

 IMPLEMENTATION OF A RULE-BASED OPEN-LOOP CONTROL STRATEGY FOR

A HYBRID-ELECTRIC PROPULSION SYSTEM ON A SMALL RPA

THESIS

Collin M. Greiser, BSE

2d Lt, USAF

AFIT/GA/ENY/11-M05

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U. S.

Government. This material is declared a work of the U. S. Government and is not subject

to copyright protection in the United States.

AFIT/GA/ENY/11-M05

IMPLEMENTATION OF A RULE-BASED OPEN-LOOP CONTROL STRATEGY FOR
A HYBRID-ELECTRIC PROPULSION SYSTEM ON A SMALL RPA

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Collin M. Greiser, BSE

2d Lt, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

iv

AFIT/GA/ENY/11-M05

Abstract

 Currently-fielded small electric-powered remotely-piloted aircraft (RPA) lack endurance

desired by warfighters, and internal combustion engine (ICE) RPAs generate undesirable

acoustic and thermal signatures. Hybrid-electric (HE) propulsion systems would use ICE power

for cruise, electric power for endurance, and combine both electric power and ICE power for

takeoff, climbing, and recharging onboard battery packs. Use of HE systems would eliminate

undesirable signatures in addition to providing considerable fuel savings over time. Various

combinations of six components were used in this HE system: the ICE, electric motor (EM),

electromagnetic clutch, a one-way bearing, battery pack, and a propeller. Control of such a

system in a small RPA has never been attempted before. A rule-based controller was developed

in C code to manage this HE system. This system and its various sensors were analyzed on a

custom-built dynamometer test stand that was developed in conjunction with other students.

LabView screens were developed to aid this testing and interface with the sensor suite. The

controller’s performance over 9 distinct operating modes, including 4 operational flying states,

were validated to provide the most optimal operation of a HE-RPA system of about 13.6 kg (30.0

lbf).

v

Acknowledgments

I cannot start acknowledging anyone until I first acknowledge God for granting me the

strength, wisdom, and perseverance to complete this. Without him, I could not have

accomplished anything that I have done today, including actually being here completing a

master’s degree. It is something I never imagined I would do. I must thank my advisor, Lt. Col.

Harmon, for his (continued) patience with all of my questions and constant visits to his office.

Much of Col. Harmon’s ideas in his dissertation and code went into my programming. A huge,

huge thank you goes to John Hagen, without whom I would never have gotten anywhere close to

completing the C code on the microprocessor. My friends and roommates including Josh Fehd,

Josh Hess, and Adam Hillier also deserve credit for keeping humor in my life through this

process.

 Another thank you goes out to Isseyas Mengistu, Todd Rotramel, and Matt Rippl, all of

whom worked together with me to design and build the test rig for our dynamometer setup.

Countless hours were spent together planning and executing the design and building the stand

itself. The AFIT machine shop crew and ENY lab techs also committed a large number of man-

hours to our project in designing the bearings and mounting plates, and they deserve a great deal

of credit for that endeavor. Finally, I would like to thank the U.S. Air Force for being so

generous as to send me here and actually pay me a salary to get a degree. There is no other

opportunity like it in the world.

 -Collin M. Greiser

vi

Table of Contents

Table of Contents
I. Introduction .. 1

1.1 Background ... 1

1.2 Motivation ... 3

1.3 Problem Statement .. 4

1.4 Research Objective .. 6

1.5 Research Scope ... 6

1.6 Methodology ... 7

1.7 Thesis Overview .. 7

II. Literature Review ... 8

2.1 Chapter Overview ... 8

2.2 Hybrid-Electric Propulsion and Configurations .. 8

2.3 Applications of Hybrid Power... 11

2.4 Hybrid-Electric Control Strategies .. 12

2.5 Control Elements ... 13

2.5.1 Electric Motor ... 14

2.5.2 Internal Combustion Engine ... 17

2.5.3 Batteries .. 21

2.5.4 Electromagnetic Clutches ... 23

2.5.5 One-Way Bearings ... 25

2.6 Testing Setups ... 25

2.7 Rule-Based Controllers ... 26

2.8 Rule-based Control Methods ... 29

2.8.1 Sloped Engine Engagement Strategy ... 29

2.8.2 The Stepped Engagement Strategy ... 31

2.8.4 Three Stage Torque Proportioning ... 33

2.9 Intelligent Controllers ... 34

2.9.1 Fuzzy Logic .. 34

2.9.2 Neural Network Controllers ... 35

Page

vii

2.9.3 Other Intelligent Controllers ... 37

2.10 Selection of Control Method ... 39

III. Methodology ... 40

3.1 Chapter Overview ... 40

3.2 Open-Loop State Machines ... 40

3.3 The State Machine ... 41

3.2.1 Reset ... 42

3.2.2 EM Rev ... 43

3.2.3 ICE Start ... 45

3.2.4 ICE Idle... 46

3.2.5 Ground Roll or Catapult Style Takeoff .. 47

3.2.6 Cruise without Regeneration Mode .. 49

3.2.7 Endurance Mode ... 53

3.2.8 Climb Mode .. 55

3.2.9 Cruise With Regeneration Mode .. 57

3.4 Test Setup .. 60

3.4.1 Data Collection Setup ... 61

3.4.2 The Dynamometer .. 66

3.4.3 Sensors .. 67

3.4.4 Internal Combustion Engines ... 69

3.4.5 Electric Motor ... 72

3.4.6 The Microcontroller .. 72

3.4.7 Transmitter and Receiver .. 75

3.5 Procedures for Validation of Controller and Setup ... 76

3.6 Test Setups .. 77

IV: Results and Analysis ... 80

4.1 Introduction ... 80

4.2 Cruise Without Regeneration Testing ... 80

4.2.1 Test Goals ... 80

4.2.2 Data Analysis .. 82

viii

4.2 Engine Restart ... 87

4.2.1 Test Goals ... 87

4.2.2 Test Analysis .. 88

4.3 Endurance Testing ... 90

4.3.1 Test Goals ... 90

4.3.2 Test Analysis .. 91

4.4 Climb Testing .. 97

4.4.1 Test Goals ... 97

4.4.2 Test Analysis .. 98

4.5 Cruise with Regeneration .. 100

4.5.1 Test Goals ... 100

4.5.2 Test Analysis .. 101

V. Conclusions and Recommendations .. 103

5.1 Conclusions of Research and Testing ... 103

5.2 Recommendations for Future Work .. 107

Works Cited .. 111

Appendix A: Controller Code ... 118

Appendix B: Controller Flowcharts .. 140

Appendix C: Example Test Matrix ... 143

Appendix D: Example SOP .. 147

Appendix E: Controller Wiring Diagram [54] .. 150

ix

List of Figures

Figure 1: Series hybrid configuration [12].. 9

Figure 2: Parallel hybrid configuration [14] ... 10

Figure 3: Electric motor model [17] ... 14

Figure 4: Diagram showing brushed DC motor [19] .. 17

Figure 5: Two stroke engine cycle [20] .. 18

Figure 6: Four stroke operating cycle [21] ... 19

Figure 7: Battery model showing anode, cathode, and electrolyte separator [27] 22

Figure 8: Electromagnetic clutch [29] .. 24

Figure 9: Example of a one-way bearing. ... 25

Figure 10: Rule-based controller block diagram [8] ... 27

Figure 11: IOL for an automobile. Note conventional map with IOL overlay [32] 28

Figure 12: Diagram of sloped engine engagement strategy [33] .. 29

Figure 13: Stepped engine engagement strategy [33] ... 31

Figure 14: Two stage pedal split strategy [33].. 33

Figure 15: Block diagrams of two fuzzy logic controllers. Pictured left is a feed forward

controller, right is an adaptive parameter fuzzy logic controller. ... 35

Figure 16: Basic neuron for a neural network [38] ... 36

Figure 17: Genetic Algorithm block diagram [36] ... 38

Figure 18: Transmitter depicting switch A. .. 49

Figure 19: Function that gathers total torque request from controller inputs 51

Figure 20: Normalized ICE torque equation ... 52

Figure 21: Transmitter depicting switch B. .. 53

Page

x

Figure 22: Equation for normalized torque request in endurance mode 55

Figure 23: Throttle bump if statement .. 56

Figure 24: Safety interlocks for battery charging ... 59

Figure 25: C code for regeneration ... 60

Figure 26: Constant voltage C code, with “cycle complete” text ... 60

Figure 27: HE-RPA propulsion system test setup w/ Honda engine .. 61

Figure 28: LabView data collection screen .. 62

Figure 29: LabView block diagram showing streaming function to exchange data with the

microcontroller. ... 64

Figure 30: LabView block diagram showing analog data collection and some filtering. 65

Figure 31: Dynamometer measurement screen ... 65

Figure 32: Dynamometer without any mounted equipment; note mounted strain gauge for torque

measurement ... 66

Figure 33: RPM sensor ... 68

Figure 34: DC/DC Converter being used for both propulsion and generation 68

Figure 35: Mastech DC power supply .. 69

Figure 36: Fuji BF25-EI with mounting brackets (left) and BF34-EI (right) 70

Figure 37: Sullivan DynaTron Hi-Torque starter [52] with 12V power battery 71

Figure 38: Honda GX-35 engine with prop nut on shaft for starting .. 71

Figure 39: Maxon DC motor with attached wire leads. .. 73

Figure 40: Microcontroller attached to PCB ... 74

Figure 41: Microcontroller layout ... 75

Figure 42: R/C transmitter and receiver .. 76

xi

Figure 43: Honda engine mounted on the dynamometer .. 78

Figure 44: HE Configuration w/ Fuji 25 engine, Maxon Motor, and clutch 78

Figure 45: Test setup with one-way bearing ... 79

Figure 46: Honda GX-35 torque versus time .. 82

Figure 47: Honda GX-35 torque, engine speed, and throttle command versus time 83

Figure 48: Stabilized RPM sensors. Sensors are stabilized with mounting towers (shown). 86

Figure 49: Final dynamometer test setup with one-way bearing. ... 89

Figure 50: Motor torque, speed, and command versus time ... 91

Figure 51: Descent and climb conditions under test ... 94

Figure 52: Fluke Model 115 True-RMS Multimeter used for current and voltage measurements

... 96

Figure 53: Controller commands for climb mode ... 99

Figure 54: Revised controller wiring diagram to include filters and uncommon grounding points.

... 106

xii

List of Tables

Table 1: Reset state component control .. 42

Table 2: EM rev component control ... 44

Table 3: ICE start component control ... 45

Table 4: ICE idle component control .. 46

Table 5: Takeoff component control ... 48

Table 6: Average engine parameters for cruise mode testing ... 84

Table 7: Motor parameters at steady state endurance flight ... 92

Table 8: ICE Only (Cruise) Test Matrix ... 143

Table 9: Endurance Mode Test Matrix ... 145

Page

xiii

List of Abbreviations

Abbreviation Description

AC Alternating Current

A/C Aircraft

AVGAS Aviation Gasoline

CDM Charge-Depleting Mode

COTS Commercial Off the Shelf

CSM Charge-Sustaining Mode

CVT Continuously-Variable Transmission

DC Direct Current

DC/DC DC-to-DC

DoD Department of Defense

ESC Electronic Speed Control

EM Electric Motor

FET Field Effect Transistor

FLC Fuzzy Logic Controller

HE Hybrid-Electric

HE-RPA Hybrid-Electric Remotely-Piloted Aircraft

IAW In Accordance With

ICE Internal Combustion Engine

ISR Intelligence, Surveillance, and Reconnaissance

LIPO Lithium Polymer

xiv

MATLAB Matrix Laboratory

MAV Micro Air Vehicle

MEP Mean Effective Pressure

PCB Printed Circuit Board

PWM Pulse Width Modulation

R/C Remote Control

RPA Remotely-Piloted Aircraft

RPM Revolutions Per Minute

SI International System of Units

SM State Machine

SNR Signal to Noise Ratio

SOP Standard Operating Procedure

TDC Top Dead Center

UAS Unmanned Aircraft System

US United States

USAF United States Air Force

WOT Wide Open Throttle

xv

Nomenclature

Symbol Description (Units)

b Neural Network Bias (unit-less)

C Capacitance (Farad)

dB Change in Magnetic Field Strength (dB/dt)

dl Current Element (A)

fc Low-pass filter break frequency (Hz)

GetRCDutyCycle() Function to Retrieve RC Duty Cycle (unit-less)

GetTorqueRequest() Function to Compute Torque Request (N-m)

GetTotalAvailableTorque Function to Compete Available Torque (N-m)

Ibat Battery Current (A)

Iclutch Clutch Current (A)

Imotor Motor Current (A)

Io Electric Motor No-Load Current (A)

Kv Electric Motor Speed Constant (rad/V/s)

MaxICETorque Maximum Available ICE Torque (N-m)

MEP Mean Effective Pressure (Pa)

 ଴ Magnetic Moment of Clutch Dipoleߤ

N Engine Rotational Speed (RPM)

n Electric Motor Rotational Speed (RPM)

normalizedtorque Normalized Throttle Command (unit-less)

nr Engine Revolutions Per Cycle

xvi

P Internal Combustion Engine Power Output (W)

Pin Electric Motor Power Input (W)

Pout Electric Motor Power Output (W)

rad Radians

rad/s Radians per Second

R Resistance (Ohm)

Rint Battery Internal Resistance (Ohm)

Rm Electric Motor Internal Resistance (Ohm)

r Clutch Displacement Vector (m)

s Seconds

T Engine Torque (N-m)

torquerequest Torque Request From Autopilot/Pilot (N-m)

Uemf Electric Motor Electromotive Force (V)

Um Electric Motor Open Circuit Voltage (V)

u Clutch Displacement Angle (rad)

Vbat Battery Voltage (V)

Vd Cylinder Displacement Volume (cm3)

Vinput DC/DC IMON Reference Signal (V)

Wc Engine Work Per Cycle (W)

w Neural Network Scalar Weight (unit-less)

wp Neural Network Input (unit-less)

߱ Motor Rotational Speed (rad/s)

1

 IMPLEMENTATION OF A RULE-BASED OPEN-LOOP CONTROL
STRATEGY FOR A HYBRID-ELECTRIC PROPULSION SYSTEM ON A SMALL RPA

 I. Introduction

1.1 Background

 When one thinks of the history of unmanned aerial aviation, thoughts immediately go to

flying reconnaissance systems used in the 70’s, or depending on one’s definition, perhaps even

the feared V-1 and V-2 rockets of World War II. However, hybrid-electric unmanned aviation is

a far more modern concept. Prevalent use of unmanned aerial vehicles did not start until the

latter quarter of the 20th century [1], and hybrid-electric propulsion system use in such vehicles is

unprecedented. Hybrid-electric propulsion systems have been in use in road vehicles for several

decades. Ferdinand Porsche arguably created the first hybrid car in 1903 (uncertain to its

significance a century later) [2]. These hybrids were heavy and slow, but formed the foundation

for what would come later, including use in aircraft.

 However, hybrid technology in the early 1900’s fell by the wayside as the internal

combustion engine continued its prominent takeover from steam power and was refined again

and again. Introductions such as the diesel engine in the 1920’s and compressors such as the

turbocharger and supercharger in the same decade allowed the combustion engine to continue its

meteoric rise into man’s history. The combustion engine continued to dominate land vehicle

technological improvements well into the 1970’s, when the first real fuel crisis hit North

America.

 This 70’s fuel crisis stopped the trend of increasing horsepower and ignoring efficiency.

Automakers to this point had been in a competition to try to create more and more powerful

2

engines. However, these vehicles were fuel inefficient; incredibly pitiful in terms of specific fuel

consumption as compared to the cars of today. For example, a 1971 Mustang utilizing a 7.0 L

V8 engine with 375 HP achieved 10 miles per gallon (MPG) [3]. However, a 2011 Mustang

with a 4.6 L V8 engine with 412 horsepower can achieve up to 26 MPG. Once this fuel crisis

hit, the inefficiencies of such cars were highlighted, and automakers scrambled to find ways to

save fuel. Hybrid technology was explored briefly here, as work by Victor Wouk showed the

usefulness of installing hybrid-electric power trains into a Buick Skylark [4]. Audi also seemed

to take note, with the introduction of the Audi Duo in 1989. However, these hybrids remained

largely unsuccessful due to the end of the gas crisis in the late 70’s and the cheap availability of

fuel in the 80’s and 90’s.

 In the mid 2000’s another gas crisis struck, and finally hybrids were thrust into the public

spotlight. Cars such as the Toyota Prius and Ford Escape Hybrid flew out of showrooms as gas

skyrocketed to nearly $5 a gallon in some states. With interest in hybrid technology at an all

time high, applications for the concept have turned to other areas besides just road vehicles.

Aircraft have been largely untouched by hybrid technology, with many aircraft still flying with

engines that were designed decades ago. The interest in hybrid technology has led designers to

try to apply this technology to aircraft.

 Just as hybrid technology has advantages in road vehicles; it has several advantages in

aircraft as well. These aircraft have to be specially designed and built around this propulsion

system to take advantage of the benefits; hybrid systems need the advantages to outweigh the

disadvantages in order to make them practical. The need for a motivation comes from hybrid

systems inherent cost and weight penalties that come along with a hybrid system. Unmanned

3

aircraft, which do not have the added weight of a pilot, can easily take advantage of hybrid

benefits. Additionally, unmanned aircraft themselves are at the same time being thrust into the

defense spotlight. The world of unmanned aircraft is quickly becoming complex and heavily

invested in as evidenced by the Department of Defense (DoD) recent investments in the field.

1.2 Motivation

 The Department of Defense has ramped up the use of RPAs, with a goal of 54 combat air

patrols by 2011 [5]. An RPA has an incredible allure as an intelligence, surveillance, and

reconnaissance (ISR) vehicle because of the lack of a pilot to put in harm’s way. Indeed, over

100,000 hours were flown in 2004 alone. [5] The use of surveillance unmanned aircraft was

conceptual as far back as the 1940’s but came into use in the 1950’s as the U.S. started to focus

their efforts on ‘surveillance drones.’ These drones were designed simply to be controlled by an

operator on the ground via radar. The ability to now miniaturize systems and delete those that

are unneeded (such as the cockpit), can make the aircraft far more efficient, especially in terms

of weight. However, aircraft used today by the war fighter still come up short in a number of

areas. Aircraft can still be noisy in ISR missions because of the internal combustion engine

(ICE). Flight times can be limited by fuel use, and this is especially critical when target

information can be in windows as short as minutes. Having an aircraft have to end its mission at

an inopportune time due to fuel shortage could end up costing an effective data-collecting

mission. Additionally, fuel type requirements are critical, with the use of glow fuel and aviation

gasoline (AVGAS) dominating the RPA fuel type. These fuels, while cheap and plentiful in the

U.S., are expensive and difficult to acquire overseas. Therefore, logistically, this makes things

4

more difficult because more of the expensive fuels are required. Fuels such as AVGAS and

glow fuel also have lower flash points, and as such are more dangerous on naval ships.

 Therefore, the hybrid-electric remotely-piloted aircraft (HE-RPA) design is highly

practical. With the ICE providing power for longer range and the EM providing stealthy

quietness and efficiency for ISR missions, the HE-RPA is becoming more and more a focus in

today’s world. Additionally, much work is being done on the adaption of small engines for the

use of diesel fuel and JP-8. Diesel especially is far easier and cheaper to acquire overseas. A

combination of a strategically viable fuel and a HE system make a potent ISR aircraft for the

warfighter.

 However, the one area that the HE-RPA needs more development and research is in the

area of propulsion control. With the exception of a few, like German company Flight Design

[6], the area of control of hybrid-electric systems has been mostly constrained to the automobile

field. A main reason for this has been the level of complexity. The control strategy and code for

a hybrid controller is far more complex as compared to a controller for a regular vehicle (or

aircraft) [7]. Hybrid controllers must balance the requirements and parameters of several

additional systems on top of the systems that a normal ICE controller would supervise.

1.3 Problem Statement

Today, fighters from all nations now employ advanced technologies or clever versions of

common technologies to gather intelligence and attack the enemy. The history of unmanned

aerial aviation book in particular lists 52 countries as having an association with RPAs, being

manufacturing, operation, or both [1]. Surveillance, in particular, has been a huge focus. A

primary requirement of ISR is stealth, and this is where many current RPAs need more

5

development and research. According to the Unmanned Aircraft Systems Roadmap (2007-2030)

[5] , the DoD must invest in improved propulsive efficiency through alternative propulsion

power sources for endurance and unwarned ISR. The internal combustion engine of today is

mostly adequate for endurance, but is too noisy and can be detected easily both acoustically and

thermally. An electrical propulsion system seems the logical alternative, as it is quiet and

efficient. However, battery systems are woefully inadequate when endurance is considered and

add a significant weight penalty. Therefore, by looking at the automotive world, where

efficiency concerns have been high over the recent years, the hybrid-electric (HE) systems seem

the logical choice, and in fact are a feasible alternative. However, the control of these systems is

still under great study and debate. The primary concern of these HE systems on cars is

maximizing efficiency, while the production of noise is only a secondary concern. An RPA,

however, needs both; the efficiency for long endurance and the stealth for invisibility while on

station. The Unmanned Aerial Systems Roadmap (2007-2032) even states the ISR missions with

higher endurance requirements “Will require more sophisticated energy systems, such as fuel

cells and hybrid systems.” [5] Very little work, however, has been done in the field of control of

the propulsion systems for these aerial vehicles. There are many areas of study among HE

automobiles, and some of this can be paralleled in the aerial world. There are also some studies

done on advanced controllers such as the neural network controller by Harmon [8]. In fact,

Harmon states: “the control systems on a hybrid-electric remotely-piloted aircraft has three

objectives: increasing range, providing time for the RPA to operate in electric-only (EO) mode,

and provide battery power for the UAS’s sensors. In this light, the problem that is being solved

is implementation of a control strategy on a prototype propulsion system.

6

1.4 Research Objective

 The research contained here focused intensely on implementing the rule-based open-loop

control strategy on a propulsion system test bed for a small RPA. Therefore, there were two

critical objectives for this thesis. The first goal was to design and implement an open-loop

control strategy in C that would directly take commands given to it by a pilot or autopilot, and

translate those commands into efficient operation of a HE propulsion system. This leads directly

into the second objective, which is the validation of the control strategy at four specific design

points for flight. These design points were cruise, climb, endurance, and cruise with

regeneration. Validating the control strategy was broken down further into creating a test matrix

and analysis system in LabView, and building a test stand in which to develop the hardware and

sensors needed to validate the strategy.

1.5 Research Scope

 The controller created here is a result of converting a simple flowchart into a much more

complicated rule-based controller in LabView. The controller itself can be adapted for use in the

actual airframe, but as is the set up is not for use in the aircraft. As such, wiring of components

with diagrams of such wiring for aircraft use are not needed and ignored. Additionally, when the

controller makes its computations, it makes basic assumptions about the amount of power needed

to fly the aircraft. These equations are discussed in Hiserote’s master’s thesis [9] and are taken

partially from Anderson [10]. In reality, the aircraft would have multiple sensors needed to

determine things such as air density, airspeed, etc., and use these to make a more accurate

judgment on the power needed to fly. This controller is designed for use on small RPA, but

could easily be adapted for use on larger systems such as those suggested by Rippl [11] with the

right sensor suite and controls.

7

1.6 Methodology

 The author implemented traditional control theory and programming techniques in

designing this controller. The controller is assumed to have 5 operational parameters to account

for: rotational speed for both the ICE and the EM, torque output from the ICE and EM, and state

of charge of the battery pack. The basic rule strategy for the operating modes came from the

flowchart from the dissertation by Harmon, but multiple additional paths and starting points were

used. The controller state machine has 9 different operating modes that it switches between to

accomplish its mission, 4 of which are primary flight modes discussed briefly above. The

optimal path of energy use is controlled by the pilot in the scope of this research. The path could

optionally be determined using basic dynamic optimization strategies outside the controller and

then preloaded. Aircraft design is the ‘clutch-start parallel design’ from Hiserote’s 2010 thesis

on ‘UAS design’ [9] and does not include any other designs he mentions in his research.

1.7 Thesis Overview

 Chapter I of this thesis provides an introduction to the thesis and relevant background

information. Chapter II is a review of literature that applies to this thesis. Chapter III discusses

in detail the author’s methodology, including the state machine and analysis tools. Chapter IV

includes analysis of the controller in operations and results of the tests performed. Chapter V

discusses these results and relays relevant conclusions that the author has determined.

