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Lung ca ncer i s the l eading ca use o f ca ncer deat h i n t he w orld. N on-small ce ll lung ca ncer 
(NSCLC) accounts for 85% of all lung cancer cases. Only 15% of patients diagnosed with lung 
cancer survive five years from diagnosis. Therapy for advanced disease increases average life 
expectancy b y onl y a f ew m onths, and sl ightly improves quality o f l ife.  S imilarly, adj uvant 
chemotherapy for resected disease has only a modest impact on survival rates.  More effective 
therapy i s needed.  We bel ieve t hat appl ying st ate-of-the-art molecular t ools to ca refully 
conducted clinical trials will lead to the identification of molecular mechanisms that contribute to 
lung cancer therapeutic resistance and that drive prognosis, and that this in turn will lead to the 
development o f d rugs with nov el bi ological an d t herapeutic functions.  T herefore, w e have 
undertaken a translational research program named PROSPECT: Profiling of Resistance 
Patterns & Oncogenic Signaling Pathways i n Evaluation of  Cancers of t he Thorax and 
Therapeutic Target Identification. The goal of PROSPECT is to use therapeutic target-focused 
(TTF) profiling along with genome-wide mRNA and serum phosphopeptide profiling to identify 
and ev aluate m olecular t argets and pat hways t hat co ntribute t o therapeutic sensitivity o r 
resistance, prognosis, and recurrence patterns, and to use this information to guide formulation 
of new rational therapeutic strategies for NSCLC and mesotheliomas. In the Program, we have 
5 research projects and 3 Cores to address 3 central issues: therapeutic resistance, prognosis 
and new therapeutic targets and strategies.  

INTRODUCTION 

 
PROGRESS REPORT (BODY):  
 
Project 1:  Therapeutic target-focused (TTF) profiling for the identification of molecular 
targets and pathways that contribute to drug sensitivity or resistance in vitro and the 
development of rational treatment strategies for NSCLC. 
 
(Leader: Dr. John Heymach; Co-Leader: Dr. John Minna) 
 
Hypotheses:  
We hy pothesize t hat a broad, sy stematic molecular pr ofiling o f N SCLC ce ll l ines, usi ng both 
TTF and global approaches, will lead to the following results: 
1. The identification of new potential therapeutic targets for NSCLC  
2. The development of predictive markers for in vitro sensitivity to targeted agents, which will 

form the starting point for the development of a pr edictive model of in vivo sensitivity using 
clinical specimens as described in Aim 3.  

3. Insights into the m olecular m echanism unde rlying t herapeutic resistance and i nto the 
relationship o f resistance m echanisms to factors innately af fecting t umor g rowth rate and 
prognosis 

4. Identification o f r eadily t ranslatable t herapeutic strategies t o co mbat t hese r esistance 
mechanisms.  

  
Specific Aims: 
In t his project, we will develop and validate a  novel t herapeutic target-focused (TTF) profiling 
platform at M.D. Anderson Cancer Center. The platform will provide a high throughput, 
quantitative, sca lable, and highly sensitive se t of  assays to assess activation o f key signaling 
pathways (e.g., PI3K/AKT, STAT, RAS-RAF-ERK) as well as other potential therapeutic targets 
such as receptor tyrosine kinases (RTKs). It will be coupled with global profiling of gene 
expression usi ng A ffymetrix 2. 0 ar ray. T hese molecular pr ofiles will t hen be co upled with 
information from a broad drug and therapeutic target siRNA (DATS) screen to develop markers 
for predicting drug sensitivity in vitro based on molecular profiles, elucidate the molecular 
determinants of se nsitivity or  r esistance t o a given t herapeutic agent, and i dentify pot ential 
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therapeutic targets for tumor cells resistant to a given agent. This project lays the foundation for 
Project 3 , w here t he sa me TTF and global pr ofiling appr oaches w ill be use d to ch aracterize 
clinical tumor specimens and investigate molecular markers identified in this project, for Project 
4, in which t he pr ofiles and t herapeutic targets for m esothelioma w ill be e xplored, and f or 
Project 2, in which the profiles will be correlated with patient prognosis and metastatic patterns. 
The specific aims of this project are as follows:  
 
Specific Aim 1: To develop a TTF profile for assessing critical signaling pathways and 
potential therapeutic targets, and to apply TTF and gene expression profiling to NSCLC 
and mesothelioma cell lines.  
 
1.1. Development and  technical validation of  a TTF p rofile using r everse phase  l ysate ar rays 
(RPPA) and multiplexed bead array technology.  
1.2. A pplication o f TTF pr ofiling to a ce ll l ine panel  r epresenting m alignant ( NSCLC and  
mesothelioma) and non-malignant (endothelial and stromal cells, normal bronchial epithelium) 
cell types. 
1.3. Gene expression profiling of the cell line panel using Affymetrix microarrays.  
1.4. Correlation of TTF and gene expression profiles from the cell line panel to determine gene 
expression signatures that correlate with activation of individual proteins (e.g., EGFR activation) 
and critical signaling pathways (e.g., RAS pathway activation).  
 
Specific Aim 2: To determine the sensitivity of the cell line panel to the selected drug and 
therapeutic target siRNA (DATS) screen.  
 
2.1. Screening of the cell line panel for sensitivity to a panel of 20-25 targeted agents and 
standard chemotherapy agents.  
2.2. S creening o f t he c ell l ine panel  usi ng si RNA r epresenting pot ential t herapeutic targets, 
including m olecules targeted by  sp ecific agents in A im 2. 1 (e.g., EGFR, IG FR-1, e tc.) and  
potential t herapeutic targets for which dr ugs are not  cu rrently available ( e.g., RTKs for which 
drugs are currently in development). 
2.3. Comparison of in vitro and in vivo profiles (TTF and global) and drug sensitivity in selected 
NSCLC cell lines and xenografts grown from the same lines. 
  
Specific Aim 3: Development of markers for predicting drug and targeted siRNA 
sensitivity in vitro based on TTF and molecular profiles, and identification of candidate 
therapeutic targets in chemotherapy-resistant lines.  
 
Summary of Research Findings
We have established a cell line bank with a standardized set of 75 NSCLC, 30 SCLC, and 5 
immortalized human bronchial epithelial cell (HBECs) lines that represent a range of histological 
tumor types including adenocarcinoma, squamous, and bronchioalveolar.  These cell lines have 
been DNA-fingerprinted and mycoplasma- and virus-tested to insure they are of the correct 
origin and are contamination-free.  Fur ther, we developed over 70 di fferent NSCLC xenografts, 
including 30 derived from human NSCLC cell lines, stably ex pressing luciferase to allow for 
bioluminescence i maging ( BLI).  We generated m ore t han 40 he terotransplant m odels, w ith 
similar histology to t he pr imary t umor co unterparts, r epresenting major h istological NS CLC 
subtypes (in collaboration with Drs. Wistuba and Mao). We hav e completed g enome-wide 
mRNA expression profiling using Affymetrix HGU133(A, B, or Plus2) or Illumina WG6-v2 gene 
chips and protein profiling by reverse-phase proteomic arrays (RPPA) on all of these cells lines; 
expression dat a w as correlated w ith in vitro drug r esponse (by M TS and co lony f ormation 
assays) to a number of chemotherapies and targeted agents (Figure 1).   
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Expression Correlates 
with Sensitivity

Expression Correlates 
with Resistance

Genes (mRNA)

Drugs

- 1.0      Pearson r    +1.0

Erlotinib

AZD6244

Figure 1.  Clustering of mRNA expression signatures 
predicting s ensitivity a nd r esistance to various 
chemotherapy a gents, groups, a nd dr ugs b y 
mechanism of action. The mRNA expression patterns 
from t he microarray d ata f or eac h of  t he 50 N SCLC 
lines w ere c orrelated with the v arious dr ug r esponse 
phenotypes t o der ive s ignatures predictive of 
response. This i ncludes t wo dr ugs i n t he B ATTLE-2 
trial, erlotinib ( blue ar row) and AZD6244 ( red ar row).  
The statistical Pearson r values which correlate 
expression of  t he i ndividual ge nes with dr ugs 
sensitivity and r esistance across t he 50 lung c ancer 
lines are c olor-coded w ith ex pression l evels of green 
correlating with sensitivity and expression levels of red 
correlating with resistance.  As shown in the figure, the 
drugs ag ain grouped by their g eneral m echanism o f 
action (e.g., gefitinib and erlotinib).   

We identified signatures that predict response to these therapeutics and those results are 
reported below.  These results will be validated in xenografts and in clinical samples from 
patients treated with these drugs. 
 
An EGFR mutation si gnature i s prognostic in EGFR wild-type l ung adenocarcinomas and  
identifies Metastasis associated in colon cancer 1 (MACC1) as an EGFR mutant-associated 
regulator of MET.

 

  NSCLC bearing EGFR activating mutations are typically sensitive to EGFR 
tyrosine kinase inhibitors (TKIs) and hav e 
increased M ET l evels t hrough m ultiple 
mechanisms. We developed an EGFR 
mutation g ene ex pression si gnature to 
identify genes associated with the EGFR-
dependent phenot ype. G ene ex pression 
and EGFR status were m easured i n 95 
adenocarcinomas ( training se t), 53  
NSCLC cell lines (testing set 1), two sets 
of chemo-naive adenocarcinomas (82 and 
102), lung adenocarcinomas (testing set 2 
and 3) , and one se t o f ch emorefractory 
NSCLC co llected pr ospectively i n t he 
BATTLE pr ogram (N=139, t esting se t 4). 
An EGFR index was computed in each 
sample, using l og2-based ex pression 
values, and was defined as the average of 
log2-based expression values of the 
genes up -regulated i n EGFR-mutant 
samples minus the av erage o f t he l og2-
based ex pression v alues of t he g enes 
down-regulated in EGFR wild-type 
samples, as defined by SAM algorithm in 
the combined training set. Receiver 
operating characteristic curves were used 
to evaluate the value of EGFR index as a 
classifier o f EGFR mutational st atus. 
Proteomic profiling analysis, u sing 170 
antibodies, was generated by RPPA in 74 
NSCLC ce ll l ines. Immunostaining for MACC1 and MET of a t issue-microarray, including 287 
NSCLC, were studied.  

Using SAM algorithm, we identified a set of 45 genes significantly associated with EGFR status 
in the training set, with a fold-change set at 2. The gene-set was used to compute a si gnature 
that was shown to be predictive of EGFR status in 4 testing sets, with a strong association in 
cell l ines and ch emo-naive adenoca rcinomas (Figure 2). P athway a nalysis of t he g enes 
showed t hat EGFR mutations were m arked by  i ncreased endocy tosis and decr eased m itosis 
genes. The signature correlated with EGFR index was significantly correlated with sensitivity to 
both erlotinib (r=-0.44, Pearson’s product-moment correlation p-value=1.2e-03) and gefitinib (r=-
0.58, Pearson’s product-moment co rrelation p-value=4. 2e-05). Gene expression and clinical 
annotations from the Directors’ Challenge Consortium were downloaded from the NCI website 
(N=444 adenoc arcinomas). T he EGFR-dependent si gnature w as significantly asso ciated w ith 
survival in early stage adenocarcinomas, even in the subgroup with EGFR wild-type tumors 
(Figure 3). 
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Figure 2. EGFR index as a classifier of EGFR mutational status. A) An EGFR index was computed 
in t he t raining s et as well as  f our independent t esting s ets, including t wo s ets of  c hemo-naïve 
adenocarcinomas f rom t he Mem orial S loan-Kettering C ancer C enter ( MSKCC, N =102) an d t he 
University of T oronto/Dana-Farber C ancer I nstitute ( CAN/DF, N =82), a  pa nel of 53 N SCLC c ell 
lines, and a s et of  c hemo r efractory N SCLC pr ospectively c ollected in t he BATTLE pr ogram 
(N=124). B) ROC c urves were g enerated c onsidering a ll EGFR mutations ( N=20, black c urve), 
EGFR activating m utations onl y ( N=11, r ed c urve), and EGFR activating m utations ex cluding 
samples with concomitant T790M mutation (N=7, blue curve) (AUC: area under the curve). 
 

 
Figure 3. EGFR dependency signature is a favorable prognostic factor. EGFR index 
was c omputed i n eac h samples ( N=444 ad enocarcinomas) o f t he D irector’s 
Challenge consortium. High and low EGFR index were defined based on the 
median E GFR i ndex i n 4 44 t umors. I n t he s ubset of pat ients f rom t he MS KCC 
(N=104), r elapse-free s urvival s tatus was a vailable f or al l t he pat ients and EGFR 
mutation status in 88 tumors. Kaplan-Meier curve of overall survival in 444 resected 
adenocarcinomas with high or low EGFR index (A); Kaplan-Meier curve of relapse-
free survival of 88 resected adenocarcinomas based on EGFR mutation status (B), 
104 r esected a denocarcinomas w ith hi gh or  l ow EGFR i ndex (C), and 7 3 EGFR 
wild-type resected adenocarcinomas with high or low EGFR  index (D). 
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Figure 4.  SCLC c ell l ines ex press hi gher levels of  apop tosis, c ell 
cycle regulation, and DNA repair proteins and lower levels of MAPK 
pathway an d EMT m arkers.  At an F DR of  1% , 39 unique m arkers 
had mean expression levels ≥1.5 -fold different between NSCLC and 
SCLC.  A) Hierarchical clustering s eparated SCLC and N SCLC 
based on t heir ex pression of  t hese pr oteins which i nclude m arkers 
previously known to be up or downregulated in SCLC (ex., cKit, Rb, 
Bcl-2), as well as several novel markers such as  PARP1 and Chk2.  
NSCLC c ell l ines H 1155 and H 1770 b oth have neuroendocrine 
features an d c luster with S CLC.  B) First pr incipal c omponent 
analysis also shows separation of NSCLC and SCLC lines based on 
protein expression.  
 
 

Our current study identified MACC1 as the most significantly up-regulated gene in EGFR 
mutant. MACC1 and MET expression levels, in vitro and in vivo, were highly correlated both at 
the mRNA and protein levels. A correlation heatmap of the proteomic profiling showed a strong 
correlation o f M ACC1 with MET, downstream signal transducers (STATs), markers of the 
epithelial phenotype, a classical feature of EGFR mutant tumors, and RAB25, a member of the 
RAS superfamily of small GTPases that are involved in endocytosis.  
 
Finally, we showed that MACC1 knockdown in vitro reduced MET levels, using both siRNA and 
shRNA experiments. A gene expression signature associated with EGFR-dependent phenotype 
was developed. T he si gnature w as shown t o b e prognostic regardless of  EGFR status. T he 
results also suggest MACC1 to be a regulator of MET in NSCLC. 
 
Protein expression profiling identifies high PARP1 expression in SCLC.  Protein lysates from 34 
SCLC and 74 N SCLC c ell l ines were harvested a fter 24h growth i n full se rum ( 10%), se rum 
starved (0%), and serum stimulated conditions and printed in serial dilution series on the RPPA 
slides.  Protein levels of 176 proteins and phosphoproteins in key signaling pathways commonly 
dysregulated i n ca ncer were i dentified by  R PPA anal ysis.  Usi ng a  mixed l inear model, w e 
identified 17 proteins whose mean expression levels in SCLC were ≥1.5 fold higher than in 
NSCLC, independent o f m edia co nditions (false di scovery r ate < 1%, co rresponding p-value 

<0.001)  ( Figure 4).  
Proteins upregulated i n 
SCLC i ncluded those 
previously shown to be 
overexpressed such as cKit 
and Bcl2.  However, a 
majority of proteins that we 
identified w ere not 
previously w ell 
characterized i n S CLC.  
Among t hose pr oteins 
overexpressed i n S CLC, 
we i dentified a si gnificant 
elevation in several DNA 
repair pr oteins and ce ll 
cycle r egulators such as  
PARP1, XRCC1, ATM, 
Chk2, and 53BP1.  Among 
these, PARP1 was 
markedly increased, with 4-
fold hi gher m edian 
expression i n S CLC cell 
lines, as compared t o 
NSCLC. T he m RNA 
expression l evels of n on-
phosphorylated pr oteins 

differentially expressed between SCLC (n=17) and NSCLC (n=49) were then compared in the 
cell lin es using Affymetrix U 133A, B , and P lus 2.0 ar rays.  A s with t he pr otein da ta, P ARP1 
mRNA levels were significantly higher in SCLC.  (Figure 5A).  Analysis of an independent set of 
SCLC cell lines also demonstrated markedly higher expression of PARP1 in SCLC as compared 
to NSCLC (Figure 5B).  In addition, we compared levels of PARP1 in publically available gene 
expression dat a f rom pat ient t umors with ei ther S CLC or  N SCLC.  A lthough t he nu mbers of 
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Figure 5. PARP1 is o verexpressed i n SCLC at  t he gene 
expression level compared to NSCLC. A) mRNA expression was 
compared between SCLC (pink bar) and NSCLC (green bar) for 
probes c orresponding t o t he n on-phosphorylated pr oteins 
identified by RPPA.  Gene expression data was available for 17 
SCLC and 49 NSCLC cell lines.  mRNA levels were significantly 
different bet ween t he t wo gr oups, i ncluding overexpression of  
the two probes for PARP1.  B)  Supervised analysis comparing 
PARP1 ex pression be tween S CLC and N SCLC s howed a  
significant difference (p=1.3 x 10-11).  
 

SCLC tumors are small, there 
was a si gnificantly hi gher l evel 
of PAR P1 ex pression i n t hese 
tumors as compared to NSCLC 
(gene expression data from 
Bhattacharjee et al.).   
 
Based on t his data and 
promising clinical results from 
PARP inhibitors in cl inical t rials 
of ot her so lid t umors, we ar e 
interested i n P ARP1 as a 
potential new therapeutic target 
in SCLC.  In addition, preclinical 
data has suggested t hat dr ug 
inhibition of  PARP1 m ay a lso 
be synergistic with other DNA-
damaging agents such as 
cisplatin and r adiation, w hich 
would make them particularly 
promising for u se in  S CLC.  
Because of this, we have 
preliminarily t ested a sm all 
number o f S CLC w ith hi gh 
PARP1 expression and 

compared them to NSCLC cell lines with low PARP1 expression.  We also tested one SCLC cell 
line (H841), which had low levels of PARP and clustered with NSCLC cell lines based on protein 
and gene expression profiles in our previous profiling studies.  We found that SCLC cell lines 
with high PARP1 expression appear to be sensitive to PARP1 inhibition, and that their degree of 
response is correlated with their relative level of  PARP1 expression (high or intermediate).  In 
contrast, NSCLC cell lines and H841 that have low PARP1 expression were relatively resistant 
to PARP inhibition. This data suggest that PARP1 may be a clinically active target in SCLC, and 
we plan to investigate these findings further in preclinical and clinical samples from patients with 
SCLC. 

 
An epi thelial t o mesenchymal t ransition (EMT) gene expression signature identifies Axl as an 
EMT marker in NSCLC head and neck cancer (HNC) lines and predicts response to erlotinib.

 

  
EMT is associated with loss of cell adhesion molecules, such as E-cadherin, and increased 
invasion, migration, and proliferation in epithelial cancers.  In NSCLC, EMT is associated with 
worse prognosis and resistance to EGFR inhibitors.  Despite these clinical implications, no gold 
standard exists for classifying a cancer as either epithelial or mesenchymal in nature.  The goal 
of t his study was to deve lop a r obust EMT gene expression signature and test i ts correlation 
with drug response. 

The EMT signature was derived in 54 DNA-fingerprinted NSCLC cell lines profiled on Affymetrix 
U133A, B, and Plus2.0 arrays and tested on the Illumina WGv2 and WGv3 platforms, and in an 
independent se t o f hea d and neck  ca ncer l ines. E -cadherin and ot her pr otein l evels were 
quantified by RPPA and correlated with the first principal component of the EMT signature.  
IC50s were determined for NSCLC cell lines by MTS assay.      
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Figure 6.  EMT gene expression signature separates NSCLC cell lines into distinct epithelial-like and 
mesenchymal-like groups and pr edicts disease control i n ad vanced, pr etreated NSCLC pat ients.  A) 
Affymetrix probes corresponding to the EMT s ignature genes were clustered by two-way hierarchical 
clustering using Pearson correlation distance between genes (rows), Euclidean distance between cell 
lines ( columns), and t he W ard’s l inkage r ule.  N SCLC c ell lines s eparated i nto di stinct epi thelial-like 
(green b ar) and m esenchymal-like (red bar ) gr oups. G enes c lustering as  near est nei ghbors of  E MT 
markers VIM, FN1, a nd CDH1 are s hown ( boxes).  B) EMT s ignature predicts di sease c ontrol in 
advanced, pretreated NSCLC patients with wild-type EGFR and KRAS following t reatment with 
erlotinib.  T-test demonstrates a significant difference in EMT signature score (FPC) between patients 
with and without disease control after t reatment with er lotinib. In contrast, ne ither E-cadherin (C) nor 
vimentin (D) mRNA levels were predictive of response. 
 

Expression of 76 genes comprising the EMT signature correlated with mRNA expression of 
known E MT m arkers E-cadherin, v imentin, N -cadherin, or  fibronectin 1,  and w as bimodally 
distributed across the NSCLC panel .  Classification o f the N SCLC lines as epithelial or  
mesenchymal by the EMT signature was verified for 51/52 cell l ines tested on bot h Affymetrix 
and I llumina pl atforms (Figure 6).  I n an i ndependent v alidation se t of 62 H NC lines, t he 
signature identified a subset of six mesenchymal cell lines.  The EMT signature score correlated 
well with E-cadherin protein levels in NSCLC (r=0.90) and HNC (r=0.73).  mRNA levels for Axl, 
a t yrosine k inase r eceptor asso ciated w ith E MT i n br east ca ncer, ha d t he m ost ne gative 
correlation with E-cadherin (r= -0.45) of any signature gene after ZEB1 and vimentin, and w as 
positively correlated with vimentin (r=0.60) and N-cadherin (r=0.54) expression.  Higher Axl total 
protein w as confirmed i n N SCLC and H NC m esenchymal-like ce ll lin es.  M esenchymal 
phenotype (classified by the EMT signature) was more strongly correlated with NSCLC erlotinib 
resistance (p=0.028) than E-cadherin mRNA or protein level.  
 
In conclusion, an EMT gene expression signature accurately classifies cell lines as epithelial- or 
mesenchymal-like across three microarray platforms and two cancer types, and identifies Axl as 
a novel EMT marker in NSCLC and HNC.  The EMT signature was a better predictor of erlotinib 
resistance than single mRNA or protein markers, such as E-cadherin, both in cell lines and i n 
EGFR/KRAS wild-type patients. 
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Key Research Accomplishments 

• Completed protein profiling and gene expression profiling for 75 NSCLC, 30 SCLC, and 5 
HBEC cell lines. 

• Developed an EGFR mutation signature that is prognostic in EGFR wild-type lung cancer. 
• Identified M ACC1 as highly ex pressed i n lung ca ncer a s an EGFR mutant-associated 

regulator of MET.  
• Identified PARP as being highly expressed in SCLC and as a clinically relevant target. 
• Developed an E MT g ene ex pression si gnature that i dentifies epithelial and m esenchymal 

groups in NSCLC and HNC cell lines 
• Identified a novel EMT marker, Axl, in NSCLC and HNC. 
 

