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Abstract—We present an algorithm for extracting 3D canonical
scattering features observed over sparse, bistatic SAR apertures.
The input to the algorithm is a collection of noisy bistatic mea-
surements which are, in general, collected over nonlinear flight
paths. The output of the algorithm is a set of canonical scattering
features that describe the 3D scene geometry. The algorithm
employs a pragmatic approach to initializing feature estimates
by first forming a 3D reflectivity reconstruction using sparsity-
regularized least squares methods. Regions of high energy are
detected in the reconstructions to obtain initial feature estimates.
A single canonical feature, corresponding to a geometric shape
primitive, is fit to each region via nonlinear optimization of fit
error between the complex phase history data and parametric
scattering models using a modification of the CLEAN method.
Feature extraction results are presented for sparsely-sampled,
nonlinear, 3D bistatic scattering prediction data of a simple scene.

Index Terms—synthetic aperture radar, bistatic scattering,
feature extraction, radar target recognition

I. INTRODUCTION

We propose an algorithm for extracting attributed 3D fea-
tures from SAR data collected over sparse, nonlinear apertures
that have frequency, azimuth, and elevation diversity. Practical
SAR flight paths provide only a sparse sampling of a 3D SAR
aperture, resulting in high sidelobes and aliasing if traditional
backprojection or Fourier imaging is used. Recent application
of regularization techniques has shown promise in removing
these image artifacts to obtain high quality 3D images with
regions of compact energy [1]–[3]. We propose a feature
extraction algorithm that uses the regularization approach to
generate such sparse 3D images for detection of scatterers and
initialization of feature parameter estimates. The algorithm
processes fully-polarimetric phase history data and outputs
a list of scattering primitives, characterized by their type,
location, orientation, and size. We present the algorithm for the
general case of bistatic SAR apertures, but it is also applicable
to monostatic SAR, as a special case of the bistatic geometry.

In Section II we present parametric scattering models for
canonical features of interest. In Section III we discuss the
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feature extraction problem and outline an algorithm for extract-
ing features from polarimetric phase history data. In Section
V we apply the algorithm to simulated data for an arbitrary,
nonlinear, sparse bistatic SAR aperture.

II. BISTATIC CANONICAL SCATTERING MODELS

We assume that scattering from an object can be represented
as a sum of responses from canonical scattering centers. A
set of 3D canonical models have recently been developed for
bistatic measurements [4], [5]. These models include a plate,
dihedral, trihedral, top-hat, cylinder, and sphere. In this section
we briefly review the models; details on their derivations are
found in [4], [5].

Using high-frequency approximations [6], we represent the
received radar signal S(k,Λ;Θ;Γ) as a sum of scatterers
Sq(k,Λ;Θq,Γq). The sum may be written as

S(k,Λ;Θ;Γ) =
Q∑

q=1

Pβq
(Λ;Θq)MΓq

(k,Λ;Θq)ejkΔR(Λ;Θq) (1)

where k
�
= 2πf

c is the wavenumber for frequency f and speed
of light c. We use the shorthand notation Λ = (φt, θt, φr, θr)
to represent the scattered signal dependence on the transmitter
(subscript t) and receiver (subscript r) azimuth (φ) and ele-
vation (θ) locations. The term Pβq

is the 2 × 2 polarization
scattering matrix of the qth scatterer, which takes the form

Pβq=odd(Λ;Θq) =
[
−1 0
0 −1

]
(2)

for odd-bounce scatterers or

Pβq=even(Λ;Θq) =
[
− cos(ζt + ζr) sin(ζt + ζr)
sin(ζt + ζr) cos(ζt + ζr)

]
(3)

for even-bounce scatterers, where ζt and ζr are the object
rotation angles about the transmitter and receiver antenna lines
of sight (LOS). The subscript Γq in (1) indicates the type
of scatterer (plate, dihedral, etc.) and encodes the particular
functional form of the amplitude response MΓq

. The vector
Θq contains physical parameters corresponding to a reflector
of type Γq, including (x, y, z) location, roll (γ̃), pitch (θ̃),
yaw (φ̃) orientation, and length, height, and/or radius size
parameters, as applicable. Finally, the term ΔR in (1) is the
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bistatic differential range, which may be approximated under
a far-field assumption as

ΔR(Λ;Θq) = ΔRr(Λ;Θq)+ xq(cos φt cos θt+ cos φr cos θr)
+ yq(sin φt cos θt+ sinφr cos θr) + zq(sin θt+sin θr) (4)

where (xq, yq, zq) is the center location of the scatterer and
ΔRr(Λ;Θq) is a range offset term due to the distance of the
scatterer surface from the scatterer center location.

