

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

JVIEW VISUALIZATION FOR
NEXT GENERATION AIR TRANSPORTATION SYSTEM

CACI TECHNOLOGIES INCORPORATED

JANUARY 2011

FINAL TECHNICAL REPORT

FINAL, INTERIM, ETC.

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-003

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2011-003 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
PETER A. JEDRYSIK JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

January 2011
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

September 2007 – September 2010
4. TITLE AND SUBTITLE

JVIEW VISUALIZATION FOR
NEXT GENERATION AIR TRANSPORTATION SYSTEM

5a. CONTRACT NUMBER
FA8750-07-C-0209

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
35111F

6. AUTHOR(S)

Daniel Krisher
Aaron McVay
Patrick Fisher

5d. PROJECT NUMBER
NASA

5e. TASK NUMBER
NG

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
CACI Technologies, Incorporated
14370 Newbrook Drive
Chantilly VA 20151-2218

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-003

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-10-6447
Date Cleared: 10 December 2010

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This Final Technical Report discusses the accomplishments of an effort to support NASA and FAA goals for visualization of the
National Airspace System (NAS) to aid in the analysis of proposed changes in order to increase its capacity to meet future needs.
Using JView technology, CACI enhanced an application called the Airspace Concepts Evaluation System (ACES) Viewer they
developed for NASA under a previous project. The ACES Viewer is an information visualization tool designed to provide visual
representations of the output of the ACES NAS simulation developed at NASA. The application provides mechanisms to load the
various types of data used and output by the ACES simulation, process the data, and then display it. The ACES Viewer is not
limited to visualization of ACES data, as any data (in one of the supported formats) can be loaded and displayed. The application has
been enhanced during this effort to serve more as an aeronautical research tool rather than simply a presentation tool. It has also been
enhanced to serve as a platform for several other domain specific visualization tools.
15. SUBJECT TERMS
National Airspace System visualization, Airspace visualization, de-cluttering visualization, overlapping data visualization

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

157

19a. NAME OF RESPONSIBLE PERSON

PETER A. JEDRYSIK
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

TABLE OF CONTENTS ... i

LIST OF FIGURES .. vii

1.0 EXECUTIVE SUMMARY ... 1

2.0 OBJECTIVE ... 2

3.0 INTRODUCTION .. 2

4.0 TECHNICAL TASKS .. 3

4.1 JView .. 3

4.1.1 Basic Infrastructure ... 3

4.1.1.1 OpenGL Bindings ... 3

4.1.1.2 High Precision Locale ... 4

4.1.1.3 Geodesic Bounding Box with Source Projection .. 5

4.1.1.4 Stereoscopic Rendering ... 6

4.1.1.5 GLSL Shader Program Abstractions ... 8

4.1.1.6 OpenGL Lighting .. 8

4.1.1.7 Geographic Coordinate Systems ... 8

4.1.1.8 Rendering Appearance Settings .. 9

4.1.1.9 Animation Framework .. 9

4.1.1.10 Vertex Buffer Objects ... 10

4.1.1.11 Texture API ... 11

4.1.1.12 Picking/Selection .. 11

4.1.1.13 Bounding Volumes ... 13

4.1.1.14 Camera System ... 14

4.1.2 Utilities .. 15

4.1.2.1 Native Library Loader ... 15

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ii

4.1.2.2 Camera Navigation ... 15

4.1.2.3 DTED Interpolation .. 16

4.1.2.4 View Footprint Calculator .. 17

4.1.2.5 Movie Capture ... 18

4.1.2.6 Transfer Function Editor ... 18

4.1.3 Rendering Elements .. 19

4.1.3.1 Callouts ... 19

4.1.3.2 Labels Element .. 20

4.1.3.3 Instance Rendering .. 24

4.1.3.4 HUD Utilities .. 25

4.1.3.5 Histogram Grid ... 25

4.1.3.6 Sphere Segment Scene Element .. 26

4.1.3.7 Pin Renderer .. 27

4.1.4 Model Formats .. 28

4.1.4.1 Open Flight Models (FLT) .. 28

4.1.4.2 Keyhole Markup Language (KML) .. 29

4.1.4.3 Collada .. 32

4.1.5 Release Management .. 37

4.1.5.1 Code Quality ... 37

4.1.5.2 Continuous Integration .. 38

4.1.5.3 Application Installers .. 39

4.1.5.4 JView Releases ... 39

4.1.5.5 JView Training .. 41

4.2 JView World ... 41

4.2.1 Rendering and API .. 41

4.2.1.1 Node Change Listener API ... 41

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

iii

4.2.1.2 Camera Location Based Level of Detail (LoD) .. 41

4.2.1.3 Iterative Interpolated Geometry Refinement .. 43

4.2.1.4 Elevation Interpolation .. 43

4.2.1.5 Vertex Buffer Objects ... 43

4.2.1.6 DTED Level 5 ... 44

4.2.1.7 Mutable World Data Configuration .. 44

4.2.1.8 Multi-Threaded Texture Fetching ... 44

4.2.2 Imagery ... 44

4.2.2.1 GeoTIFF .. 44

4.2.2.2 Google Maps Imagery ... 45

4.2.2.3 FalconView Imagery ... 46

4.2.2.4 Layer Manager .. 46

4.2.2.5 Texture Masking ... 49

4.2.2.6 Texture Union Optimization ... 50

4.2.2.7 Pixels Per Degree Threshold Optimization ... 52

4.2.2.8 TextureSet API .. 52

4.2.2.9 RPF Catalog .. 53

4.2.2.10 Graticule Texture Set .. 53

4.2.3 World-Specific Scene Elements .. 54

4.2.3.1 World Raster Image Element .. 54

4.2.3.2 Grounded Scene Elements .. 56

4.2.3.3 World Info Element .. 56

4.2.4 Profiling and Debugging Tools ... 57

4.2.4.1 World Profiler ... 57

4.2.4.2 Profiler Histograms ... 59

4.2.4.3 Texture Passes Histogram ... 60

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

iv

4.2.4.4 World Automated Test Program ... 61

4.2.5 Tools ... 64

4.3 Terra Firma ... 65

4.3.1 Terrain Profile Visualization ... 65

4.3.2 Geographic Locations Database .. 68

4.3.3 Geographic Search User Interface .. 70

4.3.4 WebStart ... 72

4.3.5 Map Server .. 72

4.3.6 Drag and Drop GeoTIFF ... 72

4.3.7 Overview Navigation .. 73

4.4 ACES Viewer .. 74

4.4.1 Basic Infrastructure ... 74

4.4.1.1 Visualization Modeling ... 74

4.4.1.2 Configuration and Visualization Persistence .. 74

4.4.1.3 Module and Plug-in Framework ... 76

4.4.1.4 Dependency Injection ... 77

4.4.2 Rendering and Visualization ... 78

4.4.2.1 General Enhancements .. 78

4.4.2.2 Display Containers .. 78

4.4.2.3 Renderers .. 81

4.4.3 Data Access ... 86

4.4.3.1 Memory Consumption and Efficiency Enhancements .. 86

4.4.3.2 CSV Data .. 87

4.4.3.3 Database (RDBMS) Data .. 88

4.4.3.4 CTAS Data .. 89

4.4.3.5 Weather Polygons ... 89

4.4.3.6 XML Air Zones ... 89

4.4.4 Data Processing ... 90

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

v

4.4.4.1 Units .. 90

4.4.4.2 Concurrency .. 90

4.4.4.3 Expressions ... 92

4.4.4.4 Transforms .. 95

4.4.5 User Interface .. 97

4.4.5.1 Basic User Interface Components ... 97

4.4.5.2 Docking Frames .. 98

4.4.5.3 Visualization Controls ... 99

4.4.5.4 Datasets ... 101

4.4.5.5 Property Sheet ... 104

4.4.5.6 Visualization Composition Graph ... 107

4.4.5.7 Visualization Composition Toolbox ... 110

4.4.5.8 Movie Capture ... 111

4.4.5.9 Development and Debugging Tools.. 112

4.4.6 Release Management .. 113

4.4.6.1 Native Packaging .. 113

4.4.6.2 Releases ... 114

4.5 Characterization of the UAV Network Environment (CUNE) Viewer 115

4.6 JWeather ... 122

4.6.1 Background Research on Contemporary Weather Visualization Techniques 122

4.6.2 Access to Real-Time Weather Data .. 123

4.6.3 JView Based Visualizations for 4D Weather Data ... 123

4.6.4 User Interface .. 127

4.6.5 Collaboration ... 128

4.7 Wacom Notepad .. 128

4.7.1 Drawing Curved Lines .. 129

4.7.2 Anti Aliasing ... 130

4.7.3 Performance .. 131

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

vi

4.7.4 Multiple Pages .. 132

4.7.5 World “Drawer” .. 133

4.8 3D Model Tools .. 135

4.8.1 Model Preview Application .. 135

4.8.2 FLT Model Adjustment Tool .. 136

4.9 JView Demo Browser ... 138

4.10 3D Models ... 139

5.0 CONCLUSIONS ... 141

REFERENCES ... 142

ACRONYMS .. 143

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

vii

LIST OF FIGURES

Figure 1: A GeodesicBoundingBox with Source Projection .. 5
Figure 2: Two images sent to the Philips WOWvx display, left: color image, right: depth image 7
Figure 3: Enlarged view of Figure 2, showing header encoding (blue pixels in the top row) 7
Figure 4: Picking Visualization Utility and Bounding Volume Visualization Utility 13
Figure 5: Possible Interpolation Selections ... 17
Figure 6: Camera looking toward a WGS84 projected globe ... 18
Figure 7: A zoomed-out view of the camera frustum ... 18
Figure 8: The view footprint of the camera .. 18
Figure 9: Transfer Function Demonstration .. 19
Figure 10: Two Separate Callout Windows in a JView Scene ... 19
Figure 11: Labels Element .. 20
Figure 12: JView LabelsElement with drop shadows ... 21
Figure 13: Label 1 placed in the first position tested (North position) ... 23
Figure 14: A second label is added and the bounding rectangle overlaps the area occupied by label 1 24
Figure 15: All 8 positions are tested until a suitable placement is found.. 24
Figure 16: HUD Text Element .. 25
Figure 17: Histogram Grid displaying surface temperatures from a Lambert-projected data source 26
Figure 18: Sphere Segment Demo .. 27
Figure 19: Pin Renderer drawing pins with end points from each label to their corresponding locations . 28
Figure 20: KML Structure .. 29
Figure 21: KML Tree Network Links ... 30
Figure 22: KML Tree .. 30
Figure 23: KML Callout ... 31
Figure 24: JView Scene with KML Placemark Point Scene Elements ... 32
Figure 25: Sample Collada model displayed using JView .. 34
Figure 26: Collada Hand Model with Kinematics .. 35
Figure 27: Articulated Hand Model .. 36
Figure 28: Phong shading and illumination applied to a Collada model. ... 37
Figure 29: Lambert diffuse illumination applied to a Collada model ... 37
Figure 30: Project Health Summary in the Hudson Continuous Integration System 39
Figure 31: Icons .. 40
Figure 32: Node Area with Frustum Culling .. 42
Figure 33: Camera Distance .. 42
Figure 34: Google Level 21 (~10.8 cm) Satellite Imagery ... 45
Figure 35: Falcon View Orthorectification ... 46
Figure 36: Tree Based Imagery Selector ... 47
Figure 37: TextureSetTree XML Config File Sample .. 48
Figure 38: Order Layer Manager .. 49

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

viii

Figure 39: World with Texture Masking .. 50
Figure 40: Bounding Boxes for NAD83 Texture Coverage of an Individual Node 51
Figure 41: Texture Count Before/After .. 52
Figure 42: Graticule Texture Lines ... 54
Figure 43: World Raster Image Element .. 55
Figure 44: Grounded SceneElements .. 56
Figure 45: WorldInfoElement ... 57
Figure 46: World Profiler .. 58
Figure 47: World Profiler reports panel .. 59
Figure 48: Reports Panel popup cell ... 59
Figure 49: Triangles Per Node Histogram .. 59
Figure 50: Textures Per Node Histogram ... 60
Figure 51: Texture Passes Histogram ... 60
Figure 52: Invalid Sea Level Post ... 62
Figure 53: Diamond Shaped Difference in ATP ... 63
Figure 54: An Early Development Prototype of the Terra Firma Application ... 65
Figure 55: Terrain Profile Chart.. 66
Figure 56: Terrain Profile ... 66
Figure 57: Terrain Profile Callout ... 67
Figure 58: Elevation Projected Line ... 67
Figure 59: Search Area ... 69
Figure 60: Texture Set Labels ... 70
Figure 61: All World Features .. 71
Figure 62: US Features ... 71
Figure 63: Dragged and Dropped GeoTIFF on JView World in Terra Firma ... 73
Figure 64: Overview ... 73
Figure 65: Overview Close up .. 74
Figure 66: Tabular Scene displaying data from the US Map data source. .. 79
Figure 67: Candle stick renderer ... 80
Figure 68: XY Line and Shape graph ... 80
Figure 69: XY Block Graph .. 80
Figure 70: XY Bar Graph ... 80
Figure 71: Pie Graph ... 81
Figure 72: The Polygon Renderer with lighting (left) and without lighting (right) 81
Figure 73: Comparison of old pre-classification renderer (left), and new pre-integrated renderer (right) . 83
Figure 74: Comparison of iso-surfaces rendered using the old (left) and new (right) volume renderers ... 83
Figure 75: Anisotropic Scaling of Model Geometry in the Model Renderer .. 85
Figure 76: The Line Renderer showing aircraft trajectories colored based on altitude 86
Figure 77: A Visualization of Regions with Severe Weather Denoted by Weather Polygons 89
Figure 78: A visualization with linear data flow ... 91
Figure 79: A visualization with parallel data flows .. 91
Figure 80: Jython Code Sample .. 94

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ix

Figure 81: Output from Jython Code Altering Line Color ... 94
Figure 82: The user interface for specifying a Text Expression ... 95
Figure 83: An early user interface used for manipulating the Grouping Transform 96
Figure 84: The user interface used for editing parameters of the Projection Transform 96
Figure 85: Invalid Entry Indicator .. 97
Figure 86: Current Tasks window ... 98
Figure 87: The Task Status Icon ... 98
Figure 88: Docking Frames based User Interface in the ACES Viewer ... 99
Figure 89: Time Control with buttons to disable or pause each controlled table 100
Figure 90: The 2D Navigation Control ... 100
Figure 91: The new wizard user interface ... 101
Figure 92: CSV data import wizard .. 102
Figure 93: Dataset management panel .. 103
Figure 94: The Dataset Resolver Dialog ... 104
Figure 95: New Property Sheet User Interface ... 105
Figure 96: The Schema Editor .. 106
Figure 97: Reordering Columns in the Schema Editor ... 106
Figure 98: World Data Configuration Wizard .. 107
Figure 99: Several graph layouts produced by the new Hierarchical layout algorithm 109
Figure 100: Visualization Composition Graph ... 109
Figure 101: An Early Version of the Renderers Toolbox, Displayed Using JView's ImageList 110
Figure 102: JXTaskPanes that replace the previous JCollapsePanel component 111
Figure 103: The new movie capture user interface ... 112
Figure 104: Table Event Viewer User Interface Component .. 113
Figure 105: An Early Version of the CUNE Viewer .. 115
Figure 106: Antenna Plots (Point, Line, Surface, Pincushion) ... 116
Figure 107: Cune Viewer .. 117
Figure 108: Settings Window ... 118
Figure 109: CUNE Configuration File .. 119
Figure 110: Communications Signal Panel ... 120
Figure 111: The Chart Panel in the CUNE Viewer ... 120
Figure 112: CUNE Viewer on Small .. 121
Figure 113: CUNE Viewer on Large .. 121
Figure 114: CUNE Viewer ... 122
Figure 115: Weather Data on WGS84 World ... 124
Figure 116: Weather Data on Flat World .. 124
Figure 117: JWeather Cloud Visualization ... 125
Figure 118: JWeather Isosurface Renderer ... 125
Figure 119: JView Visualization of DCF Data ... 126
Figure 120: Visualization of Cloud Profile Along a Flight Path .. 127
Figure 121: Cloud data from AFWA over the satellite imagery for the same forecast time 127
Figure 122: JWeather User Interface .. 128

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

x

Figure 123: Screenshot of the JWeather Version Distributed to Prologic .. 128
Figure 124: Bezier Control Points .. 129
Figure 125: Pixel value under circle ... 131
Figure 126: Tiled NotePad .. 132
Figure 127: World Drawer .. 134
Figure 128: Model Preview Application ... 135
Figure 129: A model loaded in the ElementViewer, launched from the model previewer application 136
Figure 130: DOF fixer .. 137
Figure 131: DOF Axis of Rotation ... 138
Figure 132: Images from Several of the Demo Browser Demonstration Applications 139
Figure 133: Several Models Developed by CACI Rendered with JView. .. 140

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

1

1.0 EXECUTIVE SUMMARY

The work for this project was divided into the following major areas:

Enhancement of the JView Application Programming Interface (API) – JView is a 2D
and 3D, runtime configurable, platform independent visualization API. JView is written entirely
in Java and the 3D components utilize the OpenGL API to gain hardware graphics acceleration.
Under this contract, CACI provided support to JView users resolving their technical issues,
assisting new JView users, and provided general enhancements to the JView API when user
requirements were identified.

 Development of the "World" Object – Outdoor terrain rendering is important for a large
class of Geographic Information System (GIS) applications. Interactive visualization of terrain
and general complex surfaces is a difficult problem that requires large data sets to be displayed
and manipulated at high frame rates. Operations such as rotation and panning must be supported
so a user can examine the data in critical area, while maintaining highly accurate images. CACI
developed a Continuous Level-Of-Detail (CLOD) algorithm including Frustum Culling for
rendering Digital Terrain Elevation Data (DTED). The CLOD algorithm is based on the
observation that 3D objects located far off in the distance may be approximated by simpler
versions without loss of visual quality, thus increasing the rendering performance. The
"continuous" refers to having the algorithm constantly re-compute the detail level of the 3D
object depending on the distance to the camera instead of having a pre-computed set of objects to
choose from. This algorithm was used to create the JView World object which has become one
of JView's most requested features, and resulted in an Air Force patent by Jason Moore and
Aaron McVay. Various performance and efficiency improvements were developed during this
effort, including work to support new image sources, to take advantage of multiple hardware
processing units (CPUs) and to take advantage of new graphics hardware capabilities.

 Research, Explore and Develop De-Cluttering Concepts for Visualization of Overlapping
Information – Another area of focused research on this contract was de-cluttering concepts.
When there is overlapping information and that information will be visually fused then it must be
de-cluttered so that it is intelligible to the intended audience. Presentation of that information is
critical to the user’s ability to logically correlate it and to come to logical conclusions. An
example of this might be an air traffic controller who needs to see a representation of the regions
with the greatest density of aircraft. Displaying individual aircraft and their positions would not
properly convey the desired information. This project produced several reusable components for
JView that reduce information clutter in a visualization.

 Research Exploratory Visualization Techniques and Develop an Extensible Application
Framework to Support Rapid Integration of New Visualization Capabilities for the Airspace
Concepts Evaluation System (ACES) Viewer – CACI continued development of the ACES
Viewer application, a tool that provides visualization solutions for displaying and understanding
current and future implementations of the National Airspace System (NAS). The ACES Viewer
allows researchers to explore a data space by graphically defining a visualization composed of
data sources, data processing components, and rendering components. We have extended and
enhanced the set of components available to build visualizations while greatly improving the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

2

flexibility of the tool. The ACES Viewer has also been enhanced as a platform for general
visualization, allowing developers to extend or replace functionality for a specific domain.

 Support of the Audit Trail Viewer (ATV) – The Audit Trail Viewer (ATV) is a
replacement for IVIEW 2000 and supports visualization of many different simulation data file
formats. The original ATV was developed by the Air Force Research Laboratory’s Information
Directorate (AFRL/RI) and under this contract, CACI provided maintenance, support, and
development of new features for the Audit Trail Viewer.

 3D Model Development – CACI developed a library of 3D models in both the Open
Flight (.flt) and Wavefront (.obj) model formats for use by JView users. An example model that
was developed is the RASCAL 110 aircraft used in the Characterization of the UAV Network
Environment (CUNE) project. While there are many models available on the internet for
download, most have licensing requirement that make them unusable for JView users.

2.0 OBJECTIVE

The objective of this effort was to develop, implement, and integrate visualization
technologies that support NASA and the Federal Aviation Administration (FAA) goals for
visualization of the National Airspace System (NAS). CACI collaborated closely with the Air
Force Research Laboratory’s Decision Support Systems Branch (AFRL/RISB) staff in the
development, research, testing, and improvements to the JView API and other visualization tools
such as the Airspace Concepts Evaluation System (ACES) Viewer and the Audit Trail Viewer
(ATV). Concepts to improve and enhance JView’s ability to support NASA’s and the FAA’s
visualization solutions were researched. Non-geographic visualization uses of JView were also
analyzed and implemented.

3.0 INTRODUCTION

Under this contract, CACI built on the excellent work done by AFRL/RISB staff and support
personnel developing the JView API. JView is a 2D and 3D, runtime configurable, platform
independent visualization API. It is written entirely in Java and its 3D components utilize the
OpenGL API to gain hardware graphics acceleration.

JView relies on concrete Object Oriented Design (OOD) and programming techniques to
provide a robust and venue non-specific visualization environment. There are three types of
modules that are created within JView. The first type is venue specific modules called facilitators
that address the specific task of placing objects in a scene and manipulating their behavior. The
second type are plug-ins that are venue non-specific and add general functionality to the system.
The last type consists of data source loaders called oddments. JView is completely data source
independent, and is by definition a standard visualization solution since it does not concentrate
solely on environments such as space, air, ground, or water. When a new data type becomes
available and visualization is necessary, JView allows the programmer to quickly implement the
additions. It also allows analysts to operate in an environment in which they are familiar, instead
of having to learn a new interface.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

3

In direct support of NASA and Federal Aviation Administration goals for visualization of the
National Airspace System, CACI developed a new application using JView technology called
the ACES Viewer. The ACES Viewer is an information visualization tool designed to provide
visual representations of the output of the Airspace Concept Evaluation System developed at
NASA, specifically a simulation of the national air system. The application provides mechanisms
to load the various types of data used and output by the ACES simulation, process the data, and
display it. The ACES Viewer is not limited to visualization of ACES data; any data (in one of the
supported formats) can be loaded and displayed. The application has been enhanced during this
effort to serve as a platform for several other domain specific visualization tools.

4.0 TECHNICAL TASKS

4.1 JView

4.1.1 Basic Infrastructure

4.1.1.1 OpenGL Bindings

During the previous JView support contract, CACI migrated JView to the JOGL OpenGL
binding library from GL4Java. This library provides the low-level bindings that allow Java
applications to access the host platform’s graphics drivers (provided as C libraries) and interact
with the graphics hardware.

We discovered some problems using JOGL-based applications on 64-bit Windows
platforms. One of the native libraries used by JOGL, gluegen-rt.dll, would not load due to an
unsatisfied dependency on a Microsoft library that is absent from the default installation of 64-bit
Windows. After some experimentation, we found that JOGL could be used without the gluegen-
rt.dll on this platform. By modifying the JOGL native library loader utility in JView, and
installing the 64 bit Visual C++ redistributable library package from Microsoft (required for
JOGL on Win64), we were able to successfully run JView based applications on Windows
Server 2003 64-bit, and Windows XP 64-bit. We have not tested JView on 64-bit versions of
Microsoft Vista.

We also updated the version of JOGL used by JView to the final 1.1.1 release. The Java
OpenGL binding library used by JView to access the host system’s graphics drivers has seen
significant changes since the initial 1.0 release that was used by JView at the beginning of this
effort. After the initial migration to JOGL under the previous contract, we have migrated JView
to 1.1.1, and then the 2.0-beta10 version to access new OpenGL capabilities, and improved
functionality in several aspects of the JOGL library. We encountered several issues in the newest
version of JOGL that we had to work around:

• Native Library Loading
JOGL 2 includes some design improvements to the way the platform-specific native
libraries are loaded, but the new loading method was not compatible with the way JView
previously handled this functionality. As a result, we redesigned JView’s dynamic native

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

4

library loader to provide more generic capabilities (including support for loading non-
JOGL libraries), and integrated this component with the JOGL initialization process.

