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We present calculations of energetic, electronic, and vibrational properties of silicon using a nonorthogonal
tight-binding~TB! model derived to fit accurately first-principles calculations. Although it was fit only to a few
high-symmetry bulk structures, the model can be successfully used to compute the energies and structures of
a wide range of configurations. These include phonon frequencies at high-symmetry points, bulk point defects
such as vacancies and interstitials, and surface reconstructions. The TB parametrization reproduces experimen-
tal measurements andab initio calculations well, indicating that it describes faithfully the underlying physics
of bonding in silicon. We apply this model to the study of finite temperature vibrational properties of crystal-
line silicon and the electronic structure of amorphous systems that are too large to be practically simulated with
ab initio methods.

I. INTRODUCTION

As the capabilities of materials simulations increase, so
does the demand for methodologies that can capture the im-
portant physics accurately while being fast enough to simu-
late large systems for long periods of time. Semiconductors
such as silicon, where the quantum-mechanical nature of the
electrons mediating the directional interatomic bonding is
important, have been especially challenging to describe ac-
curately using empirical potential interactions.1 The simplest
method that captures the quantum-mechanical nature of the
electrons, the minimal basis tight-binding~TB! model, is be-
coming a popular method for simulating such systems.2–10

The main challenge in developing these models has been the
determination of the Hamiltonian matrix elements~and in the
case of nonorthogonal bases, the overlap matrix elements! as
a function of interatomic distance. The most common ap-
proach is to fit the results of either total-energy calculations
or band-structure features to experiment orab initio calcula-
tions, assuming a particular functional form with some free
parameters for the distance dependence of the matrix ele-
ments. Most of the models in the literature, however, suffer
from certain shortcomings. Many models assign a large part
of the total energy of the system to a repulsive pair potential
to compensate for adopting an orthogonal set of basis
orbitals.2,5,6Some models do not give an accurate description
of the band structure of the ground state,7 or the energetics of
important features of bulk semiconducting systems, such as
point defects.3,4 Some models were intended for use for a
specific application, and were optimized and tested only for
geometries relevant to that application.9 Finally, other mod-
els use a very large number of free parameters and fit a very
large number of structures, leading to potentially unphysical
values for the parameters and the suspicion that the good fit
to the data set may not guarantee reliability.8

In the past, TB models have mainly been used as interpo-
lative schemes assuming that the configurations that were
being fit will encompass the configurational space where the
model will be used. In this paper we use the~nonorhogonal!
NRL-TB method,11 an extrapolative method that uses param-
eters obtained from fittingab initio calculations of a few
high-symmetry structures, to compute the energies of a wide
range of geometries for silicon. We find that the results com-
pare very well toab initio calculations for configurations that
are substantially different from those included in the fitting
data set. This increases our confidence that the reason for the
accurate results in the tested configurations is that the phys-
ics underlying the model is correct.

This paper is organized as follows: In Sec. II we describe
the functional form of our TB parametrization and the fitting
data set. In Sec. III we discuss applications of the TB model
to bulk properties such as the diamond lattice band structure
and energies of other lattices, point defect properties such as
formation and relaxation energies, and surface energies and
reconstructions. We also report on two applications of the
TB model that would be impractical withab initio methods,
one using molecular dynamics~MD! simulations to compute
finite temperature properties of the bulk crystal, and another
using the model to compute electronic properties of large
amorphous systems. In the final section we summarize the
results.

II. FUNCTIONAL FORM AND FITTING

In this paper we present results for two parametrizations,
one using asp3 basis, which has already been presented in
some detail,10 and another using asp3d5 basis. Since their
functional forms are nearly identical and have already been
presented, we will only give a brief summary here. The total
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energy of the system is written as the sum of the energies of
the occupied electronic eigenstates. The onsite Hamiltonian
matrix elements vary with the local density, allowing the
NRL-TB method be fit to linearized augmented plane wave
~LAPW! eigenvalues that have been shifted so that the
LAPW total energy is equal to the eigenvalue sum. There-
fore all of the contributions to the total energy are accounted
for in the eigenvalue sum and the addition of a repulsive pair
potential, a feature common to most TB models, is not
needed.

The energies of the electronic states and the correspond-
ing eigenvectors are the solutions to a generalized eigenvalue
equation with Hamiltonian and overlap matrix elements pa-
rametrized as follows: The basis used to describe the Hamil-
tonian and overlap matrices is a set of ones, threep, and for
one of the parametrizations fived orbitals around each atom,
with all interactions assumed to be in the two-center
approximation.12 A local atomic density at atomi is defined
as

r i5(
j

e2l2uRW j 2RW i u f ~ uRW j2RW i u!, ~1!

whereRW i is the position of atomi andl is a fitting param-
eter. The cutoff functionf (R) is given by

f ~R!5
F11expS R2Rc15Lc

Lc
D G21

R<Rc

0 R.Rc ,

~2!

whereRc is 12.5 a.u. andLc is 0.5 a.u. The onsite matrix
elements are given in terms of the local atomic densityr i as

hil 5a l1b lr i
2/31g lr i

4/31x lr i
2 , ~3!

wherel is the orbital type index (s, p, or d) anda l , b l , g l ,
andx l are fitting parameters. The distance dependent parts of
the two-center Hamiltonian matrix elements are given by

Hll 8m~R!5~all 8m1bll 8mR1cll 8mR2!exp~2gll 8m
2 R! f ~R!,

~4!

wherel and l 8 are orbital type indices,m is an index for the
type of interaction between orbitals (s, p, or d), and the
parametersall 8m bll 8m , cll 8m , and gll 8m are fitting param-
eters. The distance dependent parts of the overlap matrix
elements are

Sll 8m~R!5~d l l 81t l l 8m1qll 8mR1r ll 8mR2!