8

II. Literature Review

2.1 Chapter Overview

Hybrid propulsion technology has long been a subject of intense study. The automotive

industry in particular has led the charge in adapting hybrid-electric power trains for use in

everyday life, and resulted in drastic increases in fuel efficiency. However, the aviation world

has only just begun to intensely study the benefits of using hybrid propulsion in aircraft. The

research of controls specifically has been almost overwhelmingly biased towards the auto

industry, with very little work being done on various control methods for HE systems and their

effects on aircraft. Most research has been done on more complex types of intelligent controllers

such as fuzzy logic or neural networks. This chapter begins by briefly outlining the background

of the development of hybrid propulsion control and the various strategies. This includes various

sections on the components of a HE aircraft. The author then will analyze each type of control

method based on current research and present reasoning on why a rule-based controller was

chosen for the initial design.

2.2 Hybrid-Electric Propulsion and Configurations

 Hybrid technology, by its very nature and definition, combines the use of two or more

power sources for a variety of different uses and creates a more efficient vehicle. Hybrid

technology has many variations; however most of the work done today has been in one of three

areas: series hybrid, parallel hybrid, and the power-split hybrid. A great number of these designs

incorporate the gasoline internal combustion engine as the prime power source; however other

engines have been used such as diesel, gas turbine, or fuel cells.

9

 The series hybrid is a hybrid that uses the EM as its prime mover. A typical

configuration for the series hybrid is to have a gasoline engine drive a generator; this generator in

turn is connected to one or more electric motors which propel the vehicle. Series hybrids are

perhaps the oldest type of hybrid in use today; an early example was built by Ferdinand Porsche

in the early 20th century [2]. Another great example of series hybrid is a diesel locomotive,

which has been in use for many years. The reason that this hybrid has been in use for so long is

its general simplicity. A figure of the series hybrid is shown in Figure 1. The main advantage of

the series hybrid is that the internal combustion engine is not connected to the means of motive

Figure 1: Series hybrid configuration [12]

force, and therefore can operate at its optimum efficiency all the time. An example of this would

be the gasoline engine operating at the ideal operating line (IOL) continuously. However, the

main disadvantages of this system are the various losses that occur. The electric motor must be

sized exclusively for propulsion, and therefore will be heavy and provide a weight penalty to the

vehicle. Additionally, the means of generation of electric power is not as efficient as a direct

mechanical connection, incurring additional penalties. These losses are mitigated with larger

systems, which is why this system is typically applicable to large transport systems such as buses

and tow tractors [13].

10

 A parallel hybrid is a hybrid where two or more systems are combined, and both have

mutual or exclusive access to drive the vehicle. Consequently, this allows either the ICE or EM

to power the vehicle, or both, depending on the vehicle and setup. Figure 2 shows this

configuration. In automobiles, a parallel system is classified down even further into three

Figure 2: Parallel hybrid configuration [14]

subcategories: mild, power assist, and dual mode [15]. Mild parallel hybrids have a smaller

electric subsystem that assists the ICE; generally to provide regenerative braking and perhaps an

engine shutoff feature. A power assist system uses a larger electric subsystem to provide more

capabilities, to include electric-only modes of operations and electric acceleration assist. Finally,

the dual mode hybrid incorporates a still larger electric subsystem to account for 30% or more of

the total system power of the vehicle [15]. Since the electric subsystem accounts for more power

and is, in general, more efficient, the dual mode hybrid has the greatest efficiency of these three

subcategories but in consequence costs more and is more complex. A variety of undergraduate

and graduate research, including that which has been done at Virginia Tech [16], has focused on

the parallel hybrid type.

11

 The final type of hybrid, the power-split hybrid, is a combination of the series hybrid and

the parallel hybrid. There is no direct connection, but rather there is a planetary gear set that

allows transfer of power among the various systems to the road [13]. The power-split system

essentially decouples the driver’s actions from direct involvement from what is on the road. The

comparative efficiency of the power split hybrid, due to its nature of combining the various

sources more efficiently than other types of hybrids, is more effective at reducing fuel usage and

emissions. However, it is also bound by this complexity in terms of cost and governing control

strategies that are required for operation. Not only do the various elements of the system require

controllers, but the strategy and ability to talk to one another and operate in harmony increases

the complexity of the system as a whole. The power-split design is found on a number of

vehicles today, including the Toyota Prius and the Ford Hybrid Escape.

2.3 Applications of Hybrid Power

 Hybrid power trains, by their very definition, can be found in numerous applications. As

stated in the chapter overview, automobiles are the field where the hybrid power train is most

applied. Ferdinand Porsche actually built the one of the world’s earliest gasoline-electric hybrids

in 1903 [2]. However, the first well known hybrid vehicle in the world was the Toyota Prius in

1997 (in Japan), followed by the release of the Honda Insight in the U.S. in 1999. Both of these

vehicles demonstrated that the hybrid vehicle was feasible and more importantly, more efficient

than its gasoline powered brethren. In terms of RPA use, hybrid-electric power systems have not

seen much use in the forms that are mentioned in this paper. When selecting the type of hybrid-

electric system for use in an RPA, Hiserote has already completed a good deal of conceptual

analysis and selected the dual mode parallel type for use. Specific components of this hybrid

system will be discussed further in Chapters III and IV. However, control of these vehicles

12

remains an important factor, as the efficiency of the aforementioned vehicles would not be

achieved without a solid controller strategy to realize it.

2.4 Hybrid-Electric Control Strategies

There are three main strategies currently employed when operating a hybrid-electric

vehicle (HEV): electric-only mode, charge-sustaining mode (CSM), and charge-depleting mode

(CDM). Electric-only mode refers to using the electric motor by itself to propel the vehicle or

aircraft forward. In most cars this allows for low-speed operation, while in aircraft this can

differ. Endurance mode in an aircraft, as discussed briefly in Chapter I, is most useful for ISR

portions of missions. Charge sustaining mode refers to operating the ICE as the main method of

propulsion and using some or all of the EM’s available power for recharging the batteries. A

typical strategy, depending on the durability of the batteries, would be to start charging at 20%

capacity and stop charging at 30-40% (often called a “thermostat” method) [8] . As a result of

the battery charge, the EM can then be used to either assist the ICE or provide low speed

operation until the battery state-of-charge (SOC) has dropped to 20%. From here, the cycle

would repeat. This will be explained in greater detail in Chapter III. The final strategy, the

CDM, refers to using the EM and the ICE together to propel the vehicle, with no recharging

being done. This means that the EM is supplying its power as a supplement to the ICE and

drains the electric reserve power. Typically this is used in parallel hybrids to allow for “plug-in”

use; in an aircraft this could be used for climbing. The CDM is used until the batteries reach the

specified level and then the CSM is activated. In CDM, the batteries typically are used heavily

at the beginning of the cycle while the pack has a high SOC. This makes the strategy perfect for

“plug-in” use i.e. plugging the car in at the end of the day. For aircraft this is just as feasible, as

the aircraft could be plugged in before the start of the mission and then plugged in following the

13

mission. The energy then used during the mission from a plug in source is far cheaper than

regular gasoline, glow fuel, AVGAS, or diesel, and its efficiency is much higher. Hybrid

vehicles on the road today use a combination of all three of these techniques to propel the vehicle

and to try and achieve the greatest fuel efficiency.

An HE-RPA operating strategy, however, varies greatly based on the mission profile and

aircraft design that the user wishes to assign. HE-RPA’s are more restricted in many aspects,

including noise and weight, which a regular automobile is not restricted in. Mission profile

primarily dictates noise restrictions. The aforementioned endurance mode is greatly desirable in

missions where stealth is of primary importance, however having a longer endurance mode

requires larger battery packs, which increases weight. The weight of the aircraft greatly factors

in to the available time on station. Therefore, the control strategy of the HE-RPA primarily

needs to be designed around the given mission, or be able to switch between pre-loaded modes

for differing legs of a mission.

 The controller on the HE-RPA must be designed so that all the individual pieces operate

in concert with one another to achieve the maximum efficiency for the HE system. Each piece

has its own challenges when being operated which determine how the controller is designed. In

the sections that follow each component will be discussed in detail and the challenges of control

outlined.

2.5 Control Elements

 The controller has various combinations of five main components that it must control: the

electric motor, internal combustion engine, the battery pack, the electromagnetic clutch, and the

one-way bearing. These five components are what make up the parallel hybrid that Hiserote

14

describes; this is the system that will be used to demonstrate the propulsion system concept.

Each system has its own challenges in terms of control, but all center on the determination of the

error between requested output and the actual output. The next few sections will detail how each

component is typically controlled along with outlining the challenges of control.

 2.5.1 Electric Motor

 Electric motors are the first main component in the hybrid system. As described earlier,

the electric motor is ideal because of its high torque at low revolutions per minute (RPM) (as

compared to an ICE) and the fact that it gives the aircraft the ability to operate in ‘stealth’ mode

(again, as compared to using the ICE). High torque at low RPM versus an ICE means that the

EM delivers its torque at a very low RPM

Figure 3: Electric motor model [17]

i.e. near zero, while even the strongest small diesels generally need to be above 1000 RPM.

Each EM requires a controller to dictate its operation. Electric motors have several classical

parameters that distinguish between them: Kv (motor proportionality constant), Io (motor no-load

current), and Rm (motor internal resistance). The data for these constants is usually given by the

motor manufacturers. Losses are characterized by the no load current and the internal resistance,

15

which are very important things for the controller to have stored so it can accurately calculate the

motor efficiency. A model of an electric motor is shown in Figure 3; in this model, Um is the

open circuit voltage and Uemf is the motor output voltage.

There are several governing equations that will be used throughout this thesis when

discussing electric motors. These first order equations are presented by Lundstrom [17], and are

shown below:

 ݊ ൌ ௘ܷ௠௙ כ ௩ (1)ܭ

 ௜ܲ௡ ൌ ௠ܫ כ ܷ௠

(2)

 ௢ܲ௨௧ ൌ ܫ כ ௘ܷ௠௙

(3)

 ௢ܲ௨௧ ൌ ߬ כ ߱

(4)

where ݊ is the motor rotational speed in RPM, ௜ܲ௡ is the power input to the motor in watts, ௢ܲ௨௧

is the power output of the motor in watts, ߬ is the torque output of the motor in Newton-meters

(N-m), and ߱ is the rotational speed of the motor in RPM. Here, ݊ and ߱ are used as two

different values for motor speed, where ݊ is in RPM and ߱ is in radians per second (rad/s).

These equations are commonly rearranged into the following equations, which relate Pout and n

to input voltage (open circuit voltage) and current:

 ௢ܲ௨௧ ൌ ܫ כ ௘ܷ௠௙ ൌ ሺܫ௠ െ ௢ሻܫ כ ሺܷ௠ െ ௠ܫ כ ܴ௠ሻ

(5)

 ݊ ൌ ௩ܭ כ ሺܷ௠ െ ௠ܫ כ ܴ௠ሻ

(6)

16

The efficiency of the electric motor,ߟ௠, is then:

௠ߟ ൌ ௢ܲ௨௧

௜ܲ௡
ൌ

ሺܫ௠ െ ௢ሻܫ כ ሺܷ௠ െ ௠ܫ כ ܴ௠ሻ
ܷ௠ כ ௠ܫ

(7)

 Motor control, sometimes called electronic speed control (ESC), is how brushless electric

motors are controlled. Brushless electric motors are alternating current (AC) machines. The

ESC controls the input voltage to the motor by sending a pulse width modulation (PWM) signal.

By varying the pulse length, amount of time the motor is receiving power is controlled, which

thereby controls the speed of the motor. [18] Losses in the controller however, are harder to

quantify. The motor manufacturer will occasionally give general numbers for losses due to

electronics, but losses due to motor speed and duty cycle are generally not known and will be a

challenge to model. Lundstrom describes losses at duty cycles less than 100% as being divided

into two types: losses in the electronics due to additional switching in field effect transistors

(FET), and other losses due to PWM signal losses. Lundstrom goes on to suggest that all motors

in his paper performed with lower efficiencies than what manufacturers had reported. As the

design of the RPA is primarily with off the shelf components, this is a huge challenge when

attempted to model the motor in the controller flow chart. If the controller expects the motor to

output a certain amount of power and it does not get the power due to unexpected losses, the

system will perform sub-optimally. Losses in the motor need to be accounted for in the

controller programming. Lundstrom also runs his tests with a variety of motor controllers, many

of which are put into the selection process for the motor controller that will be used.

 A direct current (DC) machine is another type of EM. These motors are typically

brushed and use six main parts: a commutator, an armature, brushes, the axle, field magnets, and

17

the DC power supply. The motor works by flipping the magnetic field back and forth so the axle

will spin (the axle being the torque transferring item). The brushes provide a mechanical means

of transferring current to the electromagnet (field magnet). The commutator flips the electric

field back and forth as it spins, which creates the motion. The armature then spins around the

inside of the housing with its magnetic field flipping back and forth as the commutator changes

the current direction. This simple type of motor has been in use since 1886 [19]; an example is

shown in Figure 4. Simple DC motors are controlled with voltage; each motor is again specified

a Kv value and this in turn controls the speed. The current controls the torque output of the motor

as described in the electric motor equations above.

Figure 4: Diagram showing brushed DC motor [19]

 2.5.2 Internal Combustion Engine

 The second component of the hybrid-electric system is the internal combustion engine.

This is the main power source for the RPA. While batteries combined with an electric motor

have high efficiencies, they currently do not have the mission endurance that the U.S. military is

looking for. Therefore, the ICE is considered the main power source. The ICE is a heat engine

18

that combusts fuel in an internal chamber to produce work. Model aircraft engines like the ones

that are used on the propulsion system prototype are commercial off-the-shelf (COTS) two or

four stroke engines. A sequence depicting a two-stroke engine cycle is shown in Figure 5. The

Figure 5: Two stroke engine cycle [20]

two stroke engine is fundamentally different, as its name suggests, because it produces a power

stroke for every revolution of the crankshaft (two movements of the piston), while the four stroke

engine produces a power stroke for every two revolutions of the crankshaft (four movements of

the piston). There are many differences between the two, but this thesis focuses on governing

equations and controlling the engine output, for which these equations apply to both engines.

Figure 6 depicts the movements of a four stroke engine. From Heywood [21] several equations

are shown that determine engine performance. It is then important to first define mean effective

pressure (MEP), a crucial performance measure:

ܲܧܯ ൌ ௖ܹ/ ௗܸ

(8)

19

where Wc is the work per cycle, and Vd is the displacement volume of the cylinder of the engine.

MEP is then defined as the work per cycle per unit displaced. MEP can then be related to power

with the following equation:

ܲ ൌ ܲܧܯ כ ௗܸ כ

ܰ
݊ோ

(9)

Here N is the RPM of the engine and ݊௖ is the number of revolutions per cycle (one for a two

stroke engine or two for a four stroke engine). This is the resulting power output of the engine.

Figure 6: Four stroke operating cycle [21]

MEP can also be related to the torque output of the engine:

ܶ ൌ ܲܧܯ כ ௗܸ

2݊ோߨ

(10)

where T is engine torque, and is a critical parameter for engine control.

20

There are several challenges when controlling and accurately modeling ICE’s. As with

any off the shelf component, there is always the danger of the manufacturer over or under

estimating the performance capabilities of their products. Without comprehensive testing to

provide an accurate map of the engine capabilities, the controller must do its best to estimate the

amount of torque and power the engine provides. There are a large number of papers and articles

written on testing of engines and estimation of the various states. State estimation on the ICE

centers primarily on one parameter: torque. Torque estimation is comparatively easy on larger

hybrid-electric systems such as cars and buses. In these methods, the state estimator (in this case

called an observer) uses one of many non-linear models, such as the sliding mode observer [22],

to observe the engine torque. This method, while complex, has been proven to be accurate.

However, the estimator uses a myriad of sensors that are simply not feasible on a small RPA due

to weight and size constraints. Sensors such as rotational speed sensors (including their

mounting hardware) that are mounted on the cars automatic transmission torque converter and its

main crankshaft are far too heavy for use on an RPA, so other methods must be explored.

 Another method used for torque estimation relies only on “signals that would be readily

available in a mass-production car.” [23] This refers to signals such as rotational speed and top

dead center (TDC) positioning, which on a car are readily available. The above reference has

correlations with modern RPAs in the sense that engine rotational speed is critical. This was a

major parameter on the controller the author programmed. However, the measurement of TDC

on a small RPA engine is simply not feasible. The TDC measurement is a very noisy signal and

highly difficult to determine accurately [24]. Additionally, the estimator uses the following

equation to determine torque:

21

௘ܫ כ ሷߠ ൌ ௖ܶ௢௠௕ െ ݂൫ߠ, ሶ൯ߠ כ ሶߠ ଶ െ ௟ܶ௢௔ௗ

(11)

where θ is the engine rotation angle, ௖ܶ௢௠௕ is the combustion torque, ௟ܶ௢௔ௗ is the extended load

torque, and ܫ௘ is the engine inertia. The difficulty in this equation is the engine inertia term. The

term takes into account the mass of the oscillating parts, which is more difficult to determine in a

small ICE accurately. Most small engine manufacturers do not provide this data.

 A method that has been explored by numerous research students is the method of using a

type of torque sensor to measure the engine output, most notably Menon [25]. While this

method is great and reasonably accurate for bench testing of ICE engines, it is also not feasible

on an aircraft due to the dimensions of the apparatus. Menon’s setup used a moment arm that

would deflect as the engine applied torque, which allowed him to use simple equations and a

load cell to measure the reaction torque required to keep a freely rotating engine in place.

However, Menon did use a method for measuring in-cylinder pressure which could be extremely

useful. He used a sensor developed by Optrand [26], which is mounted inside the cylinder in a

threaded hole. The sensor was used along with a basic equation for mean effective pressure to

determine an estimate for engine output torque. While feasible, and research by the author

suggests usefulness of an estimator, the torque estimator was not attempted due to time restraints

with the HE system.

 2.5.3 Batteries

 The third component that needs to be controlled is the batteries. Batteries, in general,

provide power for the electric motor during the section of the mission where endurance is most

22

crucial. Batteries generate electricity by converting chemical energy by redox reactions [27].

The electrical energy flows between two electrodes, designated the anode and the cathode. The

anode is typically designated as the negative electrode, and the positive electrode is designated

the cathode. A typical battery model is shown in Figure 7. Here the anode, cathode,

Figure 7: Battery model showing anode, cathode, and electrolyte separator [27]

and electrolyte separator are shown. The electrolyte separator is the boundary between the two

chemicals and must be relatively impermeable to the two solutions to avoid short circuiting the

battery. The electrolyte separator is usually made from a simple material that functions to block

the two chemicals while being lightweight. Battery equations can be taken very simply from

Ohm’s law:

 ௕ܸ௔௧ ൌ ௕௔௧ܫ כ ܴ௜௡௧

(12)

where Vbat is the battery voltage measured across its terminals, Ibat is the current flowing across

the batteries terminals, and Rint is the internal resistance of the battery. The main parameters that

23

the controller will need to know from the batteries are voltage, current, and state-of-charge.

Voltage and current are easily obtained from direct measurement, but determining SOC is

another matter. There are many methods suggested for determining SOC, but two that are

suggested and are feasible on an RPA are voltage-based table look-ups and current-based

coulomb counting methods [28]. The method that the author implemented is a voltage based

method, as this was more widely used in literature and the figures and curves for determining the

SOC are readily available. When using this method, corrections must be developed for

differences in actual voltage levels, temperature of the battery, discharge rate, and the age of the

cell. More detail about this method is shown in Chapter III.

 2.5.4 Electromagnetic Clutches

 An electromagnetic clutch is a device that is operated electrically but transmits torque

mechanically. There are many versions, but the primary version is a single-face design. The

single-face clutch has four basic parts: the coil (as referred to as a field), a hub, an armature, and

a rotor [29]. The coil is the primary magnetic piece that actuates clutch motion. It is typically

made of carbon steel which combines magnetic properties with lightweight strength. By

activating the electric circuit on the clutch, the coil is energized and produces an electric field.

When the magnetic flux produced by this field overcomes the air gap that is between the

armature and the coil, the armature is drawn to the rotor. This connection then permits the

transmission of torque through the central clutch shaft. Magnetic and friction forces accelerate

the armature and its hub to match the rotor speed. Rotor and armatures typically slip for about

0.02 to 1.0 seconds until the speeds match [29]. The single-face design is advantageous to the

RPA because of its lightweight and simplistic design. A depiction of the electromagnetic clutch

24

is shown in Figure 8. By increasing the current to the clutch, the magnetic field strength will

increase.

Figure 8: Electromagnetic clutch [29]

Magnetic flux and current are related by Equation 13:

ܤ݀ ൌ

଴ߤ כ ௖௟௨௧௖௛ܫ

ߨ4
X

݈݀ כ sin ሺݑሻ
ଶݎ

(13)

where dB is the change in magnetic field strength, Iclutch is the clutch current in amps, ߤ଴ is the

magnetic moment of the dipole, r is the displacement vector of the coil to the point of the

magnetic field of interest, u is the angle between the vector and a current element dl. It becomes

clear through this equation not only that increasing the current increases field strength, but

applying the differing voltages to a clutch results in different currents, and therefore results in

differing field strengths. Since the field strength is related to the grip strength of the clutch, this

is of great importance when selecting a clutch for use.

25

 2.5.5 One­Way Bearings

 A one-way bearing is a simple device that allows power transmission from two sources.

The bearing is typically a needle-type bearing with rollers. The rollers are mounted inside of a

larger power transmission device, typically a gear. The torque from the shaft is transmitted by

the rollers that wedge against the interior ramps when the input shaft spins. If the shaft does not

spin, or in the case of the RPA the ICE is at idle, the larger gear will spin around the rollers and

the bearing will not transmit torque. The specific setup of the HE-RPA will be discussed in

Chapter IV, but a basic picture of the one-way bearing is shown in Figure 9.

Figure 9: Example of a one-way bearing.

2.6 Testing Setups

 The author would be remiss if testing setups were not discussed. One of the objectives of

this thesis is validation of the controller model via testing versus an analytical model. Wilson

[24] and Menon [25] are two previous researchers that have done a great deal of testing with

small engines. Some pieces of their setups have been adapted or tweaked for use in the

26

controller test setup. Additionally, Rotramel [30] and Mengistu [31] have done a great deal of

work on this particular test setup and have contributed greatly to its development. The basic

challenges from testing setups come from signal noise and environmental disturbances. Ways to

handle these noises usually involve implementing filters to correct and get rid of disturbances.

Wilson in particular had to implement signal filters due to noisy operating environments with the

small engines. The controller itself can also implement electronic filters to scale data and get rid

of data that is noisy. The main goal is to increase the signal-to-noise ratio (SNR) to the best

value. SNR is paramount, but there are other bigger challenges that mitigate this to a lesser role.

 Another challenge is getting the controller to control the system as efficiently as possible,

and this is indeed the main topic of this thesis. Different controllers handle differently in terms

of how they optimize a system; and a discussion of each controller type and then the final choice

of controller is discussed in section 2.9.

2.7 Rule-Based Controllers

 Rule-based controllers are, conceptually, the simplest controllers to understand and

implement. Rule-based controllers have been used throughout history and due to their

ruggedness, provide very reliable designs. They can even be, in some cases, as efficient as their

more ‘intelligent’ brethren.

 A rule-based controller, at its very core, is simply a set of rules. The input to the

particular system in question is a torque request. This torque request is fed into the controller,

and the controller decides based on a given IOL which power mode to use. In this specific

model, a torque request above the IOL then moves into the right hand side of Figure 10, where

another decision based on available EM torque is made. Once the controller decides what

27

system to use and how much torque to be applied, the changes are fed into the system and the

cycle repeats itself for as long as the system is operational. The controller is simplistic and easy

to design, so the speed to make the calculations and decide on an action is comparatively fast.

This can be easily demonstrated by a block diagram. This is a very basic model, but it

Figure 10: Rule-based controller block diagram [8]

demonstrates the advantages of a rule-based controller: simplicity and reliability. Additionally,

since the number of rules determines its complexity (as in a fuzzy logic controller), the controller

is only as complex as the designer makes it. Unlike a fuzzy logic controller, rule count does not

exponentially increase.

