFM model produces

Mÿ + β0ẏ + ky = kB sin(ωt) +
κc3a
R

−
√

6πWaκc3a. (37)

To solve this equation, we will proceed as we did in the last section. First, we

are going to choose the same initial conditions, i.e., y(0) = ẏ(0) = 0. Next, we need

to divide through by M in Equation (37) and make the substitutions β0 =
Mω0

Q
and

ω0 =
√

k
M
. This gives

ÿ +
ω0

Q
ẏ + ω2

0y = ω2
0B sin(ωt) +

κc3a
MR

− 1

M

√
6πWaκc3a. (38)

Now, we introduce the dimensionless time, τ = ω0t, and define the new dependent

variable x(τ) = y(t). After making this change of variables, and dividing through by

ω2
0, we arrive at

ẍ(τ) +
1

Q
ẋ(τ) + x(τ) = B sin

(
ω

ω0

τ

)
+

κc3a
kR

− 1

k

√
6πWaκc3a, (39)

where ẋ = dx
dτ

and the initial conditions become x(0) = ẋ(0) = 0.

Equation (39) with the above initial conditions converts to a nonlinear Volterra

integral equation of the second kind. While solving Equation (39) we again assume
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that Q > 1
2
, and our integral equation emerges as

x(τ) =

∫ τ

0

1√
1− (1/2Q)2

F (x(ξ), ξ)e
−1
2Q

(τ−ξ) sin
(√

1− (1/2Q)2(τ − ξ)
)
dξ, (40)

where

F (x(ξ), ξ) = B sin

(
ω

ω0

ξ

)
+

κc3a
kR

− 1

k

√
6πWaκc3a. (41)

We must also remember that we will need to simultaneously satisfy the equation

h = f(y)− x(τ) =
c2a
R

− 2

3

√
6πWaca

κ
, (42)

as well. Here, f(y) represents the height of the surface at the current cantilever tip

position as shown in Figure 4.

Equations (40)-(42) represent the cantilever tip position in terms of an oscillat-

ing forcing function and adhesion defined by JKR. We will now proceed to look at

modeling the tip to surface interaction through surface stresses.

2.1.3 Surface Stress and Deformation.

The final method of producing a model of the AFM is to include the stress the

surface induces on the AFM tip and the resulting surface deformations. As the AFM

tip contacts the surface, it generates a stress, σ, in the surface based on the magnitude

and direction of the force caused by the tip. Stress is an applied force per unit area

that causes a deformation per unit length, or strain ε, in a body. The stress generated

is what causes the surface to deform. This surface deformation generates a force,

Fσ(t), on the AFM tip as illustrated in Figure 6. This leads to the one-dimensional

AFM equation

Mÿ + β0ẏ + ky = kB sin (ωt) + Fσ(t). (43)
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Figure 6. Surface stress within the material, and the resulting
force vector on the AFM tip.

The force Fσ includes the viscoelastic surface forces as well as the adhesion forces.

This force serves to couple the AFM model with the material model, and is highly

dependent on the geometry of the AFM tip. It can be represented by

Fσ(t) =

∫ 2π

0

∫ ∞

0

σzz(r, θ, z, t)

∣∣∣∣∣
z=0

rdrdθ. (44)

Here, σzz(r, θ, z, t) represents the surface stress normal to the z-direction in cylindri-

cal coordinates. The reason we only include the surface forces in the z-direction is

because this is a one-dimensional representation of the AFM so, only the forces in

that direction affect the model.

For the general viscoelastic constitutive case [16, 57],

σzz(r, θ, z, t) =

∫ t

−∞
[λ(t− τ) + 2μ(t− τ)]

∂

∂τ

[
∂uz

∂z

]
dτ

+

∫ t

−∞
λ(t− τ)

∂

∂τ

[
∂ur

∂r
+

ur

r
+

1

r

∂uθ

∂θ

]
dτ, (45)

where ur, uθ, and uz are each functions of r, θ, z, and t. They represent the linear

displacement of the surface at a given point, in each of their respective directions.
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The displacement is written in vector notation as

�u(r, θ, z, t) =

⎡
⎢⎢⎢⎢⎣

ur(r, θ, z, t)

uθ(r, θ, z, t)

uz(r, θ, z, t)

⎤
⎥⎥⎥⎥⎦ . (46)

The Lamé constants, λ(t) and μ(t), represent the viscoelastic properties of the surface.

Their time dependence means that their past history affects their current values.

2.2 Choosing the AFM Model

Now that we have discussed the differing methods to represent the AFM’s in-

teraction with the material, we can choose an appropriate model to represent the

experiment and the material parameters. The AFM model is coupled to the material

model by way of the force generated by the stresses within the material. So, we will

generalize Equation (43) a little further. Since, the experiment consists of a static

preload and a dynamic forcing, we will introduce a static forcing displacement, B̂0, to

represent the displacement from the preload, and define B̂ to be the dynamic forcing

amplitude. In addition, we will introduce a phase shift, φ, that will be defined later.

The phase shift occurs because the stress waves move at differing rates in different

materials. So, the AFM model equation we will use is

Mÿ + β0ẏ + ky = k
[
B̂0 + B̂ sin (ωt+ φ)

]
+ Fσ(t). (47)

In summary, this chapter presented a mathematical way to represent the AFM as

a simple, spring-mass system. We then discussed three possible methods to model

the interaction of the AFM tip with the sample surface. When this interaction was

modeled as either a potential function or an adhesive force, an analytical solution
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in the form of a Volterra integral equation of the second kind was found for the

spring-mass system. When the interaction is modeled as a balance of forces caused

by the stress in the material, then we must couple the AFM equation to a material

model equation. This method allows the most freedom to solve for particular model

parameters and to compare with the experimental data. Thus, the AFM model

coupled to a material model will be used to model the experiment.
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III. The Material

As a material is acted upon by outside forces, structural changes and effects take

place on and within the material. These changes are based upon the magnitude and

direction of the forces, as well as the properties of the material itself. This chapter will

present the different models of material behavior under load. Then, a general three-

dimensional model of a viscoelastic material with boundary conditions is created to

match with the experiment. The model is non-dimensionalized to more easily identify

properties from, and work with, the equations.

3.1 Material Behaviors

Materials can demonstrate three main types of behavior. These behaviors occur

under differing loading conditions. The material behaviors can be classified as elastic,

plastic, and viscoelastic. We call a material an elastic material, a plastic material,

or a viscoelastic material, if the material exhibits that type of behavior. A material

may exhibit more than one type of material behavior depending on the loading.

When a load is applied to a material that behaves elastically, the material exhibits an

immediate strain. When the load is removed, the strain is immediately removed from

the material. We say a material is plastic if it exhibits strain when a stress is applied

but, when the stress is removed, some of the strain remains permanently. Plastic

deformation is defined to be independent of time [24]. The third material behavior

is viscoelasticity. A viscoelastic material exhibits an initially elastic response upon

loading but, as time goes on, there is a slow and continuous increase of strain. When

the loading is removed, the strain immediately decreases but, not to zero. The strain

then continuously decreases from there but, may never fully recover, leaving some

permanent deformation. It is important to note that viscoelastic materials are very
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time dependent. The longer a load is applied, the more strain that will occur in the

material, and the longer the material will take to recover after the load is removed.

For this research, the dynamic nanoindentation experiment only deals with poly-

mers as the sample surface. Since polymers behave viscoelastically, we will primarily

concern ourselves with the modeling of these material behaviors. As the AFM tip

moves while in contact with a viscoelastic surface, the surface continually deforms.

This deformation of the surface is the primary cause of the stress within the mate-

rial. Because of the time dependent nature of the material, and the time dependent

position of the tip, the stress field within the material continually changes.

In order to ensure that we can generate an analytical model, we will only focus

on linear material models. Linear material models have been shown to be useful

in modeling the mechanics of some materials [24]. Many materials behave linearly,

or nearly linearly, under small amounts of stress. A material is considered to be

linear if, at a given time, stress is proportional to strain, and the principle of linear

superposition holds.

Linear viscoelastic models can be represented as being made up of two types of

elements, linear springs and/or linear viscous dashpots. In these models, inertial

effects are neglected. A linear spring has the form

σ(t) = Eε(t), (48)

where E is the Young’s modulus constant of the viscoelastic material. The value of

E can also be interpreted as a linear spring constant. A linear viscous dashpot takes

the form

σ(t) = ηε̇(t), (49)

where η is the constant coefficient of viscosity of the viscoelastic material, and ε̇ is
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the time derivative of the strain, ε. Viscosity is the measure of the resistance of a

fluid to deformation.

Two simple, linear, viscoelastic material models, are the Maxwell model and the

Kelvin-Voigt model [24]. The Maxwell model consists of two elements connected in

series. It contains both a linear spring and a linear viscous dashpot. This model is

written as

ε̇ =
σ̇

E
+

σ

η
. (50)

The Maxwell model has no time dependent recovery, meaning when the stress is

removed, the linear spring element goes to zero but, the linear viscous dashpot re-

mains, and is constant. This means that there is an instantaneous recovery to a state

of permanent strain after the load is removed.

The Kelvin-Voigt model consists of the same two elements in parallel. It can be

written as

ε̇+
E

η
ε =

σ

η
. (51)

This model does not describe permanent strain after unloading, meaning that when

the load is removed, the material eventually fully recovers. This model also does not

describe the instantaneous strain when a material is loaded and the instantaneous

partial relaxation when the load is removed.

Burgers later combined a Kelvin-Voigt and a Maxwell model in series to create

a four element model [24]. Zener also created a similar, three element model, called

the linear standard solid model [24]. He did this by combining a linear spring and a

linear viscous dashpot in parallel, and then he combined that system in series with

another linear spring. There are also several other three and four element models.

The Kelvin-Voigt and Maxwell models, and any other model based on linear springs
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and linear viscous dashpots, can be generalized into the form [24]

p0σ + p1σ̇ + p2σ̈ + · · · = q0ε+ q1ε̇+ q2ε̈+ · · · , (52)

where pi and qi (i = 0, 1, 2, . . .) are the appropriate coefficients for the model being

used.

All of these models can be generalized even further if we begin to use fractional

derivatives. We will start by looking at the element

σ = p
dα

dtα
ε, (53)

where p is a proportionality factor and 0 ≤ α ≤ 1. When α = 0, Equation (53) refers

to a linear spring element, where p is the spring stiffness. When α = 1, Equation (53)

refers to a linear viscous dashpot, where p is the viscosity. When α is any value in

between 0 and 1, we get a transition element that acts somewhere in between a linear

spring and a linear viscous dashpot. Equation (53) was originally studied by Bagley

and Torvik [6]. Koeller [50] later coined the term a spring-pot. The spring-pot leads

to the general three element fractional derivative model, which is

p0σ + p1
dα

dtα
σ = q0ε+ q1

dα

dtα
ε, (54)

where 0 ≤ α ≤ 1.

Now that we have discussed the differing viscoelastic models, we will be better

able to choose a model that best captures the material properties we seek to model.

We can now focus on modeling the behavior of the material itself.
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3.2 Material Behavior Model

Since the indentor of our surface is the AFM tip, which is a symmetric geometric

shape, we will use cylindrical coordinates. The three-dimensional equations from the

balance of linear momentum in a viscoelastic surface are [16]

∫ t

−∞
[λ(t− τ) + 2μ(t− τ)]

∂

∂τ
[∇∇ · �u] dτ

−
∫ t

−∞
μ(t− τ)

∂

∂τ
[∇×∇× �u] dτ = ρ̄

∂2�u

∂t2
, (55)

where ρ̄ represents the density of the material. For a discussion on cylindrical coor-

dinates, see Appendix A.

In addition to Equation (55), we need four boundary conditions for the material

model. The first set of boundary conditions is at the surface z = 0, which is where

the AFM interacts with the surface. At this surface, one of the boundary conditions

is a mixed boundary condition. That is, it has a displacement representation from

0 < r < ca(t), and a stress condition for r > ca(t). Here, ca(t) represents the contact

area radius of the AFM with the surface. The boundary conditions at z = 0 are

uz(r, θ, 0, t) = y(t)− f(r), 0 < r < ca(t), (56a)

σzz(r, θ, 0, t) = 0, ca(t) < r, (56b)

σrz(r, θ, 0, t) = 0, for all r. (56c)

Here, f(r) represents the geometry of the AFM tip. For the experiment we are

modeling, the AFM tip geometry can be approximated by a paraboloid of radius R

thus, f(r) = r2

2R
. Equation (56a) represents a coupling of the AFM to the surface,

and assumes that the AFM remains in contact with the surface at all times. It also

says that the AFM tip acts as a perfectly rigid indentor. Equation (56b) represents
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the fact that outside the contact area is a free boundary surface. If we were to set this

equal to some exponentially decaying function, or the negative gradient of a potential

function, it would represent the force of adhesion for forces acting over a short range,

and the longer range forces (i.e., van der Waals forces, etc.) acting at a distance.

Finally, Equation (56c) says that the tangential surface tractions vanish thus, f(r)

must be a smooth function.

The normal surface stress, σzz(r, θ, z, t), is defined in Equation (45), and the shear

stress, σrz(r, θ, z, t), is defined as

σrz(r, θ, z, t) =

∫ t

−∞
μ(t− τ)

∂

∂τ

[
∂ur

∂z
+

∂uz

∂r

]
dτ. (57)

The second set of boundary conditions occur at the bottom of the polymer surface,

where the polymer is attached to an ideally stiff substrate. The material thickness is

represented by ML. Since the polymer material is perfectly bonded to the substrate,

and the substrate is perfectly rigid, there is no displacement in either the r or z-

direction at ML. This yields the boundary conditions at z = ML to be

ur(r, θ,ML, t) = 0, for all r, (58a)

uz(r, θ,ML, t) = 0, for all r. (58b)

Now that we have setup the general three-dimensional material model, we can focus

on non-dimensionalizing both the material model and the AFM model.

3.3 Scaling the Models

Before we begin non-dimensionalizing the models, we must first identify some

fundamental properties of both the AFM and the material. These properties can be

seen in Table 1. The important AFM properties are the effective spring constant,
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Table 1. Typical parameters for the experiment.

Parameter Value

R 30 nm
k 0.06 N/m
ω0 25 kHz
Q ∼ 100
ρ̄ 1.05 g/cm3

E0 3 GPa
ν 1

3

k = 0.06 N/m; the resonant frequency, ω0 = 25 kHz; the quality factor, Q ∼ 100; and

the tip curvature radius, R = 30 nm. The substrate material is polystyrene, which

has a density ρ̄ = 1.05 g/cm3, an elastic modulus of E0 = 3 GPa, and a Poisson’s

ratio of ν = 1
3
. Now that some of the fundamental properties are known, we can

begin to scale the models.

In order to scale the models, we must look at several natural length scales, and

several natural frequencies, which correspond to time scales. There are three natural

length scales that arise. They are the sample thickness, ML; the initial contact area

radius, c0a; and the change in contact area radius, δ̄a, caused by the modulation. Here,

we choose to write ca(t) = c0a+ δ̄ac̄
1
a(t), and note that since the preload is much greater

than the dynamic loading, then δ̄a � c0a. There are also three natural frequencies.

