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Abstract—In this paper the mathematical-physical theory 
of communication-observation that is part of latency-
information theory (LIT) is reviewed. LIT surfaced from 
the confluence of classical information theory, relativity 
theory, quantum mechanics, statistical physics and a 1978 
conjecture by the author of a structural-physical certainty-
uncertainty duality for quantized control. Control, radar, 
physics and biochemistry applications illustrate the theory. 
As part of the review, LIT is revealed to communicate 
through latency-certainty channels and/or information-
uncertainty channels for observation across latency-
certainty sensors and/or information-uncertainty sensors, 
a mathematical-physical efficiency perspective of the 
Universe in a four quadrants revolution. While the first 
and third quadrants are concerned with the life time of 
physical signal movers and the life space of physical signal 
retainers, respectively, the second and fourth quadrants 
are about the intelligence space of mathematical signal 
sources and the processing time of mathematical signal 
processors, respectively. The four quadrants of LIT are 
conjectured to be physically independent with their system 
design methodologies guided by dualities and performance 
bounds. Moreover, the tools of statistical physics bridge 
them, and inherently lead to the discovery of a novel 
certainty dual for thermodynamics named lingerdynamics. 
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I. INTRODUCTION 
The mathematical-physical theory of communication-

observation is part of latency-information theory (LIT) [1]. 
This universal efficiency theory emerged from the confluence 
of five ideas. They are in chronological order: 1) the certainty 
advocacy of Albert Einstein of relativity theory; 2) the 
uncertainty advocacy of Werner Heisenberg of quantum 
mechanics; 3) the source-entropy and channel-capacity 
lossless performance bounds of Claude Shannon that guide 
communication system designs [2]; 4) the thermodynamics-
entropy of Steven Hawking for black-holes [3]-[4]; and 5) the 
1978 conjecture of a structural-physical certainty/uncertainty 
duality for quantized control by the author [5]. 

 In this review classical information theory will be 
designated as mathematical information theory (or MIT) since 
the units of classical information are mathematical binary digit 

(or bit) units. In addition, classical information will be referred 
as sourced intelligence space (or intel-space in short). This 
designation will make MIT’s fundamental contribution to the 
emergence of LIT transparent. LIT combines four system 
design methodologies which are conjectured to be physically 
independent but that are nevertheless bridged by statistical 
physics. They are: 1) uncertainty-communications MIT with 
its intel-space described with bit units and time-communicated 
through noisy intel-space channels, and where the physical 
time-dislocations of intel-space exhibit a passing of time 
Heisenberg information-uncertainty; 2) certainty-observations 
mathematical latency theory (MLT) with its processing 
intelligence time (or intel-time) described with binary operator 
(or bor) units and space-observed across a window-limited 
intel-time sensor, and where the physical space-dislocations of 
intel-time exhibit a configuration of space Einstein latency-
certainty; 3) uncertainty-observations physical information 
theory (PIT) with its retention life space (or life-space) 
described with SI square meter units (specifying the space 
surface area enclosing the retained signal) and time-observed 
across a noisy life-space sensor, and where the physical time-
dislocations of life-space exhibit a passing of time Heisenberg 
information-uncertainty; and 4) certainty-communications 
physical latency theory (PLT) with its motion life time (or 
life-time) described with SI second units (specifying the time 
delay of the moved signal) and space-communicated through a 
multi-path life-time channel, and where the physical space-
dislocations of life-time exhibit a configuration of space 
Einstein latency-certainty. Like MIT, the three other system 
design methodologies, i.e., MLT, PIT and PLT, have two 
performance bounds that guide lossless and lossy system 
designs. Three major dualities are found in LIT. They are: 1) 
the latency-certainty/information-uncertainty duality that is 
formed by the two certainty PLT and MLT schemes and the 
two uncertainty MIT and PIT schemes; 2) the physical-
life/mathematical-intelligence duality that is formed by the 
two physical-life PLT and PIT schemes and the two 
mathematical-intelligence MIT and MLT schemes; and 3) the 
communication-channel/observation-sensor duality that is 
formed by the two communication-channel PLT and MIT 
schemes and the two observation-sensor PIT and MLT 
schemes. These three major dualities of LIT are conveniently 
displayed in Fig. 1, that presents a four quadrants revolution 
that starts with the PLT of quadrant I, then the MIT of II, then 
the PIT of III, and finally the MLT of quadrant IV. Also six 
minor dualities are noted in Fig. 1. They are the two minor 
PLT/MIT and MLT/PIT dualities of the latency-certainty/
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Fig.1  The Latency-Information Theory Revolution 
 

information-uncertainty major duality, then the two minor 
PLT/PIT and MIT/MLT dualities of the physical-
life/mathematical-intelligence major duality and finally the 
two minor PLT/MLT and MIT/PIT dualities of the 
communication-channel/observation-sensor major duality. 

II. THE  LIT  CONFLUENCE 
     The chronological development of LIT is documented next. 
It starts with the two lossless efficiency performance bounds 
of MIT that led to the discovery of six others for LIT [6]. Next 
the conjectured structural-physical certainty/uncertainty 
duality is explained. Then a 2004-2005 DARPA University 
Grant for adaptive knowledge-aided radar system designs is 
discussed that motivated the confluence of MIT with the 
structural-physical certainty/uncertainty duality conjecture [7]. 
The section ends with the physical duals for MIT and MLT, 
i.e., PLT and PIT that were discovered in 2006. 