Table I lists canonical shape bistatic scattering models as
functions of relative aspect angles (φ′

t, θ
′
t) and (φ′

r, θ
′
r) that

encode both the radar antenna aspect angles and the object’s
roll, pitch, and yaw orientation. (See the model derivations in
[4], [5] for details on computing the relative aspect angles).
Table I also lists a calibration scale factor Acal, which when
substituted in place of the scalar amplitude term A in MΓ,
scales the peak scattering intensity max(|SΓq

|2) to equal the
peak radar cross section (RCS) of the object.

Substituting the model terms from Table I into (1) we obtain
a description of the scattering response of a set a reflectors as
a function of the data collection parameters (radar antenna
locations and frequency) and object parameters (shape type,
location, size, and orientation). We assume that the radar
antenna parameters are known and that the object parameters
are unknown. In the sequel, we consider estimating the object
parameters to obtain a physical description of target structure.

III. FEATURE EXTRACTION

Using the models in Section II, we consider the problem
of extracting scattering features from a set of noisy bistatic
phase history measurements, Y(k,Λ). Under the assumption
of white Gaussian measurement noise, maximum likelihood
parameter estimates of the scattering parameters can be found
by solving the least squares (LS) problem:

min
Θ,Γ

∥∥∥∥∥Y(k,Λ) −
N∑

n=1

Sn(k,Λ;Θn,Γn)

∥∥∥∥∥
2

2

. (5)

Note that (5) is a combined detection and estimation problem.
The detection problem is to determine the scattering types
Γ = [Γ1, . . . ,ΓN ], and the estimation problem is to solve for
the parameter vector Θ = [Θ1, . . . ,ΘN ] that characterizes the
location, orientation, and sizes of the scattering features. In
addition, there is a model order selection problem of choosing
N in (5); ideally N = Q, the true model order in (1).

For the models in Section II, (5) is a high order, nonlinear,
non-convex optimization problem that requires accurate initial-
ization for iterative numerical solvers to converge to the global
minimum. Previous work utilizes energy compactness in 2D
SAR images to initialize model order and scatterer location
and size parameters [7], [8]. However, 3D SAR flight paths are
often sparse apertures, and the corresponding Fourier-based
or backprojection-formed images contain high sidelobes and
aliasing, hindering feature segmentation in the image domain.
For example, Figures 2(a) shows the phase history for an
arbitrary sparse bistatic aperture, and Figure 2(b) shows the

corresponding Fourier image. From the image, it is difficult to
discern the number and locations of the scatterers.

Recent application of regularization techniques [1], [2] has
demonstrated effective formation of high-quality sparse 3D
images [3]. Therefore, we propose a pragmatic 3D feature ex-
traction algorithm that first generates sparse 3D images using
�1-Regularized Least Squares. These sparse images are used
to initialize model order and scatterer location, orientation,
and size parameter estimates. Parameter estimates are refined
for one scatterer at a time using a modification of CLEAN
[9]. The algorithm output is a list of detected features and the
corresponding model parameter estimates. Key steps of the
proposed feature extraction algorithm are summarized below.