3exp~2ull 8m
2 R! f ~R!, ~5!

where t l l 8m , qll 8m , r ll 8m , and ull 8m are fitting parameters,
and d l l 8 is the Kronecker delta. Note that the symbols for
some of the parameters are different from those used in Ref.
10. The overlap matrix elements have similar functional
form to the Hamiltonian matrix elements, but are constrained
to go to the correct value, zero or one, at zero interatomic
separation. The angular dependence of the Hamiltonian and
overlap matrix elements is the standard two-center Slater-
Koster form.12

The 41 parameters used by the functional form for thesp3

basis parametrization are fit to four high-symmetry crystal

lattices: simple cubic~sc!, face-centered cubic~fcc!, body-
centered cubic~bcc!, and the diamond structure. The fitting
data set includes both the total energy and band structure of
each lattice, as computed by LAPWab initio density-
functional theory~DFT! calculations in the local-density ap-
proximation~LDA! for a wide range of volumes around the
energy minimum. The diamond lattice data included the wid-
est range of volumes, from 12.2 Å3/atom to
22.7 Å3/atom. The sc lattice structures ranged from
12.6 Å3/atom to 18.5 Å3/atom, the fcc lattice from
12.7 Å3/atom to 15.0 Å3/atom, and the bcc lattice from
13.0 Å3/atom to 16.0 Å3/atom. The best-fit root-mean-
square~rms! error of the valence-band energies for the dia-
mond lattice is 0.12 eV, and the rms error for the crystal
lattice total energies is 0.020 eV.

The sp3d5 basis parametrization has 69 parameters,
which were fit to the diamond lattice band structure at vol-
umes ranging from 13.5 Å3/atom to 22.7 Å3/atom. This
set of parameters does not allow for any Hamiltonian or
overlap matrix elements between differentd orbitals, but al-
lows all interactions betweens and p orbitals, as well ass
2d andp2d interactions. Since this model is optimized for
accuracy in the band structure, we adjusted the DFT/LDA
calculations, which predict an indirect gap of 0.5 eV, by
applying a uniform shift of 0.67 eV to the conduction bands
of the ideal volume diamond lattice, matching the band gap
to the experimental result.13,14 For the other lattice constants
in the fit we shifted the conduction band so that the gap was
scaled up by a factor of 1.17/0.552.34. The shift amount
increased monotonically from 0.67 eV for larger volumes
and decreased monotonically for smaller volumes. The best
fit rms error for the diamond lattice valence band and lower
two conduction bands is 0.21 eV, and the rms error for the
diamond lattice total energies is 0.004 eV.

The parameters that result from this fit for thesp3 and
sp3d5 basis models are listed in Tables I and II, respectively.
The sp3 basis Hamiltonian and overlap matrix elements are
plotted in Fig. 1, and the onsite matrix elements for the dia-

TABLE I. Parameters for thesp3 basis tight-binding model.

Onsite parameters
l 1.1036
Orbital a ~Ry! b ~Ry! g ~Ry! x ~Ry!

s 20.0532 20.9076 28.8308 56.5661
p 0.3579 0.3036 7.0922 277.4786

Hamiltonian matrix parameters
Interaction a ~Ry! b ~Ry/a.u.! c ~Ry/a.u.2) g ~a.u.21/2)

Hsss 219.5608 216.2132 215.5049 1.2644
Hsps 10.1279 24.4039 0.2267 0.9227
Hpps 222.9590 1.7208 1.4191 1.0314
Hppp 10.2654 4.6718 22.2162 1.1113

Overlap matrix parameters
Interaction t ~a.u.21) q ~a.u.22) r ~a.u.23) u ~a.u.21/2)

Ssss 5.1576 0.6600 20.0815 1.1081
Ssps 8.8736 216.2408 5.1823 1.2407
Spps 11.2505 21.1701 21.0591 1.1376
Sppp 2692.1842 396.1532 213.8172 1.5725
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mond structure are plotted in Fig. 2. The variation of the
onsite matrix elements with nearest-neighbor distance is
structure dependent because they have a nonlinear depen-
dence on the density, which is itself a structure-dependent
quantity. Note that thesss, pps, andppp Hamiltonian and
overlap parameters have the expected sign, while thesps
parameters are opposite in sign to the usual convention.12

However, this sign is not physically meaningful, since it is
determined by the~arbitrary! choice of sign of thes and p
basis orbitals, and does not affect the eigenvalues or energies
computed with the model. Cohenet al. have also used a
similar method to generate parameters for silicon.9 They
used a somewhat different functional form and concentrated
their fitting and tests on high-pressure phases. Since we are
interested in applying this TB model to complex structures,
including defects and surfaces, but at or near atmospheric
pressure, we have employed a different set of geometries for
our fitting data set.

