
Data Fusion of Geographically Dispersed Information:
Experience With the Scalable Data Grid

Ke-Thia Yao, Ph.D., Craig E. Ward, and Dan M. Davis

Information Sciences Institute, USC, Marina del Rey, California

Test and evaluation (T&E) professionals today often face the distribution of data they need to

use over significant distances. Some of these data sources are too large for easy transmission

because of costs, delays, losses, security, and administrative burdens. The Information Sciences

Institute (ISI) has been working with the Joint Forces Command on its transcontinentally

distributed battlespace simulations, and they have conceived, architected, implemented, and

tested a system that uses the data in place. This has been characterized as a scalable data grid

that uses data cubes for rapid and focused retrieval. It is necessary that these data be available in

a timely manner, organized for ease of access, securely stored, and easily manipulated for data

mining. Suggestions are offered listing T&E situations to which the scalable data grid approach

would seem applicable.

Key words: Aggregation and summarization; Apache Hadoop distributed files system;

data collation; data mining; dimensions of interest; expectation-maximization (EM)

algorithm; information from logged data; k-means algorithm; measures of performance;

Meshrouter application; Urban Resolve Phase I.

T
est and evaluation (T&E), while once
done via handwritten analyses, has
increasingly come to rely on computer
collection and manipulation of data
from a myriad of sensors and sources.

In common with most of the rest of the defense
community, T&E can now collect more data than it
can easily analyze. More computing power allows for
increases in the breadth and depth of the information
collected. Now the same computing power must assist
in identifying, ordering, storing, and providing easy
access to that data. Fast networking allows large
clusters of high performance computing resources,
often distributed transcontinentally, to be brought to
bear on T&E. This increase in fidelity has correspond-
ingly increased the volumes of data that tests are
capable of generating.

Coordinating distant computing resources and
making sense of this mass of data is a problem that
must be addressed. Unless data are analyzed and
converted into information, testing will provide only a
fraction of the knowledge that is possible. For the U.S.
Joint Forces Command (USJFCOM) Urban Resolve
exercises, which are used to evaluate new systems and
sensors, Information Sciences Institute (ISI) developed
a distributed logging system to capture publish-and-

subscribe messages from the high-level architecture
(HLA) simulation federation. For a 2-week exercise,
omitting nonessential data, this system logged over a
terabyte of data (Yao and Wagenbreth, 2005).

In addition to the scalable data grid approach, the
ISI team found that Hadoop provided a scalable, but
conceptually simple, distributed computation paradigm
that is based on map–reduce operations implemented
over a highly parallel, distributed file system. Map–
reduce implementations of k-means and expectation-
maximization data mining algorithms were developed
to take advantage of the Hadoop framework. This file
system dramatically reduced the disk scan time needed
by the iterative data mining algorithms. It was found
that these algorithms could be effectively implemented
across multiple Linux clusters connected over reserved
high-speed networks. The data transmission reduc-
tions observed should be applicable in most T&E
situations, even those that use lower bandwidth
communications.

For this analysis, Hadoop jobs were created to
experiment with the data mining performance charac-
teristics in an environment that was based on
connections to sites across widely dispersed geographic
regions. Specially configured Linux cluster computers
were installed at ISI in California, at the University of

ITEA Journal 2011; 32: 86–94

Copyright ’ 2011 by the International Test and Evaluation Association

86 ITEA Journal

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Data Fusion of Geographically Dispersed Information: Experience With
the Scalable Data Grid

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Information Sciences Institute,University of Southern California ,4676
Admiralty Way, Suite 1001,Marina del Rey,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Illinois–Chicago (UIC) in Illinois, and at ISI-East in
Virginia. All of these machines had large disk storage
configurations, were located on network circuits
capable of 10-Gb/s transmission, and remained
dedicated to this research. The machine at ISI in
California served as a control. Special network
connectivity was established between UIC and ISI-
East to test Hadoop across that geographic distance.

Agile data framework
In general, T&E analysts and customers have been

interested not only in system data, but also in how well
higher level mission tasks and objectives are satisfied. A
measure of effectiveness (MOE) is a question, or a
measure, designed to illuminate how well particular
mission tasks are satisfied with respect to a system
(Gentner et al. 1996).

