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The elastic constants of a wide range of models of defected crystalline and amorphous silicon are calculated,
using the environment-dependent interatomic potential(EDIP). The defected crystalline simulation cells con-
tain randomly generated defect distributions. An extensive characterization of point defects is performed,
including structure, energy and influence on elastic constants. Three important conclusions are drawn.(1)
Defects have independent effects on the elastic constants of silicon up to(at least)a defect concentration of
0.3%.(2) The linear effect of Frenkel pairs on thek110l Young’s modulus of silicon is −1653 GPa per defect
fraction. (3) 17 different point defect types cause a very similar decrease in thek110l Young’s modulus:
−s0.28±0.05d% when calculated in isolation using a 1728-atom cell. These principles will be very useful for
predicting the effect of radiation damage on the elastic modulus of silicon in the typical case in which
point-defect concentrations can be estimated, but the exact distribution and species of defects is unknown. We
also study amorphous samples generated in quenching the liquid with EDIP, including an ideal structure of
perfect fourfold coordination, samples with threefold and fivefold coordinated defects, one with a nanovoid,
and one with an amorphous inclusion in a crystalline matrix. In the last case, a useful finding is that the change
in the Young’s modulus is simply related to the volume fraction of amorphous material, as has also been
observed by experiment.

DOI: 10.1103/PhysRevB.70.134113 PACS number(s): 62.20.Dc, 61.82.2d

I. INTRODUCTION

Defects in silicon have been more extensively studied for
their effects on electronic properties than for their effects on
mechanical properties. This is not surprising, given the ex-
tensive uses that have been made of silicon’s electronic prop-
erties. With the advent of ever more-sensitive microelectro-
mechanical(MEMS) devices, however, the importance of
precise knowledge of the mechanical properties of compo-
nent materials has grown. Shifts in mechanical properties
may well compromise the functioning of a highly sensitive
MEMS device. Radiation damage and even small changes in
temperature or stress state can cause sufficient alteration of
dimension and elasticity to be of concern.

Radiation-induced changes in the mechanical properties
of silicon, a common MEMS material, have been studied for
rather large ion fluences and elastic constant changes, from
*5% (Ref. 1) to complete amorphization.2–4 Such high lev-
els of radiation damage are common when performing ion
implantation. It is not clear, however, that effects at very low
radiation doses, such as might occur in an environment such
as space, can be correctly extrapolated from such high-dose
regimes. While not simulating radiation damageper se, the
present study addresses elastic constant changes occurring in
defected and amorphous silicon, both possible results of ir-
radiation.

Molecular dynamics simulations predict that radiation
damage consists of a mixture of isolated defects, aggregate
defects, and amorphous regions.5–8 Whether the isolated de-
fects or amorphous regions dominate will depend on such

factors as the incident particle flux, mass, and energy, as well
as the temperature of the damaged material. Heavier, more
energetic recoils produce larger amorphous pockets which
are unlikely to anneal, even at room temperature.5 The quali-
tative results of these studies are relatively insensitive to the
interatomic potentials used, among the most popular and
well-tested models of silicon: the Stillinger-Weber(SW)
potential9 (Refs. 5, 7, and 8), the Tersoff potentials10,11(Refs.
6–8), and the environment-dependent interatomic potential
(EDIP)12,13 (Ref. 8).

For the present study of crystalline defects and amorphous
silicon, EDIP is a natural choice. It was fit to a few point
defect energies and then tested for a wide variety of unre-
lated structures, with considerable success in light of its rela-
tively small number of parameters(13). For example, among
the most commonly used potentials, EDIP is the only one to
correctly predict dislocation core reconstructions and a direct
quench from the liquid to a high quality amorphous phase.13

Since the original study, EDIP has been used extensively in
simulations of crystalline defects14–19 and amorphous
structures,20–25 so it may be considered well tested for the
present application.

More importantly, from a physical point of view, EDIP
includes environment-dependent changes in chemical bond-
ing, inferred directly fromab initio calculations and experi-
mental data.12,26,27 Specifically, the bond order(strength of
the pairwise attraction), the preferred bond angle, and the
angular stiffness depend strongly on the local coordination
numberZ. In contrast, the form of the SW potential can only
be justified for rigidsp3 hybrid bonds, which, in reality, are
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replaced by other covalent hybrids or metallic bonds in non-
tetrahedral defects and disordered structures.12,26The reason-
able description of the metallic liquid and certain defects by
SW, therefore, should be viewed as fortuitous. In compari-
son, the Tersoff potentials incorporate more realistic features
of the bond order, which can be derived analytically from
tight-binding models.28 The functional form, however, is in-
consistent with silicon elastic constant relations12 (satisfied
by SW and EDIP)and seems unable to simulataneously de-
scribe elasticity, defects, and phase transitions.29

The importance of the choice of potential is well illus-
trated by the present topic. Experiments and simulations both
show that amorphous silicon is less stiff than the
crystal.2,3,30,31On the other hand, the only prior work on the
effect of defects at low concentrations on crystal elasticity by
Clark and Ackland(CA) concludes that both vacancies and
interstitials tend to increase the elastic constants,32 although
one might expect the opposite trend, since the accumulated
effect of defects in the crystal roughly approaches an amor-
phous structure. These authors introduced a new potential
depending only upon pairwise bond lengths, which has since
received very little testing. A serious concern regarding their
results is the poor description of the crystal elastic constants
by the CA potential(compared to SW and EDIP), which can
be attributed to the lack of explicit angular dependence, in
violation of silicon elastic constant relations12 and analysis of
tight-binding models.28,33Following Ackland,34,35the CA po-
tential also assumes exactly four bonds per atom, which ob-
viously cannot apply to most defects. Therefore, it is not
surprising that in the present study with EDIP we reach a
very different conclusion: point defects tend to make the
crystal more soft(as is the amorphous phase). We check that
the same trend is predicted by SW, so it is clear that angular
terms, neglected by CA, play an important role.

In practical situations, it is the finite-temperature behavior
of silicon elasticity that would be of interest. While statistical
mechanical methods do exist for calculating finite-
temperature elastic constants(e.g., Monte Carlo36 or molecu-
lar dynamics37 simulations), we decided not to pursue such
methods in this study. We justify this choice in light of the
small defect fractions and concurrently small shifts in elastic
constant that were considered here, which would have been
difficult to notice with the slower convergence of fluctuation
methods. In addition to having greater precision, the cell
deformations described below were much simpler and com-
putationally cheaper than finite-temperature methods. Since
the elastic constants of silicon shift only by around 1% be-
tween 0 and 300 K,38 we believe that the trends in the elastic
constants with defect content are essentially captured by our
zero-temperature calculations.