A. The MIT Performance Bounds 
 The first MIT performance bound is the lower 

performance bound for source-coder designs, which is called 
the source-entropy with symbol H in bit units for the sourced 
intel-space quantity that it represents. H is defined as the 
expected source-information 

Λ=== ∑Ω

= 21
log)()()]([

i iSiSiS gIgPgIEH            (1) 

))(/1(log)( 2 iSiS gPgI =        ∑Ω
==Λ 1 )()(2 i iSiS gIgP           (2) 

where: 1) G {∈ g1,..,gΩ} is a n-dimensional random vector 
composed of Ω  vector outcomes {g1,..,gΩ}; 2) IS(gi) is the gi 
source-information in bit units; 3) PS(gi) is the gi source-
probability; and 4) Λ is viewed as an effective number of 
outcomes, with Λ=Ω for equally likely outcomes.  

The second and upper MIT performance bound is for 
channel and source integrated (CSI) coder designs, see Fig. 2a 
and [1], [6]. While the CSI-coder’s source-coder efficiently 
compresses intel-space, its channel-coder efficiently uses 
overhead intel-space for the time-communication of intel-
space through a noisy intel-space channel. The CSI-coder’s 
bound is called channel-capacity with symbol C and denotes 
the maximum percentage of intel-space extracted without loss 
from a noisy intel-space channel. C is defined by 

1)(0 ≤=≤ EF/EE /HHHC -                      (3)                 
where: 1) E and F are the n-dimensional codeword input and 
output, respectively, of a memoryless channel (see [1], [6] for 
further technical details on ‘mutual’ information); and 2) the 
conditional source-entropy HE/F is a channel-induced intel-
space penalty whose value determines the percentage of the 
intel-space that can be time-communicated without loss, i.e., 
its probability of error approaches zero. 

B. The Structural-Physical Certainty/Uncertainty Duality 
The structural-physical certainty/uncertainty duality 

conjecture of 1978 gave rise to the mathematically tractable 
separation of stochastic quantized control designs [8] into a 
certainty processor-state controller design and an uncertainty 
processor-state estimator design. In particular, this approach 
resulted in a Matched-Processors methodology  for  quantized 
control [5] which was derived as the certainty dual of the 
uncertainty Matched-Filters methodology for the detection of 
transmitted bits through a noisy intel-space channel [9]. More 
specifically, given observations of the present state of the 
controlled signal-processor (modeled with deterministic state 
equations),  matched processors evaluated for a suitably small  
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Ĝ

Mathematical
Signal-Source

Noisy
Intel-Space

Channel
E F

Source
-Encoder

RS = Source Rate in Expected Bits per G
RSE = Source Encoder Rate in Expected Bits per G

RS

RSE

Intel-Space
Channel-Encoder

Source
Decoder

Intel-Space
Channel Decoder

Memoryless

G
Time-Communicated Signal

CSI-Coder

Ĝ
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Fig. 2  The Structural-Physical Certainty/Uncertainty Dualities of the LIT Revolution 
 

set of present and future quantized controls the cost to go for 
each matched control sequence. From these matched processor 
evaluations the present control was then found that yielded the 
best cost to go for a suitable horizon, and its value applied to 
the controlled signal-processor. The approach was repeated as 
many times as there were control steps. It is of interest to note 
that besides Matched Processors being rather straight forward, 
it also has the fundamental advantage of not suffering from 
‘the curse of dimensionality’ of the alternative control 
methodology, i.e., Bellman’s Dynamic-Programming [10].  
 
C.  The DARPA University Grant 

The merging of MIT with the aforementioned structural-
physical certainty/uncertainty duality to produce MLT was 
motivated by a university grant from DARPA [7]. The 
objective of this research was to use minimum mean square 
error predictive-transform (MMSE-PT) source coding [11] for 
the lossy compression of synthetic aperture radar (SAR) 
imagery of the earth, later to be used in a knowledge-aided 
adaptive radar [12] system subjected to severely taxing 
environmental disturbances. This problem turned out to be 
extremely difficult to address since in addition to the 
compression of the SAR imagery, the processing time of the 
associated adaptive airborne moving target indicator (AMTI) 
radar ‘lossless’ signal-processor also needed to be radically 
compressed. Moreover, it was also found that regardless of 
how fast a lossless signal-processor was, it could never be 
suitably matched to its input when it consisted of compressed 
SAR imagery that was both radar-blind and highly-lossy. This 
lack of match between the lossless signal-processor and its 
compressed input, results in an unsatisfactory signal to 
interference plus noise ratio (SINR) radar performance. 

Fortunately, however, this problem was then solved by once 
again invoking the Matched Processors structural-physical 
certainty/uncertainty duality conjecture. In this latest 
revelation while the compression of intel-space is an 
uncertainty problem, the compression of intel-time is a 
certainty one. Moreover and just as importantly, since the 
certainty Matched Processors methodology was structurally 
similar to that of the uncertainty Matched Filters methodology, 
it was felt that the uncertainty-communication MIT system 
design methodology must also have a ‘certainty signal-
processor design methodology’ with dual strategies. In this 
way MLT inherently surfaced as the certainty-observation 
dual of uncertainty-communication MIT. Of all the inherited 
MLT strategies the most compelling one was the appearance 
of ‘lossy’ processor-coders. After this property was identified 
it was then applied to the design of a suitably lossy adaptive 
AMTI radar signal-processor. More specifically, the clutter 
covariance evaluator whose input was the stored SAR imagery 
was replaced with a lossy power-centroid clutter processor. 
This highly lossy clutter covariance evaluator first determined 
from the stored SAR imagery the power and power-centroid 
values of the investigated clutter range-bin. Using these 
values, it then extracted a suitable clutter covariance from a 
small set, earlier designed off-line and stored in memory. 
After this approach was tried it was found that besides being 
extremely fast, the processor resulted in outstanding SINR 
radar performances while using stored SAR imagery that was 
both radar-blind and exceedingly lossy. The lossy SAR 
imagery resulted from the compression of the lossless SAR 
imagery by a factor of 8,172 [1]. Moreover, an even more 
surprising result later surfaced [13]. It was that a lossy 
adaptive AMTI radar signal-processor algorithm can be 
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designed that emulates the outstanding SINR radar 
performance of the former scheme without the need of clutter 
prior-knowledge, i.e., SAR imagery. This highly desirable 
result surfaced from the discovery that both the range-bin 
power and its power-centroid can be readily derived from the 
on-line sample covariance matrix.  

