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1. Introduction

Currently there is myriad of work on Unmanned Aircraft 
Systems (UASs) performing tasks such as border patrol, 
fire detection, traffic monitoring, and basic intelligence 
gathering.1-5 Like most manufacturing robots, commercial 
UASs are heavily segregated and typically only operate in 
areas free from direct human contact. In the specific case 
of UASs, this typically means segregating airspace and 
preventing manned vehicles from operating within miles 
of any UAS. The segregation is necessary because human 
pilots, unlike UASs, are able to rapidly process a great deal 
of information which helps them avoid collisions when 
operating in close proximity to other aircrafts. For this 
reason, the Federal Aviation Administration is reluctant to 
allow UASs to fly in commercial US airspace.

Recently, the US Air Force has put forth directives to 
design algorithms to allow unmanned aircrafts to ‘integrate 
seamlessly’ with piloted aircraft.6 These algorithms should 
ideally require no more a priori information than that which 
a human pilot requires to recognize the intent of another 
aircraft. Furthermore, fewer operators should be able to 
simultaneously direct swarms of aircraft.7 In order for UASs 

to make decisions based upon perceived sensory data and 
operational context, they must be able to mimic and achieve 
a level of trust approaching a human piloted aircraft. The 
commercial sector has also expressed an interested in the 
application of this technology. FedEx envisions an airfleet 
of linked drones that can fly in a formation directed by a 
single piloted aircraft.6

The majority of UASs currently deployed throughout the 
world operate as remotely piloted vehicles. This teleoper-
ated implementation inherently creates a level of diminished 
capacity for the operators. Many of the senses used by 
traditional human pilots provide little if any information 
to UAS pilots. This coupled with diminished situational 
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awareness creates an environment that can cause incorrect 
assessment of in-flight situations and slow reaction time. 
Although a great deal of research is being performed to 
alleviate this problem, such as state-of-the-art human- 
robot interaction techniques,8 many researchers believe that 
increased autonomy will likely minimize the overall effect 
of this problem.

Increased autonomy for UASs has several desirable char-
acteristics. First, autonomous software agents operating on 
UASs are not subject to physical or mental fatigue and thus 
operate indefinitely with the same efficiency and optimality. 
This is an increasingly important feature due to the desire 
for persistent surveillance. Second, increased autonomy 
may allow UAS operators to direct multiple aircraft simulta-
neously. This aspect, in essence, creates a force multiplier 
allowing a few well-trained operators to perform missions 
which require multiple assets to operate simultaneously.

Beyond simply creating a force multiplier, UASs have 
the appeal of removing the pilots and support crew from 
dangerous environments. The loss of a UAS due to inclem-
ent weather, vehicle failure, or enemy fire is simply a fiscal 
loss. Given this advantage, an UAS can provide functiona-
lity that manned vehicles cannot. For example, an UAS can 
be deployed to draw enemy fire away from a co-located 
manned aircraft. There have been some attempts to integrate 
manned and unmanned system into a seamless team,9 but 
more advancement needs to be made before this technology 
becomes a reality.

Because of the pressing need for manned and unmanned 
system teaming, the Army Research Laboratory (ARL) cre-
ated the UASs as Wingmen project. This project is designed 
to incubate the technology necessary to safely and effec-
tively coordinate manned and unmanned aircraft systems 
into an efficient team. Although teams of UASs have 
received a great deal of attention in the research commu-
nity, the integration of manned vehicles into the team adds 
several new challenges. These challenges include operating 
with limited knowledge of other team members’ intentions 
and prioritizing task assignments. This work presents the 
initial research in support of the UASs as Wingmen project 
and includes details related to navigation, basic team for-
mations, splinter group surveillance (Section 2), and UAS 
intent prediction (Section 3).

2. Navigation and Formation Control
As an example scenario, suppose that a manned aircraft, m, 
is being accompanied by a team of n UASs. No constraints 
are placed on the number of unmanned systems. By using a 
local communication scheme, see Section 2.1, information 
can be propagated through the networked team with minimal 
overhead. The n UASs have two tasks: (1) accompany the 
manned vehicle as it performs its mission, and (2) provide 
reconnaissance of areas of interest as they are identified. The 
foundation for navigation and formation control consists of 

potential field and fuzzy logic methods.10,11 Dynamically 
weighted potential fields are used to organize the UASs into 
standard flight formations with the manned vehicle as well 
as for the splinter group surveillance.11,12 Obstacle avoidance 
is detailed in Barnes et al.11 and briefly described in Section 
2.2. Individual UASs, as well as the simulated manned 
vehicle, are controlled via fuzzy logic. These controllers 
are discussed in Section 4 and detailed further in Garcia and 
colleagues.10, 13,14 Results are presented in Section 5.