III. APPLICATIONS

To test the transferability of thesp3 parameters we com-
puted the total energy of a range of structures important for
condensed phases of silicon including bulk systems, point
defects, and surfaces. First we review the diamond lattice
band structure, cohesive energies of a number of bulk lattices
as a function of volume, and the elastic constants of the
diamond structure, as presented in Ref. 10. To address the
issue of improving the diamond lattice band structure we

present an electronic structure calculation using thesp3d5

parametrization. We expand our analysis of thesp3 param-
eters to include phonon spectra at several high-symmetry
points. As a more stringent test we use this parametrization
to compute the energies of some lower-symmetry configura-
tions. For the bulk we simulate important point defects, in-
cluding several low-energy interstitial configurations, the va-
cancy, and the concerted exchange pathway for diffusion.
For the (100) and (111) surfaces we compute ideal surface
energies as well as relaxation energies for a number of re-
constructions. From MD simulations we compute the mean-
squared atomic displacement for a range of temperatures, the
vibrational density-of-states, and the phonon-dispersion rela-
tions. Finally, we use thesp3d5 basis model to study the
electronic structure of large amorphous systems.

A. Bulk

The band structure of the diamond structure lattice, which
was part of the fitting data set, is shown in Fig. 3. The va-
lence band is in very good agreement with LAPW calcula-
tions. The conduction band is not as well described, with the

FIG. 1. Hamiltonian matrix elements~upper panel!and overlap
matrix elements~lower panel!for thesp3 parametrization plotted as
a function of interatomic distance.

FIG. 2. Onsite matrix elements for thesp3 parametrization for
the diamond structure plotted as a function of the lattice constant.

TABLE II. Parameters for thesp3d5 basis tight-binding model.

Onsite parameters

l 1.1108
Orbital a ~Ry! b ~Ry! g ~Ry! x ~Ry!

s 20.0555 21.1131 27.3201 74.8905
p 0.4127 20.0907 5.3155 244.0417
d 0.9691 20.9151 25.9743 602.0289

Hamiltonian matrix parameters
Interaction a ~Ry! b ~Ry/a.u.! c ~Ry/a.u.2) g (a.u.21/2)

Hsss 234.6937 218.6013 215.0266 1.2502
Hsps 9.5555 24.1279 0.2499 0.8761
Hpps 222.6782 1.3611 1.3879 1.01655
Hppp 21.5942 4.7914 21.5693 1.1030
Hsds 27571.4416 2.2354 7.0122 1.6234
Hpds 21.8087 23.4695 27.7637 1.6294
Hpdp 0.8933 0.1058 20.0224 0.8217

Overlap matrix parameters
Interaction t ~a.u.21) q ~a.u.22) r ~a.u.23) xu ~a.u.21/2)

Ssss 2.4394 0.9091 20.0749 1.0590
Ssps 212.0027 214.6860 6.1856 1.2218
Spps 13.9608 21.1961 21.2606 1.1118
Sppp 188.0012 2143.3625 33.5043 1.4340
Ssds 11.4724 20.4454 20.5838 1.0598
Spds 20.6071 0.05789 0.0221 0.8130
Spdp 22.1340 20.5209 20.0948 1.0580
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minimum indirect gap of 1.02 eV appearing at theL point
rather than at approximately three fourths of the way from
the G to the X point as first-principles calculations and ex-
periments have established. The size of the gap is somewhat
smaller than the experimental value of 1.17 eV,15 although it
is larger than the DFT/LDA prediction to which it was fitted.

We have addressed the issue of obtaining a better fit of
the gap and the conduction band and came to the following
conclusions. The addition of fived orbitals to the basis im-
proves the fit of the conduction band, as can be seen in Fig.
3. The lowest-energy conduction band is nearly perfect when
compared to a LAPW calculation with a rigid 0.67 eV shift
of the conduction bands,13,14 and the higher bands are also
closer to the LAPW calculation than with thesp3 basis
model. The valence bands are very well described, although
the lowest band at theG point is too flat. The density-of-
states~DOS!, including its decomposition into contributions
from different angular momentum states~which is found us-
ing TB eigenvectors that were not fitted!, is also in very good
agreement with DFT/LDA calculations. The three peaks in
the valence band are clear, as is the decomposition into

mainly s character in the lowest peak, mixeds andp charac-
ter in the middle peak, andp character in the third peak.
There is very littled character in the valence band, while the
conduction band is mainly of mixedp andd character, with
smallers contribution.

To obtain such a good fit for the band structure thesp3d5

model was fit only to the full diamond lattice band structure
at all volumes. The lack of other structures and energy infor-
mation in the fitting data set deteriorates the energetics of the
model. We decided that the best compromise is to use the
minimal sp3 basis for all total-energy calculations presented
in this paper, and to use thesp3d5 to compute the electronic
structure of amorphous silicon presented later in this section.
We note in passing that in his book, Papaconstantopoulos16

was able to obtain a good fit of the conduction band near the
gap with asp3 basis model. However, that work differs from
the present approach in two important ways: first, it utilizes
three-center integrals and second, it treats the Hamiltonian
and overlap matrix elements for the first three neighbor
shells as independent parameters, rather than giving them as
an analytical functional form that varies with distance. These
differences provide the flexibility that produces a better fit to
the conduction states.