A. 3D Sparse Image Formation

Let the underlying scene reflectivity (sparse image) be given
by s and let Φ be a mapping of the reflectivity to the observed
phase history at the observed transmit and receive angles Λ.
Then, the �1-regularized least squares problem

ŝ = arg min
s

‖Y − Φs‖2
2 + λ ‖s‖1 (6)

may be solved to obtain a sparse image solution ŝ with sparsity
enforced by the scalar constraint λ. For our SAR imaging
problem, the mapping Φ is given by HFH , where F is a
discrete Fourier transform matrix, H is a projection of the
phase history onto the flight path samples, and superscript H is
the matrix Hermitian operator. We follow [1], [2] to efficiently
compute the �1-regularized sparse image ŝ. A sparse solution
that is jointly optimal across all polarizations is preferred, but
for computational reasons we independently compute sparse
images for each polarization channel and denote the solutions
as ŝp, p∈{HH,HV,VH,VV}. We form a composite image

ŝc =
[
|ŝHH|2 + |ŝHV|2 + |ŝVH|2 + |ŝVV|2

]1/2
(7)

from the images corresponding to the four polarization chan-
nels. An example sparse image is shown in Figure 3. We
assume each region of high energy in the composite image ŝc

corresponds to one scatterer and use the image to initialize the
scatterer location, orientation, and size parameters.

B. Image Segmentation

We extend the Peak Region Segmentation algorithm in [10]
to segment three-dimensional SAR images. We implement a
region merging method that accounts for noise ripple across
extended radar targets but still separates closely-spaced scatter-
ers. Details are found in [11]. Figure 4 shows that application
of this automated segmentation algorithm to the sparse image
in Figure 3 results in seven distinct scattering regions.

C. Parameter Initialization

We assume that each segmented image region corresponds
to one scatterer. Therefore, we initialize scatterer location
estimates for the plate, dihedral, and trihedral shapes at the
centroid of the image segment of interest. For the cylinder, top-
hat, and sphere, the location of energy in the image is offset
from the scatterer location by the shape’s non-zero radius. For
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Shape
Type Γ

Bounce
Type β

Amplitude Response MΓ(k, Λ; Θ)
Calibration

Acal
Range Offset ΔRr

Plate

odd
jk√

π
A sinc

[
k H

2 (sin θ′
t + sin θ′

r)
]
sinc

[
k L

2 (sin φ′
t cos θ′

t+sin φ′
r cos θ′

r)
]

φ′
t, φ′

r ∈
[
−π

2 , π
2

]
, θ′

t, θ′
r ∈

[
−π

2 , π
2

] LH 0

Dihedral

even

jk√
π

A sinc
[
kH

(
cos θ′

t − cos θ′
r

)]
sinc

[
k L

2

(
sin φ′

t cos θ′
t + sin φ′

r cos θ′
r

)]

×

⎧⎪⎪⎨
⎪⎪⎩

sin

(
θ′

t+θ′
r

2

)
, θ′

t, θ′
r ∈

[
0, π

4

]
cos

(
θ′

t+θ′
r

2

)
, θ′

t, θ′
r ∈

[
π
4 , π

2

], φ′
t, φ′

r ∈
[
−π

2 , π
2

] 2LH 0

Trihedral

odd

jk
2
√

π
Asinc

[
kH(cosθ′

t−cosθ′
r)

][
sinc

[
kH

(
cos

(
φ′

r−π
4

)
cosθ′

r−cos
(
φ′

t−π
4

)
cosθ′

t

)]
+ sinc

[
kH

(
cos

(
φ′

r + π
4

)
cos θ′

r−cos
(
φ′

t+
π
4

)
cos θ′

t

)]]

×

⎧⎪⎪⎨
⎪⎪⎩

sin

(
θ′

t+θ′
r

2 +π
4−tan−1

(
1√
2

))
, θ′

r∈
[
0,tan−1

(
1√
2

)]
cos

(
θ′

t+θ′
r

2 +π
4−tan−1

(
1√
2

))
, θ′

r∈
[
tan−1

(
1√
2

)
, π
2

]
⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
−cos

(
φ′

t+φ′
r

2 −π
4

)
, φ′

r∈[−π
4 , 0]

sin

(
φ′

t+φ′
r

2 −π
4

)
, φ′

r∈[0, π
4 ]

⎫⎪⎪⎬
⎪⎪⎭

2
√

3H2 0

Cylinder

odd

√
jk

cos φ′
t
A cos φ′

r sinc
[
k L

2 (sin φ′
t cos θ′

t+sin φ′
r cos θ′

r)
]
, φ′

t, φ′
r ∈

[
−π

2 , π
2

]
L
√

r r cos

(
θ′

t−θ′
r

2

)(
cos φ′

t+cos φ′
r

)