II. METHODS

A. Sample creation

1. Defected samples

Defected samples were created by inserting vacancies and
interstitials into 1728-atom supercells(63636 unit cells),
using periodic boundary conditions. Randomly selected at-

oms were removed to produce vacancies and random posi-
tions were chosen to insert extra atoms. Three types of
sample were produced: one containing only vacancies, one
having only interstitials, and one containing Frenkel pairs.
Fifteen samples were produced of each sample type, consist-
ing of three sets of supercells containing 1,2,3,4, and 5 de-
fects, for a grand total of 45 sample supercells.

Upon insertion of defects, the supercells were relaxed at
0 K by relaxing atomic positions while iterating over cell
dimension changes. Isotropic expansion and cell-length
changes along individual axes were iteratively explored fol-
lowing a simple energy gradient algorithm. The supercells
were then annealed at 300 K for 500 ps using theDLIPOLY

(Ref. 39) NPT ensemble with Berendsen thermostat and
barostat. After annealing, the supercells were again relaxed at
0 K.

It was hoped that this procedure would yield samples rep-
resenting several different defect types in random geom-
etries, as might result in regions of a collision cascade rich in
point defects. Some samples were thrown out and regener-
ated, since sometimes a randomly chosen vacancy and a ran-
domly placed extra atom annihlated either immediately or
upon annealing. Other times, a randomly chosen position for
an extra atom was too close to a crytalline position in the
supercell, and mayhem resulted upon relaxation due to the
large forces present. Samples were visually inspected to en-
sure that the desired scattered defects were present and dis-
cernably distinct. In most cases, only isolated defects were
present. Exceptions included a two-interstitial agglomerate
sH2d, and divacancy complexes involving missing nearest
neighborssV2Nd and missing next-nearest neighborssV2NNd.
A breaking of symmetry in thesV2NNd complex yielded an-
other divacancy typesV2ad.

In addition to these 45 defected samples, 17 additional
1728-atom supercells were prepared in order to characterize
the formation energysEfd, volumesVfd, and effects on elastic
constants of various interstitial and vacancy configurations.
These samples were created by intentionally arranging
atomic positions within the supercell then relaxing at 0 K, as
above.Ef, Vf, and elastic constants for each sample were
calculated before annealing the sample at 300 K for 500 ps,
as above. Calculations were then repeated on the annealed
samples.

2. Amorphous samples

Brief descriptions of the defect content of amorphous
samples are given in Table I. Amorphous samples A, D, and
G were prepared by quenching from the liquid at zero pres-
sure as follows. A diamond crystal was melted at 3000 K for
50 ps, cooled to 1500 K over 100 ps, then equilibrated at
1500 K for an additional 100 ps. The samples were then
cooled 1000 K over 1 ns(the transition from liquid to the
amorphous state occurred at this step), then annealed at
1000 K for 2 ns. The annealed amorphous sample was then
cooled to 0 K over 2 ns.

Amorphous samples B and C were derived from an inter-
mediate sample that was prepared from sample A as follows.
A negative pressure of −100 GPa was imposed on sample A
at 0 K, then the sample was annealed at 1000 K for 2 ns and
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slowly cooled to 0 K at constant volume. Finally, the struc-
ture was relaxed to zero pressure.

Sample B was derived from this intermediate structure by
annealing at 1100 K for 2 ns and cooling to 0 K, all at zero
pressure. Sample C was derived from the same intermediate
structure by annealing at 1100 K for 4 ns and then cooling to
0 K, all at constant volume. The defect content of sample B
was similar to that of sample A, whereas sample C contained
a sizable void.

Two 1728-atom amorphous samples were prepared by
quenching from high temperature at constant pressure.
Sample E was prepared by heating a crystalline sample to
3000 K, equilibrating for 300 ps, then cooling to 10 K at
1 K/ps. Sample F started with random atomic positions at
5000 K, then was cooled to 10 K, also at 1 K/ps. All amor-
phous samples used here were annealed at 300 K for 500 ps,
then relaxed at 0 K as for the defected samples above.

3. Amorphous pocket sample

A composite sample consisting of an amorphous block
surrounded by crytalline material was prepared by embed-
ding sample G into a crystalline matrix. This was done by
first cutting out a 23232 unit cell cube from a 63636
unit cell supercell. The crystalline supercell was then homo-

geneously and anisotropically expanded to accommodate the
relaxed sample G. The sample containing the amorphous
pocket was then relaxed at 0 K as above, then annealed as
above at 300 K and relaxed again at 0K.

B. Elastic constant calculation

1. Approach

Strain can be defined as40

ei j = 1
2seij + ejid, s1d

where

eij =
]ui

]xj
, s2d

with u being displacement andx being position. The work
needed to impose a straine is (switching to Voigt notation)

DE

V
=

1

2
Cijeie j , s3d

whereCij are the elastic constants andV is the volume. For a
cubic system such as silicon, only three independent con-
stants exist. We make the approximation for our defected
samples that this symmetry remains intact.

Computationally convenient strains to impose on an
orthorhombic supercell aligned with the diamond unit cell
axes are suggested by Eq.(3). The tensor strain notation
shown in Eq.(4) is used in Eqs.(5)–(7), with nonspecified
strains all equal to zero:

e = 3
e1

1

2
e6

1

2
e5

1

2
e6 e2

1

2
e4

1

2
e5

1

2
e4 e3

4 , s4d

TABLE II. Analytical and numerically(energy curve fitting) computed EDIP elastic constants(GPa)and
Kleinman’s internal strain parameterz for the diamond phase.C44

0 is the shear modulus when internal
relaxation is disallowed. The values published by Justoet al. are provided here for comparison.

Analytical Numerical Justoet al. (Ref. 13) Expt. (Refs. 38 and 41)

C11 171.99 172.00 175 167.54

C12 64.72 64.71 62 64.92

C44 72.75 72.75 71 80.24

C44
0 112.39 112.39 112 111d

B 100.47 100.47 99 99.13

z 0.51727 0.51727a 0.497b 0.72

Ek100l
c 136.60 136.62 143 131.28

Ek110l
c 164.05 164.05 164 170.63

aCalculated computationally by shearing a supercell and measuring atomic relaxation.
bCalculated fromCij (Ref. 27).
cCalculated fromCij (Ref. 40).
dNot experimentally accessible. Calculated usingab initio (LDA) methods in Ref. 12.

TABLE I. Descriptions of amorphous samples. Calculation of
numbers of fivefold and threefold coordination defects present used
a rounding of the EDIP coordination valueZ.