• JOGL 2 requires active GLContexts
Several areas of JOGL 2 now (incorrectly) require a GLContext to be current to obtain
information regarding the OpenGL version in use. This includes TextureData (which was
specifically designed to support loading of texture data without a current GLContext),
initialization of GLU functionality (which previously did not require a current context),
and static initialization of the GLCanvas class (which imposed a requirement that the
JOGL native libraries be loaded before any JView drawing primitives could be
referenced). We resolved these issues through workarounds in JView where possible, and
modifications to the JOGL library where necessary.

• GLU problems
Several functions in the GLU library included with JOGL are broken with the 2.0
version. Notable problems include a significant loss of precision in the matrix inversion
and multiplication routines used to convert between world and screen coordinates, and
enormous memory consumption (4GB when only 10MB should be necessary) in the
image scaling routines. We developed replacement functionality for the broken routines
in JView.

4.1.1.2 High Precision Locale

Modern graphics processing hardware uses up to 32-bit floating point precision
throughout transformation and rasterization processes. Due to the nature of floating point
numbers, there is higher precision available for numbers close to zero than for numbers of larger
magnitude.

JView has traditionally represented geometry in the scene using a fixed coordinate
system. Any location specified as an X, Y, Z triplet uniquely identifies a single location in a
fixed coordinate system. In order to view a particular element in JView you move the camera to
a location near the element. The problem with this approach is that the camera matrix and the
elements position matrix must be multiplied together with only 32 bits of precision to reconstruct
the view of the element. Locations specified in a fixed coordinate system will inevitably become
large enough (relative to each other) so that the limited precision results in quantization of the
locations. This leads to visual artifacts, such as jitter, and distortion of shapes. This has been a
significant problem for the World object since its geometry is defined using floating point
numbers on the order of 106.

In order to address this problem, we moved part of the vertex transformation process to
the CPU, where calculations can be performed with higher precision. This works by defining a
dynamically calculated coordinate origin that is a small distance (at the near clipping plane) in
front of the camera. All elements in the scene are translated so that their locations are mapped
into this translated coordinate system. This translation is performed with double (64 bit)
precision. The translated geometry is then sent to the graphics hardware for rendering. Using this

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

5

technique, geometry that is near the camera will be rendered with higher precision since it will
be translated closer to the origin, with locations near 0,0,0.

We were extremely careful to preserve compatibility with existing JView based
applications. For most element types, JView will automatically handle the mapping into the
camera-centric coordinate system. A smaller number of elements may need some adjustment to
properly take advantage of the additional precision provided by the locale, however they will still
work correctly even without modification.

We updated all of the JView rendering components (Scene Elements) that would benefit
from the greater precision available with this enhancement, particularly those intended for use
with JView World.

4.1.1.3 Geodesic Bounding Box with Source Projection

 The Geodesic Bounding Box is a JView component, originally developed for the ACES
Viewer, used to represent a geographic region. Previously, this component was only able to
represent projection-agnostic regions, in other words a region was specified in terms of latitude,
longitude, and altitude, and a corresponding span for each dimension. We have enhanced this
component to additionally support projection dependant regions, as shown in Figure 1. A
GeodesicBoundingBox defined as a rectangle in a Lambert Conformal projection (left) is curved in a
Mercator projection (right).

Figure 1: A GeodesicBoundingBox with Source Projection

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

6

4.1.1.4 Stereoscopic Rendering

We made several improvements to the stereoscopic rendering support in JView. First, we
restored support for stereoscopic visualization using JView in both combined anaglyph and
separate stereo views. While the infrastructure for stereoscopy has been present in JView for a
long time, this functionality was broken during the switch from GL4Java to JOGL as the
underlying OpenGL binding layer.

To improve the efficiency of certain JView scene elements that use the camera frustum
for visibility culling and level of detail calculations when viewing the scene in stereo mode,
(most notably the World element) we implemented calculation of a combined frustum that
encloses the individual frustums for each rendered point of view.

4.1.1.4.1 Philips WOWvx Display

We incorporated support for the Philips WOWvx auto-stereoscopic display into JView.
This display device allows 3D visualizations to be rendered in stereo by transmitting different
images to each of the viewer’s eyes using specialized lenses and filters. In order to do this, the
display requires the 3D scene to be transmitted to the device in a special format that specifies the
color and depth of each image pixel, along with some parameters that control display
characteristics of the device.

Pre-existing support for stereoscopic display hardware in JView worked by sending two
separate color-only images of the scene (one for each eye) to the device. For the Philips device,
we also send two images, one being a color image of the scene. The second image is a grayscale
disparity map that essentially describes the distance to each object that is visible in the scene.
The disparity map can be calculated from the values in OpenGL’s depth buffer after rendering
the color image. Using a combination of off-screen rendering to frame-buffer objects, and GLSL
shader programs we were able to render the two images side by side (Figure 2) with very little
performance impact vs. just rendering a single color image of the scene.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

7

Figure 2: Two images sent to the Philips WOWvx display, left: color image, right: depth image

In addition to the two images, the device also requires a specialized header to activate the
stereoscopic display mode and configure the display properties. The header data is encoded in
the image, in the blue channel of the first row of pixels. We incorporated this information using
another GLSL shader, as shown in Figure 3.

Figure 3: Enlarged view of Figure 2, showing header encoding (blue pixels in the top row)

4.1.1.4.2 Quad Buffered Stereo

CACI developed support for quad-buffered stereo drawing surfaces into JView. Quad
Buffered stereo renders a 3D scene into two separate image buffers (compared to the typical
single buffer for normal rendering), one containing an image for a left eye, and one for a right
eye. Compatible display devices (such as a fast refresh monitor with shutter glasses) allow the
left and right eye images to be presented to the corresponding eyes of the viewer. The
components that were developed allow virtually any JView based application to render arbitrary
scenes in this mode. Quad Buffered Stereo support has not been a high priority in JView, and
while it is currently capable of properly rendering images for both camera viewpoints, there
appears to be a problem activating the stereo viewing mode on the NVidia NVision display that
we were testing this functionality. This is an area that will be addressed.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

8

4.1.1.5 GLSL Shader Program Abstractions

In order to support the use of OpenGL Shading Language (GLSL) programs in JView for the
Philips WoWvx display and other components, we developed several utilities to manage, load,
and activate shader programs. These utilities provide an extremely simple API for working with
shader programs, and can be used with any GLSL programs. They provide functionality that
includes:

• Loading programs from disk
• Compilation from GLSL source code
• Activating and de-activating programs
• Resource management and integration with Java’s garbage collection system
• Program validation

4.1.1.6 OpenGL Lighting

JView has always included support for a single directional light source that is on by
default. While some properties of the light source can be controlled via methods on Graph3D,
this required some knowledge of low-level OpenGL lighting functionality and required
developers of JView-based applications to explicitly set the parameters. We have added a new
capability to Graph3D to control some of the lighting parameters automatically, based on the
camera position. With one or two simple method calls on Graph3D, users can cause the light to
track the camera position and make it appear that the light is originating from behind the user.
Users may also select directional or positional lighting for different effects.

4.1.1.7 Geographic Coordinate Systems

JView's Coordinate API was originally designed with two coordinate representations in
mind: Cartesian (X,Y,Z) coordinates and flat-earth geodesic (Lat, Lon, Alt) coordinates.
Development of the World object resulted in development of the Projection API and several new
projections (Lambert Conformal, WGS84) that were being commonly used with JView. The
existing flat-earth geodesic coordinate classes were not suitable for non-flat-earth projections,
which in turn led to development of a new geodesic coordinate implementation for the WGS84
mapping. This led to various difficulties faced by application developers, who had to decide
which coordinate class to use based on the projection being used for the scene. To simplify use
of the Coordinate API, we implemented a Projected Coordinate class that can work for any
geodesic coordinate system with an associated Projection implementation. A further advantage
of the new Coordinate is that the Projection can be changed on the fly, without creating a new
Coordinate.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

9

4.1.1.8 Rendering Appearance Settings

JView uses a component called the Appearance Processor, and an associated
AppearanceSettings value class to track and change various OpenGL rendering settings. This
component is typically used in the geometry tree part of the JView scene-graph to manage per-
element and per-geometry node settings. We have improved this component by introducing a
new method to change the OpenGL state based on the AppearanceSettings instance that
represents the current settings, and another AppearanceSettings instance that represents the
desired state. This provides a performance improvement in some cases when settings need to be
changed multiple times when rendering a single element. The previous behavior was to apply
new settings in a similar manner. However, the original settings were always restored before
changing them again even if the original settings were not needed any more.

We added the ability to specify a modified depth range used when rasterizing geometric
primitives. The depth range specifies the range of floating point numbers that will be used to
represent the normalized depth of each element in the scene. Due to the way that floating point
numbers are encoded, there is greater precision available for values near 0, which is traditionally
mapped to the depth of the near clipping plane, giving higher depth precision closer to the
viewer. In some cases, it is desirable to invert the depth range, mapping the far clipping plane to
0, giving higher precision in that area. With the changes, AppearanceSettings can now solely use
JView API calls (as opposed to OpenGL calls). This setting also provides a means of
manipulating values that are placed in the depth buffer (used to determine which objects are
closer to the image plane). Compressing the depth range (particularly by lowering the far
distance) allows elements to be ‘nudged’ slightly closer to the camera location, ensuring they
appear in front of other objects in the scene.

4.1.1.9 Animation Framework

We incorporated a new animation framework that was initially developed for the ACES
Viewer into JView. The new framework serves as a replacement for the AnimationManager and
the problematic TCManager systems in JView, in addition to providing new capabilities and
improvements. One feature of note in the new system is the modular timing system. Animation
timing can now be easily linked to the rendering frame rate, or a non-real time clock (for movie
capturing), in addition to using the system clock.

We also re-factored the animation framework after moving it into JView, to provide a more
complete and easier to use replacement for the original animation and time constrained
simulation playback subsystems. This work included:

• Implementation of a simulation playback animation that operates on fixed precision
timing values.

• Implementation of a simulation playback animation that operates on floating point
precision timing values for better performance where fixed precision is not necessary.

• Refactoring of the Animation and TimingSource APIs to reduce complexity. This allows
developers to implement animated behaviors without having to understand the underlying
dynamics of the animation system.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

10

• Ensuring that correct timing information is provided to animations. For example, we
ensure that time is not lost due to floating point roundoff.

• Added support for cumulative timing (the amount of time elapsed since the animation
was started) in addition to the existing incremental timing (time since the previous
animation frame).

• Re-implemented the existing TCManager subsystem (for simulation playback) on top of
the new animation framework while preserving compatibility with applications that used
it. The TCManager system was moved out of JView, but is still used by several
applications that cannot migrate to the new API for various non-technical reasons.

• Migrated all existing JView components to the new API.

4.1.1.10 Vertex Buffer Objects

Vertex Buffer Objects (VBOs) are a relatively new OpenGL data structure used to
represent geometric data for rendering. We developed a VBO abstraction for JView that
simplifies their usage.

VBOs were designed as a replacement for older methods of sending this data to the
graphics hardware, including immediate mode, display lists, and vertex arrays. From a low level
perspective, VBOs are simply regions of memory allocated by OpenGL that are typically directly
accessible by the graphics hardware (e.g. video memory or AGP memory). An application will
fill one of these regions with data, and subsequently bind it for rendering.

Minimally, to render an image, a VBO must contain vertex data. For each vertex in a buffer,
additional information can be provided, including colors, normals, texture coordinates, etc. The
binding process involves describing what regions of the buffers contain each type of data. These
regions can be stored in a single VBO, or can be split among several buffers. This leads to the
three storage models supported by OpenGL and our abstraction:

• Data stored sequentially in a single buffer. For a buffer containing vertex (V) and color
(C) data, this might be stored in a single buffer with all similarly typed data grouped
together: [VVVCCC]. This layout is probably the easiest to manage.

• Data stored interleaved in a single buffer. By alternating the vertex data with any attribute
data associated with each vertex, data that will likely be used together will be stored
together: [VCVCVC]. This can lead to significant performance improvements,
particularly for large buffers.

• Data stored in multiple buffers. In some circumstances, you may want to separate the
vertex data and some or all of the vertex attribute data. For example, you might
frequently update vertex colors, but never update their locations. In this case, you can
allocate two separate VBOs, and via hints to OpenGL, you can request that one buffer be
used for static content, and one used for dynamic or streaming content. The graphics
driver will decide where to allocate each buffer (VRAM, AGP, or DRAM) for the most
efficient access. With this model, you would have [VVV] [CCC].

To simplify usage, and reduce the potential for programming errors, we track which buffer is
active on a thread at any given time, and which buffers are bound for rendering. Using this

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

11

functionality, we are able to automatically enable or disable, and bind or unbind a VBO with a
single method call from the user.

Our abstraction contains a buffer layout specification that allows users to specify what type
of data should be stored in each buffer, and how it should be organized. The buffer layout
contains or computes all of the necessary information to initialize a buffer object, bind regions
for drawing, or to provide pointer offset information for direct user manipulation of the buffer
content. The layout abstraction is extensible, so that if new data types are added to the OpenGL
VBO specification, support can be easily added to our abstractions.

Similar to how texture data is managed in OpenGL, each VBO is assigned a unique numeric
identifier when it is created. Since the memory used by the VBO is outside of the Java heap
space, it is not directly managed by Java’s garbage collection system. This can lead to memory
leaks if a VBO is not explicitly deleted when it is no longer in use. Our VBO abstraction ensures
that the VBO it represents is deleted when the Java memory associated with the abstraction
classes is garbage collected. We also provide a means to explicitly delete the VBO for more user
control over the timing of the operation.

4.1.1.11 Texture API

We developed a new Texture API that is both more efficient and more flexible than the
previous systems available in JView. The new Texture API has a number of advantages over the
earlier TextureContainer system:

• Improved configurability of texture environment settings and texture parameters without
requiring users to make explicit OpenGL calls.

• Support for multiple texture formats (1D, 2D, 2D non-power-of-two, 3D, etc.)
• Support for the full range of pixel formats supported by OpenGL.
• Simplified usage. After initial configuration of the texture, users only need to call enable

or disable on the appropriate texture, or use JView’s AppearanceSettings system to
automatically enable or disable textures.

• Thread safe updates. The previous texture system required changes to the texture to be
performed in the OpenGL rendering thread, while the new system allows changes (such
as image updates) to be initiated from any thread.

The new texture system also enabled development of support for ‘live textures’, textures that
represent a frequently changing image source such as a Java Swing UI component, or a video
under several other contracts.

4.1.1.12 Picking/Selection

We enhanced the CPU based picking subsystem that was developed under the User Defined
Operational Picture effort and incorporated it into JView. Previously, JView relied on the system

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12

graphics drivers (via the OpenGL API) to handle picking in a 3D scene. This approach had
several drawbacks:

• OpenGL based picking has been removed from newer versions of the OpenGL API. We
have also noticed that picking has become slower in each new release of the graphics
drivers from major vendors, as it becomes more difficult to implement with the
increasing programmability of the graphics pipeline.

• OpenGL based picking operates on geometric primitives, and can only provide
information on which primitive was picked. This can cause difficulty in certain situations
where a single primitive represents multiple pieces of data in a model. For example, a
complex user interface component can be texture mapped onto a single OpenGL quad.
Additional application specific code is required to translate the OpenGL selection
information to determine which control might have been selected.

• The result of a picking operation in OpenGL consists of a set of integral identifiers and
depth information. This information needs to be programmatically mapped back to the
model object represented by each identifier.

The new system that we developed abandons OpenGL picking APIs in favor of a custom
Java API that has been incorporated into the core rendering subsystem in JView. We provide
default implementations of this API for all renderable components in JView, but allow
developers to override or extend the default behavior to introduce domain specific data objects to
be picked in addition to the renderable components.

We also provide a concise picking utility API to assist developers that wish to implement
custom picking for their renderable components, and to interpret the data provided in response to
a picking action. These utilities include a simple to use picking visualization component that can
be added to a 3D scene with a single line of code to provide visual feedback indicating where
picking ray intersections occur. An example of this utility is shown in Figure 4. The Picking
Visualization Utility is the pink line with yellow dots indicating intersections, and the Bounding
Volume visualization utility is represented by the purple boxes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13

Figure 4: Picking Visualization Utility and Bounding Volume Visualization Utility

4.1.1.13 Bounding Volumes

Many scene graph libraries associate a bounding volume with each renderable object to
provide a consistent and simple mechanism to determine an approximate area where the object
will be drawn. This information can be used for automatic frustum culling, clipping plane
management, navigation (determining where the camera should be positioned to view certain
elements of the scene), and other common functions. Earlier versions of JView provided an
optional API for scene elements to provide this information, however since the engine could not
depend on bounding volume information being present we could not take full advantage of the
benefits it could provide. Additionally, since it was optional and not an integral part of the core
JView API, it was difficult to use, and many developers were not aware it was available.

Each scene element in JView now has an associated bounding volume. For scene
elements that are constructed completely from the geometric primitives included with JView, the
bounding volume is computed automatically, and requires no additional work on the part of the
developer. For custom scene element implementations, we provide a simple API by which the
developer can specify a bounding volume in the object space of the element it describes. We
provide three bounding volume implementations for this purpose: axis aligned bounding box,
oriented bounding box, and bounding sphere. Developers are free to provide their own
implementations as well.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

14

JView’s scene graph system automatically converts the volumes to world coordinates
(which automatically handles scene element coordinate changes), and composites them with
volumes from other scene elements to produce a bounding volume for the entire scene. This is
done in a manner that preserves the original volumes, rather than computing a single volume that
encompasses all sub-volumes, which is important for certain functionality that relies on tight
bounding volumes for optimal behavior (such as clipping plane management).

With bounding volume information integrated into all JView based scenes, we were able
to improve and simplify several other subsystems, including clip plane management, navigation,
and frustum culling. We also provide a utility that can display the bounding volumes in-scene
with a single method call, primarily useful for debugging. An example of this visualization is
shown in Figure 4.

4.1.1.14 Camera System

JView’s Camera abstraction is designed to allow developers to manipulate viewing
parameters such as position and orientation in a more intuitive manner than directly manipulating
OpenGL’s transformation matrices. We made several improvements to the Camera that improves
usability, performance, and accuracy.

4.1.1.14.1 Removed Dependency on GL Utilities Library

After migrating JView to version 2.0 of the Java OpenGL (JOGL) binding library, we
discovered some significant changes that negatively impacted the mathematical precision used
for viewing transformation calculations. We addressed these problems by implementing our own
versions of the relevant functionality. These changes provided other benefits to JView in that
more information is now available to apply viewing transformations to geometry with a
relatively simple API. This API is used by a variety of renderers to improve performance (e.g.
frustum culling), functionality (e.g. picking), and to simplify implementation.

4.1.1.14.2 Clipping Plane Management

Clipping planes are used in rasterization based 3D graphics systems to limit the
renderable depth range to maximize depth buffer precision. Originally, JView required
developers to manually specify the depth range for a given camera position and scene content.
Each time the camera was moved, or the scene content changed, the clipping plane distances had
to be re-specified. We previously automated this process using an ancillary API that was built in
to one of the camera navigation systems in JView. During this period, we incorporated
automated clipping plane management into the core render loop in JView.

In the new API, clipping plane distances are calculated from the bounding volumes of the
scene elements by default, at the beginning of each render pass. This means that unlike the
previous implementation, developers using JView do not have to do anything explicit to integrate

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

15

their scene elements with the clipping plane management system. The default behavior can easily
be overridden to customize the clipping distance calculations for each element. The new system
supports a combination of hard and soft distance constraints, which allows JView to determine
the optimal clip distances for a scene, balancing depth buffer precision against the desire to
render all visible elements for a given camera position.

4.1.2 Utilities

4.1.2.1 Native Library Loader

During the previous JView support contract, we developed utilities to simplify the
process of using JView and JView based applications by packaging and dynamically loading the
platform specific C libraries required to access OpenGL functionality. During this effort, we
improved this functionality by adding support for multiple copies of the C libraries to coexist
within a single system (different JView applications may use different library versions).
Furthermore, we made the dynamic extraction and loading utility more generic so that it can be
used for other third-party C libraries (such as those used by Java Advanced Imaging and JInput).

After an update the version of JOGL used by JView, we discovered a problem using
JView based applications on systems that had run applications with an earlier version of JOGL.
The problem was that an older version of JOGL was still present on these machines in the shared
jogl-natives temporary folder. This caused the application to crash when attempting to load the
incorrect version of the native library. To address this problem, we incorporated a workaround
for a Windows specific issue into the Native Library Loader. Due to file locking semantics on
Windows based systems, the native libraries are now deleted by a separate process that is
launched when the original application exits.

4.1.2.2 Camera Navigation

We enhanced the camera navigation framework that we had previously developed for
JView by adding an interface for components that determine the coordinate of the intersection of
mouse events with the elements in the scene. We have developed three implementations of this
interface, to detect intersections with SceneElements (with selection enabled), the map projection
surface, and the JView World element respectively. This functionality is used when performing
pan operations with the mouse to keep the hit object directly under the mouse cursor for the
duration of the operation, and to re-target the camera in response to a double-click.

We also improved the usability of the navigator by allowing other motions to be active
during a transition. For example, the user can now modify the elevation or azimuth of the camera
relative to the moving anchor during a transition. Previously, transitions were exclusive
operations.

We further simplified the navigation system by modeling the camera’s position and
orientation with vectors and quaternions. More specifically, we use a vector and quaternion to
represent the location and coordinate-system orientation of the look-at point, and another

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

16

vector/quaternion to represent the camera’s relationship to the look-at point. This is similar to
earlier representations, but implemented more efficiently.

We improved and simplified the navigation system’s API and internal functionality by
using quaternions to represent orientation. This reduces the number of ‘special cases’ (of
orientation or position), reduces the number of calculations necessary to perform common
operations, and increases the precision of most rotation calculations over other representations
(matrices or Euler angles).

4.1.2.2.1 Bounding Box Position Constraint

We implemented a bounding box based camera position constraint for use with JView's
camera navigation system. This constraint allows developers to limit the look-at point for the
navigator to a region defined by a geodesic or axis-aligned bounding box. This constraint is
particularly useful when viewing the world with a flat projection, allowing developers to prevent
the camera from moving off the edge of the map, but can also be used to constrain the viewing
position to a region of interest.

4.1.2.2.2 World Orbit Navigator

We added functionality to the World Orbit Navigator (a JView World specific extension
of the camera navigation system) to take terrain elevation into account when orbiting around the
navigator's anchor location. Previously, the camera typically orbited around a (moveable) point
on the map projection manifold, defined by the anchor location. In areas where there were large
variations in terrain elevation, this behavior produced unexpected results, because the anchor
location was typically located beneath the terrain. The improvements compute the intersection of
the camera's viewing ray (through the center of the screen) with the terrain each time the anchor
point is moved, and automatically adjust the anchor to the location of the intersection. This is
done without moving the camera, so from the user's perspective, the change in position of the
anchor is seamless, however when the user initiates an orbit motion, they now orbit around the
surface of the terrain, rather than the surface of the map projection manifold.

4.1.2.3 DTED Interpolation

A new class called Utilities for the mil.afrl.rrs.ifsb.dted package was developed that
includes a getElevation method that returns an interpolated elevation. Any given
longitude/latitude point will lie inside a quad described with a southwest corner
(LOWER_LEFT), northwest corner (UPPER_LEFT), northeast corner (UPPER_RIGHT), and
southeast corner (LOWER_RIGHT). Figure 5 shows the possible interpolation selections, and if
no data is available from the DTED server, this method returns DTED_NULL

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17

Interpolation Method Returned Value

LOWER_LEFT_POST southwest DTED post will be returned

UPPER_LEFT_POST northwest DTED post will be returned

UPPER_RIGHT_POST northeast DTED post will be returned

LOWER_RIGHT_POST southeast DTED post will be returned

NEAREST_POST

geometrically nearest post (the exact center will
return the southwest post)

NEAREST_LL_UR_POST

imagine a quad split into a lower left triangle and
upper right triangle, will return geometrically
closest corner of the appropriate triangle

NEAREST_UL_LR_POST imagine a quad split into an upper left triangle and
lower right triangle, will return geometrically
closest corner of the appropriate triangle

BILINEAR weighted average using all four corners

TRIANGULAR_LL_UR weighted average using the appropriate three
corners of the enclosing triangle

TRIANGULAR_UL_LR weighted average using the appropriate three
corners of the enclosing triangle

Figure 5: Possible Interpolation Selections

4.1.2.4 View Footprint Calculator

We developed an algorithm to calculate the view footprint of a camera in terms of the
boundary between the visible and non-visible latitudes and longitudes. The footprint is calculated
by sampling the intersections of viewing rays from the camera location through the edges of the
viewport at regular intervals. For each sample, the ray might intersect with the surface defined by
a map projection or not. Where there is such an intersection, the latitude and longitude of the
intersection is incorporated into the view footprint outline. When there is no intersection, we
calculate the latitude and longitude of the horizon in the direction of the viewing ray.