Top-hat

even A
√

jk sinc
[
kH(cos θ′

t − cos θ′
r)

]
×

⎧⎪⎪⎨
⎪⎪⎩

sin

(
θ′

t+θ′
r

2

)
, θ′

t, θ′
r ∈

[
0, π

4

]
cos

(
θ′

t+θ′
r

2

)
, θ′

t, θ′
r ∈

[
π
4 , π

2

] √
8r√
2
H r cos

(
φ′

t−φ′
r

2

)(
cos θ′

t+cos θ′
r

)

Sphere

odd A
√

π 1
r
(
cos θ′

t+cos θ′
r

)
cos

(
φ′

t−φ′
r

2

)
cos

(
θ′

t+θ′
r

2

)

+ r sin

(
θ′

t+θ′
r

2

)(
sin θ′

t+sin θ′
r

)
TABLE I

PARAMETRIC BISTATIC SCATTERING MODELS FROM [4], [5].

these shapes, we test multiple scattering locations near the
image segment centroid to obtain low-cost initialization points
for numerical estimation of the object location and radius.
Length and height parameters are initialized for all shapes
by computing the extent of the segmented image regions.
Scatterer orientation is initially estimated by computing the
rotations between the image coordinate axes and the principal
scattering directions of each segmented image region. For
details of the parameter initialization scheme, see [11].

D. Feature Shape Classification

The image segmentation and parameter initialization
schemes provide information about the location, spread, and
orientation of the scattered energy in the scene, but they do
not identify the canonical shape type associated with each
region. We implement four shape discrimination methods that
test the data polarization response, model fit, predicted radar
cross section, and predicted object size.

1) Polarization: We use the polarization response from the
sparse images obtained from (6) to classify observed features
as odd-bounce or even-bounce scatterers. We extend the po-
larimetric classification scheme in [8] to define odd-bounce
and even-bounce scattering basis vectors for the bistatic case
as

Bodd =

⎡
⎣1

0
0

⎤
⎦ Beven =

⎡
⎣ 0

cos(ζt + ζr)
sin(ζt + ζr)

⎤
⎦ (8)

for LOS rotation angles ζt and ζr [11].
The bounce type of the ith voxel in the SAR image is

estimated by finding the least-squares distance between the

basis vectors B in (8) and the polarimetric scattering response
vector s̄i=[sHHi ,

1
2 (sHVi + sVHi), sVVi ]

T . Formally,

bouncei =arg min
ψ,

β∈{odd,even}

∥∥∥∥∥∥s̄i−BT
β s̄i

⎡
⎣

1√
2

1√
2

0
0 0 1
1√
2

−1√
2

0

⎤
⎦Bβ

∥∥∥∥∥∥
2

. (9)

The example in Figure 5 shows polarization bounce type
estimates for the image segments in Figure 4 that correspond
to the correct bounce types. Thus, we use choose the sub-
set of canonical shapes with the estimated bounce type as the
candidate scatterer types for each image segment.

2) Model Fit: The six scattering models in Table I have
similar functional forms, and confusion between models may
arise when estimating the best model fit to the data. Therefore,
we fit to the data the j = 1, ..., J candidate models whose
polarization matches that determined by the polarization clas-
sification in (9) and make a list F̂ of best-fit models Γj as

F̂ = arg
{(

εΓj
− min

Γj

εΓj

)
< τfit

}
(10)

where εΓj
is a scaled version of the non-coherent cost metric

in (13) defined as

εΓj
= 20 log10

√
1
K

YHY − 2
∣∣YHSΓj

∣∣ + SH
Γj

SΓj

YHY
(11)

for K data samples. Additional model discrimination tests are
applied to the best-fit model estimates to determine the final
feature shape classification decision.
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3) RCS Consistency: The RCS consistency check proposed
in [12] verifies that the estimated feature size corresponds to
the observed scattering intensity. We define the RCS consis-
tency test as

Ĉ = arg

{∣∣∣∣∣20 log10

(
Acal(L̂, Ĥ, r̂,Γj)

Â(Γj)

)∣∣∣∣∣ < τRCS

}
(12)

where Â(Γj) is the estimated model amplitude corresponding
to the scalar A in the MΓ terms of Table I, Acal(L̂, Ĥ, r̂,Γj) is
the calibration amplitude factor defined in Table I, evaluated
using the estimated object sizes, and Ĉ is a list of feature types
Γj satisfying the above inequality.