 
Conclusions 

Protein and gene expression profiling of a large number of cell lines has allowed us to identify a 
prognostic EGFR dependent signature as well as key signaling molecules in NSCLC (MACC1) 
and SCLC (PARP) that were highly upregulated in those tumor types.  Further characterization 
of these proteins will identify their role in the development of cancer.  Also, as in the case with 
PARP, investigation into the inhibition of these targets may prove to be an effective strategy for 
the treatment of these diseases.  We developed an EMT gene expression signature that 
classified ce ll l ines into epi thelial- or m esenchymal-like gr oup i n N SCLC and H NC.  T his 
signature w as able t o predict response t o erlotinib i n ce ll l ines and EGFR/KRAS wild-type 
patients.  Additionally, a novel EMT marker, Axl, was identified through this analysis and may 
play an important role in the transformation of these tumors as well serve as a potential 
therapeutic target.  These profiles will allow for multiple biomarker analysis and the identification 
of intracellular signaling pathways that contribute to the sensitivity or resistance to therapeutics.  
Our findings will be f urther v alidated by  co rrelating t hese gene ex pression and pr oteomic 
profiles of tumor samples with clinical outcomes in samples from the BATTLE-1 trial.  
Development of predictive markers will assist in guiding treatment selection as well as identify 
new targets in lung cancer. 
 
 
Project 2: Tumor molecular profiles in patients with operable non-small cell lung cancer 
(NSCLC): impact on stage, prognosis, and relapse pattern. 
 
(Leaders: Drs. David Stewart, Jack Roth; Co-Leaders: Drs. Roy Herbst, Edward Kim, Katherine 
Pisters, Stephen Swisher)  
 
Hypotheses:  
We hypothesize that:  
1.  In tumors from patients with NSCLC, patterns of co-expression of molecules that modulate 

cell proliferation, su rvival, ang iogenesis, i nvasion, m etastasis and apopt osis will 
substantially influence tumor stage and size at the time of diagnosis, and will largely define 
patient prognosis. 

2.  Impact of adjuvant and neoadjuvant therapies on disease-free, progression-free, and overall 
survival will vary across prognostically distinct groups. 

3.  Specific molecular signatures in primary tumors will predict both metastatic patterns at 
relapse and molecular profiles of recurrent tumors, and this could help guide adjuvant 
strategies and therapeutic strategies at relapse. 
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Specific Aims: 
 
Aim 1:  To define characteristic TTF/gene expression profiles of prognostically distinct 
subpopulations of patients with resectable NSCLC, and to assess the extent to which 
these molecular profiles correlate with tumor stage and/or size.  
 
The main goal of this aim is to use 150 archival NSCLC tumor samples from our tissue bank 
(with co rresponding cl inical dat a) and t o pr ospectively co llect tumor samples, bl ood samples, 
and cl inical dat a f rom 3 00 addi tional pat ients undergoing s urgical r esection o f N SCLC. The 
tissue and blood samples will be used by Project 3 and the Pathology Core to generate 
comprehensive TTF/gene expression molecular profiles using methods developed in Project 1.  
We will construct Kaplan-Meier estimated survival curves for disease-free survival, progression-
free-survival, and overall survival, and w ill use Cox proportional hazards models and recursive 
partitioning methods to identify important biomarkers and prognostically distinct subpopulations. 
We will also correlate TTF/gene expression molecular profiles with initial tumor size and stage. 
In addition, we will explore the feasibility of using nonlinear regression analyses of semilog plots 
of % disease-free survival, % progression-free survival, and % overall survival vs time to 
facilitate i dentification o f pr ognostically di stinct su bpopulations with ch aracteristic TTF/gene 
expression molecular profiles. 
 
Aim 2:  To assess the impact of adjuvant and neoadjuvant chemotherapy on disease-free 
survival, progression-free survival, and overall survival in prognostically distinct 
subgroups, and to provide tumor, blood and clinical data to Project 3 for an assessment 
of factors contributing to resistance to chemotherapy and to Project 5 for assessment of 
profiling of EGFR and related molecules by new quantum dot technologies.   
 
Of the 450 pat ients included i n t he pr oject, w e w ill asse ss 100 new  p rospectively r ecruited 
patients who will r eceive neoadj uvant t herapy, 100 pat ients who will receive post operative 
adjuvant t herapy ( including app roximately 20 t umor bank pa tients and 80 new  pat ients), and 
250 patients who did not receive adjuvant or neoadjuvant therapy (including approximately 130 
tumor ban k pat ients and 120 ne w pat ients). We will co llect pat ient cl inical dat a on al l 450  
patients and will collect blood samples on the 300 new, prospectively recruited patients. Tumor 
and bl ood sa mples and  cl inical dat a w ill be pr ovided t o P roject 3  for studies of t herapeutic 
resistance and t o P roject 5 f or asse ssment o f pr ofiling o f epi dermal g rowth f actor r eceptor 
(EGFR) and r elated molecules by new quantum dot technologies, while in Project 2 we will 
assess impact of adjuvant and neoadjuvant therapy on outcome in each prognostic group. 
 
Aim 3: To correlate TTF/gene expression molecular profiles in the primary tumor with 
metastatic patterns and with tumor molecular profiles at relapse. 
 
For patients who relapse, we will define metastatic sites at relapse, obtain tumor tissues from 
selected pat ients who under go bi opsies to co nfirm relapse, and de fine TTF/gene ex pression 
molecular profiles in t he pat ients’ or iginal pr imary t umor sp ecimens that pr edict si tes of l ater 
relapse (and in par ticular t hat predict relapse in brain). We will a lso assess whether t umor at 
relapse is enriched for particular molecular characteristics that may promote metastasis when 
compared t o t he pr imary t umor, and w ill asse ss the ex tent t o w hich TTF/gene ex pression 
molecular profile at diagnosis may help guide choice of therapies at relapse. 
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Figure 7.  Tumors ex posed t o c hemotherapy or targeted t herapies within t he 
previous 3 months had decreased expression of CTR1 and RhoA.  

As outlined i n m ore det ail i n t he r eports from Project 3 and t he P athology C ore, w e ha ve 
assessed f rozen and f ormalin-fixed, paraffin-embedded ( FFPE) t umor specimens from our  
Tumor Bank for 750 pat ients who underwent surgery between 1996 and July 2007.  DNA and 
RNA were extracted, and quality was assessed (RIN).  From these, 249 cases were selected 
based on predefined criteria. Of these, 40 tumors corresponded to neoadjuvant-treated tumors.  
Specifically, t he cases se lected h ad a R IN number > 4 and  w ere adeno carcinomas or 
squamous cell carcinomas of the lung with tumor (vs normal tissue) comprising > 70% of the 
specimen, and w ith malignant ce lls (vs stromal ce lls) comprising > 30% of  t he tumor por tion.  
Cases selected have b een asse ssed for microRNA, m RNA, and  DNA a CGH profiling, a nd 
prepared for proteomics analysis for 170 pr oteins.  Mutation analysis of KRAS (codons 12, 13 
and 61) and EGFR (exons 19 and 21) is underway. To date, from 227 NSCLC cases tested, 
KRAS mutations have been det ected in 40 out of 136 (29%) adenocarcinomas and in none of 
91 squamous ce ll ca rcinomas examined. Additionally, D NA has been prepared for m utation 
analysis of a 20-gene panel using the MALDI-TOF Mass Spectrometry-based (SNP) analysis, 
Sequenom®.   

Summary of Research Findings 

 
Some early analyses have revealed that several of the proteins assessed to date by IHC (e.g., 
carbonic anhydrase IX, N rf2, and  K eap1) hav e co rrelated w ith pr ognosis and ou tcome of 
patients with su rgically resected N SCLC t umors and treated w ith a djuvant t herapy.  In a  
preliminary assessment of gene expression arrays with FFPE tissues, we were able to identify a 
gene signature that distinguished a good-prognosis group from a poor-prognosis group, and this 
signature remained si gnificantly asso ciated w ith pr ognosis even a fter co rrection for o ther 
variables in a m ultivariate analysis (p=0.025). In addition, for patients treated with neoadjuvant 
chemotherapy, OS and RFS were correlated to the amount of tissue that remained viable after 
the neoadjuvant therapy, demonstrating that patients with the greatest tumor response f rom 
chemotherapy had the best survival.   
 
Collection of  p rospective t umor sa mples is also g oing w ell. We had p roposed t o collect 30 0 
blood and t issue samples prospectively, and have  surpassed that goal.  Since the activation of 
the PROSPECT protocol on A ugust 2007, we have collected fresh tissue specimens from 475 
NSCLC surgically resected cases. From those, snap frozen normal and tumor tissue have been 
collected in al l cases. We originally proposed to collect tumor samples prospectively from 100 

patients who 
received 

neoadjuvant 
chemotherapy, 

and to da te w e 
have co llected 
117. Hence, we 
are ahead of 
schedule on 

specimen 
procurement f or 
the pr oject. I n 
Project 3,  

expression 
profiles in 
tumors from 
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patients in Project 2 w ho did or  did not  receive neoadjuvant chemotherapy will be co mpared. 
Viable tumor t issue obtained af ter neoadjuvant chemotherapy will be r egarded as a model of  
acquired resistance.  
 
In preliminary work assessing potential resistance factors in a v ariety of types of human tumor 
samples, w e f ound t hat t umors exposed t o ch emotherapy or  t argeted t herapies within t he 
previous 3 months had decreased expression of the copper/platinum transporter CTR1 [1] and 
of the endocytosis regulator RhoA[2] (Figure 7), suggesting a mechanism by which exposure to 
a broad range of agents could secondarily lead to resistance to cisplatin and carboplatin.  We 
also demonstrated that the DNA demethylating agent decitabine could increase expression of 
each of CTR1, RhoA, and the folate transporter RFC1 [2] (Figure 8), while also reducing DNA 
methylation [1], although the increased expression of CTR1, RhoA, and RFC1 did not correlate 
with changes in their promoter methylation.  Overall, this suggests that decitabine could possibly 
reduce resistance to chemotherapy by increasing expression of transporters that are required 
for drug uptake, but that this increased expression of drug transporters is not directly related to 
reduction in promoter methylation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To help g uide our  s tudies of factors associated w ith chemotherapy r esistance i n NSCLC, we 
have al so publ ished an  ex tensive r eview on t his topic [3].  Overall, factors associated w ith 
resistance may be asso ciated w ith decr eased dr ug del ivery, upt ake or  activation, dr ug e fflux 
pumps or de toxifying m echanisms, al tered dr ug t argets or D NA r epair, or i mpaired apopt otic 
response or enhanced antiapoptotic response. 

  

 
 
 
Figure 8.  Demonstration of  
decitabine-induced ex pression 
increase of  C TR1, R hoA, and  
RFC1. 
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Figure 9. Exponential decay nonlinear regression analysis of patient 
survival plots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
   

Figure 10. Survival c urve convexities might be related t o d iscontinuation of  a 
partially effective therapy after a standard period of treatment time.  

We also pr oposed i n 
PROSPECT t o u se 
exponential dec ay 
nonlinear r egression 
analysis of pa tient su rvival 
plots to t ry to gai n 
additional i nsights into 
factors affecting su rvival, 
and a manuscript is now in 
press on pr eliminary w ork 
using t his approach [ 4].  
Examples of how cu rve 
shapes differ i n l inear 
Kaplan-Meier plots vs log-
linear exponential plots are 
illustrated in Figure 9.  W e 
also found that some types 
of t herapies were 
associated with convexities 
on the log-linear plots.  We 
hypothesized that these 
survival cu rve co nvexities 
(Figure 10) m ight be 

related t o di scontinuation o f a par tially ef fective t herapy a fter a s tandard per iod o f treatment 
time, r esulting i n “synchronization” o f pa tient deaths, and further hypothesized t hat assessing 
the characteristics of patients dying at t imes indicated along the leading edge of the convexity 
curve might identify a subpopulation that would benefit from continuation of therapy beyond 
usual stopping points. 
 

Our initial 
assessments 

also suggested 
that f ollowing 
resection o f 
stages I -III 
NSCLC, there is 
a true “cured” 
fraction ( 61%) o f 
patients with a 
half-life t ime t o 
relapse of 
greater t han l ife 
expectancy, a 

slowly-relapsing 
fraction (31%) consisting of patients with a half-life time to relapse of 24 months, and a r apidly-
relapsing fraction (7%) of patients with a half-life time to relapse of 6 months. Using this type of 
approach, one can calculate, at each time point, what proportion of patients who are relapse-
free but destined to relapse at some point in the future.  
 
The overall su rvival cu rve f or pat ients undergoing surgery was uniphasic, suggesting that co-
morbidities and aging are also having a m ajor impact on su rvival, and t hat assessment of time 
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to relapse would give a better assessment of the impact of tumor markers on prognosis than 
would overall survival curves.   
 

 
Key Research Accomplishments 

• Collected tumor specimens from 457 lung cancer patients (including 117 who had 
neoadjuvant chemotherapy). 

• Collected blood samples from 461 lung cancer patients (from whom tumor is also available 
in 345).  

• Performed preliminary correlations of several biomarkers with su rvival and w ith stage and 
tumor type, as outlined in more detail in the Project 3 report. 

• Performed pr eliminary asse ssments of the use  o f exponential deca y nonlinear r egression 
analysis of patient survival curves. 

• Defined effect of the demethylating agent decitabine and of time from last therapy on 
expression, in human tumors, of transporters that may play a role in chemotherapy uptake.  

• Identified numerous potential resistance mechanisms that will be investigated further. 
• Correlated patient su rvival and t ime to recurrence w ith per cent t umor v iability post -

neoadjuvant chemotherapy. 
 

 
Conclusions   

During t his project pe riod, we ha ve co mpleted c ollection of  t he pl anned sp ecimens ahead of 
schedule and ha ve m ade g ood pr ogress on pr eliminary asse ssment of  t hese sp ecimens. 
Molecular profiles will be generated from these specimens and correlated with patient outcomes 
and resistance to chemotherapy.  
 
 
Project 3: Molecular Profiling of Non-Small Cell Lung Cancer Tissue Specimens and 
Serum and Plasma Samples:  Correlation with Patient Response and Tumor Resistance 
to Chemotherapy. 
 
(Leader: Dr. Ignacio Wistuba; Co-Leaders: Lin Ji and John Minna) 
 
Hypothesis: 
In Project 3, we hypothesize that systematic molecular profiling of surgically resected non-small 
cell lung cancer (NSCLC) tissue specimens using therapeutic target-focused (TTF) and m RNA 
approaches, along with serum phosphopeptide screening and plasma DNA analysis, will lead to 
the following results:  
 
1.  Validation in pat ients’ t issue specimens of molecular signatures obtained from NSCLC cell 

lines that are associated with in vitro and in vivo (xenograft) resistance of NSCLC cell lines 
to chemotherapeutic and targeted agents. 

2.  Identification o f m olecular pr ofiling si gnatures associated w ith N SCLC se nsitivity or  
resistance to chemotherapeutic agents that can identify NSCLC patients most likely to 
respond to a given targeted therapeutic agent. 

3.  Development and validation of se rum phosphopeptide profiles and plasma DNA m arkers 
associated with NSCLC patient response and tumor resistance to chemotherapeutic agents.  

 
Objectives: 
The gr eatest obstacle to creating effective treatments for l ung cancer i s the development of 
resistance t o bo th ch emotherapeutic and t argeted a gents. I n this highly i ntegrated and  
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translational program project, we tackle one o f the most clinically significant problems in l ung 
cancer:  the pr ediction of  pa tient r esponse t o t herapy, esp ecially in the co ntext o f tumor 
resistance to current standard chemotherapies. The main objectives of this project are as 
follows: 
 
a)  To p rofile surgically r esected t umor t issue sp ecimens obtained f rom N SCLC patients to 

validate molecular signatures found in the TTF and mRNA profiles developed in Project 1. 
These profiles will be co mpared with molecular signatures obtained from NSCLC cell lines 
that are associated with in vitro and in vivo (xenograft) resistance to chemotherapeutic and 
targeted agents.  

b)  By co mparing N SCLC t umor sp ecimens (collected i n P roject 2)  from p atients who hav e 
received preoperative chemotherapy and from those who have not, to validate TTF and 
mRNA signatures that are found in Project 1 to be associated with resistance to therapy and 
with the activation of resistance-associated molecular pathways or that are found in Project 
1 to be potentially exploitable as new therapeutic targets. 

c)  To identify serum and pl asma biomarkers as surrogate markers to predict the response of 
NSCLC patients to neoadjuvant chemotherapy and to predict patient outcome. 

d)  To provide tissue- and serum-based molecular profile signatures or markers to Project 2 that 
can predict the clinical outcome of NSCLC patients who had undergone surgical resection 
with curative intent, with or without neoadjuvant therapy. 

 
This interdisciplinary research proposal for profiling cell lines, tumor tissue, and serum samples 
from N SCLC pat ients requires extensive hi stopathological, molecular, and 
immunohistochemical st udies, w hich will be co ordinated and/ or per formed by  t he P athology 
Core (see Pathology Core’s report). 
 
Specific Aims: 
 
Aim 1: To validate, in retrospectively collected NSCLC tumor tissue specimens, the TTF 
and mRNA profiles predictive of the in vitro and in vivo (xenograft) resistance of NSCLC 
cell lines to chemotherapeutic and targeted agents. 
 
Summary of proposal

 

: We will select 150 surgically-resected NSCLC tumor specimens from The 
University of Texas Lung SPORE (UT-SPORE) Tissue Bank for TTF and mRNA profiling. Using 
those 150 f rozen ar chival NSCLC t umor t issues, we will per form r everse-phase pr otein ar ray 
(RPPA), m ultiplex bead-based pr otein anal ysis (MBA) and A ffymetrix U 133 P lus 2.0 a rray t o 
validate t he molecular s ignatures developed i n P roject 1 . Then, w e w ill co mpare the pr ofile 
signatures obtained from t he N SCLC t umor s pecimens with t he si gnatures obtained from 
NSCLC cell lines in Project 1 that predict the in vitro and in vivo resistance to chemotherapeutic 
and targeted agents. Finally, using formalin-fixed and paraffin-embedded tissue specimens, we 
will validate t he expression of  p roteins abnormally r epresented i n t he m olecular pr ofiling 
analyses of NSCLC tumor specimens by using tissue microarrays (TMAs) and semiquantitative 
immunohistochemical (IHC) methods. 

During the third year of research, in collaboration with the Pathology Core (I. Wistuba), we have 
performed a co mprehensive m olecular pr ofiling of N SCLC and MPM t issue sp ecimens with 
annotated clinical information, and achieved the following milestones (Figure 1):  

Summary of Research Findings 

1) Finalized t he se lection of  209 su rgically r esected, chemo-naïve N SCLC t umors with 
annotated clinicopathologic data, including adjuvant therapies and outcomes.  

2) Completed the mRNA profiling (Illumina array platform) of 209 NSCLC tumors. 
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Table 1. Clinicopathologic characteristics of 209 chemo-naïve 
NSCLC profiled in Aim 1. 
Features Adenocarcinoma Squamous Cell Ca Total 

Number 152 57 209 

Gender    

     Male 74 20 94 (45%) 

     Female 78 37 115 (55%) 

Path Stage    

    I - II 124 47 171 (82%) 

    III - IV 28 10 38 (18%) 

Smoking    

     Yes 17 0 17 (18%) 

     No 135 57 192 (92%) 

Adjuvant 
Chemotherapy 

   

     Yes 69 29 94 (45%) 

     No 83 28 115 (55% 

 
 

3) Expanded and co mpleted t he molecular pr ofiling o f N SCLC t umors t o i nclude m iRNA 
(Agilent platform; n=209 cases). 

4) Expanded and co mpleted t he D NA co py num ber anal ysis (array C omparative G enomic 
Hybridization, aCGH; n=162 cases). 

5) Initiated the mutation analysis of genes frequently mutated in NSCLC (KRAS and EGFR). 
6) Initiated the process for proteomic analysis using reverse phase protein analysis (RPPA) of 

170 NSCLC tumors. 
7) Designed a s trategy for gene (mRNA), miRNA, and pr otein signature validation using high-

throughput Quantitative Nuclease Protection Assay (qNPA™), Fluidigm™ microfluidic 
quantitative dynamic array, and IHC methodologies.  

8) Completion o f the manuscript des cribing t he study of  al ternative appr oaches for m RNA 
profiling of NSCLC tissue specimens using FFPE samples. 

9) In c ollaboration w ith P roject 4   (A. T sao), we have co mpleted comprehensive m olecular 
profiling of malignant pleural mesothelioma (MPM) tissue specimens and cell lines.  

 
The detailed progress update is as follows:  
 
1. S election o f 209 su rgically r esected N SCLC t issue sp ecimens for molecular pr ofiling a s 
proposed in A im 1.

 

 In co llaboration w ith the Pathology and B iostatistics/Bioinformatics Cores, 
we f inalized t he se lection o f 209  su rgically r esected N SCLC t umors w ith annot ated 
clinicopathologic data, i ncluding adj uvant t herapy and out come ( Table 1). The f inal selection 
was performed using t he f ollowing cr iteria: a ) adenocarcinoma and s quamous cell ca rcinoma 
histology; b) data available on adjuvant therapy; c) frozen tumor tissue with ≥70% tumor content 
in the histology quality control; d) frozen tumor tissue with ≥30% of malignant cell content; and, 
e) mRNA integrity num ber (RIN) ≥4. The 209 ca ses selected were r andomly se lected by t he 
Biostatistics/Bioinformatics Core (K. Coombes) for aliquoting of RNA and DNA and di stribution 
by the Pathology Core to our Project 3 labs (Figure 11). 

2. m RNA p rofiling. Using one  
aliquot o f RNA p rovided by  t he 
Pathology Core, D r. M inna’s lab 
has completed the mRNA profiling 
of t he 209 N SCLC t umor 
specimens using the Illumina Array 
platform. The array data are 
currently under analysis to 
generate g ene ex pression 
signatures that pr edict su rvival 
benefit for pat ients t reated w ith 
platinum doublet-based adjuvant 
chemotherapy. Using in vitro drug 
response pheno type dat a on 100  
NSCLC l ines for pl atinum and  
taxane dr ugs alone and i n 
combination derived f rom Project 
1, co upled with these Illumina 
mRNA expression data, we will 

also generate gene expression signature panels that predict cell line response to these drugs 
alone and in combination. These cell line predictive signatures will then be tested in the data 
obtained from t he 209 NSCLC t umors. The analysis of 115 N SCLC specimens from pat ients 



Army Award W81XWH-07-1-0306; Waun Ki Hong, M.D. 
Annual Report:  Reporting Period 01 June 2009 – 31 May 2010 
 

19 

From ~1,700 
banked frozen 

NSCLCs
(1997-2005)

Selected 914 
cases for 

clinical data 
collection

Frozen tissue was 
examined (QC) and 

images collected in 700 
cases

DNA and RNA 
were extracted 
and quality was 
assessed (RIN)

Cases were 
selected using 
defined criteria 
(n=209 cases)

For molecular 
profiling samples 
were randomized 
Biostatistics/Bioin

formatics Core
Proteomic RPPA - In progress

DNA aCGH Agilent 244K – Completed

mRNA Illumina – Completed

Mutation Analysis – In progress

miRNA Agilent – Completed

From ~1,700 
banked frozen 

NSCLCs
(1997-2005)

Selected 914 
cases for 

clinical data 
collection

Frozen tissue was 
examined (QC) and 

images collected in 700 
cases

DNA and RNA 
were extracted 
and quality was 
assessed (RIN)

Cases were 
selected using 
defined criteria 
(n=209 cases)

For molecular 
profiling samples 
were randomized 
Biostatistics/Bioin

formatics Core

From ~1,700 
banked frozen 

NSCLCs
(1997-2005)

Selected 914 
cases for 

clinical data 
collection

Frozen tissue was 
examined (QC) and 

images collected in 700 
cases

DNA and RNA 
were extracted 
and quality was 
assessed (RIN)

DNA and RNA 
were extracted 
and quality was 
assessed (RIN)

Cases were 
selected using 
defined criteria 
(n=209 cases)

Cases were 
selected using 
defined criteria 
(n=209 cases)

For molecular 
profiling samples 
were randomized 
Biostatistics/Bioin

formatics Core

For molecular 
profiling samples 
were randomized 
Biostatistics/Bioin

formatics Core
Proteomic RPPA - In progress

DNA aCGH Agilent 244K – Completed

mRNA Illumina – Completed

Mutation Analysis – In progress

miRNA Agilent – Completed

 
 
Figure 11. Comprehensive molecular profiling strategy in NSCLC 
tumor specimens in Aim 1. 

who di d not  r eceive 
adjuvant t herapy w ill 
allow us to identify the 
predictive signatures that 
may also have prognostic 
value in that patient 
group. 
 