The view footprint algorithm is used by the ACES Viewer for its 2D camera position
controller and by Terra Firma for the overview component. A sample scene is shown in Figure 6
with the camera looking toward a WGS84 projected globe. Figure 7 shows a zoomed-out view of
the camera frustum for the viewpoint in Figure 6. Figure 8 shows the view footprint of the
camera in Figure 6. The upper-most section of the green footprint outline corresponds to the
horizon, while the side and bottom edges result from the intersection of the frustum with the
surface.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

18

Figure 6: Camera looking toward a WGS84 projected globe

Figure 7: A zoomed-out view of the camera frustum

Figure 8: The view footprint of the camera

4.1.2.5 Movie Capture

We transitioned the Movie Capture utilities developed for the ACES Viewer into JView.
These utilities provide a higher level API to work with JView’s existing movie capture
subsystem that will simplify the process for most users. Major functionality includes
encapsulation of movie parameters (encoding, frame rate, watermark, output file, etc.),
integration with JView’s animation framework, and management of the capture process. Users
typically only need to implement a simple callback interface to update the view between
captured movie frames, everything else is handled by the new utilities.

4.1.2.6 Transfer Function Editor

JView provides several implementations of a Transfer Function, a function that maps
numeric values to visual properties (typically color and opacity). These functions can be used by
any visualization component that requires such a mapping. We recently re-factored the
TransferFunction API to improve its usability and to simplify implementation of new Transfer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19

Functions. We also developed a user interface component to display and manipulate the
properties of a Transfer Function.

The Transfer Function Editor provides a visual representation of the colors and opacities
produced by the transfer function over its input value range. Users can interact with the display
to manipulate the mapping, and thus affect the visualization using the Transfer Function. An
example of the user interface is shown on the left side of Figure 9, and the resulting Transfer
Function applied to an array of spheres (right side).

Figure 9: Transfer Function Demonstration

4.1.3 Rendering Elements

4.1.3.1 Callouts

We developed a new Callout implementation that creates a 2D SceneElement window
(optionally with window decorations) that presents a Java2D graphics API for easy rendering to
the window. An optional connector can be drawn from the window to a location in 3D space. A
WorldCallout is also available that's World aware that can draw the connector to a lat/lon on the
World and disable the WorldOrbitNavigator for window drags (Figure 10).

Figure 10: Two Separate Callout Windows in a JView Scene

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20

The callout system was used as the basis for an improved version that was developed
under a different contract that was only possible after we implemented support for rendering Java
Swing components in a JView/OpenGL scene.

4.1.3.2 Labels Element

 We incorporated a variety of improvements to the Labels Element (Figure 11) that was
originally developed for the ACES Viewer application during the previous JView support
contract, and migrated to JView during this effort.

 Of note is the addition of per-label visibility priorities. This provides control to a
developer over the de-cluttering process. Each label in a scene has an associated numerical
priority. Elements with a high priority will never be considered occluded by a label with a lower
priority. This gives developers the ability to ensure that certain labels are visible even if they are
occluded by other 'less important' labels. Labels with identical priority values obey the normal
depth-based de-cluttering process.

Figure 11: Labels Element

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

21

 We have also added the ability to set the text color on a per-label basis, line justification
(left, centered or right aligned), improved alignment configuration settings, and support for
external occluders (multiple LabelsElements instances occluding each other). Users can also
enable drawing of drop-shadow style outlines for the label text to improve legibility in cluttered
scenes (Figure 12).

Figure 12: JView LabelsElement with drop shadows

4.1.3.2.1 Automatic Label Decluttering with Dynamic Placement

We have improved the de-cluttering algorithm used by the textual label renderer in JView

to include automatic placement of the label in a user defined area around the object being
labeled.

The original de-cluttering algorithm determined whether a label was occluded by another
label closer to the camera viewpoint using a K-D Tree based occlusion query data structure. If a
label was determined to be occluded, its color was changed so the occluded label was less
visible, and did not interfere with the legibility of the occluding label.

Based on research presented at the 2008 InfoVis conference, improvements were made to the
algorithm to increase the number of labels in a non-occluded state, by allowing the occluded
labels to be re-positioned in a small area around the object the label is associated with. Our
implementation of this algorithm (with some enhancements) works as follows:

1. Calculate the screen area of all labels (represented by a 2D rectangle). Cull any labels
whose associated object (the item being labeled) does not fall within the viewing area.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

22

2. Sort the remaining labels. Labels that are positioned earlier during placement and
occlusion testing will be less likely to be occluded by another label. We use a
combination of priority based and depth based sorting to achieve a suitable ordering.

3. Calculate a screen location for each label (that has not been placed in a non-occluded
position) using user-defined minimum and maximum distance constraints, and placement
algorithm.

4. For each label that was positioned in step 3, query a global occlusion structure to
determine if the label overlaps another object in the occlusion structure. If there is no
overlap, commit the label’s position, and mark the corresponding region in the occlusion
structure.

5. Repeat steps 3-4 for all labels that have not been successfully placed, using alternate
placement algorithms until all labels have been placed, or all placement algorithms have
been used.

6. Finally, any labels that have not been successfully placed are marked occluded, and their
color is adjusted in the same manner as the original de-cluttering algorithm.

Our improvements to the original placement technique include animated transitions between
placement locations and occluded state (color). We also improved the coherency of the label
location relative to the labeled object while the object is moving on-screen (either by motion of
the object, or changes in the viewing direction/position). This was accomplished by detecting
changes in the labeled object’s screen location and only re-positioning the label if the location
has not changed for a specified amount of time. Occlusion detection is still performed even if the
labeled object’s position has changed, so while labels associated with a moving object will not be
repositioned, they will still fade in and out, as other labels occlude them.

This algorithm depends on two other components in JView, the occlusion query data
structure, and the label placement algorithm(s).

4.1.3.2.2 Occlusion Query Data Structure

The Occlusion Query data structure used by the original de-cluttering algorithm was too
slow to handle the significantly larger number of queries issued by the new de-cluttering
algorithm. Previously, only one query was issued per label to determine whether it was occluded.
The new algorithm requires a query for each label, at each position tested, which can easily result
in 100 times as many queries in a scene with a large number of labels. To improve performance,
we implemented a new data structure with O(1) running time for queries.

The OcclusionStructure represents the viewport area as a 2D grid of bits. Each bit
represents a small area on the screen, which could be as small as a single pixel, but could be
larger for more coarse-grained occlusion testing with better performance. Bits set to 1 indicate a
region that is occupied, and bits set to 0 represent un-occupied space. The data structure provides
methods to test areas of the grid to determine whether any bits are set in a specified rectangle,
and to set bits in a specified rectangle. This representation requires somewhat more memory than
the previous K-D Tree based data structure when there are a small number of occluders, but
scales more efficiently to handle a larger number of occluders.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

23

In addition to the performance improvements, we associate a single instance of the
Occlusion Query data structure with each scene. A scene’s Occlusion Query structure is
automatically cleared at the beginning of each render pass, and can be shared by all elements
participating in the rendering of the scene (i.e. other non-label objects can mark regions as
occupied). This permits detection of other occluders, in addition to just label-label occlusions.

4.1.3.2.3 Label Placement Algorithms

Label placement is determined by a sequence of user-specified placement algorithms. Each
algorithm is applied to all unplaced labels in sequence until all labels have been placed, or the
placement algorithm sequence has been exhausted. We have implemented three algorithms that
are used together as the default placement algorithm sequence.

• Eight-Position placement. Labels are placed in one of eight positions in a circle around
the labeled object corresponding to the compass directions N, NE, E, SE, S, SW, W, and
NW. The first position in this sequence corresponding to a non-occluded position for the
label (if any) is used. Diagrams of this placement algorithm working are shown in Figure
13, Figure 14, and Figure 15.

• Spiral placement. A sequence of label positions following a spiral pattern around the
labeled object, with configurable distance range, spiral rotations, and number of locations
to test. The default label placement sequence uses two instances of this algorithm with
different parameters.

• Default Placement. This places the label directly above the labeled object, regardless of
whether it is occluded at that position. This is used to place all labels that were not
successfully placed by another algorithm. This can also be used to emulate the original
de-cluttering algorithm by placing all labels at a fixed location relative to the labeled
objects.

Figure 13: Label 1 placed in the first position tested (North position)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

24

Figure 14: A second label is added and the bounding rectangle overlaps the area occupied by label 1

Figure 15: All 8 positions are tested until a suitable placement is found

Users can also implement and use their own placement algorithms if necessary to achieve
the desired placement behavior.

4.1.3.3 Instance Rendering

Initially developed to support the need of the ACES Viewer application to render
thousands of aircraft models at different locations, we developed Instancing support in JView.
Instance rendering refers to the ability to prepare the graphics hardware for rendering an element
once, while actually drawing it in multiple locations. This amortizes the overhead of sending
geometry and appearance information to the graphics hardware over multiple instances of the
geometry.

Initially, we implemented this using OpenGL display lists that allowed the geometric data
to be transmitted to the graphics hardware once, and then be rendered at multiple locations. Tests
with several types of JView-provided geometry show significant (2x-10x) performance increases
when rendering many instances of the geometry using this approach.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

25

More recently, as the necessary OpenGL functionality became more widely available on
computer systems, we were able to further improve performance using hardware instancing
techniques. This approach was also developed for the ACES Viewer and migrated to JView after
some stabilization. Hardware instancing takes advantage of the programmable graphics pipeline,
and newer OpenGL data representation and transfer abstractions (buffers) to render geometry at
many locations with very few OpenGL calls. The reduction in communication overhead between
the CPU and GPU (by making fewer calls) achieves another 10x performance increase over the
previous display-list based instancing implementation.

4.1.3.4 HUD Utilities

 We implemented a collection of utility methods designed to facilitate rendering of Heads-
Up-Display style components over a JView scene. Methods are available to temporarily switch
to orthographic rendering and draw and fill various 2D shapes on the screen. Several methods
provide integration with the Java2D Shape API to allow these classes to be used with JView.

Figure 16: HUD Text Element

 Using the utility methods from HUDUtils, we added a background and optional outline to
the HUDTextElement (Figure 16) to prevent text rendered on the HUD from becoming cluttered
due to interference with other objects in the scene.

4.1.3.5 Histogram Grid

The histogram grid geometry has been enhanced to support grids that are rectilinear in
any JView supported map projection. Previously, the grids had to be rectilinear in
latitude/longitude coordinates. This allows histogram grid based visualizations to be applied to
data that is gridded in arbitrary projections (Figure 17), as is common for weather data (e.g.
GRIB files).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

26

Figure 17: Histogram Grid displaying surface temperatures from a Lambert-projected data source

4.1.3.6 Sphere Segment Scene Element

The sphere segment is a shape that represents a portion of a sphere and there are six
values that determine the portion. The min and max range that determines how the big the inner
and outer surface should be based on the distance from the center of the sphere. The minimum
and maximum azimuth values determine the vertical cuts of the sphere. The min and max
elevation angles determine the horizontal cuts of the sphere. Figure 18 illustrates a demonstration
of the sphere segment element in the DemoBrowser.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

27

Figure 18: Sphere Segment Demo

4.1.3.7 Pin Renderer

Under the previous JView support contract, we developed a utility that can efficiently
render many (thousands) of line segments (pins) that are intended to indicate pairs of related
visual elements. The Label Renderer uses pins to show what point in space each label’s text is
associated with.

The Pin Renderer has been enhanced with support for drawing points at either end of the
pin (Figure 19). The points are rendered using a symmetric 2D Gaussian texture map and
OpenGL's point sprite primitive for extremely efficient rendering.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

28

Figure 19: Pin Renderer drawing pins with end points from each label to their corresponding locations

4.1.4 Model Formats

4.1.4.1 Open Flight Models (FLT)

We improved the FLT model loader so that it reports any undesirable or unsupported
FLT nodes in a geometry file. We also added parsing capabilities for previously unsupported
translation, rotation, and scale nodes. Without support for these node types, the model geometry
generated by the parser may not represent what the artist intended. These node types are
commonly used by model developers for convenience, but are inefficient when it comes to
rendering a model in an interactive scene.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

29

4.1.4.2 Keyhole Markup Language (KML)

Keyhole Markup Language (KML) is an XML file format that is used by Google® to
represent geometry, points, and other geo-referenced information. During the previous JView
support contract, CACI implemented a renderer for the KML based on a file parser provided by
Google®. We wrote our own custom parser because the Google® provided version parser was
slow (due to extensive use of Java’s reflection utilities), and did not support the newest version
of the KML specification. We also rewrote the KML rendering components to integrate with the
new parser and to incorporate additional functionality.

4.1.4.2.1 KML Parser

Our KML parser uses standard Java runtime library systems to parse the XML file. The
new parser does not need any third party libraries as the Google® provided parser did.
Eliminating dependencies on third party libraries reduces the size of the JView download and
can improve application startup performance. The parser goes though each XML node and parses
them individually. The KML parser is structured similar to the KML document structure. Having
this type of structure makes it easier to render and model. The performance of the new KML
parser is significantly faster, and instead of minutes to parse a KML file we can now load a file
in seconds.

4.1.4.2.2 KML Graphical User Interface (KML GUI)

JView’s KML GUI consists of the components to represent KML in a panel. The KML
GUI is separated into five different components. The main component is the KMLTree which
extends the Java’s JTree and defines its own tree renderer and editor. The tree uses the
KMLTreeModel to define the structure of the KMLTree and the model keeps track of
KMLTreeElements. KMLTreeElement manages all the actions and rendering between the tree
and the parsed KML. It creates KMLTreeElements using the parsed KML and therefore defines
the structure of the tree. Any actions on the element are implemented with the
KMLTreeElementListener which can be applied to the KML tree. Figure 20 shows the structure
of the KML renders.

Figure 20: KML Structure

KMLTree KMLTreeModel KMLTreeElement

KMLTreeElementRende

KMLTreeElementListene

KMLTreeElement List of KMLTreeElement
(Children)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

30

Since the KMLTreeElement actually controls the rendering, specific renderers can be applied for
particular needs. For example with network links, it was important to show progress when
connecting to an external link, and an intermediate progress bar pops up when connecting to an
external source. Connecting to the web might take minutes to process so it is very important to
give feedback to the user that the tree is in progress and processing. Figure 21 illustrates the
network link renderer in the KML Tree and Figure 22 shows the KMLTree feature is available
when the 3D element is clicked. Figure 23 shows the callout being displayed.

Figure 21: KML Tree Network Links

Figure 22: KML Tree

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

31

Figure 23: KML Callout

4.1.4.2.3 KML Placemark Point Scene Element

CACI created a new class called KML Placemark Point Scene Element to manage many
KML point elements in a single JView scene very efficiently. The new class will show the
placemarks icons, the name of the icon and if clicked on the icon a callout window showing the
information of the KML point. Figure 24 shows the thousands of satellites being displayed on the
world quickly with KML Callouts, and the KML Tree User Interface.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

32

Figure 24: JView Scene with KML Placemark Point Scene Elements

4.1.4.3 Collada

Collada is a data format that was created to exchange digital artwork assets, such as 3D
models, animations and kinematics data. This is implemented by having content creators adhere
to an XML schema specifically designed to store 3D geometries, along with a host of other data
that both statically and dynamically enhance those geometries.

4.1.4.3.1 Need A New Collada Implementation

Since 2008, Collada 1.4 has been supported by the JView model loader subsystem. The
original Collada module used a pre-generated binary to facilitate the parsing of Collada (.dae)
files. Some issues and limitations of JView’s Collada file parser and renderer included slow
parsing times, inability to effectively assimilate the new features of the ever-evolving Collada
specification, and a relatively large binary file that must be packaged with JView to load models.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

33

These problems stemmed from use of an auto-generated XML parser which facilitated rapid
integration of Collada support into JView, however it often resulting in loading times on the
magnitude of tens of seconds for a single model, usually much longer if textures are used.

Along with the aforementioned issues, the actual Collada files were not properly
displayed within JView. Normals, matrices, and scaling were some of the issues that hindered
the proper display of Collada models within JView. It was difficult to resolve these problems in
the auto-generated parser, so we began implementing a custom solution.

The previous implementation also treated Collada as a secondary model to KML and
KMZ. This was due to the fact that Collada were almost exclusively found associated with KML
files or stored within KMZ files. However, as Collada has become more of a standalone model
format, the current solution did not meet the needs of the growing model standard.

4.1.4.3.2 SAX Parser

To remedy some of the aforementioned issues, a Simple API for XML or SAX parser
was written. The SAX parser performs a single pass of the XML file which allows the data to be
put into memory where it is easily and quickly retrieved for the building of JView constructs.
The previous system employed a random access read to the XML document to retrieve the
information needed. This allowed retrieval of only what was needed; however, it included the
additional overhead of relatively slow disk I/O.

After the SAX parser’s single pass through the document, it generates an intermediate
model which stores all data that is deemed relevant to building the 3D model using JView
constructs. Due to the constant development on the Collada specification, along with the
increasing needs of our customers, the SAX parser was designed to be easily extendable with
minimal changes to the existing system.

4.1.4.3.3 What is Supported

Almost all available Collada models are using specification 1.4, and as of this writing,
almost all models are supported to some degree. The Collada 1.4 specification handles many
different aspects of representing graphical entities in a three dimensional environment. The
Collada 1.4 specification’s goal is to provide a median which can fully describe a three
dimensional model, including how it looks (effects and materials), how to build it (geometry),
and how it moves (animation).

Currently, any model using the primitive types of triangles, lines, triangle fans and
triangle strips can be built and displayed using JView. We also support surface normals, lighting
effects and texture mapping. Textures are only loaded into memory once in order to reduce the
memory overhead. Translations, scaling and rotations are fully supported by the current
implementation. Future graphical primitive types that are planned to be supported are
quadrilaterals and quadrilateral strips. There are also some techniques which are not currently
supported such as various shading techniques; however, the parameters required to allow these

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

34

techniques to work is already processed and stored for use by future enhancements to the
renderer. Transparency is currently supported in a limited fashion, however will be more fully
supported once shading techniques have been implemented. Figure 25 shows a sample Collada
model loaded using the new JView model loader implementation.

Figure 25: Sample Collada model displayed using JView

4.1.4.3.4 Kinematics

Collada version 1.5 was introduced in August of 2008. The largest change that was made
to the specification in version 1.5 was adding kinematics. The newest Collada version
implemented a standard by which all non-scripted kinematics can be controlled. While Collada
itself cannot specify how the kinematics-based animations should be managed, they provide axes
by which subsections of the model can be transformed. Along with the axes, provided are the
minimum and maximum ranges or degrees of freedom by which a part of the model can be
rotated or translated. In Figure 26, a 1.5 model with kinematics describing the movement of the
palm and the individual parts that comprise the fingers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

35

Figure 26: Collada Hand Model with Kinematics

Figure 27 shows the same hand model as Figure 26, with each joint rotated about 45
degrees counter-clockwise about the z axis. On the right is a simplistic control that was
developed to showcase the possibilities of kinematics.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

36

Figure 27: Articulated Hand Model

4.1.4.3.5 Phong Shading and Reflectance Model

The initial version of Collada renderer used the default pipeline shader to light models.
The Collada specification allows a number of material models to be used, with the most
commonly used ones being the Phong specular reflectance and Lambert diffuse reflectance. Per-
pixel shading over flat shading is the main benefit of allowing these shading techniques over
OpenGL’s default Gourad shader. The flat shading colors an entire shape, whether it is a triangle
or quad, the same color. The improved visual aesthetics created by using the non-default shader
does not cause a performance hit on the CPU as the work is offloaded to the graphics card. These
two shading techniques are now supported in the latest version of the JView Collada loader.

The Phong reflectance model employs techniques to reflect more color back towards the
camera from the light source. The amount of light reflected back is determined by the specular
reflection value and the distance and direction the camera is from the light source. Where the
light directly reflects back into the camera, the color seen will seem to be extremely bright,
almost near white. The surfaces which have less light reflecting from it, the less shiny or bright it
will appear. The outcome of the shading is areas of increased shininess which results in a more
photorealistic model (Figure 28 and Figure 29). Support for Phong shading of Collada models
was accomplished through implementation of several GLSL shader programs.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

37

Figure 28: Phong shading and illumination applied to a Collada model.

Figure 29: Lambert diffuse illumination applied to a Collada model

4.1.5 Release Management

4.1.5.1 Code Quality

We eliminated thousands of Java compiler warnings in JView. Many of the JView
warnings are due to the lack of parameterized generic types. This type of warning was introduced
by new features in Java 1.5 that did not exist in older versions of the Java compiler.
Parameterizing Java Vectors and Lists helps in reducing runtime errors and helps to simplify
tracing Java code. Other warnings were introduced during the normal development process.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

38

We also developed standards for project source code layout and build system to be used
across all JView 1.x based applications developed internally. This consistency ensures that a
developer who is familiar with one project can easily navigate and build any of the other
projects.

In order to improve the general quality of JView’s code base, we incorporated a variety
of static analysis tools into the build process. These tools identify potential problems in the code,
including missing API documentation, concurrency issues, performance problems, and code
style issues. We also added a number of unit tests to ensure that the code functions as expected
when running, and to catch any regressions as new features are introduced. All of these tests can
be run automatically during the build process. In order to encourage JView developers to
contribute high quality code, and to fix any issues that the tools identify, we have also set up a
continuous integration system that monitors the source code repository for changes, runs all of
the testing tools when a change is detected, and generates a variety of reports that present any
problems that were found. Using these tools, we have identified and fixed dozens of major
problems, and hundreds of smaller issues in JView, and several JView-based applications.

4.1.5.2 Continuous Integration

To help improve and maintain the quality of the JView source code and architecture, we
configured a continuous integration system that automatically builds the JView library from
source code after each modification. During the build process, the source code is analyzed using
a variety of static analysis tools, compiler warnings are recorded, and unit tests are automatically
run. The continuous integration server generates a variety of reports and trends based on the
collected information. It also assigns a build health status, and provides developer access to this
information via a web server. The system provides similar services for all JView based
applications developed under this effort. An example of the project health status is shown in
Figure 30.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

39

Figure 30: Project Health Summary in the Hudson Continuous Integration System

4.1.5.3 Application Installers

The latest version of Install Anywhere was purchased to create an automated installer for
the JView, and other JView based applications. The previous Install Anywhere was not sufficient
in our needs for creating installation media. It would not create installers with large data sets and
would not work correctly with Java 1.6. There were significant changes between this version of
Install Anywhere, and the earlier version. We spent some time learning and exploring this
software in order to generate nicely polished installers for JView applications.

4.1.5.4 JView Releases

4.1.5.4.1 JView 1.5

We released JView 1.5, ACES Viewer 1.1, Cune Viewer 1.0 and the ATV 1.2 in August
2008. The release process involved working with a new installer generation application that
allowed us to create native application installers for all supported platforms (Windows, Mac,
Linux). Install Anywhere 2008 was used to create each installer. We encountered several
problems with the installer software that we were able to work around with minor changes to the
distributions.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

40

After rigorous testing of the installers for each application on several platforms, we
created icons for each installer based on images from the application. In Figure 31 the icons are
listed with ATV, CuneViewer, JView, APATS and the DemoBrowser.