Sample Size Fivefold Threefold Other

A 216 6 0

B 216 5 1

C 216 13 3 Void present

D 216 10 0

E 1728 116 2

F 1728 112 2

G 64 0 0
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C11 =
1

V

]2E

]e1
2 , s5d

C11 + C12 =
1

2V

]2E

]e2 , e = e1 = e2, s6d

C44 =
1

V

]2E

]e4
2 . s7d

By imposing isotropic strainsse1=e2=e3d, we can also ob-
tain the bulk modulus

B = V
]2E

]V2 . s8d

2. Defected samples

Elastic constants were calculated by fitting polynomials to
plots of energy vs strain. Excellent results were obtained for
a wide range of energy sampling intervals in strain for the
crystal and for samples containing only point defects, but the
amorphous samples were found to be apt to change bonding
structure with large imposed strains. By trial and error, it was
determined that a step size in strain of 1310−5 was suffi-
ciently small to not cause bonding rearrangements in the
amorphous samples, yet produced large enough energy dif-
ferences to numerically extract second derivatives from fit
polynomials.

The number of points to fit was also decided by experi-
mentation. The second deriviative of the energy was of pri-
mary concern here. A greater number of points would help to
recognize and account for higher-order effects, but a large
number of points at large strains would also allow higher-
order effects to dominate the fit. A total of 21 points in the
strain interval ±1310−4 was calculated for each sample dis-
cussed here, but it was found that fitting only the nine middle
points yielded the most consistent results.

Starting from the relaxed structure, strains were sequen-
tially imposed in steps of 1310−5. Atomic positions were
relaxed at each strain step. Starting again from zero strain,
negative strain was then incrementally imposed. Fourth and
fifth order fits to the resultant curves were found to give
essentially identical results, with lower-order fits giving
slightly different results, and higher-order fits being numeri-
cally unreliable. All results reported here are based on fourth-
order least-squares fits.

To help minimize the error in our assumption that cubic
symmetry holds for the defected samples, allCij were inde-
pendently calculated for all three orthogonal directions, then
averaged. The variation ofC44 among the three directions
was greatest, and rose to,1% for a few of the samples, but
was typically similar to that ofC11 andC12, namely,&0.1%.
The lesser precision ofC44 is to be expected, given the
sample preparation method described in Sec. II A 1, which
guarantees that the relaxed sample will occupy an energy
minimum with respect to the isotropic and monoaxial expan-
sions used to obtain energy curves forB andC11, but will not
guarantee this for the shear applied to calculateC44.

As a validation of our numerical approach, we compared
values found for the crystal with those previously published
for EDIP.13 When discrepancies were observed, we calcu-
lated analytical values27 for the EDIP diamond lattice elastic
constants, and found that our numerically calculated values
agreed to within about four significant figures. The results for
these values are shown in Table II. It can be seen that the
values of Justoet al., calculated using a deformation/energy

FIG. 1. Elastic constants as a function of point defect fraction.
Diamonds indicate interstitials, triangles vacancies, and squares
Frenkel pairs. Each point represents the average of three samples.
Bars indicate the standard deviation of the three samples. Lines are
unweighted least squares fits constrained to match the crystalline
value on the Y axis.
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method, very similar to our results in the “numerical” col-
umn of Table II, were not accurate to the number of places
published. They should be disregarded. Details on calculat-
ing the analytical elastic constants from the potential are
given in Ref. 27.

3. Amorphous samples

In the case of a truly amorphous material, the elastic prop-
erties will be isotropic, and only two independent elastic
constants will exist. The finite size and periodic boundary
conditions imposed on the samples of our study prohibit this
isotropic ideal. We nevertheless calculated theCij for our
amorphous Si samples as above, averaging over results from
three independent directions.

An additional step we applied to the amorphous sample
elastic constant results was to distill the set of four elastic
constants to a self-consistent set by means of an iterative
process. The bulk modulus, being direction-independent, was
left alone. By pairing each of the threeCij with B, a predic-
tion of the other twoCij ’s was made. At each iteration, the
original Cij was averaged with the two predicted values until
a self-consistent set was achieved. For the largest samples,
the change in theCij ’s due to this process was&0.1% forC11
andC12, and about 0.5% forC44. For the smallest samples,
these changes were,1 and,10 %, respectively. The small
adjustments necessary to achieve self-consistency of the
large(1728 atoms)samples demonstrates their close approxi-
mation to the isotropic ideal.

4. Amorphous pocket sample

One of the goals of our work was to see what effect amor-
phous regions embedded in a crystalline matrix(as might be
residual from a collision cascade) would have on the overall
elastic modulus. As for the defected samples, cubic symme-
try doesn’t strictly apply for the amorphous pocket sample
studied here, nor is the sample isotropic. We wish neverthe-
less to compare the elastic modulus of the composite with
that of its component parts(crystalline and amorphous). We
therefore calculated theCij ’s of the composite as for the de-
fected samples. We then reduced the crystalline and compos-
ite Cij ’s to an effective isotropic Young’s modulusE by using
the mean of the Reuss and Voigt spatial-average limits.42

For isotropic materials, upper and lower bounds on the
Young’s modulus of a two-phase compositesEcd are given
by4,43

FV1

E1
+

s1 − V1d
E2

G−1

, Ec , V1E1 + s1 − V1dE2, s9d

whereV1 and E1 are, respectively, the volume fraction and
Young’s modulus of the embedded material, andE2 is the
Young’s modulus of the matrix. Clearly, the crystalline ma-
trix we had here is not isotropic, but the Reuss and Voigt
limits for polycrystalline aggregates provide a convenient
way to test the applicability of Eq.(9) to our embedded
amorphous Si sample.

III. RESULTS

A. Defected samples

The results of the elastic constant calculations for the
samples generated by random placement of vacancies and
interstitials are summarized in Fig. 1. It can be seen that the
trend of the elastic constants with defect content is approxi-
mately linear. An unweighted fit was used, since the small
standard deviation of the single defect samples, as well as the
small number of samples, made weighted fitting difficult to
interpret. The fit slopes are summarized in Table III.

The isolated defects appear to be having largely indepen-
dent effects on the elastic constants and volume, as evi-
denced by the linear trends in Figs. 1 and 2, as well as by the
close agreement between the slope of the Frenkel pair plots
and the sum of the vacancy and interstitial slopes as shown
in Table III. Both interstitials and vacancies are shown to
cause volume expansion in Fig. 2, vacancies to a lesser de-
gree than interstitials. The general softening of the elastic
constants with rising defect concentration(with the excep-
tion of interstitials forC12 and the bulk modulus, and Frenkel

TABLE III. Fit slopes to the points in Figs. 1 and 2. Units are per defect fraction, with elastic constants in GPa. “Difference” refers to
that between the Frenkel pair result and the sum of the vacancy and interstitial results. The numbers in parentheses are from fits to the data
in Clark and Ackland(Ref. 32).