3. miRNA profiling.

 

 Using 
one aliquot of RNA 
provided by  t he 
Pathology Core, D r. 
Wistuba’s lab ha s 
completed the miRNA 
profiling using the Agilent 
v12 H uman A rray 
platform o f the 20 9 
NSCLC tumor specimens. The array data are currently under analysis by the 
Biostatistics/Bioinformatics Core to generate miRNA expression signatures that predict survival 
benefit f or platinum doublet-based adjuvant chemotherapy. The analysis of NSCLC from 
patients who did not receive adjuvant therapy will allow us to determine if the predictive miRNA 
signatures may also have prognostic impact in those patients without adjuvant t reatment. In 
addition, the integration of the mRNA with miRNA expression data will al low us to understand 
the biological interactions between mRNA and miRNA expression in NSCLC, and the 
identification o f po tentially nov el pat hways activated i n N SCLC t hat m ight be r egulated by  
miRNAs. 

4. aCGH profiling.

 

 Using one aliquot of DNA provided by the Pathology Core, Dr. Wistuba’s lab 
has completed the DNA copy number profiling using the Agilent 244K aCGH platform on 162 
NSCLC tumor specimens with high content of malignant cells in the specimens. The aCGH data 
are currently under analysis by the Biostatistics/Bioinformatics Core to generate copy number 
signatures that predict survival of patients who did not receive and received platinum doublet-
based adjuvant chemotherapy. The analysis of NSCLC from patients who did not receive 
adjuvant therapy will allow us to determine if the potentially predictive DNA copy number 
signatures also may have prognostic impact in the untreated patients. In addition, the integration 
of the DNA copy number data with the mRNA and miRNA data will allow us to explore potential 
novel interactions between gene (mRNA) and miRNA expression mechanisms. 

5. D NA m utation anal ysis.

 

 Using one al iquot o f D NA pr ovided b y t he P athology C ore, D r. 
Wistuba’s lab is performing the analysis of KRAS (codons 12, 13 and 61)  and EGFR (exons 19 
and 21) status using PCR-base sequencing methodology in all 209 NSCLCs used for profiling.  
To date, from 227 NSCLC cases tested, KRAS mutations have been detected in 40 out of 136 
(29%) adenocarcinomas and in none of 91 squamous cell carcinomas examined. This work will 
be co mpleted dur ing the nex t year of  t he grant. Additionally, one al iquot o f D NA has been 
prepared and r eserved for mutation analysis of  a 20-gene panel  using the MALDI-TOF Mass 
Spectrometry-based (SNP) analysis, Sequenom®.  

6. Proteomic RPPA profiling. One frozen tissue specimen from each of the 170 NSCLC tumors, 
which ar e par t o f the 209 ca ses selected for m olecular pr ofiling, w ere di stributed by  t he 
Pathology Core to Dr. Heymach’s lab for protein extraction and RPPA analysis of a 176-protein 
panel. This work will be performed and completed during the next year of the grant. 
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7. A lternative appr oaches for mRNA pr ofiling u sing FFP E N SCLC sa mples.

 

 As reported l ast 
year, we have explored alternative approaches for the molecular profiling of t issue specimens. 
In the study that was reported l ast year, we tested t he feasibility of developing lung ca ncer 
prognosis gene signatures using genome-wide expression profiling of FFPE samples, which are 
widely a vailable and pr ovide a valuable r ich so urce for st udying the ass ociation o f m olecular 
changes in cancer and associated clinical outcomes. We randomly selected 100 NSCLC FFPE 
samples with annot ated cl inical i nformation, microdissected the tumor area f rom the FFPE 
specimen, and then used Affymetrix U133 plus 2.0 arrays to attain gene expression data. After 
strict quality control and  anal ysis procedures, a supervised pr incipal component anal ysis was 
used to develop a robust prognosis signature for NSCLC. Three independent published 
microarray data sets were used to validate the prognosis model. This study demonstrated that 
the robust gene signature derived from genome-wide expression profiling of FFPE samples is 
strongly associated with lung cancer clinical outcomes and can be used to refine the prognosis 
for stage I  l ung ca ncer patients, and i s independent o f cl inical v ariables. This signature w as 
validated in several independent studies and was refined to 59-gene lung cancer prognosis 
signature. We concluded that genome-wide profiling of FFPE lung cancer samples can identify 
a se t o f genes whose ex pression l evel pr ovides prognostic information acr oss di fferent 
platforms and studies, which will allow its application in clinical settings. A manuscript detailing 
this work was completed in t he past  y ear and r ecently su bmitted t o the Journal of Clinical 
Oncology.  

8. Molecular signatures validation strategies. Quantitative Nuclease Protection Assay (qNPA™) 
using FFPE tumor tissue specimens. We have designed a strategy for gene (mRNA), miRNA, 
and pr otein signature validation using the following methodologies: a) Quantitative Nuclease 
Protection A ssay (qNPA™; for mRNA and miRNA si gnatures); b)  Fluidigm™ microfluidic 
quantitative dynamic array; and, c) IHC. In collaboration with High-Throughput Genomic (HTG), 
Inc. (http://www.htgenomics.com/technology/qnpa), and the Pathology Core, we are developing 
multiple qNPA™ assays to test the expression of up to 200 genes using both frozen and FFPE 
tissues from surgically resected NSCLC tumors. Currently, FFPE t issue samples from al l 209 
NSCLC are being processed by the Pathology Core and RNA lysates being prepared for 
qNPA™ analysis. P reliminary anal ysis performed i n N SCLC ce ll l ines and FFP E t issue 
specimens have dem onstrated t he feasibility of this approach. U sing t he Fluidigm™ 
methodology, w e hav e t ested m RNA ex pression of 86 ca ncer st em ce ll m arkers and 10 
endogenous control genes using 20 ng of total RNA per sample in RNA extracted from 80 
NSCLC f rozen t issues (Figure 12). Currently, we ar e preparing pr e-amplified t otal RNA  from 
matched FFPE samples for Fluidigm™ analysis using archival tissue specimens. 
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Figure12. Differential mRNA gene expression levels using Fluidigm™ in 80 NSCLC tumor specimens comparing 
tumor (T) vs. normal (N) i n al l cases, and tumors with recurrence (n=40) and without recurrence (n=40) after 3 
years f ollow-up. Negative Average Delta CT values indicate gene o verexpression, a nd p ositive values l oss or  
reduction of expression.  
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9. Comprehensive m olecular pr ofiling and  bioinformatic analysis of MPM t issue and ce ll l ines 
specimens.

 

 In co llaboration w ith P roject 4 ( A. T sao), w e ha ve per formed a co mprehensive 
profiling and bioinformatic analysis of 53 MPM tissue specimens with paired controls and 5 
MPM cell lines. These studies have been led by Dr. M. Suraokar in Dr. Wistuba’s lab. 

a) MPM tissue messenger RNA Profiling and Bioinformatic Analysis Study

paired-normal co ntrols (adjacent 

. We had extracted 
total RNA from 91 tissue samples, representing 53 cases of MPM [including 38 cases with 

and non-tumor tissue)] with 
epithelioid (n=35), biphasic 
(n=13) and sa rcomatoid ( n=5) 
MPM hi stology t ypes. A bout 
68% of the samples had greater 
than 70% tumor content and t he 
same percentage yielded high 
quality RNA with RIN values ≥5. 
Affymetrix U 133 pl us 2.0 
microarray data was obtained for 
these samples at the UTMDACC 
Microarray C ore Faci lity and  
analyzed by the 
Biostatistics/Bioinformatics Core. 
Analysis of the m icroarray data 
using a 2-sample t-test was 
applied on a probe-by-probe 
basis followed b y B eta-uniform 
Mixture f or multiple 
comparisons. Finally, a paired t -
test w as applied t o d etermine 
the di fferences between t umors 

vs. normal samples. About ~1950 highly significant probe sets representing ~ 670 genes, at  a 
False D iscovery Rate o f e -09, w ere obt ained and su bjected t o pat hway ana lysis u sing 
MetaCore software suite (Gene Go, Inc.). The most significantly altered pathway in MPM tumors 
was the Mitotic Spindle Assembly C heckpoint ( MSAC) pat hway due t o up-regulation ( greater 
than 2-fold) of at least 15 genes (Figure 13). These genes include mitotic arrest deficient-like 1 
(Mad2L1/Mad2a), su rvivin ( BIRC5), and t herapeutic targets like Other publ ished pr ofiling 

studies on m essenger R NA di fferentially 
expressed in mesothelioma tumors have 
showed different components of this pathway 
to be up regulated. However, our study shows 
for t he f irst t ime a significantly high 
deregulation of this pathway. 
 
We are currently cross-validating the 
expression of these Aurora kinase A (AurKA) 
genes using quantitative P olymerase C hain 
Reaction ( PCR) pl atform. Messenger R NA 
profiling followed by bioinformatic analysis 
suggest t hat key M SAC g enes are 
upregulated in 4 mesothelioma cell lines 

 
Figure 13. Pathway a nalysis us ing Me taCoreSuite ( GeneGo 
Inc.) s hows Mi totic S pindle A ssembly C heckpoint ( MSAC) 
pathway map with physical locations of 15 components 
upregulated ( red b ars) i n pleural m esothelioma t umors 
including Mad2a message - circled (3 fold high at p=4.12e-11) 
and AURKA  message –circled (3.4 fold high at p=1.24e-12). 
 

 

 
Figure 14. Mad2a protein levels were higher in 
tumor protein lysates compared to normal paired 
samples on western blots. Mad2a is ~25 Kda and 
b-Actin is a ~45 kDa sized protein. 
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(H28, M STO-211H,H2052, 
and H 2452) co mpared t o a  
control ce ll line (HCT-4012). 
These genes would se rve as 
good controls for qPCR 
experiments and su bsequent 
translational st udies. Western 
Blot analysis of these tumor 
lysates, compared to nor mal 
controls, has confirmed t he 
upregulation o f the Mad2a 
protein (Figure 14). 
 
Importantly, these pr otein 
lysates are obt ained from t he 
same t issue samples used f or 
mRNA pr ofiling and c an be  
accurately co rrelated w ith t he 
actual Mad2a message levels 
in t he pr ofiled tumors.  
Additionally, IHC of Mad2a 
protein in a se parate TMA se t 
of 84 MPM tissues has also confirmed upregulation of this protein in tumors (Figure 15). We 
also see upregulation of other MSAC genes like AURKA and survivin protein in IHC sections of 

this TMA. Currently, we are analyzing 
this observed upregulation using IHC, 
and will q uantify ex pression using 
Western Blot analysis.  
 
Interestingly, f urther bioinformatic 
analysis of t he m essenger RNA 
microarray data using probe sets, 
which were di fferent bet ween nor mal 
and tumor samples, defined 3 
subtypes or groups (Figure 16). 
Comparing all probe sets between 
these 3 groups, using ANOVA at FDR 
level of  5e -05, resulted i n ~  6 80 
genes di fferentially expressed. These 
3 groups partially overlapped with the 
histological su btypes – e.g., 
epithelioids were pr esent i n di ffering 
amounts between t he 3 g roups, but  
were mostly represented within group 
1 ( all epi thelioids except for one  
biphasic sample). G roup 2 had m ost 
of the biphasic samples while Group 3 
had most of the sarcomatoid samples. 
MSAC pathway genes were 
differentially e xpressed bet ween 
them. The sa rcomatoid-rich G roup 3  

 
Figure 16. Heat Map s howing t he 3 t umor c lusters 
discovered us ing probesets, w hich differed between 
normal and t umor samples. These 3 gr oups had un ique 
sets of  genes  di fferentially ex pressed, and par tially 
overlapped with the h istological subtypes. H igh levels of  
MSAC pathway genes were almost exclusively present in 
the sarcomatoid-rich cluster.  

 
15a     15b 
Figure 15. 5a) Increased a nd differential M ad2a pr otein 
expression is s een in pl eural m esothelioma F FPE sections by 
Immunohistochemistry: A : Sarcomatoid t ype,  x 200; B: B iphasic 
type, x200; C :  E pithelioid t ype x200: D :  E pithelioid t ype, x400. 
Arrows m ark moderate a nd s trong p ositive n uclear s ignal us ing 
the M AD2 pr imary an tibody ( BD T ransduction C at# 6106 79 at  
1:500 di lution). 5b) Percentage of  MA D2 s taining i n 
mesothelioma TMA ( n=84) w ith r espect t o h istology: A  l arger 
percentage of epithelioid samples were stained negative (almost 
no cells stained) than the other histotypes. Low staining 
represents 0-40 % stained cells and high staining represents 40-
80% stained cells. 
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showed the highest levels of these genes. There are also a group of genes expressed at higher 
levels in e pithelioid-rich group 1 and bi phasic-rich G roup 2.  We ar e c urrently doi ng pat hway 
analysis on these genes using Ingenuity Pathway Analysis and (Ingenuity, Inc.) and M etaCore 
suite. Our p reliminary anal ysis has shown t he pr esence o f hi gh l evels of P TEN t umor 
suppressor pathway within Group 1 co mpared to the other 2 groups. PTEN has been reported 
to be an indicator of good prognosis in mesothelioma, which is consistent with our data.  
 
Moreover, Kaplan-Meier (KM) plots for overall survival based on histology or the groups defined 
by molecular signatures have revealed a su rprising result. I t i s a well-known observation that 
mesothelioma pat ients show di fferential ov erall su rvival base d on the hi stology o f the tumor. 
Those pa tients with sa rcomatoid type MPM show t he worst overall su rvival, while epithelioid-
type MPM pat ients show r elatively bet ter ch ances of su rvival. T he bi phasic tumors a ffect t he 
survival of patients to a degree midway between these 2 tumor types.  However, we observe 
that the KM plots based on t he 3 groups (p=0.04) de fined by  t he m essenger RNA m olecular 
profile is a better indicator of overall survival of the patients compared to using the histological 
criterion ( p=0.384) (Figure 17). This is a si gnificant finding i n t he field of  mesothelioma and  
provides an a dditional c riterion t o estimate ov erall su rvival of  t hese pa tients. M oreover, t his 
difference is not driven by the histotype in these 3 groups, because even the epithelioid tumors 
across these 3  groups show si gnificant di fferences in ov erall su rvival ( p=0.023). It has been 
reported in at least 2 different studies that epithelioids can be separated into 2 different groups – 
short-term and long-term survivors. Our observation confirms the heterogeneous nature of 
epithelioid tumors with respect to overall survival and, additionally, discovers a molecular basis 
for this difference. We are continuing these studies by pursuing a multivariate analysis of these 
cases based on known prognostic factors like histology, gender, age, stage, and treatment.  
 

b) MPM MicroRNA profiling. The same 
set of 91 samples, which were profiled 
for m essenger RNA, was also profiled 
in Dr. Wistuba’s lab for microRNA 
content usi ng t he Agilent hu man 
miRNA microarray (Agilent 
Technologies, Inc., Santa Clara, 
California, US A). The m icroarray data 
is currently bei ng anal yzed b y the 
Biostatistics/Bioinformatics Core. Their 
preliminary analysis suggests that a 
number of miRNAs are differentially 
expressed between the tumor and 
normal sa mples. These m iRNAs can 
be cl ustered i nto 2  groups – one 
composed o f al l nor mal sa mples, an d 
the ot her containing al l t umor samples 
with a f ew nor mal sa mples. We a re 
currently analyzing the reason f or this 
discrepancy since our messenger RNA 
profiling on t hese s ame sa mples 
showed clear differences between the 
normal and tumor samples. Figure 18 
shows the top 38 miRNA’s differentially 
regulated bet ween t hese 2 g roups, 
which were obt ained by  performing a 

7a 7b

7c

7a 7b

7c  
Figure 17. Kaplan-Meier Plots for Overall Survival.  
17a: K M plots bas ed o n h istology of s amples di d no t 
show a significant difference in overall survival of the 3 
histotypes. 17b: KM plots based on the 3 tumor groups 
showed s ignificant in overall s urvival of  t he 3 groups 
defined by molecular differences. 17c: KM plots based 
on only epithelioid samples within the 3 groups showed 
significant differences in overall survival. 

17a 17b 

17c 
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paired T-test on a miRNA-by-miRNA basis and were selected at a highly significant FDR value 
of 1e-06. Many of these miRNAs agree with published reports from other groups especially the 
down-regulation of m iR-200 cl uster se en i n t umors. Our nex t st ep i s to validate t he l evels of 
these miRNAs in tumor samples using qPCR platform.  

 
c) DNA profiling.

 

 DNA w as extracted, and 
after est imation and qual ity co ntrol, w as 
analyzed for SNP and copy number 
variations using t he Human I M-duo pl atform 
(llumina, I nc., S an D iego, CA, U SA), w hich 
contains more than 1 million SNPs along with 
copy number variation content. This data will 
be anal yzed by  the 
Biostatistics/Bioinformatics Core, and 
represent ~75 % of the tumor and normal 
samples analyzed previously f or t he global 
mRNA and miRNA content. 

d) Protein Profiling.

  

 We have extracted 
proteins from 90% of these tumor and normal 
samples for R everse P hase P rotein A rray 
(RPPA) analysis using the protocol obtained 
from D r. H eymach’s lab ( Project 1) . These 

protein l ysates have been r un on Western B lots for det ermining the l evels of MSAC pr oteins 
(see above). The protein lysates will be printed with the help of Dr. John Heymach’s lab t o 
obtain RPPA for proteomic analysis. 

e) MPM Cell line Profiling Update.

 

 We have generated a unique and extensive collection of 21 
mesothelioma ce ll l ines, acq uired from v arious sources, i ncluding 17 pl eural m esothelial and  
mesothelioma cell lines of different histotypes as well 3 peritoneal mesothelioma and 1 
peritoneal pr imary cell l ines. T hese ce ll l ines have been ch aracterized as authentic 
mesothelioma cell lines using IHC with 7 different markers - Cytoketarin 5/6, calretinin, 
mesothelin, CEA ( carcinoembryonic antigen), B72.3, CD15 ( LeuM1), and TTF-1 ( thyroid 
transcription factor-1). The first 3 markers positively identify mesothelioma cell lines as they are 
frequently upregulated in mesothelioma tumors, whereas the others are rarely seen and se rve 
as negative controls. Also, in accordance with NIH regulations, all of these cell lines have been 
DNA fingerprinted and authenticated using STR loci PCR analysis in the M. D. Anderson 
Characterized Cell Line Core Facility.  

We have comprehensively profiled 5 of these cell lines using multiple platforms – miRNA 
analysis using the Agilent Human microRNA microarray version 3.0 (Agilent Technologies, Inc., 
Santa C lara, California, USA) in Dr. Wistuba’s lab, messenger RNA analysis using Affymetrix 
U133 pl us 2.0, and S NP/copy num ber anal ysis on t he A ffymetrix S NP 6. 0 pl atform in t he 
MDACC Microarray Core f acility. Bioinformatic anaysis using GeneSpring GX11 software 
(Agilent Technologies, Inc., Santa C lara, California, USA) on 4 m esothelioma ce ll l ines (H28, 
MSTO-211H, H2052, and H2452) compared to control cell line (HCT-4012) has shown that the 
MSAC genes including Mad2a and AURKA are upregulated in the cancer cell lines. These cell 
lines would serve as good in vitro models to study the effects of therapeutic drugs targeting the 
MSAC pathway in pleural mesothelioma. Additionally, these and other cell lines have also been 
profiled for their proteomic content on RPPAs in Dr. Heymach’s laboratory (Project 1). Together, 
these multi-omic studies will help us to discover novel loci of critical importance in pathogenesis 

 

 
Figure 18. HeatMap showing the top 38 m iRNA 
differentially expressed b etween MP M t umors 
and normal tissue.  
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of m esothelioma. For i nstance, the D NA co py num ber anal ysis by Nexus 4. 0 so ftware 
(BioDiscovery, I nc.) o f t he M PM ce ll l ines – MSTO-211H- showed am plification o f t he c -myc 
oncogenic locus, whereas the normal control cell line HCT-4012 lacked this genetic abnormality. 
The mRNA array data also showed increased number of transcripts from this locus and, more 
importantly, t he R PPA ar ray dat a sh owed i ncreased c -myc protein ex pression i n t his 
mesothelioma cell line compared to normal (Figure 19). 

 

Aim 2: To develop TTF and mRNA signatures of NSCLC resistance to chemotherapy, and 
identify chemoresistance-associated targets/pathways as new therapeutic targets. 
 
Summary of proposal:

 

 Whereas Aim 1 focuses on the identification in archived tumor specimens 
of TTF and mRNA molecular profiles detected in NSCLC cell lines, the main focus of Aim 2 is to 
determine whether the molecular signatures in the tumor specimens correlate with patient 
response to neoadjuvant chemotherapy. From the clinical trial in Project 2, we will use 
specimens from 100 NSCLC patients who received neoadjuvant therapy and had surgical 
resection with curative intent (cases) and from 200 NSCLC patients who had surgical resection 
but did not receive neoadjuvant therapy (controls) to perform RPPA, MBA, and Affymetrix U133 
Plus 2.0 array analyses. Then, we will compare the TTF and mRNA profile signatures obtained 
from these NSCLC tumor specimens with signatures obtained in Project 1 to predict the in vitro 
and in vivo resistance of NSCLC cell l ines to therapy. Those data will be provided to Project 2 
for correlation with clinical characteristics, including prognosis and metastasis. Finally, using 
formalin-fixed and par affin-embedded t issue sp ecimens, w e w ill v alidate t he ex pression o f 
proteins abnormally represented in the molecular profiling analyses in NSCLC tumor specimens 
from all patients enrolled in Project 2 by using TMAs and semiquantitative IHC methods. 

During t he third year, in collaboration with t he Pathology Core (I. Wistuba), we have mainly 
Summary of Research Findings 

19a  19b  
 

Figure 19. Multi-omic analysis of MPM cell lines uncovers the amplification of c-myc locus 
19a) Copy Number Analysis by Nexus 4.0 software showed amplification (green bars) of c-myc 
locus i n d uplicate s amples of  mesothelioma c ell l ine MS TO-211H c ompared t o nor mal H CT-
4012 cell line. 19b) RPPA analysis of those same samples showed higher levels of c-myc (red) 
and phospho-myc (blue) in MSTO-211 H. 
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focused on  t he molecular pr ofiling o f surgically r esected N SCLC obt ained from p atients who 
have received neoadjuvant chemotherapy.  Our detailed progress update is the following:  
1)  Completion of  comprehensive m olecular pr ofiling o f 40 neoadj uvant-treated NSCLC using 

mRNA (Illumina), miRNA (Agilent), and DNA aCGH array profiling platforms. 
2)  Selection and processing for nucleic acids and protein extractions of additional 70 

prospectively collected neoadjuvant-treated NSCLC cases. 
3) Analysis of tissue and RNA quality of additional neoadjuvant-treated NSCLC tissue sets for 

profiling studies.  
4) Completion of t he dat a anal ysis and manuscripts submission o f 3 a dditional projects 

reported last year, including: a) Expression of Keap1 and N rf2 in NSCLC; b) Expression of 
cell m embrane receptors in N SCLC; and,  c)  E xpression of  ca ncer st em ce ll m arkers in 
NSCLC.   