 There has been much research on rule-based controllers around the world. Harmon uses

a rule-based controller to check his results on his neural network design. This controller uses a

28

concept that will be a topic of intense testing in this thesis: the ideal operating line concept

discussed and tested in great detail by A.B. Fransisco from U.C. Davis [32]. The aforementioned

IOL is essentially a line that describes points based on RPM and torque where the engine is

operating most efficiently. The IOL is determined by varying engine speed and determining

torque at its most efficient points. Theoretically, the engine will be restricted to operating at

these points, and therefore efficiency will improve. A figure of Fransisco’s IOL diagram for a

car is shown in Figure 11. In the figure the IOL is shown in the yellow line. The strategy for

Figure 11: IOL for an automobile. Note conventional map with IOL overlay [32]

any type of controller would be to operate the engine at this line to maximize efficiency. A rule-

based controller could possibly be ideal for this. There are several different strategies for rule

based-control, and another thesis student, R.W. Schurhoff, has done quality work on explaining

the different methods.

29

2.8 Rule­based Control Methods

There are many concepts for rule-based control that have been tested or used in the

automotive industry. Most of these concepts, however, have not been used in an RPA

application. Schurhoff, in particular, outlines in detail several concepts for rule-based control of

a Continuously Variable Transmission (CVT) in his master’s thesis [33]. These concepts are

also repeated in a myriad of ways in other papers that discuss control strategies for HE systems.

They will be discussed in detail below, as their relevance to the author’s implementation of a

control strategy is high.

2.8.1 Sloped Engine Engagement Strategy

 In the sloped engine engagement, the engine is engaged and disengaged based on a

simple measurement of vehicle speed (in this case the vehicle is a car). The vehicle starts in all-

electric mode, and once the vehicle hits a certain speed the engine is engaged. If the speed

Figure 12: Diagram of sloped engine engagement strategy [33]

drops below a certain threshold, the engine is disengaged and the vehicle continues on in all

electric propulsion. In this mode the SOC of the battery also affects engagement: if the SOC of

30

the battery drops to a set level, the engine will gradually be engaged to recharge the batteries. A

diagram of this concept is shown in Figure 12. In this case the appropriate level of SOC

recharge threshold would need to be selected based on vehicle design. Another thing to note is

that the SOCbreak and SOClo points have a slope between engine engagement and disengagement;

this acts like a control gain between engagement and disengagement. If the slope gets steeper

(the battery SOC is getting very low), the engagement speed will change more rapidly. In this

particular control strategy, Schurhoff goes on to discuss limitations as they apply to an

automobile. However, this design has different limitations when applied to an aircraft.

 With an experimental RPA that is being designed for flight, several things that Schurhoff

considered as limitations in his thesis are not applicable here. Primarily this includes emissions,

because as the engine cools from being in extended EOM, tailpipe emissions are adversely

affected. However, RPA’s have no such limitation, and are not regulated in the same way cars

are. Additionally, a simple 4-stroke engine that is used in small RPA’s does not have an engine

computer that will try to compensate for low engine temperatures by increasing fuel delivery.

These small engines deliver roughly the same fuel/air mix provided the mechanical settings do

not change.

 Overall, this method is not viable for use exactly as described in Schurhoff’s thesis. First,

generation by the EM is nearly always going to be engaged in practice, as the HE-RPA has

accessory loads that need to be compensated for by the EM in generation mode that a normal car

would not have to compensate for. Most hybrid car designs use dual 12 V (for accessories) and a

higher voltage system for drive, where as the HE-RPA will be using a single system for

everything. Therefore, the EM is always going to be engaged and its engagement does not need

31

to be varied. However, for the purposes of testing, this method can be used and will be discussed

in Chapter III.

 2.8.2 The Stepped Engagement Strategy

 Another strategy discussed is the use of a fixed line to choose when to engage the engine.

The line would be preset based on the designer’s choice for when to use battery recharging and

how to operate the engine on its IOL. A figure showing this relatively simple engagement

strategy is shown in Figure 13. This strategy’s main strength is its reliable simplicity: it is

Figure 13: Stepped engine engagement strategy [33]

always known when the engine will engage and disengage, and buffers can be set in place to

prevent undesirable rapid on/off cycles. Schurhoff again discusses many disadvantages to this

32

method in a land based vehicle, and again many of them are not applicable to an aircraft. In

practice with a car, there is a negative torque applied to the power train as the engine is engaged

from rest while the EM is propelling the vehicle. In this case, the clutch will slip as the engine is

accelerated up to the EM speed. Passengers in this case will feel a slight jerk as the negative

torque is applied, which is not desirable. However in an A/C, especially an unmanned one, this

has no bearing as long as the negative torque does not adversely affect flight characteristics or

sensors. The negative torque could, in theory, produce a large torque if the clutch moment arm

was not along the centerline axis of the aircraft. This is explained in detail in Chapter III.

2.8.3 Two stage “pedal split” torque strategy

 In the above cases, researchers primarily discussed how the engine is engaged and

disengaged in respect to battery recharging and SOC. In the next two cases the primary

discussion will focus on how to split the torque between the EM and ICE. First the simple

method will be discussed. In the case of an A/C, the only input that the operator/autopilot

directly has any command over is the throttle lever (with respect to the hybrid controller,

directional controls i.e. ailerons and the rudder are not considered). The basic concept of this

strategy is to split the throttle input into two regions: one for direct control of the EM torque and

one for direct control of ICE torque. The throttle commands the ICE directly until its maximum

torque is achieved, and then the EM continues to provide the remaining torque as the throttle

lever is pushed to 100%. A diagram of this is shown in Figure 14. The limitations to this

strategy are immediately apparent: they give no adaptability for differing conditions, and do not

take into account the battery SOC. This particular strategy did give some insight into actual

33

Figure 14: Two stage pedal split strategy [33]

implementation on the HE-RPA, and its modifications will be discussed later in Chapter III.

 2.8.4 Three Stage Torque Proportioning

 The three stage proportioning strategy is similar to the two stage strategy, with the

exception that the top end has an additional setting for high power applications. In the case of a

car, the first stage is engine use up to the IOL, the second stage uses EM torque, and the third

stage uses engine fuel enrichment to give an additional boost torque for maximum power. The

use of the IOL band for the engine, once again as in the two-stage method, allows for reasonably

efficient use of the engine in its ideal region. The use of the IOL also allows the EM to be used

conservatively to conserve battery power for endurance operation. The advantage here is the

flexibility of the third stage. In an A/C with a mechanical carburetor, the third stage cannot be

used for fuel enrichment since the fuel mixture is set before takeoff. However, the third stage

34

can be used for a myriad of other applications. For example, the third stage could be the “boost”

phase of the EM, where it is operated outside of its continuous rated power regime for brief

periods.

2.9 Intelligent Controllers

 The field of intelligent controllers is one of intense study. There are several different

types that are used currently on hybrid automobiles today. These types include fuzzy logic

controllers and neural network controllers. Research that has been done on these types is

described below.

 2.9.1 Fuzzy Logic

 Fuzzy logic controllers (FLC), at their very basic stage, are basically rule-based

mathematical systems in which the logical variables can take on values between 0 and 1 rather

than just 0 or 1 [34]. Fuzzy logic control, as described by Jantzen, is “control with sentences

rather than equations.” [35] Alptekin et al. describe fuzzy logic controllers as appealing for

nonlinear modeling ability and robustness in the face of imprecise inputs [36]. At first glance,

this may seem to be ideal in the airplane environment. In fact, fuzzy logic controllers have been

implemented for autonomous flight control and such have been proven. Shown in Figure 15 are

two diagrams for example fuzzy logic controllers.

 However, there are drawbacks to a fuzzy logic controller. First, its’ simple method for

determining solutions to problems is also a hindrance. Since a fuzzy logic controller use rule

sets to make decisions and the problems are often nonlinear, the control algorithm goes through

“exponential rule expansion.” Each input variable in this case has a separate rule formed

35

Figure 15: Block diagrams of two fuzzy logic controllers. Pictured left is a feed forward
controller, right is an adaptive parameter fuzzy logic controller.

for each possible combination of input membership functions. The system works well for simple

low-input systems, but the rule sets can quickly increase to an unmanageable number with even a

small increase in the number of inputs. In the case of the RPA, there are 16 designed inputs to

the controller. If the controller has X amount of membership functions for the input, this would

require 16 (in some cases even more) raised to the X rules. It becomes easy to see that rule sets

become unwieldy after X is greater than 4 or so. Usually an attempt is made to reduce the

amount of rules by ignoring rules that would never appear in the operating environment, and this

is probable in the situation of the RPA propulsion system. Many different fuzzy logic controllers

have been used in HEV’s, most notably authors like Salman, and Lee. Salman’s controller in

particular, focuses on the energy management for a CS type of HEV [37]. The controller has

advantages when used for supervisory, task oriented control. It can also permit the designer to

design the controller so that it will mimic his or her own preferences.

 2.9.2 Neural Network Controllers

The neural network controller is another type of intelligent controller. These types of

controllers are useful when the plant model is very difficult to model exactly. As the name may

36

suggest, a neural network controller attempts to mimic the human brain when modeling and

controlling a system. Hagen and Demuth describe the neural network controller as a function

approximator [38]. In this case of a neural network, the network is made up of many individual

pieces called neurons. Each neuron has a scalar input which is multiplied by a weight, w. This

Figure 16: Basic neuron for a neural network [38]

input wp, is then added to a bias, b. The result is sent to a transfer function. The transfer

function produces an output, which is the scalar output from this neuron. The transfer function is

chosen by indentifying what particular piece of the problem that the neuron is attempting to

solve. The above description is of a single input neuron, but neurons can have multiple inputs.

To truly get the greatest level of control, multiple neurons are used and combined into several

layers. These layers combine into the neural network, and are considered universal

approximators [38]. Once these networks are formed, they are trained. Neural network training

is basically another way of saying that the weights and biases need to be determined.

37

 Neural networks require this training to learn and adapt their coding to new problems.

Neural networks are trained using a variety of methods, some of which are based on gradient-

descent approaches. The most popular way of training is by using the back-propagation method.

As stated above, this is based on a gradient descent method. For multilayer networks, the output

of one layer becomes the input to the next layer. The back-propagation method itself completes

this process by using the gradient descent optimization procedure. To start the algorithm, a set of

examples are provided that model proper network behavior. As each input is applied, the output

is compared to the target output of the system. The algorithm then corrects and adjusts the

network to minimize the error of the output and the target output. By using the steepest descent

method, the negative of the gradients of the function will always guarantee a descending

direction, but it is not necessarily the most efficient way to minimize the error. There are many

other approaches, but as this is not the focus of this paper, they will not be discussed at this time.

 2.9.3 Other Intelligent Controllers

 Fuzzy-Logic and Neural Network controllers are two of the most prominent examples of

intelligent control, but there are other methods that have been used. An adaptive controller is

designed to react and adapt to unknown parameters in a plant [39]. Matthews has done research

on designing an adaptive controller for micro air vehicles (MAV). A rigid, non-adaptive

controller could be optimized for one path, but if unknowns force a deviation then that controller

will either function less optimally or may even become unstable. An adaptive controller could

adjust to this deviation and change parameters in the plant, thereby minimizing the error in the

system. Most adaptive controllers achieve this by some form of state estimation, where the

estimator is used in conjunction with changing controller parameters to adjust the control signal

and minimizing the error [40].

38

Another type of intelligent controller is a controller that uses optimization based on

genetic algorithms. This type of controller minimizes (or maximizes) the objective function

using a multi-point search, as opposed to a single point search. In controllers without genetic

algorithms, a single point search can be slow and computationally intensive. The search also can

become stuck in local minima and not actually converge on an optimal solution. Additionally,

the strict single point mathematical method requires the condition that the variables in the

problem are continuous, which a genetic algorithm does not require. Genetic algorithms employ

search procedures based on natural selection, and since it uses a multi-point search rather

Figure 17: Genetic Algorithm block diagram [36]

 than a single point search, it can adapt to irregular search spaces much better. Additionally, the

algorithm is made better by the introduction of random changes to key conditions after each new

‘generation’ has been produced. A diagram of the genetic algorithm controller is shown in

Figure 17.

39

2.10 Selection of Control Method

 Based on the research done by the author and the advisor, a rule-based controller was

selected for use in controlling the prototype RPA propulsion system. The rule-based controller

was selected because of its inherent simplicity and because of the work that had already been

previously done by Harmon. Since the aircraft will be flight tested and subject to rigorous

government regulations, simplicity was deemed paramount. This enabled the author to base the

thesis off this work and have a more efficient design that will make the propulsion system proof

of concept much more effective.

40

III. Methodology

3.1 Chapter Overview

As outlined earlier, rule-based control can quickly become very complex when different

scenarios and situations are considered. Chapter III outlines the methodology used by the author

in developing the controller logic for control of the hybrid propulsion unit. The chapter begins

by discussing various concepts of rule-based control that will be evaluated. This is followed by

outlining the various states that are used inside the overall state machine of the controller. Worth

noting is that the parameters listed in the tables in these sections are for specific test setups, but

the controller is general enough that the parameters can be easily changed to adapt for different

engines, motors, or gear ratios. The chapter concludes with an overview of the equipment used

to test and verify proper operation of the controller, and the procedures used for validation.

3.2 Open­Loop State Machines

 The controller used here is described as an open-loop state machine, but that requires

some explanation. In an open-loop controller, the error of the true value and the actual

commanded value are unknown to the controller. It does not use these values to make any fine

tuning to the parameters. In a closed-loop controller the reverse is true; the controller has

feedback to receive the values of error. It uses this to adjust the parameters accordingly. The

rule-based controller presented here is not a closed-loop machine in a true sense, but it can have

pseudo closed-loop behavior. The piece that actually closes the loop is the operator. The

operator of the A/C has knowledge of the A/C speed and flight characteristics and adjusts the

throttle accordingly. The controller interprets that signal and then decides how to split the power

41

sources on the A/C. This key fact is used throughout the code to establish an efficient open-loop

state machine.

3.3 The State Machine

The controller for the HE-RPA uses a standard computer science “state machine” for

governing the controller’s decisions. The concept of programming the controller is to get a basic

structure of the controller working, with many manual modes of operation. Then, as the

controller is fine-tuned, more and more of the basic functions are automatically controlled rather

than requiring the user to control it. The state machine (SM) of the controller contains many

“states;” each of these states represents a different operating regime. These regimes are outlined

by Harmon [8] and broken down further for the purposes of this thesis. The different regimes are

(with state numbering system as used by the controller):

0. Reset

1. EM Rev

2. ICE Start

3. ICE Idle

4. Ground Roll Style Takeoff

5. Catapult Launch Style Takeoff

6. Climb

7. Cruise without regeneration

8. Endurance

9. Cruise with regeneration

42

Each of these modes will be described in detail in the following sections. The basic components

over which the controller has direct authority are: the clutch [41], servos for the throttle and

choke, propulsion DC-to-DC (DC/DC) converter, and the generation DC/DC converter. A

flowchart of the controller’s logic can be seen in Appendix B.

 3.2.1 Reset

The reset state is the beginning state of the controller. In essence, it provides the operator

confidence that every piece of the propulsion system is disabled prior to flight. It also serves to

provide the operator a method of “emergency control” via a switch mounted on the outside of the

system. If anything goes wrong, the operator hits the switch and the controller enters this state.

The state disables every piece of the system as described in Error! Reference source not

found..

Table 1: Reset state component control Table 1: Reset state component control

Component Setting

Clutch

Disengaged

Engine Throttle Servo

0%*

Choke Servo

100%*

Propulsion DC/DC On/Off

Off

Propulsion DC/DC Output

0 RPM

Propulsion DC/DC Current Limit

0 Amps

Generation DC/DC On/Off

Off

Generation DC/DC Current Limit

0 Amps
*Servos controlled by PWM signal

43

 As discussed earlier, the reset state can be controlled a number of ways. The primary

way that the state is entered into is by means of a run/kill switch mounted on the side of the

propulsion system. This run/kill switch allows the operator to manually control the system if

there is a problem. The controller also defaults to this mode upon boot, which facilitates system

safety. In flight, however, the controller is prohibited from entering this state by use of if/else

loops within its programming. If the autopilot or operator is providing a PWM signal to the

controller, it cannot enter this state to prevent accidents with the propulsion system components

being disabled in flight.

 3.2.2 EM Rev

 The purpose of the EM Rev state is to prep the propulsion system for ICE start. There

are various methods to enter this state, but the most basic way is when the operator hits the

run/kill switch. Hitting this switch automatically enters this state as it signals the controller that

the A/C is ready for flight. Any ICE engine can be started by various methods, but all methods

require the ICE crankshaft to be spinning prior to initiation of the combustion event. Most Radio

Control (R/C) A/C use an external starter motor designed explicitly for this purpose. While this

is practical in a friendly airfield setting, it is not always viable for troops on the ground to carry

around the additional starter, which adds weight. Therefore, the design of the controller includes

this state, which revs the EM up and then rapidly engages the clutch to start the ICE spinning.

While this may seem hard on the clutch itself to put a large load on it a short amount of time, the

clutch is overdesigned specifically for this purpose and can endure the additional loads.

Additionally, in preparation for engine start, the throttle to the engine is opened in accordance

with (IAW) manufacturer instructions and the choke is half closed. Engine manufacturer

44

instructions necessitate manual operation of a cold engine for starting, and the code contains

programming that can command the choke manually through clearly labeled switches on the

transmitter. However, for a warm engine this state could be directly entered for easy starting.

The engine throttle is opened to facilitate easier starting, and the closed choke is also a necessity

to ensure ease of engine starting. Here note that 100% for engine servo indicates Wide Open

Throttle (WOT) and 100% for the choke servo indicates a fully closed choke. The controller

component control is shown in Table 2. Note also that the

Table 2: EM rev component control

Component Setting

Clutch

Disengaged

Engine Throttle Servo

30%

Choke Servo

50%

Propulsion DC/DC On/Off

On

Propulsion DC/DC Output

4000 RPM

Propulsion DC/DC Current Limit

30 A

Generation DC/DC On/Off

Off

Generation DC/DC Current Limit

0 Amps

DC/DC converter selects an RPM here, not a voltage. This will be discussed later in section

3.2.8. Again, the parameters in these tables are specific to a certain configuration, and can easily

be modified within the controller programming.

45

 3.2.3 ICE Start

 The ICE start state is where the ICE is started in preparation for flight. The state is

entered once the controller detects that the EM has reached 4000 RPM. The controller

component control is shown in Table 3. This is accomplished through use of a digital RPM

Table 3: ICE start component control

Component Setting

Clutch

Engaged

Engine Throttle Servo

30%

Choke Servo

50%

Propulsion DC/DC On/Off

On

Propulsion DC/DC Output

4000 RPM

Propulsion DC/DC Current Limit

30 A

Generation DC/DC On/Off

Off

Generation DC/DC Current Limit

0 Amps

sensor which will be discussed in section 3.3. Once the RPM is approximately greater than 3800

RPM for three seconds the controller engages the clutch for engine starting. Three seconds is

required for practicality, as the RPM in reality will never be exactly 4000 RPM for even one

second. The EM then turns the ICE for approximately 6 seconds with the throttle at 30% and the

choke half-closed. The controller then monitors the ICE RPM sensor for RPM that is over 5000

RPM. If this occurs it triggers the next state automatically. If this does not occur, the controller

46

automatically defaults back to the reset state, in which case the operator must toggle the run/kill

switch from off back to on to repeat the process.

 3.2.4 ICE Idle

 The ICE Idle state is entered once the controller detects the engine RPM is greater than

5000 RPM. Component control for this state is shown in Table 4. Having the engine RPM at

Table 4: ICE idle component control

Component Setting

Clutch

Disengaged

Engine Throttle Servo

25%

Choke Servo

50%-0%*

Propulsion DC/DC On/Off

Off

Propulsion DC/DC Output

0 RPM

Propulsion DC/DC Current Limit

0 A

Generation DC/DC On/Off

Off

Generation DC/DC Current Limit

0 Amps

*Note here that the choke is opened fully as the engine warms up, after initially being half

closed.

5000 as the trigger for leaving the state is deemed acceptable as the maximum RPM is 9800

RPM, and even though the engine is not at WOT, it will easily reach 5000 RPM as it starts

because the throttle is open partially. The 5000 RPM generality could also easily be changed in

47

the code as it is a simple constant. The purpose of this state is to allow the ICE to idle and warm

up according to manufacturer instructions. Additionally, smoother and more efficient operation

is achieved when the ICE is at operating temperature. The next state is triggered when the

operator hits a switch on the remote to activate the change. The operator can see the engine

temperature via a LabView screen which monitors the engine thermocouple. Alternatively, for

the real A/C the operator could see this data through a telemetry data or through a memory

storage method on the controller board.

 3.2.5 Ground Roll or Catapult Style Takeoff

 The next state for the aircraft is entered when the aircraft has indicated that it is ready for

flight. This can be accomplished in a myriad of ways, but currently a switch on the remote is

flipped to engage the aircraft for takeoff. As this is a prototype aircraft, the actual type of takeoff

has not been specified for the final design. There are two methods for an RPA of this size: a

ground roll style and a catapult launch style. Table 5 shows the component control for the

ground roll style, as this was deemed the most likely method of being selected. Code for a

catapult launch is included, but is currently out of the state machine loop.

 For the ground roll takeoff, the clutch and electric motor are both engaged. In the case of

this HE aircraft, additional power is required to get the aircraft up to cruise altitude due to the

undersized nature of the gasoline engine. The controller code (shown in appendix A) is

programmed to use the gasoline engine up to its maximum torque and then utilize the electric

motor for the remainder of the torque request from the autopilot. How each component is

specifically controlled and monitored will be discussed in later sections. Table 5 shows the

component control for this state. For the remaining states in the machine, a linear progression is

48

not utilized. A linear progression would make little sense in an environment where the controller

is switching states back and forth due to various demands on the system. At this time,

Table 5: Takeoff component control

Component Setting

Clutch

Engaged

Engine Throttle Servo

Variable

Choke Servo

0%

Propulsion DC/DC On/Off

On

Propulsion DC/DC Output

Variable

Propulsion DC/DC Current Limit

10 Amps

Generation DC/DC On/Off

Off

Generation DC/DC Current Limit

0 Amps

the controller does not have the ability to shift states by itself. The operator has a bank of

switches on the transmitter that are engaged in a fashion to enable each of the next four states as

he or she desires. Ideally, an ICE only or a power regeneration mode would be engaged for

cruise, the EM only mode would be engaged for endurance, and the climb mode for climbing By

allowing the operator to control the modes of operation and states for flight, essential debugging

of each operating mode is afforded without interference from the controller.

49

 The four states discussed henceforth are the four most important states for the controller,

and are the main focus of this thesis. Their implementation and execution make up the bulk of

the advantages of a hybrid system when completed correctly and, as such, will be discussed at

length.

 3.2.6 Cruise without Regeneration Mode

 The cruise without regeneration mode is engaged by flipping switch A on the transmitter

as shown in Figure 18. There are several purposes behind a cruise without regeneration mode.

Figure 18: Transmitter depicting switch A.

Perhaps the most important: while a HE system utilizes both an ICE and an EM, the ICE is still

the main focus of the propulsion system. This fact alone demands that the aircraft be able to be

50

flown with just the ICE at cruise speed. While it is undersized compared to a traditional aircraft

of this size, and performance may be degraded with just the engine, the aircraft can still fly and

make it home if something were to go wrong. Ideally, cruise without regeneration mode will

either not be used when being flown automatically; or will be used in cruising when no

regeneration is needed. However, it still has practical uses in training an autopilot or traditional

pilot to fly the aircraft.

 The basics of this mode carry over to the other three modes as well. Equations were

developed by Harmon at U.C. Davis for use in a HE-UAV [8]; these equations are modified for

use in the RPA. To begin the state, the controller disables the electric motor generation and

propulsion, so the EM is essentially freewheeling on the ICE shaft. This will induce losses, but

these are deemed unavoidable in order to avoid increased mechanical complexity. The controller

then waits for an input from the autopilot or transmitter receiver to begin its command loop.

 A traditional autopilot and its command style were utilized heavily in developing the

equations for the controller commands. Traditionally, an autopilot is “tuned” to adjust the

throttle on a RC aircraft correctly. This tuning involves getting the autopilot to “learn” how

much available torque it has and how to adjust the throttle to get the torque neccessary to keep

the aircraft in flight. The autopilot, when tuned, then sends a PWM duty cycle signal to a servo

motor which is connected to the ICE throttle. This signal is between 0-1 (for 0-100% duty

cycle). Therefore, if the autopilot theoretically had 3.0 N-m of total torque available to it, and it

knew that it needed 1.5 to fly, it would adjust the throttle to 50%. This would occur

continuously many times a second.