 
D.  The MLT Performance Bounds 

Similarly to MIT, MLT is found to have two performance 
bounds for system designs [1], [6]. The first is the lower 
performance bound for processor-coder designs, which is 
called processor-ectropy with symbol K and values given in 
bor units for the processing intel-time levels that it represents. 
A processor-coder is any replacement of the original signal-
processor whose output is said to be lossless when it matches 
that of the original signal-processor and lossy when it does 
not. More specifically K is a minimax criterion that is 
illustrated next with a simple example. This example is of a 1-
bit full-adder [14] original signal-processor that has a slow bor 
multi-level implementation structure where the sum output is 
associated with six bor levels and the carry-out with five bor 
levels. The reason for this relatively large number of bor levels 
is that this full-adder only uses two-input gates. However, for 
this example it is found that K=3 bors since the minimum 
number of bor levels needed to generate the carry bit is two, 
and for the sum bit is three as is noted to be the case when a 
‘sum of minterms’ implementation methodology is used [14] 
and more than two-input gates are allowed. While the 1-bit 
full adder is a lossless processor-coder, a lossy but faster, by 
one bor level, 1-bit full adder can be readily derived from the 
lossless case by only implementing the two bor levels for the 
carry and by setting the sum output to zero. Thus K is defined 
      (4) )]]([)],..,([max[)](),..,(max[ 111 NPNPNPP gCfgCfgLgL ==K
where: a) g=[g1,..gN] is the N-dimensional signal-processor 
vector output; b) LP(gi) is the gi processor-latency, e.g. 
LP(sum)=3 bors for the full-adder; and c) fi[CP(gi)]=LP(gi) 
conveys LP(gi) dependence on gi processor-constraint CP(gi). 

The second and upper MLT performance bound is for 
sensor and processor integrated (SPI) coder designs, see Fig. 
2d and [1], [6]. While the SPI-coder’s processor-coder 
efficiently compresses intel-time, its sensor-coder efficiently 
uses overhead intel-time for the space-observation of intel-
time across a window-limited intel-time sensor. The SPI-
coder’s bound is called sensor-consciousness with symbol F 
and denotes the maximum percentage of the mathematical 
latency extracted without loss from a window-limited intel-
time sensor. F is defined by 

                         1)(0 ef/ee ≤=≤ KKKF /-                       (5) 
where: 1) e and f are N-dimensional vectors that are the input 
and output, respectively, of a window-limited intel-time sensor 
(see [1], [6] for further technical details on ‘mutual’ latency); 
and 2) the conditional processor-ectropy Ke/f is a sensor-
induced intel-time penalty whose value determines the 
percentage of the intel-time that can be space-observed 
without loss. For instance, if a 1-bit full-adder based recursive 
adder contributes 2 bor levels of delay for each carry-out, its 
processor-ectropy is Ke=16 bors when it adds 8 bits. Then if 

one observes the adder output with a 14-bors window-limited 
intel-time sensor, the sensor-induced inter-time penalty will be 
of 2 bor, i.e. Ke/f =2 bors. In turn, this results in the sensor-
consciousness value of F=(16-2)/16=0.88 informing us that 
only 88% of the 16 bors intel-time of Ke can be space-
observed without loss. Thus the adder intel-time must be of at 
least 18 bors. The needed 2 bors can be obtained with a 
sensor-coder that uses prior-knowledge, e.g. that LSBs can be 
zero, to begin the addition 2 bors earlier in time [1], [6]. 
 
E. The PIT and PLT Physical Duals 
   In 2006 soon after the discovery of the MLT methodology as 
the certainty dual of the uncertainty MIT methodology, the 
physical duals for MIT and MLT were also revealed. These 
physical duals, i.e., PIT for MIT and PLT for MLT, lead to 
physical system designs that are once again guided by lower 
and upper performance bounds. Furthermore, the structural-
physical certainty/uncertainty duality conjecture for PLT and 
PIT brings to mind classical themes from physics. The first is 
the certainty advocacy of Einstein for a perfectly described 
‘certainty’ Universe of which his relativity theory was part. 
Yet it is also well known that the Heisenberg uncertainty 
principle is at the center of quantum mechanics, which never 
seems to fail in its description of the real-world for small 
distances. Thus for many years physicists have been busy in 
the search for a quantum theory of gravity at the Plank length 
where it is thought Einstein’s relativity theory yields to 
quantum mechanics [15]. A recent popular candidate for this 
theory is string theory with its conjectured eleven dimensions 
for the Universe as well as further generalizations. Yet, 
recently [15], experimental data from an exploding star has 
surfaced conveying a different perspective. This perspective is 
that the speed of light does not seem to change its value when 
its wavelength is at the Plank length, with further smaller 
wavelength results expected in the near future. The results 
obtained so far have already elicited comments from 
physicists such as “It would be amazing that in effect we don’t 
need a quantum theory of gravity,” [15]. Thus it seems that the 
structural-physical certainty/uncertainty duality conjecture has 
reasonable support. Retention problems of quantum mechanics 
may thus be found to form together with the motion problems 
of relativity theory a true duality where quantum mechanics 
and relativity theory complement each other and never merge. 
A desirable outcome of this scenario is that retention problems 
that are often severely limited in the type of experiments that 
can be performed, may nevertheless be studied using the 
structural-physical certainty/uncertainty duality. 
 