C11 C12 C44 B Ek110l DV/V

Vacancies −1030(821) −381(565) −369s−8.7d −593(648) −899(217) 0.42

Interstitials −89.2(715) 733(443) −440s−57.9d 462(531) −751(161) 1.35

Frenkel pairs −1133 339 −809 −145 −1653 1.78

Vac.+Int. −1119 352 −810 −130 −1651 1.77

% Difference −1.2 3.6 0.1 −10.3 −0.2 −0.9

FIG. 2. Percent volume change as a function of point defect
fraction. Symbols are as in Fig. 1.
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pairs for C12) does not agree with the previous finding that
both interstitials and vacancies in silicon stiffen the crystal.
Vacancies are found here to soften each of the elastic con-
stants considered, the opposite being true for all butC44 ac-
cording to Clark and Ackland.32 Points of agreement be-
tween that study and the present one include the softening of
C44 by both vacancies and interstitials(though the effect is
an order of magnitude greater here), and the stiffening of
both B andC12 by interstitials.

B. Amorphous samples

Elastic constants of our amorphous samples are shown in
Table IV, along with experimental2,3,31,44–48 and
calculated8,45,49 data for comparison. It can be seen that the
differences among samples is slight, with the exception of
sample C, which contained a void. The elastic constants for
our amorphous samples appear to be fairly insensitive to the
coordination defects described in Table I. None of elastic
constants of sample G, which has perfect four-coordination
throughout, is an outlier when compared to the other
samples. Not surprisingly, sample G is the lowest energy
configuration. It is interesting to note, however, that the vol-
ume change of sample G is the greatest of all EDIP samples
reported in Table IV(with the exception, of course, of
sample C).

We note that depsite close agreement of our large amor-
phous samples with the amorphous sample of Vinket al.49

for the values ofC11 and C12, our value forC44 is about a
factor of 2 different. As mentioned above, our large(1728
atoms)amorphous samples came very close to satisfying the
isotropic ideal represented by

C44 = 1
2sC11 − C12d. s10d

Since even our smallest(64 atoms)samples came within
10% of satisfying Eq.(10), with all larger samples being
even closer than this(even sample C with its void), one
would expect the 1000 atom sample of Vinket al. to exhibit
fairly isotropic properties. Clearly, the result of Vinket al.
for C44 cannot be correct, since it does not agree withC11
and C12 according to Eq.(10). We suggest that a factor of
two error might have been introduced when calculatingC44,
which would mean that the actualC44 of the Vink et al.
amorphous sample should be 28 GPa, closer to the 32 GPa
that Vink et al. report for the amorphous silicon modeled
using the Stillinger-Weber potential.49

Although the bulk modulus is correctly predicted to be
very close to that of the crystal, the overall description of
amorphous elasticity is not completely satisfactory. Despite
the fact that amorphous samples, both real and computa-
tional, have properties that vary according to the method of
preparation,8 it seems likely from the results in Table IV that
EDIP errs systematically in predicting the elastic constants of
amorphous silicon. All of the experimental studies cited here
agree well on the value ofC44, and using EDIP to generate
and calculate the elastic constants of amorphous samples
yields a result consistently about a factor of 2 below this
value. This may be related to EDIP’s neglect of rehydridiza-
tion for strains small enough not to change the coordination,
which is also responsible for EDIP’s underestimation of the
Kleinman parameter and the relaxedC44 of the crystal.12 For
small distortions of the diamond latticesZ=4d, EDIP and SW
are both equivalent to the rigid hybrid approximation, which

TABLE IV. Elastic constants(GPa)of EDIP-generated amorphous samples described in the text. Also shown are percent volume change
and energy gain per atom with respect to the crystalline values(20.018 Å3 atomic volume and −4.6500 eV). Results from experiment(room
temperature), tight-binding molecular dynamics(room temperature), and EDIP are shown for comparison. Where published results were not
completely consistent with isotropicity, the range of possible derived values is given.

C11 C12 C44 B E % DV DE, eV

A 131.3 80.4 25.5 97.4 70.3 3.8 0.1885

B 130.2 82.9 23.6 98.7 65.7 4.4 0.1999

C (void) 98.7 57.9 20.4 71.5 55.9 10.9 0.2432

D 134.7 82.7 26.0 100.0 71.7 3.3 0.1868

E 133.0 81.9 25.5 99.0 70.5 3.1 0.2059

F 132.9 81.1 25.9 98.4 71.4 3.3 0.2064

G (defect free) 131.0 81.4 24.8 97.9 68.6 5.2 0.1815

EDIP (Ref. 49) 130 81 56 97 67–145 2 0.199

EDIP quench(Ref. 8) 3.5 0.25

EDIP irradiated(Ref. 8) 2.2–3.6 0.19–0.40

Expt. (Ref. 45)a 156 58.4 48.8 90.9 124

Expt. (Ref. 2) 156 57.8 49.2 90.6 125 1.3

Expt. (Ref. 3) 138 42 48 74 118

TBMD (Ref. 45) 149 46.9 55.4 75–84 127–136

Expt. (Ref. 44) 1.8

aThe values forCij here are based on the measured Young’s modulus of Tanet al. (Ref. 31)combined with a Raleigh wave measurement
discussed in De Sandreet al. (Refs. 45–48).
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is very accurate for unrelaxed crystal elasticity, but breaks
down with internal relaxation.27

C. Amorphous pocket sample

The elastic constants of our amorphous pocket sample are
shown(along with those of the component parts) in Table V.
It can be seen that the Young’s modulus of the composite is
within the upper and lower bounds predicted by Eq.(9). This
was true, in fact, for all of several different methods we used
for applying Eq.(9), including using the Young’s modulus
for k100l andk110l directions(as opposed to using spatially
averaged values). This result agrees with experimental obser-
vations of the elastic properties of silicon during
amorphization.4

Predictions based on Eq.(9) did not hold, however, for
elastic constants calculated using a similarly prepared com-
posite sample that skipped the annealing step. The
crystalline-amorphous interface, when only relaxed at 0 K,
seems the likely reason for this.

D. Isolated defects

The interstitial defects that resulted from the random-
placement generation process described in Sec. II A 1 are
illustrated in Fig. 3. It can be seen that the defects DB1, DB2,
and DB3 are minor variations on thek110l dumbell (DB)
defect. In each case, the atom positions are very similar, but
sufficiently different to cause the bonding geometry to
change. All of these configurations relaxed to thek110l dum-
bell configuration upon annealing the isolated defect at room
temperature. We infer that these defects were stabilized by
the presence of other defects.