4) Object Size Test: We also check that the estimated object
sizes are reasonable compared to the scene size—for example,
the results in Section V check for object sizes between 0.01m
and 1m.

5) Combined Model Discrimination Tests: We implement
the three discriminators of model fit, RCS, and size to choose
the best model for the data. In practice, multiple or no shapes
may pass all of the discrimination tests, so we combine the
discrimination tests as follows. In the case that one or more
models pass all three discrimination tests, we choose the model
with the lowest cost given by (11). In the case when no
candidate models pass all three discrimination tests, we choose
the lowest cost model that passes the object size test. If no
models pass the size test, then we choose the lowest cost
model.

E. Feature Estimation with CLEAN

The CLEAN [9] strategy iteratively estimates and removes
signals from the data set, starting with the largest energy
contributor to the observations. At each iteration i, we estimate
the ith shape model’s parameters as

Θ̂i = arg min
Θi

{
Y(i)H

Y(i)−2 abs{Y(i)H

Si(k,Λ;Θi,Γi)}

+ SH
i (k,Λ;Θi,Γi)Si(k,Λ;Θi,Γi)

}
, (13)

for each candidate type Γi, choose the best match according
to the shape classification tests, and subtract the corresponding
signal estimate from the data to obtain a new set of observa-
tions

Y(i+1) = Y(i) − Ŝi(Λ; Θ̂i, Γ̂i), (14)

repeating the process until a desired number of signals or a de-
sired level of energy is modeled. For point scatterers, the SAR
image provides both a location and amplitude estimate for the
largest contributing point at each iteration. For the canonical
shape models of interest, not all parameters are estimable
from the image, but the sparse 3D images help to initialize
the search region in high-dimensional parameter space. Note
that in (13) we have approximated the LS solution with a
non-coherent cost function that contains fewer local minima,
allowing for less accurate initial estimates [11]. Nonetheless,
we constrain the optimization of (13) such that the location
and orientation estimates are near the initialization points and

the size and amplitude parameters are positive-valued scalars.
We fit all candidate models with the bounce type determined
from the polarimetric scattering response. Then, we follow the
feature discrimination scheme described in Section III-D5. We
subtract the selected scatterer model phase history from the
observations and repeat the process, from image formation to
parameter estimation, until a desired number of scatterers or
a desired energy level is modeled. A summary of the entire
feature extraction process is given in the next section.

We note that estimation errors may result in high-energy
residual scattering in the image domain, in which case the
CLEAN algorithm will attempt to fit multiple canonical shapes
to the same region. However, since the scatterers considered
are well-separated and nearly uncorrelated, we do not re-select
voxels in the image for which we have already estimated
a response. This modification of CLEAN is computationally
practical, though estimation errors are still present in the phase
history. The impact of the errors on estimating subsequent
high-amplitude scattering signals is small, but low-amplitude
scatterers may be difficult to estimate if the error terms become
large relative to the scatterer of interest.

IV. FEATURE EXTRACTION ALGORITHM SUMMARY

Given phase history collected on (or interpolated to) a
Cartesian grid,

1) Compute composite �1-regularized LS image ŝc:
2) Segment largest-energy region in image.
3) Classify image segment polarization response as odd or

even bounce scatterer type.
4) Initialize parameters for each canonical model whose

bounce type corresponds to that estimated in the region.
5) For each candidate model, refine parameter estimates

by numerically optimizing non-coherent cost function
between observations and candidate model.

6) For all models within τfit of the best-fit model, compute
RCS consistency check in (12).

7) Check that size estimates are within acceptable bounds.
8) Choose estimated model to be best-fit model that passes

the size and RCS consistency checks according to the
hierarchy given in Section III-D5.

9) Subtract estimated model from observed phase history.