F.  The PLT Performance Bounds 

Similarly to MIT and MLT, PLT has been found to have 
two performance bounds for system designs. The first is the 
lower performance bound for mover-coder designs, which is 
called mover-ectropy with symbol A and values given in SI 
second units for the motion life-time interval that it represents. 
A mover-coder is any replacement of the original signal-
mover of physical signals that is lossless when it moves the 
same physical signals moved by the original signal-mover and 
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lossy when it does not. Examples of mover-coders are four-
wheeled vehicles used in the space-dislocation of people and 
photons that carry electromagnetic radiation at the speed of 
light in a vacuum. An example of a lossy mover-coder is an 
automobile that can only move six people, but yet replaces a 
van that carries ten people, thus the four people left behind 
represent a physical signal loss. Similar to the processor-
ectropy K, the mover-ectropy A is a minimax criterion that can 
be conveniently illustrated with a computational device 
contained in a sphere. The computations start on one side of 
the sphere and end on the other side with a constant speed v of 
travel along all possible connecting paths. As a mover moves 
along one of these connecting paths at constant speed v binary 
operations are performed in cascade. A is then 

 A=πr/v                                           (6) 
where r is the radius of the sphere. To derive this result it is 
first noted that πr/v is the minimum life-time for computations 
that are restricted to the surface of the sphere. On the other 
hand, 2r/v is the minimum life-time for computations that are 
not restricted as to which path may be taken. Notice that this 
minimum life-time path is along the diameter of the sphere 
whose distance is 2r. The largest of these two life-times, i.e. 
πr/v, is then the minimax mover-ectropy A. Thus A is defined 
   )]]([)],..,([max[)](),..,(max[ 111 NMNMNMM CfCfLL γγγγ ==A   (7) 

where: a) γ=[γ1,..γN] is the N-dimensional signal-mover vector 
output; b) LM(γi) is the γi mover-latency, e.g. LM(surface 
path)= πr/v (where v=c for photon); and c) fi[CM(γi)]=LM(γi) 
conveys LM(γi) dependence on γi mover-constraint CM(γi). 

The second and upper PLT performance bound is for 
channel and mover (CMI) coder designs, see Fig. 2b and [1], 
[6]. The c shown in Fig. 2b reminds us about the upper speed 
of light in a vacuum limit conjectured by Einstein that movers 
can never exceed. While the CMI-coder’s mover-coder 
efficiently compresses life-time, its channel-coder efficiently 
uses overhead life-time for the space-communication of life-
time through a multi-path life-time channel. The CMI-coder’s 
bound is called channel-stay with symbol T and denotes the 
maximum percentage of the physical latency extracted without 
loss through a multi-path life-time channel. T is defined by 

 1)(0 ε/εε ≤=≤ AAAT /φ-                            (8) 

where: 1) ε and φ are N-dimensional vectors that are the input 
and output, respectively, of a multi-path life-time channel; and 
2) the conditional mover-ectropy Aε/φ is a channel-induced 
life-time penalty whose value determines the percentage of the 
life-time that can be space-communicated without loss. For 
instance, if a computational sphere yields 1.2 msec for its 
minimum surface path and 1 msec for its direct diameter path, 
Aε=1.2 msec. Then if the computations of each path are 
slowed down by a life-time channel that increases the 
computation life-time by at most 0.2 msec, it follows that 
Aε/φ =0.2 msec. In turn, this results in T=(1.2-0.2)/1.2=0.834 
informing us that only 83.3% of the 1.2 msec life-time in Aε 
can be space-communicated without loss. Thus the spherical 
computer life-time must be of at least 1.4 msecs. 
 

G.  The PIT Performance Bounds 
Similarly to MIT, MLT and PLT, PIT has been found to 

have two performance bounds for system designs [1], [6]. The 
first is the lower performance bound for retainer-coder 
designs, which is called retainer-entropy with symbol N and 
values given in SI square meter units for the retention life-
space surface area that it represents. A retainer-coder is any 
replacement of the original signal-retainer of physical signals 
that is lossless when it retains the same physical signals of the 
original signal-retainer and lossy when it does not. Examples 
of retainer-coders are a thermos used in the time-dislocation of 
hot tea and an atom that retains its spin direction. An example 
of a lossy retainer-coder is a thermos that can only store three 
hot tea servings, but yet replaces a thermos that stores five hot 
tea servings, thus the two hot tea servings left behind represent 
a physical signal loss. Similarly to the source-entropy H, the 
retainer-entropy N is an expectation criterion. N is the 
expected retainer-information  

    2
1

4)()()]([ rPIIE
i iRiRiR πεεε === ∑Ω

=
N                   (9) 

 IR(εi)=4πri
2(PR(εi)),       ∑Ω

=
=

 

1 
2 )())((  

i iRiRi PPrr εε               (10)                   

where:1) Ψ ∈{ε1,..,εΩ} is a n-dimensional random vector 
composed of Ω  vector outcomes (or microstates) {ε1,..,εΩ}; 2) 
IR(εi) is the εi retainer-information in square meter units, which 
specifies the minimum surface area of a sphere of radius ri(.) 
that satisfies the volume Vi of εi; 3) PR(εi) is the εi retainer-
probability; and 4) r is the radius of the sphere given by the 
square root of the expected square radius of microstates 
specified with minimum surface area spheres. An example of 
a lossless retainer-coder that achieves the retainer-entropy 
N=4πr2 is a spherical thermos of hot tea whose volume is the 
same as that of the original cylindrical thermos.  