The total energies as a function of volume for a wide
range of structures are shown in Fig. 4, and their equilibrium
structural and energy properties are listed in Table III. All of
the structures have higher energy than the diamond structure,
including some low-energy, rarely examined theoretical
phases such as hexagonal diamond and the clathrate
structures.17 The TB model reproduces the LAPW results
very well for the four structures to which it was fit, as can be
seen from the equilibrium energies, volumes, and bulk
moduli listed in Table IV. These quantities were computed
using a Birch fit18 to the fitting data and thesp3 TB model
calculations. The elastic constants of the ground-state dia-
mond structure are listed in Table V. Those that do not in-
volve shear,c11 andc12, are within 22% of LAPW calcula-
tions and 14% of experiment.19 The shear elastic constant
computed without allowing for relaxation of the internal de-
grees of freedom of the two-atom unit cellc44* , is 34% larger
than the LAPW result. Allowing for the internal relaxation
bringsc44 within 19% of experiment.19 A detailed compari-

FIG. 3. Band structure of Si in the diamond lattice computed
with thesp3 ~upper panel!andsp3d5 ~middle panel!bases, and the
density-of-states for thesp3d5 model~bottom panel!. Dashed lines
are TB results, solid lines are DFT/LDA results~a rigid shift has
been applied to the DFT/LDA conduction-band results used for the
sp3d5 basis model!. All energies are referred to as the valence-band
maximum.

FIG. 4. Total energy vs volume for the diamond structure as
well as a number of crystal structures for Si not included in the
fitting, computed using the TB model. Si34 is a clathrate structure,
BC8 is the body centered eight-atom structure,b-Sn is the structure
of the b phase of tin, and hcp is the hexagonal-close packed struc-
ture.
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son of the energetic and structural parameters of two clath-
rate structures, Si34 and Si46, comparing results of our TB
model with experiment, DFT calculations, and results of an
orthogonal TB model, is shown in Table VI. The energy
differences between the clathrates and the diamond structure
are lower than in DFT calculations, although they are of the
correct sign. The structures, including both the lattice con-
stant and the internal structural parameters of the basis, are
within 1% of the experimental values.20,21 This agreement is
as good as that provided by DFT/LDA plane-wave
calculations22 or by anab initio localized orbital method,17

and substantially better than the orthogonal TB model of
Goodwinet al.2 tested by Kahn and Lu.23

Phonon frequencies at high-symmetry points in the Bril-
louin zone~BZ! computed with the TB model using the fro-
zen phonon approximation are compared with experimen-
tally measured values in Table VII.24 The agreement is quite
good: the TB results are within 15% of experiment for all but
three of the modes, theX3 , L1, andW2 modes, which are off
by about 25%, 30%, and 60%, respectively. While this good
description of the phonon spectra is a nontrivial test of the

model, it represents only infinitesimal deviations of atomic
positions from the diamond structure, which was part of the
fitting data set. In the following sections we show that this
TB model can also accurately describe the energies of con-
figurations that are substantially different from those in the
fitting data set.

B. Point defects

The ground-state structure for silicon is the covalently
bonded, open network of the diamond structure. Since strong
covalent bonds in the ideal lattice allow for little atomic
motion at temperatures below the melting point, processes
such as diffusion are dominated by point defects, which are
far more mobile than perfectly bonded atoms.25 The forma-
tion energy of such defects strongly influences their concen-
trations and is therefore an important material property. In

TABLE IV. Equilibrium energy relative to the diamond struc-
ture ~E! in eV per atom, volume~V! in Å 3 per atom, and bulk
modulus~B! in GPa, for the lattice structures in the fitting data set,
computed with thesp3 TB model and with LAPW DFT/LDA.

Lattice TB DFT/LDA

Diamond E 0.000 0.000
V 19.97 19.78
B 108.3 96.4

sc E 0.279 0.338
V 15.17 15.76
B 101.5 105.6

fcc E 0.495 0.484
V 14.28 13.85
B 117.1 93.54

bcc E 0.474 0.439
V 13.58 14.08
B 88.56 111.3

TABLE III. Equilibrium energies and structural features of hy-
pothetical crystal lattices for Si computed with thesp3 TB model.E
is equilibrium energy relative to the diamond structure in eV per
atom, V is the volume in Å3 per atom, andc/a is the unit cell
aspect ratio.The internal structural parameterx for the H-Dia struc-

ture is the position (13 , 2
3 ,x) of the atom at site 4f , and for the BC8

structure is the position (x,x,x) of the atom at site 16c. Notation for
the lattice types is the same as in Fig. 4

Lattice E V c/a x

Dia 0.000 19.97
H-Dia 0.021 19.94 1.647 0.0630
BC8 0.229 18.05 0.1008
b-Sn 0.357 14.56 0.5278
SH 0.389 14.93 0.9479
v 0.480 13.77 0.5917
HCP 0.498 14.04 1.637

TABLE V. Elastic constants in GPa for the diamond structure,
computed with thesp3 TB model, LAPW DFT/LDA calculations,
and experiment.c44* is the shear elastic modulus computed without
allowing for relaxation of the internal degrees of freedom in the
two-atom unit cell.