Figure 31: Icons

4.1.5.4.2 JView 1.6

The installer for JView 1.6 was created using Install Anywhere 2008, and versions were
made for Windows, Mac OSX and Unix (x86 and x64). New versions of the ACES,
CUNEViewer, ATV and APATS were created as well, based on the update JView libraries.
Additionally, new icons and custom install graphics were created for the other applications.

Extensive testing was done on the installers (the creation of which ranged from five
minutes to half an hour each). The most notable problem we found was with the Mac OSX
installer, where a custom script had to be written to modify the application launchers, as the
installer did not correctly wrap all the environmental variables needed for the programs to run.
Additionally, the launchers for Linux cannot handle paths with spaces in their name. We found
no workaround for this apart from warning the users to avoid installing to paths with spaces. This
was determined to be a bug with Install Anywhere.

It was determined that this would be the final version to include WorldDemo. All of the
functionality it provides has been subsumed by TerraFirma.

The features included in the installer are:

• JView 1.6
• DemoBrowser: A collection of sample applications used to demonstrate how to use

JView for building applications.
• ModelThumbnailViewer: An application for viewing 3D models.
• TerraFirma: An application for viewing global imagery and terrain, similar to NASA

World Wind and Google® Earth.
• WorldDemo: An application for viewing global imagery and terrain, similar to NASA

World Wind and Google® Earth (replaced by TerraFirma).
• DTED Level 0: Terrain elevation data
• NASA Blue Marble: Imagery
• Geoname and political boundary database
• Documentation
• Java 1.6

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

41

4.1.5.5 JView Training

We provided a week-long development training session to researchers at the Human
Effectiveness Directorate (AFRL/RH) at Wright-Patterson Air Force Base in support of several
human factors experiments that they were conducting. The exchange also led to several
improvements in JView with regard to usability, and support for newer stereoscopic display
devices.

4.2 JView World

4.2.1 Rendering and API

4.2.1.1 Node Change Listener API

The Node Change Listener API provides a mechanism by which developers can monitor
a (set of) location(s) on the world for elevation changes due to the level of detail geometry
refinement changes as the camera moves through the scene. This API was introduced near the
end of the previous JView support contract, and was substantially enhanced during this effort.

The initial implementation of the Node Change Listeners created a NodeChangeEvent
Object every time a node change notification occurred. Early performance profiling determined
this object would be created often and a NodeChangeEvent Pool was created to limit the affect of
creating these objects repeatedly. During this period both the need for the NodeChangeEvent
Object and the resulting object pool were removed. This was accomplished by using the
QuadTreeNode as the key into the NodeChangeEvent HashSet, and then using the getValue
method for the key to retrieve the original QuadTreeNode reference for which the event was
triggered.

4.2.1.2 Camera Location Based Level of Detail (LoD)

In flight simulation applications, the camera is typically set for cockpit view. The view
from the cockpit often leaves the World and looks off into space. Using the normal node area
calculations for level of detail based geometry refinement would result in the World paging out
all data, as the aircraft view returns to the World the data would then be paged back in. This
results in very unfavorable visual effects, as well as possible jerking on less capable machines. In
order to lessen this effect a new approach to determine node depth has been developed that uses
distance from the camera to the node to determine the level of detail. This approach is not
dependent on where the camera is looking, and will be set by where the camera is located. The
previous node area based LoD metric is still used by default since this provides the best results in
the most common usage scenarios.

Figure 32 shows an example of what is drawn using node area and frustum culling, the
yellow pyramid represents the clipping planes of the camera, and it is clear that very little is
drawn outside of the frustum. Figure 33 shows and example of the new camera distance mode
with no frustum culling.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

42

Figure 32: Node Area with Frustum Culling

Figure 33: Camera Distance

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

43

4.2.1.3 Iterative Interpolated Geometry Refinement

As the LoD algorithm used by the world switches between discrete refinement levels,
increasing or decreasing the resolution, a very noticeable pop occurs as the geometry changes.
As an attempt to lessen this pop, CACI developed an approach that calculates how close to
switching levels a node is, and then uses interpolation to limit the node vertices altitude from
jumping large amounts all at once.

4.2.1.4 Elevation Interpolation

JView World's Elevation Queue object was modified to support several methods of
interpolation on the default elevation data. Currently, allowing for DTED Level 2 in the absence
of DTED Level 2 created a Mayan Pyramid effect. With the new interpolation methods, this
creates a nice smoothed effect.

Interpolation methods:

• LOWER_LEFT_POST
• UPPER_LEFT_POST
• UPPER_RIGHT_POST
• LOWER_RIGHT_POST
• NEAREST_POST
• NEAREST_LL_UR_POST
• NEAREST_UL_LR_POST
• BILINEAR
• TRIANGULAR_LL_UR
• TRIANGULAR_UL_L

BILINEAR is now the default mode for JView World's Elevation Queue.

4.2.1.5 Vertex Buffer Objects

CACI began the task of converting JView World to use Vertex Buffer Objects (VBO’s).
The purpose of this change is to optimize rendering speed by limiting the amount of data passed
to the video card each frame, and to prepare for compatibility with OpenGL 3.0.

The initial part of this change required adding logic to determine if the geometry of a
node has changed. With a VBO, the data remains on the video card, and only needs to be
updated when a geometry change has occurred. Logic was added that triggers a geometry update
when a node splits, merges, or when a neighboring node changes its geometry.

We have successfully implemented a VBO based rendering system for the world that
draws significantly faster than the previous implementation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

44

4.2.1.6 DTED Level 5

CACI began the process of supporting DTED Level 5 data in the World. Previously the
World was limited to DTED Level 2. Since DTED Level 5 data only exists in limited areas and
is classified, JView World will supplement with non-DTED data as it becomes available. The
underlying post data structure will continue to fall on DTED Level 5 values, but when elevation
values are loaded from non-DTED sources interpolation will be used to approximate DTED
Level 5.

4.2.1.7 Mutable World Data Configuration

The initial version of the JView World object was only designed to have one view at a
time. That version was enhanced to allow for multiple World views simultaneously and since the
World is very capable of exhausting even a high-end computer’s texture and main memory, data
was shared between all World views, minimizing utilization of machine resources. JView World
determines what directories to load its data from by a WorldDataConfig object passed to the
World during construction. Previously, all World views would inherit this version of the
WorldDataConfig object. This restricted all World views to that initial data object, and there was
no mechanism to change it after World construction.

The JView WorldManager object was initially modified under a different project to allow
users to modify the WorldDataConfig object after World construction. CACI completed this
modification under this effort in support of the ACES Viewer capability to graphically configure
this data object and to allow users to change it after construction.

4.2.1.8 Multi-Threaded Texture Fetching

The World now uses the JAVA ThreadPoolExecutor object to allow the Texture Loader
to use multiple threads to simultaneously download imagery data. The default number of URL
threads is 4, but may be changed by the user.

4.2.2 Imagery

4.2.2.1 GeoTIFF

GeoTIFF is an extension to the Tagged Image File Format (TIFF) that specifies a set of
tags that provide geo-referencing information for an image. This format is commonly used for
aerial and space based terrain imaging, and is additionally used by many industry standard tool
sets. Many of the existing GeoTIFF images are extremely large (in terms of the number of
pixels), and cannot be rendered in real time with reasonable memory and processing constraints.

We investigated new mechanisms for loading GeoTIFF data for use with the JView
World. Specifically, we started with an existing GeoTIFF parser, and implemented a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

45

subsampling interface using the Java Advanced Imaging ImageIO library, to dynamically
subsample very high resolution imagery, for constructing dynamic reduced-resolution image sets
from a single base image. Initial tests on this dynamic subsampling indicated that the first time
ImageIO encounters a new image file, the subsampling routines as well as the overview image
loading routines are extraordinarily expensive (on the order of 5-15 seconds). However, all
subsequent access to that same image file (between reboots or extended periods of non-usage)
are acceptably fast (on the order of 20-80 milliseconds). Effectively, this gives log2(IMAGE
WIDTH / TILE SIZE) levels of reduced-resolution imagery from a single base. The reduced-
resolution images are produced by creating a TextureSetDigitalGlobe with the correct "power" (0
gives the native 256x256 tile, 1 gives 4 native resolution tiles decimated to 1 256x256 tile, 2
maps 8 native tiles as 1 256x256 tile, etc., up to and including power 6 to map 16384x16384
images to a single 256x256 image).

4.2.2.2 Google Maps Imagery

The initial support for maps.google.com imagery in JView World was based on a lookup
table for Mercator latitude values valid up to the 17th level of detail for satellite imagery. Since
the initial support, Google® has increased its maximum satellite resolution level to 21. Level 17
is approximately .866 meter imagery, and level 21 is approximately .108 meter imagery. We
generated a new lookup table incorporating all levels up to the 21st and Figure 34 shows a screen
shot of a residential area in Albuquerque, NM with level 21 data.

Figure 34: Google Level 21 (~10.8 cm) Satellite Imagery

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

46

We modified TextureElementMercG to set browser information to make JView World
look more like a request from the Mozilla web browser. Testing thus far seems to indicate this
prevents a lock from Google®. Unfortunately, Google® has now implemented a 1000 file per
day download limit. This is per server, and JView World rotates between all four servers. This
results in JView World having a 4000 file per day limit from maps.google.com.

4.2.2.3 FalconView Imagery

JView users wishing to use JView World to display imagery intended for use in
FalconView provided CACI with samples of their GEOTiff data. CACI examined the imagery
and found that it had been through an orthorectification tool included with FalconView but had
not been though a georectification process. The GEOTiffs contained incorrect location data and
the orthorectification process on the original data was incorrect. CACI displayed the imagery as
provided on JView World using the location data contained in each GEOTiff and Figure 35
shows and example of one of their data files on JView World. CACI notified the users that this
data was flawed and needed to be regenerated from the source data using proper
orthorectification techniques.

Figure 35: Falcon View Orthorectification

4.2.2.4 Layer Manager

CACI developed the layer manager to manage the set of imagery that should be displayed
on the world. It is divided into two parts, one is a tree structure that is used to turn on or turn off
textures (Figure 36). The other is an order layer manager that is used to order the TextureSet
layers and specify which layers appear on top of other layers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

47

Figure 36: Tree Based Imagery Selector

The texture tree is used to add or remove TextureSets from the world. The texture tree
takes a World instance and a reference to an XML file that defines the textures to be displayed
and an associated texture organization structure for the GUI. The XML file contains a set of
TextureLoaderFactory elements that specify the name of a class that is capable of loading the
texture sets. Inside the TextureLoaderFactory XML element, categories and textures resources
are defined. Each category may also contain nested categories, describing a tree-like structure
that is used to build the GUI. A category could specify three types of information: name, type,
and value. The name attribute defines the name that will be displayed on the table. The type and
value attributes provide information that the loader needs for the texture set. For each
TextureLoaderFactory class there is a method that takes map of type and values specifying what
texture set to load. If a category does not contain type and value information, it will be skipped
and just used as a visual representation of a category. Figure 36 shows the TextureSetTree and
Figure 37 show a sample of what the XML file would look like for the tree.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

48

<TextureSetLoader>

 <TextureLoaderFactory class='.textures.textureloader.CampRobertsTextureLoaderFactory'>

 <category name="Camp Roberts">

 <category name="A Category">

 <category type="year" value="2000" name="year 2000">

 <category type="level" value="0" name="Level 0 (15.625m)">

 <texture name="1_1" type="imagename" value="1_1" enabled='true'/>

 <texture name="1_2" type="imagename" value="1_2" enabled='true'/>

 </category>

 </category>

 </category>

 </category>

 </TextureLoaderFactory>

<TextureSetLoader>

Figure 37: TextureSetTree XML Config File Sample

The layer order manager is an auxiliary part of the layer manager that allows textures to
be moved up or down the draw order. TextureSets are normally ordered by resolution so that the
best resolution is on top and the lowest resolution is on the bottom. In general, this practice
works for most cases but sometimes a user may want to change the visibility priority of a texture
set. A good example of this is you have translucent images that should always be visible over the
other textures. Simply allowing the World to determine the visibility ordering based on
resolution might result in the images only being visible when you are viewing the World at a
particular range of distances from the terrain. The layer order manager presents a list of textures
that can be re-ordered by clicking and dragging on the move button. Figure 38 shows the layer
order manager.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

49

Figure 38: Order Layer Manager

4.2.2.5 Texture Masking

Several JView users have requested the ability to limit the World Element to only draw a
small section of the Earth instead of everything seen by the camera. Their reasons have
consistently been to limit the amount of data the users have to mentally process to a specified
area of interest. CACI has considered several methods to achieve this including altering the
World to only create limited areas. CACI applied the Textures function to mask areas not of
interest and Figure 39 shows and example with such textures. In this example, an arbitrary
roundish shape was used to demonstrate that any shape could be used. The area outside the
region is 70% transparent black, 100% sold colors could be used to completely obscure the
undesirable regions.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

50

Figure 39: World with Texture Masking

4.2.2.6 Texture Union Optimization

As a texture memory limiting optimization in the first version of JView World, nodes
that were completely covered by an individual texture did not load any additional lower
resolution textures. When the node was completely covered by multiple textures from the same
resolution set, there was previously no way to detect this, and at least one more layer of lower
resolution imagery would be loaded. This was necessary since each node must have complete
imagery coverage. CACI developed an algorithm to determine whether a node was completely
covered by one, or multiple textures from the same set. This was accomplished with a complex

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

51

set of bounding boxes determining levels of coverage. This was significantly more complicated
in the non-WGS84 coordinate system such as UTM/NAD83. Figure 40 shows a screen shot of a
debug drawing of a node and all the bounding boxes used to determine texture coverage.

Figure 40: Bounding Boxes for NAD83 Texture Coverage of an Individual Node

CACI also added an option to load a user specified number of texture levels of lower
resolution then are necessary. In this mode, the additional imagery is loaded into main memory
but is not copied to the card. The purpose of this is to allow imagery to be "instantly" available
when a user zooms out which results in the high resolution being paged out and the lower
resolution imagery now waiting in main memory to be paged in. This results in a higher main
memory usage, but does not result in a higher video memory usage on the graphics card. The
greater the number of additional levels of imagery that are preloaded, the faster a user can zoom
out without noticing undesirable "missing" imagery while waiting for lower resolution imagery
to be available. This does not provide any gain when panning, or zooming in. When zooming in,
the previously displayed imagery does not disappear when requesting higher resolution imagery,
where as when zooming out once the user passes the threshold where it is inappropriate to
display the higher resolution imagery it is immediately paged out. This can result in a few
moments when only the coarsest Blue Marble imagery is available for display. Figure 41 shows
the effect on the number of textures loaded over a test location before and after the union
optimization, plus the effect of loading extra levels.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

52

Setting Number of Texture Loaded to Video Card

Before Texture Union Optimization 180

After 121

After + 1 preloaded level 162

After +2 preloaded levels 178

After +3 preloaded levels 180

Figure 41: Texture Count Before/After

4.2.2.7 Pixels Per Degree Threshold Optimization

Profiling the World element after JView 1.6 showed that the method that calculates
QuadTreeNode texture coverage initTextureDrawList was one of the most expensive operations
per frame. In order to reduce this load on the CPU, JView World was modified to only call this
method when panning and zooming results in a threshold value being passed indicating that it
necessary to recalculate texture coverage. Previously initTextureDrawList was called for all pan
and zoom events for every QuadTreeNode. The threshold values are now calculated on the first
initialization of the texture draw list, and only need to be recalculated if TextureSets are added or
removed from the World. The pixelPerTexel ratio is still calculated each time a pan or zoom
event occurs, but initTextureDrawList is only called when the thresholds are passed.

4.2.2.8 TextureSet API

The TextureSet API is the means by which imagery is incorporated into the JView World
scene element. Previously all TextureSets required a reference to a World instance. This meant
TextureSets could not be reused in multiple World objects. CACI modified the previously
developed TextureSet API to allow individual TextureSets to be reused in multiple Worlds
preventing repeated loading of identical imagery on the Video Card.

Previously the World object contained (Type) methods that allowed users to enable all
the supported imagery types, but this was specific to a single World instance. After developing
support for TextureSet sharing between multiple Worlds, these methods were removed from the
World API, and were added to the individual TextureSet implementations. For example, the
following syntax change would be typical for an application using two worlds enabling CIB data.
The new way will, in future version of JView after 1.5, only load CIB imagery once, and then
share between both Worlds. JView version 1.5 will still double load the imagery, but the new
syntax will hide the future changes from the users.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

53

Old:

 firstWorld.initRPFTextureSets(CIB, true);

 secondWorld.initRPFDTextureSet(CIB, true)

New:

 TextureSetRPF[] theSets = TextureSetRPF.initSets(CIB);

 firstWorld.addTextureSets(theSets);

 secondWorld.addTextureSets(theSets);

4.2.2.9 RPF Catalog

JView World has had difficulty from the first version accessing RPF data sets near or
over 1TB. On initialization, the RPF server has to search the entire file system for A.TOC files,
the top most catalog describing the contents of each RPF data set originally distributed on CDs.
This initialization can take several hours on large data sets, which makes it impractical to use in
JView World. Up to this point most uses have only had data sets around 100GB. An RPF catalog
option was previously developed that allowed the search results to be saved making subsequent
access much faster, just as with the DTED catalog. The problem with this initial RPF catalog was
that it used absolute paths to the data which meant it could only be used by multiple machines if
all machines mounted the volume containing the data with the same name. For example machine
one mounts data volume as drive “D:/”, and a second machine mounts the same volume as
“/data” then the RPF catalog would not be able to store absolute path names that would satisfy
both machines. CACI began the development of an RPF catalog that uses relative paths, and
allows the addition of multiple catalogs in order to have a multiple machine, mount point
independent option. JView World was modified to allow the users to configure this option
through environment variables or through the XML configuration option.

4.2.2.10 Graticule Texture Set

Experimental tests were done to generate graticule lines using the TextureSetLine class.
An algorithm was developed to generate line segments around the world based on starting angle
and ending angles on a sphere (Figure 42). Multiple levels of texture sets could then be generated
and added to the world, representing different levels of graticule detail. The world would than
display only those texture sets that provide good coverage. Graticule lines that are too detailed or
too convolved are culled out, and not rendered.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

54

Figure 42: Graticule Texture Lines

4.2.3 World-Specific Scene Elements

4.2.3.1 World Raster Image Element

The WorldRasterImageElement is a scene element used to display icons or images onto
the world. It takes an image, a JView World object, and location specifying where to place the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

55

image. Due to the complex level of detail and view-dependant geometry refinement of the world,
it had been difficult to attach visual objects to the ground in a scene. The
WorldRasterImageElement handles this problem by listening to the geometry changes using a
node change listener. Each node change listener is associated with a particular location on the
world, and is notified whenever the geometry changes at the associated location. The
WorldRasterImageElement's altitude is then adjusted accordingly. Another problem users have
had when placing objects on the World is depth testing. Since the World is relatively large and
graphics hardware has a limited amount of precision, the objects can be occluded by the terrain
even when they should be visible. This issue manifests as flickering near the object as the camera
is moved because sometimes the object is visible, and sometimes it is obscured. The
WorldRasterImageElement overcomes this problem by providing options to disable depth testing
or set the depth range which is optimal when a user wants to always see the icon and eliminate
the depth fighting. Figure 43 shows a WorldRasterImageElement that is placed on the world at
an altitude of 100 meters AGL.

Figure 43: World Raster Image Element

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

56

4.2.3.2 Grounded Scene Elements

Grounded Scene Elements are elements that can be attached to the World's terrain
geometry. They take the terrain elevations into account, as well as the view-dependant geometry
refinement of the World element.

CACI developed a suite of grounding policies to model different behavior for a scene
element attached to the World. Users can create a grounded scene element with an associated
grounding policy and the element will adjust its altitude constantly to match the terrain
elevations at the attachment point. Currently there are three different ways to ground an element
to the earth, CenterToGround, ParellelToGround, and TouchGround. The center to ground places
the origin of the model at the elevation of the ground. Parallel to ground is a clamping policy
setting the origin of the model to the ground and orients the model so that the model is parallel to
the ground triangle the origin fall on. The touch ground policy takes in a model and calculates
the bounded verities, then with each vertex it will calculate the elevation of each vertex and
places the model to the highest elevation so that the model is just touching the ground. Figure 44
shows the three grounded policies, parallel to ground is on the left, center to ground is in the
center, and touch ground is to the right.

Figure 44: Grounded SceneElements

The grounded elements use the World’s NodeListener API (developed at the end of the
previous JView support contract) to monitor World geometry changes rather than calculating the
terrain altitude with every render pass, yielding substantial performance gains.

4.2.3.3 World Info Element

We developed the World Info Element (Figure 45) to display the status of a World's
texture and DTED queues, and some additional information regarding memory and graphics
resource utilization on an in-scene heads-up-display style interface. This element was designed
as a replacement for several Java Swing based components in the World Demo application that
served the same purpose. It has the advantage of taking up less room in an application's user-
interface, and can be configured to display additional information relevant to the application.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

57

Figure 45: WorldInfoElement

4.2.4 Profiling and Debugging Tools

4.2.4.1 World Profiler

CACI developed the World Profiler to be a debugging tool that can be activated by
anyone using the World. The World Profiler user interface has three sections that users can
interact with to display various information about the associated World instance. After selecting
what information should be displayed, the information window will query the World after each
redraw to update the informational display. The profiler has a page history to view previous
results and a logging option to save information to a file. The interface sections below the
information panel are populated using Java's reflection API. Reflection allows us to identify and
query the fields and methods in a particular class. The first panel is called the stats panel which
shows a list of World statistics derived from the public fields in the WorldStats class. The
display of these stats can be turned on and off by the user, which will update with window with
the current set of active statistics. The second panel is the reports panel from which methods are
called from the WorldReport class. These methods return a string that is printed to the
information window. The third panel is the settings panel which can change the World settings.
Figure 46 shows the World Profiler with some world stats and reports selected.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

58

Figure 46: World Profiler

The World Profiler can be activated in three ways. First, it can be displayed as a
standalone application and giving it a World instance to listen to. The second way is by calling
the showProfiler method in the World itself. The last way and most useful way to showing the
World Profiler is though a VM setting at the command prompt by adding –
DJVIEW_WORLD_SHOW_PROFILER. Having the option to activate the profiler from the
command line is very useful to users that are not familiar with the JView technology. It allows
users to give us feedback without any complicated methods or code. The World Profiler is only
displayed if a World instance has been initialized. An instance of the profiler will be created for
each World that has been initialized.

The World Profiler reports section has an interesting graphical user interface interaction.
The stats and report panel methods and fields are put into a JList where the user can double click
to view the method or field in the information window. The reports panel is interesting because
information needs to be retrieved from the user for parameters of a method. Normally this is
accomplished by just adding a JTextField or JTable but adding a component to a JList is more
complex. JList will not allow users to interact with the components inside the cells. In order to
fix this problem, upon clicking a reports cell the contents of the cell are copied and displayed on
top of the reports panel using a JLayeredPanel. Once the user clicks off the panel then the
contents are then copied back to the original list. The copying of panels is a must because
without copying, the components will be removed from the popup panel to the JList on repaint.
By having this popup panel the JList are usable and feel more natural to use. Figure 47 shows the
reports panel and Figure 48 shows the popup cell.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

59

Figure 47: World Profiler reports panel

Figure 48: Reports Panel popup cell

4.2.4.2 Profiler Histograms

With the creation of the World Profiler, several new WorldReports were created to
generate histograms for debugging and statistics generation. Figure 49 shows an example of the
number of triangles drawn per node histogram. Each node will draw at least eight triangles, and
will draw additional triangles when bordered by nodes at a lower level of detail.

Report: printNumberTrianglesHistogram
 triangles/node histogram
 triangles nodes
 0):
 1):
 2):
 3):
 4):
 5):
 6):
 7):
 8): 199
 9):
 10): 8
 11):
 12): 4

 Avg: 8.151658767772512

Figure 49: Triangles Per Node Histogram

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

60

Figure 50 shows and example of the number of textures draw per node. Each node will draw at
least one texture if WorldSettingsuseTextures option is enabled.