2.1 Formation Control
Formation control is performed by allowing each of the n 
UAS team members to set goal locations that correspond 
with a desired formation. The individual goal selection is 
based on information provided by a leader vehicle. To 
reduce the amount of data broadcast to all team members, 
global information is limited to the position of the manned 
vehicle. This single global variable allows the UASs to 
locate the team regardless of their initial position within the 
world. As UASs approach the vicinity of the manned air-
craft, they will dynamically self-order creating individual 
formation leaders and calculating formation appropriate 
goal locations. Once an UAS has acquired a formation 
leader, the single global variable denoting the location of 
the manned vehicle is no longer needed.

Self-ordering (determining individual formation lead-
ers) is performed via a waterfall type methodology detailed 
in Algorithm 1. Initially, each UAS attempts to become a 
direct follower of the manned vehicle. Once an UAS is 
within close proximity of the manned vehicle, it requests 
the current formation task. This information includes the 
desired formation as well as any formation specific details. 
The local formation is a sub-class of the overall formation 
and represents a single lead vehicle and its immediate fol-
lowers. A local formation is considered complete if and 
only if all immediate follower locations have been filled. If 
the manned vehicle’s local formation is complete the UAS 
assigns one of the manned vehicle’s followers as its leader. 
This process continues until an incomplete local formation 
is found, and the UAS can attach itself to a local leader and 
determine its individual goal location.

Utilizing a local communication scheme, such as in 
Algorithm 1, has several benefits. First, once a vehicle has 
paired itself with a leader, manned or unmanned, it only 
requires local communication with that single leader to join 
and hold flight formations with the group. This advantage 
increases the overall scalability of the implementation. 
Second, the formation can be manipulated and even spliced 
into multiple sections without needing to inform the entire 
group. The one obvious disadvantage to this type of com-
munication scheme is that a single link or damaged vehicle 
can vastly affect the overall success of the formation, but 
safeguards can be built into the system to overcome this 
limitation. 
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Individual goal locations are calculated from informa-
tion received from the local lead vehicles. This information 
includes the formation type and any formation specific 
information required for calculating the goal(s). For exam-
ple, in a right echelon formation, the position of the local 
lead vehicle is sufficient for determining an appropriate 
goal location. In a staggered trail formation, local lead 
vehicle position must be accompanied by vehicle offset 
(right or left) for the follower to determine an appropriate 
goal location. For example, if the local lead is staggered to 
the right then the follower vehicle must assure that it is 
staggered to the left. Once the appropriate goal location, 
(xg, yg, zg), is determined, Equation (1) defines the vector of 
attraction to the goal, consisting of a heading vector and a 
weight, Wg, which limits the vector between a maximum 
and minimum velocity, –vmin and vmax.
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The value of Wg is determined from dactual which is
the Euclidean distance between the vehicle and the goal 
location.

Specific formation selection is generally performed 
ad-hoc and may change several times throughout flight. 
Formation alterations may be the result of terrain changes, 
goal alterations, or recently exposed threats. These forma-
tion changes must occur quickly and safely. To adhere to 
this requirement formation information is consistently 
updated within local formations. Due to the overlapping 
design of local formations any changes in formation infor-
mation will be disseminated to all vehicles. This is the 
result of the natural propagation from leader to follower. 

Since the manned vehicle is the highest-level leader any 
changes made by the manned vehicle will propagate to the 
entire team.

2.2 Obstacle Avoidance
Vector fields weighted with sigmoid functions may be used 
for obstacle avoidance. This is achieved by creating vectors 
moving away from obstacle locations (xco, yco, zco). Obstacle 
avoidance is achieved using Equations (2)–(4):
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The weight function generated by a single obstacle is a 
sigmoid with maximum value κ shown in (3). The para-
meter ravoid is the Euclidean distance to a nearby obstacle. 
The ΔRavoid parameter is the minimum allowable distance 
between the UASs and obstacles. The αavoid parameter in 
(3) controls the slope of the Savoid function.