TB DFT/LDA Expt. a

c11 179 152 166
c12 73 60 64
c44* 135 101
c44 95 80

aFrom Ref. 19.

TABLE VI. Energy differencesDE relative to the diamond
structure and structural parameters for the two optimized clathrate
structures, Si34 and Si46. DE is given in eV/atom, the lattice con-
stant a0 is given in Å , and the internal parameters are given in
terms of the lattice constant. Using the notation of Ref. 17, the
parameters of the Si34 structure are the position (xe ,xe ,xe) of the
atom at site 32a, and the position (xg ,xg ,zg) of the atom at site
96g. The parameters of the Si46 structure are the position (xi ,xi ,xi)
of the atom at site 16iand the position (0,yk ,zk) of the atom at site
24k. PW denotes plane-wave basis DFT/LDA calculations from
Ref. 22, LO denotes local orbital DFT/LDA calculations from Ref.
17, OTB denotes the orthogonal tight-binding results from Ref. 23,
and NRL-TB denotes the present paper. Note that the experimental
samples are actually of NaxSi34 with x,11, and Na8Si46.

Exper. PW LO OTB NRL-TB

Si34

DE 0.077 0.055 0.004
a0 14.62 14.55 14.864 14.479 14.543
xe 0.219 0.2171 0.2174 0.2020 0.2171
xg 0.183 0.1825 0.1824 0.1823 0.1824
zg 0.371 0.3705 0.3701 0.3703 0.3704

Si48

DE 0.069 0.018
a0 10.19 10.355 10.055 10.089
xi 0.183 0.1837 0.1835 0.1835
yk 0.116 0.1172 0.1174 0.1171
zk 0.310 0.3077 0.3077 0.3082
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Table VIII we list the formation energies of three interstitial
configurations, the tetrahedral, hexagonal, and^110& split,
and of the vacancy. All defect energies were computed using
a 16.29 Å cube cell with 21661 atoms, and sampling the BZ
at the G point. To compute the relaxed configurations a
conjugate-gradient algorithm was used,26 with the atomic po-
sitions relaxed until the force on each atom was less than 3
meV/Å . In agreement withab initio calculations thê 110&
split is the lowest-energy interstitial configuration, followed
by the tetrahedral and hexagonal configurations.27,28The for-
mation and relaxation energies of all three interstitial con-
figurations are within 10% of the range of DFT/LDA
calculations.27–29 The formation energy of the ideal vacancy
is also accurately predicted, although its relaxation energy is
about twice as large as DFT/LDA calculations predict.27,30

The relaxed geometries are in approximate agreement
with ab initio results,27,28,30although there are some differ-

ences. The tetrahedral interstitial reduces its symmetry, with
three of the four atoms that surround it relaxing outward and
the fourth relaxing inward, while the interstitial atom itself
moves parallel to the fourth atom. A diagram of this configu-
ration, shown in Fig. 5, makes clear that the relaxed intersti-
tial atom has moved part way~0.34 Å! towards a hexagonal
site without significantly stretching (,2.5%) any of its
bonds. This geometry differs from the DFT/LDA work
where the relaxed interstitial had the full symmetry of the
initial configuration,27 although whether those calculations
were restricted to maintain tetrahedral symmetry or simply
found no energy gain from breaking the symmetry is not
stated. The hexagonal interstitial retains its ideal hexagonal
symmetry with the six ring atoms moving outward by 0.1 Å,
in perfect agreement with the DFT/LDA results.27 The four
atoms around vacancy relax inward by about 0.28 Å , in
good agreement with DFT/LDA calculations, which find an
inward relaxation of 0.25 Å . However the structure keeps
the full tetrahedral symmetry rather than reducing to the
symmetry of the tetragonal structure thatab initio calcula-
tions predict.27,30

To test the accuracy of the TB model in describing the
breaking of bonds within a relatively undisturbed solid we
computed the energy for the concerted exchange pathway for
diffusion.31,32 The energy along the path for the ideal and
relaxed configurations, as well as DFT/LDA results,31,32 are
plotted in Fig. 6. The ideal energy is within 22% of the
DFT/LDA calculation throughout the path, with no spurious
minima. The relaxation energy is substantially too high, al-
though the relaxed length of the bond between the diffusing
atoms of 2.15 Å is nearly identical to the DFT/LDA result.

Point defect configurations include substantial deviations
from the ideal lattice geometry and several inequivalent
atomic sites. In such a situation it is possible for charge to be
transfered between atoms. If this charge transfer is substan-
tial, the applicability of a model with no Coulombic interac-
tion or charge self-consistency may be in doubt. The varia-
tion of the onsite energies in our TB model could potentially
exacerbate this effect. To measure the amount of charge
transfer we performed a Mulliken population analysis on the

TABLE VII. Phonon frequencies~in cm21) at high-symmetry
points of the BZ computed with the TB model and measured ex-
perimentally.D5(0,0,p/a) andS5(0,p/2a,p/2a).