51

This process is exactly how the controller commands the ICE. The torque request is read

into the controller by intercepting the signal sent by either the transmitter or the autopilot. The

controller then does several things to convert this signal into a usable torque request that is

passed as a throttle command. These are shown in Figure 19, which starts the process by reading

in the requested torque from the source. In Figure 19, the function GetTorqueRequest()

double GetTorqueRequest()
{

 double throttleSetting = GetRCDutyCycle(AutopilotThrottle);

// Will return 0-1.0

 double totalTorque = GetTotalAvailableTorque();

 return throttleSetting * totalTorque;
}

Figure 19: Function that gathers total torque request from controller inputs

calls the function GetRCDutyCycle(), which reads the total duty cycle request coming from the

autopilot or human pilot via transmitter. It also calls GetTotalAvailableTorque() which gathers

the total available torque from the hybrid system at its maximum. The controller then initiates

several more functions that determine the actual throttle command.

First, it gathers information about how much available torque is currently available with

GetTotalAvailableTorque(). This is done in two pieces. Previously in a traditional setup, the

autopilot only has one torque providing piece. However, in an HE system there are now two

sources of torque. Since the autopilot (or pilot) is tuned to know how much total torque it has, it

now has to know the sum of the two at all times. For the EM this is relatively simple. An

assumption is made that in this state the EM is never going to be spinning at its max speed. This

assumption is important because the EM efficiency drops off as the maximum speed is attained.

Therefore, the EM max torque available can be assumed to be a constant value, because for most

52

EM (this one included), maximum torque is provided from 0 RPM to a certain limit.

Manufacturer information and test data confirms this assumption; manufacturer ratings show

maximum torque is available for most of the motors speed range [42].

 For the ICE torque available, the controller has to monitor the RPM via an optical sensor

mounted near its output shaft. Programmed into the controller are a set of basic “maps” that

identify the ICE maximum output torque at various RPM values. Unless the RPM map is

infinitely stepped so that it has millions of possible RPM and torque combinations (impossible

with limited storage space), it needs to interpolate when the RPM falls in between values and

then pick a known RPM value. This is done via another function that handles the interpolation.

The function then returns the max torque at this RPM to the controller. Once the value of max

torque is known, it is converted into a throttle signal by normalizing it. This is done in Harmon’s

original code and is done the same way here by using Figure 20. Here each

݁ݑݍݎ݋ܶܧܥܫ݀݁ݖ݈݅ܽ݉ݎ݋݊ ൌ
ݐݏ݁ݑݍܴ݁݁ݑݍݎ݋ݐ
݁ݑݍݎ݋ܶܧܥܫݔܽܯ

Figure 20: Normalized ICE torque equation

variable is shown as it is coded; normalizedICETorque is the throttle command passed to the ICE

throttle servo, torqueRequest is the torque request determined in Figure 19, and MaxICETorque

is the maximum available ICE torque which is determined as discussed above.

 In the case of the cruise without regeneration operation, the request will be based on the

available torque of the EM and the ICE together, even though the EM is disabled. In the case of

the prototype RPA, suppose the throttle stick on the transmitter is at max. The maximum torque

that can be provided with both the EM and the ICE at 4000 RPM is 3.48 N-m; this is the torque

53

request. When divided by the maximum torque available (which for the ICE at 4000 RPM is

roughly 2.1 N-m), this leaves a number that is over 1. A signal sent as such would prove

problematic as the servos can only handle PWM commands between 0-1. Therefore, to avoid

control issues the throttle commands are saturated so that the only possible values returned to the

actual throttle command are between 0-1. In the above case, this would provide a max throttle

signal of 1, and the ICE throttle would be at WOT. Actual performance of this state is detailed

in Chapter IV.

 3.2.7 Endurance Mode

 Endurance Mode is engaged by flipping switch B on the transmitter as shown in Figure

21. The purpose of Endurance mode is to provide for quiet, efficient operation while the A/C

Figure 21: Transmitter depicting switch B.

54

is circling over the target. In this mode, the ICE will be idling. Having the ICE idle versus

shutting it down completely was deemed acceptable for several reasons. First, in talking with

operators of this type of A/C, restarting an ICE in flight can be difficult. Fuel can leak into the

cylinder, creating a hydro lock situation where the EM cannot physically create enough torque to

force the fluid out of the cylinder. The fluid in the cylinder also impedes the spark from actually

igniting the fuel. Additionally, in personal experience with the Fuji engine, if the engine was on

the compression stroke the torque required to turn the engine over is more than the EM can

provide. This happened often due to the tendency of the engine to stop on this stroke. Finally,

the ICE at idle is actually far quieter than the noise that an 18 inch or 20 inch propeller will

make. Testing results proving this can be seen in Todd Rotramel’s term paper on acoustic

testing [43].

 Therefore, once switch B is flipped, several things occur. The controller disengages the

clutch, allowing the EM alone to power the A/C propeller shaft. The propulsion DC/DC

converter is switched on and begins providing power to the EM. The throttle on the ICE is

returned to its idle position. At this point the operator would check to make sure all these things

occur before continuing. Actual control of the electric motor lies with the DC/DC converter.

Traditional motor control is through the use of speed control. The voltage on a small controller

is varied and this changes the speed of the EM. However, in order to use the equations

developed and make a throttle input into a torque setting, the motor must be controlled by its

torque output. This occurs by controlling its current.

 Power out here then depends on the efficiency of the motor, and torque can be

determined by measuring the rotational speed and the power output. Normal brushed EM’s are

55

controlled by regulating the voltage to set a speed, and then allowing the current to be whatever

it needs to be. By controlling the current however, more precise control over the motor is

allowed based on its output torque. The torque request coming into the controller is similar to

the cruise without regeneration mode, but instead of using maximum engine torque maximum

motor torque is used, as shown in Figure 22. where normalizedEMTorque is the resulting

double normalizedEMTorque = GetTorqueRequest() / MaxEMTorque;

Figure 22: Equation for normalized torque request in endurance mode

torque request to the electric motor, GetTorqueRequest() is the same function that computes the

requested torque from the pilot, and MaxEMTorque is the maximum motor torque as specified

by the manufacturer. Once the torque request is read in, it is passed to another function that

determines how to set the EM. The result of this is that the torque request is de-normalized into

a value in Newton meters. By then dividing by the motors torque constant (specified by the

manufacturer), the result is an amperage that will provide the required torque. Voltage from the

battery will then drop to provide whatever amperage is required. In theory, by setting the EM

voltage to be a maximum of 40.0V, the speed should be very high which would result in an

inefficient propeller. However, since the EM is loaded down, the voltage will drop as the load is

increased. Temperatures in the motor windings and shaft bearings will increase, but as long as

they are monitored and kept below a threshold, optimum endurance can be achieved with careful

torque control.

3.2.8 Climb Mode

In climb mode, both the EM and the ICE are used to provide torque to the A/C propeller

shaft. By flipping both the A and the B switch on the controller (depicted in Figure 18 and

56

Figure 21), climb mode is engaged. Two strategies for implementing this mode were explored

and tested, with results shown in Chapter IV. The first mode, as discussed in Chapter II, is the

use of the ICE up to the IOL, and then continued use of the EM until the torque required is

provided. The torque value is interpreted as in the previous two modes, with the incoming

throttle signal being interpreted as a percentage of maximum torque that the two power devices

can provide. The controller, knowing the engines RPM, decides if the engine can provide torque

while staying at or under its IOL. If the engine can, the controller sends an equivalent throttle

signal and the EM is not used. If it cannot, the controller feeds a throttle signal equivalent to the

engines IOL line at that speed, and then uses the EM to make up the rest of the torque difference.

Since the controller bases its measurements off engine speed and does not adjust the

throttle until after the calculation, it becomes easy to see that the engine could become “stuck” at

a low RPM, which would force the EM to provide a large amount of torque. This is undesirable

due to energy storage limitations and would drain the batteries very quickly. To avoid this, the

controller runs an additional decision block embedded in the throttle setting procedure. This

block triggers if the EM is providing more than 75% of the total torque for the system, in which

case the controller bumps the throttle up by 10%. This is a simple method and is shown with

if(remainingTorque > 0.75*GetTorqueRequest())
{
 SetPWMDutyCycle(ICEThrottleServo, normalizedIOLTorque+0.1);

}

Figure 23: Throttle bump if statement

Figure 23. Here, remainingtorque is the torque command (between 0-1) that is passed to the EM

command function, and GetTorqueRequest() is the same function as used in cruise without

regeneration and endurance modes. Since the controller goes through the entire process many

57

times a second, this occurs very fast and does not adversely affect controllability. If the EM

drops below this power level, the statement is ignored and the controller proceeds as normal.

 As discussed earlier, the two or three stage torque splitting method could be implemented

fairly easily on a hybrid A/C. In this method, the engine again is operated up to an ideal point,

but in this case it uses several engine maps, not a simple line, to make the decision. There are

three maps embedded in the controller, all of size 5 by 11. The maps are based on data collected

by Isseyas Mengistu when bench testing the engines [31]. The first map includes torque values

of the engine, where the X axis is engine speed and the Y axis is also torque. The second map

contains the fuel usage numbers, again based on testing, that correlate to the torque the engine

can provide. The third map contains the throttle setting required to achieve this torque and fuel

use. By using these three maps, the controller reads in the torque request and can then decide on

the lowest fuel usage point for the engine to provide the given torque. It then sets the throttle at

this point, and uses the EM in the same way as in the basic mode, to make up the remaining

torque. If the operator adjusts the throttle up or down, the controller reads in that request and

resets the engine RPM with the throttle according to the transmitter stick positioning. The RPM

measurement is used as a check to make sure the engine is operating at the correct point.

 3.2.9 Cruise With Regeneration Mode

 The purpose of this mode is to recharge the battery pack by using the electric motor as a

generator. It is engaged by flipping all of the mode switches on the transmitter. Recharging in

flight will typically be done in cruising conditions, as this is where the ICE has the most

available torque to provide for regeneration. Recharging is deemed a necessary ability as the

battery pack will be mostly drained for endurance operation, and the A/C power electronics need

58

power for the rest of the flight. Currently, the recharge mode cannot be used in any flight

condition except cruise, although future iterations of the controller will have automatic

recharging. Data passed back to the user will indicate the battery voltage and signal the user

when it is time to recharge.

 The mechanics of recharging are meant to be as simple as possible. Recharging is done

through a separate SynQor DC/DC converter. The converter is the same as the one used for

propulsion, but wired in reverse in order to provide power to the pack rather than drawing from

it. By using current limiting, the pack can be safely recharged in flight.

 Lithium Polymer (LiPo) batteries are extremely sensitive to heat and overcharging, so

precise monitoring of the pack is necessary. The primary indicator of charge status, besides

using complicated techniques to estimate power draw, is to watch the pack voltage over time.

The voltage will drop as the pack becomes more and more discharged. In recharge mode, the

controller monitors battery voltage and temperature. Overcharging, over temperature charging,

charging too quickly, and charging a pack that has been depleted past a safe point are all

dangerous and can cause a fire. Therefore, there are safety interlocks in the controller to force

the user out of recharging mode if either a) the pack voltage drops below 21 volts (3.0 volts per

cell) or b) the pack temperature is over 50 degrees Celsius. This interlock is designed so that

even if the switches are still in the engaged position, the electric motor will not engage back into

generation mode. The interlock is shown in Figure 24. The logic of the charging mode is taken

from a commercial off-the-shelf (COTS) battery charger that is used with LiPo batteries [44].

The charger uses a common method to recharge these batteries, which involves charging in three

stages. Due to limitations with the DC/DC converters, only two stages of the three are used.

59

The first stage is initial charging. This stage gives the battery a low current charge to bring the

pack voltage up above the starting voltage, and is fairly brief. The second stage is the constant

double batteryVoltage = GetBatteryVoltage(ANPORT10);
//Do not charge if battery voltage drops below the 3.0 V min.
if (batteryVoltage < 21.0)
{
 propulsionState = ICEONLY_PROP;
 SetPWMDutyCycle(ICEThrottleServo, 1.0);
}
//Stop charging if battery temperature climbs too high
if(batteryTemp > 50.0)
{
 propulsionState = ICEONLY_PROP;
 SetPWMDutyCycle(ICEThrottleServo, 0.5);
}

Figure 24: Safety interlocks for battery charging

current charge which comprises the bulk of the charging. In this stage a constant current is

applied to the battery, with voltage draw being whatever is necessary to accomplish this. Lower

voltages will necessitate using a 3.0 Amp charge rate, which is very close to the maximum limit.

Higher voltages will use a slower charge rate. The stage completes once the voltage hits 27.5

volts, which is when the COTS charger shifts its modes as well [44]. A section of C code

depicting this is shown in Figure 25. Here, the function setcurrentlimitNQ40 is a function that

sets the current limit on the generation DC/DC converter. As depicted, the current limit will

change depending on the state of charge of the battery. Once this stage is completed, the

controller shifts into a constant voltage charge mode. The principle is the same, with the only

difference being that the output voltage is not set instead of being allowed to float. A section of

C code is depicted in Figure 26. Once the charge cycle is complete, the generation DC/DC

converter is switched off. The ICE will continue to run without the motor generating any power,

60

so if this statement executes, the propulsion cycle is switched automatically back to ICE-only

mode.

//Constant Current Charge

if(batteryVoltage < 22.0)
{

SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 3.0);
}
else if(batteryVoltage < 24.0 && batteryVoltage > 22.0)
{
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 1.8);
}
else if(batteryVoltage < 27.5 && batteryVoltage > 24.0)
{
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 1.0);
}

Figure 25: C code for regeneration

//Constant Voltage Charge
if(batteryVoltage > 27.5 && batteryVoltage < 29.0)
{
 SetOutputVoltageNQ40(GenerationDCDCOutputVolt, 29.1);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 1.0);
}

//Charge cycle complete, discontinue charging
if(batteryVoltage > 29.0)
{
 SetDigitalOutput(GenerationDCDCOnOffPort, GenerationDCDCOnOffPin,
FALSE);
}

Figure 26: Constant voltage C code, with “cycle complete” text

3.4 Test Setup

The controller, once programmed, was in need of a method of validation. A test setup

based on an engine dynamometer was developed, and a LabView data collection program was

written to assist in data collection. The outlying setup is shown below in Figure 27, and it will

be broken down individually in the subsequent sections.

61

Figure 27: HE-RPA propulsion system test setup w/ Honda engine

 3.4.1 Data Collection Setup

 Two pieces of software were used to collect data. First, LabView was used to collect the

majority of the data, including several controller parameters, engine and motor RPM, and current

information. Second, the dynamometer proprietary software was used to collect torque

information. The basis of the data recording and signal measurement was done by John Hagen, a

computer engineer. The screen shown is a modification of the baseline block diagram that he

developed while working for Harmon. All gauges related to the ICE are to the left, with the

major gauge (RPM) colored in white. All gauges related the EM are on the right, and the EM

RPM gauge is colored in gray. The purpose of this was to allow the test operator to easily glance

up and read important component related data quickly. RPM is critical in determining torque,

62

Figure 28: LabView data collection screen

power, and many other parameters so the gauges are the focal point of the setup. Other gauges

monitor the engine cylinder pressure, DC/DC converter power, and battery voltage. Several

minor lights are then included for convenience, such as controller state indicator lights and

temperature readings. On the bottom right corner of the program a set of indicator lights are

shown, much like the instrument panel on a car. As in a car, the lights are color coded either red

or yellow. Red indicates a serious malfunction and imminent damage, such as the clutch

slipping or one of the components overheating. Other lights are yellow, such as the engine

cylinder pressure being low; to indicate that those particular parameters are in a warning stage

and the operator should monitor the situation. In the center of the screen there was a timer

63

indicates the test run time, and a throttle setting gauge below to indicate the raw signal coming

from the R/C transmitter. To the extreme left are the buttons that control which type of data is

collected (usually all “on”) and the shared custom memory blocks. These blocks display shared

data between the microcontroller and LabView in real time, and were extremely useful in

debugging code errors or fine tuning throttle commands.

All dynamometer sensors were hooked up to the controller, which then sends the data to

LabView via a RS232 serial connection and was read many times a second. Data is

automatically read into a text file, which was then easily read into MATLAB or Microsoft Excel

and converted to graphs. The LabView program interfaced closely with “Lightning Stream.vi”

which was a sub-vi written by Hagen. The sub-vi handles the actual parsing of the data into

packets that LabView can read and exchange with the microcontroller. The vi has a variable

time step that can be adjusted to take data ay varying intervals; for testing and controller

optimality it was set to 0.2 seconds. To the left of the figure is the sub-vi. Split off to its right are

all the individual arrays that represent each type of data being passed. The arrays pass data to the

front panel, which displays it on a gauge, and also routes the information to do a number of other

useful tasks. For example, as shown in the center of the figure, the external interrupt time is

shown. This time is the reading from the RPM sensor; it counts the time between each pulse of

the reflective tape passing in front of it. The time is then divided by 60000000 (converting

microseconds into seconds and then into minutes) and then inverted to give a final RPM value.

The data is then filtered to remove spikes and unsteady readings through another sub-vi. Once

this data is split, the analog input data, from which most of the front panel information is derived,

is moved to another section for processing. The figure shows the data collection part of the

block diagram. will be discussed in Chapter IV. Each piece is broken down into a sub-array and

64

Figure 29: LabView block diagram showing streaming function to exchange data with the
microcontroller.

 then fed into both a local variable and a gauge for the front panel. The dynamometer’s main

function is to measure torque. To this end, the company provides a data collection program to

collect the various data that the dynamometer measures. Shown is the main dynamometer data

collection in Figure 31. The data collection utility provides many features that were useful such

as the ability to change recording formulas, data collection rate, and control of engine inputs

such as throttle. It is immediately obvious that most of the data taken is not needed, but this is

easily filtered out from the data files. The large gauge in the upper left if the torque readout and

the large gauge in the upper right is the RPM measurement. The torque was the main parameter

measured, and it is added to the main data file for each run. The RPM is a nice reference to

LabView’s RPM and greatly aided in calibrating the RPM sensors, but otherwise is only

recorded for reference. All other data is not used at this time.

65

Figure 30: LabView block diagram showing analog data collection and some filtering.

Figure 31: Dynamometer measurement screen

66

 3.4.2 The Dynamometer

 The small engine dynamometer built by Land and Sea Corporation is one of the few

devices commercially available for small engine testing [45]. This necessitated its choice as the

torque measuring device. Torque measuring was accomplished with Land and Sea’s proprietary

software and read into MATLAB for data analysis. The dynamometer is a cradle type, with a

small strain gauge to measure a potential difference and convert this into torque. The load is

applied with a 96 V eddy-current magnetic-brake (the large wheel on the right of the figure) on

the end of a gear driven shaft. The shaft contains a 2:1 gear ratio, which is accounted for in the

dynamometer software. A significant amount of time and energy was spent building a test rig

that would house the dynamometer, the controller, and all related test equipment. The rig itself

is built from 80-20 aluminum [46] with polycarbonate shielding [47] to protect the test operator.

A 12 DC fan was used to exhaust the engine fumes from the test area. The controller was

located away from the engine to mitigate noisy signal interference from its high voltage spark

system.

Figure 32: Dynamometer without any mounted equipment; note mounted strain gauge for
torque measurement

67

 3.4.3 Sensors

 The LabView screen and code take their data directly from a number of sensors that were

selected and then mounted on the dynamometer. Each sensor was chosen with an eye for

portability and ease of use, which would make the transition into an actual aircraft simpler and

easier. A total of 6 sensors were chosen: speed for torque sources, temperature for the EM, ICE,

and battery pack, power measurement for the battery, and cylinder pressure for the ICE. Another

benefit of the sensors chosen was that previous thesis students have had experience with them,

and the challenge of debugging could be greatly eased. The students could advise if the sensors

were malfunctioning or giving erroneous readings. For reasons explained in Chapter IV, only a

handful of the sensors were implemented: the RPM sensors and battery voltage measurement.

 The RPM sensors are one of the critical pieces of controller measurement and decision

making. The sensors used were Monarch ROS-W, which are digital optical sensors [48]. They

are lightweight, require very little power, and can be mounted very close to the measurement

shaft which is useful in aircraft applications. Figure 33 shows the RPM sensor mounted to read a

reflective strip on the ICE output shaft. Battery power and power draw rate to and from the

battery are controlled by two SynQor DC/DC converters [49]. These are custom-built to allow

current limiting, which is a critical parameter to torque application to and from the EM. The

converters are controlled by a single on/off digital signal. Power is fed in differing directions

depending on applications, with one converter used for propulsion and one used for generation.

The converters have a current monitor built in, and this signal is used to measure current draw on

68

Figure 33: RPM sensor

each. Depending on the test being run, a steady, 26.9 V input power for propulsion is fed by

either a Mastech DC power Supply [50] or a Thunder Power 7-cell LiPo battery. The DC power

supply was incredibly useful for long-term testing periods where the batteries would normally be

quickly depleted, and allowed precise current limitation for motor testing outside of the

controller. Depictions of one of the converters are shown in Figure 34, and the power supply is

shown in Figure 35.

Figure 34: DC/DC Converter being used for both propulsion and generation

69

Figure 35: Mastech DC power supply

 3.4.4 Internal Combustion Engines

A total of three internal combustion engines were used in various configurations for the

hybrid system. All of these engines were four stroke engines, chosen for their advantages in

acoustics and fuel economy. Specifically, the four stroke designs produce less noise, emissions,

and are more fuel efficient then their two-stroke counterparts. While four stroke engines are

typically heavier, this penalty was deemed acceptable given the numerous advantages.

All three engines were modified to be started with a hobbyist starter; a simple high

torque, 12 V DC motor depicted in Figure 37. Two engines were built by Fuji, model numbers

BF34-EI and BF25-EI [51] (shown in Figure 36). Each of these engines is designed for model

aircraft engine use, and are light and fuel efficient. Fuji recommends use of 87 grade automotive

gasoline, which was also a big bonus for logistical reasons (87 is easier to come by then glow

fuel or AVGAS). They also feature a spark timing mechanism to adjust spark for greater fuel

70

efficiency. Manufacturer specifications on the 34 model indicate a maximum rated horsepower

of 2 HP, while the 25 is rated for 1.5 HP. Due to certain parameters explained later in Chapter

IV, the engines are mounted from the bottom of the oil pan and additional mounting points are

located under the crankshaft. Spark is provided by a 4.8 V battery which is mounted on the back

plate, and each engine is started using a propeller cone mounted on the rear of the crankshaft.

The third engine was built by Honda, model number GX-35 [53] (shown in Figure 38). This

engine is primarily designed for portable equipment such as leaf blowers and string trimmers,

and as such, is designed a little differently. Primary design differences include: a more robust

crankcase, a recoil starter, more weight, and an overrunning clutch mounted on the shaft. Most

of the extra plastic trim, the recoil starter, and the clutch were removed for testing (this is also

typically how the engine would be configured in the aircraft). The Honda was also mounted

Figure 36: Fuji BF25-EI with mounting brackets (left) and BF34-EI (right)

from the bottom due to negative experiences with mounting engines from the backplate. The

Honda is rated for a maximum of 1.3 HP and also runs on 87 grade automotive gasoline.

71

Figure 37: Sullivan DynaTron Hi-Torque starter [52] with 12V power battery

 While the controller is designed for any engine, each engine was mounted in a different

configuration on the dynamometer in order to facilitate easier swapping between engines. In a

realistic case, the aircraft would have only one engine. The maps in the controller would also be

programmed for that engine. Since this was not possible, each mode of the controller was

programmed for the specific engine that was used. For cruise without regeneration mode,

Figure 38: Honda GX-35 engine with prop nut on shaft for starting

72

the Honda was the primary engine. For climb and cruise with regeneration, the Fuji 25 was used.

The Fuji 34 was disabled due to a broken backplate early in the testing phase, so its results are

not included in Chapter IV.

 3.4.5 Electric Motor

 One electric motor was used; this motor was the Maxon RE-50 Brushed DC motor [42].

There were several reasons behind using the DC motor versus a possibly more efficient AC

motor. First, the DC motor used was not that much more inefficient then the AC motors on the

market [9]. Secondly, the DC motor is much easier to control using an adaption of Harmon’s

equations. If the AC motor were used, a second 4-quadrant controller would have to be used to

individually control this motor, which would add to the complexity significantly. Other

independent sources have also confirmed that the additional controller is difficult to work with

compared to a DC device [54].