This obstacle avoidance strategy works well for static 
and predictable slow moving obstacles. In the worst case, 
the UAS is heading directly towards the obstacle:
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Adding the two vectors yields

Algorithm 1: Find a lead vehicle to follow in the formation

function GET_LEADER(leader, self)
{
 dist = CALC_DIST(leader->pos, self->pos) //calculate distance between two points

 if (dist < leader_threshold) //am I close enough to the ‘leader’ to make a decision
 {
  if (LOCAL_FORM_COMPLETE(leader)) //is the ‘leader’s’ local formation complete?
   self->current_goal = leader->follower //assign ‘self’ a new leader
  else
  {
   SET_FOLLOWER(leader, self) //assign ‘self’ as the follower of the ‘leader’ vehicle
   SET_LEADER(self, leader) //set your lead as the ‘leader’ vehicle
  }
 }
}
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The UAS will move away from the obstacle provided 
Savoid > Wg and stop (hover) in a local potential well if
Savoid = Wg. Potential wells caused by moving obstacles tend 
to be transient, stopping the UAS for only an instant. Since 
stopping is not always possible or desirable, adding a vector 
that points along the object contour allows the UAS to ‘slip’ 
past the obstacle.

2.3  Types of Flight Formations
Aircraft flight formations are designed to coordinate flight, 
conceal members, and increase safety. Standard flight for-
mations for rotary wing vehicles include trail, staggered 
trail, echelon, heavy (echelon), diamond and ‘vee’ shown in 
Figure 1.15 Right echelon and staggered trail formations are 
presented to validate the proposed approach. The addition of 
formations such as ‘vee’ and diamond require no modifica-
tion to the formation control methodology or data structure 
design since all calculations are local (see Section 2.1). 
Implementation of these formations would simply require a 
waterfall notification up the leader chain when a vehicle is 
added. This would allow the formation to remain balanced 
as new vehicles enter the team.

2.4 UAS Navigation
To form a complete testing environment the formation con-
trol algorithms were integrated with simulated UASs with 

control algorithms for basic stability and navigation. Each 
individual UAS is controlled via four distinct fuzzy logic 
controllers. These four controllers are collectively respon-
sible for controlling the roll, pitch, yaw, and collective. 
Throttle is controlled by a revolutions per minute (RPM) 
governor built into the vehicle simulator and designed to 
maintain a constant head speed throughout the simulation. 
In depth details of these controllers, including membership 
functions and complete rule sets, can be found in Garcia.14 
Although Fields et al.12 does not provide any formal proofs 
as to the stability of these controllers, the authors have ana-
lyzed the performance of these controllers through extensive 
experimentation. This experimentation includes hundreds 
of hours of actual flight experiments and over a thousand 
hours of simulation.

The roll, pitch, and collective controllers specified in 
Garcia14 utilize positional error as input for determining 
control. To allow these controllers the ability to interface 
with the formation control algorithm’s vector outputs, an 
adapter function was implemented. This adapter function is 
designed to translate the local unit vector of the potential 
fields into axis specific positional error for direct input into 
the fuzzy controller. Conversion is done via a constant mul-
tiplier that is tuned to achieve a desired level of aggression 
for the flight maneuvers as well as position accuracy.

In addition to the unmanned systems, the manned vehicle 
is also controlled via fuzzy logic. Utilizing an automated 
control system had two main benefits. First the authors were 
able to perform experiments without the need for a heavily 
trained pilot. Second, the authors were able to create consis-
tent experiments and thus keep any pilot inconsistencies 
from effecting simulation results. Fuzzy controllers were 
utilized simply due to their availability but any sufficient 
vehicle controller would suffice. The specific details of the 
fuzzy controllers used to stabilize and navigate the manned 
vehicle were developed from controllers found in Garcia 
et al.13 These controllers were modified to include a larger 
rule set and simplified membership functions.