The DB4 defect complex is also a variation on thek110l
dumbell in which two neighbors of the atom that is “split” to
form the dumbell are moved together to bond. While the
other dumbell variations may simply be EDIP artifacts, this
defect has been seen before with the Tersoff 3 potential.50

The formation energy of 3.38 eV calculated for thek110l
dumbell defect does not precisely agree with ones3.35 eVd
previously published.13 This is perhaps partly due to our in-
dependent relaxation of all three cell dimensions in addition
to atomic coordinates, as well as to size effects with periodic
boundary conditions, as suggested by Fig. 4. Effects of an

overlapping strain field due to periodic boundary conditions
don’t appear to be of concern(at least to the level of preci-
sion discussed here)for our 1728 atom samples. While we
did not verify this for each of the many samples discussed in
the present work, we take confidence in the leveling off of
the curve in Fig. 4.

We calculated the unrelaxed formation energies of the te-
tragonal and hexagonal interstitials for EDIP, and obtained
10.58 and 6.85 eV, respectively, in agreement with Justoet
al. We noted, however, that these two interstitial positions
are not stable in EDIP, as shown in Fig. 5. An interstitial will
shift away from these positions upon relaxation. In fact, even
at 0 K, numerical error generated during the relaxation of
atomic positions provided sufficient asymmetry to cause the
hexagonal interstitial to relax into an off-center position
shexAd. This asymmetric position remains sixfold coordi-
nated. To obtain a relaxed formation energy for the hexago-
nal interstitial, therefore, the interstitial position had to be
artificially maintained. This relaxed configuration for the
hexagonal defect was metastable, with a formation energy of
4.19 eV. After room-temperature annealing, both hexagonal
and tetragonal interstitials relaxed into ak110l dumbell. This
instability of the tetrahedral interstitial agrees with LDA
predictions.51 The result that the unrelaxed hexagonal inter-
stitial is unstable, but that relaxing the system while con-
straining symmetry among its neighbors yields a metastable
defect, also agrees with theab initio result.52

We also note in passing that a bond defect involving no
coordination defects is stable using EDIP, the relaxed forma-

TABLE V. Elastic constants for the crystal, amorphous sample
G, and the amorphous pocket composite sample. The Young’s
modulus valuesEd given for the crystal and the amorphous pocket
sample are the average of the Reuss and Voigt spatial averages(Ref.
42). Upper and lower bounds based on Eq.(9) are shown for
comparison.

C11 C12 C44 E

Crystal 172 64.7 72.8 159

Amorphous G 131 81.4 24.8 68.6

Composite 169 65.4 69.9 154

Upper bound 156

Lower bound 151

FIG. 3. Interstitials generated by random placement and subse-
quent relaxation using EDIP. The corners of a diamond unit cell are
connected by lines, and atoms occupying interstitial positions are
darkened. Bonds are drawn between atoms closer than 2.56 Å.H2

involves two atoms which are extra to the diamond unit cell—all
other defects pictured here involve only one extra atom.
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tion energy and formation volume of which are 2.38 eV and
+1.1 Å3, respectively. This defect has been studied numerous
times under various names. We adopt the latest nomenclature
for this defect: the fourfold coordinated defect(FFCD).53

The (FFCD) is pictured in Fig. 6.
The earliest(to our knowledge)descriptions of this defect

were by Stillinger and Weber,9 and by Wooten, Winer, and
Weaire,54 who used it to generate samples of amorphous Si.
Later, Motooka55 described how a divacancy/di-interstitial
complex results in an equivalent configuration. Tanget al.56

later rediscovered this arrangement as the result of the close
approach of a vacancy-interstitial pair, and made a tight-
binding calculation of the formation energys3.51 eVd. Stock
et al.57 identified the Stillinger and Weber bond defect, the
WWW bond-switching mechanism, and the Tang “I-V com-
plex” as one and the same. Cargoniet al.58 examined the
bond defect with tight-binding molecular dynamics(TBMD)
and ab initio Hartree-Fock calculations, reporting a forma-
tion energy of 3.26 eV. Marqueset al.50 used the Tersoff 3
(T3) potential11 to calculate a formation energy of 3.01 eV.
Recently, Goedeckeret al.53 used density functional theory
(DFT) to calculate the formation energy of this defect. The
local density approximation(LDA) predicted 2.34 eV, and
the general gradient approximation(GGA) predicted
2.42 eV. These latestab initio calculations are in remarkable
agreement with EDIP.

It is interesting to note that while the formation energy of
this defect is dramatically lower than that of the other defects
present in our samples, it does not occur in any of them. This

is perhaps due to the orchestrated movement of atoms that is
required to produce it, which decreases the likelihood of it
naturally occuring.

Three types of divacancies cropped up in the samples
with random vacancy placement. One involved missing near-
est neighborssV2Nd with symmetric outward breathing. An-
other involved missing next-nearest neighborssV2NNd. The
third also consisted of missing next-nearest neighbors, but
differed in that the common neighbor to the two vacant sites
shifted to become threefold coordinatedsV2ad. When isolated
in a supercell,V2a survived annealing, butV2NN relaxed into
a fourth configuration,V2NNr, involving missing nearest
neighbors that differed fromV2N in that instead of involving
six threefold coordinated atoms, it had only three threefold
coordinated atoms accompanied by a single fivefold coordi-
nated atom. These vacancy configurations are illustrated in
Fig. 7. Though one case of the divacancyV2NN had survived
the annealing step in one of the random-placement samples,
it was not in isolation in the supercell, and the strain fields of
the other defects present may have served to stabilize it to
some degree.

The relaxed monovacancy and divacancy energies show
good qualitative agreement with DFT/LDA calculations,
which predict 3.29, 4.63, and 5.90 eV forV, V2N, andV2NN,
respectively.59 The binding energy for the divacancy is there-
fore 1.60 and 1.95 eV according to EDIP and DFT/LDA,
respectively. We note that while the monovacancy, “simple”
divacancy, and “split” divacancy of Seonget al.59 have the
same unrelaxed structures asV, V2N, andV2NN, respectively,
the energies we cite here are for the relaxed structures, on
which DFT/LDA and EDIP differ. In the case ofV, for ex-
ample, Seonget al. report a monovacancy structure that is
somewhere between the symmetricV favored by EDIP and
the distortedVJT.

The formation volume for an isolated vacancy was found
to be +28.8 Å3. The EDIP monovacancy is therefore

FIG. 4. Formation energy fork110l dumbell calculated in vari-
ous sized supercells with periodic boundary conditions.