 The Maxon DC motor is rated for 200 W of continuous power, with up to 300 W of burst

power for 30 seconds without overheating. 200 W power is rated at 24 V and 8.3 A

continuously, while providing maximum torque and a claimed 94% efficiency for most of its

operating range. Refer to Figure 39 for an image of the motor un-mounted from the test setup.

3.4.6 The Microcontroller

 The microcontroller is the heart of the thesis and the most important piece to the setup. It

is mounted externally away from the setup on an acrylic plate (acrylic because of dielectric

properties). The controller itself is a PIC32MX development board manufactured by Microchip

[55]. This particular controller was chosen because of its easy programming and debugging

73

abilities, fast processor speed, and its modified C code architecture. All of these qualities

simplified the programming process.

Figure 39: Maxon DC motor with attached wire leads.

 Running on a modified C compiler built by Microchip, the development tool also allows quick

and easy changes to programming while allowing access to a multitude of features within C and

C++ [56]. The controller is programmed by and debugged by a PiC-It 3 In-circuit debugger,

which attaches to the top end of the controller. It is powered by a 5 V USB cable, which also

conveniently grounds the controller commonly with the computer case for accurate

measurements. The controller is shown in Figure 40. The controller is soldered onto a printed

74

Figure 40: Microcontroller attached to PCB

circuit board (PCB) which conveniently routes important inputs and outputs from the main

controller board to screw terminals on the PCB. Screw terminals made wires easier to connect

and disconnect, and also ensured a more reliable connection in the circuit. The controller has 6

ports for analog outputs (i.e. controlling DC/DC converter current limits), 16 ports for analog

inputs (temperature, battery monitoring, DC/DC converter current monitoring), 18 digital inputs

(all control switches), 4 counter ports (RPM sensors), input capture ports (read in throttle signal),

and servo outputs. The controller communicates with LabView through a RS232 serial data port.

Each of these ports is shown in Figure 41. An example of the controller wiring diagram is

shown in Appendix E.

75

Figure 41: Microcontroller layout

3.4.7 Transmitter and Receiver

 The transmitter and receiver were used to simulate the role of a human pilot in the

controller’s open loop. The transmitter used was a popular model with R/C hobbyists; a Futaba

8FGA transmitter and receiver kit [57]. The transmitter was chosen in particular for its ease of

use, the ability to trim the servos for setup ease, and 8 output channels. The 8 channels were

useful for controlling the individual controller states manually with the aid of BattleSwitch relays

[58], as shown earlier in Chapter III.

76

Figure 42: R/C transmitter and receiver

3.5 Procedures for Validation of Controller and Setup

Once the controller was programmed and the LabView screens created and debugged, the

validation process for the system was started. This process first involved creating test matrices

that allowed the author to get a good understanding of what he was testing. A test matrix was

created for each operational mode tested, for a total of 4. All of the test matrices can be seen in

Appendix C; this gives examples of the types of data that were collected in the test phases.

Validation then contained a standard operating procedure (SOP) for each test. All tests

initially began the same way, and then branched off when each went into their own specific

operating regime. An example of a SOP is included in Appendix D. At the request of the

77

advisor, tests were repeated 3 times and then averaged to ensure some measure of data validity.

The three trials were selected because of time constraints.

For each operating regime, specific data was collected. The one piece of data collected

common to all operating modes was the throttle lever position, as the controller’s reaction to this

input was critical to operation. For the endurance mode, data collected included input voltage

and current from the DC/DC converter and output torque and speed. For cruise without

regeneration mode, primary data collected were throttle position, output torque, and output

speed. For climb mode, the above two (endurance and cruise without regeneration) were

combined. Cruise with regeneration replaced the propulsion DC/DC converter data with the

generation DC/DC converter data. Data collected from experiments and analysis of this data is

included below in Chapter IV.

3.6 Test Setups

The sheer magnitude of design iterations requires some explanation on which test setup

was used for each section of results. To test the cruise mode without any regeneration, Figure 43

shows the Honda engine mounted on the dynamometer by itself. This particular setup is the

simplest. The second setup in Figure 44 was used briefly to test endurance, climb and cruise

with regeneration was the Fuji 25 engine with the electromagnetic clutch. This setup is mounted

on an aluminum plate with the electromagnetic clutch. The motor is connected to the driveshaft

after the clutch via a belt, which allows the clutch to disengage the engine from the power shaft.

The plate sits on top of the dynamometer cradle which is rotated by application of the load to the

magnetic brake. By mounting the HE power shaft directly above the dynamometer power shaft,

no torquing moments were produced which could affect the final measurements.

78

Figure 43: Honda engine mounted on the dynamometer

Figure 44: HE Configuration w/ Fuji 25 engine, Maxon Motor, and clutch

79

 The third setup that was used for examination of endurance, climb and cruise with

regeneration was the Fuji 25 engine with a one-way bearing instead of a clutch. Details of why

this setup was used are discussed in Chapter IV, and a figure of this apparatus is shown in Figure

45.

Once the test setups were designed and built and the code was written, validation of the

controller began in earnest. Testing took place over several months and used the SOP’s and test

matrices to aide in data collection and test repeatability. The test results yielded very positive

results about the controller performance over the operating ranges, which will be discussed in

further detail in the next chapter.

Figure 45: Test setup with one-way bearing

80

IV: Results and Analysis

4.1 Introduction

 Chapter IV discusses the results of the validation for the controller and test setup. Many

unique challenges were discovered while testing the system and collecting data. The chapter

details each of the four flight operating modes during data collection and includes a section on

restarting the engine with the electric motor. Each section then has its own analysis piece which

thoroughly discusses the results of each test of each mode.

4.2 Cruise Without Regeneration Testing

 4.2.1 Test Goals

 The overarching goal of cruise without regeneration testing is to benchmark the

controller’s ability to command the ICE without any electric motor commands. As previously

shown in Figure 43, this mode primarily used the Honda engine mounted alone on the

dynamometer. This mode is essential in confirming the validity of the performance maps

provided by Mengistu [31]. Another main objective was to observe the throttle commands in

open loop in order to ensure that there were no undesirable effects in engine performance that

could be caused by any number of outside sources. Specific data collected during these tests

were engine throttle, RPM, and output torque. Power consumption by the DC/DC converter was

considered insignificant for the scope of this test and was not recorded. Measurement of the

engine throttle was completed using a special function to pass data from the microcontroller to

LabView. The measurement is only the commanded engine throttle, not the true engine throttle

81

position. As discussed in Chapter III, the engine throttle command was calculated and then

passed to the engine as a value between 0-1. This value was read into LabView using the

aforementioned function within the controller that allows memory sharing between LabView and

the C code.

 The other two measurements were taken with sensors. The RPM measurement was

primarily read into LabView with the Monarch RPM sensor. The torque was measured through

use of the torque transducer on the dynamometer. The two primary measurements from each

source were set to be taken at the same point (every 0.2 second) so there were no differences in

measurement points, and they are then combined and plotted with MATLAB. For external

reference, the RPM sensor on the dynamometer and the Monarch RPM sensor were compared,

but variability was very low, and in fact the LabView data was smoother because of its data

filtering utility. The LabView data was roughly 0.2 seconds slower than the dynamometer data

because of this filter, and due to this MATLAB needed to be used to adjust for this

inconsistency. The time lag on the dynamometer software necessitated that both programs were

set to ‘record’ and then after 5 seconds, the test was started. To remove the differences,

MATLAB was used to log the minimum points on the graphs. Using this point, time was

readjusted so that both time vectors line up and was taken at the same point.

 To start each test, the engine was allowed to attain its nominal operating temperature by

idling. Once an optimal temperature of 150 degrees F (measured on the cylinder head) was

attained, the test began. To accurately simulate the cruise conditions, the engine was first tested

at the design point for cruise conditions. These conditions are at 5000 RPM as shown by

Hiserote and Rotramel [9] [30]. At this RPM, the engine was examined to see if it could provide

82

the nominal torque for flight. After this torque was tested, other significant RPM points were

investigated. The purpose of these tests was to make sure the controller could correctly set the

throttle position to provide the torque that is specified as needed. An engine stall speed is

determined from Mengistu’s data [31]. Expectations from all these tests are that the controller

could correctly set the throttle and provide the necessary torque without stalling the engine. See

section 3.2.6 , for details about coding of this test.

 4.2.2 Data Analysis

 The Honda engine performed admirably under these loading tests. As noted by

Mengistu, the Honda engine actually performs up to and sometimes exceeding its manufacturer

ratings. Mengistu observed a peak horsepower of 1.4, which is higher than the engine rated

power of 1.3 HP. Results from the cruise mode test are shown below for the Honda engine.

Figure 46: Honda GX-35 torque versus time

 Figure 46 shows the Honda’s torque versus time for the test. The graph shows one major

flaw in the testing: torque was hard to get a precise reading on at any one point because of

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
or

qu
e

(N
-m

)

Engine Torque

required torque

83

several things. The engine itself rocked the cradle, and at these small torque measurements, this

caused disturbances in the data. Cradle rocking can be attributed to torque spikes which these

small single-cylinder engines provide. However bad the cradle rocking, general trends can still

be looked at, of which the most important are the consistency of the engine to provide the

required torque for flight at cruise. Rotramel, in his research, has shown that the required torque

would be 0.66 N-m at 5000 RPM in order for the A/C to cruise at 40 knots [43]. When the

Honda data is plotted versus time and the results are averaged over several tests, the trends are

much better. In Figure 47, it can be easily seen that the required torque was provided.

Figure 47: Honda GX-35 torque, engine speed, and throttle command versus time

 As shown earlier, torque was not a steady measurement, even with data filtering.

However, a general trend above the 0.66 point (black line) is seen until the load is disconnected

0 5 10 15 20 25
0

2000

4000

6000

8000

E
ng

in
e

S
pe

ed
 (

R
P

M
)

0 5 10 15 20 25
0

0.5

1

T
or

qu
e

(N
-m

)

Engine Torque

required torque

0 5 10 15 20 25
0

0.5

1

T
hr

ot
tle

 P
os

iti
on

 C
om

m
an

d

Time (s)

84

at 18 seconds into the test. The controller holds the throttle position without noise interference

until the open-loop operator lowers the throttle to idle. Heavy saturation and filter commands

needed to be applied to keep the signal to the servo steady and control the engine as best as

possible. This was due to noisy servo signals that cause unstable engine control. Table 6 shows

the average engine data. When under load, the engine provides the correct amount of average

Table 6: Average engine parameters for cruise mode testing

Engine Parameter Average Reading in SI (English)

Output Torque 0.67 N-m (0.49 ft-lb)

Engine Speed 4997.5 RPM

Room Temperature 20.78⁰C (69.4⁰F)

Barometric Pressure 29.63 in Hg (14.56 psi)

torque as expected. As noted earlier, when testing the load was controlled manually. The reason

for this was because the automatic load control feature controls the load by engine speed, not an

actual set point. This type of load control has a tendency to stall the engine, making testing with

it undesirable. Therefore, when testing the load was set to adjust the engine speed to the required

point, in this case the 5000 RPM required for flight by Rotramel. At this speed, it can be noted

with the trend data above that the Honda provides the required torque for flight. The controller,

when given the command, attempts to set the throttle at half (0.5), which was right about where

the author speculated the Honda would be able to hold 5000 RPM under load. Extraneous points

on the outside of the graph designate the end of the test; the controller revs the engine up after

the load was removed until the command is given to return the engine to idle. The engine data

was produced with the weather data also shown on the table. The dynamometer software takes

85

this weather data and accounts for the pressure and temperature changes in the torque

calculations. Weather data was measured by an Ambient Weather portable weather station [59].

 Several interesting things were noted under testing. First, the RPM sensors are not as

robust as the author would have thought. The sensors themselves are designed well on paper, but

in practice several things attribute difficulty in using them. First and foremost, the signal coming

from them was not consistent over time. Filtering needed to be applied through LabView to

stabilize the signal. If the signal was not stabilized, the RPM reading could jump around,

causing the throttle signal from the control to jump as well. This caused unstable engine

operation that had to be stabilized by the user. Secondly, and most importantly, the sensors are

prone to vibration issues. If the sensors experienced any vibration at all, the signal would

become incredibly unsteady. This unsteady signal would cause the aforementioned problems

with the reading and throttle settings. A solution was implemented that stabilized the sensors for

operation, but a more thorough examination needs to done to acquire sensors that are vibration

stabilized for the actual aircraft, as the A/C operating environment will be hardly vibration free.

Figure 48 shows the solution to stabilize the RPM sensors. It was originally thought that the

sensors would need to be mounted as close to the shaft as possible. This eventually was proven

incorrect, as the sensors have a true operating range of over 6 inches. By mounting the RPM

sensors on their own portable support towers, the sensors were both kept away from the harmful

vibrations from the dynamometer and enabled them to be accurately aimed for better precision.

The towers also allowed the sensors to be mounted on a slide made out of 80-20, which

facilitated easier switching between the test setups.

86

Figure 48: Stabilized RPM sensors. Sensors are stabilized with mounting towers (shown).

Another thing worthy of noting, which is true of practically any electronic setup, is the use of

common grounds. The grounding point for all of the electronics must be common, or any signal

received will not be with respect to each other, invalidating them. This was first observed early

in testing. The controller was powered by 5 V from a USB style port. Initially, the controller

was connected to a wall outlet adapter, with the thought being that the wall outlet will allow

more current than a computer USB jack. However, this caused problems with servo operation.

When connected to the wall outlet, the RS232 serial port and controller were on a different

ground. The servos immediately became highly unstable as soon as a throttle command was

87

sent; rotating the full range of motion un-commanded. Once the controller main board was

powered from the USB jack on the computer, the common ground was restored and the servo

operation became very stable. As long as the ground in the aircraft is common to the airframe,

this will not be an issue.

 To conclude cruise mode testing, it can be seen that the Honda provided the torque

needed for flight in cruise operation. The Fuji however, was much harder to operate and prone

to stalling, so the author cannot recommend its use with the controller. Testing provided

unstable torque spikes that could not provide useful data. Even with correction methods in place

to avoid a stall, the engine was difficult to work with and would stall anyway. Additionally,

choke manipulation was meticulous with starting the Fuji, as it needed to be operated whether

the engine was warm or not. The Honda, however, is much more robust and is easier to control.

Its choke only needed to be used rarely, even when cold. Often, the choke did not need to be

adjusted. If the Honda was downsized just a little further, perhaps to the GX-25, additional fuel

could be saved and the required torque for flight still provided. The controller can easily control

either engine, and cruise mode parameters were achieved in the cruise mode testing with the GX-

35.

4.2 Engine Restart

 4.2.1 Test Goals

 The engine restart test checks the engine start state on the controller. Its main purpose

was to see if engine restarting in flight was feasible, and therefore whether or not the clutch start

design was a feasible option for the HE-RPA. R/C operators of this class of aircraft have said

88

that restarting in flight was not feasible with small ICE engines, but the author wanted to test this

method regardless. Positive test results would open up additional options in the cruise and

endurance modes, such as shutting the engine down completely versus just letting it idle.

 In this test there was only one type of analysis performed, which was the restart mode.

The test utilized the two states of the controller, which were EM Rev, (section 3.2.2 EM Rev)

and ICE Start (3.2.3 ICE Start). Data measured only was engine and motor RPM versus time. A

consistent ICE RPM at idle was considered a successful test.

 4.2.2 Test Analysis

 The testing of this mode was unsuccessful for several reasons. The electromagnetic

clutch was deemed the failure mode of the test. In trials, it could not handle the loads applied by

the Fuji engine satisfactorily. The clutch spindle would over tighten inside the clutch housing,

causing a resistance to be applied to the engine. In mild cases this would cause an undue amount

of heat to be dissipated on the clutch shaft, and in extreme cases it would stall the Fuji

completely. The heat being dissipated is one possible explanation of why the clutch was

destroyed by warping the connecting electromagnets. This warp caused the shaft to wobble,

which would cause the input spindle from the engine to over tighten and apply an even greater

amount of resistance to the engine shaft. Not only was this dangerous to engine operation, but it

caused increased wear on the support brackets due to uneven forces on the crankshaft bearing.

The author theorized that the lack of a thrust bearing caused all of the above to become major

problems. Another possible explanation is the voltage; the author theorized that if the voltage

was higher, possibly 48 V, the clutch would have more grip and the problem of increased

89

resistance would be mitigated. The solution to this was to go apply a backup design, utilizing a

one-way bearing.

 The one-way bearing design, while not Hiserote’s original recommendation for an HE-

RPA, was actually a better solution in practice. The revised engine design used for climb and

cruise with regeneration testing is shown in Figure 49. The one-way bearing is lighter and

makes the system less complex. The drawback of this design is the loss of engine restart ability.

This, however, was deemed acceptable for several reasons. First, the elimination of the clutch

decreased the amount of things the controller has to control, which has the side-effect of making

Figure 49: Final dynamometer test setup with one-way bearing.

90

the system safer through the lack of failure modes. Second, and more importantly, operators of

this class of aircraft have stated that engine restart in flight is very difficult. Testing of this

would be difficult on the ground, and in-flight testing is even more difficult because of the

extreme cases of failure modes that could occur (such as engine stall or clutch lock-up). A

solution to restore the engine restart functionality is through use of a very small starter motor.

This motor would be secondary to the main electric motor and would provide minimal

propulsion power. Through use of gearing, the starter could be very small and the use of gearing

would provide the proper torque and speed to start the ICE. The one-way bearing is simpler, just

as efficient, and easier to operate in practice. Using the hobbyist starter would allow the one-way

bearing to have all the functionality of the clutch-start design without any of the reliability

problems.

4.3 Endurance Testing

 4.3.1 Test Goals

 Endurance testing focused on the EM’s ability to provide the rated power for flight over a

specific time period. This mode has no torque provided from the ICE, so the engine was off for

this evaluation. As shown in Figure 49, this setup utilized the one-way bearing. Primary

measurements in this mode were the EM input current and voltage, EM RPM, EM torque output,

and the input command to the EM. Since the one-way bearing setup was used, a gear ratio of

1.454545 was introduced into the system, which had several advantages discussed below. As

before, the dynamometer and LabView had to be synced so the data points were taken at the

same point in order to guarantee validity.

91

 The first test conducted was a control test similar to the ICE test. As the method of

controlling the EM is unique when compared to traditional methods, a general torque sweep was

performed to check that the EM would provide the torque specified when the current limit was

changed. The second test, and possibly more important, was an endurance speed test. With this

test the EM was run at the assumed endurance torque required, 0.270 N-m. During this test the

load would be steady and the EM and controller’s interaction would be monitored. With this

torque data, various analyses could be performed on expected range and flight characteristics.

See section 3.2.7 for details about the coding of this test.

4.3.2 Test Analysis

Figure 50: Motor torque, speed, and command versus time

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

M
ot

or
 S

pe
ed

 (
R

P
M

)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

T
or

qu
e

(N
-m

)

Motor Torque

Required Torque

0 5 10 15 20 25 30 35 40
0

0.5

1

T
hr

ot
tle

 P
os

iti
on

 C
om

m
an

d

Time (s)

92

 Figure 50 shows the entire test performed, after the data has been averaged. The test was

performed exactly the same each time, three times. The load was calibrated before the test, and

then the test was performed over 45 seconds. The spike in the data at 6 seconds is caused by

noise from the DC/DC converter. Values shown in Table 7 are a result of averaging between the

Table 7: Motor parameters at steady state endurance flight

Motor Parameter Average Reading

Motor Gear Ratio 32/22 (1.454545)

Input Voltage 23.78 V

Input Current 7.29 A

Input Power 173.36 W (0.232 HP)

Output Torque 0.27 N-m (0.20 ft-lb)

Output Speed 5430 RPM

Output Power 153.53 W (0.205 HP)

Prop Output Power 153.53 W (0.205 HP)

Supplied Voltage 27.0 V

Supplied Current 6.6 A

Supplied Power 178.20 W (0.239 HP)

DC/DC Efficiency 97.28%

Motor Efficiency 88.56%

steady state portions of the test (not including the descent or climb adjustments). As shown on

the table, the electric motor was able to properly provide torque for flight at the correct RPM.

93

Table values show and average value over the entire test. As before, the true prop speed in flight

would be at 3800 RPM, so this was the primary test point. Without the gear ratio, the EM shaft

speed is an average of 5430 RPM. At this point, the voltage was 23.78 Volts and the current was

7.29 Amps. This corresponded to an input power of 173.36 Watts, and the output torque was

0.27 N-m. Combining the torque and speed to get power, as shown in Equation 4, the resulting

motor efficiency is 88.56%. The DC/DC converter efficiency, based on the ratio of input to

output power, is 97.28%.

Rotramel’s code calculates the torque and speed required including the 1.454545 gear

ratio for an optimally matched propeller. The code takes into account all phases of endurance

flight to make its calculation so the gear ratio is optimal for the same propeller. The

dynamometer measures the torque with a strain gauge mounted on the cradle, so therefore the

gear ratio does not affect this torque measurement. The dynamometer load is applied through the

aforementioned 2:1 gear ratio, but this is accounted for in the software. Therefore, the motor

torque represented in the figure is the actual motor torque being provided. The torque required

line is also true motor torque required. When calculated back through the two gear ratios, the

actual propeller power being provided by the motor is the same as the motor power being

provided as shown in Table 7. This reveals the true purpose of the gear ratios, which is to keep

the motor current low in order to increase the efficiency of the motor. Using the motor gear ratio

also allowed effective measuring of current, which is explained later in this section.

Spikes on the figure are when the operator simulated a descent or climb condition, and

tested the ability of the motor to return to is operating point correctly. These spikes were a

necessary simulation because in less-than-ideal flight, the A/C may have to climb or descend in a

94

deviation of mission parameters. The controller correctly adjusts the current and lowers it or

raises as the controller should once the climb or descent is finished.

Figure 51: Descent and climb conditions under test

 There were many things that contributed to difficulty in taking data for this test mode.

The primary and most aggravating characteristic of the system that made things difficult was the

DC/DC converter itself. While the voltage and current signals to the motor were not particularly

noisy, the current monitoring pin (labeled as IMON in Appendix E) was very noisy. At the stock

configuration, the pin reading would have a ±0.2 V difference on the signal. The reference

signal is designed to be 1.25 when providing no current and will scale appropriately, never

95

greater than 3.3 V (this would damage the controller). The equation for calculating the current

input to the motor, as provided by SynQor, is shown in Equation 14:

௠௢௧௢௥ܫ ൌ ௜ܸ௡௣௨௧ െ 1.25

0.02

(14)

where Imotor is the input current to the EM and Vinput is the reference signal provided by the

DC/DC converter. It is clear by looking at this equation that small differences in the reference

voltage will cause large differences in the current reading. Many correction measures were

attempted to resolve this issue. First, a filter was applied in LabView. This filter smoothed the

data out over several time periods, but this was of no help for several reasons. First, the input

signal tended to vary on the positive side, meaning that the amperage reported tended to be high.

Second, the input signal did not vary linearly. This difference meant that if the author tried to

adjust with a constant gain, it would be correct at some points and not correct at other points.

Varying the gain over several operating points was deemed time consuming and unnecessary.

 A second method to alleviate the noise was also attempted. Upon oscilloscope

application, the input 5 V to power the controller was found to have a noisy signal. This noise

was being passed back along the common ground, affecting the DC/DC IMON signal.

Therefore, a number of capacitors were wired into the circuit in order to provide a low-pass filter

for the voltage signal. This filter is scaled based on the equation:

௖݂ ൌ

1
2 כ ߨ כ ܴ כ ܥ

(15)

where fc is the break frequency of the filter, R is the resistance of the inline resistor, and C is the

capacitance value in farads of the capacitor. Using this simple filter, the ground noise signal was

96

smoothed using ceramic 100 microfarad capacitors. However, the smoothing did not completely

alleviate the noise problem. By increasing the capacitance and resistance, the signal could be

smoothed almost indefinitely. Increasing the resistance past a very small amount interfered with

the DC/DC converter signal, making the math supplied by the manufacturer no longer usable

because it changed the reference voltage. Increasing the capacitance smoothed the signal, but

larger capacitors required longer time to charge up, slowing the response time of the

measurement to an undesirable rate.

Figure 52: Fluke Model 115 True-RMS Multimeter used for current and voltage
measurements

It is also worth noting the reason for the noise. DC/DC converters use a switching

method to convert the input DC voltage to the desired value of output DC voltage, and this rapid

switching induces noise into the signal. This noise is unavoidable in this type of transformer.