2.5 Splinter Group Surveillance
In addition to accompanying the manned vehicle in forma-
tion, the UASs are able to splinter off and survey areas of 
interest, or hot spots. Hot spots may be persistent or tempo-
rary and the level of interest in a specific hot spot may vary 
over time. Let (xh,yh,zh) be the location of a hot spot and let 
the vector field associated with this hot spot be
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In this discussion, hot spots are pre-determined, and 
interest in a particular hot spot depends on the proximity of 
the manned vehicles to that hot spot. The parameter dH(x,y,z) 

Figure 1. Standard rotary wing formations: (a) trail, (b) right 
echelon, (c) staggered trail, (d) ‘vee’, and (e) diamond.
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is defined as the square of the distance between any point 
(x,y,z) and the hot spot:

 ( , , ) ( ) ( ) ( )d x y z x x y y z z2 2 2
H H H H= - + - + -  (8)

The weighting function 
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shown in Figure 2, attracts nearby UASs provided that the 
manned vehicles are in close proximity to that hot spot. The 
UASs will leave the hot spot once the manned vehicles’ 
proximity has reached a safe distance. The parameter 
aH > 0 controls the size of the region of attraction around 
the hot spot. The parameter am > 0 is based on a safety
distance, sd, or radius of influence for the hot spot. If 
dH(xm,ym,zm) < sd, the UASs will continue to monitor the 
hotspot. Otherwise, they will rejoin the manned vehicle 
in formation. Figure 3 illustrates this point. If the manned 
system is inside the neighborhood NM, then UASs within 
the neighborhood NU are attracted to the Hot Spot. UASs 
outside NU are too far away to be attracted to the Hot
Spot regardless of the location of the manned system. By 
combining splinter group surveillance with the formation 
control and obstacle avoidance vectors from (1) and (4), 
the overall motion of the team is created:
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3. Intent Prediction
In addition to dynamic formations and splinter groups, 
several coordinated flight issues are addressed. Formation 
control is accomplished by utilizing team members’ physical 
locations to coordinate motion. This particular implementa-
tion has a weakness due to delays between control input and 
vehicle response. This delay causes formation deformation 
during flight maneuvers. This becomes visible during basic 
maneuvers such as forward flight where the formation 
begins to stretch over time, see Figure 4. Deformations were 
further exaggerated due to the lack of global information. 
Since team members are only aware of the state of the 
vehicle they are immediately following, the motion delay is 
propagated between the manned vehicle and each subse-
quent vehicle. Consequently, maximum deformation is a 
function of the number of vehicles in the team, the formation 
type, and the input to response delay.

The origin of this issue was the lack of knowledge about 
the actions of the other vehicles in the formation. To mitigate 
this issue, an intention prediction algorithm was imple-
mented. Intent prediction, for the purpose of this work, 
refers to predicting the future velocity vector of another 
vehicle within sensing range. Although the optimal solution 
for prediction would utilize a vehicle-specific mathematical 
model, this work utilizes a fuzzy reasoning system to show 
that a more general solution can be achieved. Fuzzy logic 
was chosen due to its ability to cover a wider range of oper-
ating conditions, its utilization of natural language, and its 
ability to gracefully handle incorrect or conflicting input 
data. One desirable feature of utilizing a generalized solu-
tion is that it provides some level of confidence given a 
pairing with unknown, incorrectly modeled, or damaged 

Figure 2. Contour plot of WH(x,y) as a function of the UAS/
Hot Spot distance and the Manned System/Hot Spot distance.

Figure 3. The nested NM and NU neighborhoods centered 
around the Hot Spot.
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vehicles. Although it is not discussed in this work, general-
ized control solutions can be tuned via online algorithms and 
can provide a near optimal solutions that are robust to the 
unknown.16

The fuzzy reasoning system utilizes the lead vehicle’s 
state data as input. This state data includes pose, angular 
rate, and the velocity vector. This state data was selected 
because it provides a good identifier of the desired direction 
of travel for rotary wing vehicles and can be estimated from 
a remote location using various sensors.17,18

The fuzzy reasoning system is made up of two fuzzy 
inference engines for roll and pitch, respectively. Each 
inference engine takes as input a vehicle’s estimated veloc-
ity, orientation, and angular rate for a given axis. Using this 
data, the inference engine attempts to predict the strength 
and direction of the desired movement along that axis. The 
values returned by the inference engines are in the range 
[–1, 1] representing magnitude and direction along that axis. 
These values are then combined to form a 2D vector repre-
senting the desired lateral and longitudinal path of travel.