The first is the undamped natural frequency of the AFM, ω0. This leads to the time

scale, T1 = 1
ω0

≡
√

M
k
. The second is the modulation frequency, ω2. This produces

the time scale, T2 = 1
ω2
. Finally, the third time scale comes from the elastic wave

propagation time through a distance � for the elastic modulus of the surface, E0. This

leads to T3 = �
√

ρ̄
E0
, where � will be determined from one of the length scales.

Now, let t = t∗T , r = �ρ, and z = �ξ, where T and � are to be determined

from one of the time and length scales, respectively. The time t∗ is a dimensionless
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time, and ρ and ξ are dimensionless lengths. It is not necessary to scale θ since

it is already dimensionless. However, we need to scale our model variables so they

are dimensionless. To this end, let y(t) = �(q0 + q(t∗)), ur(r, θ, z, t) = �vρ(ρ, θ, ξ, t
∗),

uθ(r, θ, z, t) = �vθ(ρ, θ, ξ, t
∗), and uz(r, θ, z, t) = �vξ(ρ, θ, ξ, t

∗). The variables q0 and

q(t∗) represent the dimensionless static displacement and the dimensionless dynamic

displacement, respectively. In addition, we will scale out the elastic constant, E0, from

the Lamé constants. Thus, we let μ(t) = E0μ̄(t
∗) and λ(t) = E0λ̄(t

∗). Finally, let

ca(t) = c0a(1 + δac
1
a(t

∗)), where δa = δ̄a
c0a

� 1 is an unknown dimensionless parameter,

and c̄1a(t) = c̄1a(t
∗T ) = c1a(t

∗).

Next, we will scale Equation (47). In addition to the above scalings, we will let

β0 =
√
kM
Q

, and note that we can write 1
M

= 1
kT 2

1
. Also, we will divide through by M�

T 2 ,

to yield

q̈(t∗) +
1

Q

(
T

T1

)
q̇(t∗) +

(
T

T1

)2

[q(t∗) + q0] =
1

k�

(
T

T1

)2

Fσ(t
∗T )

+

(
T

T1

)2
[
B̂0

�
+

B̂

�
sin(ω2t

∗T + φ)

]
. (59)

Now, applying these scalings to Equation (44) produces

Fσ(t
∗T ) = �2

∫ 2π

0

∫ ∞

0

σξξ(ρ, θ, ξ, t
∗)

∣∣∣∣∣
ξ=0

ρdρdθ, (60)

where

σξξ(ρ, θ, ξ, t
∗) = E0

[∫ t∗

−∞

[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗

[
∂vξ
∂ξ

]
dτ ∗

+

∫ t∗

−∞
λ̄(t∗ − τ ∗)

∂

∂τ ∗

[
∂vρ
∂ρ

+
vρ
ρ

+
1

ρ

∂vθ
∂θ

]
dτ ∗

]
. (61)
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Introducing these scalings into Equation (55) and dividing through by E0

�
yields

∫ t∗

−∞

[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
[∇∇ · �v] dτ ∗

−
∫ t∗

−∞
μ̄(t∗ − τ ∗)

∂

∂τ ∗
[∇×∇× �v] dτ ∗ =

(
T3

T

)2
∂2�v

∂t∗2
, (62)

where the cylindrical coordinate unit vectors are now ρ̂, θ̂, and ξ̂. The displacement

vector is now written as

�v(ρ, θ, ξ, t∗) =

⎡
⎢⎢⎢⎢⎣

vρ(ρ, θ, ξ, t
∗)

vθ(ρ, θ, ξ, t
∗)

vξ(ρ, θ, ξ, t
∗)

⎤
⎥⎥⎥⎥⎦ . (63)

Introducing the scalings into Equation (56), the boundary conditions at ξ = 0

become

vξ(ρ, θ, 0, t
∗) = q0 + q(t∗)− f(�ρ)

�
, 0 < ρ <

c0a
�
(1 + δac

1
a(t

∗)), (64a)

σξξ(ρ, θ, 0, t
∗) = 0,

c0a
�
(1 + δac

1
a(t

∗)) < ρ, (64b)

σρξ(ρ, θ, 0, t
∗) = 0, for all ρ, (64c)

where

σρξ(ρ, θ, ξ, t
∗) = E0

∫ t∗

−∞
μ̄(t∗ − τ ∗)

∂

∂τ ∗

[
∂vρ
∂ξ

+
∂vξ
∂ρ

]
dτ ∗. (65)

At the bottom boundary, ξ = ML

�
, Equation (58) becomes

vρ(ρ, θ,
ML

�
, t∗) = 0, for all ρ, (66a)

vξ(ρ, θ,
ML

�
, t∗) = 0, for all ρ. (66b)

Now, we will choose � based on our length scales. Since, we are interested in what
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occurs under the tip of our AFM, we will choose � = c0a. Next, we choose T based

on our time scales. Before we do so, we recall that the experimental modulation

frequency, ω2, occurs between 1 Hz and 1 kHz. Thus, ω2 � ω0, therefore, T1 �
T2. This means that the AFM will behave quasi-statically. Also, the experiment is

assumed to run at a fixed frequency for a sufficiently long enough time so that we

are at equilibrium. So again, we see that the model will have a quasi-static solution.

Looking at the time scales in more detail, T1 =
1
ω0

≈ 10−5s, T2 =
1
ω2

has a range from

about 10−3s to 1s, and T3 = c0a

√
ρ̄
E0

≈ 10−12s. So, we’ll choose T = T2 in order to

capture the large time scale, quasi-static behavior.

Define β1 = T2

T1
= ω0

ω2
, which ranges from 25 to 25 × 103, and β2 = T3

T2
=

c0aω2

√
ρ̄
E0
, which ranges from approximately 10−9 to 10−12. Introducing all of the

above into Equations (59)-(66) we get the dimensionless equations for the general,

three-dimensional model of the experiment.

The dimensionless equation for the AFM model is

q̈ +
1

Q
β1q̇ + β2

1 [q + q0] = β2
1 [B0 + B sin(t∗ + φ)] + χβ2

1 F̄σ, (67)

where F̄σ(t
∗) = Fσ(t∗/ω2)

E0c0a
2 , B0 =

B̂0

c0a
, and B = B̂

c0a
. The parameter χ = c0aE0

k
is the ratio

of two forces. To see this, we can write χ = c0a
2
E0

c0ak
. The force, c0a

2
E0, is proportional

to the elastic force the polymer exerts on the tip of the AFM while the AFM is at

its initial penetration depth. The force, c0ak, is the force that the AFM spring would

exert when extended the length of c0a into the polymer.

The dimensionless equations for the material behavior model are

∫ t∗

−∞

[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
[∇∇ · �v] dτ ∗

−
∫ t∗

−∞
μ̄(t∗ − τ ∗)

∂

∂τ ∗
[∇×∇× �v] dτ ∗ = β2

2

∂2�v

∂t∗2
, (68)
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and the dimensionless boundary conditions are

vξ(ρ, θ, 0, t
∗) = q0 + q(t∗)− f̄(ρ), 0 < ρ < 1 + δac

1
a(t

∗), (69a)

σξξ(ρ, θ, 0, t
∗) = 0, 1 + δac

1
a(t

∗) < ρ, (69b)

σρξ(ρ, θ, 0, t
∗) = 0, for all ρ, (69c)

and

vρ(ρ, θ, M̄L, t
∗) = 0, for all ρ, (70a)

vξ(ρ, θ, M̄L, t
∗) = 0, for all ρ, (70b)

where M̄L = ML

c0a
, and f̄(ρ) = f(c0aρ)

c0a
. For a parabolic tip shape, f̄(ρ) = c0aρ

2

2R
.

In summary, this chapter discussed the different types of material behaviors, and

the properties they exhibit. The main focus was on the linear viscoelastic behav-

ior of materials, and how they can be modeled. We created a viscoelastic material

model with boundary conditions that represent the experiment. The material model,

boundary conditions, and the AFM model from the last chapter, were then scaled to

capture the quasi-static nature of the experiment at the AFM tip.
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IV. Reduced Three-Dimensional Model

Three-dimensional material models of physical systems are often complicated and

need to be solved numerically. The goal of this chapter is to make appropriate as-

sumptions so that our model still contains the pertinent physics but, has an analytical

solution. The assumptions that we will make for our model are that we can approxi-

mate the material thickness by a semi-infinite half-space, and that we have axisym-

metry. Before delving into the math and the reasons behind these assumptions, we

will first present some important background information.

4.1 Infinite and Semi-Infinite Half-Space Models

Contact problems in the theory of elasticity generally assume that a rigid body

acts on an elastic half-space. More recently, it has become increasingly important

to study viscoelastic surfaces. In a book by Sneddon [83], static theories based on

both elastic half-spaces and semi-infinite half-spaces are derived. N. N. Lebedev

and Ia. S. Ufliand [51] developed solutions for an axisymmetric rigid body acting

upon an elastic layer. They were able to express both the stresses and displace-

ments in terms of a single function which, is the solution of a Fredholm integral

equation. R. Y. S. Pak [69] presented a method based on potentials for the dynamic

response of an elastic half-space to an arbitrary, time-harmonic, finite, buried source.

An arbitrary set of transformed stress-potential and displacement-potential relations

were developed and can be used in a multitude of wave propagation problems. He

specifically looked at an embedded source of uniform distributions. Later, Pak and

Guzina[70] derived fundamental Green’s functions for the elastodynamic half-space

problem involving mixed boundary conditions and multilayered media. They solved

three-dimensional problems using a method of displacement potentials with a set of
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generalized transmission-reflection matrices and internal source fields. Their solutions

encompassed both elastic and viscoelastic cases.

In the theory of viscoelasticity, the contact problem is defined by mixed boundary

conditions which vary for the region of contact and the region of no contact. In

general, the contact region varies with time. Lee and Radok [52] showed the solution

of the viscoelastic counterpart of the Hertz problem in elasticity can be deduced

from the elastic solution. The solution is obtained for general linear viscoelastic

operators on a half-space. T. C. T. Ting [93] derived an explicit solution of an integral

equation which arises in multiple contact problems for linear viscoelastic half-spaces.

His solution is valid for a contact area which is a multiply-connected region or regions.

Additionally, the time-dependent contact area can be any arbitrary function of time.

4.2 Dual Integral Equations

Dual integral equations often arise when dealing with mixed boundary value prob-

lems. The general form of dual integral equations is

∫ ∞

0

K1(xt) [1 + w(t)] Φ(t)dt = f(x), 0 < x < 1,∫ ∞

0

K2(xt)Φ(t)dt = g(x), x > 1, (71)

where K1(xt) and K2(xt) are the kernel functions. These kernels can be trigonometric

functions, Bessel functions of the first or second kind, or modified Bessel functions of

the first or second kind. Φ(t) is the unknown function, and w(t) is an arbitrary weight

function. Finally, f(x) and g(x) are known functions that arise from the boundary

conditions of the problem being solved.

When the problem being modeled has axisymmetric, mixed boundary conditions,

such as the experiment we are modeling, the dual integral equations that arise often

39



have Bessel functions as their kernels. For this reason, we will focus on dual integral

equations that have Bessel functions of the first kind as their kernel. The general

form of dual integral equations involving Bessel functions of the first kind is

∫ ∞

0

t−2αJν(xt) [1 + w(t)] Φ(t)dt = f(x), 0 < x < 1,∫ ∞

0

t−2βJμ(xt)Φ(t)dt = g(x), x > 1, (72)

where α and β are known constants, ν and μ are the known orders of the Bessel

functions, w(t) is an arbitrary known weight function, f(x) and g(x) are known

functions valid over their particular region, and Φ(t) is the unknown function to be

determined.

There have been many methods used to study dual integral equations of this

class. Some methods are based on particular solutions such as Titchmarsh [94],

where in Equation (72), w(t) = 0. Noble [65] used a multiplying factor method on

a class of dual integral equations, where the Bessel functions are of the same order

(ν = μ). Nasim [64] used the properties of Mellin transforms to reduce the dual

integral equations to a single integral equation which can be solved using Hankel

transforms. Most methods use some form of the integral operator to reduce the

dual integral equation to a single integral equation, which can be solved using a

different method [61]. Mandal [60] used Sonine’s integrals to reduce Equation (72)

to a Fredholm integral equation of the second kind. Mandal’s method is the most

general and applies to all the possibilities of Equation (72). Since we will use the

results from Mandal [60], a brief summary of that paper is given in Appendix B.
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4.3 Axisymmetry

We will now make assumptions based on the physics of the experiment so that

we may simplify the model for the experimental system. Recall the scaled, three-

dimensional model of the experimental system that we created last chapter. The first

assumption we will make is that the AFM tip forces produce axisymmetric loading.

This is a valid assumption since we only have AFM tip movement in the z-direction,

and the AFM tip is modeled as a paraboloid of revolution. As a result, there is no θ

dependence for any parameter, uθ is identically zero, and all derivatives with respect

to θ vanish. Equation (67) remains as

q̈ +
1

Q
β1q̇ + β2

1 [q + q0] = β2
1 [B0 + B sin(t∗ + φ)] + χβ2

1 F̄σ, (73)

however, F̄σ is now written as

F̄σ(t
∗) =

2π

E0

∫ ∞

0

σξξ(ρ, ξ, t
∗)

∣∣∣∣∣
ξ=0

ρdρ. (74)

If we define the linear operator Lρg = ∂g
∂ρ

+ g
ρ
= 1

ρ
∂
∂ρ

(ρg), then Equation (61) becomes

σξξ(ρ, ξ, t
∗) = E0

[∫ t∗

−∞

[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗

[
∂vξ
∂ξ

]
dτ ∗

+

∫ t∗

−∞
λ̄(t∗ − τ ∗)

∂

∂τ ∗
[Lρvρ] dτ

∗
]
. (75)

Equation (68) remains as

∫ t∗

−∞

[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
[∇∇ · �v] dτ ∗

−
∫ t∗

−∞
μ̄(t∗ − τ ∗)

∂

∂τ ∗
[∇×∇× �v] dτ ∗ = β2

2

∂2�v

∂t∗2
, (76)
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where we keep in mind that all derivatives with respect to θ vanish, and the displace-

ment vector is now written as

�v(ρ, ξ, t∗) =

⎡
⎢⎢⎢⎢⎣

vρ(ρ, ξ, t
∗)

0

vξ(ρ, ξ, t
∗)

⎤
⎥⎥⎥⎥⎦ . (77)

The boundary conditions, Equations (69) and (70), become

vξ(ρ, 0, t
∗) = q0 + q(t∗)− f̄(ρ), 0 < ρ < 1 + δac

1
a(t

∗), (78a)

σξξ(ρ, 0, t
∗) = 0, 1 + δac

1
a(t

∗) < ρ, (78b)

σρξ(ρ, 0, t
∗) = 0, for all ρ, (78c)

and

vρ(ρ, M̄L, t
∗) = 0, for all ρ, (79a)

vξ(ρ, M̄L, t
∗) = 0, for all ρ, (79b)

respectively. The shear stress is now given by

σρξ(ρ, ξ, t
∗) = E0

∫ t∗

−∞
μ̄(t∗ − τ ∗)

∂

∂τ ∗

[
∂vρ
∂ξ

+
∂vξ
∂ρ

]
dτ ∗. (80)

Equations (73)-(80) represent the reduced axisymmetric model of the system.