FIG. 5. Unrelaxed formation energy for an interstitial placed
along the unit cell body diagonal in Si, calculated using EDIP. The
solid and dashed vertical lines indicate the positions of the hexago-
nal and tetragonal interstials, respectively.

FIG. 6. The fourfold coordinated defect referred to a unit cell.
The two displaced atoms are darkened.
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outward-breathing(the atomic volume of the EDIP crystal is
20.0 Å3, in agreement with earlyab initio calculations.60,61

Later calculations have predicted an inward-breathing
vacancy,59,62,63 and a recent DFT/LDA calculation study
showed that the relaxation around a neutral monovacancy
has a formation volume of −1.7 Å3.64 The negative forma-
tion volume accompanied a Jahn-Teller distortion in which
the neighbors of the vacant site bond pairwise acrossk110l
directions. While we found that that such a defect is stable
using EDIP (and it did indeed have a negative formation
volume of −14.5 Å3), its formation energy was higher than
that of the monovacancy: 4.06 eV. When comparing forma-
tion volumes of various defects, it is helpful to remember
that the unrelaxed vacancy has a formation volume of
+20 Å3, whereas that of an unrelaxed monointerstitial con-
figuration is −20 Å3. A negative formation volume, there-
fore, is not as surprising for an interstitial as for a vacancy,
where relaxation must be very significant to pack atoms
more efficiently than the crystal.

The defectsVJTd disappeared upon annealing at 300 K for
500 ps in three samples we tested, evolving each time into a
defect sVJTrd involving one three-coordinated and one five-
coordinated atom and having a formation energy and volume
of 3 eV and −6.7 Å3, respectively. We calculated the effect
of bothVJT andVJTr on the elastic constants at 0 K. Whereas
the monovacancyV is seen to cause a reduction in every
elastic constant, the other two monovacancy types show be-
havior similar to the FFCD in that they actually stiffenC12
and the bulk modulus. In each case, however, the Young’s
modulus is observed to lessen. The three monovacancy con-
figurations are illustrated in Fig. 8. The comparison ofVJTr
with V2NNr reveals a common structure: each has a fivefold
coordinated atom with four bonds almost being coplanar, and
the fifth bond pointing in the general direction of the three-
fold coordinated atoms(this is not particularly evident in
Figs. 7 and 8—only two of the almost coplanar bonds are
shown in each case).

The results for formation energy, formation volume, and
effects on elastic constants of the isolated defect samples are
summarized in Table VI. While the sign on the deviation

from crystalline elastic constants varied between vacancies
and interstitials in some cases(C12 andB), all defects were
observed to reduce Young’s modulus. When taken on a per-
atom basis, the effect on thek100lYoung’s modulus is quite
similar among all defect types presented in Table VI, being
bracketed between −0.25 and −0.45%(aside from the tetra-
hedral interstitial, which is locally unstable according to both
EDIP and LDA calculations).

While one might expect that greater formation volume
magnitude would be accompanied by a larger formation en-
ergy (due to larger strain fields), we found that the relation-
ship between formation volume and and formation energy
among defects was not completely rigid. The two defects
with the lowest formation energies,H2 and the FFCD, did
indeed have low formation volume magnitudes. The relation-
ship betweenV2N and V2NNr, however, is the opposite of
what one would expect, as is the large formation volume that
accompanies the most stable monovacancyV. One may also
wonder if the overall positive formation volume may not be
driving the decrease in elastic modulus. This is clearly not
the case, as can be seen by considering Table VI. For every
type of point defect, having positive or negative formation
volume, the change in Young’s modulus is negative. The
changes in other elastic constants are also uncorrelated with
formation volume. This is to be expected, since elastic con-
stants are not strictly a function of volume, but also of bond-
ing topology and bond strength.

We examined the changes in ring structure that accompa-
nied the defects of Table VI in an attempt to relate ring
statistics and coordination numbers to the observed changes
in elastic constants. The interstitial defects which involved
extra atoms did not present any obvious pattern in this re-
gard, but the vacancy defects did. Table VII shows the ring
and coordination figures for the vacancy and FFCD defects.
A ring is defined here as a closed path which is a series of
sequentially bonded atoms without overlap, and a primitive
ring is a ring which cannot be decomposed into two smaller
rings.65,66 We determined primitive ring statistics using a re-
cent effective ring search algorithm.65

It can be seen that with increased numbers of undercoor-
dinated atoms, the bulk modulus is lessened. Concurrent

FIG. 7. Divacancy complexes referred to a unit cell(left to
right): V2NN, V2a, andV2NNr. Highlighted and darkened atoms are
twofold and threefold coordinated, respectively. At left, two next-
nearest neighbors are missing from the upper half of the unit cell.
At center, the twofold coordinated atom(marked with a cross)has
broken symmetry and become threefold coordinated. Annealing
V2NN at room temperature yielded the rightmost figure, in which the
uppermost atom(black) is fivefold coordinated. This atom is not
part of the unit cell shown, but is included to provide context. While
V2NNr was generated by annealingV2NN, it actually involved miss-
ing nearest neighbors, similar to the simplerV2N (not shown).

FIG. 8. Stable EDIP monovacancy configurations. At left is the
outward-breathing vacancysVd observed in all randomly generated
samples. Vacancy neighbors are darkened. The Jahn-Teller distor-
tion with bonding between pairs of vacancy neighbors is shown at
centersVJTd, and the result upon a room temperature annealing of
this defect is shown at rightsVJTrd. The cross marks an atom whose
position changes significantly between the three configurations
shown, as does the circle.VJTr contains one five-coordinated atom
(circle) and non three-coordinated atom(back lower left corner).
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with this trend are the softening effects of the loss of six-
rings and the gain of larger rings. Offsetting factors include
the gain of overcoordinated atoms and rings of size less than
6. The relationship between coordination, ring size popula-
tion, and bulk modulus was more complicated for many of
the defects not shown in Table VII, but the greatest stiffening
of the bulk modulus did coincide with theH2 and tet defects,
which were characterized by overcoordinated atoms and
small rings. The numbers for these other defects are shown
in Table VIII. The hex and hexA defects would appear to be
likely to raise the bulk modulus more than other defects
above them in Table VIII, given their three-rings and their
lack of large rings, but perhaps their peculiar planar geom-
etry partially nullifies these stiffening characteristics.

It it interesting to note that while EDIP may have erred in
predicting hexA to have a lower formation energy than hex,
the effects on the supercell elastic constants are much the
same in either case. The ordering of the formation energies
of the tetrahedral and the hexA interstitials agrees with LDA
calculations,51 while this was not the case with the symmet-
ric hexagonal interstitial.