Both the roll and pitch inference engines are identical 
and simply take in values corresponding to data along that 

axis. The inference engines are Sugeno-type constant infer-
ence engines utilizing a weighted average defuzzification 
method and 27 rules. Table 1 details the exact makeup of 
the fuzzy inference engines, and Table 2 details the rules 
of the pitch axis inference engine. The constant outputs 
associated with the controllers are –1, 0, and 1 correspond-
ing to backward, stationary, and forward, respectively. The 
roll inference engine has the exact same rules with differing 
labels corresponding to that axis.

A second issue arises when the manned vehicle, execut-
ing an evasive maneuver, aggressively pursues a path in 
the direction of the formation. The navigation approach 
discussed in Section 2 is not sufficient for this case – the 
manned vehicle would quickly overtake and collide with 
the unmanned vehicle. This issue is the result of vehicle and 
coordination limitations. First, the heterogeneous imple-
mentation created a team with differing flight capabilities. 
Unmanned members are more agile than manned members 
but the manned vehicles can achieve higher speeds than the 
unmanned vehicles. Second, team coordination algorithms 
are designed to hold formation regardless of the situation. 
Since the unmanned vehicle’s goal vector and obstacle 

Figure 4. Example of the type of deformation caused by control/response delays.

Table 1. Description of fuzzy flight path prediction controller.

Inputs Range (units) # MFs Function #1 Function #2 Function #3

Velocity (ft/s) –10 to 10 (ft) 3
Trapezoidal  

[–1000,–1000,–5,0]
Normal  

(std_dev = 2, mean = 0)
Trapezoidal  

[1000,1000,5,0]

Angle
(degrees)

–25 to 25 (deg) 3
Trapezoidal  

[–1000,–1000,–10,0]
Normal  

(std_dev = 5, mean = 0)
Trapezoidal  

[1000,1000,10,0]

Angular Rate 
(degrees/s)

–100 to 100 (deg/s) 3
Trapezoidal  

[–1000,–1000,–40,0]
Normal  

(std_dev = 20, mean = 0)
Trapezoidal  

[1000,1000,40,0] 
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avoidance vector are in the same direction as the aggressor 
vehicle’s flight path, the unmanned vehicle never moves 
out of the way.

The root of this issue is also caused by a lack of knowl-
edge about what other vehicles are planning to do. Since it 

is unrealistic to model a manned–unmanned team as a single 
homogeneous group, intent prediction algorithms are neces-
sary. To mitigate this issue, unmanned vehicles can deviate 
from formation in extreme circumstances. This algorithm 
was implemented by altering the repulsive obstacle avoid-
ance vector, discussed in Section 2.2, of the aggressor 
vehicle based on relative distance and the predicted velocity 
vector. Alteration of the repulsive vector was performed by 
rotating the vector towards the perpendicular of the aggres-
sors’ predicted path. The extent of this rotation towards 
perpendicular is a function of both the predicted velocity 
and the distance between the two vehicles. As a result, the 
vehicle in the flight path of an overtaking vehicle will ulti-
mately choose a flight path more perpendicular to that of 
the overtaking vehicle, see Figure 5.

4. Flight Tests
Flight test were performed using a multi-UAS simulator 
system described in Garcia and Barnes.19 This simulation 
system utilizes the commercial simulator X-Plane coupled 
with a small cluster of dedicated computers. By utilizing 
this system users are able to experiment with control of 
multiple aircraft simultaneously in an environment that has 
proven world and aircraft models.20 Communication and 
coordination with the individual X-Plane simulations is 
performed using a custom Matlab/Simulink model. This 
model contains the individual vehicle controllers as well 
as the integrated formation control algorithms. A screen 
shot from the X-Plane environment is shown in Figure 6.

In order to demonstrate the proposed approach and 
validate the methodology, numerous flight tests were per-
formed. In these experiments a manned vehicle is given a 
set of waypoints to traverse. The manned vehicle is then 
teamed with a group of three UAS systems that are tasked 
to travel with the manned aircraft in various formations 
while simultaneously performing surveillance of hot spots.

Table 2. Fuzzy rules for the predicting flight path along the 
pitch axis.