4.4 The Hankel Transform

We will now make use of the Hankel transform by defining

vρ(ρ, ξ, t
∗) =

∫ ∞

0

βJ1(βρ)gρ(ξ, β, t
∗)dβ (81)
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and

vξ(ρ, ξ, t
∗) =

∫ ∞

0

βJ0(βρ)gξ(ξ, β, t
∗)dβ. (82)

The associated inverse Hankel transforms of Equations (81) and (82) are defined to

be

gρ(ξ, β, t
∗) =

∫ ∞

0

ρJ1(βρ)vρ(ρ, ξ, t
∗)dρ (83)

and

gξ(ξ, β, t
∗) =

∫ ∞

0

ρJ0(βρ)vξ(ρ, ξ, t
∗)dρ. (84)

The requirement for the existence of Equations (81) and (82) are that the functions
√
βgρ(ξ, β, t

∗) and
√
βgξ(ξ, β, t

∗) be piecewise continuous and absolutely integrable

for β ∈ (0,∞) [2].

Applying Equations (81) and (82), we see that, Equations (73) and (74) remain

unchanged while, Equation (75) is transformed to

σξξ(ρ, ξ, t
∗) =

E0

[∫ t∗

−∞

∫ ∞

0

βJ0(βρ)
[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
g′ξ(ξ, β, τ

∗)dβdτ ∗

+

∫ t∗

−∞

∫ ∞

0

β2J0(βρ)λ̄(t
∗ − τ ∗)

∂

∂τ ∗
gρ(ξ, β, τ

∗)dβdτ ∗
]
, (85)

where ′ denotes ∂
∂ξ
, and we have used the property LρJ1(βρ) = 1

ρ
∂
∂ρ

[ρJ1(βρ)] =

βJ0(βρ) [12].

Substituting Equation (85) into Equation (74), interchanging the order of integra-
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tion, and evaluating the ρ integral yields

F̄σ(t
∗) = 2π(1 + δac

1
a(t

∗))

×
[∫ t∗

−∞

∫ ∞

0

J1(β(1 + δac
1
a(t

∗)))
[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
g′ξ(0, β, τ

∗)dβdτ ∗

+

∫ t∗

−∞

∫ ∞

0

βJ1(β(1 + δac
1
a(t

∗)))λ̄(t∗ − τ ∗)
∂

∂τ ∗
gρ(0, β, τ

∗)dβdτ ∗
]
. (86)

Here, we have taken advantage of the fact that σξξ = 0 for ρ > 1 + δac
1
a(t

∗). We have

also used the relationship ρJ0(βρ) =
1
β

∂
∂ρ

[ρJ1(βρ)] [12].

Applying our Hankel transforms to Equation (76), separating into two non-zero

components, and using the properties LρJ1(βρ) = βJ0(βρ) and
∂
∂ρ
J0(βρ) = −βJ1(βρ)

[12], produces

−
∫ t∗

−∞

∫ ∞

0

βJ1(βρ)
[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
[
β2gρ(ξ, β, τ

∗) + βg′ξ(ξ, β, τ
∗)
]
dβdτ ∗

+

∫ t∗

−∞

∫ ∞

0

βJ1(βρ)μ̄(t
∗ − τ ∗)

∂

∂τ ∗
[
βg′ξ(ξ, β, τ

∗) + g′′ρ(ξ, β, τ
∗)
]
dβdτ ∗

= β2
2

∫ ∞

0

βJ1(βρ)
∂2gρ

∂t∗2
(ξ, β, τ ∗)dβ, (87)

and

∫ t∗

−∞

∫ ∞

0

βJ0(βρ)
[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
[
βg′ρ(ξ, β, τ

∗) + g′′ξ (ξ, β, τ
∗)
]
dβdτ ∗

−
∫ t∗

−∞

∫ ∞

0

βJ0(βρ)μ̄(t
∗ − τ ∗)

∂

∂τ ∗
[
β2gξ(ξ, β, τ

∗) + βg′ρ(ξ, β, τ
∗)
]
dβdτ ∗

= β2
2

∫ ∞

0

βJ0(βρ)
∂2gξ

∂t∗2
(ξ, β, τ ∗)dβ. (88)

Now, we can take the appropriate inverse Hankel transforms of Equations (87) and
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(88) to obtain

−
∫ t∗

−∞

[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
[
β2gρ(ξ, β, τ

∗) + βg′ξ(ξ, β, τ
∗)
]
dτ ∗

+

∫ t∗

−∞
μ̄(t∗ − τ ∗)

∂

∂τ ∗
[
βg′ξ(ξ, β, τ

∗) + g′′ρ(ξ, β, τ
∗)
]
dτ ∗ = β2

2

∂2gρ

∂t∗2
(ξ, β, τ ∗), (89)

and

∫ t∗

−∞

[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
[
βg′ρ(ξ, β, τ

∗) + g′′ξ (ξ, β, τ
∗)
]
dτ ∗

−
∫ t∗

−∞
μ̄(t∗ − τ ∗)

∂

∂τ ∗
[
β2gξ(ξ, β, τ

∗) + βg′ρ(ξ, β, τ
∗)
]
dτ ∗ = β2

2

∂2gξ

∂t∗2
(ξ, β, τ ∗). (90)

Substituting Equation (82) into Equation (78a) yields

∫ ∞

0

βJ0(βρ)gξ(0, β, τ
∗)dβ = q0 + q(t∗)− f̄(ρ), 0 < ρ < 1 + δac

1
a(t

∗), (91)

and substituting Equation (85) into Equation (78b), and dividing both sides by E0,

yields

∫ t∗

−∞

∫ ∞

0

βJ0(βρ)
[
λ̄(t∗ − τ ∗) + 2μ̄(t∗ − τ ∗)

] ∂

∂τ ∗
g′ξ(0, β, τ

∗)dβdτ ∗

+

∫ t∗

−∞

∫ ∞

0

β2J0(βρ)λ̄(t
∗ − τ ∗)

∂

∂τ ∗
gρ(0, β, τ

∗)dβdτ ∗ = 0, 1 + δac
1
a(t

∗) < ρ. (92)

Applying the Hankel transforms, Equations (81) and (82), to Equation (80), and

using the property ∂
∂ρ
J0(βρ) = −βJ1(βρ) [12], admits the equation

σρξ(ρ, ξ, t
∗) = E0

∫ t∗

−∞

∫ ∞

0

βJ1(βρ)μ̄(t
∗ − τ ∗)

∂

∂τ ∗
[
g′ρ(ξ, β, τ

∗)− βgξ(ξ, β, τ
∗)
]
dβdτ ∗.

(93)

Substituting Equation (93) into Equation (78c), dividing both sides by E0, and taking
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the appropriate inverse Hankel transform yields

∫ t∗

−∞
μ̄(t∗ − τ ∗)

∂

∂τ ∗
[
g′ρ(0, β, τ

∗)− βgξ(0, β, τ
∗)
]
dτ ∗ = 0. (94)

Since μ̄ is a Lamé parameter, and is a function of the material properties, then it

must not be zero everywhere. Thus, Equation (94) yields

g′ρ(0, β, τ
∗)− βgξ(0, β, τ

∗) = 0. (95)

Finally, applying our Hankel transforms to Equation (79) we see that it is necessary

for

gρ(M̄L, β, τ
∗) = 0, (96a)

gξ(M̄L, β, τ
∗) = 0. (96b)

4.5 The Fourier Transform

In order to solve Equations (73) and (86)-(96), we will need to take their Fourier

transforms. We define the Fourier transformation of a function, f(t∗), as

f̂(ω) =

∫ ∞

−∞
f(t∗)e−iωt∗dt∗, (97)

and we define the inverse Fourier transform as

f(t∗) =
1

2π

∫ ∞

−∞
f̂(ω)eiωt

∗
dω. (98)

It is required that f(t∗) be piecewise smooth and absolutely integrable on (−∞,∞) [2].

Taking the Fourier transform of Equation (73), dividing through by β2
1 , and rear-
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ranging, yields

L0(ω; β1, Q)q̂(ω) = 2πδ(ω) [B0 − q0] + BS(ω, φ) + χF̂σ(ω), (99)

where δ(ω) is the Dirac delta function,

S(ω, φ) = −iπ
[
eiφδ(ω − 1)− e−iφδ(ω + 1)

]
, (100)

which is the Fourier transform of the shifted sine function, and

L0(ω; β1, Q) = −
(
ω

β1

)2

+ i
1

Q

(
ω

β1

)
+ 1. (101)

Now, before we take the Fourier transform of Equation (86), we will recall from

Section 3.3 that δa � 1. So, 1+δac
1
a(t

∗) ≈ 1, and by a Taylor series expansion around

β, J1(β(1+ δac
1
a(t

∗))) ≈ J1(β)+
βδa
2
c1a(t

∗) [J0(β)− J2(β)]+O(βδa)
2. Thus, to leading

order, the Fourier transform of Equation (86) is

F̂σ(ω) = 2π
[
λ̂(ω) + 2μ̂(ω)

] ∫ ∞

0

J1(β)
[
ĝ′ξ(0, β, ω) + ᾱ(ω)βĝρ(0, β, ω)

]
dβ +O(δa),

(102)

where ĝρ(ξ, β, ω) and ĝξ(ξ, β, ω) are the Fourier transformations of gρ(ξ, β, t
∗) and

gξ(ξ, β, t
∗), respectively, and ᾱ(ω) = λ̂(ω)

λ̂(ω)+2μ̂(ω)
. In addition,

λ̂(ω) = iω

∫ ∞

0

e−iωt∗λ̄(t∗)dt∗, (103)

and

μ̂(ω) = iω

∫ ∞

0

e−iωt∗μ̄(t∗)dt∗. (104)

We define the Fourier transformed viscoelastic Lamé parameters, Equations (103)
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and (104), in this way so that we have the possibility of using the elastic-viscoelastic

correspondence principle. As you will see later, we will not use the correspondence

principle, and in doing so, we can attain an analytic solution to the linear approxi-

mation of our problem.

Taking the Fourier transforms of Equations (89) and (90), and collecting like terms

yields

ĝ′′ρ(ξ, β, ω) +
[
k2
s −

β2

α(ω)

]
ĝρ(ξ, β, ω) +

β(α(ω)− 1)

α(ω)
ĝ′ξ(ξ, β, ω) = 0, (105)

and

ĝ′′ξ (ξ, β, ω) +
[
k2
p − α(ω)β2

]
ĝξ(ξ, β, ω) + β(1− α(ω))ĝ′ρ(ξ, β, ω) = 0, (106)

where α(ω) = μ̂(ω)

λ̂(ω)+2μ̂(ω)
. Observe that ᾱ(ω) = 1 − 2α(ω). The dimensionless shear

wave number is represented by k2s =
β2
2ω

2

μ̂(ω)
, and the dimensionless compressive wave

number is k2
p =

β2
2ω

2

λ̂(ω)+2μ̂(ω)
. Note that k2

p = α(ω)k2s .

Next, the Fourier transform of Equations (95) and (96), yield

ĝ′ρ(0, β, ω) = βĝξ(0, β, ω), (107)

and

ĝρ(M̄L, β, ω) = 0, (108a)

ĝξ(M̄L, β, ω) = 0, (108b)

respectively. Again, taking advantage of the fact that δa � 1 so, 1+δac
1
a(t

∗) ≈ 1, and

Fourier transforming the linear approximation of the last two boundary conditions,
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Equations (91) and (92), produces the dual integral equations

∫ ∞

0

βJ0(βρ)ĝξ(0, β, ω)dβ = 2πδ(ω)
[
q0 − f̄(ρ)

]
+ q̂(ω), 0 < ρ < 1, (109)

and

∫ ∞

0

βJ0(βρ)
[
ĝ′ξ(0, β, ω) + ᾱ(ω)βĝρ(0, β, ω)

]
dβ = 0, 1 < ρ, (110)

where we have divided through by λ̂(ω) + 2μ̂(ω) in the latter equation.

Equations (99)-(110) represent the linear approximation to the fully transformed,

scaled, and reduced model of our experimental system. The equations show a reduced

three-dimensional model of the material behavior coupled through the boundary con-

ditions to a one-dimensional model of the AFM system. We can now move on to

solving this system of equations.

4.6 Reducing the Experimental Model to a Dual Integral Equation

In this section, the coupled system of second order differential equations for

ĝξ(ξ, β, ω) and ĝρ(ξ, β, ω) is reduced to a system of first order equations. The standard

eigenvalue and eigenvector representation of the solution is exhibited with expansion

coefficients determined through the boundary conditions. This will lead to the dual

integral equation problem which is evaluated in the next section.

First, Equations (105) and (106) can be transformed to the system

�G′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ĝ′ξ

ĝ′ρ

ĝ′′ξ

ĝ′′ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= D�G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

αβ2 − k2
p 0 0 β(α− 1)

0 (β
2

α
− k2

s)
β(1−α)

α
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ĝξ

ĝρ

ĝ′ξ

ĝ′ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (111)
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The solution to this system is of the form

�G =
4∑

i=1

Ai(β, ω)�vie
λiξ, (112)

where the Ai’s are the coefficients determined from the boundary conditions, and λi

and �vi are the eigenvalues and the associated eigenvectors for the matrix D.

For this system, define

λp = (β2 − k2
p)

1/2,

λs = (β2 − k2
s)

1/2,

(113)

which represent the complex wave speeds associated with the mode shape given by

J0(βρ). Further, the positive branch of the square root is chosen. Thus, the eigen-

values are

λ1 = −λp,

λ2 = λs,

λ3 = −λs,

λ4 = λp,

(114)

with associated eigenvectors

�v1 =

[−1

β
,
−1

λp

,
λp

β
, 1

]T
,

�v2 =

[−β

λ2
s

,
1

λs

,
−β

λs

, 1

]T
,

�v3 =

[−β

λ2
s

,
−1

λs

,
β

λs

, 1

]T
,

�v4 =

[−1

β
,
1

λp

,
−λp

β
, 1

]T
.

(115)
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Inserting these values, Equations (114) and (115), into Equation (112), ĝξ and ĝρ

become

ĝξ = − 1

β

[
A1e

−λpξ + A4e
λpξ

]− β

λ2
s

[
A2e

λsξ + A3e
−λsξ

]
,

ĝρ = − 1

λp

[
A1e

−λpξ − A4e
λpξ

]
+

1

λs

[
A2e

λsξ − A3e
−λsξ

]
.