The second and upper PIT performance bound is for 
sensor and retainer integrated (SRI) coder designs, see Fig. 2c 
and [1], [6]. The χ shown in Fig. 2c reminds us about the 
upper pace (the retention dual of motion speed in SI sec/m3 
units) of dark (the retention dual of light) in an uncharged and 
non-rotating black hole (UNBH) (the retention dual of a 
vacuum) limit that was first derived in 2008 [16] for retainers. 
The expression and value for the pace of dark in an UNBH are  

χ =τ/V= 960πc2/hG = 6.1123 x 1063 secs/m3         (11) 
where τ is the life expectancy (or duration) of a UNBH with 
initial volume V, and h and G are the Plank and gravitational  
constants, respectively. While the SRI-coder’s retainer-coder 
efficiently compresses life-space, its sensor-coder efficiently 
uses overhead life-space for the time-observation of life-space 
across a noisy life-space sensor. The SRI-coder’s bound is 
called sensor-scope with symbol I and denotes the maximum 
percentage of the physical information extracted without loss 
across a noisy life-space sensor. I is defined by 

 1)(0 / ≤=≤ ΞΦΞΞ NNNI /-                          (12) 

where: 1) Ξ and Φ are n-dimensional vectors that are the input 
and output, respectively, of a noisy life-space sensor; and 2) 
the conditional retainer-entropy NΞ/Φ  is a sensor-induced life-
space penalty whose value determines the percentage of the 
life-space that can be time-observed without loss. For 
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instance, if a cylindrical thermos for hot tea with a surface 
area of 168π cm2 has a retainer-entropy of NΞ=144π cm2, this 
retainer-entropy can be implemented with a spherical thermos 
with a 6 cm radius that has the same volume as the original 
cylindrical thermos. However, if the hot tea is time-observed 
with a noisy life-space sensor consisting of random people that 
require the drinking of the hot tea from a thermos cup with a 
166π cm2 surface space, the sensor-induced life-space penalty 
will be of 22π cm2, i.e. NΞ/Φ=22π cm2. In turn, this results in 
I=(144-22)/144=0.847 informing us that only 84.7% of the 
144π cm2 life-space of NΞ can be time-observed without loss. 
Thus the hot tea life-space must be of at least 166π cm2. 

III. THE BRIDGES OF STATISTICAL PHYSICS  
In this section it is shown that statistical physics, of which 

thermodynamics is a special case, offers a natural link between 
the four LIT quadrants. First a simple relation is noted 
between the Boltzmann thermodynamics-entropy S and the 
Shannon source-entropy H [3], i.e.,  

HS k 2ln=                                   (13) 
where S and k, the Boltzmann constant, are given in SI joules 
per kelvin units and H indicates the expected source-
information in bits of the microstates (1). Moreover, when the 
microstates are equally likely H attains the maximum value of 
H=log2Ω and S=klnΩ as expected. The thermodynamics-
entropy of an uncharged nonrotating black hole (UNBH) has 
been investigated by Hawking and others [3]-[4], the author 
inclusive starting in 2008 [16]. The UNBH’s thermodynamics-
entropy can be expressed as follows   

BitEHEHEH NNHS / 2920ln1/   2ln/2 2ln/ 3 ==== AchGAck χπ    (14)       
where: 1) EH signifies the ‘event horizon’ where a black-hole 
meets a vacuum and photon pairs are spontaneously created 
with one photon emerging inside the vacuum and the other 
emerging inside the black-hole. While the photon inside the 
vacuum increases the positive energy of the vacuum, the 
photon inside the black-hole decreases the positive energy of 
the black-hole; 2) A is the surface area of the spherical UNBH; 
3) SEH, HEH and NEH are the thermodynamics-entropy, source-
entropy and retainer-entropy of the UNBH, respectively, with 

( )222 /244 cGMrA EHππ ===EHN                    (15)  
and MEH being the UNBH mass; and 4) NBit is defined by 

       (16) 
BitN 3 /2ln2 chG π= 222 )/2(44 cGMr BitBit ππ ==

PPBit llr  4757.1  2ln == ππ ,   3 2/ chGlP π=          (17) 

RPRP 1774.12ln2 MMMbit == ,    GhcM RP
216/ π=         (18) 

and denotes the retainer-entropy of a bit that is given by the 
surface area of a sphere where ½ of its circumference πrBit (rBit 
is the radius of the sphere) is larger than the Plank length lP  as 
seen from (17) and expected by theory [3]. Moreover, a bit has 
a mass MBit (or energy for photons) with escape speed close to 
c (c for photons) exceeding the reduced Plank mass MRP  (18). 

From (14) it is noted that statistical physics produces a  
inherent link between MIT’s source-entropy HEH and PIT’s 
retainer-entropy NEH. Unfortunately, however, the simple 
linear relation HEH=NEH/NBit only applies to a UNBH and thus 
must be found for other cases. For instance, for an ideal gas 

(IG) [17]-[18] the following nonlinear bridge between its 
retainer-entropy NIG and source-entropy HIG can be derived 

( ) ( )IGIGIGIG NNHS Δ=+Β== /log  2ln//ln2ln 2JcJVTJk/ P
cV  (19) 

( ) ,/244/3 222
evGMrrV ππ ===IGN  ( )222 /244/1 eS vMGr Δ=Δ==Δ ππφIGN  (20) 

              (21) ( ) ( ) ( ) 3// 2/ 2/322/5 /MrhkTNeM AMS πσφ =

       (22) 
where: 1) J is the number of gas molecules; 2) V, T, and M are 
the volume, temperature and mass of the gas in SI units; 3) c