SynQor recommends using a relatively complicated external filter that was unable to be built in

the time allotted to the author. Therefore, to record data a multimeter (shown in Figure 52) was

wired in series with the motor to read amperage, and another was wired in parallel to read the

voltage. This type of multimeter uses a series of internal filters to almost completely eliminate

97

the noise [60]. With the steady reading of the multimeter, the current on the motor could more

accurately be measured.

Regardless of these problems, the motor proved reliable and robust when controlled by

the microcontroller. Response time was reasonably quick, and the motor controls similarly to an

AC motor that most hobbyists would employ on an aircraft. This similarity comes from the

approximately linear motor responses to the input commands. The approximately linear

response aids in teaching operators how to fly the aircraft, as it is not as hard to pick up and fly.

An average motor efficiency of 88.56% was deemed acceptable. This efficiency is quite similar

to what the author expected. The manufacturer rates the motor at up to 94% efficient, but this is

not at the tested current. The manufacturer claimed efficiency is tested at a much lower current,

which the manufacturer conveniently does not provide. Over 85% is still very good for a

brushed DC motor, so the motor actually exceeded expectations in this regard. The DC/DC

converter also exceeded expectations, as the manufacturer rated efficiency at 24-48V is 93%

while the actually efficiency was over 97%.

4.4 Climb Testing

 4.4.1 Test Goals

 This mode was considerably more difficult to analyze because of the different torque

sources. The first goal was to ascertain the torque that could be provided at maximum power

(100% stick position). This torque could then be analyzed for a rough determination of climb

rate for the aircraft. Climb performance was considered a steady state parameter and allowed the

engine and motor together to provide torque. The second major goal was to adjust the stick to

98

each position and measure the output torque in order to check the controller set points for each

component. These set points would then be compared to the output torque so as to confirm

validity. The third test measured the controller’s general stability when the clutch or one-way

bearing was engaged or disengaged as the torque was varied. See section 3.2.8 for coding

details about this test.

 4.4.2 Test Analysis

 Again because of the noisy signals provided by the IMON pin on the DC/DC converter,

many types of dynamic measurements were difficult, if not impossible, to take. This would have

been acceptable because for most scenarios, the A/C will be in some sort of rough steady state

flight. In climb, this is the case. For climb, Hiserote lists power required as 367.9 Watts, and

with Rotramel’s 5421 RPM efficient propeller point, the required torque is then 0.92474 N-m.

 However, due to numerous complications with the test setup, climb data was unavailable.

Many reasons were the cause for this. The Fuji engine, by its very nature, runs very rough and

applies harsh torque spikes to the test setup. These spikes were thought to be eliminated with the

use of a belt that would adjust its tension to remove these spikes from dealing damage to

components. This was indeed the case, but the belts that were supposedly recommended by the

dynamometer manufacturer (who designed the dynamometer for engine with these types of

spikes) could not take the loads and snapped repeatedly. Additionally, complications with the

electromagnetic clutch not being able to take loads it was designed for also caused several

redesigns of the system to simply took too much time. Therefore, the author simulated the code

results without test data to back up these simulations. While the test results are absent, the

99

author has full confidence that the simulations reflect a close approximation to actual

performance with some minor tweaking to controller coding. Figure 53 shows the controller’s

Figure 53: Controller commands for climb mode

output commands. Several things stand out upon initial review. First, the receiver input to the

controller was not a perfectly linear signal, so small steps appear in the commanded torque plot.

This was what causes the theoretical commands to both the motor and the engine to have small

steps in them as well. What this will means in practice is the motor will hold a constant current

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

R
eq

ue
st

ed
 T

or
qu

e
(N

-m
)

0 5 10 15 20 25 30 35 40
0

0.5

1

T
he

or
et

ic
al

 E
ng

in
e

C
om

m
an

d

0 5 10 15 20 25 30 35 40
0

0.5

1

T
he

or
et

ic
al

 M
ot

or
 C

om
m

an
d

Time (s)

100

for a brief moment while the engine has to take up some extra torque. The time window for this

was so small that in reality it should not matter.

 Another thing of note was that the engine throttle command is relatively high. However,

for climbing this is a necessity. The IOL programmed into the controller currently has the

engine max torque at 1.1 N-m at 5000 RPM. The simulation shown above was simulated at an

engine speed of 5000 RPM. Since the controller bases the engine throttle setting on the current

RPM and the requested torque, the throttle setting on the engine will increase only after it gets

past its set point. At 5000 RPM the engine will have a throttle setting of roughly 0.4, and the

data makes sense in a realistic case.

 The motor commands also look good at this point. Recalling the stepped engagement

strategy proposed by Mr. Schurhoff, the engine and motor commands mimic this. The engine is

used up to its IOL and the motor then kicks in and provides the rest of the torque. The flat line

after the throttle command is released is a simulated result. In order to have the motor not drag

the engine down with unnecessary back-torque, the motor command stays high enough to relieve

the engine power shaft from having to power the motor shaft along with providing torque for

flight.

4.5 Cruise with Regeneration

 4.5.1 Test Goals

 The primary goal of the cruise with regeneration test was to check the basic recharging

model that the author developed to recharge the battery. Additional data was taken during this

test to ensure safety of the operators and the equipment due to the unstable nature of LiPo

101

batteries during recharging. The temperature and charge rate of the batteries was under constant

monitoring to guarantee full control of the process. Any error in charge rate or over temperature

conditions nullified the test and forced a retest.

 Testing methods were chosen based on the recharging model. In each test, the battery

was inserted into the trial at a different state of charge: 25%, 50%, and 75%. Each of these

regimes was determined to be a common battery SOC seen in the field. Recharge points lower

than 25% were deemed unsafe due to the LiPo safety requirements [44], and recharge points over

75% were deemed unnecessary. Data collected in this test included ICE RPM, EM RPM, EM

voltage, current draw, battery voltage and current received, and battery temperature. All of these

measurements were taken versus time. See section 3.2.9 Cruise With Regeneration, for coding

details about this state.

 4.5.2 Test Analysis

 Again due to numerous problems with the testing setup, true analysis of this mode was

not possible. Simulation of the parameters would have provided results that were inconsistent, as

the input to the controller is hard to simulate. In particular, the voltage input is difficult to

simulate. The DC power supply is set up to provide power to DC/DC converter; having it also

simulate an input voltage to the controller, while theoretically plausible, is impossible with the

hardware in use. The power supply does not have the ability to split two voltage sources without

a specialized electronic circuit. However, the controller model, being based off an actual

recharger, will work well in theoretical flight. The only caveat to this is that the engine speed

will need to be precisely controlled. Since voltage control is a major parameter to this recharge

model, and the author’s method of motor control relies on current limiting, the engine will

102

become a voltage regulator for the motor. In practice, this will mean that the operator will need

to watch the engine RPM to make sure that it does not get too high or too low. In theory, the

speed of the engine will not need to vary too much as the batteries will require at least 24 V. 24

V happens to correspond with the cruise speed of 5400 RPM, so the controller will be able to

then regulate the current and recharge the batteries safely. More testing needs to be done to

validate these statements.

103

V. Conclusions and Recommendations

5.1 Conclusions of Research and Testing

 The DOD has specified a need for increasing missions from RPAs, and has also specified

a need for increasingly quiet and more efficient RPAs. A hybrid-electric system, when

implemented and controlled correctly as to take advantage of both electric power and gasoline

power, could easily meet this need. The author’s research sought to implement a controller in C

for a proof-of-concept type aircraft that would control such a system in open-loop efficiently and

effectively.

 The research centered on the development of the C code. This C code controlled four

distinct flight modes primarily, and had an additional 9 modes programmed for secondary

functions. A test stand was developed to house the components of the HE system, and a

LabView program was developed to interface with these components and the required sensors in

order to record data. Validation of the code that was written was done on this test setup.

 Initially, the C code was developed using the MPLAB IDE tool for programming

microcontrollers. This code was built around several data collection and processing tools created

by John Hagen. The code contained 9 initial states, with 4 states that would be active during

A/C flight. The final base code file, its header file, and Hagen’s data processing code can be

seen in Appendix A.

 With this code, work then started on developing a test setup to validate the code. The

first step in this endeavor was creating a LabView interface that would work alongside the

microcontroller and display various parameters throughout testing. This LabView screen was

104

based on modification of data collection LabView block diagrams again written by John Hagen.

Data collection occurred through an RS232 serial port which passed data back and forth from the

controller to the computer. Sensors such as the RPM sensors, temperature sensors, and throttle

signal are examples of important data that LabView displays. Its screen also contains code in

place for the future adaption of numerous other sensors such as cylinder pressure, fuel

consumption, and battery voltage.

 The final goal was to validate the test setup and code developed. A group of tests were

then created, built on inputs from Rotramel’s thesis work and Hiserote’s original

recommendations for a HE-RPA. Tests for the cruise without regeneration mode centered on a

5000 RPM operating point, outputting 0.66 N-m from the engine shaft. Endurance mode

operating points were chosen at 5400 RPM and 0.27 N-m from the motor output shaft. Motor

restart testing was also attempted, but proved unsuccessful and the setup shifted to using a one-

way bearing instead of a clutch. Climb and cruise without regeneration testing originally were

conceived but never realized fully, although climb mode was simulated with successful results.

 Cruise without regeneration mode proved highly successful under evaluation. The Honda

engine was easily the most stable engine of the trio that was purchased. The Fuji engines, while

claiming to have better performance, had problems continuously throughout testing. The Fuji 34

engine was never tested due to a broken back plate suffered early. The Fuji 25 engine held

together much better, but it was plagued by poor performance throughout the validation. Its

torque spikes produced by the single cylinder design are extreme to the point of being

unmanageable. Honda’s engine was successful and correctly provided the torque the controller

105

commanded from it. Control of the Honda was stable throughout testing, with throttle spikes

being eliminated by saturating the throttle commands.

 Endurance mode, while initially troublesome, eventually had great results as well.

Initially the challenge was getting a readable signal from the DC/DC converter IMON pin. Due

to heavy switching noise, this signal was never stabilized, even with numerous different filters.

The solution was to hook up multimeters in line with the motor current path to measure motor

power usage. While not as precise as a constant signal with time, the method proved highly

useful in gathering data about the motor. At the endurance mode primary flight point, the motor

provided the torque required of 0.27 N-m at the correct RPM of 5450 RPM. While some noisy

commands were unavoidable, the motor actually proved very stable once heavy saturation was

implemented. Its efficiency surpassed the author’s expectations, having 88.5% efficiency in

endurance mode flight with a gear ratio of 1.454545. With a manufacturer rated efficiency of

93.5%, the motor is within a reasonable bound for actual efficiency versus measured efficiency.

 Code was developed for climb and cruise with regeneration mode, but the code was never

fully tested. While the author believes that the code is solid and will provide good open-loop

performance, it needs to be tested more thoroughly. Improved test setups utilizing the Honda

and the EM need to be built, and the DC/DC converter needs to have a more robust filter applied

to its input and output terminals in order to get reliable data on these modes. The author has

designed a revised version of the wiring for future students, shown in Figure 54. The main

differences between the original design shown in Appendix E and the revised design are

immediately clear. The inclusion of a DC/DC converter power filter will help to eliminate the

noise coming from the switching converter, and can make the measurement pins on the converter

106

usable. The diagram also shows a dual ground design, where the controller has a ground for

analog signals and a ground for digital signals. Conversations with electrical engineers have

suggested that this will also help to eliminate noise, as the digital signals tend to produce high

frequency noise that can feed back through the ground to the analog signals.

Figure 54: Revised controller wiring diagram to include filters and uncommon grounding
points.

107

5.2 Recommendations for Future Work

 As this was one of the first attempts in implementing a control method for an HE-RPA,

there are infinite possibilities of paths and branches for exploratory research. Further refinement

of control in particular could easily revolutionize the technology in today’s warfighters hands

around the world. However, there are a few key elements that could be improved upon and

explored by future students.

 Possibly the biggest challenge, and one that will be quite close at hand, is the actual flight

testing of this control. While a great effort was undertaken in selecting sensors that would be of

particular interest in the actual airframe, this task is much harder than simply picking small and

lightweight sensors. The airframe, in particular, will go through many design iterations itself,

which will require repositioning or possibly even replacement of components used by the author

for validation. Future work is already being planned for this, but care must be taken to ensure

communication between all design phases so that nothing is lost in translation.

 On the topic of practical application of this control, another thing that needs to be

accomplished is an exhaustive search to make certain that the controller is as robust as it can be

before flight testing. Although the author made every attempt to ensure a robust, safe control

method, there are always short sights and possible logic mistakes. The U.S. government already

demands strict safety guidelines while flight testing, but every single failure mode must be tested

further. Failure modes, such as overheating, were already tested or planned for; other unique

failure modes such as weapons hits that disable parts of the propulsion system or sensor failures

brought on by bird strikes are two examples of items that need more investigating. How the

108

controller will react to these types of situations was not thoroughly tested and needs to be

investigated.

 The author originally theorized that the cylinder pressure measurement, through equation

analysis, could be used for an estimate of the engine’s torque output, which would allow for a

great deal of optimization based on the engine’s current state. However, due to time constraints

this was never implemented but only discussed in theory. A practical application of this theory

could be examined by another student in follow-up work. Once the estimator has been

developed, the test setup already implemented could be used to evaluate the estimator.

 While it was tested and proved unsuccessful, restarting the engine with the electric motor

needs a more thorough look. Due to mechanical limitations with a carburetor design on these

model engines, fuel leaks into the cylinder while the aircraft is maneuvering in endurance flight.

This fuel accumulates so that the electric motor cannot physically provide enough torque to turn

the engine over since the fuel is approximately an incompressible liquid. The compression

stroke of the engine can also be difficult to overcome; a combination of the two reasons would

make restarting in flight very difficult. Two methods that could be tested to eliminate this

phenomenon would include a fuel lockout valve with a simple servo or using an engine that is

fuel-injected. Restarting the engine in flight versus allowing it idle could provide moderate

increases in fuel economy with little to no penalty to weight or cost.

 The revised wiring of the microcontroller, based on hands-on experience with the

hardware, could be a great upgrade to the current setup. The DC/DC converter with DC motor

setup, while easy to control, is a noisy system and measurements are hard to take in practice.

With the filters that are built in to the new design, the noise could be limited or eliminated,

109

making the system far more robust. Inclusion of a dual grounding system would help to make the

measurements more accurate by eliminating the digital noise feeding back through the ground.

 Even though the DC/DC converter is simpler to control, an AC system could also be

looked at. As stated in Chapter II, the AC motors are more difficult to control, requiring a

separate controller just for the motor. However, if man-hours are spent on making the author’s

controller and the AC motor controller work in harmony, the AC system could possibly work

much better than the DC system. Transmission losses which are readily inherent to DC systems

could be avoided with an AC motor system. Challenges would be evident in using the author’s

current limiting method to regulate the motor torque, but these challenges could be overcome

with enough time and effort.

 The control methods mentioned in the literature review could also be applied. These

methods such as fuzzy logic or neural networks, could possibly be installed on the same control

circuit and have great potential to be more efficient than the rule-based method that the author

employed. These control methods could make greater use of a closed-loop system which could

track error in torque measurement and more accurately divide the torque being provided from the

two sources. These methods could potentially eliminate reliance on engine maps as well, instead

accurately predicting output torque by completing a dynamic optimization of the engine based on

its current status (temperature, fuel usage, number of hours ran, etc.).

 As with any type of design, there are always hurdles to overcome. However, designing

the test system proved to be many times more difficult than originally expected. With the

implementation of this system on a real airframe, problems encountered could be magnified

many times. In order to avoid this, concentration should be placed on the design,

110

implementation, and trials of the system so that a safe and efficient transition is made from

prototype to practical design.

 There are still many avenues of research that need to be completed in order to further

optimize the HE-RPA control problem. However, once this system is implemented, it will

provide the best solution to meet the propulsion needs and challenges facing the warfighters of

today. This effort will optimally work for the components described, but ultimately could be

adapted to any HE system with the right software modifications. Modifications such as specific

motor maps and engine maps, and power splitting strategies that make sense for the application

are examples of things that could make the code adaptable to other systems.

111

Works Cited

[1] L. R. Newcome, Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles.
Reston, VA: AIAA, 2004.

[2] Hybrid Kingdom. (2008, January) History of Hybrid Cars. [Online].
http://www.historyofhybridcars.com

[3] Auto Editors of the Consumer Guide. (2010, January) www.howstuffworks.com. [Online].
http://auto.howstuffworks.com/1971-1972-1973-ford-mustang6.htm

[4] Judith Goodstein, "Godfather of the Hybrid," Engineering and Technology.

[5] Department of Defense, "Unmanned Systems Roadmap 2007-2032," Department of
Defense, 2007.

[6] J. Paur. (2009, July) Hybrid Power Comes to Aviation. [Online]. www.wired.com

[7] Chan-Chiao Lin, Huei Pang, and J.W. Grizzle, "A Stochasitc Control Strategy for Hybrid
Electric Vehicles," University of Michigan, DoD Research.

[8] Frederick G Harmon, "Neural Network Control of a Parallel Hybrid Electric Propulsion
System for a Small Unmanned Aerial Vehicle ," University of California-Davis, Davis, CA.
, PhD Dissertation 2005.

[9] Ryan M. Hiserote, "Analysis of Hybrid-Electric Propulsion System Designs for Small
Unmanned Aircraft Systems," Air Force Institute of Techonology, Wright-Patterson Air
Force Base, M.S. Thesis 2010.

[10] J.D. Anderson, Aircraft Performance and Design. Boston, MA: McGraw-Hill, 1999, ch. 2-
3.

[11] Matthew D Rippl, "Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion
Systems," Air Force Institute of Technology, Wright Patterson Air Force Base, M.S. Thesis
2011.

[12] P. Van den Bossche. (2010, May) Wikipedia. [Online].
http://en.wikipedia.org/wiki/File:Hybridpeak.png

[13] Fazal Syed et. al., "Derivation and Experimental Validation of a Power-Split Hybrid
Electric Vehicle Model," IEEE Transaction on Vehicular Technology, vol. 55, no. 6, 2006.

112

[14] P. Van den Bossche. (2010, May) Wikipedia. [Online].
http://en.wikipedia.org/wiki/File:Hybridpar.png

[15] J. M. Miller, Propulsion Systems for Hybrid Vehicles. London, UK: IEEE Power & Energy
Series, 2004.

[16] Jason Christensen, Lynn Gantt, Doug Nelson, Adam Robinson, and Michael Stover,
"EcoCAR Design and Development Process for a Plug-In E85 Split-Parallel Architechture
Hybrid Electric Vehicle," Virginia Polytechnic Institute and State University, Blacksburg,
VA, ASME, 2009.

[17] D. Lundstrom, K. Amadori, and P. Krus, "Validation of Small Scale Electric Propulsion
System Models," in 48th AIAA Aerospace Sciences Meeting, Orlando, 2010.

[18] Castle Creations, Phoenix ICE 50 and ICE 75 Brushless Controller User's Manual. Kansas,
U.S.A., 2009.

[19] Northwestern University. (2010, December) Brushed DC Motor Theory. [Online].
http://hades.mech.northwestern.edu/index.php/Brushed_DC_Motor_Theory

[20] J.B. Heywood and Eran Sher, The Two-Stroke Cycle Engine: Its Development, Operation,
and Design.: SAE, 1999, p. 9.

[21] J.B. Heywood, Internal Combustion Engine Fundamentals. New York, NY: McGraw-Hill,
1988, ch. 1-2, 15.

[22] John J. Moskwa and Chung-hung Pan, "Engine Load Torque Estimation Using Non-Linear
Observers," in Conference on Decision and Control, New Orleans, 1995.

[23] D. Khiar, J. Lauber, T. Floquet, and T.M. Guerra, "An Observer Design for the
Instantaneous Torque Estimation of an IC Engine," in Vehicle Power and Propulsion, 2005.

[24] Cary Wilson, "Performance of a Small Internal Combustion Engine Using N-Heptane and
Iso-Octane," Air Force Institute of Technology, Wright Patterson Air Force Base, M.S.
Thesis 2010.

[25] Shyam K. Menon, "Performance Measurement and Scaling In Small Internal Combustion
Engines," Univeristy of Maryland-College Park, College Park, MD, M.S. Thesis 2006.

[26] Optrand, Inc. (2010, June) Optrand Incorporated Website. [Online]. www.optrand.com

113

[27] Martin Winter and Ralph J. Brodd, "What are Batteries, Fuel Cells, and Supercapacitors?,"
Chemical Reviews, vol. 104, no. 10, pp. 4245-4269, September 2004.

[28] Woodbank Communications Ltd. (2010, May) Battery State of Charge Determination.
[Online]. http://www.mpoweruk.com/soc.htm

[29] Frank Fleming, Friction and Magnetism: The Basics Of Electromagnetic Clutches and
Brakes. Somerset, N.J. , U.S.A.: Ogura Industrial Corporation, 2009.

[30] Todd A. Rotramel, "Optimization of Hybrid-Electric Propulsion Systems for a Small
Remotely-Piloted Aircraft," Air Force Institute of Technology, Wright Patterson Air Force
Base, M.S. Thesis 2011.

[31] Isseyas H. Mengistu, "Small Internal Combustion Engine Testing for Hybrid-Electric
Remotely Piloted Aircraft Propulsion," Air Force Institute of Technology, Wright Patterson
Air Force Base, M.S. Thesis 2011.

[32] A.B. Fransisco, "Implementation of an Ideal Operating Line Control Strategy for Hybrid
Electric Vehicles," University of California-Davis, Davis, CA, M.S. Thesis 2002.

[33] Robert W. Schurhoff, "The Development and Evaluation of an Optimal Powertrain Control
Strategy for a Hybrid Electric Vehicle," University of California, Davis, CA, Masters Thesis
2002.

[34] P Singh, C. Fennie, and D.E. Reisner, "Logical Progression," in Electric and Hybrid Vehicle
Technology., 2000, pp. 72-74.

[35] J. Jantzen. (2002) A Tutorial on Adaptive Fuzzy Control. [Online]. www.eunite.org

[36] Sema Alptekin, Diane Deturris, and Jon Ervin, "Optimization of the Fuzzy Logic Controller
for an Autonomous UAV," 2005.

[37] M. Salman, N.J. Schouten, and N.A. Kheir, "Control Strategies for Parallel Hybrid
Vehicles," in American Control Conference, Chicago, 2000.

[38] Martin T. Hagan and Howard B. Demuth, "Neural Networks for Control," in American
Control Conference, San Diego, 1999.

[39] Joseph Matthews, "Adaptive Control of Micro Air Vehicles," Brigham Young University,
Provo, Utah, M.S. Thesis 2006.

114

[40] Sidhartha Panda, N.P. Padhy, and R.N. Patel, "Application of Genetic Algorithm for
FACTS-Based Controller Design," International Journal of Computer, Information and
Systems Science and Engineering, 2007.

[41] Valcor Engineering Corporation. Electroid Company Catalog: Electromagentic Clutch
Model EC-26C. [Online]. www.electroid.com/Catalog/CAT.pdf

[42] Maxon Precision Motors Incorporated. (2010, May) Maxon Motors RE50 Spec Sheet.
[Online]. http://shop.maxonmotor.com/ishop/article/article/370354.xml

[43] Todd A. Rotramel, "Small UAS Propeller Acoustic Testing," Air Force Institute of
Technology, WPAFB, Ohio, Term Paper 2010.

[44] Thunder Power USA, Li-Polymer Charger/Discharger User's Manual TP-1010C. Las
Vegas, NV, USA.

[45] Land and Sea Incorporated, DYNOMite Owner's Manual. Concord, NH, USA, 2006.

[46] 80-20 Incorporated. (2008) T-Slotted Framing. http://www.8020.net/T-Slot-1.asp.

[47] McMaster-Carr Incorporated. (2010) Bullet Resistant PolyCarbonate Shielding.
http://www.mcmaster.com/#bullet-resistant-polycarbonate/=b37pmf.

[48] Monarch Instruments. (2010, September) www.monarchinstruments.com. [Online].
http://www.monarchserver.com/Manuals/1071-4854-115%20ROS%20Eng.pdf

[49] SynQor Incorporated, Technical Specifications NQ40x40QGC30. Boxborough, MA, USA,
2009.

[50] Mastech Corporation, DC power Supply Model HY6020E User's Manual.

[51] Fuji IMVAC Incorporated, Operators Manual for BF-25F and BF-34F EI 4-Stroke Engines,
1st ed. Yokohama, Japan, 2004.

[52] Honda Motor Company, GX35 Owner's Manual, 9th ed. Japan, 2004.