A measure of performance is typically a quantitative
measure of a system characteristic used to support an
MOE. For example, sample MOE questions are ‘‘Can
the enemy be located?’’ or ‘‘Can the system effectively
detect movement within urban environment?’’ Mea-
sures of performance supporting these MOEs are
typically statistical in nature.

Data loggers do extremely well at capturing detailed
operational data. ISI’s distributed data loggers have
captured terabytes of experimental data for the Urban
Resolve Phase I exercises at JFCOM (Wagenbreth et
al. 2010). Operational data included individual entity
state changes and interactions among the entities.
Depending on the type of entity, entity state changes
may include location, orientation, and velocity. For
vehicles, additional attributes may include external
lights-on and engine-on. Interactions may include
collision, damage assessment, sensor detection, and
contact report.

The logged data collected from the test is often at
too low a level to be of direct use to the T&E analysts.
Information needs to be abstracted from the logged
data by collation, aggregation, and summarization. To
perform this data transformation, we had to define an
analysis data model that is suitable for analysts and
decision makers. ISI used a multidimensional data
model as a way of representing the information from
their perspective. Next, a logging data model repre-
senting the collected data has to be defined.

Then, to bridge the gap and connect two data
models, ISI defined an abstraction relationship that
mapped the logging model to the analysis model. This
was a part of the scalable data grid toolkit (Yao and
Wagenbreth, 2005).

ISI developed a sensor–target scoreboard that
provided a visual way of quickly comparing the relative
effectiveness of individual sensor platforms and sensor

modes against different types of targets (Graebener et
al. 2003, 2004). The sensor–target scoreboard was a
specific instance of the more general multidimensional
analysis (Kimbal et al. 1998). Such a scoreboard is an
example of two dimensions of a multidimensional
cube. Its two dimensions can be the sensor dimension
and target. One can imagine extending the scoreboard
to take into account, say, weather conditions and time
of day. This would add two more dimensions to form a
four-dimensional cube.

The analysis data model consists of two key
concepts: dimensions of interest and measures of
performance. Dimensions are used to define the
coordinates of multidimensional data cubes. The cells
within this data cube are the measure values (Figure 1).

Dimensions of interest
For large simulations, like the Urban Resolve

exercises, the magnitude of data collected ranges into
the terabytes. Dimensions categorize and partition the
data along lines of interest to the analysts. Defining
multiple crosscutting dimensions aids in breaking the
data into smaller, orthogonal subsets.

Dimensions have associated measurement units, or
coordinates. Choosing the granularity of these units
aids in determining the size of the subsets. For
example, depending on the dynamic nature of the
phenomenon that the analysts are trying to study, they
may choose to define the time dimension units in
terms of minutes, days, weeks, or years.

Another dimension example is in terms of simula-
tion entity groups. For the sensor dimension in the
sensor–target scoreboard, the analyst may want to
group together sensors by the type of platform: high-

Figure 1. Dimensions of interest and measures of performance.

Scalable Data Grid

32(1) N March 2011 87

flying unmanned aerial vehicles, midaltitude un-
manned aerial vehicles, organic air vehicles, and
unattended ground sensors. The targets may be
grouped together, for example, by transportation
mode: air, ground, and sea.

Hierarchical dimensions define how a coordinate
relates to other coordinates as its subset. It serves to
group together similar units from the analyst’s
perspective. By defining hierarchical dimensions,
analysts inform the system about how to aggregate
and summarize information. For example, the analysts
may want to subdivide the sensor platform category
into the sensor modes: moving target indicators,
synthetic aperture radar, images, video, and acoustic.

Hierarchical dimensions can be viewed as a partial
ordering relationship. At the top node of the partial
ordering is the set containing all the coordinates. The
bottom nodes of the partial ordering are singleton sets
containing just one coordinate. Edges between nodes
indicate a superset–subset relationship. A node’s parent
is its superset. A node’s child is its subset. Nodes in
hierarchical dimensions are also given coordinates.
Calling the coordinates for nonsingleton nodes ‘‘ab-
stract coordinates’’ is the accepted practice. Coordi-
nates for singleton nodes are the concrete coordinate of
the single element in the set.