Report: printTexturePassesHistogram
 textures/node histogram
 textures nodes
 0):
 1): 182
 2): 28
 3):
 4): 1

 Avg: 1.146919431279621

Figure 50: Textures Per Node Histogram

4.2.4.3 Texture Passes Histogram

For capturing additional statistics and performance metrics of the World a new Texture
Passes histogram method was added. These histograms show how many draw passes were made
for each geometry node. There will be one draw pass for each texture contained in the nodes
texture list. Figure 51 shows an example of a typical World draw. In this example, 60 nodes
made 1 draw pass, 128 nodes made 2 draw passes, and 106 nodes made 4 draw passes. In this
example on average every node draws 2.5 times.

textures/node histogram

 textures nodes

 0):

 1): 60

 2): 128

 3):

 4): 106

 Avg: 2.5170068027210886

Figure 51: Texture Passes Histogram

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

61

4.2.4.4 World Automated Test Program

The World Automated Test Program (ATP) is a framework and toolset developed to
perform various quality, performance, and efficiency tests on the JView World scene element as
it is developed. The tool tracks various statistics and expected behaviors over time to assist
developers when regressions are introduced into the code base. Work began on this tool during
the previous JView support contract, and continued to enhance it throughout this contract. This
tool has helped find a number of difficult to isolate problems during development. One
particularly difficult issue that manifested as incorrect elevation post values illustrates the utility
of the automated test program.

4.2.4.4.1 Elevation Post Bug

For a long time JView World has had a timing bug related to the processing of elevation
data that resulted in what was previously thought to be Digital Terrain Elevation Data (DTED)
NULL values used by the World geometry in random places. DTED NULL is -32767 meters and
indicates no data is available for a selected post in the DTED file. These values should be
skipped and geometry refinement does not occur in areas that do not have DTED data.
Previously this was very rarely seen. Since the bug was not reproducible it was difficult to do
more than speculate as to what was happening. Recently, several new computers were purchased
for the JView staff that all have high-end multi-core CPU’s and graphics cards. On these
computers this problem appeared in a very reproducible way. It was determined that the values
are not DTED NULL but are sea level (0 MSL). This is only possible if post data is inserted into
the World geometry list after entry into the elevation queue, and before processing of the post by
the queue. This condition should not occur, as post data should not be inserted into the list until
after it has been processed by the elevation queue. Figure 52 illustrates a close-up example of
one of these invalid sea level posts being drawn over Denver, Colorado. The numbers shown in
this illustration are post numbers used for debugging.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

62

Figure 52: Invalid Sea Level Post

The ATP includes a series of tests that allow the JView team to determine if changes to
the JView baseline and the JView World object result in any difference in data allocation and
rendering. Using the ATP, two different problems appeared on the new JView desktop
computers that were both found to be caused by the sea level post bug.

The first problem is only on multi World view test cases. The number of posts allocated
from each World view is changing, yet the resulting image rendered is the same. The second
problem is primarily a diamond shaped region of the screen that has an almost human
unperceivable difference in pixels. This is immediately visible after a difference algorithm is
applied to the screen shots. The difference algorithm was added to the WATP to help determine
the cause of this problem. Figure 53 shows a screen shot of the differences with the pink pixels
showing areas where differences occurred.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

63

Figure 53: Diamond Shaped Difference in ATP

Graphics cards have been known to have differences of less than 20 pixels on these tests
on other machines, but these differences are several hundred pixels. Since the diamond shape has
a similar appearance to the problem with the sea level posts as shown in Figure 52, the
assumption was made that these bugs were related. It was found to be a result of looking near
straight down on the possible bad post over low altitude terrain, where as Figure 53 is at a much
higher grazing angle over high altitude terrain resulting in a more obvious effect.

Two separate sources of these bugs were discovered that created this problem. The first
was a incorrect if/else statement in QuadTreeNode that resulted in each post being projected

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

64

twice, once initially to 0 MSL, and a second time to the correct value determined by the DTED
values in the elevation queue thread. The 0 MSL condition should only be reached in the case
that useAltitude is set to false in the WorldSettings object. This is the location that the if/else
statement was incorrect. This showed up on the faster machines because the elevation thread was
actually processing faster than the render thread could return from loading the elevation queue,
this resulted in the render thread overwriting the correct elevation with 0 MSL. The invalid
altitude was inserted into the geometry since the elevation queue processing had actually finished
at the point the 0 MSL projection occurred.

The second bug was each World in a multi World view application was reinitializing the
DTED server, resulting in a period while the previous World views would be accessing the
DTED server while another view was initializing. This results in a DTED server clamp value,
which is defaulted to 0 MSL being returned. This problem was corrected by synchronizing all
access to the DTED server and adding logic so that it was only initialized once. In both cases,
the ATP proved invaluable and saved considerable time tracking down and resolving the issues.

4.2.5 Tools

JView users frequently request a subset of our imagery data for an area of interest. For
data that was downloaded through URL's like Google® Mass and Terra Server these files are
contained in a cache directory with naming conventions that match their original server names.
Since the naming convention makes it difficult to redistribute a subset of this cached data during
an earlier reporting period CACI developed a tool that assists with data extraction from our
repository. The tool RegionDownloader parses a XML configuration file defining the area of
interest and desired data and first attempts to copy that data from and existing cache, and will
download from the internet if necessary. This tool also makes it possible to pre-download huge
areas offline. The original version of this tool had repeated code and was not tied to JView. The
original reason for this was to make it available to users that did not have JView and were
downloading the imagery for use with other tools like FalconView. As JView and the World has
evolved the RegionDownloader did not remain compatible with JView cache data naming
conventions, and URL's changed due to Google® changing version numbers of their imagery.
CACI modified the RegionDownloader to use JView TextureSets to calculate file coverage,
naming conventions and URL values. This allows the RegionDownloader to keep in pace with
JView, but does add the requirement to the tool that a user must have the jview.jar file in order to
run the RegionDownloader. Currently the RegionDownloader supports Google® Maps,
TerraServer, and NASA World Wind data.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

65

4.3 Terra Firma

We developed a new JView based application to demonstrate several JView and JView
World capabilities. This application will become a replacement for the World Demo application
developed during the previous JView support contract. Terra Firma is designed as an application
that JView developers can use as a starting point for their own projects.

4.3.1 Terrain Profile Visualization

We implemented a 2D visualization of a terrain profile between two locations (Figure
55). This visualization relies on interpolated elevation data provided by a newly developed
DTED interpolation utility.

Figure 54: An Early Development Prototype of the Terra Firma Application

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

66

Figure 55: Terrain Profile Chart

Throughout the course of this effort, we incorporated several enhancements to the terrain
profile visualization. We updated the terrain profile utility to handle absolute colors, via file
containing colors and associated elevation values. The utility now returns the elevation values
given the x position along the image, which is demonstrated in Figure 56 with the white line and
associated elevation value. The utility will also return the latitude, longitude and elevation
values, given an x value in the buffered image. This utility will also support setting the reference
height and setting the maximum and minimums with reference lines as shown in Figure 56.

Figure 56: Terrain Profile

Figure 57 displays a Terrain Profile Callout, which uses the World Callout and Rerrain
Profile utilities to generate a transparent GUI in a JView 3D scene. The content area of the
callout displays the elevations along a user defined path over some terrain. The Terrain Profile
Callout This callout has indicators for the minimum and maximum elevation and an optional user
defined elevation that is rendered as a horizontal line through the callout window. The callout is
associated with a location in a 3D scene using a common attachment indicator (yellow wedge in
the figure). The attachment indicator moves as the user manipulates the mouse cursor location
so that it points to the corresponding location from the terrain path.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

67

Figure 57: Terrain Profile Callout

The Terrain Profile user interface pulls elevation data from the DTED server in close to
real time as the user is moving his/her mouse across the screen, as seen in Figure 58. The user
can now see what the terrain will look like as the mouse is moved across the navigational chart in
the World. The close to real time interactive elevation display is accomplished by using a small
set of DTED points. Once the user finalizes the set of coordinates they wish to view in the
elevation chart, a larger set of elevation points are pulled for a more detailed final display.

Figure 58: Elevation Projected Line

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

68

4.3.2 Geographic Locations Database

We created a GEO Names database using the free online “GeoNames” geographical data
set, found at http://www.geonames.org, and the free geographic names found at
http://geonames.usgs.gov/. The US features table in this database contains almost two million
geographic names and locations in the US. A separate world table contains over 6.6 million
names and locations for the entire world. A separate city table was created with 84,559 city data
sets. The database has been incorporated into Terra Firma to allow users to selectively display
feature names and locations over the JView World.

We used the embedded Derby database to store and access this data quickly and easily
from within the Terra Firma application. Data retrieving optimizations were done by indexing
the table data. Since information might be pulled using locations or coverage zones most of the
data was indexed by latitude and longitude information. For small areas of coverage data
retrieval and display happens under one second time. Additionally information was indexed
based on country codes, city names and feature codes. Retrieval times for specific features such
as city names, happens in the milli-seconds time frame. Before indexing, due to slow disk I/O
time, the wait time for a specific feature could take as long as a minute. The indexing process in
Derby uses a B+ Tree, which reduces the need to read much of the data and exponentially speeds
up search times.

A geospatial search panel GUI was developed to help facilitate JView World users and
developers. As shown in Figure 59, a mouse motion listener is used to draw an outline of a box
in the world. This area is then used to search for features in the Geo Names database. The user
has a selection of many different features to look for such as Dams, Buildings, Airports, Cities,
etc.

During long-running database searches a wait/progress indicator callout pops up. The
user has an option to stop the search thread if wait time is too long. The stop search mechanism
will stop the search, but still show the data that was pulled from the database.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

http://www.geonames.org/�
http://geonames.usgs.gov/�

69

Figure 59: Search Area

We developed a clickable texture tree GUI, to help the user pick and choose which
texture should be displayed in the World Viewer. Displayed in Figure 59 by default all textures
are turned off, and the user adds additional textures to the world via mouse click. With this
version of the GUI the world manages what texture layers should be drawn and no display
ordering is done by the GUI.

City label names can be rendered in Terra Firma at a click of a button. As the texture area
moves out of view the labels are dynamically removed and new city labels are injected. The city
population size is taken into consideration when displaying city label names. Larger cities will
generate larger labels and will come into view before smaller cities and towns (Figure 60).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

70

Figure 60: Texture Set Labels

4.3.3 Geographic Search User Interface

Additional data from geonames.org and goenames.gov was pulled for country, country
codes, US state, and state codes. These codes are now used to populate the new GUIs. The user
now has more options for search criteria, such as the state to search in or the country shown in
Figure 61 and Figure 62. The data set is now indexed using country codes, and state codes. These
indexes could provide faster search times. The additional data also provides an increase in search
flexibility. The new user interface also disables and enables GUI features based on the main
types of features the user is looking for.

The three main search types available are World Cities, World Features, and US Features.
When searching world cities or world features the country list is enabled. To decrease confusion
when searching US features the US state code list is enabled and country list is disabled.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

71

Figure 61: All World Features

Figure 62: US Features

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

72

4.3.4 WebStart

Java WebStart is a technology that allows Java applications to be launched from a web
site without requiring permanent installation of the software. It can be used as a simple
centralized application distribution mechanism to ensure users always have the latest version of
the software. We experimented with a WebStart capable Terra Firma application to explore the
possibility of distributing JView based applications in this manner. After some modifications to
JView and Terra Firma, we were able to successfully demonstrate a WebStart-capable Terra
Firma. We found the process to be relatively simple and highly effective.

4.3.5 Map Server

We configured the MapServer Web Map Service (WMS) server on a local system to
evaluate its potential as a storage and distribution mechanism for various types of imagery
supported by the world. We used the WMS Texture Set that we developed for JView World to
access the server as an imagery source in Terra Firma. We found that this is a viable distribution
mechanism, however it is far less efficient than reading the raw data from a local, or LAN based
storage system. The performance was unacceptable on our test system; however with a more
sophisticated image database and more powerful compute resources the performance may be
improved.

4.3.6 Drag and Drop GeoTIFF

GeoTiff images can be dragged and dropped into the Terra Firma application and
rendered based on the geo-spatial information in the image. The application will then use the
TIFF’s geospatial information to center on that spot in the world and zoom in to an altitude
where the image is visible (Figure 63). The GeoTiffs are also added into the TextureSet image
tree as options, which can be turned on and off.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

73

Figure 63: Dragged and Dropped GeoTIFF on JView World in Terra Firma

4.3.7 Overview Navigation

Overview Navigation Panel leverages JViews 3D camera frustum, projection calculations
and the JView World Navigational features to provide a powerful navigational aid. JView World
provides very sophisticated algorithms and programmer interfaces that provide useful 3D user
interaction within the 3D geospatial environment. The World Overview display shows the bigger
picture of the world with an estimated outline view of the world that is seen in the main display,
shown in Figure 64 and Figure 65. The camera frustum is taken from the main world view. The
frustum is the visible area seen in the World. The coordinates from that frustum are then used to
draw a rectangle in the overview to show what part of the world is currently being viewed. The
user has the capability to click in the Overview panel and the main view will move to that part of
the world.

Figure 64: Overview

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

74

Figure 65: Overview Close up

4.4 ACES Viewer

4.4.1 Basic Infrastructure

4.4.1.1 Visualization Modeling

4.4.1.1.1 Introspection and Analysis

In order to better support several features that have been requested for the Interactive
Visualization in 4D plug-in module for the ACES Viewer, we have added several methods that
examine the graph structure of a visualization in the ACES Viewer. These methods allow
developers to identify relationships between visualization components. Some examples include:

• Identifying Tables that provide data to a particular Renderer or DisplayContainer.
• Identifying all visualization components related to one display, but not shared by others

(this allows removal of unused visualization components when closing a display)
• Identifying incoming and outgoing links associated with any single visualization

component.
• Generic graph traversal functionality that can be used to walk the entire visualization

graph, or a sub-graph. (This can be used for a variety of purposes, and provides the
foundation for most of the other functionality listed here).

4.4.1.2 Configuration and Visualization Persistence

We implemented a new persistence system designed to save the state of Java objects to disk
for long term storage. This is a replacement for and a significant improvement over the previous
TextConverter system. The original system relied on developer-provided TextConverter
implementations for each Java Class that was to be persisted. These converters examined the
state of the object to persist, and produced a custom textual representation of the object, that was
ultimately stored in an XML file. Loading data from the file involved using the same
TextConverter implementations to produce a Java Object from the textual data. This had several
insurmountable problems:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

https://twiki.tbm.rl.af.mil/wiki/images/6/62/Overv�

75

• It was extremely difficult to represent multiple objects in a single string. When persisting
an object that referred to other objects, all of these objects’ states needed to be included.

• It was not possible to represent shared objects. If two objects (A and B) to be persisted
both referred to a third object (C), there was no way to know that the third object should
be shared. When loading this data, four objects would be created - two representing the
state of A and B, and two identical objects representing the state of C.

• TextConverter implementations had to support all subclasses of the class they are
responsible for converting. Since type information was not directly stored in the XML
files, the only way to determine which TextConverter to use to decode a converted object
was to use the data type of the referring property. The property types are frequently a
super class, or interface type of the actual object type used as the property values.

• TextConverter implementations for complex types were large and error-prone.
Developers had to ensure that the conversion worked the same both ways (to and from
text). They also had to design a textual representation for each converter that would work
for that type, and not interfere with the persistence of other types (when converting
nested object hierarchies).

The new persistence system addresses all of these problems, and dramatically simplifies the
conversion process implementations, eliminating the need for any explicit per-type conversion
support in many cases.

• To simplify the converter implementations, we designed an XML based file format that
consists of a sequence of encoded object declarations, constructor calls, method calls, and
field access operations. A custom converter emits a sequence of these statements that are
used to configure a single object. No custom conversion is necessary to load the data;
instead a generic decoder reads the statements and executes them one by one to restore
the original object.

• The persistence system automatically traverses the object graph. Whenever a converter
emits a statement that refers to a non-primitive object, the converter for that object’s type
is used to generate its persistent representation. Unlike the previous system, each
converter only needs to handle a single object, and not any referenced objects.

• The system keeps track of which objects have already been persisted. If that object is
encountered again, a reference to it is stored in the XML file, rather than generating
statements to persist another copy of it. This allows shared objects to be correctly
represented in the file.

• Converters can support a single type, or a hierarchy of types. When registering a
converter to handle a particular Java type, users can specify whether the converter can
only handle the specific type(s) that it was registered for, or whether it can also handle
sub-classes. Even when a converter is registered to handle sub-classes, another converter
can still be registered to override support for specific sub-types.

• Built-in support for common data types. The system provides converters for common
Java types including various collection types, fonts, points, etc. It also provides a generic
converter for JavaBeans that will automatically generate statements for types that have a
no-argument constructor and adhere to the JavaBeans specification.

This system provides significantly more flexibility than the previous system, with a lower
development cost.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

76

4.4.1.3 Module and Plug-in Framework

For some time the ACES Viewer has relied on the Java Plug-in Framework (JPF) to
facilitate modularity in the various subsystems of the application, and to provide a mechanism by
which certain aspects of the ACES Viewer could be extended. As the ACES Viewer continued to
grow and started being used as a platform for visualization of data sources other than the ACES
output databases and files, we began to separate the various subsystems into finer grained
modules. Each module was designed with a single purpose, making it easier to locate code and
documentation for specific tasks, and reducing inter-module dependencies. We also made many
of the modules optional so that developers building an application based on the ACES Viewer
could pick and choose the functionality that their application needed, and disregard unnecessary
modules. For example, one module provides access to Center/Tracon Automation System
(CTAS) message data, which is only useful to researchers working with that data type, and need
not be available in the User Defined Operational Picture (UDOP) application. We also made the
ACES Viewer application GUI module(s) optional, so that each application can present their
own user interface if desired. This is where we ran into problems with the Java Plug-in
Framework.

It is not possible (without modification to JPF) to define an extension of a module that is
not present in the application. For example, the JDBC module provides access to relational
database data, and declares an extension of the ACES Viewer user interface (workspace.ui)
module to provide a wizard interface to specify database connection parameters. If the
workspace.ui module is not present, the JDBC module should still be capable of providing its
primary functionality, accessing database data, only the wizard user interface components will
not function. When JPF initializes a module, it checks all of the extensions, and if the module
declaring the extension point is not present, it fails with an error.

It was also nearly impossible to launch the ACES Viewer in an Integrated Development
Environment (IDE) using JPF due to the way that it searches for module metadata. This has been
a long requested feature by developers working with the application so that they could take
advantage of the rapid code/test/debug cycles made possible through IDE tooling. Finally, the
module loading and isolation functionality provided by JPF was becoming difficult to use and
required explicit management of Java's ClassLoader system throughout the ACES Viewer, and
was beginning to suffer performance problems as the number of ACES Viewer modules
continued to grow.

These problems as well as other problems led to the replacement of JPF with a more
sophisticated module and extension management system, the Open Services Gateway Initiative
(OSGi). OSGi is a very detailed API and metadata specification for modular systems, originally
designed for embedded applications, but now used for desktop and server applications as well.

The existing ACES Viewer code base required very few changes to switch from JPF to
OSGi. Most of the changes were related to differences in module metadata formats. The change
provided several immediate benefits:

• Optional modules and extensions have well defined behavior in OSGi, and we were able
to quickly develop alternate user interfaces that leverage the core ACES Viewer modules
and do not use the ACES Viewer UI modules.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

77

• OSGi uses more sophisticated class-loading routines that provide better performance over
JPF, while simultaneously eliminating the need for application code to manage the
ClassLoader system.

• The OSGi environment is supported by major Java IDEs (Eclipse in particular, is itself
built upon OSGi) which allows ACES Viewer applications to be launched and debugged
directly from the IDE. Eclipse also provides graphical interfaces for specifying module
and plug-in metadata. The application can still be developed and used without the
assistance of an IDE if desired, with no more complexity than before the change.

• Using OSGi allows us to use any of the thousands of existing OSGi modules, including
several that are of particular interest to the ACES Viewer, such as graphical editors for
Groovy scripting.

The module metadata is split into two parts with OSGi. The first part is the bundle
manifest which describes the content of a module, any inter-module dependencies, and any
private libraries used. This metadata is incorporated into the standard Java jar manifest using
key/value pairs specified in the OSGi documentation. The second part is the extension point and
extension declaration file. This defines any extension points provided by, or used by a particular
module. This is defined in a separate XML file, where the majority of the XML elements are
defined by the module that specifies the available extension points.

To simplify implementation of new modules, we now provide a template project
containing a default directory structure, build file, skeleton bundle manifest and plugin xml files,
and project definitions for use with the Eclipse IDE.

4.4.1.4 Dependency Injection

The ACES Viewer’s visualization components have used Java 5 annotations to mark
certain methods as input parameters. These annotations were used by the visualization graph
component to determine how visualization components can be linked together. During the course
of this effort, we formalized this system and developed a more robust and feature rich framework
to simplify its usage, and incorporate new functionality. The new framework is based on well
understood design principles for dependency injection systems. The ACES Viewer
implementation is generic and can be reused for other applications that may benefit from
dependency injection.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

78

4.4.2 Rendering and Visualization

4.4.2.1 General Enhancements

4.4.2.1.1 Frustum Culling

Several improvements that we made to JView have simplified the process of determining
whether a particular visual element in a 3D scene is visible from the camera. This has allowed us
to augment the majority of the ACES Viewer renderers with support for frustum culling. By not
submitting visual elements that would not be visible on screen to the graphics hardware, we
reduce the system bus bandwidth needed to render a scene and improve performance.

4.4.2.1.2 Level of Detail Controls

To better support lower end computer hardware, we added Level of Detail infrastructure
to the ACES Viewer. Users specify the desired Level of Detail for a particular scene as a value
on a continuous scale between best performance, and best quality. Each visualization component
associated with the scene that supports Level of Detail is provided with the user setting, and
automatically changes any rendering settings that affect performance based on the value. This
system only provides coarse-grained control over rendering quality, however it is easy to use,
and provides a future opportunity to automatically adjust performance-sensitive settings based on
the host system’s capabilities.

4.4.2.2 Display Containers

4.4.2.2.1 3D Scene

We have added several new capabilities to the JView based 3D Scene container, and
exposed these and other capabilities for manipulation via the user interface.

• Light Follows Camera. This option specifies whether the direction of the light in a 3D
scene is fixed, or tracks the viewing direction.

• Camera Elevation Restricted. By default, the camera cannot be moved below the ground
plane. This is particularly helpful to new users that are not familiar with the navigation
controls, because it is more difficult to move the camera to potentially confusing
positions. Disabling this restriction allows advanced users to move under the ground
plane to view elements from underneath.

• Bounding Box Displayed. Mostly used for debugging, this shows the bounding box of all
of the elements present in the scene.

• Capture Alpha. Allows the alpha color channel (translucency) to be saved when capturing
images or movies of a 3D scene. This option is disabled by default because it requires an
alpha visual to be selected for rendering, which is not available on all platforms, and can
cause unexpected behavior on others.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

79

• Stereo Mode. Enables anaglyph or side-by-side stereo pairs to be used when rendering
the scene for 3D visualization. Disabled by default since this requires special hardware
(for active stereo), or anaglyph glasses for anaglyph mode.

4.4.2.2.2 Tabular Scene

We incorporated the 2D tabular visualization from the User Defined Operational Picture
project to provide a configurable view of the raw data from any data source or transform in a
visualization graph. This is shown in Figure 66.

Figure 66: Tabular Scene displaying data from the US Map data source.

4.4.2.2.3 JFreeChart

Charting is a useful tool for any type of analysis. Even with advanced visualization
sometimes a graph is the best way to convey information. Recently we added JFreeCharts to the
ACES Viewer which gives the ACES Viewer the ability to add many types of graphs. The ACES
Viewer can now create line graphs, bar graphs, pie graphs, block graphs, and candlestick graphs.
Block graphs and candlestick graphs are uncommon. Block graphs are graphs that have three
inputs: an X, Y and intensity. Block graphs draw each (x, y) as a block and then colors that block
based on the intensity. Candle stick graphs have five values: time period (X), open value, high
value, low value, and close value. The candle stick will draw a line on every time period from
high to low and then a bar from open to close which represents a candle stick. In the diagrams
below there are five diagrams showing the different charts (Figure 67, Figure 68, Figure 69,
Figure 70, and Figure 71).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

80

Figure 67: Candle stick renderer

Figure 68: XY Line and Shape graph

Figure 69: XY Block Graph

Figure 70: XY Bar Graph

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

81

Figure 71: Pie Graph

4.4.2.3 Renderers

4.4.2.3.1 Polygon Renderer

We incorporated support for lighting into the ACES Viewer’s Polygon Renderer.
Lighting provides a simple means by which users can easily discern changes in orientation of the
faces of each polygon, making it easier to see the shapes. We have also added projection accurate
per-vertex normals to the top face of the polygons, so the lighting effect is rendered correctly for
non-planar projections.