 
1. Molecular profiling of neoadjuvant-treated NSCLC tumor tissues specimens

 

. During the third 
year of  the grant, we completed the mRNA (Illumina array; J. Minna), miRNA (Agilent array; I . 
Wistuba) and DNA aCGH (Agilent 244K; I. Wistuba) profiling of 40 neoadjuvant-treated tumors 
with annotated clinicopathologic data, including pathological response to therapy and patients’ 
outcome. A frozen tissue specimen from each case has been received from the Pathology Core 
by Dr. J. Heymach’s lab for protein extraction and RPPA analysis. The multiple platforms data 
are cu rrently under  anal ysis by t he B iostatistics/Bioinfomatics Core to generate si gnatures of 
chemotherapy r esistant tumors and t hat pr edict survival of  pat ients who r eceived t his type of  
preoperative therapy. The molecular signatures derived from these neoadjuvant-treated cases 
will be compared with those derived from the 209 chemo-naïve NSCLC tumors examined in Aim 
1. In addition, the integration of the mRNA, miRNA, and DNA copy number array data obtained 
in the same set of tumors will allow us to explore potential novel regulations of gene expression 
(mRNA) and m iRNA ex pression m echanisms in l ung cancers resistant t o ch emotherapy. 
Similarly t o ch emo-naïve N SCLC t umors examined i n A im 1,  t he neoadj uvant-treated t umors 
are being tested for mutations in KRAS (completed) and EGFR (in progress). 

2. Selection and processing for nucleic acids and protein extractions of additional 70 
prospectively collected neoadjuvant-treated NSCLC cases.

 

 To achieve the goal of profiling 100 
neoadjuvant-treated N SCLC t umors, w e ha ve selected 70 addi tional cases that have been 
recently processed for comprehensive molecular profiling by the Pathology Core. These studies 
will be completed during the fourth year of the grant.  

3. Analysis of t issue and R NA quality of  additional neoadjuvant-treated NSCLC t issue sets for 
profiling st udies.

 

 As reported in pr evious years, D r. Li  Mao si gned a  co llaborative ag reement 
with t he I ntergroupe F rancophone de Cancérologie Thoracique ( IFCT) t o obt ain up t o 250  
frozen l ung t umor t issues from pa tients enrolled i n I FCT-0002 cl inical trial ( a open -labelled, 
multicenter, r andomized phase  I II st udy), which was designed t o de fine t he best  t iming o f 
neoadjuvant chemotherapies. The samples will be used to identify a gene expression signature 
of resistance to platinum-based chemotherapies. In collaboration with the Pathology Core, 
frozen t issue sa mples from 170 o f these ca ses have been processed and asse ssed for 
histology quality control and RNA integrity. The preliminary data indicate that 95 neoadjuvant-
treated NSCLC tumors showed ≥20% of malignant cell content in the frozen tissue samples.  

4. Completion of the data analysis and manuscripts submission of additional projects reported 
last y ear. During the pr evious years of t he grant, w e hav e de veloped additional pr ojects to 
investigate i n N SCLC nov el b iomarkers related or  pot entially r elated t o r esistance to 
chemotherapy. Four studies have been su ccessfully completed, two manuscripts reporting the 
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main findings have been published, and one m anuscript was recently submitted (see reported 
outcomes). A brief description of the major findings of each study is included below. 
 
a) Expression of cancer stem cell markers in NSCLC

 

. As previously reported, we studied the 
protein expression of a panel of 7 s tem cell markers (EZH2, SOX2, CD24, CD44, C-kit, BMI-1, 
and Oct3/4) from a l arge series of chemo-naïve NSCLC (see abstract by Yuan et al presented 
at the WLCC 2010). We have hypothesized that stem cell markers could be involved NSCLC 
resistance to chemotherapy. One of  these markers, SOX2 gene, was shown last year by the 
Dana-Farber Cancer Center group to be frequently amplified in squamous cell carcinoma of the 
lung, and c onsidered a novel gene important in the pathogenesis of lung cancer. Our recently 
reported findings highlighted the cell-lineage gene ex pression pat tern f or t he stem ce ll 
transcriptional factor S OX2 i n t he pat hogenesis of l ung squamous ce ll ca rcinoma, and 
suggested a di fferential act ivation o f s tem cell-related pa thways between squamous cell 
carcinomas and adenocarcinomas of the lung. (Yuan et al, published in PLoS One, 2010). Data 
analysis of the remaining stem cell markers is in progress. 

b) Expression of Keap1 and Nrf2 in NSCLC

 

. Nuclear factor erythroid-2-related factor 2 (Nrf2) is 
a t ranscription f actor asso ciated w ith chemotherapy r esistance and t umor growth, w hich i s 
repressed by Kelch-like ECH-associated protein 1 (Keap1). We tested the hypothesis that the 
abnormal ex pression o f t hese t wo pr oteins correlated w ith NSCLC patients’ ou tcome and  
response t o adjuvant chemotherapy. We dem onstrated t hat increased N rf2 ex pression an d 
decreased K eap1 expression are common abnormalities in NSCLC and are associated w ith 
clinical out come. In our  st udy, abnormal ex pression of N rf2 and K eap1 pr oteins was more 
common than that of the corresponding gene mutations, suggesting that other mechanisms are 
involved i n t he act ivation of N FE2L2 (Nrf2 g ene) and i nactivation o f KEAP1. N rf2 expression 
may pl ay a r ole in r esponse t o ad juvant platinum-based ch emotherapy i n pat ients with 
squamous cell carcinoma. Identifying patients with abnormal Nrf2 expression may be important 
for se lection for chemotherapy in NSCLC (Solis et  al , publ ished in Clinical Cancer Research, 
2010). 

c) Expression of cell membrane receptors in NSCLC

 

. Membrane t ransporters FRα and RFC1 
are potential bi omarkers of tumor r esponse to ant ifolate ch emotherapy. I nformation on t he 
protein expression of these receptors in NSCLC is limited. Here, we report for the first time that 
NSCLC frequently overexpressed FRα and RFC1 proteins by studying a large series of cases 
with annotated clinico-pathologic information. Importantly, we report that tumor cells from lung 
adenocarcinoma histology expressed significantly higher levels of cytoplasmic and membrane 
FRα than sq uamous cell ca rcinoma, an d tumors f rom never-smokers w ere si gnificantly m ore 
likely t o e xpress cytoplasmic FRα than t hose f rom sm okers. I n l ung adenocarcinomas, t he 
presence of EGFR mutations correlated with higher expression of membrane FRα and FOLR1 
gene expression. We postulate that this information may be useful in selecting which patients 
with N SCLC m ay benef it from and should r eceive t reatment w ith ant ifolate a gents, i ncluding 
pemetrexed.  

d) VEGFR2 gene copy gain is predictive of shorter overall survival in NSCLC patients treated 
with platinum adjuvant chemotherapy. We studied the role of vascular endothelial growth factor-
2 (VEGFR2) gene (KDR) abnormalities in malignant cells of surgically resected NSCLC tissues 
and correlated with patients’ outcome after treatment with platinum adjuvant chemotherapy. We 
studied tissues obtained from 248 surgically resected NSCLCs. KDR copy number gain (CNG) 
was examined by  q uantitative P CR and f luorescence in situ hybridization. V EGFR2 pr otein 
expression and m icrovascular densi ty were st udied b y i mmunohistochemistry. I n N SCLC ce ll 
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lines, KDR CNG (n=75) and VEGFR2 levels (n=63) were quantified and correlated with in vitro 
sensitivity to pl atinum dr ugs. KDR mutation ( exons 7, 11 and 21)  and si ngle nucl eotide 
polymorphisms (SNPs; 889G /A, 1416A /T an d -37A/G) w ere g enotyped b y P CR-based 
sequencing. Malignant cells demonstrated KDR CNG in 32% of NSCLC tumors. KDR CNG in 
malignant ce lls was associated w ith poor  overall su rvival ( OS) ( HR=4.0; P=0.001) and w orse 
recurrence-free su rvival ( HR=1.83; P =0.044) i n m ultivariate anal ysis. KDR CNG pr edicted 
worse O S ( HR=5.16; P=0.003) i n pat ients who r eceived platinum adj uvant t herapy but  not  i n 
untreated patients (P=0.349). In cell l ines, KDR CNG and hi gh VEGFR2 expression correlated 
significantly with resistance to platinum. KDR mutations were not detected in NSCLC tumor 
tissues. The KDR variant genotypes SNPs 1416 AT/TT and -37 AG/GG were associated with a 
favorable OS in lung adenocarcinoma. The association between KDR CNG and worse outcome 
in platinum adjuvant t herapy-treated NSCLC pat ients suggests that KDR might be a pot ential 
biomarker for predicting the efficacy of adjuvant chemotherapy in this disease. 
 
Aim 3: To identify surrogate serum phosphopeptide profiles and plasma DNA markers 
associated with NSCLC tumor resistance and patient response to neoadjuvant 
chemotherapy.  
 
We will identify serum samples from the UT-SPORE Tissue Bank that match the NSCLC tumor 
resection specimens examined in Aim 1. We will use these serum samples for phosphopeptide 
profiling and peptide mapping by ProteinChip array-based surface-enhanced laser-desorption-
ionization ( SELDI) m ass spectrometry ( MS) and l aser deso rption/ionization ( LDI) m ass 
spectrometry (MS)/MS to compare serum phosphopeptides with TTF and mRNA profiles. The 
phosphopeptide MS profiles from retrospective specimens will later be used as references and 
controls for the prospective serum proteomic analysis. As in Aim 2, we will use serum samples 
collected pr ospectively in P roject 2 from 1 00 N SCLC ca ses undergoing neoad juvant 
chemotherapy and 200 N SCLC controls undergoing su rgery without neoadjuvant 
chemotherapy, and, when relevant, at the time of relapse. Using these serum specimens, we 
will perform phosphopeptide profiling on ProteinChip arrays by SELDI-MS to measure the 
temporal changes in serum phosphopeptides before and a fter the therapeutic intervention. We 
will use LDI-QSTAR-MS/MS and l iquid chromatography (LC)-MS/MS to identify specific serum 
phosphopeptides that are determined by SELDI-MS to be relevant to targeted therapeutic 
response and acquired resistance in lung cancer patients. In addition, we will compare serum 
phosphopeptide profiles with TTF (RPPA and MBA) profiles, mRNA profiles, and TMAs and IHC 
analysis developed in Project 1 and in Aims 1 and 2 of this project. This comparison will identify 
TTF serologic molecular signatures and elucidate the biologic pathways potentially associated 
with pat ient r esponse and t umor resistance to t argeted t herapeutic ag ents. Fi nally, i n 
collaboration with Project 2 we will perform correlation analysis of these NSCLC serum 
phosphopeptide pr ofile si gnatures with pat ients’ cl inical characteristics to pr edict l ung cancer, 
cancer pr ogression, c ancer st ages, and overall su rvival rate; t o ch aracterize se rum 
phosphopeptide pr oteomic patterns and signatures in co rrelation t o tumor recurrence, cl inical 
response t o adj uvant chemotherapeutic and t argeted ag ents, and dev elopment o f resistance; 
and to identify serum phosphopeptide markers as surrogate predictors of patient outcome. 
 
Moreover, in Aim 3 we will quantify total circulating plasma DNA and methylation-specific DNA 
in all 300 pat ients with NSCLC enrolled in the Project 2 cl inical trial. The circulating DNA levels 
will be co rrelated w ith pat ients’ cl inicopathologic ch aracteristics. A ny ch anges in t hese l evels 
during chemotherapy and after surgery will be co rrelated with patient response to neoadjuvant 
therapy and patient outcome after surgery. The correlation between circulating methylated DNA 
levels and tumor DNA methylation will also be examined in a selected panel of patients.  
Summary of Research Findings 
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Reversible pr otein phosp horylation i s a k ey r egulating sw itch t hat co ntrols a w ide r ange of 
biological functions and plays a critical role in signaling pathways involved in oncogenesis. We 
have developed an i nnovative f unctional pr oteomics platform usi ng P roteinChip ar ray-based 
SELDI-MS for high throughput profiling and i dentification of phospho-peptides in human serum 
to identify specific phosphopeptides/phosphoproteins associated with human lung cancer. We 
performed phosp hopeptide profiling on se rum samples from human normal and l ung cancer 
patients with v arying st ages and smoking histories. We use d phosp ho-tyrosine ant ibody-
conjugated super-paramagnetic beads to capture phosphopeptides generated in trypsin-
digested se rum sa mples. The a ffinity-enriched pY Ps were t hen r andomly l oaded ont o S END 
ProteinChips with duplicates and analyzed by SELDI-TOF Mass Spectrometry. We used 
wavelets and the mean spectrum for peak detection and detected more than 600 pY P peaks 
spanning a M/Z range from 50 to 5500 Dalton. For each peak, we recorded the p-value from an 
F-test and modeled the set of p-values using a beta-uniform mixture model to estimate the false 
discovery rate ( FDR). We identified 39 pY P pea ks with f old changes in i ntensity det ected on  
SELDI-MS profiles to be significantly (at FDR = 10%) differentially expressed in normal and lung 
cancer serum samples. The phosphopeptides detected on SELDI-MS spectra were further 
identified usi ng a pr otein ch ip ar ray-interfaced qSTAR-MS/MS. On e o f the phospho-tyrosine 
containing pept ides was identified as an A lpha-1-acid g lycoprotein 1 pr ecursor ( A1AG1) or  
ORM-1 serum protein. The ORM-1 pYP showed a M/Z peak at 1752.3 Da and was significantly 
upregulated i n l ung ca ncer se rum sa mples, with m ore t han 10 -fold i ncrease ( P =  0 .0024) i n 
mass peak intensity. A computer-aided structural and function analysis predicted the potential 
association of ORM-1 to the nicotinic acetylcholine receptor (nAChRs) and to be a substrate of 
EGFR tyrosine kinase.  
 
We further validated phosphor-ORM-1 protein expression in another set of 80 l ung cancer and 
control s erum sa mples by E LISA and co nfirmed t he si gnificantly upr egulated ex pression of 
serum phosphor-ORM-1 in late stage lung cancer pat ients with ever-smoking history. We also 
identified protein interactions between the ORM-1 and subunits of nAchRs in lung cancer cell 
lines by immunoprecipitation and i mmune-blotting analysis. Our results suggest the role of the 
Phospho-ORM-1 pept ide as a novel NAChR-associated protein in lung cancer pat hogenesis 
and sm oking-associated ca rcinogenesis and as  a pot ential se rum m arker for l ung cancer 
detection. We a re now  v alidating our  f indings i n anot her se t of  hum an l ung ca ncer se rum 
samples (80 samples consist o f 20 for never-smoker controls, and 20  ever-smoker, 20 S tage 
III/IV, and 20 s tage I /II lung cancer cases) and will per form phosphor-peptide pr ofiling i n 150  
matching serum samples that were used for ot her biomarker anal yses in t his project.  These 
findings were presented at the 101th AACR Annual meeting in Washington D.C., 2010 (Abstract 
#1624.) 
 

 
Key Research Accomplishments 

• Completion o f co mprehensive m olecular pr ofiling (mRNA, miRNA, and DNA-aCGH) of  a 
large series (n=209) of chemo-naïve NSCLCs with annotated clinicopathologic information, 
including outcome after adjuvant chemotherapy.  

• Completion of molecular profiling (mRNA, miRNA, and DNA-aCGH) of 53 MPM tissue 
specimens and 5 ce ll l ines, and i dentification o f m olecular si gnatures asso ciated w ith 
outcome of patients with surgically resected MPM and novel MPM potential molecular 
targets.  

● Completion o f comprehensive m olecular pr ofiling (mRNA, m iRNA, and DNA-aCGH) of  4 0 
chemotherapy neoadj uvant-treated N SCLCs with annot ated c linicopathologic information, 
including patients’ outcome. 
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● Characterization o f N SCLC t issue sp ecimens for nov el bi omarkers asso ciated with 
resistance to ch emotherapy i n l ung ca ncer, i ncluding N rf2/Keap1 expression, KDR copy 
number, and membrane transporters expression.   

• Identification and characterization of phospho-ORM-1 as a novel nicotinic acetylcholine 
receptor ( NAChR)-associated protein and a potential serum marker for lung cancer 
detection. 

 

 
Conclusions 

During t he t hird y ear, we r eached t he g oal of molecular pr ofiling ch emo-naïve su rgically 
resected NSCLCs from patients who received and did not receive adjuvant chemotherapy. Also, 
we ha ve co mpleted si milar pr ofiling i n M PM tissue and ce ll l ine sp ecimens, devised gene 
expression si gnatures associated w ith MPM pat ients’ out come, and i dentified nov el pot ential 
molecular t argets. In a ddition, w e hav e ch aracterized t wo nov el m arkers (Nrf2 and  KDR) 
associated with response to platinum-based adjuvant chemotherapy in NSCLC. 
 
 
Project 4: Target Modulation Following Induction Treatment With Dasatinib in Patients 
With Malignant Pleural Mesothelioma (MPM) and Identification of New Therapeutic 
Targets/Strategies for MPM 
 
(Leaders: Drs. Anne Tsao, Reza Mehran)  
 
Hypothesis:  
We hypothesize t hat d asatinib, a b road sp ectrum A TP-competitive i nhibitor for onco genic 
tyrosine kinases (BCR-ABL, SRC, c-Kit, PDGFR, and ephrin receptor kinases), may be a new 
therapeutic agent in malignant pleural mesothelioma (MPM). We also believe that conducting 
therapeutic target-focused ( TTF) m olecular and g ene pr ofiling ( Affymetrix arrays) will l ead t o 
development of other novel therapies for MPM.   
 
Specific aims: 
 
Aim 1: Conduct a phase I clinical trial with the primary endpoint of biomarker modulation 
using dasatinib as induction therapy in patients with resectable MPM. 
Trial design

 

: Untreated MPM patients undergo extended surgical staging (ESS) with multiple 
biopsies to account for tumor heterogeneity.  If deemed a surgical candidate for either P/D or 
EPP, pat ients receive 4  weeks of or al dasa tinib ( 70 m g B ID) followed by P /D or  E PP.  I f a  
radiographic response i s seen, an addi tional 2 years of dasa tinib m aintenance af ter ad juvant 
radiotherapy and chemotherapy is given.  Serum/blood/platelets/pleural effusion specimens are 
collected for exploratory analysis of peripheral surrogate biomarkers.  Primary endpoint is 
biomarker m odulation of Src Tyr419 immunohistochemistry ( IHC) in t umor t issue. S econdary 
endpoints: response, survival, safety/toxicity, and biomarker modulation. 

1a. Determine the effects of dasatinib i nduction therapy on se lected tumor biomarkers 
(activated Src, PDGFR, VEGFR) pre- and post-induction therapy. 

1b. D etermine t he m odulatory e ffects o f dasa tinib on se lected bi omarkers of su rvival and 
apoptosis (PI3K/AKT, bcl -xL, ca spases), p roliferation ( IGFR, K i-67), an giogenesis (IL-8, 
bFGF, T NF-α), epi thelial-mesenchymal t ransition ( TNF-β, E -cadherin, c -Kit/Slug) a nd 
invasion/migration (Ephrin, MMP) in tumor specimens pre- and post- induction therapy. 

1c. Determine t he e ffects of i nduction dasa tinib t herapy on  t umor m ean v essel densi ty, ce ll 
apoptosis, and the proliferation index. 
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1d. Determine t he modulatory ef fects of dasa tinib on se rum, pl atelet, and pl eural ef fusion 
markers of survival (PI3K/AKT, bcl-xL, caspases), proliferation ( IGFR, Src), angiogenesis 
(soluble V EGFR, V EGF, PDGF, IL-8, bFG F, T NF-α), and invasion/migration ( Ephrin, 
MMP).  

1e. Determine the drug concentration of dasatinib in tumor and serum. 
1f. Assess the effects of dasatinib and cytoreductive surgery on the serum mesothelin-related 

peptide (SMRP) level. 
1g. Assess the safety and toxicity profile of induction dasatinib in patients with resectable MPM. 

 
Aim 2: Conduct radiographic correlates of tumor response and clinical outcome with 
positron-emission technology-computer tomography (PET-CT). 
 
Aim 3: Explore and develop new therapeutic targets and treatment strategies for MPM in 
tumor specimens collected from Specific Aim1 and in MPM cell lines.  
 
3a. D etermine key si gnaling pat hways involved i n t umor resistance or  sensitivity t o dasa tinib 

using therapeutic target-focused (TTF) molecular and global gene expression profiling on 
MPM tumor specimens pre- and post- induction dasatinib therapy.   

3b. Determine the sensitivity of a panel of MPM cell lines to targeted agents tested in Project 1 
via TTF profiling and DATs (drug and therapeutic target siRNA). 

 

A total of 35 patients have been enrolled on the trial from April 2008 to May 2010.  Of these 35 
patients, 25 hav e completed treatment and 17 h ave successfully completed ESS, neoadjuvant 
dasatinib, and P /D (n=10) or EPP (n=7).  (SD: Waiting on updates) The commonly noted side 
effects of neoadjuvant dasatinib were grade 1-2: anemia, nausea, vomiting, anorexia, fatigue, 
and anx iety. G rade 3 t oxicities included f luid r etention, i nfection ( pneumonia), and hy poxia. 
There are no grade 4-5 toxicities.  Post-surgical grade 3 toxicity included anemia, arrhythmia, 
HTN, and pleural effusion; 1 grade 4 episode of hyperglycemia.  To date, neoadjuvant dasatinib 
does not add significant toxicity to MPM surgical resection. 

Summary of Research Findings 

 
After 4 w eeks o f neoad juvant or al dasa tinib therapy, w e not ed 1 P D, 13 S D, and  2 minor 
responses, and 1 patient that did not receive the second PET-CT.  In the initial analysis of IHC 
Src Tyr419 in 13 pat ients (Figure 20), higher baseline levels of p-Src Tyr419 predicted for an 
improved TTP with dasatinib therapy (p=0.008).  Also, patients who had significant modulation 
of p-Src Tyr419 after dasatinib therapy had improved TTP (p=0.005) (Figure 21).  In addition, 
peripheral m ononuclear blood cells (PMBC) and se rum samples collected during t he surgical 
resection from 36 M PM pat ients are av ailable. We h ave also collected, ban ked, and 
characterized MPM t umor t issue from 10 pat ients enrolled i n t he cl inical t rial who under went 
video-assisted t horacoscopy ( VAT) a nd ex trapeural pneum onectomy ( EPP). In co llaboration 
with t he P athology C ore, a MPM t issue m icroarray (TMA) was constructed containing 76  
surgically resected tumor cases, including epitheloid, sarcomatoid and biphasic histology types, 
with well-annotated clinicopathologic information.  
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Figure 20.  Baseline levels of IHC p-Src Tyr419 by time to progression. 
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Figure 21.  Modulation of p-Src Tyr419 calculated from before (pre-) and after 
(post) neoadjuvant dasatinib therapy. 
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The MPM TMAs have been utilized to characterize the expression of several markers, including 
markers related to epithelial-to-mesenchymal transition (EMT; 5 IHC markers), angiogenesis 
(PFGFRβ; 2 IHC m arkers and FI SH for t he gene), and ce ll m embrane t ransporters (5 IHC 
markers). I n addi tion, MPM ce ll l ines acquired f rom D r. H arvey P ass are cu rrently bei ng 
characterized by IHC using 7 di fferent markers to distinguish them as authentic mesothelioma 
cell lines, including cytoketarin 5/6, calretinin, mesothelin, CEA, B72.3, CD15, and TTF-1. 
Finally, the expression of total Src and p-Src (Tyr 416), as well as Ki67, was examined by IHC in 
nearly 100 MPM t issue samples obtained from patients enrolled i n t he dasatinib cl inical t rial.  
Analysis of these data is continuing. 
 