Multiple decompositions of the same dimension are
also useful. For example, there may be many different
simulation federate types playing in the federation. The
analysts may want to verify how each federate responds
to the sensor contacts, so they can define the category to
be the type of federates in which they are interested.

Measures of performance
After the data have been partitioned along lines of

interest, the data subsets may still be large. Measures
provide quantitative ways of characterizing the data
subsets. A key characteristic that measures should have
is that they are can be aggregated. The hierarchical
crosscutting dimensions partition the data into a
hierarchy of subsets. The measure must be able to
provide a meaningful summarization. To be computa-
tionally efficient, the measure aggregation operator
must satisfy the associative and commutative proper-
ties—the measure of a set must be computable from
the measures of its subsets. In the case of the sensor–
target scoreboard, the measure of performance is
simply an integer count of the number of times a
sensor has detected a target. The aggregation operator
is the addition operator.

RTI-s, a highly scalable implementation of the
Runtime Infrastructure (RTI) (Helfinstine, Torpey,
and Wagenbreth 2003), provides an interceptor plug-
in framework that exposes calls to this HLA interface

to registered plug-ins (Figure 2). The SDG exploits
this plug-in to intercept and log messages and federate
attribute updates and interaction sends. With respect
to the RTI, the contents of these messages are raw
binary strings. RTI provides publish-and-subscribe
facilities to exchange these messages but not to decode
their contents. To provide the query and analysis
capabilities, these messages must be decoded with
respect to the federation object model, the simulation
definitional statement.

Cube computation
The data are made up of the facts or observations

from a test. The facts have to be aggregated according
to how hierarchical dimensions are defined. The cells
that correspond to the abstract coordinates of the cube
have to be computed. Here it is assumed that the
aggregation operator satisfies the associative and
commutative properties. Given these assumptions,
measures can be efficiently computed for all the
abstract coordinates by doing a bottom-up traversal
of the partial ordering hierarchy.

T&E use of Hadoop
Easily obtained by anyone, Hadoop is an open

source system, hosted by the Apache Software
Foundation (Apache 2007). It provides a reliable, fault
tolerant, distributed file system and application pro-
gramming interfaces. These enable its map-reduce
framework for the parallel evaluation of large volumes
of test data.

The simplicity of the Hadoop programming model
allows for straightforward implementations of many
evaluation functions. The popular Java applications
have the most direct access, but Hadoop also has
streaming capabilities that allow for implementations
in any preferred language.

Several other communities that need to handle large
amounts of data are using map-reduce implementa-
tions to manage that data. Google started using a map-
reduce system internally before 2004 (Dean and
Ghemawat 2004). Yahoo runs the largest Hadoop
cluster, running over a Linux cluster of over 10,000
cores (Yahoo 2008). Many vendors, e.g., Amazon, use

Figure 2. Logging data flow.

Yao, Ward, & Davis

88 ITEA Journal

Hadoop as part of their cloud computing service. A list
of organizations that make use of Hadoop can be
found at the Hadoop wiki (Powered By, 2009).

In the 2008 terabyte sort challenge, Yahoo won by
using Hadoop to sort 1 terabyte of data in 209 seconds
(O’Malley 2008). That cluster consisted of 910 nodes
with two quad core 2-GHz Xeons and 4 SATA disks
per node.

Hadoop distributed file system
The Hadoop distributed files system (HDFS) runs

on top of a native file system and is only accessible
through the Hadoop application programming inter-
faces (APIs). HDFS configurations distribute data in
equal-sized chunks across the available data nodes.
This division of data works best for large files that can
be stored as multiples of the chunking size configured
for the HDFS. If the files are smaller than the
chunking size, the HDFS will waste local file system
resources with empty, allocated bytes. Redundancy and
fault tolerance are achieved by replicating these chunks
on multiple nodes. Hadoop attempts to run the map
operations on copies of the data local to the mapping
task. This reduces the amount of data that needs to be
moved around.