Finally, we used the numbers in Table VI to predict the
results for the samples(summarized in Fig. 1)generated by
random defect placement. We compared the elastic constant
changes in these samples to the sum of the individual con-

tributions listed in Table VI for the defects involved. This
sum usually overestimated the change in elastic constants,
making the worst approximation for the samples containing
the highest defect concentration. The error was in some cases
as high as 33%, but averaged only 10%. The accumulation of
elastic constant changes was therefore nearly linear with in-
creasing defect content, as was shown in Fig. 1, though some
saturation effects are understandably present at such high
defect concentrations.

IV. DISCUSSION

A. Defects and elasticity

We have used a well tested, physically motivated potential
to study the effects of defects on the elastic constants of
silicon. That our results contradict those of Clark and
Ackland32 is not surprising, in view of the untested potential
they used and the lack of essential physics, such as explicit
angular dependence. The elastic constants of the CA poten-
tial are significantly different from experiment, even more
than the authors may have realized. They appear to have
mistakenly used the experimental constants of Si at 1477 K
as a reference for their calculations at 0 K.32,37 The elastic
constants of the CA potential differ from experiment38 by 11,

TABLE VI. Formation energies, volumes, and percent change in elastic constants for a single defect in a
1728-atom supercell, calculated using EDIP. The numbers in parenthesis represent how many of the 90
“extra” atoms randomly inserted into our samples appeared in a particular interstitial type. The number of
vacant sites appearing in a particular vacancy complex is also shown in parenthesis, also out of a total of 90.

Ef, (eV) Vf, Å3

C11 C12 C44 B Ek100l Ek110lEDIP LDA GGA EDIP LDA

DB 3.38 (67) 2.88a 3.31a 8.7 −2.0b −0.02 0.72 −0.32 0.29 −0.35 −0.25

DB1 3.55 (4) 7.0 −0.04 0.64 −0.35 0.25 −0.28 −0.27

DB2 3.55 (4) 6.7 −0.10 0.59 −0.38 0.20 −0.41 −0.31

DB3 3.53 (6) 6.2 −0.03 0.54 −0.40 0.22 −0.35 −0.28

DB4 3.50 (1) −0.6 −0.03 0.56 −0.36 0.22 −0.29 −0.26

Tet 4.10(0) 3.43c 4.07c 19.6 0.12 0.81 −0.43 0.41 −0.18 −0.24

Hex 4.19(0) 2.87a 3.31a 8.3 −0.11 0.50 −0.45 0.16 −0.38 −0.35

HexA 3.95 (0) 7.4 −0.10 0.63 −0.50 0.21 −0.42 −0.38

FFCD 2.38(0) 2.34a 2.42a 1.1 5.9b −0.12 0.18 −0.31 0.01 −0.26 −0.25

H2 4.81 (8) −4.0 −0.09 1.00 −0.42 0.43 −0.58 −0.36

V 3.22 (84) 3.29d 28.8 12.8d −0.31 −0.42 −0.27 −0.34 −0.26 −0.28

VJT 4.06 (0) 3.49e −14.5 −1.7e −0.21 0.32 −0.44 0.03 −0.45 −0.38

VJTr 3.65 (0) −6.7 −0.18 0.24 −0.32 0.01 −0.37 −0.29

V2N 4.84 (2) 4.63d 53.4 16.3d −0.54 −0.61 −0.46 −0.55 −0.50 −0.49

V2NN 6.77 (2) 5.90d 51.3 14.1d −0.67 −0.81 −0.57 −0.72 −0.61 −0.60

V2NNr 5.23 (0) 16.2 −0.38 0.05 −0.50 −0.18 −0.57 −0.48

V2a 5.84 (2) 47.6 −0.61 −0.75 −0.58 −0.65 −0.54 −0.58

aFrom Ref. 53.
bFrom Ref. 56.
cFrom Ref. 51.
dFrom Ref. 59.
eFrom Ref. 64.
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91, and 67 %, forC11, C12, and C44, respectively. The dis-
agreement in results is perhaps best summarized by consid-
ering Young’s modulus, which is commonly of importance in
practical situations. We observed that all defect types,
whether isolated or in random arrangements, caused a less-
ening of Young’s modulus, whereas the results of Clark and
Ackland imply that the presence of vacancies or interstitials
causes Young’s modulus to increase.

The only other study of the effects of defects on elastic
constants that we were able to find in the literature was the
tight-binding molecular dynamics work of De Sandreet al.45

It is difficult to compare our findings with regard to point
defects with those of that study given that the lowest concen-
tration considered there was 9.3%, at which point the crystal-
to-amorphous transition has begun.67 Nevertheless, the au-
thors report “the evolution of the elastic constants towards an
overall softening during the crystal-to-amorphous transi-
tion.”

Our results also qualitatively agree with the experimental
data available in the literature. Burnett and Briggs made
measurements of the elastic constants of silicon which had
been bombarded with arsenic and silicon ions.1 Their
samples varied from being near the amorphization threshold
to being completely amorphized, but in every case, bothC11
andC44 decreased as the radiation damage increased.

As an additional check on our results, we created more
defect-containing simulation cells using the Stillinger-Weber
(SW) potential9 as we had done with EDIP in Sec. II A 1.
One set of cells contained vacancies, the other interstitials,
both in varying concentrations as in Fig. 1. In each case, the
Young’s modulus alongk110l and k100l decreased with in-
creasing defect content. Furthermore, an SW simulation of
the isolated defectsV, DB, and tet, as in Table VI, predicted
a decrease in bothEk100l and Ek110l in all three cases. Cor-
roboration by the most widely used potential for silicon sug-
gests that our general conclusion is robust.

Since it would appear from Table III that, even at the high
defect concentrations studied here, point defects have an ef-

fect on the elastic constants that is fairly independent of one
another, the details of coordination within each defect as it
relates to connectivity in the lattice appears to be important.
As shown in Table VI, a vacancy will have different effects
on the elastic constants depending on its relaxed bonding
configuration. While EDIP does(by design)produce elastic
constants for silicon close to those of experiment, the con-
figurations of relaxed point defects it produces do not corre-
spond precisely with those predicted byab initio calcula-
tions.

We should mention that the volume expansion shown in
Fig. 2 for EDIP is likely not in good agreement with reality,
since the samples involved contained mostly monovacancies,
which were shown here to be outward breathing in EDIP. As
noted above, recentab initio calculations predict the the
monovacancy to have a negative formation volume, which
would correspond to a densification with increasing monova-
cancy content. We must therefore be cautious as to which
results presented here we expect to correspond to reality.