 
Key Research Accomplishments 

• Demonstrated that there is a subpopulation of MPM patients that may derive clinical benefit 
from oral dasatinib therapy. 

• MPM i s a very het erogeneic tumor.  Molecular p rofiling w ill b e necessary t o ul timately 
optimize targeted therapy in this disease. 

• Illustrated that higher baseline levels of p-Src Tyr419 is predictive for improved PFS with 
dasatinib. 

• Suggested that m odulation of  p -SrcTyr419 is a reasonable phar macodynamic marker for 
dasatinib treatment.  

• Proven that the infrastructure from t his novel clinical is feasible and has the potential to 
advance the field of MPM in personalized medicine.  

• Collected, bank ed, and ch aracterized MPM tumor t issue from 10 pa tients enrolled i n t he 
clinical t rial w ho un derwent v ideo-assisted t horacoscopy ( VAT) and ex trapeural 
pneumonectomy (EPP). 

• Constructed a MPM tissue microarray (TMA) containing 76 surgically resected tumor cases. 
• Examined the expression of total Src and p-Src (Tyr 416), as well as Ki67, by IHC in nearly 

100 MPM tissue samples obtained from patients enrolled in the dasatinib clinical trial.   
 

 
Conclusions 

There i s preliminary evi dence t hat a su bgroup o f M PM pat ients gain cl inical benef it from 
dasatinib therapy and that baseline p-Src Tyr419 levels in MPM tumor tissue may be predictive 
of TTP.  This is the first t argeted therapy neoa djuvant t rial t o pot entially i dentify a pr edictive 
biomarker in MPM. 
 
 
Project 5: Development of a Novel Multi-Biomarker System Using Quantum Dot 
Technology for Assessments of Prognosis of NSCLC and Prediction of Outcome of 
EGFR-Targeted Therapy 
 
(Leader: Dr. Zhuo (Georgia) Chen; Co-Leaders: Drs. Fadlo Khuri, Dong Shin, Ruth O ’Regan, 
Shi-Yong Sun) 
 
Quantum dots (QDs) provide sh arper fluorescent si gnals than or ganic dyes and ca n det ect 
multi-biomarkers simultaneously in the same material, allowing quantification and correlation of 
molecular signature with cellular response to targeted therapies.   
 
Hypothesis: 
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A m ulti-biomarker sy stem usi ng quantum do t ( QD) technology w ill enhance  accu racy i n 
assessment of prognosis of non-small cell lung cancer (NSCLC) and prediction of outcome of 
epidermal growth factor receptor (EGFR)-targeted therapy.    
 
Specific Aims: 
 
Specific Aim 1: Development of QD-Abs and imaging systems for detection and 
quantification of multi-biomarkers (MBM) using lung cancer cell lines.  
 

This aim was completed as reported in the previous annual report. 
Summary of Research Findings 

 
Specific Aim 2: Verification of QD-Abs for detection and quantification of MBM by 
comparison with conventional IHC using paraffin-embedded tissues and evaluation of 
their prognostic value in NSCLC. 
 

Nanoparticle QDs are ideal materials for m ultiplexed biomarker detection, localization, and 
quantification. We hav e opt imized t he w orking co nditions for the app lication of  QD-based 
immunohistofluorescence (QD-IHF) in staining of formalin-fixed and paraffin-embedded (FFPE). 
Our results demonstrated that the QD signal for each multiplexed biomarker was more 
consistent and st able when using the cocktail method than the sequential method, providing a 
unique tool for potential research and clinical applications (Figure 22).  

Summary of Research Findings 

 
We have verified QD-IHF methodology, which included: (1) the comparison of single biomarker 
detection using conventional immunohistochemistry (IHC) with QD-IHF; and (2) the comparison 
of biomarker signals from samples stained with single QD-IHF in  se rial sections to biomarker 
signals from the same proteins but from samples stained simultaneously with multiple QD IHF. 
Our study showed that the results obtained from QD-IHF and IHC or single and multiple staining 
are statistically correlated.  
 
To achieve this specific aim, tissue samples including tumor and adjacent normal from 94 cases 
of NSCLC with relevant clinical information have been co llected.  B oth IHC and Q D-IHF stains 
of t hese t issues have been co mpleted, and s tatistical anal ysis of QD-IHF is still ongoing. For  
quantification o f I HC r esults, Weighted Index { WI = [ percentage o f po sitive st ain x i ntensity 
score (0, 1+, 2+, and 3+)] x 100} was recorded. QD-IHF signals were quantified as percentage 
of co -localization ( Co%) of  EGFR, E -cadherin, and β-catenin. B iological evi dence has shown 
that ac tivation of  E GFR by  E GF i nduces internalization and enhan ces degradation o f E -
cadherin. This process reduces co-localization of EGFR with E-cadherin and β-catenin, resulting 
in low Co%.  T herefore, using QD-IHF in detection of multiplex biomarkers on the same tissue 
will r eflect bi ological ev ent more accu rately t han si ngle bi omarker de tection.      P reliminary 
statistical analysis showed that the adjacent normal tissues had significantly higher Co% than 
tumor tissues from the same patient (p = 0.0006 by paired t-test).  Furthermore, patients without 
a smoking history had si gnificantly higher Co% than those who smoked (p = 0.001 by Logistic 
Regression).  Further statistical analysis is currently in progress. 
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Figure 22.  Comparison of the QD-IHF cocktail method with the sequential method. A(i). Illustration 
showing c ocktail Q D-IHF s taining with Q D-2nd Ab c onjugates, “ 1” illustrates t he add ition of  di fferent 
QDs s imultaneously; A(ii). Illustration showing s equential Q D-IHF s taining with Q D-streptavidin 
conjugates, “1, 2, 3” represent the addition of QDs at different steps; B. Cocktail QD-IHF staining of E-
cad+EGFR+β-cat with QD 565+605+655 2nd Ab-conjugates; C. Sequential QD-IHF staining of E-cad, 
EGFR, and β-cat with QD 565-, 605- and 655-streptavidin conjugates respectively; (i) unmixed E-cad 
(QD 565) signal; (ii) unmixed EGFR (QD 605) signal; (iii) unmixed β-cat (QD 655) signal; D. Quantified 
signal comparison between these two methods.  

 
 
In addition, we have studied another signaling pathway which may contribute to the resistance 
to EGFR ta rgeting. Some r esearch has shown that cancer c ells undergoing epi thelial 
mesenchymal transition (EMT) acquire resistance to EGFR-TKIs, t hough t he underlying 
mechanism remains unknown. Our preliminary s tudy in NSCLC cell l ines showed that the G-
protein coupled chemokine receptor CXCR4 could activate both p-AKT and p-ERK pathways, 
which have been reported to induce EMT. In this study, we hypothesized that CXCR4 may be 
an alternative route for cancer cells to bypass EGFR to activate the downstream pathway under 
an EMT phenotype. Initially, IHC was used to detect the expressions of CXCR4, p-AKT, p-ERK, 
and E -cadherin i n 94 cl inical NSCLC samples and the pr eviously described WI w as used t o 
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Figure 23.  Different s taining pat terns of  C XCR4 i n hum an 
NSCLC s pecimens. A. Nuclear s taining pattern, t he pos itive 
signal o nly lo cated in n uclei ( n=22).  B. Cytoplasmic s taining 
pattern, t he p ositive s ignal on ly located i n c ytoplasm ( n=5). C 
Cytoplasmic+nuclear s taining pa ttern, the pos itive s ignal 
distributed bo th in n uclei and c ytoplasm ( n=66). D. N egative 
staining pattern (n=1).  
 

quantify the expression level of  
these markers. Western blot 
was used to detect the 
expression of C XCR4 and 
activation o f i ts downstream 
pathways in NSCLC cell lines. 
Our result showed that CXCR4 
was detected i n 98. 9% ( 93/94) 
of lung cancer samples; 
however, o f greater i nterest 
were the three distinctive 
expression patterns for CXCR4 
including cytoplasmic, nuclear, 
and cy toplasmic/nuclear 
expression ( Figure 23).  Since 
it seems unreasonable to see a 
transmembrane r eceptor 
located in nuclei, we confirmed 
nuclear localization of CXCR4 
by Western bl ot usi ng nuclear 
extractions from NSCLC cell 
lines. 
 
Furthermore, we  evaluated the 
correlation of different l ocations of C XCR4 with p-AKT, p -ERK, and E -cadherin by  ANOVA 
statistical analysis (Figure 24). The result showed the expression level of p-AKT and p-ERK are 
both significantly higher (p=0.0024 and p=0.0121, r espectively) in CX CR4 cy toplasmic and 

Figure  24.  Localization of CXCR4 is correlated to loss of EMT marker and activation of 
downstream signaling pathways. Two representative cases of squamous cell carcinoma and 
adenocarcinoma are presented. A, B, C, D were from the same patient tissue in which CXCR4 was 
located in both c ytoplasm and  n uclei. Both AKT an d E RK1/2 pathways were ac tivated in t his 
patient, while t he ex pression of  ep ithelial m arker E -cadherin was dr amatically decreased an d 
distributed i n a diffuse pat tern r ather t han a  normal membrane s taining p attern. E , F, G, H w ere 
from another patient whose CXCR4 was located only in nuclei. No activation of AKT and ERK1/2 
was detected, w hile E -cadherin was ex pressed i n a hi gh l evel and well di stributed i n a linear 
pattern. 
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cytoplasmic/nuclear localization groups than those in  CXCR4 nuclear localization group.  The 
expression level of E-cadherin in the CXCR4 cytoplasmic and cytoplasmic/nuclear localization 
groups was also si gnificantly l ower ( p=0.0015) t han that i n C XCR4 nuclear staining g roup 
(Figure 25). Our data suggested that cytoplasmic CXCR4 may contribute to activation of AKT 
and E RK si gnaling pat hways under EMT, while nucl ear localization o f CXCR4 may be an  
inactive f orm. The functional cytoplasmic CXCR4 m ay co ntribute t o E GFR-TKI r esistance by 
offering an alternative pathway for tumors to maintain progression. A QD-IHF system for this set 
of biomarkers is under development.   

 
 
Specific Aim 3: Correlation of the MBM detected by QD-Abs with outcomes of 
 
 
Specific Aim 3: Correlation of the MBM detected by QD-Abs with outcomes of 
chemotherapies and EGFR- targeted therapy using resectable NSCLC tissues.  
 

We are currently co llecting tissue sa mples from t he pat ients treated w ith E GFR-targeted 
therapy.  We may extend this study to head and neck squamous cell carcinoma for further 
testing and v alidation of  our  findings outside t he sco pe of  this grant.  T here i s no addi tional 
change for this Specific Aim. 

Summary of Research Findings 

 

 
Key Research Accomplishments 

• Optimized and validated QD-staining conditions for multiplexing three biomarkers, EGFR, E-
cadherin, and β-catenin, in both cell lines and FFPE tissues and developed a quantification 
method for QD signals using the CRi Nuance spectral system. 

• Completed staining and image acquisition of the three biomarkers in the 94 pairs of the 
NSCLC tissues by both IHC and QD-IHF methods. 

• Investigated anot her si gnal t ransduction pat hway asso ciated with C XCR4.  C urrent s tudy 
reveals that cellular localization of CXCR4 may correlate to EMT, which has been suggested 
to be an indicator for resistance to EGFR TKIs.  A QD-IHF system for detection and 
quantification of the relevant biomarkers is under development.  

 
 
 
 

Figure 25.  Expression level of  p -AKT, p -ERK and E -cadherin are r elated to t he localization of  
CXCR4. The c orrelation o f di fferent l ocations of  C XCR4 with p -AKT, p -ERK, and E -cadherin w as 
evaluated b y two-tail t-test. Significant difference of  W I between nuclear a nd nuclear/cytoplasmic i s 
highlighted in red. Dash-line (----): mean value; Solid-line (      ): medium value. 
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Conclusions 

In the past year, we optimized and v alidated a quantification strategy for using QD-based IHF.  
These studies were summarized in a publ ication in Nano Research this year, providing a solid 
foundation for anal yzing biomarker expressions in NSCLC t issues. In t he past  year, we have 
completed the immunostaining of three biomarkers, EGFR, E-cadherin, and β-catenin, in 94 
pairs of patient tissue samples using this strategy. Images of these analyses were acquired and 
quantification of marker expression has been completed. More statistical analysis will lead to an 
important answer as to whether quantification of multiplex biomarkers by QD-IHF can provide 
more accurate correlation to patient’s prognosis and the other relevant clinical information than 
a signal biomarker analysis.  In addition, we have identified localization of CXCR4 as a potential 
indicator for EMT as well as resistance to EGFR targeting.  Development of a QD-IHF-based 
system t o quantify C XCR4 l ocalization and i ts correlation w ith E MT m arker E -cadherin an d 
other relevant biomarkers is the current focus of the project.  B uilding of  findings from the first 
set o f bi omarkers, t his project i s moving forward t o i dentify t he bes t marker co mbination to 
identify patients who may be resistant to EGFR-targeting therapy.  
 
 
Pathology Core  
 
(Director: Dr. Ignacio Wistuba) 
 
The Pathology Core is an essential component of the PROSPECT program. The Pathology 
Core pl ays an i mportant r ole by  co llecting, p rocessing and di stributing tissue and se rum 
specimens obtained f rom clinical trials for non-small ce ll l ung carcinoma (NSCLC) (Project 2)  
and m alignant pl eural m esothelioma (MPM; P roject 4)  for molecular profiles and bi omarker 
analysis. 
 
Our objectives are as follows: 
1. Develop and m aintain a r epository o f tissue and se rum sp ecimens from pa tients with 

NSCLC and MPM. 
2.  Process NSCLC cell lines and tissue specimens for histopathologic and molecular analyses. 

3.  Perform and evaluate immunohistochemical (IHC) analysis in human tumor tissue 
specimens and mouse xenograft tissues. 

 
Objective 1

 

. Develop and maintain repository of tissue and serum specimens from 
patients with NSCLC and malignant pleural mesothelioma (MPM). 

Summary of Research Findings 
Selection of lung cancer and mesothelioma specimens available in Thoracic Malignancy Tissue 
Bank.

 

 This goal was achieved during the second year. During the third year the cases selected 
were processed and distributed for work related to Projects 2, 3 and 4.  

Prospective co llection and bank ing o f lung ca ncer and m esothelioma sp ecimens for 
PROSPECT p rojects. Since t he act ivation of  the P ROSPECT pr oject on A ugust 2007 , t he 
Pathology Core has collected fresh and formalin-fixed t issue specimens from 444 NSCLC and 
31 M PM su rgically r esected ca ses (Table 2). These ca ses r epresent 83% o f surgeries 
performed in our institution during this period. Snap-frozen normal and tumor tissue have been 
collected in all cases. In addition, we have obtained and banked tumor specimens in RNAlater® 
(Ambion, Austin, TX) (n=127 samples) consisting of 12% dimethyl sulfoxide (DMSO)-preserved 
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samples (n=126 samples) and O CT-embedded f or frozen se ctioning ( n=124 sa mples). Blood 
specimens (serum and P MBC) were collected from 437 out  o f 574 su rgery pat ients (76%), 
processed, and banked. O f i nterest, both tissue and bl ood specimens have been obt ained i n 
339 cases (59%). To date, 117 ca ses of NSCLC treated with neoadjuvant chemotherapy have 
been collected. 

Table 2.  Summary of prospectively collected tumor tissue specimens from NSCLC and MPM 
cases. 

Histology Total Number of Cases Last Year Number of Cases  

Adenocarcinoma 252 92 
Squamous cell carcinoma 102 39 
Large cell carcinoma 8 4 
Other NSCLC 71 30 
No tumor present 11 7 
Total Lung Tumors 444 172 
   
Malignant Mesothelioma 31 12 
 

Thoracic Malignancy Tissue Bank Database.

 

 For t issue collection and banking, an institutional 
database with bar coding system has been utilized since inception of this grant. 

Objective 2.  Process NSCLC cell lines and tissue specimens for histopathological and 
molecular analyses. 
 
Summary of Research Findings 
Cell Lines.

 

 The establishment of a repository of lung cancer and MPM cell lines was completed 
during t he second year o f t he grant by  t he P athology C ore. Du ring the t hird year, i n 
collaboration w ith P roject 1 (Drs. J . H eymach and J.  M inna), we m aintained, di stributed, and 
utilized t he ~ 70 N SCLC and 2 nor mal br onchial epi thelial ce ll lines t hat w e hav e i n t he 
repository. In collaboration with Dr. Suraokar, 21 mesothelioma and mesothelial cell lines were 
DNA-fingerprinted and authenticated as MPM using a panel of 7 immunohistochemistry (IHC) 
markers (cytoketarin 5/6, calretinin, mesothelin, CEA [carcinoembryonic antigen], B72.3, CD15, 
and TTF-1). In addition, nucleic acids (DNA and RNA) and protein lysates were extracted from 
all 21 MPM cell l ines and distributed to Project 3 investigators to be m olecularly profiled using 
mRNA Affymetrix, miRNA Agilent, DNA Affymetrix SNP array, and protein RPPA analyses.   

Tissue Processing for RNA, DNA and Protein Extractions.

  

 As reported last year, tissue 
processing and nucl eic acids (DNA and R NA) extractions of frozen t umor and nor mal t issue 
from 613 NSCLCs and 53 MPMs retrieved from the Thoracic Tissue Bank were completed. The 
processing included a detailed histopathology quality control assessment of tumor and 
malignant cell content. During the third year, the Pathology Core selected and processed two 
additional se ts of frozen tumor t issue samples for nucl eic acid and pr otein ex tractions: a)  70  
neaodjuvant t reated su rgically r esected N SCLCs; and,  b ) 23 su rgically r esected M PMs. 
Clinicopathological ch aracteristics of al l t hese c ases, i ncluding treatment and follow-up, w ere 
obtained. In addition, the Pathology Core re-processed over 80 NSCLC tumor specimens from 
the first set of cases for DNA extraction to increase the DNA yield for gene mutation analysis. 

Sample D istribution. During t he t hird y ear, the following sa mples were di stributed by  t he 
Pathology Core for molecular profiling to Projects 3 and 4: 
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Figure 26. Representative m icrophotographs of  h istology 
and pSRC immunohistochemistry (IHC) expression of MPM 
tissues (before and after treatment) of a patient enrolled in 
the dasatinib neoadjuvant trial (Project 4) and processed by 
the Pathology Core. 

 
RNA. Three aliquots of RNA (1 µg each) from the 249 NSCLC tumors selected by investigators 
of Project 3 were distributed for miRNA profiling using Agilent platform (1 aliquot; I. Wistuba), 
and mRNA profiling using Illumina and Affymetrix platforms (2 aliquots; J. Minna). Two aliquots 
of RNA (1 µg each) from 53 MPM tumors were distributed to Project 3 investigators for miRNA 
profiling using Agilent platform and mRNA profiling using Affymetrix arrays (I. Wistuba). 
 
DNA. One aliquot of DNA from 162 NSCLC tumors, which are part of the 249 cases selected by 
investigators of Project 3, were distributed for array Comparative Genomic Hybridization 
(aCGH) using Agilent 244K platform (1 µg aliquot; I. Wistuba). In addition, two 600 ng aliquots 
were distributed for gene mutation analysis using sequencing (KRAS and EGFR mutation 
analysis) and Sequenom® (20-gene panel) methodologies (I. Wistuba). One aliquot of DNA 
from 53 M PM t umors w as di stributed t o P roject 3 i nvestigators for si ngle nucl eotide 
polymorphism (SNP) Affymetrix array profiling (J. Heymach). 
 
Protein. One frozen tissue specimen from each of the 170 NSCLC tumors (part of the 249 cases 
selected by Project 3 investigators) was distributed for protein extraction and reverse phase 
protein array (RPPA) analysis of 176 proteins (J. Heymach’s lab). One aliquot of protein lysates 
from each of the 53 MPM tumors was distributed to Project 3 investigators for RPPA analysis of 
176 proteins. 
 
Molecular signatures validation strategies. Project 3 has designed a strategy for gene (mRNA), 
miRNA, and protein signature validation using the Quantitative Nuclease Protection Assay 
(qNPA™) for mRNA and m iRNA si gnatures, and immunohistochemistry (IHC) for protein 
expression. In collaboration with High-Throughput Genomic (HTG), Inc. 
(http://www.htgenomics.com/technology/qnpa), Project 3 ha s developed a m ultiple q NPA™ 

assays to test the expression of up to 
200 g enes usi ng bot h frozen and  
FFPE t issues from su rgically 
resected N SCLC t umors. C urrently, 
the P athology C ore i s pr ocessing 
FFPE tissue samples from all 249-
profiled NSCLC cases for qNPA™ 
analysis.  
 
Tissue Microarrays (TMAs). An MPM 
TMA co ntaining 76 t umors was 
constructed by  t he P athology C ore 
during the second year o f the grant. 
During t he t hird year, t his TMA was 
utilized by the Pathology Core to 
characterize t he expression of three 
key pr oteins (Mad2a, su rvivin, and 
Aurora kinase A ) i ncluded i n t he 
mRNA g ene M itotic Spindle 
Assembly C heckpoint ( MSAC) 
signature identified to be important in 
MPM by gene expression profiling in 

Project 3 (see objective 3). During the third year, the NSCLC FFPE samples of all 249 tumors 
selected for molecular profiling by Project 3 investigators have been collected and the histology 

http://www.htgenomics.com/technology/qnpa�
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Figure 27. Representative microphotographs of MAD2 
immunohistochemistry ( IHC) e xpression i n M PM t issue 
specimens. MAD2 IHC expression is observed as brown staining 
in the nucleus of malignant cells (A x200, and B x400 
magnifications). 
 

examined by the Pathology Core for TMA construction, which will occur during the fourth year of 
the grant. 
 
MPM Clin ical Trial Tissue Collection and Processing.

 

 In co llaboration with Project 4 (A. Tsao), 
the P athology C ore has collected, bank ed, and ch aracterized M PM t umor t issue from 2 8 
patients enrolled in the dasatinib clinical t rial who under went to video-assisted t horacoscopy 
(VAT) and ex trapleural pneumonectomy (EPP). A total of 317 ( 173 baseline [VAT] and 144 at  
surgery [EPP]) f resh f rozen and f ormalin-fixed tumor t issue specimens from 28  pat ients have 
been obtained, processed, and characterized by the Pathology Core (Figure 26). 

Objective 3. Perform and evaluate immunohistochemical (IHC) analysis in human tumor 
tissue specimens and mouse xenograft tumor specimens. 
 

As previously reported, the Pathology Core has assisted and performed IHC analysis for over 
35 markers using T MAs and whole se ctions in t umor t issue sp ecimens of N SCLC i n 
collaboration with Projects 2 (D. Stewart) and 3 (I. Wistuba). As a result of these analyses, two 
papers have been acce pted for publication (Yuan et al; Solis et al) and one has been recently 
submitted (Nunez et al).  