ISI experiments used varying HDFS configurations.
One configuration kept all nodes within a single rack.
Another divided the nodes across half of the
continental United States. Hadoop has three different
node types: nodes for processing tasks, nodes for
storing data, and a single node, called the name node,
to coordinate the others. The tasks that are assigned to
processing nodes are monitored for status. If a task
appears to fail, it can be reassigned to another
processing node. The assignments attempt to keep
processing and data near each other, limiting the strain
on any underlying communications resources, such as a
network.

Distributed data mining algorithms
There are some T&E settings in which discovering

unanticipated or novel data would be useful (Gehrig,
Holloway, and Schroeter 2004). Data mining is a way
of finding patterns in what otherwise would be random
data. Many data mining algorithms are iterative in
nature. They require the data to be scanned several
times during the mining process. These algorithms can
become prohibitively expensive for very large data sets
that do not fit into memory and have to be stored on
disk. Sequential disk access on a single disk can be
several orders of magnitude slower than memory
access. Hadoop with its potential to access thousands
of disks in parallel provides a way of addressing this
problem.

In addition, in some situations the test data
themselves are distributed. For example, for
JFCOM’s Urban Resolve exercises, ISI implemented
a distributed logger that stored high-level architecture
runtime infrastructure (HLA RTI) messages locally,
in situ where the messages were generated (Graeb-
ener et al. 2003; Yao and Wagenbreth 2005). Using
Hadoop provides a convenient way to process the
data without having to move them to a centralized
location.

Two clustering algorithms
To test the feasibility of this approach, the ISI team

implemented two data mining clustering algorithms
in Hadoop: k-means and expectation-maximization
(EM).

K-means is a popular data mining clustering
algorithm that assigns a set of data instances into
clusters (or subsets) based on some similarity metric.
The k-means algorithm requires three inputs: an
integer k to indicate the number of desired clusters as
output, a distance function over the data instances, and
the set of n data instances to be clustered. The distance
of a data instance to itself is zero. The greater the
distance between two data instances, the less similar
the instances are. Typically, a data instance is
represented as a numerical vector. The output of the
algorithm is a set of k points representing the mean (or
the center) of the k clusters. Each of the n data
instances is assigned to the nearest cluster mean based
on the distance function.

Below is pseudocode for the k-means algorithm:

1. Generate an initial guess for the k cluster (for
example, by randomly selecting k points from the data
instances as the k means).

2. Assign each of the n data instances to the nearest
cluster mean.

3. Based on the data instance assignment, compute
the new cluster mean for each of the k clusters.

4. While not done, go to Step 2.

Figure 3 illustrates some results of k-means cluster-
ing, correctly finding the means of the three distinct
clusters. That is, given a set of points generated for this
data set, the algorithm correctly discovered the patterns
in the points.

The EM algorithm can be viewed as a probabilistic
generalization of the k-means algorithm. Instead of
representing a cluster by just its mean, EM represents a
cluster by its mean and its variance (or covariance
matrix), i.e., each cluster is represented by a Gaussian
distribution. In addition, each cluster is associated with
a weight, representing the probability of selecting the
cluster. The sum of these k cluster weights is equal to 1.

Scalable Data Grid

32(1) N March 2011 89

This representation is called a Gaussian mixture
model.

The steps of the EM algorithm are similar to the k-
means algorithm. In Step 1 the initial guess now
includes the k means, k variances, and k cluster weights.
The assignment in Step 2, also known as the
expectation step, is now slightly more complicated.
Instead of assigning each data point to one cluster,
each data point is assigned to each cluster with a
probability based on a Gaussian distribution. In Step 3,
the maximization step, the k means, k variances, and k

cluster weights are recomputed based on the probabi-
listic assignment from Step 2.

Hadoop implementation
Only the Hadoop implementation of the k-means

algorithm will be described, the EM Hadoop imple-
mentation being similar. There exists a variety of ways
to generate the initial guess in Step 1. If there is a
priori knowledge of the range of values of the data,
then k means can be generated randomly using a
uniform distribution. Otherwise, scanning the data
instances once will allow computing the range values.
Or, scanning the data instances and randomly selecting
k instances as the means is possible. To simplify the
algorithm description, we shall assume that there is a
priori knowledge.