TB Exp.a

G 531 518
X1 ~L! 405 415
X3 ~L! 508 406
X4 ~T! 160 150
L1 ~L! 553 417
L2 ~L! 333 383
L31 ~T! 533 487
L32 ~T! 127 114
W1 371 403
W2 221 140
W28 514 470
D1 ~L! 235 237
D3 518 500
D4 144 131
D48 525 474
S1 238 270
S18 528 500
S2 150 141
S3 210 201
S38 452 464
S4 525 480

aFrom Ref. 24.

TABLE VIII. Formation energiesEf
ideal and relaxation energies

DEf
relax , in eV, for point defects computed using the TB model and

comparison to DFT/LDA results. Since the structure of the ideal
split interstitial is not uniquely defined, the energy listed under
Ef

ideal is actually the relaxed formation energy.

TB LDA a

Ef
ideal DEf

relax Ef
ideal DEf

relax

^110& split interstitial 3.7 3.3
Tetrahedral interstitial 4.8 0.3 3.7–4.8 0.1–0.2
Hexagonal interstitial 5.4 0.5 4.3–5.0 0.6–1.1
Vacancy 4.2 1.0 3.3–4.3 0.4–0.6

aFrom Refs. 27–30.

FIG. 5. Structure of the tetrahedral interstitial in ideal~white
spheres!and relaxed~black spheres!configurations, with bonds
connecting atoms within 2.5 Å . The geometry is viewed along the

^110& direction with the^11̄1& direction pointing up.
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vacancy, the tetrahedral interstitial, and the hexagonal inter-
stitial. The deviation of the charge from neutrality~four elec-
trons per atom!was modest, less than half an electron in
every case, and as low or lower for the relaxed configura-
tions as for the ideal ones. By comparison, a nonorthogonal
TB model7 with constant onsite energies predicted somewhat
smaller charge transfers~by 30% to 50%!, except for the
ideal tetrahedral interstitial where it predicted20.65e as
compared with20.35e on the interstitial atom. This com-
parison indicates that the variation of the onsite elements
does not substantially increase the charge transfer, which are
neglected by most TB models.

C. Surfaces

The properties of the silicon surface are critical for pro-
cesses such as surface growth and etching. Since atoms on a
surface have an asymmetric environment and lower coordi-
nation than in the bulk, the resulting configurations are quali-
tatively different from the types of geometries that this TB
parametrization was fitted to. Therefore, surface structures
provide an important test of the transferability of the param-

eters. We compute the surface energies of the ideal~100!and
~111! surfaces, as well as the relaxation energies for some
simple but representative reconstructions of these surfaces.
For both surfaces we use a symmetric slab configuration@24
layers for the~100! surface, 6 bilayers for the~111! surface#
and a set ofk points equivalent to a 434 mesh in the full
planar BZ of the 131 surface unit cell. For the~100!surface
we examined the 231 buckled dimer reconstruction, and for
the ~111! surface we examined 232 reconstructions with
adatoms at three inequivalent sites, theT4 , H3, andB2. The
results of these calculations are listed in Table IX.

The energetics of the ideal surfaces are in agreement with
DFT/LDA calculations,33,34 with the ~111! surface about 0.8
eV lower in energy than the~100! surface. Both the relax-
ation energy and the structure of the buckled dimer recon-
struction of the~100! surface are in good agreement with
DFT/LDA calculations.33,35,36 One of the three adatom re-
constructions of the~111!surface, with the adatom at theT4
site, is related to the dominant features of the ground-state
737 reconstruction.37 The H3 adatom site is a metastable
position that is involved in the diffusion of adatoms. The
energy of theB2 site, which lies halfway along the path
connecting theT4 and H3 sites, determines the barrier for
migration between them.

The TB model predicts the same ordering in energy as
DFT/LDA calculations for the three adatom sites,34,38,39 an
improvement over previous nonorthogonal TB models.7 The
agreement is not quantitative, however, as the TB model
overestimates the binding energy of the adatom at theT4 site
by about 50%. In this position the adatom forms a bond of
length of 2.34 Å to the atom underneath, and bonds of length
2.42 Å to the three next-nearest-neighbors. DFT/LDA calcu-
lations predict corresponding bond lengths of 2.43 Å and
2.47 Å .34 The surface atom that does not form bonds to the
adatom, called the rest atom, makes three bonds of length
2.38 Å with angles of 100.5°, in very good agreement with
the DFT/LDA result of 2.34 Å long bonds with angles of
99.9°. The binding energy of the adatom in theH3 site is
somewhat underestimated as compared with DFT/LDA
calculations.34,39 In this site the adatom makes three 2.39 Å

FIG. 6. Energy along the concerted exchange pathway for the
diffusion of atoms without vacancies or interstitials. DFT/LDA cal-
culations of the ideal configuration from Ref. 31 are plotted in a
solid line, TB calculations of the ideal configurations in a dashed
line, and TB calculations of the relaxed configurations in a dot-dash
line. The relaxed DFT/LDA value is only available for the saddle
point.

TABLE IX. Surface energiesg ~in eV per 131 surface unit cell!, for the (100) and (111) surfaces of Si,
relaxation energiesDg ~in eV per 131 surface unit cell!relative to the ideal surface, and selected structural
features, computed using the TB model and compared with DFT/LDA results.