(116)

To determine the Ai’s, Equations (107)-(110) are required. First, we examine the

boundary conditions at M̄L = ML

c0a
, which are Equations (108). Since ML for the

experiment is 30 nm, 70 nm, or 220 nm, and c0a ≈ 2 nm then, typical values of M̄L

are in the 10 - 100 range. Also note that the contact area radius is much smaller than

the thickness of the sample thus, ML � c0a. Further, because the positive branch of

the square root function is used, �(λp),�(λs) ≥ 0, for all β. This means eλpξ and

eλsξ will see exponential growth as ξ becomes large while, e−λpξ and e−λsξ will see

exponential decay. Therefore, to satisfy Equations (108), both A2 and A4 must be

exponentially small. We choose to set A2 = A4 = 0 which, is equivalent to letting

M̄L → ∞. This is valid as long as ML � c0a. Now, Equations (116) are reduced to

ĝξ = − 1

β
A1e

−λpξ − β

λ2
s

A3e
−λsξ,

ĝρ = − 1

λp

A1e
−λpξ − 1

λs

A3e
−λsξ.

(117)

Using Equations (117) along with Equations (113) in Equation (107) produces the

relation

A1(β, ω) = − 1

2λ2
s

(
2β2 − k2

s

)
A3(β, ω). (118)

The final coefficient, A3, is found using Equations (109) and (110). To this end, define
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A(β, ω) by

−αA(β, ω) = ĝ′ξ(0, β, ω) + ᾱβĝρ(0, β, ω) = −αA3

[
(2β2 − k2

s)
2

2βλ2
sλp

− 2β

λs

]
, (119)

and w(β) by

[1 + w(β)]A(β, ω) = βĝξ(0, β, ω) = − k2
s

2λ2
s

A3. (120)

In the above definitions we have made use of the facts that ᾱ = 1− 2α and k2
p = αk2

s .

Combining Equations (119) and (120) yields

1 + w(β) =
βk2

sλp

4β2λsλp − (2β2 − k2
s)

2
. (121)

Now, the boundary conditions given in Equations (109) and (110) are reduced to

solving the dual integral equations

∫ ∞

0

βA(β, ω)J0(βρ)dβ = 0, 1 < ρ, (122)

and

∫ ∞

0

A(β, ω)J0(βρ) [1 + w(β)] dβ

= 2πδ(ω)
[
q0 − f̄(ρ)

]
+ q̂(ω), 0 < ρ < 1, (123)

for the unknown function A(β, ω). Having determined A(β, ω), Equations (118) and

(120) are used to produce

A1(β, ω) =
2β2 − k2

s

k2
s

[1 + w(β)]A(β, ω), (124)
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and

A3(β, ω) = −2λ2
s

k2
s

[1 + w(β)]A(β, ω). (125)

This completes the solution to the transformed system, Equation (111), with

ĝξ(ξ, β, ω) and ĝρ(ξ, β, ω) given by Equation (117) along with Equations (124) and

(125). All that remains is the determination of A(β, ω) from Equations (122) and

(123).

4.7 Reduction of the Dual Integral Equation

In this section, the dual integral equations, Equations (122) and (123), will be

transformed to a Fredholm integral equation of the second kind following a method

presented by Mandal [60] and reviewed in Appendix B.

Comparing Equations (122) and (123) to Equation (236), we see that A(β, ω)

represents the unknown function Φ(β). Also, f(ρ) = f1(ρ, ω) = 2πδ(ω)
[
q0 − f̄(ρ)

]
+

q̂(ω) and g(ρ) = 0. Additionally, α∗ = 0, β∗ = −1
2
, and μ = ν = 0. Thus, from

Equations (238), λ = γ = −1
2
. We choose s = 0, since that would yield λ+ s = −1

2
>

−1. So, from Equations (239) with s = 0, F1(r) = F (r) and G1(r) = G(r).

Now, from Equations (241), ξ = �− 3
2
and η = m− 1

2
. Therefore, we choose � = 1

and m = 0 so that ξ = η = −1
2
> −1. From Equations (240), G(r) = 0 and

F (r;ω) =

√
2

πr

∂

∂r

∫ r

0

ρ(r2 − ρ2)−
1
2f1(ρ, ω)dρ. (126)

Recall that for a parabolic tip shape, f̄(ρ) = c0aρ
2

2R
. Using this along with f1(ρ, ω),
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Equation (126) becomes

F (r;ω) =

√
2

πr

∂

∂r

[
(2πδ(ω)q0 + q̂(ω))

∫ r

0

ρ(r2 − ρ2)−
1
2dρ

−
(
2πδ(ω)

c0a
2R

)∫ r

0

ρ3(r2 − ρ2)−
1
2dρ

]

=

√
2

πr

[
2πδ(ω)q0 + q̂(ω)− 2πδ(ω)

c0ar
2

R

]
.

(127)

Now, applying all of the above information to Equation (237) yields

A(ρ, ω) = ρ
1
2

[∫ 1

0

rF (r;ω)J− 1
2
(rρ)dr

−
∫ ∞

0

u
1
2w(u)A(u, ω)

[
uJ 1

2
(u)J− 1

2
(ρ)− ρJ 1

2
(ρ)J− 1

2
(u)

u2 − ρ2

]]
du. (128)

If we use the facts that J−1/2(x) =
√

2
πx

cos(x) and J1/2(x) =
√

2
πx

sin(x) then, we

can rewrite Equation (128) as

A(ρ, ω) =

∫ 1

0

√
2r

π
F (r;ω) cos(rρ)dr

− 2

π

∫ ∞

0

w(u)A(u, ω)

[
u sin(u) cos(ρ)− ρ sin(ρ) cos(u)

u2 − ρ2

]
du. (129)

Substituting Equation (127) into Equation (129), and rearranging terms yields

A(ρ, ω) =
2

π

[
2πδ(ω)

(
q0 − c0a

R

)
+ q̂(ω)

] [
sin(ρ)

ρ

]

+
2

π

[
2πδ(ω)

2c0a
R

] [
sin(ρ)

ρ3
− cos(ρ)

ρ2

]

− 2

π

∫ ∞

0

w(u)A(u, ω)

[
u sin(u) cos(ρ)− ρ sin(ρ) cos(u)

u2 − ρ2

]
du. (130)

In order to simplify the notation, we will introduce the spherical Bessel functions

of zero and second order. These functions have a relationship to the trigonometric
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functions as follows [1]

j0(x) =
sin(x)

x
, (131a)

j2(x) = 3
sin(x)

x3
− 3

cos(x)

x2
− sin(x)

x
. (131b)

Therefore, we can rewrite Equation (130) as

A(ρ, ω) = c0(ω)j0(ρ) + c2(ω)j2(ρ)− 1

π

∫ ∞

0

w(u)A(u, ω)K(ρ, u)du, (132)

where the kernel function is

K(ρ, u) = 2
u sin(u) cos(ρ)− ρ sin(ρ) cos(u)

u2 − ρ2

=
(u− ρ)(sin(u) cos(ρ) + sin(ρ) cos(u)) + (u+ ρ)(sin(u) cos(ρ)− sin(ρ) cos(u))

u2 − ρ2

=
(u− ρ) sin(u+ ρ) + (u+ ρ) sin(u− ρ)

u2 − ρ2

=
sin(u+ ρ)

u+ ρ
+

sin(u− ρ)

u− ρ

= j0(u+ ρ) + j0(u− ρ),

(133)

and

c0(ω) =
2

π

[
2πδ(ω)

(
q0 − c0a

3R

)
+ q̂(ω)

]
, (134a)

c2(ω) =
2

π

[
2πδ(ω)

2c0a
3R

]
. (134b)

This concludes the reduction of the dual integral equations, Equations (122) and

(123), to a Fredholm integral equation of the second kind, Equations (132)-(134).

In the next section, we will make a linear approximation to the Fredholm integral
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equation of the second kind, and solve for the linear approximation of the unknown,

A(ρ, ω).

4.8 Approximation of the Fredholm Integral Equation

In order to estimate the integral in Equation (132), we must first take a look

at the weight function, w(β). Recall from Section 4.5 that k2
s =

β2
2ω

2

μ̂(ω)
. In addition,

from Section 3.3, we have that β2
2 ranges from 10−18 to 10−24. Since, ω and μ̂(ω) are

normalized quantities, then they are order 1. Thus, ‖ks‖ � 1. So, we will perform

an asymptotic expansion for β � ‖ks‖ on the weight function. First, Equation (113)

can be rewritten as

λp =
(
β2 − k2

p

)1/2
= β

(
1− α

k2
s

β2

)1/2

,

λs =
(
β2 − k2

s

)1/2
= β

(
1− k2

s

β2

)1/2

,

(135)

where we used the fact that k2
p = αk2

s . Using a binomial series expansion with

β � ‖ks‖ on Equation (135) we obtain

λp = β

(
1− α

2

k2
s

β2
− α2

8

k4
s

β4
+O

(
k6
s

β6

))
,

λs = β

(
1− 1

2

k2
s

β2
− 1

8

k4
s

β4
+O

(
k6
s

β6

))
.

(136)

This allows us to write the asymptotic expansion with β � ‖ks‖ for λsλp as

λsλp = β2

[
1− 1

2

k2
s

β2
(1 + α)− 1

4

k4
s

β4

(
1

2
− α +

α2

2

)
+O

(
k6
s

β6

)]
. (137)
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We may now rewrite Equation (121) as

w(β) = −1 +
β2k2

s

[
1− α

2
k2s
β2 − α2

8
k4s
β4 +O

(
k6s
β6

)]
4β4

[
1
2
k2s
β2 (1− α)− 1

4
k4s
β4

(
3
2
− α + α2

2

)
+O

(
k6s
β6

)]

= −1 +

[
1− α

2
k2s
β2 − α2

8
k4s
β4 +O

(
k6s
β6

)]
2
[
(1− α)− 1

2
k2s
β2

(
3
2
− α + α2

2

)
+O

(
k4s
β4

)]

= −1 +
1

2(1− α)

[
1− α

2

k2
s

β2
+O

(
k4
s

β4

)]⎡
⎣ 1

1− k2s
β2

(
3−2α+α2

4(1−α)

)
+O

(
k4s
β4

)
⎤
⎦ .

(138)

Using the geometric series expansion for k2s
β2 � 1 on the last term in Equation (138)

admits

w(β) = −1 +
1

2(1− α)

[
1− α

2

k2
s

β2
+O

(
k4
s

β4

)]

×
[
1 +

k2
s

β2

(
3− 2α + α2

4(1− α)

)
+O

(
k4
s

β4

)]
. (139)

Therefore, we can write the asymptotic expansion of the weight function for β � ‖ks‖
as

w(β) = w1 +
k2
s

β2

[
3α2 − 4α + 3

8(1− α)2

]
+O

(
k4
s

β4

)
, (140)

where

w1 =
2α− 1

2(1− α)
. (141)

We will now rewrite Equation (132) as

A(ρ, ω) = A0(ρ, ω)− 1

π

∫ ∞

0

w1A(u, ω)K(ρ, u)du+ I1(A), (142)
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where

A0(ρ, ω) = c0(ω)j0(ρ) + c2(ω)j2(ρ), (143)

and

I1(A) = − 1

π

∫ ∞

0

[w(u)− w1]A(u, ω)K(ρ, u)du. (144)

We will now put a bound on I1(A) in order to see if we can approximate Equa-

tion (132). Thus,

|I1(A)| =
∣∣∣∣− 1

π

∫ ∞

0

[w(u)− w1]A(u, ω)K(ρ, u)du

∣∣∣∣
≤ 1

π

∫ ∞

0

|w(u)− w1| |A(u, ω)| |K(ρ, u)| du.
(145)

Now, for any point ρ, we have

|K(ρ, u)| = |j0(u+ ρ) + j0(u− ρ)| ≤ |j0(u+ ρ)|+ |j0(u− ρ)| ≤ 1 + 1 = 2. (146)

In addition, assuming A(u) continuous and bounded on the interval u ∈ (0,∞), then

let MA = maxu∈(0,∞) |A(u)|. Thus,

|I1(A)| ≤ 2

π
MA

∫ ∞

0

|w(u)− w1| du

=
2

π
MA

[∫ β∗

0

|w(u)− w1| du+

∫ ∞

β∗
|w(u)− w1| du

]
,

(147)

where β∗ ∈ (0,∞) is an arbitrary point to be chosen later.

Since, w(u) and w1 continuous on u ∈ (0, β∗), then letMw = maxu∈(0,β∗) |w(u)− w1|.
Therefore, ∫ β∗

0

|w(u)− w1| du ≤ β∗Mw. (148)
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Also, for β∗ � ‖ks‖ and from Equations (140) and (141) we obtain

∫ ∞

β∗
|w(u)− w1| du =

∫ ∞

β∗

∣∣∣∣k2
s

u2

[
3α2 − 4α + 3

8(1− α)2

]
+O

(
k4
s

u4

)∣∣∣∣ du = O
(
k2
s

β∗

)
. (149)

Hence,

|I1(A)| ≤ 2

π
MA

[
β∗Mw +O

(
k2
s

β∗

)]

=
2

π
MAβ

∗
[
Mw +O

(
k2
s

β∗2

)]
.

(150)

Therefore, choose β∗ = ‖ks‖ε, where 0 < ε < 1. This yields

|I1(A)| ≤ 2

π
MA‖ks‖ε

[
Mw +O (‖ks‖2(1−ε)

)]
. (151)

Thus, we can choose ε such that ε is as close to 1 as possible so that we still satisfy

β∗ � ‖ks‖. Hence, I1(A) is small and we can approximate Equation (132) to be

A(ρ, ω) = A0(ρ, ω)− 1

π

∫ ∞

0

w1A(u, ω)K(ρ, u)du. (152)

4.9 Solving the Approximation of the Fredholm Integral Equation

We are now going to solve Equation (152) using an integral equation Neumann se-

ries. For further explanation of an integral equation Neumann series, see Appendix C.

First, define λ∗ = −w1

π
, and define the operator

Kf(x) =

∫ ∞

0

K(x, u)f(u)du. (153)

Therefore, Equation (152) is now written as

A(β) = A0(β) + λ∗KA(β), (154)
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where we have suppressed the ω dependence where appropriate. Next, define

TA = A0 + λ∗KA. (155)

Thus, Equation (154) is now written as

TA = A. (156)

Now, if φ1 and φ2 are in the subspace spanned by {j0, j2}, then

‖Kφ1 −Kφ2‖ = ‖K (φ1 − φ2) ‖ = ‖
∫ ∞

0

K(β, u) (φ1(u)− φ2(u)) du‖. (157)

From Appendix D, Equations (255) and (256), we obtain

∫ ∞

0

K(β, u) (φ1(u)− φ2(u)) du = π (φ1(β)− φ2(β)) . (158)

Thus,

‖Kφ1 −Kφ2‖ = ‖π (φ1 − φ2) ‖ = π‖φ1 − φ2‖. (159)

Therefore, we see from Appendix C that for uniqueness and convergence we require

that |λ∗|π < 1. Thus, in order to use the integral equation Neumann series we require

that |w1| < 1.