Step 2 corresponds to the map operation. Map
functions have the form

Map: (in-key, in-value) R list (out-key, out-value)

In this case, the in-key is null, and the in-value is the
data instance vector. The out-key is an integer from 1 to
k representing the cluster identifier, and the out-value

is a list of pairs, where each pair consists of the data
instance vector and the integer 1.

K-means map: (null, data-instance) R list (cluster-id,

(data-instance, 1))

Step 3 corresponds to the reduce operation. Reduce
functions have the form:

Reduce: (in-key, list (in-value)) R list (out-key, out-
value)

In this case the input (in-key, in-value) is the output
of the k-means map (cluster-id, (data-instance, 1)). For
each cluster-id, the reduce operation sums all the (data-
instance, 1) pairs associated with that cluster-id.

K-means reduce: (cluster-id, (data-instance, count)) R
list (cluster-id, (sum-of- data-instances, number-of-
instances))

Here the sum-of- data-instances divided by number-
of-instances is the mean of the cluster.

Here is a simple, but naı̈ve, Hadoop implementation
of the k-means algorithm:

1. Random generate k points as initial k means.
2. Apply k-means map and reduce.
3. While not done, go to Step 2.

Test environment setup
Data mining Hadoop jobs were created for the

SIMC-IC project to experiment with the performance
characteristics of Hadoop in an environment that
provided high-speed network connections to sites
across large geographic regions. As mentioned before,
clusters in California, Illinois, and Virginia were
connected via a high-bandwidth link.

Each cluster machine was composed of

N 10 nodes
N 5.3-TB local disk
N 2 clusters running Fedora 8
N 1 cluster running Debian
N 1 10-G E network card
N 1 1-G card for management only
N Dual quad core (8 cores per node) CPUs

The version of Hadoop used for the experiments was
0.17.2.1. Each cluster used the Java SE Runtime
Environment 1.6 (build 1.6.0_11-b03).

Hadoop clusters were configured using the available
nodes such that both the control Hadoop cluster and
the distributed Hadoop cluster had the same number
of nodes, one name node and nine nodes running data
and job task services. The only difference was that the
control cluster used only local network connections
while the other used wide area network connections.

For the wide area network Hadoop cluster, two
configurations were used. One configuration used the
default network resources and one used dedicated
Internet 2 high-bandwidth lines reserved for short
periods.

Figure 3. K-Means clustering of three distinct clusters of points.

Yao, Ward, & Davis

90 ITEA Journal

Data load
In addition to the data mining jobs developed, the

ability of Hadoop to load and store data was tested. A
simple data load of six 1.2-GB files was performed
using the default settings, each block of data replicated
on three nodes. All time data was collected from the
time(1) command.

As would be expected, the quickest data loads were
with the local nodes configuration (Table 1). The
actual processing times were not that much different
for each configuration. The major difference was in
clock time, indicating that the distributed systems
spent significant time in suspended wait states while
the network subsystems performed their functions.
The Fastnet version using Internet 2 actually took
longer elapsed time than the standard version.
However, during the execution of the Fastnet version,
we observed Java network exceptions being thrown.

Data mining jobs
Two implementations of the k-means algorithm

were used to test the processing capabilities of Hadoop.
An EM job was also developed, but this job was not
used for this experiment. The UIC Angle data set was
searched for points within the data where the data
clustered. One implementation used a ‘‘naive’’ ap-
proach while the other used a more efficient ‘‘smart’’
approach. The naive implementation did not use the
combine step allowed by the Hadoop API. This
resulted in much more network usage because more
data had to be passed among the task nodes. The smart
implementation made use of this step and greatly
reduced the amount of data exchanged.

The k-means jobs iterated over the data set with an
initial set of cluster points, each time updating the set
of cluster points to better fit the data, each resulting set
of cluster points becoming the input for the next
iteration. When either the points stopped significantly
changing or the maximum number of iterations was
reached, the job stopped.

For development and initial testing, the job was
tested using points randomly generated using known
center coordinates. The results of a run were expected
to match the input provided to the random point
generator (Table 2).