Summary of Research Findings 

 
During the third year, the Pathology 
Core ex amined 10 I HC m arkers 
using MPM TMA and whole section 
tissue specimens: a) expression of 3 
key proteins, Mad2a, surviving, and 
Aurora kinase A, i ncluded i n t he 
mRNA g ene MSAC signature 
identified to be important in MPM by 
gene ex pression pr ofiling i n P roject 
3 (Figure 27); b) expression of 
copper t ransporter r eceptor 
1(CTR1), glucose 4 (GLUT4) and 
RHOA, and folate receptor alpha 
(FOLR1) and r educed f olate carrier 

1 (RFC1) for Project 2 ; and, c ) expression o f t otal Src and p-Src (Tyr 416) in over 300 MPM 
tissue samples obtained from patients enrolled in the dasatinib clinical trial for Project 4 (Figure 
26).  
 

 
Key Research Accomplishments 

• Collected p rospective f rozen t issue sp ecimens from 165 N SCLC and 12 MPM ca ses, 
including 38 NSCLC cases treated with neo-adjuvant chemotherapy.  

• Completed t he co llection of  300 NSCLC t issues originally established f or t he ent ire gr ant 
period. 

• Maintained a N SCLC and MPM cell l ine repository, and m anaged the distribution o f 
specimens for molecular profiling in collaboration with PROSPECT Projects 1 and 4. 

• Distributed nucleic acids (DNA and RNA) and tissue for protein analyses from large series of 
NSCLC and MPM tumor specimens with annotated clinicopathological information for 
molecular profiling.  

• Collected, processed, and anal yzed o ver 300  MPM t umor tissue specimens from pa tients 
enrolled in the dasatinib clinical trial in collaboration with Project 4. 
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• Contributed to t he pu blication and su bmission o f 5 m anuscripts and 5 abst racts 
presentations in scientific meetings.  

 

 
Conclusions 

During t he third grant year, the P ROSPECT P athology C ore has  ach ieved and ex ceeded i ts 
goals by prospectively collecting frozen tissue specimens from 165 NSCLC and 12 MPM cases, 
including 38 NSCLC cases treated with neo-adjuvant chemotherapy. The Pathology Core has 
played an important role in the processing of NSCLC and MPM tissue and cell line specimens 
for comprehensive molecular profiling, and i n t he characterization of  tissue specimens on the 
expression of protein expression by immunohistochemistry. 
 
 
Biostatistics/Bioinformatics Core 
(Director: Dr. J. Jack Lee; Co-Director: Kevin Coombes) 
 
In close collaboration with the Pathology Core and each of the five main projects, the 
Biostatistics and D ata Management C ore ( BDMC) f or t he Department of Defense (DoD) 
PROSPECT l ung ca ncer r esearch p rogram i s a co mprehensive, m ulti-lateral r esource f or 
designing clinical and basic science experiments; developing and applying innovative statistical 
methodology, da ta ac quisition and m anagement, and s tatistical anal ysis; and publ ishing 
translational research generated by this research proposal. We deliver planned and tailored 
statistical analyses for rapid communication of project results among project investigators, and 
by co llaborating w ith al l pr oject i nvestigators to f acilitate t he timely pu blication of  sci entific 
results. 
 
The main objectives of the Biostatistics and Data Management Core are to: 
1. Provide the statistical design, sample size, and power calculations for each project. 
2. Develop a se cure, i nternet-driven, W eb-based dat abase application to i ntegrate d ata 

generated by  t he five pr oposed pr ojects and t he P athology C ore of  t he P ROSPECT 
research project. 

3. Develop a co mprehensive, Web-based database management system for t issue specimen 
tracking and distribution and for a central repository of all biomarker data. 

4. Provide all st atistical data anal yses, i ncluding descr iptive analysis, hy pothesis testing, 
estimation, and modeling of prospectively generated data. 

5. Provide pr ospective co llection, ent ry, q uality co ntrol, and i ntegration o f data f or t he basic 
science, pre-clinical, and clinical studies in the PROSPECT grant. 

6. Provide study monitoring and conduct of the neoadjuvant clinical trial that ensures patient 
safety by  t imely reporting o f toxicity and  i nterim anal ysis results to va rious institutional 
review boar ds (IRBs), the U TMDACC dat a m onitoring co mmittee, the D oD, and ot her 
regulatory agencies.  

7. Generate statistical reports for all projects. 
8. Collaborate with all project investigators and assist them in publishing scientific results.  
9. Develop and adapt  i nnovative st atistical and g enomic methods pertinent t o bi omarker-

integrated translational lung cancer studies. 
  

In the third funding year, the BDMC continued to work with all project investigators in providing 
biostatistics and data management support.  The accomplishments are summarized below. 

Summary of Research Findings 
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We have continued to work with clinical investigators in providing the biostatistical support in the 
development and revision of PROSPECT protocols.  We provide statistical report in our monthly 
project meetings to update the accrual, randomization, demographic data, etc.   

Biostatistics and Bioinformatics 

 
We developed and ev aluated st atistical m ethodology f or co mparing v arious test s tatistics for 
response adaptive randomization. We also worked on applying Emax model and use both the 
interaction index and t he bivariate thin plate splines to assess drug interactions in combination 
studies.  
 
In collaboration with the University of  Texas Lung SPORE, we continue to work on developing 
semantic dat abase m odels for t he kinds of ass ay dat a bei ng generated by  bot h P ROSPECT 
projects and the SPORE projects.   
 
We continue t o w ork on dev eloping st atistical m ethods for pr ocessing and anal yzing t he 
reverse-phase protein array (RPPA) data that co ntinues to be generated as part of t he 
PROSPECT study of  lung cancer.  We have performed (and continue to perform) analyses of 
PROSPECT da ta. A lthough these anal yses have not  y et r esulted i n publications, t hey a re 
eventually expected to do so.  These include: 
 
1. Analyses of i mmunohistochemically st ained t issue m icroarray dat a l ooking at  markers of 
prognosis in l ung ca ncer sa mples. U nivariate analysis identified a nu mber o f m arkers t hat 
appear to be related either to important clinical covariates or and/to clinically relevant outcomes 
(overall survival, disease-free survival, or recurrence-free survival).   We have also performed 
multivariate anal yses to i dentify r obust si gnatures of out comes, usi ng t he sa me k inds of 
methods have been developed in the field of gene expression microarrays. These analyses 
generated three abstracts/posters presented at  AACR 2010,  one abst ract/poster presented at 
ASCO 2010, two manuscripts submitted, and four manuscripts under preparation.  

 
2. By analyzing paired Illumina and Affymetrix gene expression data from 74 lung cancer cell 
lines, we have developed a robust gene signature of epithelial-to-mesenchymal transition (EMT; 
see also Project 1).   This signature has been validated in an independent head and neck 
cancer data set from a third microarray platform, and has recently been validated and shown to 
predict response to t reatment w ith er lotinib i n pat ients with NSCLC with w ild-type E GFR. A n 
abstract describing these findings has been submitted to the European Organization for 
Research and Treatment of Cancer (EORTC) meeting, and a full manuscript is in preparation. 
 
3. By integrating gene expression data on 74 l ung cancer cell lines with DNA methylation data 
from the Infinium Human Methylation 27 beadc hip, we identified coordinated m ethylation and 
gene ex pression pat terns that a re asso ciated w ith E MT. These findings suggest t hat 
methylation i s an i mportant r egulator o f E MT i n l ung ca ncer.  A n abs tract des cribing t hese 
findings has been submitted to the EORTC meeting, and a full manuscript is in preparation. 
 
4. We analyzed an Affymetrix gene expression data set from the mesothelioma samples.  
Robust clustering identified three genomically-defined subtypes of mesothelioma.  These 
subtypes were onl y loosely associated with the t raditional subclassification by  histology.  T he 
subtypes were asso ciated w ith out come, hav ing statistically si gnificant di fferences in ov erall 
survival.  Moreover, at least two of the three subtypes were characterized by high expression of 
genes in pathways that can potentially be targeted by existing drugs, suggesting possible novel 
treatments for the disease.  A manuscript describing these findings is in preparation. 
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5. We have begun analyzing a set of Illumina SNP-chip data on lung cancer cell lines in order to 
assess copy number.  I nitial results were used to support a m anuscript showing that VEGFR2 
copy g ain i s predictive o f shorter ov erall su rvival i n N SCLC pat ients treated w ith pl atinum 
adjuvant chemotherapy, which has been submitted to JCO.  We have also created a web site 
that al lows PROSPECT r esearchers to b rowse t he results of the pr eliminary anl aysis, and  
continue to analyze the data in order to identify regions of copy number gain or loss that are 
associated with response to different chemotherapeutic agents. 
 
6. We analyzed a set of microarray data derived from formalin-fixed paraffin-embedded samples 
from NSCLC patients.  We discovered a gene expression signature that predicts prognosis; this 
signature has been validated usi ng publ ic data available f rom t he di rector’s challenge, and  a  
manuscript describing the findings has been submitted to JCO. 
7. Processing and anal ysis have begun on m icroRNA array dat a sets from lung cancer cell 
lines, lung cancer patient tumors, and mesothelioma patient tumors. 
 

 
Data Management 

PROSPECT Database Development 
The P ROSPECT dat abase dev elopment t akes advantage o f t he r evitalization ef fort from t he 
VITAL pr ogram beca use si milar dat abases were developed i n bot h pr ojects. To t ailor for t he 
PROSPECT sp ecific n eeds, da tabase ex tensions were m ade to al low the collection and 
management of data from multiple studies including the neoadjuvant studies, adjuvant studies, 
and regular chemotherapy studies. In addition, the PROSPECT database was developed to 
extend t he r eVITALization dat abase i n V ITAL t o pr ovide add itional cl inical, pat hological, and  
biomarker data repositories and tissue tracking.  In this funding period, we continued our 
database development effort and make updat es to improve the function and usability of the 
database. 
 
The S QL S erver 2005 database and A SP.NET web appl ication i s implemented w ith V B.net 
language. Queries and S QL 2005 r eports are pr ovided. S ecure S ocket Lay er ( SSL) and 
secured database password are used to keep data transaction protected and co nfidential. The 
tissue data includes clinical and pathological data.  
 
1) The database’s clinical module contains the following web forms: 

- Patient Information 
- Social History (Alcohol and Smoking history) 
- Medical History 
- Other Malignancy 
- Treatments (Surgery, Chemotherapy, Radiotherapy and Other Treatments) 
- Clinical Staging 
- Follow up 
 

2) The pathological module contains the following web forms: 
- Primary and Metastasis data (Diagnosis and Surgery Specimens) 
- Histology 
- Staging and Tumor I nformation: C ancer s taging ( TNM cl assification) i s aut omatically 

determined by the system based on the tumor information provided.  
- Tissue Bank (Frozen Tissue and Paraffin)  

 
3) Reports:  Several Excel reports are provided for clinical and pathological module.   

1. Clinical Report 
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2. Pathological Report 
3. Patient Report 
4. Accession Report 
5. General Information Report 
6. Other Malignancy Report 
7. Surgery Report 
8. Chemotherapy Report 
9. Radiotherapy Report 
10. Other Treatment Report 
11. Staging Report 
12. Follow up Report 
13. Histology Diagnosis Report 

 
4) Dictionaries: The database gives control for the users to update dictionaries; however, 
dictionary deletion is prohibited.   
 

 
Key Research Accomplishments 

• Continued to provide biostatistics and bioinformatics support for the PROSPECT project.  
• Published collaborative papers from data collected in the PROSPECT project.  
• Published methodology papers in adaptive clinical trial design, analysis of drug combination 

studies, and high-throughput genomic data.  
• Developed a secured, web-based database application to assist the study conduct. 
• Continued with the database maintenance, training and support as followed: 

 Provide data integrity checking and data correction.  
 Database server maintenance and data back-up are performed periodically. 
 Provide training and custom support to end users. 
 Query Generator has been added to allow for users to retrieve specific data of 

interest quickly.  This extensive t ool i s very us er friendly and al lows for v ery 
complex dat a se lection, so rting and sp ecific field or dering.  A fter a u ser has  
created a t emplate w ithin t he i nterface, t hey hav e t he opt ion of  sa ving this for 
later data retrieval through the query management options.  Once the data has 
been r etrieved, t he use r ca n ex port t his to e xcel f or further r eview a nd dat a 
manipulation. 

 The patient summary report was created with the SQL Server Reporting Services 
2005. 

 
Updated screen shots can be found in Appendix below. 

 
Reportable Outcomes:   
A web-based database application is developed and deployed at: 
https://insidebiostat/Vanguard_CT/login.aspx 
 

 
Conclusions 

In co llaboration w ith cl inical investigators, r esearch nur ses, Pathology Core, and basi c 
scientists, the Biostatistics and Data Management Core has continued to deliver the biostatistics 
and data management support as proposed.   
 

https://insidebiostat/Vanguard_CT/login.aspx�
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KEY RESEARCH ACCOMPLISHMENTS 

PROJECT 1 
 
• Completed protein profiling and gene expression profiling for 75 NSCLC, 30 SCLC, and 5 

HBEC cell lines. 
• Developed an EGFR mutation signature that is prognostic in EGFR wild-type lung cancer. 
• Identified M ACC1 as highly ex pressed i n lung ca ncer a s an EGFR mutant-associated 

regulator of MET.  
• Identified PARP as being highly expressed in SCLC and as a clinically relevant target. 
• Developed an E MT g ene ex pression si gnature that i dentifies epithelial and m esenchymal 

groups in NSCLC and HNC cell lines. 
• Identified a novel EMT marker, Axl, in NSCLC and HNC. 
 
PROJECT 2 
 
• Collected tumor specimens from 457 lung cancer patients (including 117 who had 

neoadjuvant chemotherapy). 
• Collected blood samples from 461 lung cancer patients (from whom tumor is also available 

in 345).  
• Performed preliminary correlations of several biomarkers with su rvival and w ith stage and 

tumor type, as outlined in more detail in the Project 3 report. 
• Performed preliminary asse ssments of the use  o f exponential deca y nonlinear r egression 

analysis of patient survival curves. 
• Defined effect of the demethylating agent decitabine and of time from last therapy on 

expression, in human tumors, of transporters that may play a role in chemotherapy uptake.  
• Identified numerous potential resistance mechanisms that will be investigated further. 
• Correlated patient su rvival and t ime to recurrence w ith per cent t umor v iability post -

neoadjuvant chemotherapy. 
 
PROJECT 3 
 
• Completion o f co mprehensive m olecular pr ofiling (mRNA, miRNA, and DNA-aCGH) of  a 

large series (n=209) of chemo-naïve NSCLCs with annotated clinicopathologic information, 
including outcome after adjuvant chemotherapy.  

• Completion of molecular profiling (mRNA, miRNA, and DNA-aCGH) of 53 MPM tissue 
specimens and 5 ce ll l ines, and i dentification o f m olecular si gnatures asso ciated w ith 
outcome of patients with surgically resected MPM and novel MPM potential molecular 
targets.  

● Completion o f comprehensive m olecular pr ofiling (mRNA, m iRNA, and DNA-aCGH) of  4 0 
chemotherapy neoadj uvant-treated N SCLCs with annot ated cl inicopathologic information, 
including patients’ outcome. 

● Characterization o f N SCLC t issue sp ecimens for nov el bi omarkers asso ciated with 
resistance to ch emotherapy i n l ung ca ncer, i ncluding N rf2/Keap1 expression, KDR copy 
number, and membrane transporters expression.   

• Identification and characterization of phospho-ORM-1 as a novel nicotinic acetylcholine 
receptor ( NAChR)-associated protein and a potential serum marker for lung cancer 
detection. 
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PROJECT 4 
 
• Demonstrated that there is a subpopulation of MPM patients that may derive clinical benefit 

from oral dasatinib therapy. 
• MPM i s a very het erogeneic tumor.  M olecular p rofiling w ill b e necessary t o ul timately 

optimize targeted therapy in this disease. 
• Illustrated that higher baseline levels of p-Src Tyr419 is predictive for improved PFS with 

dasatinib. 
• Suggested that m odulation of  p -SrcTyr419 is a reasonable phar macodynamic marker for 

dasatinib treatment.  
• Proven that the infrastructure from t his novel clinical is feasible and has the potential to 

advance the field of MPM in personalized medicine.  
• Collected, bank ed, and characterized MPM t umor t issue from 10 pa tients enrolled i n t he 

clinical t rial w ho un derwent v ideo-assisted t horacoscopy ( VAT) and ex trapeural 
pneumonectomy (EPP). 

• Constructed a MPM tissue microarray (TMA) containing 76 surgically resected tumor cases. 
• Examined the expression of total Src and p-Src (Tyr 416), as well as Ki67, by IHC in nearly 

100 MPM tissue samples obtained from patients enrolled in the dasatinib clinical trial.   
 
PROJECT 5 
 
• Optimized and validated QD-staining conditions for multiplexing three biomarkers, EGFR, E-

cadherin, and β-catenin, in both cell lines and FFPE tissues and developed a quantification 
method for QD signals using the CRi Nuance spectral system. 

• Completed staining and image acquisition of the three biomarkers in the 94 pairs of the 
NSCLC tissues by both IHC and QD-IHF methods. 

• Investigated anot her si gnal t ransduction pat hway asso ciated with C XCR4.  C urrent s tudy 
reveals that cellular localization of CXCR4 may correlate to EMT, which has been suggested 
to be an indicator for resistance to EGFR TKIs.  A QD-IHF system for detection and 
quantification of the relevant biomarkers is under development.  

 
PATHOLOGY CORE 
 
• Collected p rospective f rozen t issue sp ecimens from 165 NSCLC and 12 MPM ca ses, 

including 38 NSCLC cases treated with neo-adjuvant chemotherapy.  
• Completed t he co llection of  300 NSCLC t issues originally established f or t he ent ire gr ant 

period. 
• Maintained a N SCLC and MPM cell l ine repository, and m anaged the distribution of 

specimens for molecular profiling in collaboration with PROSPECT Projects 1 and 4. 
• Distributed nucleic acids (DNA and RNA) and tissue for protein analyses from large series of 

NSCLC and MPM tumor specimens with annotated clinicopathological information f or 
molecular profiling.  

• Collected, processed, and anal yzed o ver 300  MPM t umor t issue specimens from pa tients 
enrolled in the dasatinib clinical trial in collaboration with Project 4. 

• Contributed to t he pu blication and su bmission o f 5 m anuscripts and 5 abst racts 
presentations in scientific meetings.  

 
BIOSTATISTICS AND DATA MANAGEMENT CORE 
 
• Continued to provide biostatistics and bioinformatics support for the PROSPECT project.  
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• Published collaborative papers from data collected in the PROSPECT project.  
• Published methodology papers in adaptive clinical trial design, analysis of drug combination 

studies, and high-throughput genomic data.  
• Developed a secured, web-based database application to assist the study conduct. 
• Continued with the database maintenance, training and support as followed: 

 Provide data integrity checking and data correction.  
 Database server maintenance and data back up are performed periodically. 
 Provide training and custom support to end users. 
 Query Generator has been added to allow for users to retrieve specific data of 

interest quickly.  This extensive t ool i s very us er friendly and al lows for v ery 
complex dat a se lection, so rting and sp ecific field or dering.  A fter a u ser has  
created a t emplate w ithin t he i nterface, t hey hav e t he opt ion of  sa ving this for 
later data retrieval through the query management options.  Once the data has 
been r etrieved, t he use r ca n ex port t his to e xcel f or further r eview a nd dat a 
manipulation. 

 The patient summary report was created with the SQL Server Reporting Services 
2005. 
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REPORTABLE OUTCOMES 

Publications (Attached in Appendix A) 
 
Byers LA, Sen B, Saigal B, Diao L, Wang J, Nanjundan M, Cascone T, Mills GB, Heymach JV, 
Johnson FM. Reciprocal regulation of c-Src and STAT3 in non-small cell lung cancer. Clinical 
Cancer Research. 2009 Nov 15;15(22):6852-61. PMID: 19861436.  
 
Gu X , Lee JJ . A si mulation st udy f or co mparing testing st atistics in r esponse-adaptive 
randomization. BMC Medical Research Methodology. 2010 Jun 5;10(1):48. PMID: 20525382. 
 
Huang D H, P eng H X, Su L,  Wang D S, K huri FR , S hin D M, C hen Z( G). Optimization and  
Comparison of Multiplexed Q uantum Dot Immunohistofluorescence. Nano Research. 3:61-68, 
2010. 
 
Kim W Y, Perera S , Zhou B , Carretero J , Yeh JJ, Heathcote S A, Jackson A L, Nikolinakos P, 
Ospina B , Naumov G, Brandstetter K A, Weigman V J, Zaghlul S , Hayes DN, Padera R F, 
Heymach JV , Kung AL , Sharpless NE, Kaelin WG Jr , Wong K K. HIF2alpha co operates with 
RAS t o pr omote l ung t umorigenesis in m ice. Journal of Clinical Investigation. 2009 
Aug;119(8):2160-70. PMCID: PMC2719950. 
 
Kong M, Lee JJ. Applying Emax Model and Bivariate Thin Plate Splines to Assess Drug 
Interactions. Frontiers in Bioscience. E2, 279-292, January 1, 2010. 
 
Lee JJ,  Li n H Y, Li u D D, K ong M . E max m odel and i nteraction i ndex f or asse ssing d rug 
interaction in combination studies. Frontiers in Bioscience. E2, 582-601, January 1, 2010. 
 
Solis LM, B ehrens C, Dong W, S uraokar M , O zburn N , M oran C , Corvalan A H, B iswal S , 
Swisher SG, Bekele BN, Minna JD , S tewart DJ, Wistuba I I. Nrf2 and K eap1 abnor malities in 
non-small ce ll lung ca rcinoma and asso ciation w ith cl inicopathologic features. Clinical Cancer 
Research. 2010 Jun 9. [Epub ahead of print]. PMID: 20534738.  
 
Takeyama Y, Sato M, Horio M, Hase T, Yoshida K, Yokoyama T, Nakashima H, Hashimoto N, 
Sekido Y , Gazdar A F, Minna JD , Kondo M , Hasegawa Y . Knockdown o f ZE B1, a  m aster 
epithelial-to-mesenchymal t ransition ( EMT) g ene, su ppresses anchorage-independent ce ll 
growth o f l ung ca ncer cells. Cancer Letters. 2010 M ay 6.  [ Epub ah ead o f pr int]. PMID: 
20452118. 
 
Tsuta K , Raso MG, Kalhor N , Liu DD, Wistuba I I, Moran CA. Histologic features of low- and 
intermediate-grade neuroendocrine ca rcinoma ( typical and  at ypical ca rcinoid t umors) o f the 
lung. Lung Cancer. 2010 May 10. [Epub ahead of print]. PMID: 20462655. 
 
Wang J, Wen S, Symmans WF, Pusztai L, Coombes KR. The bimodality index: a cr iterion for 
discovering and ranking bimodal signatures from cancer gene expression profiling data. Cancer 
Informatics. 2009 Aug 5;7:199-216. PMCID: PMC2730180.  
 
Xu L, Nilsson MB, Saintigny P, Cascone T, Herynk MH, Du Z, Nikolinakos PG, Yang Y, Prudkin 
L, Liu D, Lee JJ, Johnson FM, Wong KK, Girard L, Gazdar AF, Minna JD, Kurie JM, Wistuba II, 
Heymach JV. Epidermal growth factor receptor regulates MET levels and invasiveness through 
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hypoxia-inducible f actor-1alpha i n non -small ce ll l ung ca ncer cells. Oncogene. 2010 M ay 
6;29(18):2616-27. PMID: 20154724.  
 
Yuan P, Kadara H, Behrens C, Tang X, Woods D, Solis LM, Huang J, Spinola M, Dong W, Yin 
G, Fu jimoto J , K im E , X ie Y , G irard L,  M oran C , H ong WK, M inna JD , Wistuba I I. Sex 
determining region Y-Box 2 ( SOX2) i s a po tential ce ll-lineage gene hi ghly ex pressed i n t he 
pathogenesis of squamous cell carcinomas of the lung. PLoS One. 2010 Feb 9;5(2):e9112. 
PMCID: PMC2817751. 
 