Let’s assume for now that |w1| < 1. By the integral equation Neumann series we

obtain

A = A0 + λ∗KA0 + λ∗2K2A0 + · · ·+ λ∗nKnA0 + · · · . (160)

Using Equations (255) and (256) from Appendix D, we obtain

KA0 = πA0, (161)
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K2A0 = πKA0 = π2A0, (162)

and

KnA0 = πnA0. (163)

Thus,

A = A0 − w1A0 + (−w1)
2A0 + · · ·+ (−w1)

n A0 + · · · = A0

∞∑
k=0

(−w1)
k . (164)

Using the assumption that |w1| < 1, the definition of an infinite geometric series, and

Equation (141), we can write Equation (164) as

A = A0
1

1 + w1

= 2(1− α)A0. (165)

Here, we recall that α = μ̂

λ̂+2μ̂
. So, w1 =

−λ̂

2(λ̂+μ̂)
or |w1| = 1

2

∣∣∣ λ̂

λ̂+μ̂

∣∣∣. We will show that

|w1| < 1 in Section 4.11.

With an approximation toA(β), we can obtain all theAi(β)’s using Equations (124)

and (125). Thus, using Equation (112), we can calculate �G. Assuming we can take

the appropriate inverses then, we have a solution to our reduced, three-dimensional

material model.

4.10 Finite Stress at the Contact Area Boundary

In order to relate the static penetration depth to properties of the AFM and

surface system, we will go back and take a closer look at the normal stress in the

Fourier transform domain at the boundary ξ = 0. To do this, examine the Fourier

transform of Equation (85) with ξ = 0 then,

σ̂ξξ(ρ, 0, ω) = E0

[
λ̂(ω) + 2μ̂(ω)

] ∫ ∞

0

βJ0(βρ)
[
ĝ′ξ(0) + ᾱβĝρ(0)

]
dβ. (166)
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Next, recall from Equation (119) that ĝ′ξ(0) + ᾱβĝρ(0) = −αA(β). Also, using Equa-

tion (165), −αA(β) ≈ −2α(1− α)A0(β). So, Equation (166) becomes

σ̂ξξ(ρ, 0, ω) ≈ −2E0μ̂(ω)(1− α)

∫ ∞

0

βJ0(βρ) [c0j0(β) + c2j2(β)] dβ, (167)

where we have used the facts that α = μ̂

λ̂+2μ̂
and A0(β) = c0j0(β) + c2j2(β). Now,

using Equations (257) and (258) from Appendix D yields

σ̂ξξ(ρ, 0, ω) ≈ −2E0μ̂(ω)
(1− α)√
1− ρ2

{
c0 + c2 (2− 3ρ2) , 0 < ρ < 1,

0, 1 < ρ.
(168)

Substituting Equations (134) into Equation (168) produces

σ̂ξξ(ρ, 0, ω) ≈ − 4

π
E0μ̂(ω)

(1− α)√
1− ρ2

[
2πδ(ω)

(
q0 +

c0a
R
(1− 2ρ2)

)
+ q̂(ω)

]

= σ̂s
ξξ(ρ, 0) + σ̂d

ξξ(ρ, 0, ω),

(169)

for 0 < ρ < 1. Since the forcing function for the experiment is made up of a static

preload and a dynamic tapping piece, we would expect that for this linear model, the

stress will also be composed of a static piece and a dynamic piece. Thus,

σ̂s
ξξ(ρ, 0) = − 4

π
E0μ̂(ω)

(1− α)√
1− ρ2

[
2πδ(ω)

(
q0 +

c0a
R
(1− 2ρ2)

)]
(170)

represents the static component of the stress, and

σ̂d
ξξ(ρ, 0, ω) = − 4

π
E0μ̂(ω)

(1− α)√
1− ρ2

[q̂(ω)] (171)

represents the dynamic component of the stress.

Notice that at the edge of the contact region, ρ = 1, the stress becomes infinite
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unless q0 is chosen appropriately. In addition, the solution should be continuous at

the contact boundary. To keep the static component of stress finite at the contact

boundary, q0 is chosen such that the static stresses vanish at ρ = 1. This leads to the

choice q0 =
c0a
R
. The choice of finite and continuous stress at the contact boundary is

the same as the approximation made by Hertz [84]. The equation for normal stress

at the boundary, ξ = 0, and within the contact area, 0 < ρ < 1, becomes

σ̂ξξ(ρ, 0, ω) ≈ −8c0a
πR

E0μ̂(ω)(1− α)

[
2πδ(ω)

√
1− ρ2 +

R

2c0a

q̂(ω)√
1− ρ2

]
. (172)

Although there is no term that we may choose to balance the dynamic stress

at ρ = 1, we shall see that over the total contact area, the force generated by the

dynamic stress is finite. This also means that the dynamic contact stress between the

parabolic tip and the surface, when the static force is much greater than the dynamic

force, is equivalent to that of a rigid flat punch with the surface [90, 84, 91].

In order to calculate the force generated by the dynamic stress, we combine Equa-

tions (102), (119), and (165) to obtain

F̂σ(ω) ≈ −4πμ̂(ω)(1− α)

∫ ∞

0

J1(β) [c0j0(β) + c2j2(β)] dβ, (173)

where we have used the facts that α = μ̂

λ̂+2μ̂
and A0(β) = c0j0(β) + c2j2(β). Now,

using Equations (259) and (260) from Appendix D, and Equations (134), we can write

F̂σ(ω) ≈ −8μ̂(ω)(1− α)

[
2πδ(ω)

(
2c0a
3R

)
+ q̂(ω)

]
. (174)

We have now reduced the system of equations to the solution of Equations (99)-

(104), where the transformed force exerted by the surface on the AFM tip is approx-

imated as in Equation (174).
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4.11 Solving the Reduced Model

Since we are interested in solving for the movement of the AFM tip in order to

compare our mathematical model to the experimental data then, we will solve the

reduced system of Equations (99)-(104) along with Equation (174). In order to do

this, we will need to take the inverse Fourier transform of our system of equations. To

do this, we need to fix Poisson’s ratio to be a constant, then we can write λ̂(ω) and

μ̂(ω) in terms of Poisson’s ratio, ν, and the Young’s modulus of the material, Ê(ω).

This also allows us to calculate α(ω) = α = μ̂

λ̂+2μ̂
, where α is no longer a function of

frequency.

For a viscoelastic material, Poisson’s ratio is usually a function of frequency be-

cause the transverse strain may be out of phase with the longitudinal strain. For the

solution of the current system of equations, we assume that this difference in strains

is minimal so that Poisson’s ratio is a constant with respect to frequency. It will also

be important to note that −1 < ν < .5. So, from Findley et al. [24] we have

λ̂(ω) =
−νÊ(ω)

(1 + ν)(2ν − 1)
(175)

and

μ̂(ω) =
Ê(ω)

2(1 + ν)
. (176)

This admits to

α =
1− 2ν

2(1− ν)
. (177)

At this point, we shall take a look at w1 = −λ̂

2(λ̂+μ̂)
. Recall from Section 4.9 that

we require |w1| < 1. Using Equations (175) and (176) we obtain

w1 = −ν. (178)
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Thus, |w1| < 1.

Substituting Equations (175)-(177) into Equation (174) yields

F̂σ(ω) ≈ −2Ê(ω)

1− ν2

[
2πδ(ω)

(
2c0a
3R

)
+ q̂(ω)

]
. (179)

The static piece from the above equation is precisely the viscoelastic correspondence

of the Hertz solution in terms of force [84].

Now, substituting Equation (179) into Equation (99), using the fact that q0 =
c0a
R
,

and collecting terms gives

[L0(ω) + P0(ω)] q̂(ω) = 2πδ(ω)

[
B0 − c0a

R

(
1 +

2

3
P0(ω)

)]
+ BS(ω, φ), (180)

where

P0(ω) =
2Ê(ω)

(1− ν2)
χ. (181)

Recall from Section 3.3 that χ = c0aE0

k
.

So, taking the inverse Fourier transform of Equation (180), and equating the static

and dynamic terms gives

B0 =
c0a
R

[
1 +

2

3
P0(0)

]
, (182)

and

q(t∗) =
(

B

2i(L0(1) + P0(1))

)
ei(t

∗+φ) −
(

B

2i(L0(−1) + P0(−1))

)
e−i(t∗+φ). (183)

Equations (181)-(183) represent the solution to the scaled, reduced, three-dimensional

system.
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4.12 Analysis of the Reduced Three-Dimensional Model

Let’s start off by taking a closer look at L0(ω) from Equation (101). First, we

recall that β1 is the ratio of the resonant frequency of the AFM, ω0, to the modulation

frequency, ω2, so that β1 =
ω0

ω2
is in the range of 25 to 25×103 which, is large compared

to unity. Also note that Q ∼ 100. So, Equation (101) can be approximated by

L0(ω) ≈ 1 for ω = 0,±1.

In addition, define E∗
0 = E0

1−ν2
, which is the elastic, plane strain Young’s modulus.

Thus, Equation (181) can be written as

P0(ω) = 2χ∗Ê(ω), (184)

where χ∗ = c0aE
∗
0

k
is a dimensionless ratio. Therefore, we can write Equation (182) as

B0 =
c0a
R

+
4c0a

2
E∗

0

3Rk
Ê(0). (185)

Here we note that Ê(0) represents the static, normalized viscoelastic Young’s modulus

so, Ê(0) = 1. Thus, Equation (185) becomes

B0 =
c0a
R

+
4c0a

2
E∗

0

3Rk
. (186)

So, the difference between B0 and q0 =
c0a
R

yields

B0 − c0a
R

=
4c0a

2
E∗

0

3Rk
. (187)

Here, q0 =
c0a
R
represents the dimensionless penetration depth of the AFM tip into the

surface, and B0 represents the dimensionless distance caused by the static loading,

i.e., the preload. Thus, the left hand side of Equation (187) represents the difference

66



of the static loading and the tip penetration into the material. We know that this

difference is caused by various physical properties of the AFM and the material.

Examples of these are the AFM’s tip curvature radius and its effective stiffness, as

well as the contact area radius and the Young’s modulus of the material.

The right hand side of Equation (187), is a ratio of forces. The numerator rep-

resents the force the material exerts on the tip over the whole contact area. The

denominator represents the force of the effective AFM spring constant the length of

the tip curvature radius. In other words, we have the ratio of the force the surface

exerts on the tip to the force the tip exerts on the surface. Note, that all the terms

in this ratio are properties of the AFM and the material, as we expected.

Moving on to the dynamic portion of the system, we see that Equation (183)

becomes

q(t∗) =
B

2i

[(
1

1 + 2χ∗Ê(1)

)
ei(t

∗+φ) −
(

1

1 + 2χ∗Ê(−1)

)
e−i(t∗+φ)

]
. (188)

If Ê(1) and Ê(−1) are complex conjugates, which is the case for the viscoelastic

Kelvin-Voigt and Maxwell models, as well as the generalized viscoelastic polynomial

model, then we can write Equation (188) as

q(t∗) =
B

|1 + 2χ∗Ê(1)| sin(t
∗ + φ+ φ1), (189)

where

φ1 = arctan

⎛
⎝�

(
1

1+2χ∗Ê(1)

)
�
(

1

1+2χ∗Ê(1)

)
⎞
⎠ . (190)

Here, we see that the amplitude of the dimensionless, dynamic penetration depth,

q(t∗), is directly proportional to the dynamic forcing amplitude, B. We also see

that the amplitude depends on material properties and AFM properties through χ∗
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and Ê(1). Both of these observations make sense physically. We would expect the

dynamic penetration depth to be smaller in magnitude than the dynamic forcing

amplitude because the surface will resist the tip, causing the tip to not penetrate

to the full depth of the forcing amplitude. We would also expect that the material

properties and the AFM properties would help to determine the penetration depth.

We also see that the dynamic tip movement is sinusoidal as is the forcing but, the

material properties and the AFM properties add a phase shift. This is to be expected

as the system is not an instantaneous elastic system but, rather it’s a viscoelastic

system. We also observe that φ1 is a function of our forcing frequency, ω2, by means

of the viscoelastic modulus, Ê(1).

This chapter presented some background material on infinite and semi-infinite,

three-dimensional material models and dual integral equations. We then made ap-

propriate assumptions in order to reduce the system of equations that represents the

experiment. These assumptions eventually allowed us to solve the equations in the

transform domain. We then inverted the transformed equations to obtain the solution

to the system in an analytical form. Finally, we analyzed the system. In the next

chapter, we will present a new model that will allow us to bring together the system

model and the actual experimental setup. We will then compare the combined model

to experimental data.
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V. Application of Models to AFM Measurements

In order to compare the reduced three-dimensional model to the AFM experimen-

tal data, we will introduce a model called the “error model”. This model will allow

us to solve for the penetration depth of the AFM tip into a material using AFM

experimental data. This will allow us to directly equate the analytical system model

solution for the penetration depth to the error model solution for the penetration

depth. This will yield an analytical solution for the viscoelastic material parameters

in terms of AFM experimental data. We note that the analytical solution may have

wide applicability to other problems but, we will make application to a specific prob-

lem. In particular, we will present results from data collected for a polystyrene thin

film on a silicon substrate.

5.1 Error Model

Recall that the experiment we have been modeling is described in section 1.2. Let

the initial state of the system be with the AFM cantilever tip ‘just resting’ on the

sample surface, i.e., with no applied loading. Let the surface to air boundary be at

z = 0, with the positive z-direction in the inward normal direction to the surface. A

laser beam is reflected off the tip end of the cantilever and onto the AFM detector.

In the initial state, the AFM detector records a small voltage due to surface adhesion

and other small forces between the surface and the AFM tip. The AFM detector

actually measures the position of the top of the cantilever. However, assuming the

length of the tip of the cantilever remains constant throughout the experiment, the

voltage recorded at the AFM detector is the position of the tip relative to the original

surface, denoted z(t;ω2), where t is time and ω2 is a tapping frequency.

In the experiment, an initial DC voltage, Q̂DC , is applied to the piezo. Assuming
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the silicon base, which rests atop the piezo, is perfectly rigid and perfectly bonded

to the sample, the piezo movement is transferred into the sample. Further, the top

surface of the sample moves the exact same distance. This distance is determined via

Q̂DC

gp
through the calibration constant gp, which converts the voltage of the piezo into

a displacement. For the piezo used in this experiment, gp =
24

5368
volts per nanometer.

The AFM bends against and slightly penetrates the surface but, because of the vis-

coelasticity of the surface, there is some creep after the initial voltage displacement.

After some time, the AFM tip and the surface reach “near” equilibrium, i.e., steady

state with a small drift. When this equilibrium position is measured at the AFM

detector, we call this the set point voltage, or preload voltage, L̂.

A manual gain is set at the AFM detector called the modulation voltage bias, γ̂.