As with the data loads, the data mining jobs
performed best on the local nodes setup. The

differences between local and networked systems are
not as pronounced as with the data loads. This is likely
due to the ability of Hadoop to process chunks of data
in a ‘‘rack-aware’’ manner. The smart implementations
tended to not require long haul network services and
were able to process data in what to them was a local
manner. Again, the Fastnet version took longer elapsed
time than the standard version.

Network utilization
In the previous section, our experiments exercised

Hadoop across differing network configurations. One
configuration used the ‘‘normal’’ connectivity found in
the network while another ran Hadoop over special
high-speed links with a theoretical peak throughput of
10 Gb/s. But, Hadoop results did not reflect the
advantage of the high-speed links.

To rule out the possibility that the high-speed links
were faulty, we used another software system to obtain
independent measurements. The tool used to test this
capability was the Meshrouter, which was designed for
high throughput HLA RTI communications (Barrett
and Gottschalk 2004; Brunett and Gottschalk 1998).
The tests show the Meshrouter application is capable
of achieving 1.5 Gb/s with a single TCP stream, and
up to 5 Gb/s with combined streams.

Based on this throughput experiment, we reasoned
that Hadoop was not able to take full advantage of the
high-speed network. As mentioned previously, it was
observed that Java generated network exceptions
during the execution. Although Hadoop is designed
to be fault tolerant, the exceptions most likely slowed
down its execution.

Moreover, to achieve 50 percent capacity of the
high-speed network, the Meshrouter application
required several TCP streams. It is suspected that
even without the network exceptions, Hadoop will not
be able to take full advantage of the 10-Gb/s network.

Below, the details of the high-speed network
throughput experiment using the Meshrouter are
described. The Meshrouter and associated applications
implement interest managed communication (RTI)
used by several entity simulators in general use. Test

Table 1. Data load test results.

User System Elapsed

ISI Local 44.85 22.09 2:05.69

ISIE/UIC (standard) 46.98 18.38 14:27.75

ISIE/UIC (fastnet) 49.18 18.94 29:20.78

Table 2. K-means results.

User System Elapsed

ISI Local (smart) 1.68 0.18 1:37.76

ISI Local (naive) 6.55 0.92 40:38.64

ISIE/UIC (smart/stand) 1.67 0.19 1:52.80

ISIE/UIC (smart/Fastnet) 2.25 0.27 8:25.08

ISIE/UIC (naive/stand) 5.35 0.96 1:12:03

ISIE/UIC (naive/Fastnet) 8.40 1.72 2:14:16 KILLED*

* The naive run was killed at the elapsed time in the seventh job

iteration. The maximum number for a run is 32.

Scalable Data Grid

32(1) N March 2011 91

programs named publish and subscribe were used to
exercise the network in a controlled and repeatable
manner. The Meshrouter is a complex real-world
application.

The bandwidth experiments were conducted using
the standard ISI Meshrouter formalism for interest-
managed communications. A schematic of the Mesh-
router is shown in Figure 4.

The overall communications scheme consists of
collections of processors (labeled ‘‘SAFs’’ in this legacy
diagram) each communicating with a specified ‘‘pri-
mary’’ router (P). Interest-limited message exchange
among the various basic ‘‘triads’’ is done using a
network of additional ‘‘pop-up’’ and ‘‘pull-down’’
routers. As is described in Barrett and Gottschalk
(2004), the three routers on a triad are instanced as
separate objects within a single Meshrouter process.

The execution of an actual message transfer is
implemented by a software stack as shown in Figure 5.

The results reported here use an RTI-s implemen-
tation for both interest enumeration and the lowest-
level communications primitives (‘‘data flow nodes’’).
While this has enormous advantages, it does have the
generic disadvantage of any general purpose ‘‘plug and
play’’ system in terms of significant, incompletely
understood overheads.

Standard RTI-s data flow implementations exist for
both TCP and UDP communications. The results
presented here use the TCP implementation.

The application processes for the benchmark tests
are of two forms:

Publish Processors: Send out messages of specified
length and interest state. The nominal total
publication rate (megabyte per second) is con-
trolled by a data file that is reread periodically
(by all publish processors). This means that the
nominal experimental data rate can be controlled
dynamically.