, 2/32/5 −−= VP cc Tegσ ,/3/ 2
rmsAAM vkTNJNMM == 2/2/ evGMr =

V 
and cP=cV+1 are the dimensionless heat capacity constants 
under constant volume and pressure conditions, respectively, 
with cV=3/2 and cP=5/2 for a monatomic gas (the value of cV 
can be found either experimentally or theoretically, from the 
degrees of freedom df of the molecules where cV=df/2); 4) h is 
the Plank constant; 5) r is the radius of a sphere of volume V; 
6) ve is the escape speed in SI m/sec units from the 
gravitational field of M (assumed a point mass at the center of 
the sphere); 7) vrms is the root mean square speed of the gas 
molecules; 8) MM is the molar mass of the molecules; 9) NA is 
Avogadro’s number; j)   is an undetermined gas 
constant where 

gT /32/3 Χ=Β

AM NkTMh /2/ π=Χ  is the thermal de Broglie 
wavelength and g=1 for a monatomic gas; 10) φS  in 
weavelength (the retention dual of wavelength [16]) cyclesl/m2 
units is the surface fix (the retention dual of frequency [16]) of 
the gas; 11) σ is a dimensionless constant that has a value of 
one for a monatomic gas (cV=3/2) and is more than one 
otherwise; and 12) ΔNIG is the part of the retainer-entropy NIG 
associated with ΔM (ΔM<<M ) whose molecules’ escape 
speed is rGMve /2=  (20). Thus from (19) it is noted that the 
general relationship between N and H is nonlinear, i.e. 

                          (23) ( )NHS fk ==2ln/
where f(.) is some function of N.  
 
A. Lingerdynamics, the Certainty Dual of Thermodynamics 

It is possible to conjecture that the information-
uncertainty thermodynamics bridge from N to H (23) has a 
latency-certainty dual. This latency-certainty dual I have 
called lingerdynamics. Thus in essence statistical physics is 
said to have a certainty/uncertainty duality. In addition to 
providing a bridge between A and K, lingerdynamics can also 
be bridged with thermodynamics to yield 

                                            (24) ( )AKZ g==

k2ln/SZ =                             (25) 
HK =                                 (26) 

24/ evNA π=                              (27) 
where: 1) Eq. (24) is the certainty dual of (23); 2) Z is a 
dimensionless lingerdynamic-ectropy that is the dual of S/ln2k 
where (25) is the bridge from S to Z (note from (24) that Z is 
the same as the processor-ectropy K); 3) Eq. (26) relates the 
bits of H to the bors of K (or Z); 4) Eq. (27) relates N=4πr2 of 
(9) to the mover-ectropy A=πr/ve of (6) for a computational 
sphere where the movers are assumed to be particles (or 
photons) moving at the escape speed where vcve ≤ e=c for a 
UNBH; and 5) g(.) is some function of A.  Moreover,  
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24/ cNA BitBor π=                           (28) 

relates ABor of the NBit’s sphere to NBit to yield the bor ectropy 
,4757.1 2ln/ PP TTcrA BitBor === ππ           (29)      clT P / P =

which is found to be larger than the Plank time TP as expected 
by theory. Similarly the relationship 

24/ eIGIG vNA Δ=Δ π                           (30) 

relates ΔAIG of the ΔNIG’s sphere to ΔNIG. 
     Using the above bridges one obtains for a UNBH  

SEH/ln2k = HEH  = NEH/NBit  = (AEH/ABor)2 = KEH
2 = ZEH 

2
  

      (31) 
and for an ideal gas 

( ) ( ) 222
22 /log/log2ln IGIGIGIGIGIGIGIG ZKAAJNNJHk/S ==Δ=Δ==      (32) 

The defining expressions for the variables of (31) and (32) 
given earlier can also be expressed in terms of the physical 
retention duals of motion variables [16] as well as the 
lingerdynamics dual for temperature called lingerature. When 
this is done the following expressions result: 

NBit = 4 ln2 lP
2= 1920 ln2/cχ                        (33) 

χclP /480=                                 (34)  
SEH  = kNEH /4lP

2
 = kcχ NEH /1920              (35)  

( ) ( ) ( )223/222 /64/34/24/1 eeSIG ΠOΦvMGN Δ=Δ==Δ πχππφ     (36) 

τ = 4πr3χ /3                                  (37) 
2               (38) 2243/4 4 4/ cr/acr/GMΦO πχπχτα ===

Gc/  8143 1210πχΦ = =1.8538 x 10168  Pa.sec4/3/kgR
2    (39)  

ΔO = ΔMc2/χ                                  (40) 
cvcrMGOΠ ee /// 2/ 6 3/1 χχτΦ ===                 (41) 

( ) ( ) ( ) 3/4/3/ 2/ 3/13 462/322/52 /OchLNceO AMS τπχχπχσφ &&&=   (42) 

χ/2cMO MM =                                  (43) 
χ kTL =&&&                                     (44) 

cvcMNkTONLΠ rmsMAMArms /// 3/3 χχ === &&&        (45) 
where: 1) Eqs. (40), (41), (43), (44) and (45) are statistical 
bridges from ΔM, ve, MM, T and vrms to the mater ΔO in SI 
kgR=kg.m5/sec3 (the retention dual of mass ΔM), escape pace 
Πe in  SI sec/m3, molar mater  OM, lingerature L&&& in SI Pa.sec, 
and rms pace Πrms in SI sec/m3; 2) Eq. (37) is the bridge from 
the radius r of a sphere in the vacuum of a point-mass M in 
motion-space, to retention τ in the UNBH of a point-mater in 
retention-time [16]; 3) α is the escalation of mater (the 
retention dual of the acceleration ‘a’ of mass) in SI sec/m6; 4) 
Eq. (38) is the bridge from a, that is due to the gravitational-
field of a point-mass M space-dislocated by r, to α, that is due 
to the gravidness-fallow (the dual of the gravitational-field) of 
a point-mater O time-dislocated by τ; 5) Φ is the gravidness 
constant; 6) Eq. (39) is the bridge from G to Φ; 7) Eqs. (36) 
and (42) are retention duals for (20) and (21); and 8) Eqs. 
(33)-(35) express SEH, NBit and lP in terms of cχ that is in SI 
reciprocal m2 units. In Table 1 additional thermodynamics and 
lingerdynamics concepts, bridges and related variables [8] are 
stated. Of special note are the displayed laws of 
thermodynamics that drive the Universe [18] and its 
lingerdynamics certainty duals where the 0th and 3th laws   are   
not   shown   in   this  table.  In   other  papers   these dualities, 