Manuscripts submitted, in revision, or in review (Attached in Appendix A) 
 
Cascone T, Herynk MH, Du D, Kadara H, Oborn CJ, Nilsson M, Park YY, Lee JS, Ciardiello F, 
Langley RR, Heymach JV.  A role for stromal EGFR activation in resistance to VEGF blockade 
in human non-small cell lung cancer (NSCLC) xenograft models.  Submitted to Journal of 
Clinical Investigation. 
 
Nunez MI, Behrens C, Woods DM, Lin H, Suraokar M, Kadara H, Minna JD, Hofstetter W, 
Kalhor N , H ong WK, L ee JJ, Fr anklin W, S tewart D J, Wistuba II. High ex pression o f folate 
receptor al pha i n l ung cancer co rrelates with adenocarcinoma hi stology and E GFR m utation. 
Submitted to Clinical Cancer Research. 
 
Xie Y, Xiao G, Coombes KR, Behrens C, Solis L, Raso G, Girard L, Erickson H, Pan X, Roth J, 
Danenberg K , M inna J D, Wistuba I I. Robust g ene expression signature f rom f ormalin-fixed 
paraffin-embedded sa mples predicts prognosis of non -small-cell l ung ca ncer pat ients. 
Submitted to Journal of Clinical Oncology. 
 
Yang F, Tang X, Behrens C, Varella-Garcia M, Byers LA, Nilsson MB, Lin HY, Wang J, Raso 
MG, Girard L, Coombes K, Lee JJ, Herbst RS, Minna JD, Heymach JV, Wistuba II. VEGFR2 
gene copy g ain i s predictive of  shorter overall su rvival i n nscl c patients treated w ith platinum 
adjuvant chemotherapy. Submitted to Journal of Clinical Oncology. 
 
Abstracts (Attached in Appendix A) 
 
Byers LA, Wang J, Yordy J, Fan Y-H, Giri U, Shen L, Wistuba I, Girard L, Coombes K, 
Weinstein J, Minna JD and Heymach JV (2010) Identification of signaling pathways active in 
small cell lung cancer (SCLC) compared to non-small cell lung cancer (NSCLC) by proteomic  
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CONCLUSIONS 

PROJECT 1: Protein and gene expression profiling of a large number of cell lines has allowed 
us to i dentify a p rognostic EGFR dependen t si gnature as  w ell as key si gnaling m olecules in 
NSCLC ( MACC1) and SCLC ( PARP) t hat w ere hi ghly upr egulated i n t hose t umor types.  
Further characterization o f t hese proteins will identify t heir role in t he development o f cancer.  
Also, as in the case with PARP, investigation into the inhibition of these targets may prove to be 
an ef fective st rategy f or t he t reatment o f t hese di seases.  We dev eloped an E MT g ene 
expression signature that classified cell lines into epithelial- or mesenchymal-like group in 
NSCLC and H NC.  This si gnature w as able t o predict response t o er lotinib i n ce ll l ines and 
EGFR/KRAS wild-type patients.  A dditionally, a novel EMT marker, Axl, was identified through 
this analysis and may play an important role in the transformation of these tumors as well serve 
as a potential therapeutic target.  These profiles will allow for multiple biomarker analysis and 
the identification of intracellular signaling pathways that contribute to the sensitivity or resistance 
to therapeutics.  Our findings will be further validated by correlating these gene expression and 
proteomic profiles of tumor samples with clinical outcomes in samples from the BATTLE-1 trial.  
Development of predictive markers will assist in guiding treatment selection as well as identify 
new targets in lung cancer. 
 
PROJECT 2: During t his project per iod, w e hav e co mpleted co llection o f the pl anned 
specimens ahead of schedule and have made good progress on pr eliminary assessment of 
these specimens. Molecular profiles will be generated from these specimens and correlated with 
patient outcomes and resistance to chemotherapy.  
 
PROJECT 3: During t he t hird y ear, w e reached t he goal o f molecular pr ofiling ch emo-naïve 
surgically r esected N SCLCs from pat ients who r eceived and di d not  r eceive adj uvant 
chemotherapy. Also, we have completed similar profiling in MPM tissue and cell line specimens, 
devised g ene ex pression si gnatures associated w ith M PM pat ients’ ou tcome, and i dentified 
novel potential molecular t argets. I n addi tion, we have characterized two novel markers (Nrf2 
and KDR) associated with response to platinum-based adjuvant chemotherapy in NSCLC. 
 
PROJECT 4: There i s preliminary ev idence t hat a subgroup o f M PM pat ients gain cl inical 
benefit from dasatinib therapy and t hat baseline p-Src Tyr419 levels in MPM tumor tissue may 
be predictive of TTP.  This is the first targeted therapy neoadjuvant trial to potentially identify a 
predictive biomarker in MPM. 
 
PROJECT 5: In t he pas t year, we optimized an d validated a quantification st rategy for u sing 
QD-based IHF.  These studies were summarized in a publication in Nano Research this year, 
providing a so lid foundation for analyzing biomarker expressions in NSCLC tissues. In the past 
year, we have completed the immunostaining o f t hree biomarkers, EGFR, E -cadherin, and β-
catenin, in 94 pairs of patient tissue samples using this strategy. Images of these analyses were 
acquired and quantification of marker expression has been completed. More statistical analysis 
will lead to an important answer as to whether quantification of multiplex biomarkers by QD-IHF 
can pr ovide m ore accu rate co rrelation t o pat ient’s prognosis and t he other r elevant cl inical 
information t han a si gnal bi omarker anal ysis.  In addi tion, w e hav e i dentified l ocalization of  
CXCR4 as a potential indicator for EMT as well as resistance to EGFR targeting.  Development 
of a QD-IHF-based system to quantify CXCR4 localization and i ts correlation with EMT marker 
E-cadherin and other relevant biomarkers is the current focus of the project.  Building of findings 
from t he first se t o f bi omarkers, this project i s moving f orward t o i dentify t he best  m arker 
combination to identify patients who may be resistant to EGFR-targeting therapy.  
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PATHOLOGY CORE: During the third grant year, the PROSPECT Pathology Core has 
achieved and exceeded its goals by prospectively collecting frozen tissue specimens from 165 
NSCLC and  12 MPM cases, i ncluding 38 N SCLC ca ses treated with neo -adjuvant 
chemotherapy. The Pathology Core has played an important role in the processing of NSCLC 
and M PM t issue and ce ll l ine specimens for comprehensive m olecular profiling, and i n the 
characterization of  tissue sp ecimens on the ex pression of  p rotein ex pression by 
immunohistochemistry. 

 
BIOSTATISTICS AND DATA MANAGEMENT CORE: In co llaboration w ith cl inical 
investigators, research nurses, Pathology Core, and basic scientists, the Biostatistics and Data 
Management Core has continued to deliver the biostatistics and data management support as 
proposed.   
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Cancer Therapy: Preclinical

Reciprocal Regulation of c-Src and STAT3 in Non-Small

Cell Lung Cancer

Lauren Averett Byers,1,2 Banibrata Sen,2 Babita Saigal,2 Lixia Diao,3 Jing Wang,3

Meera Nanjundan,7 Tina Cascone,2 Gordon B. Mills,4,6 John V. Heymach,2,5

and Faye M. Johnson2,6

Abstract Purpose: Signal transducer and activator of transcription-3 (STAT3) is downstream of

growth factor and cytokine receptors, and regulates key oncogenic pathways in non–

small cell lung cancer (NSCLC). Activation of STAT3 by cellular Src (c-Src) promotes

tumor progression. We hypothesized that c-Src inhibition could activate STAT3 by in-

ducing a homeostatic feedback loop, contributing to c-Src inhibitor resistance.

Experimental Design: The effects of c-Src inhibition on total and phosphorylated STAT3

were measured in NSCLC cell lines and in murine xenograft models by Western blot-

ting. c-Src and STAT3 activity as indicated by phosphorylation was determined in 46

human tumors and paired normal lung by reverse phase protein array. Modulation

of dasatinib (c-Src inhibitor) cytotoxicity by STAT3 knockdown was measured by

MTT, cell cycle, and apoptosis assays.

Results: Depletion of c-Src by small interfering RNA or sustained inhibition by dasatinib

increased pSTAT3, which could be blocked by inhibition of JAK. Similarly, in vivo
pSTAT3 levels initially decreased but were strongly induced after sustained dasatinib

treatment. In human tumors, phosphorylation of the autoinhibitory site of c-Src (Y527)

correlated with STAT3 phosphorylation (r = 0.64; P = 2.5 × 10-6). STAT3 knockdown

enhanced the cytotoxicity of dasatinib.

Conclusions: c-Src inhibition leads to JAK-dependent STAT3 activation in vitro and

in vivo. STAT3 knockdown enhances the cytotoxicity of dasatinib, suggesting a

compensatory pathway that allows NSCLC survival. Data from human tumors

showed a reciprocal regulation of c-Src and STAT3 activation, suggesting that this

compensatory pathway functions in human NSCLC. These results provide a rationale

for combining c-Src and STAT3 inhibition to improve clinical responses. (Clin Cancer

Res 2009;15(22):6852–61)

Lung cancer accounts for 29% of all cancer deaths in the United
States, with a 5-year overall survival rate of 15% for all stages
(1). Although chemotherapy remains the standard treatment
for advanced or metastatic non–small cell lung cancer
(NSCLC), response rates do not exceed 35% with frontline ther-
apies and are even lower in the second-line setting (2). Improv-
ing our understanding of the signaling pathways that drive
tumor behavior is essential for improving clinical outcomes.

One potential therapeutic target in NSCLC for which clinical in-
hibitors have been developed is cellular Src (c-Src; ref. 3). The
Src family consists of nonreceptor tyrosine kinases involved in
signal transduction in both normal and cancer cells (4). c-Src is
the best characterized and most often involved in cancer pro-
gression. c-Src overexpression has been shown in multiple tu-
mor types, in which its activation correlates with shorter
survival (reviewed in ref. 3). In NSCLC, c-Src is expressed and
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activated in both adenocarcinomas and squamous cell carcino-
mas (5, 6).
c-Src participates in several normal cellular functions during

development and adulthood, including cell cycle progression,
immune recognition, adhesion, spreading, migration, apoptosis
regulation, and differentiation (reviewed in refs. 3, 7). In cancer
cells, constitutive activation of c-Src disregulates many of these
processes. Inhibition of c-Src activity using both molecular
approaches and pharmacologic inhibitors in multiple cancer
cell types has been found to lead to reduced anchorage-
independent growth (8), decreased proliferation (9), cell cycle
arrest (10), decreased tumor growth in vivo (11, 12), apoptosis
(9), increased susceptibility to anoikis (13), diminished in vitro
invasion and migration (14, 15), decreased in vivo metastasis
(12, 16), and decreased in vivo vascularity (17). In NSCLC spe-
cifically, c-Src inhibition leads to decreased hypoxia-induced
vascular endothelial growth factor expression (18). Inhibition
of c-Src with a pharmacologic inhibitor (dasatinib) leads to
profound and universal in vitro inhibition of migration and in-
vasion of NSCLC cells. However, its effect on viability and pro-
liferation is more variable and occurs at concentrations of
dasatinib that are near or above the peak plasma concentrations
possible in humans (14).
c-Src has multiple downstream substrates that mediate its bi-

ological functions in cancer cells. The interaction between c-Src
and its substrate focal adhesion kinase (FAK) is essential for nor-
mal cell migration and invasion (19). c-Src also regulates down-
stream proliferation induced by growth factor receptors.
Following activation by growth factor receptors, c-Src promotes
survival via phosphorylation of the p85 subunit of phosphatidy-
linositide 3 kinase (PI3K) and thus the AKT pathway, signal
transducer and activator of transcription-3 (STAT3), STAT5,
and Shc, and thus the Ras/mitogen-activated protein kinase path-
way (13, 20, 21). The STAT family of transcription factors, espe-
cially STAT3, regulates oncogenic signaling in many different
tumor types (22). Indeed STAT3 is required for viral Src-
mediated transformation (23). STAT3 can be activated by
growth factor receptors or cytokine receptors, usually via non-

receptor tyrosine kinases such as c-Src or janus-activated kinase
(JAK) proteins. STAT3 activation leads to the increased expres-
sion of downstream targets (e.g., Bcl-XL, cyclin D1, survivin)
and increased cell survival, proliferation, and tumor growth
in vivo (24). Inhibition of STAT3 results in increased apoptosis,
decreased proliferation, and decreased tumor size (25, 26).
STAT3 activation can also contribute to angiogenesis (27).
Hypoxia-induced vascular endothelial growth factor expression
is dependent on c-Src activation; this activation of c-Src leads to
the downstream activation of STAT3, which binds to the vascu-
lar endothelial growth factor promoter with hypoxia-inducible
factor-1α (HIF-1α).
Although targeting growth factors and signal transduction

pathways is a successful strategy in several tumor types, feed-
back and parallel signaling pathways can limit the efficacy of
this approach. Despite c-Src expression in epithelial tumors, in-
cluding NSCLC, and robust inhibition of c-Src with clinically
relevant agents (e.g., dasatinib), the effect of c-Src inhibition
on cell survival and proliferation has been modest (14). Defin-
ing mechanisms that limit the cytotoxic effects of c-Src inhibi-
tors may result in the development of combinations of
therapeutic agents for NSCLC that inhibit metastasis and en-
hance cytotoxicity. Because c-Src mediates its effects on cancer
cell survival and proliferation via diverse substrates, including
STATs, in this study we tested our hypothesis that STAT3 may
not be inhibited sufficiently by c-Src inhibition in NSCLC to
result in clinical effects. We determined that STAT3 was not
durably inhibited in NSCLC cell lines and xenografts following
c-Src inhibition, making it a candidate pathway for resistance to
chemotherapy. Consistent with this result, we found that
depletion of STAT3 enhanced the cytotoxicity of c-Src inhibi-
tion. In addition, we observed an inverse correlation between
c-Src and STAT3 activation levels in untreated primary lung
tumors by reverse-phase protein array. The results of these
studies support a model in which c-Src and STAT3 are recipro-
cally regulated in NSCLC tumors, allowing for cancer cell
survival following c-Src inhibition.

Materials and Methods

Pharmacologic inhibitors. Dasatinib for in vitro studies was provided
by Bristol-Myers Squibb and was prepared as a 10 mmol/L stock solu-
tion in DMSO. Dasatinib for animal studies was purchased from The
University of Texas M. D. Anderson Cancer Center pharmacy. Pyridone
6 was purchased from Calbiochem.
Cell line selection and culture. Human NSCLC cell lines A549 and

H226 were obtained from the American Type Culture Collection.
H1299, H2009, and H1792 were gifts from Dr. John Minna (Hamon
Center for Therapeutic Oncology Research, University of Texas South-
western Medical Center, Dallas, Texas). Cell lines with wild-type epider-
mal growth factor receptors (EGFR) were selected for these studies
because EGFR mutations can profoundly affect the response of NSCLC
to c-Src inhibition. Three KRAS mutant cell lines were included (A549,
H2009, and H1792) because this mutation is common in patients with
NSCLC. Cells were grown in monolayer cultures in RPMI 1640 medium
containing 10% fetal bovine serum (A549, H226, H1299, andH1792) or
RPMI 1640 medium supplemented with hydrocortisone, insulin, trans-
ferrin, estadiol, and selenium (HITES) containing 5% fetal bovine serum
(H2009) at 37°C in a humidified atmosphere of 95% air and 5% CO2.
Western blot analysis. Western blot analysis was done to measure

protein expression and phosphorylation at 30 min and 7 h after inhi-
bition or specific knockdown of c-Src, STAT3, and/or JAK. Protein levels
in treated cells were compared with those in untreated cells at these

Translational Relevance

Cellular Src (c-Src) inhibitors represent an exciting

new class of targeted drugs that have shown clinical

activity in several disease types. However, despite

the fact that c-Src overexpression and activation

are associated with worse prognosis in non–small

cell lung cancer (NSCLC) and c-Src inhibition leads

to a universal and profound inhibition of NSCLC in-

vasion, the cytotoxic effects of c-Src inhibition are

variable. Understanding the mechanisms of resis-

tance to these drugs is of critical importance so that

they can be used most effectively. In these studies,

we show that sustained c-Src-inhibition in NSCLC

leads to phosphorylation of its downstream target

STAT3 and that knockdown of STAT3 increases cyto-

toxicity induced by c-Src inhibition. These findings

support assessment of combinations of drugs that

inhibit STAT3, such as JAK kinase inhibitors, with

c-Src inhibitors in NSCLC.
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same times to control for the effect of confluence or vehicle effects on
STAT3 activation. Antibodies used in the Western blot analysis included
c-Src and pSTAT3 S727 (Santa Cruz Biotechnology); pSrc Y419, pSTAT3
Y705, STAT3, pFAK Y861, Lyn, Yes, Bcl-XL, survivin, and STAT5 (Cell
Signaling Technology); and β-actin (Sigma Chemical Company).
For the Western blot analysis, cells were rinsed and lysed as previously

described (28). Equal protein aliquots from cleared lysates were
resolved by SDS-PAGE, transferred to nitrocellulose membranes,
immunoblotted with primary antibody, and detected with horseradish
peroxidase–conjugated secondary antibody (Bio-Rad Laboratories) and
enhanced chemiluminescence reagent (Amersham Biosciences).
Transfection with small interfering RNA. To knock down STAT3, the

NSCLC cells were harvested, washed, and suspended at a density of
1 million cells/100 μL of Nucleofector-V solution (Amaxa Corp.). Small
interfering RNA (siRNA; 200 pmol/100 μL) was added to the cell sus-
pension and electroporated using the U-31 Nucleofector program
(Amaxa). Immediately after electroporation, 500 μL of prewarmed
RPMI medium were added to the cuvette, and the cells were transferred
to 6-well plates. The medium was changed after 16 h. STAT3 and c-Src
siRNA were predesigned by siGenome Smartpool (Dharmacon, Inc., a
part of Thermo Fisher Scientific) and obtained from Ambion. Controls
included cells that were mock-transfected (i.e., without siRNA) and
those transfected with a nontargeting (scrambled) siRNA.
MTT, cell cycle, and apoptosis assays. The MTT assay was used to as-

sess cytotoxicity as previously described (28). For each cell line, eight
wells were treated with 0, 1, 2, 4, or 8 μmol/L dasatinib and the IC50.
Cell cycle analysis was done as described previously (29). Briefly, cells
were fixed and stained with propidium iodide. DNA content was ana-
lyzed by fluorescence-activated cell sorting analysis (Becton Dickinson)
using ModFit software (Verity Software House). Apoptosis was mea-
sured using terminal deoxynucleotidyl transferase biotin-dUTP nick-
end labeling staining using the manufacturer's protocol (APO-BRDU
kit, Phoenix Flow Systems) as described previously (30). Briefly,
fixed cells were incubated with terminal deoxynucleotidyl transferase
and Br-dUTP and subsequently incubated with a fluorescein-labeled
anti–Br-dUTP antibody and analyzed by fluorescence-activated cell
sorting analysis.
Xenograft nude mouse models. All animal procedures were done in

accordance with the policies of M.D. Anderson's Institutional Animal
Care and Use Committee. Ten female Swiss nu/nu strain, 6-week-old
mice were used for each xenograft model. Each athymic nude mouse
was injected s.c. with 4 million A549 or H226. When visible tumors
had developed, dasatinib was administered by oral gavage at a dose
of 20 mg/kg/d for 5 d. The mice were euthanized 2 h after the last dose
of dasatinib, tumors were dissected, and the mice were examined for
distant metastases. The tumors were homogenized and subjected to
Western blotting as previously described (30).
Human NSCLC Tumors. Forty-six paired normal lung and NSCLC

tumor samples were obtained from surgical specimens in the M. D. An-
derson Cancer Center Thoracic Tissue Bank (Table 1). Of the tumors, 22
were squamous cell carcinomas and 24 were adenocarcinomas. The me-
dian age of the patients from whom the tumors had been excised was
67 y (range, 48-81 y); 22 (48%) were women, and 44 (96%) were for-
mer or current smokers. Six (13%) patients had stage IA cancer, 14
(30%) stage IB, 2 (4%) stage IIA, 13 (28%) stage IIB, 3 (7%) stage IIIA,
6 (13%) stage IIIB, and 2 (4%) stage IV.
Reverse-phase protein array. Protein lysate was prepared from pellets

from tumor tissues as previously described (31). Briefly, lysis buffer [1%
Triton X-100, 50 mmol/L HEPES (pH 7.4), 150 mmol/L NaCl,
1.5 mmol/L MgCl2, 1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L
NaPPi, 10% glycerol, 1 mmol/L phenylmethylsulfonyl fluoride,
1 mmol/L Na3VO4, and 10 μg/mL aprotinin] was added to the samples,
followed by microcentrifugation at 14,000 rpm for 10 min. Clear super-
natants were collected, followed by protein quantitation using the BCA
reaction kit (Pierce Biotechnology, Inc.). The cell lysate was mixed with
SDS sample buffer without bromophenol blue [three parts cell lysate
plus one part 4× SDS sample buffer, which contained 35% glycerol,

8% SDS, 0.25 mol/L Tris-HCl (pH 6.8)]. Before using the cell lysate,
10% β-mercaptoethanol was added. The samples were boiled for
5 min. Then, the samples (each in duplicate) were serially diluted
(1:2-1:16) with SDS sample buffer. To each of the diluted samples an
equal amount of 80% glycerol/2× PBS solution (8 mL of glycerol mixed
with 2 mL of 10× PBS without Ca2+ and Mg2+) was added, after which
the diluted samples were transferred to 384-well plates. Reverse-phase
protein arrays (RPPA)were produced and analyzed as described (52), with
slight modifications. Protein arrays were printed on nitrocellulose-coated
glass FAST Slides (Schleicher & Schuell BioScience Inc.) by a Gene-
TAC G3 arrayer (Genomic Solutions) with 48 200-μm-diameter
pins arranged in a 4 × 12 format. Forty-eight grids were printed
at each slide with each grid containing 24 dots. Protein dots were
printed in duplicate with five concentrations. Arrays were produced in
batches of 15, and occasional low-quality arrays (e.g., with many spot
dropouts) were discarded.
Antibody staining of each array was done using an automated Bio-

Genex autostainer. Briefly, each array was incubated with a specific pri-
mary antibody: pSrc Y527, pSTAT3 Y705, pSrc Y416 (which binds the
pSrc Y419 activation site in humans), pFAK Y576, p-p130Cas Y249,
and pPaxillin Y118; Cell Signaling); c-Src and STAT3 (Upstate). The sig-
nal was detected using the catalyzed signal amplification (CSA) system
according to the manufacturer's recommended procedure (DakoCyto-
mation California, Inc.). In brief, the RPPA slides were blocked for en-
dogenous peroxidase, avidin, and biotin protein activity with I-block
(Applied Biosystems) at room temperature for 15 min. After the block-
ing procedure, the slides were incubated with primary antibody and
secondary antibody and diluted in DAKO antibody diluent with a back-
ground-reducing compound at room temperature for 20 min each. The
slides were then incubated with streptavidin-biotin complex and
biotinyl-tyramide (for amplification) for 15 min each, streptavidin-
peroxidase for 15 min, and 3,3-diaminobenzidine tetrahydrochloride
chromogen for 5 min. Between steps, each slide was washed with TBS
containing 0.1% Tween-20 (TBST). Spot images were quantified using
imaging analysis with an HP Scanjet 8200 scanner (Hewlett Packard)
with a 256-shade gray scale at 600 dots per inch.
RPPA data processing and statistical analysis. RPPA data were quan-

tified using a SuperCurve method which detects changes in protein level
by Microvigene software (VigeneTech) and an R package developed
in-house (32). Briefly, the SuperCurve method generates a common
logistic curve by pooling data from all samples on the slide. Individ-
ual dilution series numbers for each sample are then mapped onto
the SuperCurve for quantification. After quantification, data were
logarithm-transformed (base 2) for further processing and analyses.
Then median-control normalization was applied on the dataset. The
statistical analyses were done using R (version 2.7.0). All samples were
done in duplicate, and average values were used for analysis. Two sam-
ple t-tests were used to compare protein levels between normal and tu-
mor tissue; Pearson correlations were used to analyze the association
between protein levels in the samples. In all analyses, P ≤0.05 was con-
sidered significant.