This word of caution does not preclude two generaliza-
tions of practical interest, however. We reiterate that the gen-
eral trend of Young’s modulus is consistently downward with
increasing defect content, regardless of the positive or nega-
tive formation volume of the defects involved. This effect
varies within a very narrow range for the defect configura-
tions considered here. It should therefore be possible to make
reasonable predictions of the shift in the Young’s modulus of
a radiation-damaged silicon sample in which isolated point
defects dominate, even if the exact geometry of each point
defect is not well known. The calculation presented here of
the crystalline/amorphous composite sample is also encour-
aging. It appears that a reasonable prediction of changes in
Young’s modulus can also be made for radiation-damaged
samples in which amorphous regions are important, based
simply on the volume fraction of amorphous material, ac-
cording to Eq.(9).

B. Interatomic potentials

There are advantages to using an empirical potential, in-
stead ofab initio methods, for the work presented here. The

TABLE VII. Coordination and ring statistics changes compared
to the percent change in bulk modulus for vacancy defects and the
FFCD. Net changes are for isolated defects in a 1728-atom super-
cell, referred to a similar crystalline supercell. The net change in the
number of atoms having a particular coordination is given byN.
The numbers under the “rings” heading refer to the net gain or loss
of rings of a particular size.

Defect

N Rings

DB, %2 3 5 5 6 7 9 11 12 14

VJT 0 0 0 4 −12 0 4 0 0 0 0.03

FFCD 0 0 0 4 −12 8 0 0 0 0 0.01

VJTr 0 1 1 4 −10 0 2 0 0 0 0.01

V2NNr 0 3 1 4 −16 0 0 2 0 0 −0.18

V 0 4 0 0 −12 0 0 0 4 0 −0.34

V2N 0 6 0 0 −18 0 0 0 2 9 −0.55

V2a 0 6 0 2 −22 0 0 0 7 0 −0.65

V2NN 1 6 0 0 −22 0 0 0 8 0 −0.72

TABLE VIII. Coordination and ring statistics changes compared
to the percent change in bulk modulus for interstitial defects, as in
Table VII.

Defect

N Rings

DB, %5 6 3 4 5 6 7

H2 8 0 6 0 2 −2 0 0.43

Tet 4 0 0 6 0 0 0 0.41

DB 2 0 2 0 0 0 2 0.29

DB1 2 0 2 0 1 −4 4 0.25

DB4 2 0 0 1 8 −12 8 0.22

DB3 4 0 3 1 0 −2 3 0.22

HexA 6 1 6 0 0 5 0 0.21

DB2 2 0 2 0 1 −4 3 0.20

Hex 6 1 6 0 0 5 0 0.16
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first is that since empirical potentials will always be compu-
tationally cheaper thanab initio calculations, it is important
to continue the development and characterization of such
potentials in order to enable the study of systems many times
the size of those accessible toab initio methods. Secondly,
despite the fact that powerful computers could performab
initio calculations on the 1728 atom cells(the largest we
considered), the large number of such cells and the demands
of the numerous annealing steps involved in the preparation
of our simulation cells would have been impractical. We pre-
pared over 60 cells containing 1728 atoms, each one requir-
ing more than 250 K computational steps for the preparation
alone. The use of an empirical potential allowed us to com-
pile statistics on the effects of random defect arrangements
and notice trends, something that would not have been pos-
sible usingab initio methods.

We briefly discuss what our results might imply about the
physics of covalent bonding. The fact that we get qualita-
tively similar results with EDIP and SW, which differ sharply
with CA, confirms the common wisdom that angular forces
are present in covalent solids, as argued by Born almost a
century ago. The pairwise repulsion of first neighbors in the
CA potential, similar to the early potential of Pearsonet al.68

[which also does not perform as well as SW(Ref. 29)], is not
equivalent to an explicit angular force.

For the reasons mentioned in the introduction, however,
the reasonable results of SW for defects are quite surprising
because the potential can only be justified for weakly dis-
torted, rigidsp3 hybrids. There is no question that both the
bond order26 and the strength of angular forces12 depend on
the local atomic environment, as also implied by analytical
approximations of tight-binding models.28 EDIP attempts to
capture these effects with only a simple scalar, the coordina-
tion number. Of course, this precludes the possibility of
gradual rehybridization under shear, before changes in bond-
ing topology occur, and it seems this is related to the under-
estimate ofC44 for both crystal and amorphous structures.
The SW potential misses all of this physics, and yet some-
how manages to describe defect configrations fairly well.
The fortuitous reason may be that the “optimal” angular
function for silicon, obtained by inversion ofab initio cohe-
sive energy curves for silicon, neglecting environment de-
pendence, happens to match the SW angular term quite
well.26

In any case, it is clear that any potential for silicon must
take into account the local atomic environment, if not explic-
itly, as in EDIP, then at least implicitly by considering all
neighboring atoms, as in SW and Tersoff. The CA potential,

similar to the Ackland potentials before it,34,35 makes thead
hocassumption of four diamond-like bonds per atom, which
surely does not apply to most defects. Ackland acknowl-
edged the need for coordination dependence in his original
paper,34 by increasing the bond order for undercoordinated
atoms (Z=3), albeit to a value inappropriate forab initio
graphitic silicon;26 however, this modification was not in-
cluded in the CA potential.32 The significant decrease in
bond order of roughlyZ−1/2 for overcoordinationsZ.4d12,26

was also neglected, so the different conclusion regarding the
effect of point defects on elastic constants versus the present
study can be attributed to an inadequate description of cova-
lent bonding.

V. CONCLUSIONS

We have characterized the structure of various point de-
fects according to EDIP and calculated their individual ef-
fects on elastic constants. We have shown that, in general,
the elastic constants of silicon vary with defect concentration
in a roughly linear fashion at defect concentrations up to
0.3%. We have also demonstrated the effects of an amor-
phous region embedded in a crystalline supercell to be well
described by a simple equation involving the volume fraction
of amorphous material. We have also calculated elastic con-
stants for several amorphous samples, and concluded that, in
spite of a good overall description of the amorphous phase,
EDIP consistently underestimatesC44. As in the case of the
crystal, this may be due to its neglect of rehybridization un-
der strain(as in SW).

The defect structures and formation energies predicted by
the potential, such as the energetically favored fourfold co-
ordinated defect, seem fairly realistic, so we may place some
confidence in their effects on elasticity. We predict that both
interstitial and vacancy defects, singly and in random com-
bination, lessen the Young’s modulus of silicon. We also find
that the individual contributions of various defect types to
changes in Young’s modulus are confined to a surprisingly
small range. These appear to be robust conclusions for po-
tentials taking into account explicit angular forces for cova-
lent bonds.
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