[53] Sullivan Products. (2008) 12VDC Model Engine Starter Instructions. Electronic PDF.

[54] John T. Hagen, The PIC32 Lightning Project: PIC32 Lightning Project User's Manual, 1st
ed. Fairborn, OH, U.S.A., 2010, (Personal Work and Interview).

[55] MicroChip Technology Incorporated, PIC32MX3XX/4XX Family Data Sheet. Chandler, AZ,

115

USA, 2008.

[56] Microchip Technology Incorporated, MPLAB IDE User's Guide. Chandler, AZ, U.S.A.,
2005.

[57] Futaba Corporation, 8 Channel Radio Control System Instruction Manual. Chiba, Japan,
2009.

[58] Dimension Engineering. (2010, February) Dimension Engineering Online Shop. [Online].
http://www.dimensionengineering.com/BattleSwitch.htm

[59] Ambient LLC, Ambient Weather WS-1170 Advanced Weather Station User Manual, 14th
ed. Chandler, AZ, U.S.A., 2010.

[60] Fluke Corporation, True-RMS Multimeters 114, 115, 117 User's Manual, 2nd ed. Everett,
WA, U.S.A., 2007.

[61] K. Ogata, Modern Control Engineering, 4th ed. Upper Saddle River, New Jersey: Pearson
Education, Inc. , 2002.

[62] S. Zaloga, Unmanned Aerial Vehicles: Robotic Air Warfare 1917-2007. Westminster, MD:
Osprey Publishing Ltd., 2008.

[63] Richard Botzum, 50 Years of Target Drone Aircraft.: Northrop, 1985.

[64] Frederick G. Harmon, Andrew A. Frank, and Jean-Jaques Chattot, "Conceptual Deisgn and
Simulation of a Small Hybrid-Electric Unmanned Aerial Vehicle," Journal of Aircraft, vol.
43, no. 5, October 2006.

[65] Bernard Michini, "Modeling and Adaptive Control of Indoor Unmanned Aerial Vehicles,"
Massachusetts Institute of Technology, Cambridge, MA, M.S. Thesis 2009.

[66] Optrand Incorporated, AutoPSI Pressure Sensor Operation Instructions, 5th ed. Plymouth,
MI, USA, 2009.

[67] SynQor Corporation. (2002, June) SynQor DC/DC EMI Characteristics. [Online].
http://www.synqor.com/documents/appnotes/appnt_EMI_Characteristics.pdf

[68] Grand Wing Systems Incorporated, MT-1, the Multi-Tester. , 7th ed. Huatai Keji Yuanqu,
Xiegang Town, China.

116

[69] Gates Corporation, Belt Drive Preventative Maintinence and Safety Manual. Denver, CO,
U.S.A., 2008.

117

Vita

Lieutenant Collin M. Greiser graduated from Heritage High School in Newport News,

VA in 2004. He completed his Bachelor of Science degree in mechanical engineering at

Virginia Polytechnic Institute and State University in 2009. He then received his Air Force

commission and had his first assignment as a graduate student at the Air Force Institute of

Technology working on his masters in astronautical engineering. Lieutenant Greiser completed

this degree in March 2011 and continued on to his next assignment at Los Angeles Air Force

Base, California working for the Missile Defense Agency.

118

Appendix A: Controller Code

/**

FileName: HybridPropulsionControl2.0.c
Author: Collin Greiser & John Hagen
Project: Hybrid Electric RPA
Description: Implements a state machine that controls how user commands
are translated into different configurations of the Hybrid Electric UAV.
Handles controlling when the engine and motor are powered and when power is
taken to and from the battery pack.

***************************/

/** PRIVATE PROTOTYPES **/
double GetTotalAvailableTorque();
double GetTorqueRequest();
double GetMaxEMTorque();
double GetMaxICETorque();
double GetICEIOLTorque();
void SetNormalizedEMTorque(double normalizedTorque);
double GetThrottleSetting();
/** PRIVATE PROTOTYPES **/

/***** NUMERICAL CONSTANTS**/
const double IdleThrottle = 0.0;
const double GearRatio = 1.0;

double MaxEMTorque;// Not constant, calculated in ConfigureHybridController()
const double EMTorqueConstant = 0.0396; // Nm/A
const double DCDCMaxCurrent = 20.0; // A

const int ICECountsPerRev = 1;
const int EMCountsPerRev = 1;

double ICEMapYValues[] = {1.1, 1.3, 1.3, 1.4, 1.4, 1.4, 1.4, 1.3, 1.2, 1.1,
1.0};
const int ICEMapLength = 11; // ^Number of values MUST match ICEMapLength
const double ICEMapXStart = 4000.0;
const double ICEMapXStep = 500.0;

double IOLMapYValues[] = {0.2, 0.45, 0.632, 0.85, 0.95, 1.05, 1.15, 1.1, 1.0,
0.9, 0.7};
const int IOLMapLength = 11; // ^Number of values MUST match IOLMapLength
const double IOLMapXStart = 1000.0;
const double IOLMapXStep = 500.0;

#define EngineMapLength 5
#define EngineMapWidth 11
#define MotorMapLength 5
#define MotorMapWidth 5

119

//Torque map for the Fuji 34-FI engine
double Fuji34TorqueMap[EngineMapLength][EngineMapWidth] = {{0.8, 0.9, 1.0,
1.1, 1.3, 1.6, 1.9, 2.0, 1.9, 1.7, 1.6},

 {0.7, 0.8, 1.0, 1.0, 1.2, 1.5, 1.8, 2.0, 1.9, 1.7, 1.5},

 {0.6, 0.8, 0.9, 0.9, 1.1, 1.4, 1.7, 1.9, 1.8, 1.6, 1.4},

 {0.5, 0.7, 0.8, 0.8, 1.0, 1.3, 1.6, 1.7, 1.7, 1.6, 1.4},

 {0.5, 0.6, 0.7, 0.7, 0.8, 1.2, 1.5, 1.5, 1.5, 1.5, 1.3}
};

//Fuel usage for each torque point

double Fuji34FuelUseMap[EngineMapLength][EngineMapWidth] = {{1.0, 1.5, 1.5,
1.7, 1.8, 2.0, 2.4, 2.5, 2.7, 1.9, 1.9},

 {0.9, 1.4, 1.4, 1.5, 1.7, 1.9, 2.3, 2.4, 2.5, 1.9, 1.8},

 {0.9, 1.3, 1.3, 1.4, 1.6, 1.8, 2.2, 2.3, 2.4, 1.8, 1.7},

 {0.8, 1.2, 1.2, 1.3, 1.5, 1.7, 2.1, 2.2, 2.3, 1.7, 1.6},

 {0.7, 1.1, 1.1, 1.2, 1.4, 1.6, 2.0, 2.1, 2.2, 1.6, 1.5}
};

//Throttle position map for each torque point
double Fuji34ThrottleMap[EngineMapLength][EngineMapWidth] = {{1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0},

 {.90, .90, .88, .87, .86, .90, 1.0, .90, .85, .83, .82},

 {.80, .85, .83, .85, .88, .89, .90, .86, .83, .81, .78},

 {.60, .75, .77, .78, .80, .85, .85, .83, .80, .77, .75},

{.50, .65, .73, .74, .78, .78, .74, .77, .74, .72, .70}
};

//Torque Map for Maxon Electric Motor
//Scaled by speed (x-axis) and Power in (y-axis)

double MaxonTorqueMap[MotorMapLength][MotorMapWidth] = {{0.5, 0.5, 0.5, 0.5,
0.5},

 {0.4, 0.4, 0.4, 0.4, 0.4},

 {0.3, 0.3, 0.3, 0.3, 0.3},

 {0.2, 0.2, 0.2, 0.2, 0.2},

 {0.1, 0.1, 0.1, 0.1, 0.1}
};

120

double MaxonEfficiencyMap[MotorMapLength][MotorMapWidth] = {{0.59, 0.62,
0.67, 0.66, 0.71},

 {0.69, 0.89, 0.87, 0.95, 0.85},

 {0.83, 0.95, 0.90, 0.94, 0.88},

 {0.75, 0.93, 0.95, 0.97, 1.0},

 {0.66, 0.87, 0.96, 0.0, 0.0}
};

/***** NUMERICAL CONSTANTS**/
//#include <GenericTypeDefs.h>
#include "..\Lightning\LightningScreen.h"
#include "..\Lightning\LightningIO.h"
#include "..\Lightning\LightningDrive.h"
#include "..\Lightning\LightningStream.h"
#include "HybridPropulsionControl.h"
#include "math.h"
void ConfigureHybridController()
{
 ConfigureDigitalIO(ClutchPort, ClutchPin, SETOUTPUT);
 ConfigureDigitalIO(PropulsionDCDCOnOffPort, PropulsionDCDCOnOffPin,
SETOUTPUT);
 ConfigureDigitalIO(GenerationDCDCOnOffPort, GenerationDCDCOnOffPin,
SETOUTPUT);
 ConfigureDigitalIO(RunKillPort, RunKillPin, SETINPUT);
 ConfigureDigitalIO(TakeoffIdlePort, TakeoffIdlePin, SETINPUT);

 MaxEMTorque = EMTorqueConstant * DCDCMaxCurrent;
}

#define RESET_PROP 0
#define EMREV_PROP 1
#define ICESTART_PROP 2
#define ICEIDLE_PROP 3
#define GROUNDROLL_PROP 4
#define CATAPULT_PROP 5
#define CLIMB_PROP 6
#define ICEONLY_PROP 7
#define EMONLY_PROP 8
#define ICEANDEM_PROP 9
#define EMONLYREGENBRAKE_PROP 10
#define ICEONLYGENERATION_PROP 11

int propulsionState = RESET_PROP;
void PropulsionControlStateMachine()

{
 //Get Component Temperature for safety checks
 double engineTemp = GetTemperatureTC1047A(ANPORT3);

121

 double motorTemp = GetTemperatureTC1047A(ANPORT5);
 double batteryTemp = GetTemperatureTC1047A(ANPORT9);

 SetSharedCustomMemory(0,propulsionState);

 switch(propulsionState)
 {

 //Reset_prop state is the default "dead" state for all components
 case RESET_PROP:
 SetDigitalOutput(ClutchPort, ClutchPin, FALSE);
 SetPWMDutyCycle(ICEThrottleServo, 0.0);
 SetPWMDutyCycle(ICEChokeServo, 0.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, FALSE);
 SetOutputVoltageNQ40(PropulsionDCDCOutputVolt, 0.0);
 SetCurrentLimitNQ40(PropulsionDCDCCurrentLimit, 0.0);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);
 break;

 //Spin electric motor to provide starting torque for the ICE
 case EMREV_PROP: // Spin motor to 4000rpm
 SetDigitalOutput(ClutchPort, ClutchPin, FALSE);
 SetPWMDutyCycle(ICEThrottleServo, 30.0);
 SetPWMDutyCycle(ICEChokeServo, 50.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, TRUE);
 SetOutputVoltageNQ40(PropulsionDCDCOutputVolt,
RPMToVoltageRE50(4000));
 SetCurrentLimitNQ40(PropulsionDCDCCurrentLimit, 30.0);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);

 if(GetGenericRPM(EMSpeedPort, EMCountsPerRev) > 3800)
 {
 propulsionState = ICESTART_PROP;
 }

 break;

 //Dump clutch with EM spinning so ICE can be started
 //Added timer to shut off EM if ICE refuses to start
 case ICESTART_PROP:
 StartVirtualTimer(VTIMER1);

 SetPWMDutyCycle(ICEThrottleServo, 30.0);

122

 SetPWMDutyCycle(ICEChokeServo, 50.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, TRUE);
 SetOutputVoltageNQ40(PropulsionDCDCOutputVolt,
RPMToVoltageRE50(4000));
 SetCurrentLimitNQ40(PropulsionDCDCCurrentLimit, 30.0);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);

 //Timer to regulate amount of time starter motor is
engaged.
 int timer = GetVirtualTimer(VTIMER1);
 if(timer>5000000)
 {
 propulsionState = RESET_PROP;
 PauseVirtualTimer(VTIMER1);
 ResetVirtualTimer(VTIMER1);
 }
 //Move to next state if ICE starts
 if(GetGenericRPM(ICESpeedPort, ICECountsPerRev) > 3000)
 {
 propulsionState = ICEIDLE_PROP;
 }

 break;

 //Idle state to allow ICE to warm up per manufacturer
instructions
 case ICEIDLE_PROP:
 SetDigitalOutput(ClutchPort, ClutchPin, FALSE);
 SetPWMDutyCycle(ICEThrottleServo, IdleThrottle);
 SetPWMDutyCycle(ICEChokeServo, 50.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, FALSE);
 SetOutputVoltageNQ40(PropulsionDCDCOutputVolt, 0.0);
 SetCurrentLimitNQ40(PropulsionDCDCCurrentLimit, 0.0);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);

 if(GetDigitalInput(TakeoffIdlePort, TakeoffIdlePin))
 {
 propulsionState = GROUNDROLL_PROP; //TODO: be sure
this is correct
 }

 break;

123

 //Dual Power mode for a groundroll style takeoff
 //Disabled for bench testing
 case GROUNDROLL_PROP:

 SetPWMDutyCycle(ICEThrottleServo, IdleThrottle);
 SetPWMDutyCycle(ICEChokeServo, 50.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, TRUE);
 SetOutputVoltageNQ40(PropulsionDCDCOutputVolt, 0.0);
 SetCurrentLimitNQ40(PropulsionDCDCCurrentLimit, 0.0);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);
 //TODO: Check this
 if (GetGenericRPM(ICESpeedPort, ICECountsPerRev) < 2000 &&
GetDigitalInput(TakeoffIdlePort, TakeoffIdlePin)); //Filler RPM, need to
determine Idle Speed
 {
 propulsionState = CLIMB_PROP;
 }

 break;

 //State for a catapult style takeoff. Unsused at the moment
 case CATAPULT_PROP:

 break;

 //Dual power mode for climbing. Roughly identical to
Groundroll_Prop
 case CLIMB_PROP:

 SetPWMDutyCycle(ICEChokeServo, 0.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, TRUE);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);

 //Combine Electric Motor and ICE. Use all availiable
torque from ICE, any remaining request for EM
 double torqueRequest = GetTorqueRequest();

 //Get torque request and command ICE
 if(GetTorqueRequest() < (GetMaxICETorque()))
 {
 double normalizedICETorque = GetTorqueRequest() /
GetMaxICETorque();

 // Saturate signal 0.0 - 1.0

124

 if(normalizedICETorque > 1.0)
 {
 normalizedICETorque = 1.0;
 }

 //Note: Changed to 'IdleThrottle', makes more sense
than stalling the engine
 else if(normalizedICETorque < 0.0)
 {
 normalizedICETorque = IdleThrottle;
 }

 SetPWMDutyCycle(ICEThrottleServo,
normalizedICETorque);

 }
 //If torque request is above torque availiable, use EM to
provide remaining.
 else
 {
 double normalizedTorque = GetMaxICETorque() /
GetMaxICETorque(); //Filler, this just returns a 1

 // Saturate signal 0.0 - 1.0
 if(normalizedTorque > 1.0)
 {
 normalizedTorque = 1.0;
 }
 else if(normalizedTorque < 0.0)
 {
 normalizedTorque = IdleThrottle;
 }
 SetPWMDutyCycle(ICEThrottleServo, normalizedTorque);
//Continues to provide max engine power

 double remainingTorque = GetTorqueRequest() -
GetMaxICETorque();
 double normalizedEMTorque = remainingTorque /
GetMaxEMTorque();

 // Saturate signal 0.0 - 1.0, eespecially important
as remainingTorque will often return a negative value
 if(normalizedEMTorque > 1.0)
 {
 normalizedEMTorque = 1.0;
 }
 else if(normalizedEMTorque < 0.0)
 {
 normalizedEMTorque = 0.0;
 }

 SetNormalizedEMTorque(normalizedEMTorque);

 }

 break;

125

 //ICE Only operating mode
 //Switch C == True, D, G == False

 case ICEONLY_PROP:

 SetPWMDutyCycle(ICEChokeServo, 0.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, FALSE);
 SetOutputVoltageNQ40(PropulsionDCDCOutputVolt, 0.0);
 SetCurrentLimitNQ40(PropulsionDCDCCurrentLimit, 0.0);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);

 //normalize torque request for throttle input
 double normalizedICETorque = GetTorqueRequest() /
GetMaxICETorque();

 // Saturate signal 0.0 - 1.0
 if(normalizedICETorque >= 1.0)
 {
 normalizedICETorque = 1.0;
 }
 else if(normalizedICETorque <= IdleThrottle)
 {
 normalizedICETorque = IdleThrottle;
 }
 if(normalizedICETorque < 1.0 && normalizedICETorque > 0.95)
 {
 normalizedICETorque = 0.95;
 }
 else if(normalizedICETorque < 0.95 && normalizedICETorque >
0.90)
 {
 normalizedICETorque = 0.9;
 }
 else if (normalizedICETorque < 0.9 && normalizedICETorque >
0.85)
 {
 normalizedICETorque = 0.85;
 }
 else if(normalizedICETorque < 0.85 && normalizedICETorque >
0.8)
 {
 normalizedICETorque = 0.8;
 }
 else if(normalizedICETorque < 0.8 && normalizedICETorque >
0.75)
 {
 normalizedICETorque = 0.75;
 }

126

 else if(normalizedICETorque < 0.75 && normalizedICETorque >
0.7)
 {
 normalizedICETorque = 0.7;
 }
 else if(normalizedICETorque < 0.7 && normalizedICETorque >
0.68)
 {
 normalizedICETorque = 0.7;
 }
 else if(normalizedICETorque < 0.68 && normalizedICETorque
>= 0.65)
 {
 normalizedICETorque = 0.65;
 }
 else if(normalizedICETorque < 0.65 && normalizedICETorque >
0.6)
 {
 normalizedICETorque = 0.6;
 }
 else if(normalizedICETorque < 0.6 && normalizedICETorque >
0.55)
 {
 normalizedICETorque = 0.55;
 }
 else if(normalizedICETorque < 0.55 && normalizedICETorque >
0.53)
 {
 normalizedICETorque = 0.55;
 }
 else if(normalizedICETorque < 0.53 && normalizedICETorque
>= 0.5)
 {
 normalizedICETorque = 0.5;
 }
 else if(normalizedICETorque < 0.5 && normalizedICETorque >
0.45)
 {
 normalizedICETorque = 0.5;
 }
 else if(normalizedICETorque < 0.45 && normalizedICETorque >
0.42)
 {
 normalizedICETorque = 0.45;
 }
 else if(normalizedICETorque < 0.42 && normalizedICETorque
>= 0.4)
 {
 normalizedICETorque = 0.4;
 }
 else if(normalizedICETorque < 0.4 && normalizedICETorque >
0.35)
 {
 normalizedICETorque = 0.35;
 }

127

 else if(normalizedICETorque < 0.35 && normalizedICETorque >
0.3)
 {
 normalizedICETorque = 0.3;
 }
 else if(normalizedICETorque < 0.3 && normalizedICETorque >=
0.2)
 {
 normalizedICETorque = 0.25;
 }
 else if(normalizedICETorque < 0.2 && normalizedICETorque >=
0.1)
 {
 normalizedICETorque = 0.15;
 }
 else if(normalizedICETorque < 0.1 && normalizedICETorque >=
0.0)
 {
 normalizedICETorque = 0.0;
 }
 else if(normalizedICETorque <= 0.0)
 {
 normalizedICETorque = 0.0;
 }
 //prevent a stall condition
 if(GetGenericRPM(ICESpeedPort, ICECountsPerRev) < 3000)
 {
 SetPWMDutyCycle(ICEThrottleServo, 0.6);
 }
 int EngineSpeed = GetGenericRPM(ICESpeedPort,
ICECountsPerRev);
 SetPWMDutyCycle(ICEThrottleServo, normalizedICETorque);

 SetSharedCustomMemory(1, normalizedICETorque);
 SetSharedCustomMemory(3, EngineSpeed);

 break;

 //Electric Motor Only Operation
 //Switch D == True, C, G == False

 case EMONLY_PROP:
 SetDigitalOutput(ClutchPort, ClutchPin, FALSE);
 SetPWMDutyCycle(ICEThrottleServo, IdleThrottle);
 SetPWMDutyCycle(ICEChokeServo, 0.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, FALSE);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, TRUE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);

128

 double normalizedEMTorque = GetTorqueRequest() /
MaxEMTorque;

 // Saturate signal 0.0 - 1.0
 if(normalizedEMTorque > 1.0)
 {
 normalizedEMTorque = 1.0;
 }
 else if(normalizedEMTorque <= 0.0)
 {
 normalizedEMTorque = 0.0;

 }
 else if(normalizedEMTorque < 0.8 && normalizedEMTorque >
0.4)
 {
 normalizedEMTorque = 0.40;
 }
 else if(normalizedEMTorque < 0.4 && normalizedEMTorque >
0.0)
 {
 normalizedEMTorque = 0.2;
 }

 SetNormalizedEMTorque(normalizedEMTorque);

 SetSharedCustomMemory(1, normalizedEMTorque);

 break;

 //Dual Power mode operation, both ICE and EM
 //Switches C, D == TRUE, G == FALSE

 case ICEANDEM_PROP:

 //No need for choke with warm engine.