TB DFT/LDA a

(100) surface
Ideal surface g ~eV! 2.13 2.5
131 relaxed surface Dg ~eV! 20.02 20.03
231 buckled dimer recons. surf. Dg ~eV! 20.90 20.93
dimer bond length d ~Å! 2.36 2.19
dimer tilt angle u 17° 15°

(111) surface
Ideal surface g ~eV! 1.31 1.39
131 relaxed surface Dg ~eV! 20.02
232 T4 adatom reconstruction Dg ~eV! 20.45 20.27 – 20.30
232 B2 adatom reconstruction Dg ~eV! 20.04 20.10
232 H3 adatom reconstruction Dg ~eV! 20.12 20.16 – 20.25

aFrom Refs. 33–36 and 39.
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bonds with its nearest neighbors. No DFT/LDA results for
adatom-surface bond lengths are available. The rest atom
makes three 2.40 Å long bonds with angles of 101.1°, as
compared with 2.34 Å long bonds with angles of 104.9° in
DFT/LDA calculations. In theB2 site the TB model adatom
makes two bonds of length 2.33 Å with the surface. The
binding energy in this configuration is underestimated as
compared to the DFT/LDA result.39

D. Finite temperature properties

To examine some finite temperature properties of the dia-
mond structure crystal we used the NRL TB-MD molecular-
dynamics package40 developed by Kirchhoff to evolve a 512-
atom unit cell at constant energy for 2000 molecular-
dynamics time steps~each step corresponds to 2.0 fs!,
varying the initial kinetic energy of the atoms. From the
resulting positions we computed the mean-squared displace-
ment. This quantity, plotted against the temperature mea-
sured in the sample, is shown in Fig. 7. A linear fit of the
mean-squared displacement gives a slope of 1.72
3105 Å 2/K. In comparison, the Debye temperature, ex-
tracted from experimental measurements of the temperature
dependence of x-ray diffraction peak broadening,41 corre-
sponds to a mean-squared atomic displacement temperature
coefficient of 1.753105 Å 2/K.42

From the Fourier transforms of velocity autocorrelation
functions calculated during MD simulation we obtained the
vibrational density-of-states.43 The phonon-dispersion curves
were extracted from the Fourier transform of the velocity and
position dependent autocorrelation function for a given po-
larization andk vector.43 The vibrational densities-of-states
from two MD simulations, one at 300 K and one at 1500 K,
are plotted in Fig. 8. The overall shapes are quite similar,
although the high-temperature curve is smoother. The peaks
are shifted to lower frequencies at 1500 K, indicating a soft-
ening of the vibrational modes. The corresponding phonon-
dispersion relations are plotted in Fig. 8, and compared
against experimental values extracted from the graphs of
Ref. 44. The dispersion relations from the 300 K MD simu-
lation are in good agreement with experiment. The only sig-
nificant errors are an underestimate of the frequencies of the
second branch between theG andL points @L1(A) # and an
overestimate of the frequencies of the highest two branches
near theX point @D5(O), D28(O), S2(O), and S1(O)].

Some, although not all, of the vibrational frequencies in the
1500 K MD simulation are lower than at 300 K, a result that
is consistent with the differences between the vibrational
densities-of-states in Fig. 8. The high-frequency branches
have the largest shifts, with many of them shifting down by
0.5 THz, about 5%. The low-frequency branches, with the
exception of theL direction, also shift down, with a particu-
larly prominent shift of the second branch at theK point
@S3(A) #.

E. Amorphous structures

As an illustration of the expanded modeling capabilities
offered by the present TB parametrizations for Si, we study
the electronic properties of bulk and surface structures in
amorphous Si~a-Si!. We emphasize at the outset that the
following discussion is concerned mostly with demonstrating
the capabilities of the approach, rather than the physics of
a-Si, the latter being a broader problem beyond the scope of
the present paper.

Based on many experimental and theoretical studies,45,46

it is widely accepted that a-Si has the basic structure of a
continuous random network~CRN! of tetrahedrally bonded
atoms,47–49 but the question of defects has been the subject
of considerable debate in recent years50,51 and remains
controversial.52 Experimental results appear to favor under-
coordinated, three-fold bonded atoms as the dominant de-
fects ~so-called ‘‘dangling bonds’’!. On the other hand, the-
oretical simulations, using a wide variety ofab initio,52,53

semiempirical54–56 and empirical57–63 methods, consistently
produce both undercoordinated as well as overcoordinated
~fivefold bonded!defects, with a significant preference for
the latter. The type of bonding arrangements at the surface of
a-Si is even less clear than in the case of bulk defects, since

FIG. 7. Mean-squared displacement of atoms in the diamond
lattice as a function of temperature. The points are computed from
MD simulations, the solid line is a linear fit going through the
origin, and the dashed line is a line with a slope corresponding to
the experimental measurement as discussed in the text.