This tells the closed-loop, computer controlled feedback system within what range of

the preload voltage to achieve, when measured at the AFM detector. After equilib-

rium is reached, an initial sinusoidal voltage is applied to the piezo at a frequency of

ω2. The closed-loop, computer controlled feedback system determines an amplitude

of forcing and a phase shift that modifies the initial modulation in order to maintain

the set point voltage to within the modulation voltage bias. The modulation volt-

age bias is established as the reference phase. The first lock-in-amplifier records the

AC error voltage amplitude, P̂ (ω2), and phase, θp(ω2), which are the differences in

voltage amplitudes and phases between the modulation voltage bias and the voltage

measured at the AFM detector. This represents the error signal between the can-

tilever tip location, as driven by the computer controller, and the actual tip position.

This error signal is attributable to properties of the surface and the piezo system.

In addition to the calibration constant gp, which converts piezo voltages into dis-

placements, there is another calibration constant ga, which converts the voltages of the

error signal and modulation voltage to cantilever displacements. For the experiment
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being examined ga =
1
84

volts per nanometer.

The DC part of the error displacement, P̂DC

ga
, is the difference between the set

point displacement, L̂
ga
, and the static AFM, z(t; 0), i.e.,

P̂DC

ga
=

L̂

ga
− z(t; 0). (191)

At equilibrium, P̂DC = 0, so it follows that z(t; 0) = L̂
ga
.

The entire experimental system is nonlinear, which means the total response of

the system has multiple natural modes of oscillation, i.e., the tapping frequency is

the sole forcing function whereas the resultant system response occurs at multiple

frequencies, including the tapping frequency. For the experiment, the response of the

error and the computer controlled feedback is measured by means of a LIA only at

the forced oscillation frequency, ω2. Thus, the error of the system can be represented

by

P̂DC

ga
+

P̂ (ω2)

ga
sin (ω2t+ θp(ω2)) =

L̂

ga
+

γ̂

ga
sin (ω2t)− z(t;ω2). (192)

The left hand side of Equation (192) represents the error, while the first two terms

on the right hand side represent the piezo movement. Finally, z(t;ω2) is the AFM

movement relative to the original surface position.

Solving Equation (192) for the position of the cantilever tip produces

z(t) =
L̂

ga
+

Ĉ

ga
sin (ω2t+ θC) , (193)

where

Ĉ =
[
γ̂2 + P̂ 2 − 2γ̂P̂ cos (θp)

]1/2
, (194)

and

θC = arctan

(
−P̂ sin(θp)

γ̂ − P̂ cos(θp)

)
. (195)
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Note, we have suppressed the ω2 dependence on the appropriate variables, and taken

advantage of the fact that P̂DC = 0. The term Ĉ represents the voltage amplitude of

the AFM tip position, and θC represents the phase shift of the AFM tip in reference

to the driving signal. Both terms can be calculated from experimental data.

In order to relate the reduced three-dimensional model from Chapter IV, to the

error model, it is necessary to relate the AFM tip movement to the penetration depth.

To this end, let z(t) = z0 + z1(t) be the AFM tip displacement, and y(t) = y0 + y1(t)

be the penetration depth, then z0 and y0 represent the static tip location and the

penetration depth of the cantilever tip based solely on the preload voltage, respec-

tively. Further, z1(t) and y1(t) represent the dynamic portion of the cantilever tip

movement and the dynamic penetration depth based on the modulation signal, re-

spectively. When the system reaches dynamic equilibrium, the surface of the material

in contact with the AFM has moved in the negative z-direction, a distance Q̂DC

gp
. So,

the static penetration depth of the AFM tip is

y0 =
Q̂DC

gp
− z0 =

Q̂DC

gp
− L̂

ga
. (196)

Here, y0 represents the positive, static, penetration depth of the AFM tip into the

sample surface.

After static equilibrium is reached, the initial modulation and the computer feed-

back voltages are applied to the piezo. The second lock-in-amplifier measures this

combined piezo forcing. Specifically, the LIA measures the piezo amplitude voltage,

Q̂(ω2), and piezo phase shift, θQ(ω2). Since the piezo is a crystal, there is a time

delay associated with contraction or expansion due to an applied voltage. This delay

in contraction or expansion is called the piezo delay time, τp(ω2), and it is a func-

tion of the forcing frequency. Because of the assumed perfectly rigid silicon base,

and perfect bonding to the sample, all the piezo movement is transferred into surface
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movement. This surface movement doesn’t occur until after the piezo delay time.

Thus, the dynamic AFM tip position is not affected until after the piezo delay time.

This leads to the equation for the dynamic penetration depth as

y1(t) =
Q̂

gp
sin (ω2(t− τp) + θQ)− z1(t)

=
Q̂

gp
sin (ω2(t− τp) + θQ)− Ĉ

ga
sin (ω2t+ θC) . (197)

Here, y1(t) is the oscillation of the tip penetration depth around the static tip pene-

tration depth, y0.

Recalling from Section 3.3 that y(t) = c0a(q0 + q(t∗)), Equations (196) and (197)

can be written as dimensionless equations. This leads to the cantilever movement

based on the error model as

q0 = QDC − L, (198)

from Equation (196), and

q(t∗) = Q sin
(
t∗ − τ ∗p + θQ

)− C sin (t∗ + θC) , (199)

from Equation (197). Here, QDC = Q̂DC

gpc0a
, L = L̂

gac0a
, Q = Q̂

gpc0a
, C = Ĉ

gac0a
, t∗ = ω2t, and

τ ∗p = ω2τp. The terms QDC and L are the dimensionless static distances generated

by the piezo and the preload, respectively. The terms Q and C are the dimensionless

dynamic displacement amplitudes generated by the piezo and the AFM movement,

respectively. Finally, t∗ is dimensionless time, and τ ∗p is the dimensionless piezo delay

time.
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5.2 Equating the Models

Now, the dimensionless penetration depth from the reduced three-dimensional

model, and the dimensionless penetration depth from the error model, can be equated.

Before doing so, we must first define B0, B, and φ, as in Equation (67), in terms of

the error model parameters. Recalling Equation (67), we see that B0 represents the

dimensionless static loading that occurs at the AFM, B represents the dimensionless

dynamic amplitude that occurs at the AFM, and φ represents the phase shift at the

AFM, as compared to the reference phase. Since, QDC represents the dimensionless

displacement due to static loading at the piezo, and the substrate is assumed perfectly

bonded to a perfectly rigid silicon base, the movement at the top (z = 0) of the

material surface is QDC . So, the dimensionless static forcing is B0 = QDC . By the

same argument, the dimensionless dynamic amplitude of the system is B = Q. When

a voltage is applied to the piezo crystal, movement at the top surface of the sample

is delayed by the piezo delay time, τp. In addition, the voltage applied to the piezo is

phase shifted from the reference signal by θQ. Thus, the phase shift is φ = θQ − τ ∗p .

The static portion of the reduced three-dimensional model, Equation (186), is now

written as

QDC =
c0a
R

+
4c0a

2
E∗

0

3Rk
. (200)

Substituting Equation (200) into Equation (198), and using the fact that q0 =
c0a
R
, we

can solve for the dimensionless preload as

L =
4c0a

2
E∗

0

3Rk
=

4

3
q0χ

∗. (201)

Equation (201) says that the dimensionless preload, L, is equal to a constant times

the ratio of the force the surface exerts on the tip, c0a
2
E∗

0 , to the force the tip exerts

on the surface, Rk. Using Equations (198) and (201), we can solve for the unknown,
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χ∗, producing

χ∗ =
3

4

[
L

QDC − L

]
=

3

4

[
L̂

ga
gp
Q̂DC − L̂

]
. (202)

Equation (202) allows for the calculation of χ∗ based on experimental data. This

constant, χ∗, is independent of frequency and is strictly a positive, real number.

Additionally, using q0 =
c0a
R
, we can solve Equation (198) for c0a to obtain

c0a =

[
R

(
Q̂DC

gp
− L̂

ga

)]1/2

. (203)

Using Equations (202) and (203), and solving for E∗
0 based on the experimental data

results in

E∗
0 =

3kL̂

4

[ga
R

]1/2 [ga
gp
Q̂DC − L̂

]−3/2

. (204)

The dynamic portion of the reduced three-dimensional model, Equation (189), is

now written as

q(t∗) =
Q

|1 + 2χ∗Ê(1)| sin(t
∗ + θQ − τ ∗p + φ1). (205)

Substituting Equation (205) into Equation (199) yields

Q

|1 + 2χ∗Ê(1)| sin(t
∗ + θQ − τ ∗p + φ1) = Q sin

(
t∗ + θQ − τ ∗p

)− C sin (t∗ + θC) . (206)

Here, the left hand side of Equation (206) represents the dynamic portion of the

penetration depth from the reduced three-dimensional model, and the right hand

side represents the dynamic portion of the penetration depth from the error model.

For convenience, let x = t∗ + θQ − τ ∗p , and combine the sine terms on the right hand

side of Equation (206), to obtain

Q

|1 + 2χ∗Ê(1)| sin(x+ φ1) = D sin (x+ φ2) , (207)
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where

D =
[
Q2 + C2 − 2CQ cos

(
θC − θQ + τ ∗p

)]1/2
, (208)

and

φ2 = arctan

( −C sin(θC − θQ + τ ∗p )

Q− C cos(θC − θQ + τ ∗p )

)
. (209)

For equality to hold in Equation (207), the amplitudes and the phases must match.

This leads to

Q

|1 + 2χ∗Ê(1)| = D, (210)

and

φ1 = arctan

⎛
⎝�

(
1

1+2χ∗Ê(1)

)
�
(

1

1+2χ∗Ê(1)

)
⎞
⎠ = arctan

( −C sin(θC − θQ + τ ∗p )

Q− C cos(θC − θQ + τ ∗p )

)
= φ2. (211)

From Equation (211) we get

�
(

1

1+2χ∗Ê(1)

)
�
(

1

1+2χ∗Ê(1)

) =
−C sin(θC − θQ + τ ∗p )

Q− C cos(θC − θQ + τ ∗p )
. (212)

Equations (202), (210), and (212) represent the analytical solution to the experimental

system. The remaining unknowns to be solved for are the model parameters from

whichever viscoelastic model we choose to represent the sample surface.

5.3 Analysis of the Experimental Model

Now that we have the solution to the experimental system, Equations (202), (210),

and (212), we can proceed to analyze the model and solve for the unknown viscoelastic

material parameters. First, observe from Equation (202), we have the solution for χ∗

in terms of the experimental data, L̂ and Q̂DC . Next, we analyze Equations (210) and

(212), by letting the term 1 + 2χ∗Ê(1) = a+ bi, a complex number. Note, that both
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a and b can be frequency dependent, and a = 1 + 2χ∗�(Ê(1)) and b = 2χ∗�(Ê(1)).

Thus, we can write Equation (212) as

−b

a
=

−C sin(θx)

Q− C cos(θx)
, (213)

where we have let θx = θC − θQ + τ ∗p . Solving this equation for b in terms of a yields

b = a
C sin(θx)

Q− C cos(θx)
. (214)

Turning our attention to Equation (210), produces

(
Q

D

)2

= a2 + b2. (215)

Substituting Equation (214) into Equation (215) we obtain

(
Q

D

)2

= a2

[
1 +

(
C sin(θx)

Q− C cos(θx)

)2
]
= a2

[
D

Q− C cos(θx)

]2
. (216)

Solving Equation (216) for a yields

a =
Q (Q− C cos(θx))

D2
. (217)

Equation (217) is related to the real part of the viscoelastic model in terms of ex-

perimental data. We may now substitute Equation (217) into Equation (214) to

obtain

b =
CQ sin(θx)

D2
. (218)

Equation (218) is related to the imaginary part of the viscoelastic model in terms of

experimental data.

Up until this point, no specific material model has been imposed, i.e., λ̂(ω) and
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μ̂(ω) were related through Poisson’s ratio to Ê(ω). This relationship is stated in

Equations (175) and (176). From the discussion in Section 3.1, Ê(ω) can take on

many forms, which depend on the behavior of the material. In order to obtain

meaningful information from Equations (217) and (218), we will choose to repre-

sent the viscoelastic model as a general polynomial model as in Equation (52). Thus,

let Ê(ω) = p(ωω2) + iq(ωω2). Therefore, Ê(1) = p(ω2) + iq(ω2). We note that

Ê(0) = p(0) + iq(0). Recall from Section 4.12 that we require Ê(0) = 1, which leads

to p(0) = 1 and q(0) = 0. Therefore, equating a and b to the general viscoelastic

model gives

a = 1 + 2χ∗p(ω2), (219)

and

b = 2χ∗q(ω2). (220)

Using Equations (217) and (219) we can solve for p(ω2) to obtain

p(ω2) =
CQ cos(θx)− C2

2χ∗D2
. (221)

In addition, using Equation (218) and (220), we can solve for q(ω2) to obtain

q(ω2) =
CQ sin(θx)

2χ∗D2
. (222)

Equations (221) and (222) represent the solution to the viscoelastic model parameters

in terms of experimental data. Keep in mind that we require p(0) = 1 and q(0) = 0.

We will address these issues in the following section but, before we do so, we must

first discuss the experimental data.
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5.4 Further Analysis and Comparison to the Experimental Data

Now that we have the solution of the model parameters related to the experimental

data, Equations (202), (221), and (222), we can use the experimental data to generate

useful information about the nanoscale surface material properties. We shall analyze

the model and the experiment in two pieces. These are the static piece, and the

dynamic piece.

5.4.1 Static Piece.

First, we shall concentrate on χ∗, which comes from the static portion of the

experimental data. In the experiment, QDC was not measured so, we will have to

assume that we know one of the model parameters. In this case, the material in the

experiment is polystyrene. Polystyrene has a published value for the Young’s modulus

of about 3 GPa, and a Poisson’s ratio of about 1
3
. Thus, the plane strain Young’s

modulus for polystyrene is E∗
0 = 3.375 GPa.

Under the assumption that E∗
0 is known, we will use Equation (201) to solve for

the unknown parameter, c0a, to obtain

c0a =

[
3RkL̂

4gaE∗
0

] 1
3

, (223)

where we have used the fact that L = L̂
gac0a

. Next, substitute Equation (223) into

χ∗ = c0aE
∗
0

k
to obtain

χ∗ =

[
3RL̂

4ga

] 1
3 [

E∗
0

k

] 2
3

. (224)

This allows us to estimate χ∗ given the surface’s plane strain Young’s modulus, E∗
0 .

Knowing the effective cantilever stiffness for the experiment, k = 0.06 N/m, the

tip curvature radius, R = 30 nm, and the preload voltage, L̂ = 0.25 V, we can use
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Table 2. χ∗ at various preloads.

L̂ χ∗

0.25 V 114.34
0.5 V 144.07
1.0 V 181.51
2.0 V 228.69
3.0 V 261.78

Equation (224) to estimate χ∗ = 114.34. In the experiment, various preloads that

range in value from .25 V to 5.4 V were used. Table 2 lists several estimated values

of χ∗.