Table 1 Selected Statistical Physics Terms and Dualities 
Thermodynamics 

(About Work and Heat Transfer) 
Bridge Ligerdynamics 

(About Effort and Hover Transfer) 
Motion-Time t in SI sec  Retention-Space ξ in SI m3

Motion-Space r(t) in SI m  Retention-Time τ (ξ) in SI sec 
Space-Dislocation Δr in SI m  Time- Dislocation Δτ in SI sec 

Life-Time Δt in SI sec  Life-Space Δξ in SI m3

Mass M in SI kg O=Mc2/χ Mater O in SI kgR=kg.m5/sec3

Speed  v =Δr/Δt in SI m/sec Π=vχ/c Pace  Π=Δτ/Δξ  in  SI sec/m3

Momentum p=Mv in SI kg.m/sec   pc=υ  Endurance υ=OΠ in SI Joule 
Avg. Force  f=Δp/Δt  in  SI N  χγ fv=  Avg. Press  γ =Δυ/Δξ   in  SI Pa 

Mass-Energy E=Mc2  
in SI J 

 
ϖ=E χ 

Mater-Viscidity ϖ= Oχ 2

in SI Pa.sec 
Work W in SI J χWΨ =  Effort Ψ  in SI Pa.sec 
Heat  Q in SI J χQΛ =  Hover Λ in SI Pa.sec 

D-less Thermodynamics-Entropy 
S/ln2k=H is Dimensionless  

k2ln/SZ =  D-less Lingerdynamics-Ectropy 
Z=K is Dimensionless 

The Thermodynamics Gas Law 
 TJPV &&& =  in SI J 

 
 χγτ PV=  

The Lingerdynamics Gas Law 
LJ &&& =γτ  in SI Pa.sec 

Energy-Temperature in SI J 
( ) ( ) 2ln/1 HU/US/kkTT ∂∂=∂∂== −&&&   

χ TL &&&&&& =  
Viscidity-Lingerature in SI Pa.sec 

( ) ( ) 2ln//2ln// 22 KZ ∂Θ∂=∂Θ∂=L&&&  

Internal Energy  
TJcU V

&&& =   
 

Θ=Uχ 
Internal Visci ity d

 LJcΘ &&& τ=   

Heat Capacity Constants 
cV  and  cP

cτ=cV  and 

cγ=cP

Hover Capacity Constants 
cτ  and  cγ

Enthalpy Heat 
PVU +=H  

 
χH=Ξ  

Ecthalpy Hover 
γτ+=ΘΞ  

Helmholtz Work 
TUTU &&&HS 2ln−=−=A  

 
χA=Γ  

Helmholtz Effort 
LΘLΘΓ &&&&&& 22 2ln2ln KZ −=−=  

Gibbs Work 
TTG &&&HS 2ln−=−= HH  

 
χGΥ =  

Gibbs Effort 
LΞLΞΥ &&&&&& 22 2ln2ln KZ −=−=  

The 1st Law  of Thermodynamics  
(Conservation of Energy) 

ΔU = ΔQ - ΔW 

 
χUΘ Δ=Δ  

The 1st Law of  Lingerdynamics 
(Conservation of Viscidity) 

ΨΛΘ ΔΔ=Δ -  
The 2nd Law of Thermodynamics  

(Non-Conservation of Entropy) 
02ln/ ≥== HS δδδ kTQ  

 
k2ln/SZ δδ =  

The 2nd Law of  Lingerdynamics 
(Non-Conservation of Ectropy) 

02ln/2ln 22 ≥== KZ δδδ LΛ &&&  
PV Diagram and its Cycles  γτ Diagram and its Cycles 

Wavelength λ  in SI m  Weavelength  l  in SI sec 
Frequency f in SI λ cycles/sec  Surface Fix φS in l cyclesl / m2

Wave  Speed  v =λ f  Weave Surface Pace ΠS= lφS

Spontaneous Heat ngines E
LowHigh TT &&&&&& ⇒

  Spontaneous Hove Engines r 
LowHigh LL &&&&&& ⇒

 

Non-Spontaneous Work Engines 
LowHigh TT &&&&&& ⇐

  Non-Spontaneous Eff rt Engines o
LowHigh LL &&&&&& ⇐

 

Carnot Heat Engine Max. Eff.  
( ) HighLowHigh T/TT &&&&&&&&& −

  Carnot Hover Engine Max. Eff. 
( ) HighLowHigh L/LL &&&&&&&&& −

 

 
inclusive of the certainty dual of work and heat, i.e., effort and 
hover, respectively, are treated, e.g., see [8]. 
 