 SetPWMDutyCycle(ICEChokeServo, 0.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, TRUE);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 0.0);

 //double torqueRequest = GetTorqueRequest();

 /*** Basic Program, runs the engine up to IOL and then uses
the electric motor for the remaining
 ***/

129

 if(GetTorqueRequest() < (GetICEIOLTorque() * 1.05)) //
Add 10% band
 {
 double normalizedICETorque = GetTorqueRequest() /
GetMaxICETorque();

 // Saturate signal 0.0 - 1.0
 if(normalizedICETorque > 1.0)
 {
 normalizedICETorque = 1.0;
 }
 else if(normalizedICETorque < 0.0)
 {
 normalizedICETorque = IdleThrottle;
 }

 SetPWMDutyCycle(ICEThrottleServo,
normalizedICETorque);

 SetSharedCustomMemory(1, GetTorqueRequest());
 SetSharedCustomMemory(2, GetICEIOLTorque());
 SetSharedCustomMemory(3, GetMaxICETorque());
 SetSharedCustomMemory(4, normalizedICETorque);
 }
 else
 {
 double normalizedIOLTorque = GetICEIOLTorque() /
GetMaxICETorque();

 // Saturate signal 0.0 - 1.0
 if(normalizedIOLTorque > 1.0)
 {
 normalizedIOLTorque = 1.0;
 }
 else if(normalizedIOLTorque < IdleThrottle)
 {
 normalizedIOLTorque = IdleThrottle;
 }
 SetPWMDutyCycle(ICEThrottleServo,
normalizedIOLTorque); // Set engine to IOL
 //double remainingTorque = GetTorqueRequest() -
GetICEIOLTorque();
 double remainingTorque = GetTorqueRequest() -
normalizedIOLTorque;

 double normalizedEMTorque = remainingTorque /
GetMaxEMTorque();

 // Saturate signal 0.0 - 1.0
 if(normalizedEMTorque > 1.0)
 {
 normalizedEMTorque = 1.0;
 }
 else if(normalizedEMTorque < 0.0)
 {

130

 normalizedEMTorque = 0.0;
 }

 SetNormalizedEMTorque(normalizedEMTorque);
// SetSevenSegmentFloat(normalizedEMTorque);
 if(remainingTorque > 0.75*GetTorqueRequest())
 {
 SetPWMDutyCycle(ICEThrottleServo,
normalizedIOLTorque+0.1);

 }

 SetSharedCustomMemory(1, GetTorqueRequest());
 SetSharedCustomMemory(2, GetMaxICETorque());

 SetSharedCustomMemory(4, normalizedIOLTorque);
 SetSharedCustomMemory(5, normalizedEMTorque);
 }

 /*****Advanced Program, runs a check on the torque request
to see if the engine is providing the correct
 torque, and if there is another location where this torque
can be provided.
 *****/
 //double normalizedICETorque = torqueRequest /
GetMaxICETorque();

 /***

 //Run through function to find torque points and
return throttle setting
 //TODO: Debug mode, change optimalthrottle
 double OptimalThrottle =
GetThrottleSetting(GetTorqueRequest());
 // Saturate signal 0.0 - 1.0
 if(OptimalThrottle > 1.0)
 {
 OptimalThrottle = 1.0;
 }
 else if(OptimalThrottle < IdleThrottle)
 {
 OptimalThrottle = IdleThrottle;
 }
 SetPWMDutyCycle(ICEThrottleServo, OptimalThrottle);
 //SetSevenSegmentFloat(0.0);

 //double remainingTorque = GetTorqueRequest() -
GetICEIOLTorque();
 double remainingTorque = GetTorqueRequest() -
normalizedICETorque;

 double normalizedmotorTorque = remainingTorque /
GetMaxEMTorque();

131

 // Saturate signal 0.0 - 1.0
 if(normalizedmotorTorque > 1.0)
 {
 normalizedmotorTorque = 1.0;
 }
 else if(normalizedmotorTorque < 0.0)
 {
 normalizedmotorTorque = 0.0;
 }

 SetNormalizedEMTorque(normalizedmotorTorque);
// SetSevenSegmentFloat(normalizedmotorTorque);
 ***/

 break;

 case EMONLYREGENBRAKE_PROP:
 //Unused

 break;

 case ICEONLYGENERATION_PROP:
 //Switch C, D, G == True

 SetPWMDutyCycle(ICEChokeServo, 0.0);

 SetDigitalOutput(PropulsionDCDCOnOffPort,
PropulsionDCDCOnOffPin, FALSE);

 SetDigitalOutput(ClutchPort, ClutchPin, TRUE);

 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, TRUE);

 double batteryVoltage = GetBatteryVoltage(ANPORT10);

 //Do not charge if battery voltage drops below the 3.0 V
min.
 if (batteryVoltage < 21.0)
 {
 propulsionState = ICEONLY_PROP;
 SetPWMDutyCycle(ICEThrottleServo, 0.5);
 }
 //Stop charging if battery temperature climbs too high
 if(batteryTemp > 50.0)
 {
 propulsionState = ICEONLY_PROP;
 SetPWMDutyCycle(ICEThrottleServo, 1.0);
 }

 //Initial Charging

132

 //Constant Current Charge

 if(batteryVoltage < 22.0)
 {
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 3.0);
 }
 else if(batteryVoltage < 24.0 && batteryVoltage > 22.0)
 {
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 1.8);
 }
 else if(batteryVoltage < 27.5 && batteryVoltage > 24.0)
 {
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 1.0);
 }

 //Constant Voltage Charge
 if(batteryVoltage > 27.5 && batteryVoltage < 29.0)
 {
 SetOutputVoltageNQ40(GenerationDCDCOutputVolt, 29.1);
 SetCurrentLimitNQ40(GenerationDCDCCurrentLimit, 1.0);
 }

 //Charge cycle complete, discontinue charging
 if(batteryVoltage > 29.0)
 {
 SetDigitalOutput(GenerationDCDCOnOffPort,
GenerationDCDCOnOffPin, FALSE);
 }

 //Set ICE to react to throttle input, but add a torque band
to compensate for EM draw
 //double normalizedICETorque = GetTorqueRequest() /
GetMaxICETorque();

 // Saturate signal 0.0 - 1.0
 if(normalizedICETorque > 1.0)
 {
 normalizedICETorque = 1.0;
 }
 else if(normalizedICETorque <= IdleThrottle)
 {
 normalizedICETorque = IdleThrottle;
 }

 SetPWMDutyCycle(ICEThrottleServo, normalizedICETorque+0.1);

 break;
 }

 BOOL ICEOnlyMode = GetDigitalInput(ICEOnlySwitchPort,
ICEOnlySwitchPin);
 BOOL EMOnlyMode = GetDigitalInput(EMOnlySwitchPort, EMOnlySwitchPin);
 BOOL DualMode = GetDigitalInput(DualModeSwitchPort, DualModeSwitchPin);

133

 //Allows transmitter to manually control propulsion states
 //See header file for channel and switch listings
 if(!GetDigitalInput(RunKillPort, RunKillPin))
 {
 propulsionState = RESET_PROP;
 }
 else if(ICEOnlyMode == TRUE && EMOnlyMode == FALSE && DualMode ==
FALSE)
 {
 propulsionState = ICEONLY_PROP;
 }
 else if(EMOnlyMode == TRUE && ICEOnlyMode == FALSE && DualMode ==
FALSE)
 {
 propulsionState = EMONLY_PROP;
 }
 else if(ICEOnlyMode == TRUE && EMOnlyMode == TRUE && DualMode == FALSE)
 {
 propulsionState == ICEANDEM_PROP;
 }
 else if(ICEOnlyMode == TRUE && EMOnlyMode == TRUE && DualMode == TRUE)
 {
 propulsionState == ICEONLYGENERATION_PROP;
 }
 //Defaults to Engine Only mode
 else
 {
 propulsionState = ICEONLY_PROP;
 }

}

double GetTotalAvailableTorque()
{
 return MaxEMTorque + GetMaxICETorque();
}

double GetMaxEMTorque()
{
 return MaxEMTorque;
}

double GetMaxICETorque()
{

 int currentICERPM = GetGenericRPM(ICESpeedPort, ICECountsPerRev);

 return InterpolateVector1D(ICEMapYValues, ICEMapLength, ICEMapXStart,
ICEMapXStep, currentICERPM);
}

double GetICEIOLTorque()
{
 int currentICERPM = GetGenericRPM(ICESpeedPort, ICECountsPerRev);

134

 return InterpolateVector1D(IOLMapYValues, IOLMapLength, IOLMapXStart,
IOLMapXStep, currentICERPM);
}

double GetTorqueRequest()
{

 double throttleSetting = GetRCDutyCycle(AutopilotThrottle); // Will
return 0-1.0

 double totalTorque = GetTotalAvailableTorque();

 return throttleSetting * totalTorque;
}

void SetNormalizedEMTorque(double normalizedTorque)
{
 // De-normalize torque value
 double requestedTorque = normalizedTorque * MaxEMTorque;
 double currentForTorque = requestedTorque / EMTorqueConstant;

// Torque/current control of brushed motor through current limited DC-DC
converter
// Set voltage to max, and limit current.
// The output voltage will then drop to whatever voltage will draw the
limited
// current from the motor
// 40V max

 SetOutputVoltageNQ40(PropulsionDCDCOutputVolt, 40.0);

 SetCurrentLimitNQ40(PropulsionDCDCCurrentLimit,currentForTorque);

// Current control
 SetSharedCustomMemory(2, currentForTorque);

}

double InterpolateVector1D(double yValues[], int length, double xStart,
double xStep, double xInput)
{
 // Find Nearest X value to xInput
 int closestXIndex = 0;
 double closestDifference = 999999999999.9;
 int i;
 for(i = 0; i < length; i++)
 {
 double nextIndexValue = i * xStep + xStart;
 double nextDifference = xInput - nextIndexValue;
 if(nextDifference < 0) // Absolute value for comparision
 {
 nextDifference *= -1;
 }

135

 if(nextDifference < closestDifference)
 {
 closestXIndex = i;
 closestDifference = nextDifference;
 }
 }

 // Select the indexes above and below xInput
 int xIndex1 = 0;
 int xIndex2 = 0;
 if((xInput - (closestXIndex * xStep + xStart)) > 0)
 {
 xIndex1 = closestXIndex;
 }
 else
 {
 xIndex1 = closestXIndex - 1;
 }
 xIndex2 = xIndex1 + 1;

 // Check if either index are outside the array
 // if so return the closest known yValue
 if(xIndex1 < 0) // xInput was less than xStart
 {
 return yValues[0];
 }
 else if (xIndex2 >= length) // xInput was greater than the largest
known xValue
 {
 return yValues[length-1];
 }

 // Linearly interpolate the yValue that cooresponds with the given
xInput

 // Get slope between nearest two points
 // m = (y2 - y1) / (x2 - x1)
 double y1 = yValues[xIndex1];
 double y2 = yValues[xIndex2];
 double x1 = xIndex1 * xStep + xStart;
 double x2 = xIndex2 * xStep + xStart;
 double m = (y2 - y1) / (x2 - x1);

 // y = m(x - x1) + y1
 return (m*(xInput - x1)) + y1;
}

double GetThrottleSetting(double torqueCommand)
{
 int i;
 int j;
 BOOL Foundcommand = FALSE;
 int indice1;
 int indice2;
 double difference = 0.1;
 double previousmin = 99999.99999;

136

 for (j = 0; j<EngineMapWidth; j++)
 {
 for (i = 0; i<EngineMapLength; i++)
 {
 double x = fabs(Fuji34TorqueMap[i][j] - torqueCommand);
 if (x<difference)
 {
 double current = Fuji34FuelUseMap[i][j];

 if (current < previousmin)
 {
 indice1 = i;
 indice2 = j;
 Foundcommand = TRUE;
 current = previousmin;
 }
 }

 }

 }

 if(Foundcommand == FALSE)
 {
 indice1 = 4;
 indice2 = 4;
 }

 double BestThrottleSetting = Fuji34ThrottleMap[indice1][indice2];

 return BestThrottleSetting;

}

Figure A-1: Main HE controller code

/**

FileName: HybridPropulsionControl.h
Author: Collin Greiser & John Hagen
Project: Hybrid Electric UAV

*****************************/

#ifndef HYBRIDPROPULSIONCONTROL_H
#define HYBRIDPROPULSIONCONTROL_H

/** PUBLIC PROTOTYPES **/
void PropulsionControlStateMachine();
void ConfigureHybridController();
double InterpolateVector1D(double yValues[], int length, double xStart,
double xStep, double inputX);
/** PUBLIC PROTOTYPES **/

/***** NUMERICAL CONSTANTS**/
#define ClutchPort DIO1PORT // E5

137

#define ClutchPin DIO1PIN
#define PropulsionDCDCOnOffPort DIO2PORT // G15
#define PropulsionDCDCOnOffPin DIO2PIN
#define GenerationDCDCOnOffPort DIO3PORT // E4
#define GenerationDCDCOnOffPin DIO3PIN
#define RunKillPort DIO4PORT // G13; TRUE = Run,
FALSE = Kill
#define RunKillPin DIO4PIN
#define TakeoffIdlePort DIO5PORT // G12; TRUE =
Takeoff, FALSE = Idle
#define TakeoffIdlePin DIO5PIN
#define ICEOnlySwitchPort DIO6PORT //Channel 4, SG
#define ICEOnlySwitchPin DIO6PIN
#define EMOnlySwitchPort DIO7PORT //Channel 5, SD
#define EMOnlySwitchPin DIO7PIN
#define DualModeSwitchPort DIO8PORT //Channel 6, SC
#define DualModeSwitchPin DIO8PIN

#define ICEThrottleServo OCPORT1 // D0, Channel 3, J3
#define ICEChokeServo OCPORT2 // D1, Channel 1, SA

#define PropulsionDCDCOutputVolt AOPORT4 // DAC1 VOUTA
#define PropulsionDCDCCurrentLimit AOPORT1 // DAC1 VOUTB
#define GenerationDCDCCurrentLimit AOPORT2 // DAC2 VOUTA
#define GenerationDCDCOutputVolt AOPORT3

#define ICESpeedPort INTPORT1 // E8
#define EMSpeedPort INTPORT2 // E9

#define AutopilotThrottle ICPORT1 // D8, Channel 3, J3

/***** NUMERICAL CONSTANTS**/

#endif // HYBRIDPROPULSIONCONTROL_H

Figure A-2: HE control header code

%M-File for the subplotting of controller data runs
%Collin M. Greiser
%Master's Thesis, February 2011
%Wright-Patterson Air Force Base, Ohio

%Plot All Test Data

clear all; close all;
clc
%Read in raw data file from MS Excel
%User inputs data run number and test type
disp('Enter 1 for Engine Only, Honda');
disp('Enter 2 for Engine Only, Fuji 25');
disp('Enter 3 for Motor Only');
disp('Enter 4 for Dual Mode');

138

disp('Enter 5 for Regen Mode');
type = input('Enter the test type');

num = input('Enter the data run number');
%Read ICE Only Data
if type == 1;
 ICE = xlsread(['honda run',num2str(num),'.xlsx']);
elseif type == 2;
 ICE = xlsread(['fuji run',num2str(num),'.xlsx']);
%Read Motor Data
elseif type == 3;
 MO = xlsread(['motor run',num2str(num),'.xlsx']);
%Read Dual Mode Data
elseif type == 4;
 DUAL = xlsread(['dualmode',num2str(num),'.xlsx']);
%Read Regen Data
else
 REGEN = xlsread(['regen mode',num2str(num),'.xlsx']);
end

%Subplot Engine Speed, Torque, and Throttle Commands
if type == 1 || type == 2;

 figure;
 subplot(3,1,1)
 plot(ICE(:,1),ICE(:,2));
 ylabel('Engine Speed (RPM)');
 axis([min(ICE(:,1)) max(ICE(:,1)) 0 9000]);

 subplot(3,1,2)
 plot(ICE(:,1), ICE(:,3));
 ylabel('Torque (N-m)');
 axis([min(ICE(:,1)) max(ICE(:,1)) 0 1]);
 hold on;
 plot([0 max(ICE(:,1))], [0.66 0.66],'-k')
 hold off;
 legend('Engine Torque','required torque','Location','Best');

 subplot(3,1,3)
 plot(ICE(:,1), ICE(:,4));
 ylabel('Throttle Position Command');
 axis([min(ICE(:,1)) max(ICE(:,1)) 0 1]);
 xlabel('Time (s)');
elseif type == 3;
%Subplot Motor Data
%Scale Data to adjust for time indifference
m = find(MO(:,4)==min(MO(:,4)));
m2 = find(m(:,1)==min(m));
m3 = m(m2,1);
n = find(MO(:,3)==min(MO(:,3)));
p = MO(m3,1);
q = MO(n,1);
s = abs(p-q);
x2 = MO(:,1)+s;
figure;

139

subplot(3,1,1)
 plot(MO(:,1),MO(:,2));
 ylabel('Motor Speed (RPM)');
 axis([min(MO(:,1)) max(MO(:,1)) 0 9000]);

 subplot(3,1,2)
 plot(x2, MO(:,3));
 ylabel('Torque (N-m)');
 axis([min(MO(:,1)) max(MO(:,1)) 0 0.7]);
 hold on;
 plot([0 max(x2)], [0.27 0.27],'-k')
 hold off;
 legend('Motor Torque','Required Torque','Location','Best');

 subplot(3,1,3)
 plot(MO(:,1), MO(:,4));
 ylabel('Throttle Position Command');
 axis([min(MO(:,1)) max(MO(:,1)) 0 1]);
 xlabel('Time (s)');
elseif type == 4;
figure;
 subplot(3,1,1)
 plot(DUAL(:,1),DUAL(:,2));
 ylabel('Requested Torque (N-m)')
 axis([min(DUAL(:,1)) max(DUAL(:,1)) 0 2]);

 subplot(3,1,2)
 plot(DUAL(:,1), DUAL(:,3));
 ylabel('Theoretical Engine Command');
 axis([min(DUAL(:,1)) max(DUAL(:,1)) 0 1]);

 subplot(3,1,3)
 plot(DUAL(:,1), DUAL(:,4));
 ylabel('Theoretical Motor Command');
 xlabel('Time (s)');
 axis([min(DUAL(:,1)) max(DUAL(:,1)) 0 1]);

end

Figure A-3: MATLAB plotting code

140

Appendix B: Controller Flowcharts

Figure B-1: Climb and cruise with regeneration flowchart

141

Figure B-2: Endurance mode flowchart

142

Figure B-3: Cruise without regeneration flowchart

143

Appendix C: Example Test Matrix

Table 8: ICE Only (Cruise) Test Matrix

Engine Only Mode Test (Cruise)

Futaba Remote Settings

Switches Engaged Switches Disengaged

"A" "B", "C", "H"

(Either Direction

Engages)

(Center Position

Disengages)

(Note: Choke and clutch are controlled automatically, "H" Will override choke command and "C"

disables controller)

(Note #2: Switching all switches to the center position will put the controller in "Reset", disabling

everything)

Controller Settings

Propulsion DCDC Off

Generation DCDC Off

Land and Sea Dynamometer Settings

Dynamometer Main Power On

Load Cell Switch Manual

Load Knob

No

Load/Variable

LabView Panel Settings

All Data Collection Switches On

144

Measured Parameters

Engine Speed

(RPM)

Throttle

Position

(0‐1)

Motor

Speed

(RPM)

Batter

y

Voltag

e (V)

Battery

Current

(A)

Engine

Temp

(⁰F)

Motor

Temp

(⁰F)

Clutch

Engageme

nt (On‐Off)

Choke

Engageme

nt (On‐

Half‐Off)

Shaft

Torqu

e (N‐

m)

Idle

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

Data File Name:

145

Table 9: Endurance Mode Test Matrix

Motor Only Mode Test (Endurance)

Futaba Remote Settings

Switches Engaged Switches Disengaged

"B" "A", "C", "H"

(Either Direction

Engages)

(Center Position

Disengages)

(Note: Choke and clutch are controlled automatically, "H" Will override choke command and "C"

disables controller)

(Note #2: Switching all switches to the center position will put the controller in "Reset", disabling

everything)

Controller Settings

Propulsion DCDC Engaged

Generation DCDC Off

Land and Sea Dyno Settings

Dyno Main Power On

Load Cell Switch Manual

Load Knob

No

Load/Variable

LabVIEW Panel Settings

All Data Collection Switches On

Measured Parameters

146

Engine Speed

(RPM)

Throttle

Position (0‐1)

Motor

Speed

(RPM)

Batter

y

Voltag

e (V)

Battery

Current

(A)

Engine

Temp

(⁰F)

Motor

Temp

(⁰F)

Clutch

Engageme

nt (On‐Off)

Choke

Engageme

nt (On‐

Half‐Off)

Shaft

Torqu

e (N‐

m)

Idle

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

Data File Name:

147

Appendix D: Example SOP

Standard Operating Procedure for HE-RPA Controller Testing

Developed by Collin Greiser

4 JAN 2011

Cruise Without Regeneration Testing

Initial Setup (Dyno)

1. Ensure fuel tank is full with fresh gasoline (red container) and the bolts on the
dynamometer are all tight and secure.

2. Ensure belt tensioner is in place and tight. Belt WILL break if the tensioner is not secure!
3. Prime the engine by pushing the fuel bulb until fuel fills the carburetor (Honda) or by

turning the engine over until fuel is drawn into the carburetor (Fuji engines).
4. Set the choke to closed (gray lever on Honda, servo on Fuji).
5. Connect the 12V battery to the starter motor.

Initial Setup (Computer and Controller)

1. Power on the controller by flipping the switch on the main board to “USB.” All five
lights on the board should light up and remain solid.

2. Ensure that optical sensors have power and their beams are pointed correctly.
3. On the computer, bring up the MPLAB main screen. Select “build all” to build the most

recent version of the controller code. Once complete, select “Program.” The controller
lights will dim, except for the blue light. Once complete, the controller is now
programmed and ready for use.

4. On the computer, bring the main LabView and dynamometer screens up.
5. Ensure nothing is touching the dynamometer, and click “zero” to zero out and re-calibrate

the torque sensor. The torque reading should now be very close to zero.
6. Turn on the transmitter and ensure battery voltage is above 7.0V. The LED on the

receiver should now be green. Make sure the throttle stick is at zero (down).

Engine Warm Up

148

1. With the starter motor, place the motor as snugly against the propeller cone on the back
of the engine shaft as possible.

2. Press the bottom of the starter pad to engage the starter. Spin the engine for no more than
a maximum of 5 seconds. Refer to individual manuals for complete engine starting
procedures.

3. Once the engine is running, allow idling for approximately one minute, then open the
choke fully.

4. If the engine stalls, repeat steps 1-3.
5. Once the engine is running smoothly, disconnect the battery and move it out of the way.
6. Allow engine to warm up to operating temperature.

Testing

1. Give the throttle on the transmitter a quick bump to ensure engine operability.
2. Adjust the load and throttle setting to the desired point, then shut off the engine.
3. Zero the dynamometer.
4. Re-start the engine; data is now ready to be collected.
5. During testing, monitor the throttle output on the LabView screen. If the throttle appears

“stuck” at 100%, disable the controller by clicking “build all” on the MPLAB screen.
This will reset the throttle to zero.

6. To start collecting data, click “record” on the dynamometer screen and “run
continuously” on the LabView screen. MATLAB will handle the time differences.

7. Power-down is reverse of start-up.

Standard Operating Procedure for HE-RPA Controller Testing

Developed by Collin Greiser

4 JAN 2011

Endurance Testing

Initial Setup (Dyno)

1. Ensure DC power supply is on. Turn the right-most knob to increase the supply voltage to
exactly 26.9 volts.

2. Ensure belt tensioner is in place and tight. Belt WILL break if the tensioner is not secure!

149

3. Place the air hose so that air flows directly over the DC/DC converter. Turn on the air
supply. If the converter is not cooled it WILL overheat.

4. Ensure the engine choke is closed and the engine ignition is disabled to prevent any
accidental start-ups.

Initial Setup (Computer and Controller)

1. Power on the controller by flipping the switch on the main board to “USB.” All five
lights on the board should light up and remain solid. The motor will give a quick “blip.”
This is normal; it is due to small current being passed through the DC/DC converter on
power up.

2. Ensure that optical sensors have power and their beams are pointed correctly.
3. On the computer, bring up the MPLAB main screen. Select “build all” to build the most

recent version of the controller code. Once complete, select “Program.” The controller
lights will dim, except for the blue light. Once complete, the controller is now
programmed and ready for use.

4. On the computer, bring the main LabView and dynamometer screens up.
5. Ensure nothing is touching the dynamometer, and click “zero” to zero out and re-calibrate

the torque sensor. The torque reading should now be very close to zero.
6. Turn on the transmitter and ensure battery voltage is above 7.0V. The LED on the

receiver should now be green. Make sure the throttle stick is at zero (down).
7. Turn on both multimeters. The parallel multimeter should read zero. The series

multimeter will have zero current at this point.

Testing

1. Give the throttle on the transmitter a quick bump to ensure motor operability.
2. Adjust the load and throttle setting to the desired point, then stop the motor. The current

multimeter will read approximately 0.3 A. This is NORMAL as the motor and DC/DC
converter both have no-load currents associated with them.

3. Zero the dynamometer.
4. Data is now ready to be collected.
5. During testing, monitor the throttle output on the LabView screen. If the throttle appears

“stuck” at 100%, disable the controller by clicking “build all” on the MPLAB screen.
This will reset the throttle to zero.

6. To start collecting data, click “record” on the dynamometer screen and “run
continuously” on the LabView screen. MATLAB will handle the time differences.

7. The one-way bearing will be noisy; this is normal.
8. Power-down is reverse of start-up.

150

Appendix E: Controller Wiring Diagram [54]

151

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY)

24 03 2011
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From — To)

Sept 2009-Mar 2011

4. TITLE AND SUBTITLE

Implementation of an Open-Loop Rule-Based Control
Strategy for a Hybrid-Electric Propulsion System On a
Small RPA

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Greiser, Collin M., 2d Lt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of Engineering and Management
(AFIT/ENY)
2950 Hobson Way, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

 AFIT/GA/ENY/11-M05

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ben Razidlo (Benjamin.Razidlo@wpafb.af.mil)
Air Force Research Laboratory
1950 Fifth Street
WPAFB, OH 45433-7251

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL/RZPG
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
This material is declared work of the U.S. government and is not subject to copyright protection in the United States.

14. ABSTRACT

Currently fielded electric-powered small remotely-piloted aircraft (RPA) lack endurance desired by warfighters, and internal combustion
engine (ICE) RPAs generate undesirable acoustic and thermal signatures. Hybrid-electric (HE) propulsion systems would combine both
electric power for endurance and ICE power for cruise and climb modes. Use of HE systems would eliminate undesirable signatures in
addition to providing considerable fuel savings over time. Five components were used in this HE system: the ICE, electric motor (EM),
electromagnetic clutch, battery pack, and a propeller. Control of such a system in a small RPA has never been attempted before. A rule-
based controller was developed to manage this HE system in C code. This system and its various sensors were analyzed on a custom-built
dynamometer test stand that was developed in conjunction with other students. LabView screens were developed to aid this testing and
interface with the sensor suite. The controller’s performance over 9 distinct operating modes, including 4 operational flying states, were
validated to provide the most optimal operation of a HE-RPA system of about 13.6 kg (30.0 lbf).

15. SUBJECT TERMS
Hybrid-Electric, Propulsion, Remotely-Piloted, Control, Rule-Based

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

168

19a. NAME OF RESPONSIBLE PERSON
.Frederick G. Harmon, Lt Col, USAF

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)
(937)786-3636 x7478

Email: (Frederick.harmon@afit.edu)
Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