We see from Table 2 and from Equation (224) that as the preload is increased,

χ∗ also increases. Since the effective cantilever spring constant and the plane strain

Young’s modulus of the material remain constant, c0a is directly proportional to χ∗

through c0a = χ∗ k
E∗

0
. Thus, as we increase our preload voltage, the average contact

area radius must increase. This is precisely what we would expect to happen when

we apply a greater DC loading.

5.4.2 Dynamic Piece.

Now that we have estimated the values of χ∗ for various preload voltages, we can

move on to looking at the viscoelastic material model parameters. First, we must

examine the data taken from the experiment. This data is represented in terms of

the error amplitude, P̂ , and phase, θp, as well as the piezo signal amplitude, Q̂, and

phase, θQ. Three sets of data were collected. Each set of data corresponds to a

different thickness of the polystyrene surface. The surfaces were 30 nm, 70 nm, and

220 nm thick. All of the following results remain consistent over any of the surface

thicknesses. For this reason, we will only present our results for the 220 nm thick

substrate.
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Figure 7. The top plot is the modulation frequency in Hertz ver-
sus the amplitude in Volts of the piezo drive signal. The bottom
plot is the modulation frequency in Hertz versus the phase in de-
grees of the piezo drive signal. The experimental data was taken
with a preload of 0.25 V on a 220 nm thick polystyrene surface.

The data was collected by setting the AFM tip on the surface, and applying a DC

voltage. Since we are dealing with a viscoelastic surface, there is an initial creep before

‘near’ equilibrium is reached. During the viscoelastic creep, five to six data points

are collected. A data point is a measure of amplitude in volts, or phase in degrees.

After equilibrium is reached, the sinusoidal modulation voltage bias, γ̂ = 0.05 V, is

applied at a frequency of 1000 Hz. The system is allowed to reach steady state, then

another data point is collected. After which, the frequency is lowered and the process

is repeated. This is done in a sweep from 1000 Hz to 1 Hz in 801 equal increments.

After the last data point is recorded, a new preload is applied, and the frequency

sweep is repeated. This is done for 10 to 15 preloads, which range from 0.25 V to 5.4

V.

So, we must first eliminate the first five to six data points from our data set
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Figure 8. The top plot is the modulation frequency in Hertz
versus the amplitude in Volts of the error signal. The bottom
plot is the modulation frequency in Hertz versus the phase in
degrees of the error signal. The experimental data was taken
with a preload of 0.25 V on a 220 nm thick polystyrene surface.

because this is when the viscoelastic creep is occurring. After that, the data set is

divided into individual frequency sweeps. This yields a set of data for each preload.

Examples of the data for a 220 nm thick polystyrene layer with a preload of 0.25 V

are given in Figures 7 and 8.

Examining the amplitude and phase of the piezo drive signal in Figure 7, we see

that as the driving frequency increases, there is a slight initial increase in amplitude.

This is followed by an almost linear decrease in amplitude starting from about 200

Hz. The quick drop offs at near zero frequency and at near 1000 Hz are the result

of the changeover between the differing frequency data sweeps. The phase of the

piezo is seen to steadily increase as the tapping frequency is increased. The small

jump in phase at around 950 Hz is an as yet unexplained anomaly. Turning to the

error data in Figure 8, we see that at near zero frequency, there is almost no error in
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Figure 9. These plots are calculated results from our model.
The top plot is the modulation frequency in Hertz versus the
amplitude in Volts of the AFM tip position. The bottom plot is
the modulation frequency in Hertz versus the phase in radians of
the AFM tip position.

the amplitude. This means that at low frequency, the AFM has the same amplitude

as the driving amplitude. As the frequency is increased, there is a steady increase

in the error amplitude. The phase near zero frequency is about 90 degrees. As the

driving frequency is increased, the phase steadily decreases. Again, we note the as

yet unexplained anomalous jump around 950 Hz.

Now, we are going to calculate the dynamic cantilever tip position amplitude,

Ĉ, from Equation (194). We will also calculate the phase, θC , of the cantilever tip

position from Equation (195). Plots of the tip position amplitude and phase are

shown in Figure 9.

From Figure 9 we can see that as we approach zero frequency, the AFM tip moves

at the driving amplitude and phase. Exactly as we would expect since, the material

response time will be faster than the driving frequency. This means that the surface
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Ĉ

L̂ = 0.25 V

L̂ = 1.0 V

L̂ = 2.0 V

L̂ = 3.0 V

Figure 10. This plot is calculated results from our model. This
plot is the modulation frequency in Hertz versus the amplitude
in Volts of the AFM tip position for various preload voltages.

responds fast enough, and the cantilever moves in phase and at the same amplitude

as our modulation voltage. As the frequency increases, we see the viscoelasticity of

the surface lowers the amplitude of the tip movement. We also see the phase shift

increases in magnitude as we increase in frequency.

We will now present more results for the calculated AFM tip position amplitude,

Ĉ, and its phase, θC , based on the data for various preloads at 220nm. The calculated

AFM tip position amplitude for various preloads is shown in Figure 10. At lower

frequencies, the cantilever tip position is larger when there is a higher preload. As we

increase in frequency, the AFM tip position amplitude begins to decrease regardless

of the preload. Also, the slope of the amplitude curve is greater for higher preloads.

Looking at the phase from the cantilever tip movement, in Figure 11, we see that

at low driving frequencies the AFM tip is in phase with the surface. As the driving

frequency is increased, the phase shift decreases. The larger the preload voltage, the
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Figure 11. This plot is the modulation frequency in Hertz versus
the phase in radians of the AFM tip position for various preload
voltages.

greater the rate of decrease in the phase shift. At just over 600 Hz for a 3 volt preload,

we see a jump in the phase and the amplitude of the tip position. This is because the

tip has such a high preload and is 180 degrees out of phase with the driving voltage.

We believe the tip actually left the surface, which is why there is a jump in both the

amplitude and phase. Observe that the unexplained anomalous phase jump around

950 Hz presents itself in the AFM phase data as well.

Next, we examine the viscoelastic model parameters. Since the piezo delay time

was not measured, we can only analyze the viscoelastic parameters from a purely

mathematical standpoint. First, recall that we need to satisfy p(0) = 1 and q(0) = 0

in the viscoelastic model, Equations (221) and (222). Note from Figures 7 and 9 that

both the piezo amplitude, Q̂, and AFM amplitude, Ĉ, are continuous with respect to

frequency. Also, approaching zero tapping frequency Ĉ, Q̂ > 0. Therefore, as long as

D(0) �= 0, then Equation (222) requires θx(0) = 0 in order to satisfy q(0) = 0.

85



To demonstrate that D(0) �= 0, suppose not. For D2(0) = 0, using Equation (208)

requires cos(θx(0)) =
Q2(0)+C2(0)
2C(0)Q(0)

. Thus,

sin(θx(0)) =

[
1−

(
Q2(0) + C2(0)

2C(0)Q(0)

)2
]1/2

= i
Q2(0)− C2(0)

2C(0)Q(0)
. (225)

Since both C(0) and Q(0) are real, then Equation (225) can only be satisfied if θx(0)

is complex. However, θx = θC − θQ + τ ∗p is a real number. Therefore, D2(0) �= 0.

Now, using the requirements that p(0) = 1 and θx(0) = 0, along with Equa-

tion (221) we obtain

χ∗ =
C(0)

2(Q(0)− C(0))
. (226)

This allows us to estimate χ∗ without having to know QDC as was necessary in

Equation (202). The only requirement is that τ ∗p approaches θQ−θC near zero tapping

frequency. Since the viscoelastic material has a faster wave speed than the driving

frequency near zero (see Figure 9 and the argument given earlier in this section), then

we also have a way of estimating the piezo delay time near zero tapping frequency.

Although the preceding analysis means that the mathematical model is consistent

with the experiment, without the actual measurements of the DC piezo loading, Q̂DC ,

and the piezo delay time, τp, we cannot truly give any more material properties. Since

τp is a function of the driving frequency, then knowing an estimate of the delay time

near zero frequency will not help to calculate the frequency dependent, viscoelastic

material properties. In addition, the variability in how the data is collected makes it

very difficult, and possibly inaccurate, to estimate χ∗ based on Equation (226). That

being said, an estimate was attempted using a linear fit, and for a preload of 0.25 V,

χ∗ ≈ 50. Using Equation (224) this means that E∗
0 ≈ 1 GPa, which is of the same

order of magnitude as our estimate based on published values.

In summary, this chapter sets up an error model that allows us to calculate the
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penetration depth of the AFM tip into the material based on the experimental data.

We then equated this solution to our analytical solution for the penetration depth

from the last chapter. This allowed the production of an analytical solution of the

viscoelastic material parameters in terms of experimental data. We then presented

our calculated data and made observations based on our results. The next chapter

will present our conclusions and other possible future extensions and applications of

this analytical AFM model.
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VI. Conclusions

Modeling the AFM dynamic nanoindentation experiment that was described in

Section 1.2 provides us with a wealth of information. The model of the experimental

setup was divided into two models that are coupled by boundary conditions. The two

models created were an AFM model and a material model.

For the AFM model, we initially assume we can model the AFM probe as a

cantilevered beam. This leads us to a one-dimensional spring-mass representation of

the AFM. The forcing functions used in the spring-mass system are a static force, a

sinusoidal force, and the force generated by the surface stresses over the area of the

AFM tip. The surface stress forces are used to couple the AFM model to the surface.

The static and sinusoidal forces are generic and in the analytical model solution

they represent the piezo forcing of the system. It should be noted that AFM’s and

nanoindentation systems can both be modeled as spring-mass systems, and with very

little modification, the analytical model produced from this research can be modified

to incorporate either system. This shows the possibility of broad application of our

analytical model.

The material model is based on viscoelastic material behavior. The model assumes

an axisymmetric indenter which indents a semi-infinite half-space. The indentation

is assumed to be a static displacement superposed with a much smaller dynamic

displacement. Specific boundary conditions are chosen to represent an AFM dynamic

nanoindentation experiment which, as it turns out, are the same conditions as a (non-

AFM) nanoindentation experiment. The analytical solution of the material model for

the penetration depth of the indenter contains a static and a dynamic piece. The static

piece corresponds directly to the viscoelastic extension of Sneddon’s solution [52,

84], which lends us to believe the dynamic piece is correct. Current solutions only

modify the viscoelastic extension of Sneddon’s solution in light of small dynamic
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displacements. This violates certain assumptions in the problems formulation, and is

mathematically incorrect.

The coupled AFM and material models are then analytically solved for the pen-

etration depth of the AFM tip into a viscoelastic surface. The viscoelastic model is

assumed to be represented by a polynomial in frequency, and can be chosen after the

experimental data is analyzed. Current solutions assume a viscoelastic model before-

hand, and are then pigeonholed by the formulation of the model. It should be noted

that the solution for the penetration depth is under the assumption of forcing at

low frequencies. The solution can easily be modified to incorporate forcing at higher

frequencies.

A third model we called the error model was then created to relate the raw exper-

imental data to the penetration depth of the AFM tip. The analytical solution for

the penetration depth of the coupled AFM and material model was then equated to

the error model solution. This allowed us to produce a simple analytical model that

relates raw experimental data to viscoelastic material parameters. The manipulated

data can then be fit with a polynomial model, and the coefficients of the fit can be

interpreted.

As an illustration, viscoelastic properties for a polystyrene thin film on a silicon

substrate are calculated and presented using the analytical solution. Because of lack of

experimental measurements, not all calculations were possible. It is our assertion that

given all the necessary experimental data, our simple analytical model will provide

viscoelastic properties of near-surface materials from AFM dynamic nanoindentation

experiments. The novelty of our analytical model is that it admits different stress-

strain materials descriptions than current models.

In addition to the extensions in applications of this model to broader experiments,

as described above, the model may be extended in other ways. Possible extensions
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include the incorporation of adhesion to the material model, though this will likely

produce integrals with only numerical solutions. Other possibilities include the cal-

culation of the next, smaller term in the linear approximation of the material model.

The next term will contain convolutions of functions and in light of the currently

modeled experiment was considered negligibly small.

This research in nanoscale viscoelastic material properties allows for the advance-

ment of study in nanomaterials and has applications in many areas. Of particular

interest to the United States Air Force and the Department of Defense are, high-

altitude long-endurance ISR airships, prompt theater-range ISR/strike systems, direct

forward air delivery and resupply, energy-efficient partially buoyant cargo airlifters,

fuel-efficient hybrid wing-body aircraft, and hyperprecision low-collateral damage mu-

nitions [17]. This research will help further all fields that are associated with nanome-

chanical properties.
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Appendix A. Cylindrical Coordinates

Figure 12. The cylindrical coordinate system.

The cylindrical coordinate system is a generalization of polar coordinates to three

dimensions. The representation of a point in cylindrical coordinates is (r, θ, z), as

can be seen in Figure 12. Simple formulas exist to convert from the rectangular

coordinates (x, y, z) to the cylindrical coordinates (r, θ, z). These formulas are

r =
√

x2 + y2, (227)

θ = arctan
(y
x

)
, (228)

and

z = z, (229)

where r ∈ [0,∞), θ ∈ [0, 2π), and z ∈ (−∞,∞). The inverse tangent function must

be defined in order to take the correct quadrant of (x, y) into account.
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In order to convert from the cylindrical coordinates (r, θ, z) to the rectangular

coordinates (x, y, z), we use the formulas

x = r cos (θ) , (230)

y = r sin (θ) , (231)

and

z = z. (232)

The unit vectors in cylindrical coordinates are r̂, θ̂, and ẑ. They define the direc-

tions of the coordinate terms, and can be seen in Figure 12. We define the gradient

as

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

∂

∂z
. (233)

The divergence is defined as

∇ · �u =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z
. (234)

The curl is defined by

∇× �u =

(
1

r

∂uz

∂θ
− ∂uθ

∂z

)
r̂ +

(
∂ur

∂z
− ∂uz

∂r

)
θ̂ +

1

r

(
∂

∂r
(ruθ)− ∂ur

∂θ

)
ẑ. (235)
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Appendix B. Dual Integral Equations

This appendix shows a brief overview, without derivation, of the results of Man-

dal [60]. For a complete derivation, please refer to that paper.

The general form of dual integral equations involving Bessel functions of the first

kind is

∫ ∞

0

β−2α∗
Jν(ρβ) [1 + w(β)] Φ(β)dβ = f(ρ), 0 < ρ < 1,∫ ∞

0

β−2β∗
Jμ(ρβ)Φ(β)dβ = g(ρ), ρ > 1, (236)

where α∗ and β∗ are known constants, ν and μ are the known orders of the Bessel

functions, w(β) is an arbitrary weight function, f(ρ) and g(ρ) are known functions

valid over their particular region, and Φ(β) is the unknown function to be determined.