Figure 72: The Polygon Renderer with lighting (left) and without lighting (right)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

82

4.4.2.3.2 Histogram Grid Renderer

We addressed a problem with the Histogram Grid Renderer that was occasionally causing VM
crashes on some systems. The problem was related to the fact that the renderer frequently
allocated new direct memory buffers used to transmit vertex data to the graphics hardware.
Previously allocated buffers were discarded, and it was assumed that Java's built in garbage
collection mechanism would reclaim the memory used by the discarded buffers. Unfortunately,
due to the slightly different way that directly allocated memory is managed by the VM, rapid
allocation and deallocation of buffers caused the VM to throw an OutOfMemoryError (and
subsequently crash) even though there was still enough memory eligible for reclamation by the
garbage collector. We believe that the garbage collector was only taking the amount of memory
used for the reference to the memory (a few bytes) when determining whether there was enough
memory available for new allocation, rather than taking the entire buffer size (typically hundreds
to thousands of kilobytes per buffer) into account. We fixed the problem by significantly
decreasing the memory allocation frequency of the Histogram Grid Renderer, and reusing
existing buffers where possible.

We later encountered this problem with several other JView based components, both in
the ACES Viewer and in JView itself. We developed some utilities to better manage buffer
allocation in JView to address this problem that (among other things) will request a full garbage
collection pass if allocation fails. This approach fixes the problem for most situations, but in
general we found that it is best to minimize frequent allocation of buffers, and instead reuse
existing instances where possible.

4.4.2.3.3 Volume Renderer

We adapted the existing slice-plane based volume renderer to achieve pre-integrated
volume data classification with lighting. The new implementation takes advantage of newer
capabilities of the OpenGL API (version 2.0) to perform volume classification directly on the
graphics hardware. This approach differs from the previous in that instead of sending color and
opacity down to the graphics hardware for rendering, we send the numeric volume data. This
permits interpolation of the values in the data domain instead of the color domain, leading to
improved rendering quality without the ‘blocking’ artifacts seen with the previous pre-
classification approach. This also allows us to calculate normals for each rendered volume
sample (using central differences of the interpolated data values) for lighting effects. Figure 73
shows the difference between the previous implementation (left) and the new implementation
(right) for a sample volume. Note the improved ‘smoothness’ of the picture on the right, and the
more accurate color representations.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

83

Figure 73: Comparison of old pre-classification renderer (left), and new pre-integrated renderer (right)

Figure 74 shows a comparison of the old and new volume renderer implementations
where a single value in the data is mapped to an opaque value, producing an iso-surface
representation of the data. The lighting capabilities of the new implementation provide a clearer
representation of the data.

Figure 74: Comparison of iso-surfaces rendered using the old (left) and new (right) volume renderers

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

84

4.4.2.3.4 Model Renderer

We dramatically improved the performance of the ACES Viewer’s Model Renderer using
newly available OpenGL shader program techniques. Geometry Instancing allows a model’s
geometry to be transferred to the graphics card once, and rendered many times in different
positions and with different visual attributes. This takes advantage of relatively recent OpenGL
functionality, so we check to ensure that the host system supports this method of rendering, and
fall back to the previous method if it is not. This optimization has allowed us to render more than
300,000 paper planes in a scene while maintaining interactive frame rates on our development
system, compared to the previous method which could only render 15,000-20,000 at the same
frame rate. While we may not actually need to render that many objects in a single scene, the
optimization reduces the load on the graphics hardware, the CPU, and the PCI bus, leaving more
resources available for other application and rendering functions. The basic functionality
developed to enable this level of performance has been incorporated into JView.

We also improved the level of detail support for the Model Renderer, allowing lower
quality proxy geometry to be used in situations where the rasterized representation of the
geometry would be nearly identical if the full quality geometry was used. The improvements
include better determination of the quality level that a particular geometry should be rendered at
(based on the screen area that it will occupy), and API design improvements that make it easier
to implement geometry that supports level of detail.

Taking advantage of the new picking capabilities in JView, we added support for users to
select a model in a 3D scene and automatically follow it with the camera as it moves around.
This function was specifically requested by NASA researchers to facilitate movie generation and
capture.

Finally, we added the ability to anisotropically scale the models based on the global
altitude scale that can be set for the model renderer. This is important to ensure that geometry
that is intended to represent a physical volume actually represents the correct volume in the
scene. For example, researchers frequently visualize the minimum permitted separation distance
between aircraft as cylinders surrounding the aircraft model. If this is done with altitude scaling
set to a value other than 1, the visualization will show exaggerated vertical distances between the
cylinders. If the cylinders are not scaled accordingly in the vertical direction, then they may
appear to be completely separate, when in fact they should intersect. Figure 75 shows examples
of this vertical scaling.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

85

Figure 75: Anisotropic Scaling of Model Geometry in the Model Renderer

4.4.2.3.5 Line Renderer

We made two significant improvements to the LineRenderer. It now supports per-vertex
coloring of lines, allowing a single line to have multiple colors across its length (Figure 76),
where previously a color could only be applied to an entire line. We also added support for direct
rendering of point-location data, where previously, this type of data first needed to be grouped
and sorted into explicit collections of points for each line using an external Transform
component.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

86

Figure 76: The Line Renderer showing aircraft trajectories colored based on altitude

 We also improved the performance of the Line Renderer by 2x-3x when using an alpha
gradient at the beginning and/or end of the line segments. This was achieved by using OpenGL's
1D texture mapping capabilities to apply the alpha gradient, rather than per-vertex colors sent to
the graphics hardware for each render.

4.4.3 Data Access

4.4.3.1 Memory Consumption and Efficiency Enhancements

As the Airspace Concept Evaluation System (ACES) simulation development advances,
researchers are running more complex simulations and generating larger amounts of data. To
support visualization of this growing data, we reduced the overhead and improved the memory
efficiency of several components in the ACES Viewer.

For several components that deal primarily with numeric data (particularly the Line
Renderer and Time Filter Transform), we reduced overhead by restructuring the way data was
stored. Among other improvements we now use primitive arrays for most numeric data rather
than Object arrays which incur additional reference overhead (that is typically larger than the
data being stored). We also designed a new TupleStore API to permit pluggable data structures
for storing Tuple data. We provided several implementations of this API with various
performance and memory consumption characteristics that can be used by Table and Transform
developers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

87

For situations where optimization of the data structures is not enough, we now provide a
Binary Table implementation and API that simplifies the process of saving Tuple data to disk for
out-of-core access. Like the CSV Table, this Table implementation loads data from the file on
demand and supports random access to the Tuples it contains. It supports a pluggable
serialization mechanism that permits developers to specify how data should be written to disk. It
provides the advantages of faster data serialization/deserialization and smaller file sizes
compared to CSV data, due largely to the binary data format. The Binary Table implementation
has been incorporated into several existing Table implementations (including JDBC Table and
JDBC Query Table) to provide the user with the option of caching the data to a local file (which
not only reduces memory consumption, but can provide faster data access in some situations).

4.4.3.2 CSV Data

To support access to and visualization of arbitrary data stored in CSV files, we
implemented a generic CSV Dataset. The associated wizard allows users to select any number of
CSV files, and specify a table name and schema for each. Based on the user provided schemata,
the dataset parses the associated CSV file, converting the textual content to the appropriate Java
data types.

4.4.3.2.1 Usability

We implemented functionality to attempt to automatically derive a Schema from a CSV
file. The Schema is comprised of three qualifiers for each field in the data - a name, a data type,
and an optional data unit specification. When the CSV file contains a machine readable Schema
declaration (as all CSV data output from the ACES Viewer does), then all of these qualifiers can
be determined for all fields. If the CSV file does not contain the Schema declaration, the names
and types for each field may still be determined. Field names can be defined in a CSV file by
placing the names separated by commas in a comment line in the file. Since the CSV
specification does not define conventions for naming the columns, we selected the comma-
separated format based on conventions used by ACES developers. Field types can be inferred by
attempting to parse the data from each field in each row. All of the available parsers are given
each field to convert to the parser-specific data type. If parsing fails, the failed parser is removed
from the list of candidates for the column. When the entire file has been processed in this
manner, a relatively small list of potential data types for each field (ideally a single type, but this
is not always the case) is presented to the user for further refinement. Any fields that are not
parsable by any of the available parsers are treated as textual strings.

 The CSV Dataset uses this new functionality to assist users when importing CSV files. In
the best case, users do not need to specify any information except for the location of the CSV
file, and in the worst case, they may have to specify column names, and select data types from a
short list for each column.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

88

4.4.3.2.2 Efficiency

In order to reduce the application memory utilization when using large CSV file data sources, we
implemented a new file reader designed to load data directly from disk, as it is needed. This
works as follows:

• When a CSV file is opened, the file is scanned once to identify the byte offsets of each
record in the file. The offsets are recorded in memory for every nth record, where n is a
configurable value.

• When reading a CSV record from the file, a small section of the file (near the record
being read) is mapped into application memory. The character data is decoded and the
resulting string is split into fields.

• Each field from a record is converted into a Java object when it is accessed. This avoids
potentially time consuming conversion of fields that are never read.

• When reading another record, it is possible that the corresponding section of the file is
already in memory (particularly when reading sequential records). In this case the
memory mapping operation can be skipped. Otherwise the required file section is loaded
and the process repeats.

• Records are also lazily loaded when iterating over the entire file. No data is actually read
from disk until a field is read from a record. Like lazy field conversion, lazy record
loading avoids reading data from disk that will never be used.

The new CSV reader provides sufficient performance to load records directly from a disk, pass
the data through a visualization network and render the data with interactive frame rates, while
simultaneously reducing memory utilization to a trivial level.

4.4.3.2.3 CSV to RDBMS Experiment

 In order to improve (decrease) memory utilization when accessing data from large CSV
files, we investigated the possibility of converting the data in a CSV file into a relational
database, which could then be accessed efficiently using the same JDBC mechanisms presently
used by the ACES Viewer to fetch data from MySQL. This would provide the benefit of using a
low-overhead database management system (Apache Derby in this case) to handle out-of-core
data access and query evaluation. Unfortunately, the experiment revealed that there would be a
significant challenge in initializing the database with CSV data due to the fact that the mapping
from the Java type system to the SQL type system is not straightforward. We also investigated
several open source JDBC drivers that provide direct access to data in CSV files; however these
were typically less efficient than the existing ACES Viewer systems for reading CSV data.

4.4.3.3 Database (RDBMS) Data

In order to support access to data in relational databases that support ACES, but were not
generated by ACES (e.g. simulation input data), we implemented a new dataset extension. The
Basic Database Dataset is largely derived from the ACES Database Dataset, but expectations that
certain tables were present in the database were eliminated. The ACES Database Dataset was

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

89

then refactored to share code as much as possible with the Basic Database Dataset
implementation.

4.4.3.4 CTAS Data

We developed a proof of concept ACES Viewer plug-in that provides access to data
produced by the Center Tracon Automation System, an operational tool used to assist air traffic
controllers. The plug-in presently reads recorded data, allowing it to be visualized within the
ACES Viewer. It can be developed further (to view live output from CTAS) if it is found to be
useful.

4.4.3.5 Weather Polygons

We added a parser for weather polygon data used by ACES. Weather polygons denote
regions of airspace classified by the severity of weather (including wind, precipitation and
lightning) within. This data has been provided to us in CSV format, and consists of a sequence of
time-stamped lon/lat/alt polygons representing regions with severe weather. Figure 77 shows an
example visualization using this data.

Figure 77: A Visualization of Regions with Severe Weather Denoted by Weather Polygons

4.4.3.6 XML Air Zones

ACES version 6.2 introduced a new format for the airzone boundary definitions. The new
format uses XML to specify all sector, sub-sector, and center boundary information. We
implemented a parser for the new format, and integrated it into the ACES Viewer's ACES data
module.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

90

4.4.4 Data Processing

4.4.4.1 Units

Much of the ACES produced data (altitude in particular) is measured in feet, while most
JView elements expect input data to be measured in meters. This means that for a visualization
of a simulation run to be accurate, all data must be converted to meters. To this end, we have
incorporated generic support for unit conversion into the ACES Viewer. This capability is based
on the Java Specification Request #275 reference implementation library, which provides
enumeration of a variety of units, as well as capabilities for converting between compatible units.

To simplify the process for developers, unit conversion takes place automatically.
Developers incorporating new data types into the ACES Viewer can declare the units of data
fields via the ACES Viewer Schema class that describes each data Table.

TupleExpressions are responsible for converting units if necessary. Data consumers
(Renderers and Transforms) can optionally specify a target unit for conversion for an expression.
If units are specified for both the source data, and the desired unit for the data consumer, values
are converted between the units as the data is read from the source.

4.4.4.2 Concurrency

In an effort to take advantage of the fact that most commodity computer hardware now
contains multiple general purpose processing units, we have begun to enhance the granularity of
parallel and concurrent processing in the ACES Viewer. Previously, opportunities for
concurrency were exploited at the visualization component level. Each data access, transform,
and renderer component typically performed their own tasks in a single threaded manner, but
each component could (where possible) be performing its work concurrently with the other
components in the visualization. The effectiveness of this model at taking advantage of the
available processing units varied based on the structure of the visualization. Consider the
diagram in Figure 78.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

91

Figure 78: A visualization with linear data flow

Figure 78 shows a visualization comprised of three transforms (Force Grid, Filter, and
Time Filter), a Renderer (Slice Volume Renderer), and a data access component (JDBCTable).
In this case, there is a linear flow of data from the aircraftstatemessage table to the renderer. This
means that the Filter Transform cannot process data until the Time Filter does, and similarly, the
Force Grid Transform cannot perform its processing until the Filter Transform does. These data
dependencies effectively force the entire data flow to be processed in a single thread. This
visualization represents the worst case for concurrency in the ACES Viewer. Figure 79 probably
represents a more typical situation.

Figure 79: A visualization with parallel data flows

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

92

In Figure 79, there are multiple pathways through the processing network to the
renderers. Each pathway can be processed concurrently since there are no data dependencies
between separate pathways. In this example we can use a maximum of three threads for
concurrent processing (equivalent to the number of paths from the data access components to the
renderers. After analyzing visualizations produced by researchers and the IV4D extension to the
ACES Viewer, we determined that in the average case, the application can use anywhere from 1
to 3 threads for concurrent processing of visualization data.

By default, Tables now issue change events asynchronously using a pool of threads,
rather than issuing the events synchronously and sequentially. This removes the need for
individual Table/Transform implementations to handle concurrent processing themselves in most
situations, while still taking advantage of multiple processers in the host system if present.

To take better advantage of multi-processor systems, we have begun exploring
opportunities for concurrency within each of the visualization components. The ForceEffectGrid
Transform was one of the first that we looked at because it is highly CPU intensive, and the
algorithm it uses is easily parallelized. We were able to significantly increase runtime
performance of the ForceEffectGrid on multi-processor systems. Performance scales nearly
linearly with the number of available CPUs, and tests on a 16 processor machine produced
pleasing results. We intend to continue this work with other Transform components in the future,
including incorporating Doug Lea's Fork-Join concurrency framework slated for inclusion in
future versions of Java.

4.4.4.3 Expressions

4.4.4.3.1 Schema Adapter

Most visualization components that accept input from a Table instance in the
visualization graph use expressions to extract relevant data from each Tuple in the Table. There
is a significant amount of ‘boiler-plate’ code required to manage each expression throughout the
lifecycle of the Table-consuming component:

• Validating the expression against the input Table’s Schema whenever the input Table
changes

• Monitoring the expression for changes that might affect the value it returns.
• Providing default values for expressions that are un-specified, or invalid.
• Providing accessor methods for users to change the expressions.
• Ensuring that expressions, when set by a user, conform to the input requirements of the

Table consumer (data type and units).
• Using the expressions to ‘decode’ data in input Tuples.

We introduced a new abstraction called a Schema Adapter to handle all of these tasks
automatically. A Schema Adapter is created by the consumer, and initialized with the Schema
(data names, types and units) expected by the consumer (this is the output schema of the Schema

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

93

Adapter). The consumer can optionally specify default values for each data field in the Schema.
When an input Table is provided to the consumer, the Table’s Schema is provided to the Schema
Adapter as the ‘input schema’. The Schema Adapter automatically validates all expressions
against the new input schema. User Interface support for the Schema Adapter allows users to
specify the expressions used to extract each output field from the input Tuples, without the need
for accessor methods for each expression on the Table consumer class. When reading input
Tuples, the Schema Adapter provides methods to convert Tuples corresponding to the input
Schema to Tuples adhering to the output schema, alleviating the need for the consumer class to
handle conversion itself.

Use of the Schema Adapter has significantly simplified the implementation of
visualization components that consume Table data, and reduced the chance of errors in
duplicated code. In the future, it may be possible to further reduce the complexity of Table
consumer implementations by automatically creating Schema Adapter instances when Tables are
linked to consumers. From the consumer’s point of view, input data would have a fixed Schema
corresponding exactly to the information required by the consumer.

4.4.4.3.2 Groovy Script Expression

We improved the integration of Groovy scripts by changing the way that the Groovy
programs are invoked by the ACES Viewer. Previously, invocation involved the use of reflection
to identify the byte codes to invoke in Groovy programs. We now automatically generate Groovy
code that enhances the user-entered scripts, causing them to implement a specific Java Interface.
We can then invoke the compiled script using a normal Java call, rather than using reflection.
Since Groovy scripts are invoked extremely frequently when they are present in an ACES
Viewer visualization (often as much as once per data record, per rendered frame), this has
yielded significant performance improvements.

4.4.4.3.3 Python Script Expression

We added the Jython scripting option to the ACESViewer. Jython is a java engine for the
Python scripting language. It works identically to the Groovy scripting except that the scripting
language used is Python. A sample can be seen in Figure 80 and Figure 81.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

94

Figure 80: Jython Code Sample

Figure 81: Output from Jython Code Altering Line Color

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

95

4.4.4.3.4 Text Expression

We implemented a new Expression type with an associated user interface for functions
that produce textual data. The new Expression allows users to specify a combination of literal
string data along with textual representations of any number of columns from the input Tuples.
This is significantly more flexible than the previous implementation of a text expression which
only allowed a single input column to be used, and no literal information. The new Expression
uses a specially formatted string where tokens like ${column-name} are replaced with a textual
representation of data taken from the specified column-name in the input Tuples. To simplify use
of these tokens, the user interface for editing the new text expression contains a menu that
presents a list of the available columns, and inserts the appropriate token when a menu item is
selected (Figure 82).

Figure 82: The user interface for specifying a Text Expression

4.4.4.4 Transforms

4.4.4.4.1 Force Effect Transform

The Force Effect Transform computes a discretely sampled 3D field based on the inverse
square of the distances from a set of locations to each sample point. This Transform is primarily
used to provide a qualitative view of spatial congestion when applied to aircraft locations.

We parallelized this to take advantage of the fact that most modern computer hardware
contains multiple CPU cores. The most difficult challenge in this process was not designing the
algorithm for parallel computation of the force grid, but rather making the whole process
asynchronous so that it did not block other threads that could potentially be used for other
processing tasks. After making these changes, the ForceEffectTransform was no longer the
performance bottleneck in the visualizations using it. We evaluated the scalability of the new
algorithms on machines with as many as 16 processor cores, and they were able to make
effective and efficient use of all of the available processors.

4.4.4.4.2 Grouping Transform

We implemented a new generic Transform component that mimics the functionality of a
SQL group by clause. The Grouping Transform uses two user provided parameters (Figure 83), a
grouping criterion and aggregate function. The Transform operates by collecting all input Tuples
into sets based on the grouping criterion, and for each set, evaluates the aggregate function over

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

96

all of the members to achieve a single aggregate value for each set. Currently, implemented
aggregate functions include count (counts the number of members in each set), average, sum,
min, max (which operate on numeric values derived from set members), and array (which
collects all set members into an array of values).

Figure 83: An early user interface used for manipulating the Grouping Transform

4.4.4.4.3 Projection Transform

The projection transform provides support for a relational projection operation on input
Tuples to produce an equal number of output Tuples with a modified Schema. Possible
operations on the input data include removing columns, renaming columns, and deriving
columns using the available expressions in the ACES Viewer (Figure 84). For example, a user
might wish to associate a color with input Tuples that contain location and velocity information.
Using the Projection Transform, the user might write a Groovy script to derive a Color value
based on the velocity information from the input Tuples.

Figure 84: The user interface used for editing parameters of the Projection Transform

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

97

4.4.5 User Interface

4.4.5.1 Basic User Interface Components

4.4.5.1.1 Overwrite Confirmation

There are several types of data that can be saved to disk from the ACES Viewer,
including visualizations, dataset definitions, database connection parameters, and CSV
representations of Tables. We added a subclass of Java's built-in JFileChooser user interface
component that automatically requests confirmation before overwriting an existing file with the
same name as the data being saved. This component is now used in all cases where a user can
save to disk.

4.4.5.1.2 Effects Library

We created a small library of generic user effects to help provide feedback to users under
certain conditions. This library provides convenient methods to quickly apply common effects to
user interface components. One example of these effects is the error indicator, an effect that
makes a component smoothly transition from its original color to red when an error is detected in
user input for the component. This is shown in Figure 85.

Figure 85: Invalid Entry Indicator

4.4.5.1.3 Busy Indicator

Due largely to the fact that the ACES Viewer accesses data from many different sources,
including network resources, databases, and local files, there are many times where the
application is doing work in the background, but is not updating the user interface. To provide
some feedback to the user to indicate that the application is working, we implemented a Cursor
Manager that will replace the typical mouse pointer with a platform specific busy cursor, and
restore the original when work is complete.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

98

Figure 86: Current Tasks window

Figure 87: The Task Status Icon

We also developed a persistent status indicator that appears near the bottom of the user
interface (Figure 87). When tasks are executing in the background, the status indicator animates,
and can be clicked to display a list of tasks that are presently running in the background. The task
list shows the progress of each task, and provides a button that allows users to cancel it.

4.4.5.2 Docking Frames

The User Defined Operational Picture (UDOP) effort included development of an
improved user interface for the application, based on dockable panels for each major component.
This provided a single window UI for the application by default that could be rearranged to suit
user needs. We incorporated this work into the core ACES Viewer user interface and resolved
some usability issues that were present in the original version. We also added capabilities into
the ACES Viewer that facilitate subtle differences in user interface behavior to support the
differences between the two applications. These changes will allow future user interface
improvements to the UDOP project to either be isolated to that application, or available to all
ACES Viewer based applications at the developers discretion in the future, to reduce

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

99

fragmentation and promote code reuse. An example of the new user interface is shown in Figure
88.

Figure 88: Docking Frames based User Interface in the ACES Viewer

4.4.5.3 Visualization Controls

4.4.5.3.1 Time Control

In response to user requests, we have added several capabilities to the ACES Viewer’s Time
Control:

• A units combo box so that users can specify the step amount in milliseconds, seconds,
minutes or hours.

• A list display to show which Tables are being controlled by the TimeControl. The list
also displays details of the tables, including the current simulation time and extent.

• A stop button next to each entry in the controlled Tables list to temporarily disable a
controlled table.

• The pause button next to each controlled table allows users to lock the table to the
current playback time, and to stop that table from advancing with playback.

The new Time Control is shown in Figure 89.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

100

Figure 89: Time Control with buttons to disable or pause each controlled table

4.4.5.3.2 Navigation Control

The 2D navigation control (Figure 90) presents a Java Swing based user interface to
control the camera viewpoint in a 3D scene. This component consists of two sections; on the left,
there is a map view that shows the camera look-at point (marked by a green ‘x’), and the view
footprint. Users can click a location on the map to move the look-at point, or can click/drag to
specify a region of interest. After specifying the region of interest, the camera is moved so that
the entire region is visible in the scene. On the right side of the navigation control there are 3
sliders. These control the spherical azimuth, elevation, and distance of the camera relative to the
look-at point. All of the components automatically update when the camera is moved (either with
the navigation control, or through direct interaction with the scene) to indicate the actual camera
location. This component is designed to give more precise control over the camera position than
can be achieved with direct interaction with the scene, particularly when capturing movies, or
running the ACES Viewer on lower powered hardware.