Subscribe Processors: Receive messages for a
specified interest state, collecting messages from
multiple publishers, as appropriate. The subscribe
processes are instrumented to measure actual

incoming message rates and to detect missed
messages.

The routers in Figure 5 direct individual messages
from publishers to subscribers according to the interest
declarations. The router processes are also instrument-
ed to determine the fraction of (wall clock) time spent
in communications management (vs. simply waiting
for input).

Two modes were tested. In the first mode, a single
TCP connection was set up between a pair of
Meshrouters at distant locations. The measured band-
width was approximately 300 Mb/s. The second mode
used eight mesh routers at each site, each with multiple
clients and multiple TCP connections. Measured
aggregate bandwidth was approximately 4.6 Gb/s.

This test demonstrated that 50 percent of the
capacity of the high speed wide area network can be
effectively employed by a real world application.

Programming Hadoop
For the T&E programmers, Hadoop should be an

easy system to use. Installation was straightforward.
The rapid changes in Hadoop releases made keeping
up problematic; some releases broke existing code. In
the middle of a test evolution, one might be well
advised not to install every update, but ‘‘freeze’’
Hadoop for the duration of the test.

Shell scripts might be found useful to reduce the
complexity of setup, change, and maintenance of the
various Hadoop configurations across sites. ISI expe-
rience was that once these configurations were in place,
changing them was an easy and straightforward
operation.

Development was convenient for Hadoop jobs.
Running and debugging standalone Hadoop jobs in
the Eclipse IDE allowed rapid turnaround on appli-
cation bug fixes.

Conclusions
This article supports the proposition that the

implementation and use of the SDG and Hadoop

Figure 4. Schematic meshrouter topology. Figure 5. Factored Meshrouter implementation, with

application-specific communications primitives.

Yao, Ward, & Davis

92 ITEA Journal

show promise for the T&E environments. It reported
on experiments implementing the SDG and on using
distributed data analysis and data mining implemented
over the Apache Hadoop framework. ISI’s experience
is that the SDG and Hadoop provided a scalable, but
conceptually simple, distributed computation paradigm
based on the standard map and reduce operations
implemented over a highly parallel, distributed file
system. ISI found it practical to develop map and
reduce implementations of k-means and EM data
mining algorithms that took advantage of the Hadoop
framework. The Hadoop file system dramatically
reduced the disk scan time needed by these iterative
data mining algorithms. ISI has successfully executed
these algorithms across multiple Linux clusters over
dedicated 10-Gb/s networks. The ISI team holds that
the results of these experiments support the potential
for the use of these tools in T&E. C

DR. KE-THIA YAO is a project leader and research

scientist at the University of Southern California

Information Sciences Institute. His research has been

centered on the JESPP project, which has the goal of

supporting very large-scale distributed military simula-

tions involving millions of autonomous agent entities. He

has developed a suite of monitoring/logging/analysis tools

to help users better understand the computational and

behavioral properties of large-scale simulations and has

designed the Scalable Data Grid for distributed data

management of large archives. He received his bachelor of

science degree in EECS from the University of California,

Berkeley, and his master of science and doctor of philosophy

degrees in computer science from Rutgers University, New

Brunswick, New Jersey. E-mail: kyao@isi.edu

CRAIG E. WARD is a parallel computer systems analyst at

the Information Sciences Institute. Much of his recent

research has focused on large-scale data management in the

defense and the health sectors. His concentration has been

on open source tools. Previously, he performed computer

analysis for law enforcement in California. He has

a bachelor of arts in history from the University of

California, Irvine, and a master of science degree in

computer science from Loyola Marymount University in

Los Angeles, California. E-mail: cward@isi.edu

DAN M. DAVIS is the director, JESPP Project,

Information Sciences Institute (ISI), University of South-

ern California (USC), focusing on large-scale distributed

DoD simulations. As the assistant director of the Center for

Advanced Computing Research at Caltech, he managed

Synthetic Forces Express, bringing HPC to DoD

simulations. Prior experience includes work as a software

engineer at the Jet Propulsion Laboratory and at a classified

project at Martin Marietta. He saw duty in Vietnam

as a cryptologist in the USMC, and he retired as

a commander, cryptologic specialty, USNR. He received

a bachelor of arts and a juris doctor degree in law from the

University of Colorado in Boulder. E-mail: ddavis@

isi.edu

References
Apache. 2007. The Hadoop distributed file system:

Architecture and design. http://hadoop.apache.org/core/
docs/r0.17.1/hdfs_design.pdf (accessed June 25, 2009).