FIG. 8. Vibrational densities-of-states~upper panel!and phonon
dispersion curves~lower panel!extracted from the velocity-velocity
correlation function computed during a molecular-dynamics simu-
lation at 300 K ~solid line! and 1500 K~dashed line!. Dots are
experimental data measured at or below 300 K, extracted from the
figures in Ref. 44.
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surface-specific measurements are not readily available. It
has been reported thatab initio relaxation of a bulk-
terminated CRN model produces a surface with roughly
equal numbers of threefold and fivefold bonded atoms.64 De-
viations from the tetrahedral bonding pattern, either in the
bulk or at the surface, are crucial in determining the elec-
tronic properties of the material because they introduce states
in the gap.52–54,64,65

In order to study the electronic properties of bulk and
surface a-Si, we first prepare a 32.9 Å365.8 Å
316.5 Å bulk amorphous sample with 1728 atoms. Be-
cause such a large sample is impractical to generate using
any electronic structure based simulation method, we simu-
late the quenching of the liquid with an interatomic
potential,66 following a procedure similar to the one used in
Ref. 62. The resulting structure has over 96% tetrahedral
coordination, with only fivefold coordinated defects.

To model the surfaces of a-Si, we considered two quali-
tatively different 1728 atom slabs. The ‘‘cleaved sample’’ is
created from the bulk structure by turning off the periodic
boundary conditions in the third direction. The ‘‘quenched
sample’’ is created directly from the liquid phase by turning
off periodic boundary conditions in the third direction and
quenching the resulting liquid slab with the interatomic po-
tential. Not surprisingly, the quenched surfaces are slightly
rougher ~by about 1 Å! than the cleaved surfaces. The
cleaved surfaces regions contain mostly~65%! fourfold co-
ordinated atoms, with a predominance of threefold~29%!
over fivefold~6%! coordinated atoms. On the other hand, the
quenched surfaces have somewhat higher fourfold coordina-
tion ~72%!, with many~27%! fivefold and almost no~1%!
threefold coordinated atoms. Note that these surfaces are
fully reconstructed, and therefore ‘‘bulk’’ concepts of defects
do not apply; many of the fourfold coordinated atoms do not
have tetrahedral bond angles, and the fivefold coordinated
atoms tend to appear in clusters near the top layer of the
surface, rather than as isolated floating bonds below the top
layer.

While the size of these samples makes calculating their
electronic structure with first-principles methods impractical,
the sp3d5 basis TB parametrization described in Sec. II
makes such a study feasible. In Fig. 9 we compare the elec-
tronic DOS of the three amorphous samples computed with
the TB model~see also Fig. 3 for the diamond structure
crystal electronic DOS!. The bulk amorphous sample DOS is
much smoother than the crystal, in agreement with other
simulation results.53,67 There are only two peaks in the va-
lence band, corresponding to the highest and lowest peaks of
the DOS of the crystal. Despite the structural differences
between the two surface models, their overall DOS is quite
similar, showing that the electronic signatures of undercoor-
dinated and overcoordinated atoms at the amorphous surface
are difficult to distinguish. This result is consistent with the
arguments of Pantelides for bulk defects.50 The DOS of the
surface samples differ from that of the bulk sample essen-
tially only in the gap region. This indicates that all surface-
related defects produce gap states, consistent with analogous
results for bulk defects.52,54,65 It is also interesting that the
surface DOS above the gap region is depleted relative to the
bulk one. A more detailed analysis of these results will be
given elsewhere.68 Here, we wish to point out only the effi-

ciency of the approach in generating reliable electronic struc-
ture information for large systems.

IV. SUMMARY

We have applied the NRL-TB method to generate TB
models for Si that were fit to LAPW results of a small num-
ber of high-symmetry crystal structures. We found that the
resulting Hamiltonians are transferable to a much wider
range of geometries. A model with a nonorthogonalsp3 ba-
sis reproduces DFT/LDA and experimental measurements
for a wide range of material properties, including elastic con-
stants and phonon frequencies, point defect formation ener-
gies, and surface energies and reconstructions. In fact, this
TB model is as good or better at describing the energetics of
point defects than some models that included such structures
in their fitting process. It is also the only nonorthogonal TB
model we are aware of that correctly describes the energy
sequence of different adatom configurations on the~111!sur-
face of silicon. The ability of the model to accurately de-
scribe such diverse systems, despite having been fitted to a
small number of high-symmetry crystal structures, increases
our confidence that the model captures the essential physics
of bonding in solid-state silicon systems.

The efficiency of the model makes it possible to study
finite temperature properties of large silicon systems through
molecular-dynamics simulation, an application that would be
impractical with DFT/LDA methods. We have shown that
the model reproduces experimental results for atomic mean-
squared displacements as a function of temperature in bulk
silicon. Phonon densities-of-states and dispersion curves ex-
tracted from MD simulations at different temperatures show
good agreement with experiment at low temperatures, and a
substantial softening of many modes at higher temperatures.
By addingd orbitals and modifying the fitting data set, we
obtained a model that accurately reproduces both the valence
and conduction bands of silicon in the diamond structure, at
the price of deterioration in the accuracy of the energetics.
This sp3d5 parametrization makes possible the study of the

FIG. 9. The electronic TB DOS computed with thesp3d5 pa-
rametrization for the bulk and surface a-Si samples. The lower
curve~dashed line!is the DOS for the bulk amorphous sample. The
two upper curves show the excess DOS associated with the sur-
faces, plotted as the difference between the cleaved sample DOS
and bulk amorphous DOS~dotted line!, and the difference between
the quenched sample DOS and the bulk amorphous DOS~solid
line!.
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electronic structure of amorphous systems with nearly 2000
atoms.
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