Figure 90: The 2D Navigation Control

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

101

4.4.5.4 Datasets

4.4.5.4.1 Dataset Definition

We made several improvements to the Wizard framework that provides user interface
components to allow users to define Datasets. First, the Wizard framework library previously
used by the ACES Viewer is no longer actively maintained. We migrated the existing code in the
ACES Viewer to use an alternate framework that had been developed for the NetBeans
Integrated Development Environment, and is still being actively developed. The new framework
is similar enough to the previous library that only minor changes were required in the ACES
Viewer code base.

We also changed the flow of the Wizard graphical user interface components that are
presented to the user. Previously, users would activate the wizard, and enable/disable each of the
available dataset extensions. The wizard would then proceed to take the user through the steps of
defining dataset parameters for each of the selected datasets. This process had some drawbacks.
Users were only able to specify one set of parameters per dataset extension. If, for example, a
user wanted to create a dataset with two sets of boundary files and a single ACES database, this
was not possible. It was also a little unintuitive that users could create datasets with seemingly
unrelated data, for example, today's wind speeds with an ACES database that was generated on a
different day.

Figure 91: The new wizard user interface

The new Wizard (Figure 91) only allows users to select a single dataset extension to
define parameters for. This means that datasets created with the new Wizard will only contain a
single type of data. While this limits some of the functionality previously provided by the ACES
Viewer, it also significantly improved usability.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

102

4.4.5.4.2 CSV Dataset Definition

We improved the usability of the user interface component for importing comma-
separated values (CSV) formatted data based on user feedback. The new user interface shows a
preview of the first few lines of data in the file, and allows users to specify the data type and
(optional) units for each column. We also improved the type inferencing capabilities of the CSV
data subsystem in the ACES Viewer, to provide better default type selections for each data
column, and to limit the available types to those that can be parsed from the data. An example of
the new user interface is shown in Figure 92.

Figure 92: CSV data import wizard

4.4.5.4.3 Dataset Toolbox

The dataset panel that displays a listing of loaded datasets and data tables within each
dataset has been significantly improved. Previously, the user interface for managing datasets was
spread between several menu items, toolbar buttons, and other panels. To improve usability, we
collapsed all of this functionality into a single location in the interface. The new dataset panel
contains hyperlink style buttons that allow users to load data or define a new dataset. The ability
to unload datasets is now accessed directly from the dataset listing, via 'X' buttons next to each
removable dataset. The new panel is illustrated in Figure 93.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

103

Figure 93: Dataset management panel

4.4.5.4.4 Dataset Resolution

We re-designed parts of the Dataset API to allow saved visualizations to be more easily
applied to data sources other than those that were present when the visualization was persisted.
The changes allow data sources to be referenced by Schema rather than by identifier in saved
visualizations. This allows any data source with a compatible Schema to be used as a
replacement when loading a visualization. This provides more flexibility than the previous
implementation where only data sources from a similar media could be used. For example, we
can now save a visualization containing data sources representing relational database tables, and
later load the visualization replacing those data sources with CSV file data.

The Dataset Resolver Dialog was developed to expose the new capabilities of the Dataset
API. It is displayed when loading a saved visualization to give users an opportunity to select the
data sources that should drive the visualization from a list of those that are determined to be
compatible based on the Schema of each source. The user interface is shown in Figure 94.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

104

Figure 94: The Dataset Resolver Dialog

4.4.5.5 Property Sheet

The Property Sheet user interface component, which allows users to manipulate the
settings for each of the components that make up a visualization, has been extensively refactored
to improve consistency, performance, and flexibility. The work on this change was split between
the UDOP project and the ACES Viewer since it benefits both projects. Major changes include:

• Consistency. All property editors now occupy a single line, and can have optional popup
or dialog based editors when a more complex user interface is necessary.

• Simplicity of Implementation. The property sheet and property editor API was previously
based on a built-in Java API for working with Java Beans. This API had a lot of extra
functionality that was not used by the ACES Viewer, but made implementation of new
editor components more complex. We developed a new API to address these problems.

• Flexibility. We designed improved support for dynamic property changes, embedded
properties, and other functionality that simplifies development of editors, and provides
more appropriate user interface components for the visualization component being edited.

An example of the new user interface is shown in Figure 95.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

105

Figure 95: New Property Sheet User Interface

4.4.5.5.1 Expression Editor

We refactored the Expression Editor UI component to use pluggable ExpressionFactory
component to define how to create and edit each of the available expression types. This
simplifies the changes necessary to add support for new expression types, and for modifying the
user interface components for manipulating existing expression types.

4.4.5.5.2 Schema Editor

We developed a user interface component to define and manipulate Schema objects. The
editor (Figure 96) allows users to enter column names, types and units. Columns can be added or
removed using the appropriate buttons. Column order can also be changed by dragging the row
in the editor interface corresponding to the column to be moved (Figure 97).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

106

Figure 96: The Schema Editor

Figure 97: Reordering Columns in the Schema Editor

4.4.5.5.3 World Data Configuration Editor

The Terrain Renderer in the ACES Viewer (based on the World element in JView)
requires a variety of paths to be specified by the user in order to locate the relevant elevation and
imagery data. We developed a wizard style user interface component to specify the necessary
information (Figure 98).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

107

Figure 98: World Data Configuration Wizard

4.4.5.6 Visualization Composition Graph

4.4.5.6.1 Save to CSV

Previously, we had added a system to save ACES Viewer data represented in Tables to
disk in CSV format. We have now added a method for users to access this functionality via the
context menu in the Composition Graph user interface component. Users may now select and
save individual tables represented in the graph to disk.

4.4.5.6.2 Cut/Copy/Paste

We have added support for copying visualization components present in the active
visualization container, and pasting a copy back into the same container or another. When
pasting, a new visualization component is created with the same type as the one that was copied.
All of the values of user editable properties are then copied from the source component to the
pasted component. This produces an identical visualization component, with the exact same
configuration as the copied component.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

108

4.4.5.6.3 Drag and Drop Composition

We have improved the drag and drop interface used with the visualization composition
graph. Drag and drop support in this component allows users to easily add components from a
toolbox to an active visualization. We have improved the usability of this system by providing
active visual feedback in the composition graph that indicates the container that will be modified
if the dragged component is dropped at the mouse pointer location. It is also now possible to
drop components onto other components in the composition graph to place them in the same
container.

4.4.5.6.4 Automatic Layout of Graph Nodes

The original Visualization Composition Graph relied on manual placement of the
components in the graph for layout. We experimented with several graph layout algorithms
including various tree layouts, force directed layouts, and hierarchical layouts. We found that the
hierarchical layouts produced consistently good looking graphs, and developed a custom
implementation for the ACES Viewer. The hierarchical layout also provides the added benefit of
being deterministic (the layout produces identical results given the same graph components in
the same order), unlike other algorithms such as the force directed model.

The algorithm is based on a hierarchical layout model, where the Renderers are
considered roots of the graph, and all other components are laid out based on their graph distance
from a Renderer. The algorithm works as follows:

1. All graph nodes are ranked by the longest graph distance to a Renderer identified using a
Breadth First Search (BFS) (this gives the ‘longest-shortest distance to a Renderer). Each
node is assigned a column in a grid based on this ranking

2. Rows are assigned to each node using a pseudo-topological sort. Nodes in each column
are ordered by the order they appear in a post-order Depth-First traversal from nodes that
have no left-connected neighbors from step 1. Rows are assigned based on this ordering,
the average row value of neighbors, and any grouping constraints (e.g. Renderers in the
same scene should appear next to each other).

3. X and Y coordinates are assigned to each node based on column and row assignments,
and the widths/heights of other nodes in the same row/column.

4. Nodes representing groups (Scenes) are placed to surround the visualization components
they contain.

Figure 99 shows several results of this layout algorithm applied to ACES Viewer visualizations.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

109

Figure 99: Several graph layouts produced by the new Hierarchical layout algorithm

4.4.5.6.5 Other Composition Graph Enhancements

We made several additional improvements to the visualization composition graph
appearance and functionality. Changes include better icons for visualization components,
improved support for components with multiple inputs and outputs, better component layout, and
improvements in the algorithms to determine which components may be linked together. A
sample graph illustrating some of the changes is shown in Figure 100.

Figure 100: Visualization Composition Graph

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

110

4.4.5.7 Visualization Composition Toolbox

The visualization component toolboxes used with the visualization composition graph
have been enhanced using JView's ImageList component. This component makes more efficient
use of screen space, allowing more visualization components to be visible in the toolboxes, as
shown in Figure 101.

Figure 101: An Early Version of the Renderers Toolbox, Displayed Using JView's ImageList

Due to inconsistencies in the appearance of JView's JCollapsePanel component across
different platforms, we replaced them with the JXTaskPane component from the Sun endorsed
SwingX library. The functionality of the JXTaskPane is similar to the JCollapsePanel, but it
respects the look and feel, and human interface guidelines of the major platforms supported by
Java. Figure 102 shows the task panes as they currently exist in the ACES Viewer.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

111

Figure 102: JXTaskPanes that replace the previous JCollapsePanel component

4.4.5.8 Movie Capture

To improve usability, we made some changes to the movie capture user interface.
Previously, users initiate movie capture through a menu item. This caused a new window, the
capture window to be displayed. Users could then drag scenes to the capture window to enlist
them in the recording process. The new interface is initiated the same way, through a menu item.
The difference is that the movie capture controls are added directly to the window from which
the user selects the menu item to begin recording. Several buttons and labels were also
reorganized to make their functionality more obvious. The new interface is shown in Figure 103.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

112

Figure 103: The new movie capture user interface

4.4.5.9 Development and Debugging Tools

We developed a user interface component to display a list of all content-change events
issued by active Tables (data sources and Transforms) in the application (Figure 104). This
component is extremely useful for testing and debugging when developing new Transforms or
dynamic data sources (e.g. connected to live data streams). Each time an event is issued from a
Table, a row is added to the user interface describing the source of the event, the nature of the
event (how many rows were added/removed/changed, and whether the schema of the issuing
table has changed), and the number of rows present in the issuing Table after the change that
caused the event.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

113

Figure 104: Table Event Viewer User Interface Component

4.4.6 Release Management

4.4.6.1 Native Packaging

We incorporated utilities into the ACES Viewer build system that allows automated
packaging of the application for release. These utilities include the ability to generate native
application launchers for Mac and Windows platforms.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

114

4.4.6.1.1 Mac

Using an open source third-party plug-in (JarBundler) for the ANT build tool, we added
support for generation of a native Mac OSX application bundle for the ACES Viewer. This
allows the ACES Viewer to be launched by double clicking an icon, like any other native
application. The bundle can now be created from the latest sources by simply executing 'ant mac-
bundle' in the ACES Viewer source directory.

4.4.6.1.2 Windows

Using Launch4J we created a native windows launcher for the ACES Viewer. The
launcher functions like most other .exe executables on Windows, allowing users to double click
an icon to launch the application.

4.4.6.2 Releases

4.4.6.2.1 ACES Viewer 1.0

Early in this contract we produced the first stable release of the ACES Viewer with
Interactive Visualization in 4D (IV4D). IV4D is an ACES Viewer plug-in designed to provide a
data-centric user interface and visualization configuration layer to simplify the process of
creating an initial visualization for NASA researchers. Besides reviewing, testing, and improving
the application code, we also worked with the Information Handling Branch (AFRL/RIEB) to
prepare the distribution media, set up a customer support mailbox, and ship the software to users
who had requested it. We also coordinated with the contractor developing the IV4D extension to
the ACES Viewer for simultaneous release. The ACES Viewer 1.0 release was completed and
shipped on June 5, 2008.

4.4.6.2.2 ACES Viewer 1.1

We released version 1.1 of the ACES Viewer and the IV4D extension to the NextGen
researchers and other interested parties in August 2008. This was primarily a bugfix/maintenance
release.

4.4.6.2.3 ACES Viewer 1.5

ACES Viewer 1.5 was released in May 2009. This release added some new features, and

addressed several usability issues present in earlier versions.

4.4.6.2.4 ACES Viewer 2.0
Version 2.0 of the ACES Viewer was released in January 2010. This version included

major revisions to the ACES Viewer API, infrastructure and user interface.

4.4.6.2.5 ACES Viewer 3.0

We released version 3.0 of the ACES Viewer to NASA in June 2010, which included a
huge number of improvements for performance, memory efficiency, and usability over the
previous 2.0 release. The release also included a variety of changes in support of the
development of IV4D.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

115

4.5 Characterization of the UAV Network Environment (CUNE) Viewer

The Characterization of the UAV Network Environment (CUNE) team needed an
application to view time keyed GPS data on the world. The CUNE team attempted to use
Google® Earth to display this information but they quickly found limitations in what they could
show. As a result a JView based CUNE Viewer application was developed to show the GPS
location sequences, with additional information encoded in the visual representation. The view
(Figure 105) shows the GPS line with an RC plane model (representing the vehicle that is used to
collect the data). The color of the line represents the GPS signal quality at the corresponding
location/time. A data playback control is located on the bottom right and will help the user
navigate through temporal data. An information panel is located at the top right showing the
current signal stats (Figure 105).

Figure 105: An Early Version of the CUNE Viewer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

116

The CUNE Viewer can connect to either a live connection where information is retrieved
through a TCP connection to server software developed for the CUNE project, or from recorded
data. Upon loading a file or initiation of a live connection, users can play through the data, with a
number of different visualization options. Some rendering options include history trails, antenna
plots, and a communication line. The history trail of the UAV is a line segment showing where
the UAV has been. It is colored based on the number of good packet vs. bad packets the
destination received at a particular time. We have incorporated the antenna plot element
originally developed for the Antenna Pattern Analysis Tool Set. This places a sphere like object
around the UAV showing the signal strength characteristics of the antenna. There are four
different antenna plots: lines, points, pincushion, and surface as seen in Figure 106. The
communication line is an animated line that shows the direction of information. Figure 107
shows the CUNE viewer where the source is the model aircraft, the destination is the truck, the
antenna plot is the translucent sphere like object around the aircraft and the communication line
is the yellow line from the truck to the aircraft.

Figure 106: Antenna Plots (Point, Line, Surface, Pincushion)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

117

Figure 107: Cune Viewer

To slim down the CUNE viewer interface we added a settings panel. The setting panel
allows all the options to be in an organized fashion without all the clutter in the main GUI. This
separate window provides more space for options compared to the earlier versions of the user
interface. Figure 108 shows the settings window that the user can pop up by pressing the settings
button.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

118

Figure 108: Settings Window

A configuration file and manager was created for the CUNE viewer so that users can

tweak settings such as format and default settings. Upon starting the CUNE viewer the format
file will be read and set to the appropriate settings. Figure 109 shows an example of what a
CUNE configuration file would look like. On the left there are the properties that can be changed
and on the right separated with a ‘::’ is the value of the property.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

119

WORLD LEVEL OF DETAIL :: HIGH

WORLD LOAD FROM URL :: FALSE

TRAIL SELECTED :: TRUE

GROUND TRAIL SELECTED :: FALSE

DATE FORMAT :: MM/dd/yyyy

TIME FORMAT :: kk:mm:ss.S

LONGITUDE FORMAT :: ###.#####°

LATITUDE FORMAT :: ' ##.#####°'

ELEVATION FORMAT :: ##.##### m

PITCH FORMAT :: ##.#°

ROLL FORMAT :: ##.#°

HEADING FORMAT :: ##.#°

TRACK FORMAT :: ##.#####°

SPEED FORMAT :: ##.##### km\h

PACKET FORMAT :: ###

BYTES FORMAT :: ###### bytes

QUALITY FORMAT :: ###

NUM SAT FORMAT :: ###

RSSI FORMAT :: #### db

ALIGN DECIMAL :: true

ALIGN NUMBER TO DECIMALS :: true

Figure 109: CUNE Configuration File

The CUNE viewer can show many communication links to a particular source and also that
source trial can be colored by any parameter that the user wishes. In the panel it shows all the
connection points represented as bars, each bar has a zoomed bar and overview bar. The
overview bar which is the top bar shows the whole communication to the source throughout the
simulation. It is colored by the user and is defined in the upper left hand corner. In the picture
below (Figure 110) these simulations are colored by Received Signal Strength Indicator (RSSI)
values and red is 100 and 40 is green. This panel allows users to define what the line represents.
For instance, a particular communication line would represent how many bytes have been
received. Additionally, in this panel users can change the color mapping to values. For example,
10 bytes received is colored red and 200 bytes received is colored blue. They can also choose
which communication line to view by selecting on the title.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

120

Figure 110: Communications Signal Panel

Another feature that was added to the CUNE viewer was a popup charting panel to show
the charts of the information currently loaded. Below, Figure 111 shows the chart panel in the
CUNE viewer.

Figure 111: The Chart Panel in the CUNE Viewer

Upon request from the CUNE team, a movie tool was added to the CUNE viewer to have
the ability to create movies of the visualization. Movies demonstrate the application or
simulation as well as creating a distributable media where anyone can view it without knowing
or having the application.

We designed the CUNE viewer to be viewed on many types of screens. Most application
developers design their components to fit a standard resolution computer. Unfortunately, when
the resolution increases the graphical components get so small that a normal user has difficulty
using the application. The CUNE viewer was designed for three display scales, small, medium
and large. The user interface is scaled to the size selected so the application can be used on a
variety of different devices with different size and resolution characteristics. The illustrations
below are the CUNE Viewer on two different types of resolution. On the top shows the CUNE
Viewer set to small (Figure 112) and on the bottom (Figure 113) it is set to large.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

121

Figure 112: CUNE Viewer on Small

Figure 113: CUNE Viewer on Large

A close-up view of the UAV antenna pattern enables users to see the intersection of the
communication line and the antenna pattern that was collected at the lab. This intersection
indicates the value and location of the intersection, which are both useful for future analysis.
Figure 114 shows a close up of a model with communications lines extruded from it. The
numbers associated with the communication lines shows the value of the antenna pattern at that
point.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

122

Figure 114: CUNE Viewer

4.6 JWeather

JWeather is an effort to develop a visualization of weather and its impact to operations
such that decision makers are able to perceive their situation with new clarity. This effort
leverages existing JView and ACES Viewer capabilities as well as extending support to include
operational weather distribution and visualization requirements.

4.6.1 Background Research on Contemporary Weather Visualization Techniques

We researched various methods online of visualizing weather and documented the links
on the AFRL wiki (https://twiki.tbm.rl.af.mil/wiki/index.php/Weather_Visualization). We also
discussed techniques with weather expert, Bob Farrell of the Cyber Command and Control
Systems Branch (AFRL/RISF), and received some insight from him on the various weather
sources and how to interpret some of the data. We determined from these discussions that wind
and cloud coverage would be two forms of weather that would be desirable to visualize.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

https://twiki.tbm.rl.af.mil/wiki/index.php/Weather_Visualization�

123

4.6.2 Access to Real-Time Weather Data

We collected online documentation on the Joint METOC Broker Language (JMBL).
There are different versions of JMBL for Jet, WDA and JWIS. We also developed software to
access the data based on the specifications.

After receiving an account for the local JWIS server we wrote a SOAP interface to
retrieve data from it. The SOAP requests were initially hardcoded to retrieve a fixed set of
gridded data, however we eventually rewrote the initial data access system to remove the
hardcoded parameters and allow flexible requests. Unfortunately there is no way to request a
catalog of what is available on the server, however the Jet server (which was not available at the
time of the initial development effort) should have it.

After developing the initial data access components for the local JWIS server, we
modified the JMBLWeather class to retrieve data from the AFWA server. This involved
implementation of support for SSL SOAP transfers to be able to talk to the AFWA server.

To improve the responsiveness of visualizations of weather data, we developed a caching
system that temporarily stores weather data fetched from a remote server locally.

4.6.3 JView Based Visualizations for 4D Weather Data

We developed an initial wind pattern visualization from the JWIS server that uses the
windU and windV 2D gridded data sets to determine wind speed and direction then display them
on the map using the Flow Field Renderer previously developed for the ACES Viewer.

We determined a majority of the data on the JWIS is gridded in a Lambert Conformal
which was not initially supported in Flow Field Render. CACI has made the changes to allow
data in projections other than WGS84. Figure 115 and Figure 116 show examples of Lambert
Conformal input data displayed on a WGS84 and Flat Earth World.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

124

Figure 115: Weather Data on WGS84 World

Figure 116: Weather Data on Flat World

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

125

We developed a kd-tree implementation that minimally supports fast range and nearest
neighbor searches and conforms to the Java Map interface. It also supports “hinting” which
allows specifying bounds the data will be in which aids in determining the partitioning of the
tree. This was used to develop a new cloud visualization that uses the kd-tree to store and
retrieve the cloud data covering the whole world (about 6MB per forecasted time) in an efficient
tree that allows quick access to the multi-resolution cloud data for any given area (Figure 117).

Figure 117: JWeather Cloud Visualization

We developed an isosurface renderer that rendered layered relative humidity (Figure 118).

Figure 118: JWeather Isosurface Renderer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

126

In order to develop improved visualization support for cloud data, we developed the
necessary data structures to hold the Diagnostic Cloud Forecast Model (DCF) data:

 Fractional layer cloud amounts for up to four levels in the atmosphere
 Layer cloud base heights for up to four levels in the atmosphere
 Layer cloud top heights for up to four levels in the atmosphere
 Layer cloud types for up to four levels in the atmosphere
 Total fractional cloud amount for the entire atmosphere.
 Total fractional cloud amount for the entire atmosphere.

After the data model was developed, we started visualizing the DCF data on the JView World
(Figure 119).

Figure 119: JView Visualization of DCF Data

We developed a new weather visualization geared toward avoidance of weather along a
flight path. The current implementation colors a flight path (currently limited to a single line)
based on the interaction an aircraft flying on that path with the 4D weather (Figure 120). This
required developing a way of storing a vast amount of data in memory to hold the 3D weather
over time (giving 4D weather). Thought has been given to moving this data store to a remote
server since only small areas of weather data are required at a time, however it needs to be
accessed quickly, which excluded the use of the AFWA server or local JWIS server.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

127

Figure 120: Visualization of Cloud Profile Along a Flight Path

We developed a multi source 3D cloud renderer using AFWA satellite imagery as the
underlying texture on the world. The GRIB binary data was used to generate 3D geometric
cloud cover over the satellite imagery. This was added to the weather test program, and gives us
the capability to show the radar cloud imagery for the same time interval as the binary 3D data
overlaid on the earth (Figure 121). This was done as a verification test of both the display and
retrieval of the appropriate cloud forecast, as well as a test of AFWA's cloud forecast.

Figure 121: Cloud data from AFWA over the satellite imagery for the same forecast time

4.6.4 User Interface

We developed a graphical user interface (Figure 122) to control the features of the kd-tree
and the visualization. Now it is possible to select the forecast date, visible layers, height scale
and the selection algorithm between cells in range, nearest neighbor and mesh generator as well
as the parameters that affect their output.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

128

Figure 122: JWeather User Interface

4.6.5 Collaboration

We met with Prologic to get an overview of STORM, discuss weather related issues and
demonstrate weather related software developed here. We provided them with a distribution
(Figure 123) of the JWeather application.

Figure 123: Screenshot of the JWeather Version Distributed to Prologic

4.7 Wacom Notepad

The WACOM tablet is a pressure-sensitive pen interactive display designed to support
drawing and sketching in a more natural way than using a mouse. We were tasked to provide a
Java interface to communicate with the WACOM device as well as to create a Java based

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

129

drawing application to experiment with advanced interaction techniques. This effort was started
under the previous JView support contract, and enhanced under this one.