Repeat Steps 1-9 until meeting a user-specified, maximum
number of iterations or desired level of modeled energy.

V. NUMERICAL RESULTS

We apply the feature extraction algorithm of Section III to
simulated bistatic SAR data of a scene comprised of seven
canonical shapes. The scene is depicted in Figure 1. We
simulate four polarization channels of SAR data using the
model signals in Table I. In this experiment, the receiver
traverses the arbitrary “squiggle path” shown in Figure 2(a),
and the transmitter is fixed at (φt, θt) = (0◦, 30◦), near the
center of the receiver path.

Since the SAR phase history data lies on a sparse aperture
in three-dimensions, the corresponding Fourier image (Fig-
ure 2(b)) contains high sidelobes and aliasing that make it
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difficult to discern the scatterers in the image. However, the
sparse image shown in Figure 3 contains distinct scattering
regions corresponding to the canonical shapes in the scene.
The modified Peak Region Segmentation algorithm locates
seven scattering regions of interest, shown in Figure 4. For
each image segment in Figure 4, we estimate the polarization
bounce types from (9). The estimated bounce types are shown
in Figure 5 and agree with the true shape types. Using the
image segmentation and polarization bounce results, we obtain
initial parameter estimates for the candidate model types in
each region. We then fit canonical shape models to the phase
history data using the CLEAN method.

Table II lists the estimated size and amplitude parameters
for each candidate shape along with the results of the model
discrimination tests described in Section III-D. Shapes selected
by combining the model discrimination tests are highlighted
in green, indicating correct classification. The estimated pa-
rameters for the selected shapes are listed in Table III, along
with the true feature types and parameters. The final shape
estimates are depicted by iconic representations in Figure 6, in
which the icon represents the estimated feature type, location,
orientation, and size. In the example shown, all seven shapes
are correctly classified. The parameter estimates for each shape
converge near the true parameter values, except for the dihedral
height in image segment #1, which is estimated to be more
than twice the true height of the dihedral. The estimated
dihedral does fail the RCS consistency test, which correctly
indicates a poor amplitude, or as in this case, a poor size
estimate due to convergence to a local minima. However,
Figure 6 shows the estimated scene geometry is in general
a very good match to the true scene in Figure 1.

VI. CONCLUSION

We have presented an algorithm for extraction of 3D geo-
metrical features from sparse, non-linear SAR apertures. The
feature estimation approach is an extension of the CLEAN
algorithm that iterates estimation and removal of canonical
shape signals. We use regularization to form sparse 3D images
that allow us to discern scatterers in the scene and initialize
3D canonical shape model estimates. We have shown example
results for the proposed feature extraction algorithm for an
arbitrary bistatic SAR aperture; however, the algorithm may
also be applied to monostatic apertures (see [11] for exam-
ples). Future work will apply the proposed feature extraction
algorithm to SAR data of vehicle targets.

Fig. 1. Scene comprised of seven canonical shape scatterers.

(a) (b)

Fig. 2. (a) Composite phase history for a receiver “squiggle path” and a fixed
transmitter at (φt, θt) = (0◦, 30◦) near the center of the receiver aperture
and (b) the corresponding HH polarization Fourier image.
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Fig. 3. Composite sparse image for sparsity constraint λ = 25.

Fig. 4. Image regions detected in Figure 3 by the image segmentation
algorithm described in Section III-B.

Fig. 5. Bounce types estimated from polarimetric responses of segmented
image regions shown in Figure 4. Red squares represent even-bounce voxels
and green triangles indicate odd-bounce voxels.