Through the use of Sonine’s integrals and Hankel inversion, Mandal reduced Equa-

tion (236) to a Fredholm integral equation of the second kind. This equation in Φ(ρ)

is

Φ(ρ) = ργ−s+1

[∫ 1

0

rF1(r)Jλ+s(rρ)dr +

∫ ∞

1

rG1(r)Jλ+s(rρ)dr

−
∫ ∞

0

u−γ+sw(u)Φ(u)
uJλ+s+1(u)Jλ+s(ρ)− ρJλ+s+1(ρ)Jλ+s(u)

u2 − ρ2
du

]
, (237)

where λ and γ are defined by

λ =
μ+ ν

2
+ β∗ − α∗, (238a)

γ =
μ− ν

2
+ β∗ + α∗, (238b)

and s is a nonnegative integer we choose so that λ + s > −1. F1(r) and G1(r) are
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functions that are defined by

F1(r) = (−1)srλ+s

(
1

r

d

dr

)s [
r−λF (r)

]
, (239a)

G1(r) = (−1)srλ+s

(
1

r

d

dr

)s [
r−λG(r)

]
. (239b)

Here, the functions F (r) and G(r) are defined as

F (r) =
2−ξ

Γ(ξ + 1)
r−ξ−ν−1+�

(
1

r

d

dr

)� ∫ r

0

ρν+1
(
r2 − ρ2

)ξ
f(ρ)dρ, (240a)

G(r) =
(−1)m2−η

Γ(η + 1)
rμ−η−1+m

(
1

r

d

dr

)m ∫ ∞

r

ρ−μ+1
(
ρ2 − r2

)η
g(ρ)dρ, (240b)

where Γ(z) is the Gamma function and

ξ =
μ− ν

2
+ β∗ − α∗ − 1 + �, (241a)

η =
μ− ν

2
+ α∗ − β∗ − 1 +m. (241b)

The terms � and m are nonnegative integers that we choose so that ξ > −1 and

η > −1. The requirements that certain terms are greater than −1 are because of the

Hankel inversions used to solve Equation (236).
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Appendix C. Integral Equation Neumann Series [41]

An integral equation Neumann Series is used to solve Fredholm integral equations

of the second kind. A Fredholm integral equation of the second kind takes the form

φ(x) = f(x) + λ

∫ b

a

K(x, t)φ(t)dt, (242)

where a, b ∈ R and λ ∈ R− {0}. Define the operator K by

Kφ(x) =

∫ b

a

K(x, t)φ(t)dt. (243)

Therefore, we can write Equation (242) as

Tφ = φ, (244)

where

Tφ = f + λKφ. (245)

If f is in a Hilbert space H, and K is a bounded linear operator with the property

‖Kφ1 −Kφ2‖ ≤ M‖φ1 − φ2‖, (246)

then Equation (244) has a unique solution for all f provided that |λ|M < 1. In

addition, if f is in L2[a, b], then

φ(x) = lim
n→∞

T nf0(x), (247)

where f0(x) ∈ L2[a, b] is an arbitrary initial function. So,

Tf0 = f + λKf0, (248)
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T 2f0 = T [f + λKf0] = f + λKf + λ2K2f0, (249)

and

T nf0 = f + λKf + λ2K2f + · · ·+ λn−1Kn−1f + λnKnf0. (250)

Therefore,

φ = f + λKf + λ2K2f + · · ·+ λnKnf + · · · . (251)

We define the integral operator Kn as

Knf(x) =

∫ b

a

Kn(x, y)f(y)dy, (252)

where Kn(x, y) is defined recursively by

Kn(x, y) =

∫ b

a

K(x, z)Kn−1(z, y)dz, n = 2, 3, . . . , (253)

and

K1(x, y) = K(x, y). (254)
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Appendix D. Some Integrals

This appendix includes some important integrals and their derivations.

∫ ∞

0

[j0(u+ β) + j0(u− β)] j0(u)du = πj0(β). (255)

∫ ∞

0

[j0(u+ β) + j0(u− β)] j2(u)du = πj2(β). (256)

∫ ∞

0

βJ0(βρ)j0(β)dβ =

⎧⎪⎨
⎪⎩

(1− ρ2)
− 1

2 , 0 < ρ < 1,

0, 1 < ρ.
(257)

∫ ∞

0

βJ0(βρ)j2(β)dβ =

⎧⎪⎨
⎪⎩

(1− ρ2)
− 1

2 (2− 3ρ2) , 0 < ρ < 1,

0, 1 < ρ.
(258)

∫ ∞

0

J1(β)j0(β)dβ = 1. (259)

∫ ∞

0

J1(β)j2(β)dβ = 0. (260)

The derivation for Equation (255) is as follows

∫ ∞

0

[j0(u+ β) + j0(u− β)] j0(u)du

=

∫ ∞

0

[
sin(u+ β)

u+ β
+

sin(u− β)

u− β

]
sin(u)

u
du

=

∫ ∞

0

[
sin(u) cos(β) + sin(β) cos(u)

u+ β
+

sin(u) cos(β)− sin(β) cos(u)

u− β

]
sin(u)

u
du

= 2

∫ ∞

0

[
u sin(u) cos(β)− β sin(β) cos(u)

u2 − β2

]
sin(u)

u
du

= 2 cos(β)

∫ ∞

0

sin2(u)

u2 − β2
du− 2β sin(β)

∫ ∞

0

sin(u) cos(u)

u(u2 − β2)
du

= 2 cos(β)

∫ ∞

0

sin2(u)

u2 − β2
du− β sin(β)

∫ ∞

0

sin(2u)

u(u2 − β2)
du

(261)
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Now, from Gradshteyn and Ryzhik [27] page 432 we have

∫ ∞

0

sin2(u)

u2 − β2
du =

π

4β
sin(2β) =

π

2β
sin(β) cos(β), (262)

and from page 425 we have

∫ ∞

0

sin(2u)

u(u2 − β2)
du =

−π

2β2
[1− cos(2β)] =

−π

β2
sin2(β). (263)

So,

∫ ∞

0

[j0(u+ β) + j0(u− β)] j0(u)du

=
π

β
sin(β) cos2(β) +

π

β
sin3(β)

=
π

β
sin(β)

[
cos2(β) + sin2(β)

]
= π

sin(β)

β
= πj0(β).

(264)

The derivation for Equation (256) is as follows

∫ ∞

0

[j0(u+ β) + j0(u− β)] j2(u)du

= 2

∫ ∞

0

[
u sin(u) cos(β)− β sin(β) cos(u)

u2 − β2

] [
3
sin(u)

u3
− 3

cos(u)

u2
− sin(u)

u

]
du

= 6 cos(β)

[∫ ∞

0

sin2(u)

u2 (u2 − β2)
du−

∫ ∞

0

sin(u) cos(u)

u (u2 − β2)
du

]

+ 6β sin(β)

[∫ ∞

0

− sin(u) cos(u)

u3 (u2 − β2)
du+

∫ ∞

0

cos2(u)

u2 (u2 − β2)
du

]
− πj0(β).

(265)

Now, using partial fraction decomposition, we may write

∫ ∞

0

sin2(u)

u2 (u2 − β2)
du =

∫ ∞

0

− sin2(u)

β2u2
du+

∫ ∞

0

sin2(u)

β2 (u2 − β2)
du. (266)
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From Gradshteyn and Ryzhik [27] page 431 we have

∫ ∞

0

− sin2(u)

β2u2
du =

−π

2β2
, (267)

and from page 432 we have

∫ ∞

0

sin2(u)

β2 (u2 − β2)
du =

π

4β3
sin(2β). (268)

Now, we may write

−
∫ ∞

0

sin(u) cos(u)

u (u2 − β2)
du =

∫ ∞

0

sin(2u)

2u (β2 − u2)
du =

π

4β2
(1− cos(2β)) , (269)

where we have used Gradshteyn and Ryzhik [27] page 425. So,

∫ ∞

0

sin2(u)

u2 (u2 − β2)
du−

∫ ∞

0

sin(u) cos(u)

u (u2 − β2)
du

= − π

4β2
[1 + cos(2β)] +

π

4β3
sin(2β)

= − π

2β2

[
cos2(β)

]
+

π

2β3
sin(β) cos(β).

(270)

Now, by partial fraction decomposition we have

∫ ∞

0

− sin(u) cos(u)

u3 (u2 − β2)
du

=

∫ ∞

0

sin(u) cos(u)

β2u3
du+

∫ ∞

0

sin(u) cos(u)

β4u
du−

∫ ∞

0

u sin(u) cos(u)

β4 (u2 − β2)
du. (271)

Now, from Gradshteyn and Ryzhik [27] page 431 we have

∫ ∞

0

sin(u) cos(u)

β4u
du =

π

4β4
, (272)
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and from page 424 we have

−
∫ ∞

0

u sin(u) cos(u)

β4 (u2 − β2)
du =

∫ ∞

0

u sin(2u)

2β4 (β2 − u2)
du = − π

4β4
cos(2β). (273)

Thus,

∫ ∞

0

− sin(u) cos(u)

u3 (u2 − β2)
du =

∫ ∞

0

sin(u) cos(u)

β2u3
du+

π

4β4
(1− cos(2β))

=

∫ ∞

0

sin(2u)

2β2u3
du+

π

2β4
sin2(β).

(274)

Now, we may write

∫ ∞

0

cos2(u)

u2 (u2 − β2)
du = −

∫ ∞

0

cos2(u)

β2u2
du+

∫ ∞

0

cos2(u)

β2 (u2 − β2)
du. (275)

From Gradshteyn and Ryzhik [27] page 461 we have

∫ ∞

0

cos2(u)

β2 (u2 − β2)
du = − π

4β3
sin(2β) = − π

2β3
sin(β) cos(β). (276)

Thus,

∫ ∞

0

cos2(u)

u2 (u2 − β2)
du = −

∫ ∞

0

1 + cos(2u)

2β2u2
du− π

2β3
sin(β) cos(β). (277)

Therefore,

∫ ∞

0

− sin(u) cos(u)

u3 (u2 − β2)
du+

∫ ∞

0

cos2(u)

u2 (u2 − β2)
du

=
1

2β2

∫ ∞

0

sin(2u)− u− u cos(2u)

u3
du− π

2β3
sin(β) cos(β) +

π

2β4
sin2(β).

(278)

100



Now, we may write

1

2β2

∫ ∞

0

sin(2u)− u− u cos(2u)

u3
du

=
1

2β2

[∫ ∞

0

sin(2u)− 2u cos(2u)

u3
du+

∫ ∞

0

u cos(2u)− u

u3
du

]

=
1

2β2

[∫ ∞

0

sin(2u)− 2u cos(2u)

u3
du− 2

∫ ∞

0

sin2(u)

u2
du

]
.

(279)

From Gradshteyn and Ryzhik [27] page 447 we have

∫ ∞

0

sin(2u)− 2u cos(2u)

u3
du = π, (280)

and from page 431 we have

−2

∫ ∞

0

sin2(u)

u2
du = −π. (281)

Therefore,

1

2β2

∫ ∞

0

sin(2u)− u− u cos(2u)

u3
du = 0. (282)

Hence,

∫ ∞

0

− sin(u) cos(u)

u3 (u2 − β2)
du+

∫ ∞

0

cos2(u)

u2 (u2 − β2)
du = − π

2β3
sin(β) cos(β) +

π

2β4
sin2(β).

(283)
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Now, combining Equations (265), (270), and (283) we get

∫ ∞

0

[j0(u+ β) + j0(u− β)] j2(u)du

= 6 cos(β)

[
− π

2β2

[
cos2(β)

]
+

π

2β3
sin(β) cos(β)

]

+ 6β sin(β)

[
− π

2β3
sin(β) cos(β) +

π

2β4
sin2(β)

]
− πj0(β)

= π

[
3
sin(β)

β3

(
cos2(β) + sin2(β)

)− 3
cos(β)

β2

(
cos2(β) + sin2(β)

)− sin(β)

β

]

= π

[
3
sin(β)

β3
− 3

cos(β)

β2
− sin(β)

β

]
= πj2(β).

(284)

The derivation for Equation (257) is as follows

∫ ∞

0

βJ0(βρ)j0(β)dβ =

∫ ∞

0

βJ0(βρ)
sin(β)

β
dβ

=

∫ ∞

0

J0(βρ) sin(β)dβ.

(285)

Now, from Gradshteyn and Ryzhik [27] page 718 we have

∫ ∞

0

J0(βρ) sin(β)dβ =

⎧⎪⎨
⎪⎩

(1− ρ2)
− 1

2 , 0 < ρ < 1,

0, 1 < ρ.
(286)

Thus, ∫ ∞

0

βJ0(βρ)j0(β)dβ =

⎧⎪⎨
⎪⎩

(1− ρ2)
− 1

2 , 0 < ρ < 1,

0, 1 < ρ.
(287)

The derivation for Equation (258) is as follows

∫ ∞

0

βJ0(βρ)j2(β)dβ =

∫ ∞

0

βJ0(βρ)

[
3

β
j1(β)− j0(β)

]
dβ, (288)
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where we have used the recurrence relationship from Abramowitz and Stegun [1] of

jn−1(z) + jn+1(z) = (2n+ 1)z−1jn(z), (289)

with n = 1. Now, using the fact that jn(x) =
√

π
2x
Jn+1/2(x), we can write Equa-

tion (288) as

∫ ∞

0

βJ0(βρ)j2(β)dβ = 3

√
π

2

∫ ∞

0

β−1/2J0(βρ)J3/2(β)dβ −
∫ ∞

0

βJ0(βρ)j0(β)dβ.

(290)

From Gradshteyn and Ryzhik [27] page 683 we have

∫ ∞

0

β−1/2J0(βρ)J3/2(β)dβ =

⎧⎪⎨
⎪⎩

√
2
π
(1− ρ2)

1
2 , 0 < ρ < 1,

0, 1 < ρ.
(291)

Finally, combining Equations (257) and (290)-(291) yields

∫ ∞

0

βJ0(βρ)j2(β)dβ =

⎧⎪⎨
⎪⎩

(2− 3ρ2) (1− ρ2)
− 1

2 , 0 < ρ < 1,

0, 1 < ρ.
(292)

The derivation of Equation (259) is as follows

∫ ∞

0

J1(β)j0(β)dβ =

∫ ∞

0

J1(β)
sin(β)

β
dβ. (293)

Now, from Gradshteyn and Ryzhik [27] page 727 we have

∫ ∞

0

J1(β)
sin(β)

β
dβ = 1. (294)

So, ∫ ∞

0

J1(β)j0(β)dβ = 1. (295)
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The derivation of Equation (260) is as follows

∫ ∞

0

J1(β)j2(β)dβ =

√
π

2

∫ ∞

0

β−1/2J1(β)J5/2(β)dβ, (296)

where we have used the fact that jn(x) =
√

π
2x
Jn+1/2(x). Now, from Gradshteyn and

Ryzhik [27] page 683 we have

∫ ∞

0

β−1/2J1(β)J5/2(β)dβ = 0. (297)

Thus, ∫ ∞

0

J1(β)j2(β)dβ = 0. (298)
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