4.7.1 Drawing Curved Lines

CACI developed the NotePad application to interact with the WACOM device to draw
and erase smoothly curved lines with different intensities. The problem with drawing lines or
shapes using the Java2D API is that they can only have one thickness and one color per line.
These problems could possibly be addressed using custom implementations of certain Java2D
components, however we found a less cumbersome solution. We also explored many other
avenues and found that the most successful method to draw curved lines on the display is to
manually calculate and fill each individual pixel that fits a Bezier curve.

A Bezier curve is a curved line calculated by four control points. The first and last points
are where the line starts and stops and the middle control points determine how the curve bends.
During this period we found a better way to calculate the center control points for a Bezier curve.
Given three points from the WACOM device, we find a line segment tangent to the curve at the
center point, which is parallel to the line from the first control point to the last control point. The
control point distances from the center point are scaled along the tangent line. The first one is a
scaled distance based from the length from the start point to the center point. The second control
point is positioned based on the length from the center point to the end point. Figure 124 (left)
illustrates how the control points are calculated. On the right side of Figure 124 shows a zoomed
in view of the line being drawn, where the yellow line is the straight line (based on the original
points captured by the WACOM) and the green line is the tangent line showing the control points
on either end.

Figure 124: Bezier Control Points

Distant 2

Parallel Lines

Scaled
Distant of
Distanct 2

Scaled
Distant of
Distanct 1

Distant 1
C1

C2

C3

C4

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

130

4.7.2 Anti Aliasing

Once the Bezier curve has been defined and the curve points have been found, then the
pixels to be filled are identified. We find candidate pixels by iterating through each of the curve
points and calculating the maximum distance (in pixels) from the point that might need to be
filled while corresponding to the width of the curve stroke. Each main point (points captured by
the WACOM device) contains pressure information as well as a minimum and maximum width.
With this information we can calculate the line stroke width at each main point, which
corresponds to a circle centered about the point.

Pixels are then found for each circle starting with the first circle going to the last circle of
the Bezier curve. If the distance from the center of the pixel to the center of the circle, minus the
pixel offset is less than the radius of the circle (the stroke width) then the pixel is drawn and the
intensity is calculated based on the distance. Once the pixels are found they are added to the list
of pixels to be drawn. If a pixel is covered by more than one circle, the intensity is calculated as
the maximum intensity value calculated from all of the circles. Figure 125 (top) shows an
example of how circle overlaps are resolved, and Figure 125 (bottom) illustrates how pixel
intensities are calculated.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

131

Figure 125: Pixel value under circle

4.7.3 Performance

The initial performance of the notepad application was not sufficient for interactive use.
While the user was using the WACOM device, the lines that were being drawn lagged behind the
location of the pen. Taking advantage of earlier research in this area, we implemented a tiled
drawing system. The drawing area is divided into a grid of rectangular tiles. Each tile is

Radius

Pixel Offset (2^. 5)/2
Distance to a
pixel

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

132

responsible for rendering itself to its assigned area on the screen. Tiles cache the image that they
have most recently drawn, which avoids the need to recalculate the Bezier curves until a new
curve is drawn on the tile, thus increasing the overall rendering performance.

Having each tile cache rendering results means that upon updating only the image needs
to be drawn, the rasterization of the lines does not need to be re-computed. This makes the
rendering process much faster for most cases. In Figure 126, the Tiled Notepad is showing lines
drawn with a line width of 40 to 50 pixels, which is something that the old drawing system could
not handle with a reasonable response time.

Figure 126: Tiled NotePad

4.7.4 Multiple Pages

We added support for multiple pages to the Notepad application so that users can switch
pages using the keys on the WACOM tablet. This capability is vital for the experiment that the
application was designed to support. We also added a reference number giving the users
feedback on what page they are currently viewing. The reference number can either be drawn on
the lower right corner of the page or pop up briefly while changing pages.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

133

4.7.5 World “Drawer”

The World Drawer is a demonstration application to illustrate the concept and capability
of hand drawing annotations. People today are annotating paper maps to incorporate information
about a particular area. The annotations on the JView World element maps are then scanned back
into a computer system for analysis. Using the WACOM tablet and the Notepad code we
developed the World Drawer to display annotations on the World. The World Drawer has two
modes for interaction: a navigate mode and a draw mode. The navigate mode is used for
manipulating the viewing direction and location of the scene using the pen and WACOM tablet.
The drawing mode is used to draw annotations on the World. Draw mode is activated by
pressing the function key of the WACOM tablet. When this key is pressed, the World application
is suspended and a screen shot is captured of the WACOM display. Then this image is used as a
background for the drawing. The drawing is done with the same code used by the notepad
application. After the user is finished drawing they click the same function key that started the
drawing process and then the image is converted to a texture to be placed on the world. The
conversion process takes the hand drawn points and converts the X/Y values to corresponding
longitude/ latitude values. Converting the image to a geo-referenced image in this fashion allows
the texture to be applied directly to the World, similar to how satellite imagery is applied. The
image coordinates are mapped such that the top of the image corresponds to the highest latitude
and the western portion of the image corresponds to the lowest (west-most) longitude. Figure 127
shows textures on the world that have been created using the world drawer.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

134

Figure 127: World Drawer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

135

4.8 3D Model Tools

4.8.1 Model Preview Application

We developed a new JView based application to preview files in the various 3D model
formats supported by JView. The application recursively scans a set of user-specified directories
for model files. For any models found, the application generates a small preview image (if one
has not been generated previously). After identifying models and generating thumbnails, the
application presents a list of the available models, with the preview images embedded in the list
(Figure 128). Users can select a model from the list to load it using JView’s ElementViewer
(Figure 129).

Figure 128: Model Preview Application

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

136

Figure 129: A model loaded in the ElementViewer, launched from the model previewer application

Many of the utilities that were developed for this application have been incorporated for
general use in JView. These include tools to find the spatial bounds of a model, to automatically
position the camera so the model is completely in view, and to automatically generate thumbnail
images from one or more model files.

4.8.2 FLT Model Adjustment Tool

The FLT Model degree of freedom (DOF) adjustment tool is an application that we wrote
to fix and save degree of freedom nodes in FLT models. Currently FLT models that are created
using the PolyTrans tool do not articulate correctly because there are DOF nodes present that
contain invalid data. Degree of freedom nodes define an axis of rotation using three points
(origin, point1, and point2). The origin is the center point of the axis of rotation. Point1 defines a
point that lies on the X axis, so this point defines where the X axis will be pointing. Point2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

137

defines a point on the XY plane and with this point, point1 and the origin a plane is defined.
Figure 130 shows the application where users can change parameters like origin, points, or
ranges.

Figure 130: DOF fixer

Users can change DOF nodes of an FLT model using the drag and drop feature provided
by the Element Viewer. Once a model is loaded the user can pick the DoF node they want to
change in the list on the upper right corner. In Figure 131 the origin, point1 and point2 have been
moved show the effect of a pitch rotation. In it we can see the gun rotate around the pitch axis
when changing the pitch on the bottom right of Figure 130.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

138

Figure 131: DOF Axis of Rotation

4.9 JView Demo Browser

The JView Demo Browser application provides a number of simple demonstration
applications that illustrate how to use various utilities and subsystems in JView. Each
demonstration is accompanied by a description of what it does, and well commented source code
showing how it works. This is the best form of documentation for JView users since it provides
precise (source code) instructions for each feature.

Over the course of this effort we incorporated over 100 new demonstrations to showcase
newly available functionality, and maintained the existing set of demonstrations as JView APIs
were changed. The new demonstrations range from very simple (e.g. adding textual labels to a
3D scene) to highly complex (simulating atmospheric light scattering in a GLSL shader
program). Figure 132 shows screenshots of a small sampling of the demonstrations we
developed.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

139

Figure 132: Images from Several of the Demo Browser Demonstration Applications

4.10 3D Models

Many JView based applications use digital assets (3D models) to represent various real-
world objects in a visualization. In order to circumvent licensing and copyright issues that may
impact our ability to distribute these assets with JView based applications, we developed a
number of government owned models. In addition to avoiding issues with model distribution, we
were able to respond directly and quickly to the specific needs of each application. For example,
the CUNE Viewer application presents a visualization of captured data from real-world flight
tests of a UAV. We were able to produce a model of the exact UAV being used for these tests,
improving the level of realism in the visualization, as well as providing an accurate picture for
analysis.

Throughout the course of this effort, we developed dozens of models of various Air
Force, Cyber, and Ground Based assets that can be used and redistributed by any government
agency. Several examples are shown in Figure 133.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

140

Figure 133: Several Models Developed by CACI Rendered with JView.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

141

5.0 CONCLUSIONS

This effort yielded significant contributions to the information visualization capabilities

of the Air Force Research Laboratory. Perhaps the most important result of this effort is the
enhancement of the JView toolkit. JView was originally designed to consolidate information
visualization techniques into a library of developer tools that facilitate rapid development of
domain specific applications. We have simultaneously improved JView’s usability, added new
visualization capabilities, and maintained currency with the latest graphics hardware capabilities
as they advance.

A major part of the JView enhancements involved continued development of JView

World and associated tools to support the large community of users with geographic information
visualization needs. JView World offers a unique blend of flexibility, performance, and
capability compared to other terrain visualization tools such as Google® Earth or NASA
WorldWind. It has found its way into most of the applications being developed with JView, and
the Terra Firma application helps to demonstrate its capabilities with an interface that feels
familiar to users of other terrain visualization tools.

Another important aspect of this work was the development of new domain specific

visualization tools. Applications such as the CUNE Viewer and JWeather are designed to assist
researchers in their analysis and presentation of results as well as tools designed to enhance
situational awareness and command and control capabilities in an operational setting. The Audit
Trail Viewer from which JView was originally derived has also been maintained and enhanced
with new capabilities.

The ACES Viewer, while originally designed to support NASA’s efforts to increase the

capacity of the NAS, has become a platform for highly customizable visualization tools, and has
become the foundation for other work such as the User Defined Operational Picture, and a new
weather visualization effort. This tool effectively reduces the development effort on projects that
use it by providing reusable infrastructure and visualization mechanisms that leverage JView and
other libraries.

Finally, we have incorporated recent work from the information visualization community

into JView, exposing sophisticated visualization capabilities such as text decluttering, and graph
layout in an approachable manner. All of this work ultimately benefits the Air Force in the short
term by providing visualization capabilities for specific projects and in the long term by reducing
the effort needed to develop custom visualization tools for any program.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

142

REFERENCES

Agrawala, M., Heer, J., “Software Design Patterns for Information Visualization,” IEEE
Transactions on Visualization and Computer Graphics, Vol. 12, No. 5, 2006.

Beyer, K., Chen, G., Donjerkovic, D., Lawande, S., Livny, M., Myllymaki, J., Ramakrishnan, R.,
Wenger, K., “DEVise: Integrated Querying and Visual Exploration of Large Datasets,” 1997.

Bosch, R., Gerth, J., Hanrahan, P., Rsenblum, M., Stolte, C., Tang, D., “Rivet: A Flexible
Environment for Computer Systems Visualization,” Computer Graphics, Feb 2000.

Chen, W., Pfister, H., Ren, L., Zwicker, M., “Hardware-Accelerated Adaptive EWA Volume
Splatting,” 2004.

Chuah, M.C., Kerpedjiev, S., Kolojejechick, J., Lucas, P., Roth, S.F., “Towards and Information
Visualization Workspace: Combining Multiple Means of Expression,” Human-Computer
Interaction Journal, Vol. 12, No. 1 & 2, pp. 131 – 185, 1997.

Codd, E.F., “A Relational Model of Data for Large Shared Data Banks,” Information Retrieval,
Communication of the ACM, Vol. 13, No. 6, pp. 377 – 387, Jun 1970.

Davidson, R., David, H., “Drawing Graphs Nicely Using Simulated Annealing,” ACM
Transactions on Graphics, Vol. 15, No. 4, pp. 301-330, Oct. 1996.

Guan, X., Hong, W., Kaufman, A., McDonnell, K.T., Mueller, K. Neophytou, N., Qin, H.,
“GPU-Accelerated Volume Splatting with Elliptical RBFs,” Eurographics/IEEE-VGTC
Symposium on Visualization, 2006.

Jankun-Kelly, T.J., “Visualizting Visualization: A Model and Framework for Visualization
Exploration,” University of California, 2003.

Kerthick, M., Kolojejechick, J., Roth, S.F., “An Interactive Visual Query Environment for
Exploring Data,” Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST ’97), pp 189 – 198, Oct 1997.

Lacroute, P.G., Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing
Transformation, CSL-TR-95-678, Stanford University, Stanford, CA, Sep 1995.

McVay, A., Krisher, D., Fisher, P., JView Visualization for Virtual Airspace Modeling and
Simulation, AFRL-RI-RS-TR-2009-79, CACI Technologies Inc., Rome, NY, 13441, Apr 2009.

Westover, L., “Footprint Evaluation for Volume Rendering,” Computer Graphics, Vol. 24, No.
4, pp. 367 - 376, Aug 1990.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

143

ACRONYMS

2D Two-Dimensional
3D Three Dimensional
4D Four-Dimensional
ACES Airspace Concepts Evaluation System
AFRL Air Force Research Laboratory
AFRL/RISB Air Force Research Laboratory’s Decision Support Systems

Branch
AFWA
AGL

Air Force Weather Agency
Above Ground Level

AGP Advanced Graphics Processor
APATS Antenna Patterns Analysis Tool Set
API Application Programming Interface
ATV Audit Trail Viewer
BFS Breadth First
CACI Consolidated Analysis Centers, Inc
CLOD Continuous Level-Of-Detail
CPU Central Processing Unit
CSV Comma Separated Value(s)
CTAS Center Tracon Automation System
CUNE Characteristic of UAV Network Environments
DCF Diagnostic Cloud Forecast Model
DoF Degree of Freedom
DRAM Dynamic Random Access Memory
DTED Digital Terrain Elevation Data
FAA Federal Aviation Administration
GB Gigabyte
GeoTIFF Geostationary Earth Orbit Tagged Image File Format
GIS Geographic Information System
GL Graphics Language
GLSL OpenGL Shading Language
GLU Graphics Language Utility
GPS Global Positioning System
GRIB Gridded Binary
GUI Graphics User Interface
HUD Heads Up Display
IDE Integrated Development Environment
IV4D Interactive Visualization in 4D
JDBC database connection standard used by Java programs

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

144

JMBL Joint METOC Broker Language
JOGL Java Open GL (Graphics Langauge)
JWIS Joint Weather Impact System
Kd K-dimensional
KML Keyhole Markup Language
KMZ Keyhole Markup Language, Zipped
LAN Local Area Network
LoD
METOC

Level Of Detail
Meteorological and Oceanographic

MSL Mean Sea Level
NAS National Airspace System
NASA National Aeronautics and Space Administration
NM New Mexico
OSGi Open Services Gateway Initiative
OSX Macintosh Operating System X
RPF Raster Product Format
SAX
SOAP

Simple API for XML
Simple Object Access Protocol

SQL
SSL

Structured Query Language
Secure Socket Layer

TIFF Tagged Image File Format
UAV Unmanned Aerial Vehicle
URL Uniform Resource Locator
VBO Vertex Buffer Objects
VM Virtual Machine
VRAM Video Random Access Memory
WATP World Automated Test Program
WGS84
WDA

World Geodetic System 1984
Weather Decision Aid

WMS Web Map Service
XML Extensible Markup Language

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

	1.0 EXECUTIVE SUMMARY
	2.0 OBJECTIVE
	3.0 INTRODUCTION
	4.0 TECHNICAL TASKS
	4.1 JView
	4.1.1 Basic Infrastructure
	4.1.1.1 OpenGL Bindings
	4.1.1.2 High Precision Locale
	4.1.1.3 Geodesic Bounding Box with Source Projection
	4.1.1.4 Stereoscopic Rendering
	4.1.1.4.1 Philips WOWvx Display
	4.1.1.4.2 Quad Buffered Stereo

	4.1.1.5 GLSL Shader Program Abstractions
	4.1.1.6 OpenGL Lighting
	4.1.1.7 Geographic Coordinate Systems
	4.1.1.8 Rendering Appearance Settings
	4.1.1.9 Animation Framework
	4.1.1.10 Vertex Buffer Objects
	4.1.1.11 Texture API
	4.1.1.12 Picking/Selection
	4.1.1.13 Bounding Volumes
	4.1.1.14 Camera System
	4.1.1.14.1 Removed Dependency on GL Utilities Library
	4.1.1.14.2 Clipping Plane Management

	4.1.2 Utilities
	4.1.2.1 Native Library Loader
	4.1.2.2 Camera Navigation
	4.1.2.2.1 Bounding Box Position Constraint
	4.1.2.2.2 World Orbit Navigator

	4.1.2.3 DTED Interpolation
	4.1.2.4 View Footprint Calculator
	4.1.2.5 Movie Capture
	4.1.2.6 Transfer Function Editor

	4.1.3 Rendering Elements
	4.1.3.1 Callouts
	4.1.3.2 Labels Element
	4.1.3.2.1 Automatic Label Decluttering with Dynamic Placement
	4.1.3.2.2 Occlusion Query Data Structure
	4.1.3.2.3 Label Placement Algorithms

	4.1.3.3 Instance Rendering
	4.1.3.4 HUD Utilities
	4.1.3.5 Histogram Grid
	4.1.3.6 Sphere Segment Scene Element
	4.1.3.7 Pin Renderer

	4.1.4 Model Formats
	4.1.4.1 Open Flight Models (FLT)
	4.1.4.2 Keyhole Markup Language (KML)
	4.1.4.2.1 KML Parser
	4.1.4.2.2 KML Graphical User Interface (KML GUI)
	4.1.4.2.3 KML Placemark Point Scene Element

	4.1.4.3 Collada
	4.1.4.3.1 Need A New Collada Implementation
	4.1.4.3.2 SAX Parser
	4.1.4.3.3 What is Supported
	4.1.4.3.4 Kinematics
	4.1.4.3.5 Phong Shading and Reflectance Model

	4.1.5 Release Management
	4.1.5.1 Code Quality
	4.1.5.2 Continuous Integration
	4.1.5.3 Application Installers
	4.1.5.4 JView Releases
	4.1.5.4.1 JView 1.5
	4.1.5.4.2 JView 1.6

	4.1.5.5 JView Training

	4.2 JView World
	4.2.1 Rendering and API
	4.2.1.1 Node Change Listener API
	4.2.1.2 Camera Location Based Level of Detail (LoD)
	4.2.1.3 Iterative Interpolated Geometry Refinement
	4.2.1.4 Elevation Interpolation
	4.2.1.5 Vertex Buffer Objects
	4.2.1.6 DTED Level 5
	4.2.1.7 Mutable World Data Configuration
	4.2.1.8 Multi-Threaded Texture Fetching

	4.2.2 Imagery
	4.2.2.1 GeoTIFF
	4.2.2.2 Google Maps Imagery
	4.2.2.3 FalconView Imagery
	4.2.2.4 Layer Manager
	4.2.2.5 Texture Masking
	4.2.2.6 Texture Union Optimization
	4.2.2.7 Pixels Per Degree Threshold Optimization
	4.2.2.8 TextureSet API
	4.2.2.9 RPF Catalog
	4.2.2.10 Graticule Texture Set

	4.2.3 World-Specific Scene Elements
	4.2.3.1 World Raster Image Element
	4.2.3.2 Grounded Scene Elements
	4.2.3.3 World Info Element

	4.2.4 Profiling and Debugging Tools
	4.2.4.1 World Profiler
	4.2.4.2 Profiler Histograms
	4.2.4.3 Texture Passes Histogram
	4.2.4.4 World Automated Test Program
	4.2.4.4.1 Elevation Post Bug

	4.2.5 Tools

	4.3 Terra Firma
	4.3.1 Terrain Profile Visualization
	4.3.2 Geographic Locations Database
	4.3.3 Geographic Search User Interface
	4.3.4 WebStart
	4.3.5 Map Server
	4.3.6 Drag and Drop GeoTIFF
	4.3.7 Overview Navigation

	4.4 ACES Viewer
	4.4.1 Basic Infrastructure
	4.4.1.1 Visualization Modeling
	4.4.1.1.1 Introspection and Analysis

	4.4.1.2 Configuration and Visualization Persistence
	4.4.1.3 Module and Plug-in Framework
	4.4.1.4 Dependency Injection

	4.4.2 Rendering and Visualization
	4.4.2.1 General Enhancements
	4.4.2.1.1 Frustum Culling
	4.4.2.1.2 Level of Detail Controls

	4.4.2.2 Display Containers
	4.4.2.2.1 3D Scene
	4.4.2.2.2 Tabular Scene
	4.4.2.2.3 JFreeChart

	4.4.2.3 Renderers
	4.4.2.3.1 Polygon Renderer
	4.4.2.3.2 Histogram Grid Renderer
	4.4.2.3.3 Volume Renderer
	4.4.2.3.4 Model Renderer
	4.4.2.3.5 Line Renderer

	4.4.3 Data Access
	4.4.3.1 Memory Consumption and Efficiency Enhancements
	4.4.3.2 CSV Data
	4.4.3.2.1 Usability
	4.4.3.2.2 Efficiency
	4.4.3.2.3 CSV to RDBMS Experiment

	4.4.3.3 Database (RDBMS) Data
	4.4.3.4 CTAS Data
	4.4.3.5 Weather Polygons
	4.4.3.6 XML Air Zones

	4.4.4 Data Processing
	4.4.4.1 Units
	4.4.4.2 Concurrency
	4.4.4.3 Expressions
	4.4.4.3.1 Schema Adapter
	4.4.4.3.2 Groovy Script Expression
	4.4.4.3.3 Python Script Expression
	4.4.4.3.4 Text Expression

	4.4.4.4 Transforms
	4.4.4.4.1 Force Effect Transform
	4.4.4.4.2 Grouping Transform
	4.4.4.4.3 Projection Transform

	4.4.5 User Interface
	4.4.5.1 Basic User Interface Components
	4.4.5.1.1 Overwrite Confirmation
	4.4.5.1.2 Effects Library
	4.4.5.1.3 Busy Indicator

	4.4.5.2 Docking Frames
	4.4.5.3 Visualization Controls
	4.4.5.3.1 Time Control
	4.4.5.3.2 Navigation Control

	4.4.5.4 Datasets
	4.4.5.4.1 Dataset Definition
	4.4.5.4.2 CSV Dataset Definition
	4.4.5.4.3 Dataset Toolbox
	4.4.5.4.4 Dataset Resolution

	4.4.5.5 Property Sheet
	4.4.5.5.1 Expression Editor
	4.4.5.5.2 Schema Editor
	4.4.5.5.3 World Data Configuration Editor

	4.4.5.6 Visualization Composition Graph
	4.4.5.6.1 Save to CSV
	4.4.5.6.2 Cut/Copy/Paste
	4.4.5.6.3 Drag and Drop Composition
	4.4.5.6.4 Automatic Layout of Graph Nodes
	4.4.5.6.5 Other Composition Graph Enhancements

	4.4.5.7 Visualization Composition Toolbox
	4.4.5.8 Movie Capture
	4.4.5.9 Development and Debugging Tools

	4.4.6 Release Management
	4.4.6.1 Native Packaging
	4.4.6.1.1 Mac
	4.4.6.1.2 Windows

	4.4.6.2 Releases
	4.4.6.2.1 ACES Viewer 1.0
	4.4.6.2.2 ACES Viewer 1.1
	4.4.6.2.3 ACES Viewer 1.5
	4.4.6.2.4 ACES Viewer 2.0
	4.4.6.2.5 ACES Viewer 3.0

	4.5 Characterization of the UAV Network Environment (CUNE) Viewer
	4.6 JWeather
	4.6.1 Background Research on Contemporary Weather Visualization Techniques
	4.6.2 Access to Real-Time Weather Data
	4.6.3 JView Based Visualizations for 4D Weather Data
	4.6.4 User Interface
	4.6.5 Collaboration

	4.7 Wacom Notepad
	4.7.1 Drawing Curved Lines
	4.7.2 Anti Aliasing
	4.7.3 Performance
	4.7.4 Multiple Pages
	4.7.5 World “Drawer”

	4.8 3D Model Tools
	4.8.1 Model Preview Application
	4.8.2 FLT Model Adjustment Tool

	4.9 JView Demo Browser
	4.10 3D Models

	5.0 CONCLUSIONS
	REFERENCES
	ACRONYMS