If Velocity is: & Angle is: &
Angular 
Rate is: then

Predicted 
Path is:

Backward Backward Backward Backward
Backward Backward Small Backward
Backward Backward Forward Stationary
Backward Small Backward Backward
Backward Small Small Backward
Backward Small Forward Stationary
Backward Forward Backward Stationary
Backward Forward Small Stationary
Backward Forward Forward Stationary
Small Backward Backward Backward
Small Backward Small Backward
Small Backward Forward Stationary
Small Small Backward Backward
Small Small Small Stationary
Small Small Forward Forward
Small Forward Backward Stationary
Small Forward Small Forward
Small Forward Forward Forward
Forward Backward Backward Stationary
Forward Backward Small Stationary
Forward Backward Forward Stationary
Forward Small Backward Stationary
Forward Small Small Forward
Forward Small Forward Forward
Forward Forward Backward Stationary
Forward Forward Small Forward
Forward Forward Forward Forward

Figure 5. Example of flight path deformation based on 
overtaking vehicle.

Figure 6. Snapshot of a staggered trail formation in the 
X-Plane environment.
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4.1 Splinter Group Surveillance

In one set of flight tests, UASs were commanded to follow the 
manned aircraft in a right echelon formation. In these tests, 
there is a single hot spot located within the environment. 
Figure 7 shows snapshots of the manned and unmanned 

vehicles at various time slices. The UASs maintain the right 
echelon formation until the manned vehicle enters a close 
proximity with the hot spot. At this time, the UASs diverge 
from formation to explore the hot spot. At time slice t3, the 
UASs surround the hot spot. When the manned system has 
reached a safe proximity from the hot spot, the UASs rejoin 

022446890112132154
0

9

18

27

36

45

54

63

X (m)

Y
 (

m
)

 

data1
UAS at t1 

Manned at t1
UAS at t2 

Manned at t2
UAS at t3 

Manned at t3 

UAS at t4 

Manned at t4 

Hot Spot

Figure 7. Snapshot of manned vehicle mission with three UASs at different time slices where t1=1, t2=200, t3=300, and t4=600.

0
55

110
165

220
2750

19

38

57

76
0

200

400

600

tim
e 

(s
)

Manned Path
UAS 1 Path
UAS 2 Path
UAS 3 Path

X (m)
Y (m)

Figure 8. Manned and unmanned system paths with time on the z-axis.



Garcia et al. 9

the manned vehicle in formation. The flight paths associated 
with the snapshots in Figure 7 are detailed in Figure 8 to show 
where the UASs diverge from and rejoin formation.

4.2 Dynamic Formation Change from Right Echelon 
to Staggered Trail
In the second set of flight tests, UASs were commanded 
to follow the manned aircraft in a right echelon formation. 
During the flight the UASs were re-tasked to form a stag-
gered trail formation. Figure 7 shows snapshots of the 
manned and unmanned systems at various time slices. 
The UASs maintain the right echelon formation until 

commanded to modify between t3 and t4. At this time, the 
UASs break apart to form a staggered trail formation. At 
time slice t5, the UASs complete the requested formation 
change. The flight paths associated with the snapshots in 
Figure 9 are detailed in Figure 10 to show where the UASs 
modify their formation.

4.3 Intended Flight Path Prediction
To determine the effects of flight path prediction on the team 
formation direct comparisons were made between position 
only formation control and path prediction formation 
control. As shown in Figure 11, by including intended path 
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prediction, the team was able to hold a tighter and more 
controlled formation from a standstill to a maneuver. This 
increased accuracy allows the team to function in a closer 
proximity while maintaining a level of safety.

5. Conclusions
This paper introduces preliminary work being performed in 
support of the ARL UASs as Wingmen project. This work 
specifically focused on methods for achieving automatic 

and self-assigned standard flight formations, breakaway 
splinter groups, and intended flight path prediction. Simu-
lation experiments were provided in support of the claims 
made throughout the paper.

The work presented here details initial solutions to only 
a select few of the numerous issues involved in integrating 
unmanned and manned aircrafts into functional and safe 
teams. Issues such as perception, failure tolerance, commu-
nication, task assignment, task prioritization, and emergency 
maneuvers will also require extensive advancement before 
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the technology has matured to functional implementation. 
Future work on this project includes online adaptation of 
the flight controllers, automated formation selection, and 
intelligent evasive maneuvers. 
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