Barrett, B., and T. Gottschalk. 2004. Advanced
message routing for scalable distributed simulations. In
Proceedings of the Interservice/Industry Training, Simu-

lation and Education Conference, Orlando, Florida.
Brunett, S., and T. Gottschalk. 1998. A large-scale

metacomputing framework for the ModSAF real-time
simulation. Parallel Computing 24: 1873–1900.

Dean, J., and S. Ghemawat. 2004. MapReduce:

Simplified data processing on large clusters. operating

system design and implementation. San Francisco:
Operating System Design and Implementation. http://
labs.google.com/papers/mapreduce.html (accessed
June 25, 2009).

Gehrig, J. F., G. Holloway, and G. Schroeter. 2002.
Reflections on test and evaluation: T&E infrastructure,
reengineering Army T&E, and building a viable test
range complex. Program Manager. July–August, 2002.

Genter, F. C., P. S. Best, and P. H. Cunningham.
1999. Sources of Measures of Effectiveness (MOEs) for

Assessing Human Performance in Aeronautical Systems,
Pensacola, Florida: Navy Advancement Center.

Graebener, R., G. Rafuse, R. Miller, and K.-T. Yao.
2003. The road to successful joint experimentation
starts at the data collection trail. In Proceedings of the

Interservice/Industry Training, Simulation and Educa-

tion Conference. July–Aug 2002, Orlando, Florida, 56–
62.

Graebener, R., G. Rafuse, R. Miller, and K.-T. Yao.
2004. The road to successful joint experimentation
starts at the data collection trail—Part II. In Proceed-

ings of the Interservice/Industry Training, Simulation,

and Education Conference. Orlando, Florida.
Helfinstine, B., M. Torpey, and G. Wagenbreth.

2003. Experimental interest management architecture
for DCEE. In Interservice/Industry Training, Simula-

tion, and Education Conference. Orlando, Florida.
Kimbal, R., L. Reeves, M. Ross, and W. Thorn-

waite. 1998. The Data Warehouse Lifecycle Toolkit.
Hoboken, New Jersey: Wiley.

O’Malley, O. 2008. TeraByte sort on Apache Had-

oop. http://www.hpl.hp.com/hosted/sortbenchmark/
YahooHadoop.pdf. (accessed June 29, 2009).

Scalable Data Grid

32(1) N March 2011 93

Rathnam, T., and C. J. J. Paredis. 2004. Developing
federation object models using ontologies. In Proceed-
ings of the 2004 Winter Simulation Conference, Wash-
ington, DC.

Wagenbreth, G., G. E. Ward, K.-T. Yao, and
D. M. Davis. 2010 (Pending). Non-disruptive data
logging: Tools for JFCOM large-scale simulations. In
Proceedings of the Simulation Interoperability Workshop.
Orlando, Florida.

Yahoo. 2008. Yahoo! launches world’s largest Hadoop
production application. http://developer.yahoo.net/blogs/
hadoop/2008/02/yahoo-worlds-largest-production-hadoop.
html (accessed June 29, 2009).

Yao, K. T., and G. Wagenbreth. 2005. Simulation
data grid: joint experimentation data management and
analysis. In Proceedings of the Interservice/Industry
Training, Simulation and Education Conference. Or-
lando, Florida.

Acknowledgments

We would like to thank our colleagues at JFCOM,
and at UIC, especially Professor Robert Grossman and
the Messers Michael Sabala and Yuhong Gu. Further,
this work would not have been possible without the
assistance of Tom Lehman of ISI East. This material is
based in part on research sponsored by the Air Force
Research Laboratory under agreement number
FA8750-05-2-0204. The U.S. government is autho-
rized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or implied,
of the Air Force Research Laboratory or the U.S.
government.

Yao, Ward, & Davis

94 ITEA Journal