Fig. 6. Iconic representations of the estimated features.
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Image Candidate Estimated Size and Amplitude Discrimination Test Values Does Shape Pass Tests?
Segment Shape

L̂ Ĥ r̂ Âcal Â 20 log10

(
Âcal
Â

) NC Cost Fit Size RCS
# Type dB (τfit = 5) [0.01, 1]m (τRCS=5)

1 dihedral 0.604 0.694 — 0.839 0.364 7.244 -68.808 yes yes no
1 top-hat — 0.000 0.000 0.000 0.011 −∞ -65.488 yes no no

2 dihedral 0.600 0.301 — 0.361 0.360 0.036 -68.599 yes yes yes
2 top-hat — 0.820 0.253 0.980 0.246 12.007 -65.709 yes yes no

3 plate 0.600 0.300 — 0.180 0.180 0.002 -68.859 yes yes yes
3 cylinder 0.700 — 0.071 0.186 0.447 -7.596 -66.382 yes yes no
3 trihedral — 0.467 — 0.756 0.117 16.245 -66.417 yes yes no
3 sphere — — 0.346 0.346 0.453 -2.325 -65.599 yes yes yes

4 dihedral 0.026 0.532 — 0.027 0.047 -4.684 -69.024 yes yes yes
4 top-hat — 0.499 0.100 0.376 0.376 -0.005 -69.235 yes yes yes

5 plate 0.172 0.000 — 0.000 0.020 −∞ -67.803 yes no no
5 cylinder 0.171 — 0.103 0.055 0.180 -10.293 -68.410 yes yes no
5 trihedral — 0.120 — 0.050 0.050 0.054 -68.351 yes yes yes
5 sphere — — 0.521 0.521 0.617 -1.459 -66.691 yes yes yes

6 plate 0.117 0.037 — 0.004 0.013 -9.558 -67.050 yes yes no
6 cylinder 0.122 — 0.135 0.045 0.104 -7.367 -67.041 yes yes no
6 trihedral — 0.088 — 0.027 0.042 -3.823 -66.933 yes yes yes
6 sphere — — 0.750 0.750 0.750 -0.002 -68.490 yes yes yes

7 plate 0.501 0.020 — 0.010 0.024 -7.581 -67.598 yes yes no
7 cylinder 0.500 — 0.151 0.195 0.194 0.039 -67.618 yes yes yes
7 trihedral — 0.033 — 0.004 0.008 -6.477 -65.699 yes yes no
7 sphere — — 0.000 0.000 0.147 −∞ -65.656 yes no no

TABLE II
ESTIMATED SHAPE SIZES AND AMPLITUDES AND MODEL DISCRIMINATION RESULTS. HIGHLIGHTED ROWS INDICATE THE SHAPE SELECTED FOR EACH

REGION USING THE MODEL FIT, OBJECT SIZE, AND RCS CONSISTENCY DISCRIMINATION TESTS.

Segment Estimate Detected Parameters
# Type Shape x y z γ̃ θ̃ φ̃ L H r A

1 Truth dihedral 0.25 0.5 0 0 0 0 0.6 0.3 — 0.36
1 Final dihedral 0.250 0.499 0.000 0.066 -0.317 0.033 0.604 0.694 — 0.364

2 Truth dihedral 0 1.1 0.25 -10 0 0 0.6 0.3 — 0.36
2 Final dihedral 0.000 1.100 0.250 -10.004 0.000 -0.002 0.600 0.301 — 0.360

3 Truth plate -0.1 0 0.3 0 -30 0 0.6 0.3 — 0.18
3 Final plate -0.100 0.000 0.300 0.133 -29.999 -0.000 0.600 0.300 — 0.180

4 Truth top-hat 0.25 -1.5 0 0 0 0 — 0.5 0.1 0.38
4 Final top-hat 0.250 -1.500 -0.000 -0.005 -0.002 0.000 — 0.499 0.100 0.376

5 Truth trihedral 0.75 0 0.1 0 0 0 — 0.12 — 0.05
5 Final trihedral 0.748 0.000 0.106 -1.222 -0.375 -0.768 — 0.120 — 0.050

6 Truth sphere -1.5 -1 0 — — — — — 0.75 0.75
6 Final sphere -1.500 -1.000 0.000 — — — — — 0.750 0.750

7 Truth cylinder 0.5 2 0 0 0 -5 0.5 — 0.15 0.19
7 Final cylinder 0.499 2.000 -0.001 0.001 0.912 -4.999 0.500 — 0.151 0.194

TABLE III
CANONICAL SHAPE PARAMETER TRUTH AND FINAL PARAMETER ESTIMATES FOR THE DETECTED SHAPES HIGHLIGHTED IN TABLE II.
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