B. An Illustrative Biochemistry Example  

It is expected that the novel bridge expression (32) will 
find applications in many fields. An interesting case that is 
discussed next is the conjecture that (32) can be used to study 
the life expectancy of biological systems. Since human life 
expectancy and macroscopic parameters are relatively well 
known, a preliminary study will be pursued for this case. For 
instance, the maximum human lifespan is known to be longer 
than 120 years where the longest unambiguously documented 
lifespan is that of 122 years and 164 days by Jeanne Calment 
of France (1875-1997). It is also well known that our cells are 
made mostly of water H2O molecules with a molar mass of 
18.0151 g/mol. Furthermore, the internal temperature of our 
bodies is of approximately 310 K. Using these last two 
macroscopic parameters and an assumed lifespan it will be 
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shown that (32) predicts a daily caloric intake that correlates 
well with the expected results. 

The development begins by using Clausius’ definition of 
thermodynamics-entropy to model the daily digestion of food 
of mass ΔM with the expression 

ΔSDig=ΔQ/TDig=C1C2ΔM/TDig  in SI J/K units        (46) 
where ΔQ denotes the heat energy in J units of  the digested  
food, TDig is the temperature of digestion, C1=4.2 J/cal and 
C2=5,000 kcal/kg. On the other hand, it is assumed that a 
matching or similar amount of mass ΔM is exhaled daily by 
the human body in the form of a gas. Linked to this exhale that 
maintains the body mass M and volume V unaltered from day 
to day, is the Boltzmann thermodynamic-entropy ΔSExh = Sf – Si 
where Si is the entropy when the day begins and Sf >Si is when 
it ends. From (32) it is noted that ΔSExh  is given by 
       ( ) ( )

IGIG,iIG,fIGIG,iiIGIG,fiifExh kJJJk NNNNNNNSSS ==Δ−ΔΔ+=−=Δ /ln/ln)(  

( ))3//(/3/ln ΠNrNrVNNJk IGΔ=Δ=ΔΔ= IGIGIG
          (47) τ

( )222 /24 4 eIG vGMrN ππ ==

)

)

                       (48) 

( 222 /244/1 eSIG vMGrN Δ=Δ==Δ ππφ                 (49) 

( ) ( ) ( ) ,3// 2/ 2/322/5 /MrhkTNeM ExhAMS πσφ = 2/32/5 −−= V
Exh

P cc Tegσ  (50) 
2/3/ / rmsAM vkTJMNM == ,               (51)  2/2/ evGMr =

1  and  2/ +== VPfV ccdc                         (52) 

  V =τ /Π = 4πr3/3 = M/1000                     (53) 
where: 1) τ and Π in (47) and (53) denote a lifespan in secs 
and retention pace in sec/m3, respectively; 2) the term 
rΔNIGΠ/3 in (47) corresponds to the M time-dislocation, or 
weavelength l=rΔNIGΠ/3=86,400 seconds for a single day; 3) 
J signifies the number of H2O molecules that make up M; 4) 
ΔJ denotes the number of unknown particles forming ΔM;  5) 
Eq. (53) assumes that the human mass density is that of liquid 
water, thus, for instance, if M=70 kg (154.3  lbs) then V=0.07 
m3 and r = 0.2557 m; and 6) TExh is the exhale temperature. 
When (46) and (47) are equated it follows that 

(( )2/400,86//ln/000,000'21 MMNNJkTM IGIGDig Δ==ΔΔ=Δ τ . (54) 
Eqs. (47)-(54) can then be solved under different assumptions, 
e.g. when M=70 kg, TDig=TExh= 310 K, df=16.1 for H2O at 310 
K and τ=130 years (or 4.0997 Gsec) it is found that ΔM = 
0.3214 kg for a daily caloric intake of C2ΔM=1,607 kcal (other 
results derived from (54) are C2ΔM=1,827 kcal if τ=100 yrs, 
C2ΔM=2,000 kcal if τ=83.4 yrs, etc.). The remaining values 
for τ=130 years are: 1) σ=1.6672; 2) V=0.07 m3; 3) r=0.2557 
m; 4) NIG is 0.8412 m2; 5) ΔNIG =1.7311 x 10-5 m2; 6) J=2.34 x 
1027 H2O molecules; 7) ΔJ=1.4643 x 1026 particles with an 
average molar mass of 1.3216 g/mol for ΔM (e.g. this molar 
mass is satisfied by 0.1736ΔM of carbon dioxide CO2, 
0.0714ΔM of water H2O and 0.755ΔM of hydrogen H atoms); 
8) a particle escape speed of ve=19.118 mm/sec; 9) a particle 
kinetic rms speed of vrms=655.1496 m/sec; 10) a retention pace 
of Π=58.567 Gsec/m3; 11) a surface fix of φS=57.768 
kcyclesl/m2; and 12) a surface pace of ΠS =φSl=4.9911 
Gsec/m2. Finally, it should be noted that the previous 
preliminary study can be readily extended via a multi-species 
version of (32) to more elaborate molecular models for M. 

IV. CONCLUSIONS 
This paper reviewed the mathematical-physical theory of 

communication-observation that is part of latency-information 
theory or LIT. LIT is expressed in a revolution whose 
problems fall into two mathematical-intelligence quadrants 
and two physical-life ones. Using a structural-physical 
certainty/uncertainty duality conjecture from controls, LIT 
exhibits design methodologies inherited in each case from 
classical mathematical information theory or MIT. The 
efficiency system design philosophy of LIT was illustrated 
with controls, adaptive radar, physics and biochemistry 
examples. Moreover, thermodynamics was noted to advance 
uncertainty bridges for LIT’s MIT and PIT that further 
illuminate physics retention problems such as those of gases. 
Using LIT’s conjectured structural-physical dualities, 
statistical physics was also discovered to have a certainty dual 
for thermodynamics called lingerdynamics that results in a 
complete LIT quadrants bridge. The paper ends with an 
illustration of the conjecture that the derived statistical physics 
bridge can be used to make reasonable predictions of the daily 
caloric intake of biological systems for an assumed lifespan. 
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