Results

c-Src inhibition fails to durably inhibit STAT3 in NSCLC cell
lines. Western blot analysis of five NSCLC cell lines showed
that c-Src phosphorylation was rapidly (30 minutes) and dura-
bly (7 hours) inhibited at a site essential for c-Src activation
(pSrc Y419 in human c-Src; Fig. 1A). Total c-Src levels were
not changed by dasatinib treatment. In contrast to pSrc Y419,
in which inhibition was prolonged, STAT3 activation (as shown
by pSTAT3 Y705 levels) was transiently inhibited at 30 minutes
in A549 and H226 (0.60 and 0.57 times the control value, re-
spectively), followed by reactivation by 7 hours (1.25 and 1.18
times control). In H2009, H1299, and H1792 activation was
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seen beginning at 30 minutes (range, 1.20-1.78 times control)
and persisted at 7 hours (1.19-1.63 times control; Fig. 1B).
c-Src inhibition leads to initial STAT3 inhibition then reactiva-

tion in vivo. After 1, 5, or 7 hours and after 5 days of dasatinib
treatment, tumors from mouse xenografts of NSCLC cells were
grossly dissected and examined by immunohistochemistry. Tu-
mors were confirmed to consist primarily of NSCLC cells
(>90%) with no distant metastases (data not shown). Protein
expression and phosphorylation were then measured by West-
ern blot analysis and compared with control (vehicle-treated

mice sacrificed at 7 hours or 5 days; Fig. 2). As expected, dasa-
tinib treatment resulted in pSrc Y419 inhibition at all times. In
A549 xenografts, pFAK inhibition was seen beginning at 5
hours. In contrast, but consistent with the in vitro data, pSTAT3
Y705 was inhibited at early times (0.58-fold at 5 hours after
treatment) but was strongly induced by 7 hours (3.1-fold).
pSTAT3 Y705 levels returned to baseline after 5 days of contin-
uous daily treatment. Unlike the in vitro studies, the in vivo
studies showed that total STAT3 levels were also elevated at 7
hours after treatment but were not significantly different from

Table 1. Clinicopathologic characteristics of patients included in RPPA analysis of NSCLC tumors

Specimen
number

Histology Age at
surgery, y

Gender Race Smoking
status

T
stage

N
stage

M
stage

Overall
stage

700 SQ 79 M Caucasian Former T2 N1 M0 IIB
708 SQ 61 F African

American
Never T2 N1 M0 IIB

719 SQ 76 M Caucasian Former T2 N0 M0 IB
720 SQ 67 F Caucasian Current T1 N1 M0 IIA
739 AD 76 F Caucasian Former T2 N2 M1 IV
746 AD 67 F Caucasian Former T4 N0 M0 IIIB
759 AD 60 M Caucasian Current T2 N2 M0 IIIB
763 AD 60 F Caucasian Current T2 N2 M0 IIIA
764 AD 67 F Caucasian Current T2 N0 M0 IB
767 AD 53 F African

American
Current T1 N2 M0 IIIA

771 SQ 67 M Caucasian Former T2 N1 M0 IIB
773 AD 77 F Caucasian Former T4 N2 M1 IV
774 SQ 67 M African

American
Former T4 N2 M0 IIIB

781 SQ 80 F Caucasian Former T1 N0 M0 IA
782 AD 67 M Caucasian Former T4 N0 M0 IIIB
786 SQ 81 M Caucasian Former T2 N1 M0 IIB
795 AD 64 M Caucasian Never T1 N0 M0 IA
799 SQ 61 F Caucasian Current T2 N0 M0 IB
801 AD 63 F Caucasian Current T2 N1 M0 IIB
803 AD 65 F African

American
Current T2 N1 M0 IIB

804 SQ 77 M Caucasian Former T2 N0 M0 IB
811 SQ 62 M Caucasian Current T2 N1 M0 IIB
813 SQ 70 M Caucasian Current T4 N0 M0 IIIB
816 AD 73 M Caucasian Former T2 N0 M0 IB
833 AD 72 M Caucasian Current T1 N0 M0 IA
844 SQ 67 M Caucasian Former T2 N1 M0 IB
847 AD 60 F Caucasian Current T2 N0 M0 IB
848 AD 48 F Caucasian Current T2 N0 M0 IB
849 AD 57 M Caucasian Current T1 N1 M0 IIA
852 SQ 67 M Caucasian Current T2 N0 M0 IB
857 SQ 71 M Caucasian Current T2 N0 M0 IB
870 SQ 53 M Caucasian Current T2 N1 M0 IIB
877 AD 68 M Caucasian Former T2 N1 M0 IIB
879 SQ 67 M Caucasian Current T2 N1 M0 IIB
883 AD 58 F Caucasian Former T2 N1 M0 IIB
884 AD 70 F Caucasian Former T1 N0 M0 IA
890 AD 68 M Caucasian Former T2 N0 M0 IB
896 AD 49 F Caucasian Current T1 N0 M0 IA
899 AD 65 F Caucasian Current T1 N0 M0 IA
905 SQ 80 M Caucasian Former T2 N1 M0 IIB
910 AD 74 F Caucasian Former T2 N0 M0 IB
911 SQ 65 F Caucasian Former T2 N0 M0 IB
913 SQ 61 M Caucasian Former T2 N2 M0 IIIA
920 AD 54 F Caucasian Current T2 N0 M0 IB
930 SQ 66 M Caucasian Former T2 N1 M0 IIB
931 SQ 71 F Caucasian Current T4 N0 M0 IIIB

Abbrevations: AD, adenocarcinoma; SQ, squamous cell carcinoma.
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control levels. In H226 xenografts, pSTAT3 Y705 was inhibited
between 5 and 7 hours (0.32- and 0.44-fold at 5 and 7 hours,
respectively), but rose above baseline by 5 days (1.7-fold).
c-Src depletion leads to STAT3 activation. To determine

whether STAT3 reactivation was downstream of c-Src and not
caused by an off-target effect of dasatinib, we examined the effect
of c-Src depletion by siRNA at 72 and 96 hours in the NSCLC cell
lines A549 and H226. Cell lines were transfected with either
scrambled siRNA or c-Src–specific siRNA. In A549 cells, c-Src
knockdowndecreased total and activated c-Src levels but increased
pSTAT3 Y705 by 6.7- and 7.2-fold at 72 and 96 hours, respectively
(Fig. 3). In H226 cells, total and activated c-Src levels were sup-
pressed at both time points; pSTAT Y705 was strongly induced
by 72 hours (3.5-fold) and returned near baseline by 96 hours
(1.5-fold; Fig. 3). Other Src family members, such as Yes and
Lyn, were not affected by c-Src knockdown in either cell line.
STAT3 reactivation is JAK-dependent. To determine whether

STAT3 reactivation was mediated by JAK proteins, we tested the
effect of JAK inhibition on STAT3 activation. NSCLC cell lines
were treated with the JAK inhibitor pyridone 6 alone and in
combination with dasatinib (Fig. 1A). JAK inhibition alone
had no effect on pSrc Y419 but led to complete inhibition of

pSTAT3 Y705 and its downstream targets survivin and Bcl-XL
at 7 hours. When combined with dasatinib, JAK inhibition by
pyridone 6 prevented STAT3 phosphorylation.
c-Src and STAT3 are reciprocally regulated in NSCLC patient

tumors. To evaluate the relationship between c-Src and
STAT3 in clinical samples, we used reverse-phase protein
array, due to its sensitivity and the small amount of protein
required, to quantify the levels of total and phosphorylated
Src and STAT3 as well as downstream targets of Src in paired
samples of NSCLC tumors and normal lung tissue. Paired
t-test of tumor and normal tissue from the same patients
showed significantly higher c-Src activity in tumors as illus-
trated by decreased levels of autophosphorylated and inactive
c-Src (pSrc Y527; P = 1.09 × 10-9) in tumor tissue as com-
pared with normal lung (Fig. 4A). In contrast, activated
STAT3 (pSTAT3 Y705) levels were significantly lower in tu-
mor tissue (P = 0.006; Fig. 4A).
Among the tumor specimens, there was a statistically signif-

icant correlation between levels of pSrc Y527 and pSTAT3 Y705,
with a Pearson correlation coefficient of 0.32 (P = 0.03;
Fig. 4B). This correlation was also seen when the ratio of pSrc
Y527 to total c-Src in tumors was compared with the ratio of

Fig. 1. c-Src inhibition fails to durably inhibit pSTAT3 Y705 in vitro. Activation of pSTAT3 Y705 following dasatinib treatment is inhibited by the addition
of the JAK inhibitor pyridone 6 (P6). A, NSCLC cells were incubated with 100 nmol/L dasatinib, 2.5 μmol/L pyridone 6, both drugs, or vehicle alone (control)
for the indicated times, lysed, and analyzed by Western blotting with the indicated antibodies. B, changes in pSTAT3 Y705 were quantified using
densitometry. pSTAT3 Y705 levels were normalized to total β-actin and the degree of change was measured between dasatinib-treated cells and control
cells corresponding to the same time point (30 min or 7 h).
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pSTAT3 Y705 to total STAT3 (r = 0.56; P = 5.25 × 10-5; Fig. 4B).
In addition, the decrease in pSrc Y527 from normal to tumor
correlated directly with the decease in pSTAT3 Y705 from nor-
mal to tumor tissue (r = 0.33; P = 0.03).
Downstream targets of Src (FAK, p130Cas, and paxillin) were

also evaluated by RPPA. As expected, activation of these targets
(as measured by phosphorylation) was inversely correlated
with pSTAT3 Y705 and pSrc Y527. Specifically, correlation coef-
ficients between pSTAT3 Y705 and phosphorylated FAK,
p130Cas, and paxillin were r = -0.50 (P = 0.0005), -0.30 (P =
0.04), and -0.42 (P = 0.004), respectively (Fig. 4C).
Despite testing several antibodies for RPPA, there is not yet a

validated antibody for this assay for the activated form of c-Src
(human pSrc Y419). However, using the best performing anti-
body available, we observed a 1.6-fold higher level of pSrc Y419
in tumors compared with normal tissue (P = 0.06). The ratio of
pSrc Y419 to total Src was also correlated with the ratio of
pSTAT3 Y705 to total STAT3, although this was not statistically
significant (P = 0.67).
Inhibition of STAT3 with siRNA enhances the cytotoxicity of

dasatinib. Because of its role in mediating survival and prolif-
eration, STAT3 induction following c-Src inhibition may repre-
sent a mechanism of drug resistance. To examine the biological
effects of STAT3 reactivation in NSCLC cells, we evaluated the
effect of STAT3 knockdown on cytotoxicity when combined
with dasatinib. A549 and H226 cells were transfected with
STAT3 siRNA, scrambled (nontargeting) siRNA, or mock-trans-
fected. A549 and H226 cells transfected with STAT3 siRNA
showed an 87% and 79% decrease in STAT3 protein levels (re-

spectively) at 48 hours after transfection with STAT3 siRNA as
compared with scrambled siRNA (Fig. 5A and B). To determine
the biological effect of c-Src inhibition combined with specific
depletion of STAT3, cells were treated with dasatinib 48 hours
after transfection. A MTT assay was then used to estimate the
number of living cells remaining after 72 hours of treatment.
Cells with depleted STAT3 were significantly more sensitive
to dasatinib than those transfected with scrambled siRNA. In
A549 cells, the IC50 values were 0.7 and 4 μmol/L in control
and STAT3 siRNA–transfected cells, respectively, for A549
(Fig. 5C), and 5 and 38 μmol/L for H226 (Fig. 5D). Unlike da-
satinib alone, the combination of STAT3 knockdown with dasa-
tinib strongly induced apoptosis in both cell lines (Fig. 5E).
Dasatinib alone induced cell cycle arrest in H226 cells, but this
was not significantly affected by the addition of STAT3 depletion.

Discussion

In this study, we found that c-Src and STAT3 activation, as
shown by phosphorylation status, were reciprocally regulated
in NSCLC cell lines, xenografts, and human tumors. Despite
an initial inhibition of STAT3 phosphorylation in the A549
and H226 models, prolonged c-Src inhibition resulted in an in-
crease in STAT3 phosphorylation in all NSCLC cell lines tested
both in vitro and in vivo. STAT3 reactivation was JAK-dependent,
as illustrated by the observation that reactivation was inhibited
by the addition of a JAK inhibitor, pyridone 6. Finally, we
showed that inhibition of STAT3 reactivation (by STAT3 siRNA)
enhanced the cytotoxicity of dasatinib, showing that this path-
way has biological significance. Taken together, these results
suggest that STAT3 reactivation may be an important mecha-
nism of resistance to c-Src inhibitors in NSCLC and may be a
clinically relevant target for combination therapy.
Previous studies have shown that c-Src is overexpressed in

NSCLC and that increased c-Src activity is associated with worse
clinical outcome. Clinical investigators are enthusiastic about
c-Src inhibitors because specific and potent kinase inhibitors
are well tolerated in humans (33). Two such approved anti-
cancer drugs, imatinib and erlotinib, use ATP-competitive kinase

Fig. 2. c-Src inhibition results in STAT3 reactivation in vivo. A549 and
H226 xenografts were treated daily with dasatinib at 20 mg/kg/d or with
vehicle. Tumors were lysed at the times shown and analyzed by Western
blotting with the indicated antibodies.

Fig. 3. c-Src depletion results in STAT3 reactivation in vitro. A549 and
H226 cells were transfected with c-Src–specific siRNA or nontargeting
(scrambled) siRNA. Control cells were mock-transfected. Cells were lysed at
72 h or 96 h and analyzed by Western blotting.
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inhibition to inhibit Bcr-Abl (34) and EGFR (35), respectively,
proving that kinase inhibition of signal transduction molecules
can lead to profound tumor responses. However, thus far c-Src
inhibitors have shown limited activity in NSCLC patients. Un-
derstanding the mechanisms of resistance to c-Src inhibition in
NSCLCwill be extremely important for understanding how these
drugs can be used more effectively in this disease.
In NSCLC, resistance to tyrosine kinase inhibitors, such as

those targeting EGFR, is often due to either activation of the
signaling pathway downstream to the drug target (e.g., k-Ras
mutations) or signaling through alternate pathways (e.g., c-Met;

refs. 36, 37). Therefore, because STAT3 activity is an important
downstream target of c-Src andnecessary for c-Src signal transduc-
tion, characterization of its relationship to c-Src activity and re-
sponse to c-Src inhibition was of particular interest. Interesting,
these studies did show reactivation of STAT3 in the setting of
c-Src inhibition. In cell lines from head and neck squamous cell
cancers (30), squamous cell carcinomaof the skin,8 andmesothe-
lioma (38), sustained c-Src inhibition also resulted in STAT3 re-
activation. This suggests that reciprocal c-Src-STAT3 regulation

Fig. 4. Phosphorylated c-Src, STAT3, and downstream Src targets were measured in paired normal lung and NSCLC tumor tissues from patients who
had previously undergone resection. A, tumors had higher mean c-Src activity, as indicated by decreased levels of inactive c-Src (pSrc Y527).
Conversely, mean activated STAT3 (pSTAT3 Y705) was lower in tumor tissue than in normal lung. B, levels of inactive c-Src (pSrc Y527) correlated
directly with activated STAT3 (pSTAT3 Y705) when analyzed as total levels of phosphorylated protein or ratio of phosphorylated protein to total protein.
C, levels of phosphorylated FAK, p130Cas, and paxillin were inversely correlated with pSTAT3 Y705.

8 Unpublished data.
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exists in multiple tumor types. However, this is the first study to
show reciprocal regulation of c-Src and STAT3 in patient tumors.
Three negative feedback loops regulate STAT function after

cytokine signaling: SH-2–containing phosphatases, which inac-
tivate JAK by dephosphorylation; protein inhibitors of activated
STAT, which are negative regulators of STAT-induced transcrip-
tion (i.e., downstream of STATs); and suppressors of cytokine
signaling, which inhibit JAK activity, facilitate proteosomal
degradation of JAK, and compete with STATs for binding to

cytokine receptors (39). Although there are no known positive
feedback loops leading to STAT3 activation after its inhibition,
loss of a negative feedback loop could play the same role. For
example, v-Abl leads to JAK/STAT activation via its disruption
of suppressor of cytokine signaling 1 function (SOCS-1) (40).
The concentration (100 nmol/L) of dasatinib was chosen

for these studies because it has been shown to completely
inhibit c-Src and is relatively specific (41). For example, in
intact cells, we observed ∼90% reduction in phosphorylated

Fig. 5. Depletion of STAT3 enhances cytotoxicity of dasatinib. A549 (A) and H226 (B) cells were transfected with STAT3-specific siRNA, scrambled siRNA,
or mock-transfected. Forty-eight hours after transfection, cells were treated with various concentrations of dasatinib. The number of viable A549 (C) and
H226 (D) cells after 72 h was evaluated by MTT assay. The percentage of cells in S phase and in apoptosis were then measured under the conditions shown.
The control sample was compared with each treatment group and significant differences (P < 0.05) are marked with an asterisk (E).
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c-Src with >40 nmol/L dasatinib.9 In patients treated with
dasatinib, plasma levels of approximately 400 nmol/L were
reached with sustained levels of 40 to 100 nmol/L (42, 43),
supporting the clinical relevance of our selected drug concentra-
tion. However, at these concentrations dasatinib also inhibits
Abl, PDGFR, Btk, and EphA2 (44, 45). To determine that STAT3
reactivation is downstream of c-Src specifically and not due to
an off-target effect of dasatinib, we showed that when c-Src was
depleted by siRNA, the levels of pSrc decreased significantly,
but pSTAT3 levels increased.
Although we showed an inverse correlation between c-Src

and STAT3 activity in human tumors, human NSCLC samples
were not available from the post-dasatinib setting to confirm a
reactivation of STAT3 in patients following c-Src inhibition.
Nevertheless, we believe that our in vitro and murine models
sufficiently support a rationale for combining c-Src and STAT
inhibition in the clinical setting. Three ATP-competitive c-Src
inhibitors are being studied in clinical trials: dasatinib,

AZD0530 (AstraZeneca), and SKI-606 (Wyeth). A non–ATP-
competitive c-Src inhibitor is also in clinical trial (Kinex phar-
maceuticals). Preclinical studies of c-Src inhibitor AZD0530
also showed a reactivation of STAT3 in A549 cells 24 hours
after treatment with this drug, further supporting that this
may be an important mechanism of resistance across this class
of drugs (46). Many JAK inhibitors are being studied in the
laboratory and several are in early clinical trial (47–50). Our
long-term goal is to use the results of these studies to design
clinical trials of these or other more specific c-Src and JAK
inhibitors, as available, to improve the survival of patients
with NSCLC.
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Abstract  

Background 

Response-adaptive randomizations are able to assign more patients in a comparative clinical trial 

to the tentatively better treatment. However, due to the adaptation in patient allocation, the samples 

to be compared are no longer independent. At large sample sizes, many asymptotic properties of 

test statistics derived for independent sample comparison are still applicable in adaptive 

randomization provided that the patient allocation ratio converges to an appropriate target 

asymptotically. However, the small sample properties of commonly used test statistics in 

response-adaptive randomization are not fully studied.  

Methods 

Simulations are systematically conducted to characterize the statistical properties of eight test 

statistics in six response-adaptive randomization methods at six allocation targets with sample 

sizes ranging from 20 to 200. Since adaptive randomization is usually not recommended for 

sample size less than 30, the present paper focuses on the case with a sample of 30 to give general 

recommendations with regard to test statistics for contingency tables in response-adaptive 

randomization at small sample sizes.  

Results 

Among all asymptotic test statistics, the Cook’s correction to chi-square test (TMC) is the best in 

attaining the nominal size of hypothesis test. The William’s correction to log-likelihood ratio test 

(TML) gives slightly inflated type I error and higher power as compared with TMC, but it is more 

robust against the unbalance in patient allocation. TMC and TML are usually the two test statistics 
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with the highest power in different simulation scenarios. When focusing on TMC and TML, the 

generalized drop-the-loser urn (GDL) and sequential estimation-adjusted urn (SEU) have the best 

ability to attain the correct size of hypothesis test respectively. Among all sequential methods that 

can target different allocation ratios, GDL has the lowest variation and the highest overall power at 

all allocation ratios. The performance of different adaptive randomization methods and test 

statistics also depends on allocation targets. At the limiting allocation ratio of drop-the-loser (DL) 

and randomized play-the-winner (RPW) urn, DL outperforms all other methods including GDL. 

When comparing the power of test statistics in the same randomization method but at different 

allocation targets, the powers of log-likelihood-ratio, log-relative-risk, log-odds-ratio, Wald-type 

Z, and chi-square test statistics are maximized at their corresponding optimal allocation ratios for 

power. Except for the optimal allocation target for log-relative-risk, the other four optimal targets 

could assign more patients to the worse arm in some simulation scenarios. Another optimal 

allocation target, RRSIHR, proposed by Rosenberger and Sriram (Journal of Statistical Planning and 

Inference, 1997) is aimed at minimizing the number of failures at fixed power using Wald-type Z 

test statistics. Among allocation ratios that always assign more patients to the better treatment, 

RRSIHR usually has less variation in patient allocation, and the values of variation are consistent 

across all simulation scenarios. Additionally, the patient allocation at RRSIHR is not too extreme. 

Therefore, RRSIHR provides a good balance between assigning more patients to the better treatment 

and maintaining the overall power. 

Conclusions 

The Cook’s correction to chi-square test and Williams’ correction to log-likelihood-ratio test are 

generally recommended for hypothesis test in response-adaptive randomization, especially when 
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sample sizes are small. The generalized drop-the-loser urn design is the recommended method for 

its good overall properties. Also recommended is the use of the RRSIHR allocation target.  
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Background  

The response-adaptive randomization (RAR) in clinical trials is a class of flexible ways of 

assigning treatment to new patients sequentially based on available data. The RAR adjusts the 

allocation probabilities to reflect the interim results of the trial, thereby allowing patients to benefit 

from the interim knowledge as it accumulates in the trial. In practice, unequal allocation 

probabilities are generated based on the current assessment of treatment efficacy, which results in 

more patients being assigned to the treatment that is putatively superior.  

 

Many RAR designs have been proposed over the years [1-13]. The two key issues extensively 

investigated are the evaluations of parameter estimations and hypothesis testing. Due to the 

dependency of assigning new patients based on observed data at that time, conventional estimates 

of treatment effect are often biased; therefore, efforts have been made to quantify and correct 

estimation bias [14, 15]. Recent theoretical works have been focused on solving problems 

encountered in practice, which includes delayed response, implementation for multi-arm trials, 

and incorporating covariates, etc. [1, 3, 11, 16-18]. Many recent theoretical developments are 

summarized in [19]. Additionally, in order to compare treatment efficacies through hypothesis 

testing, studies have been conducted on power comparisons and sample size calculations under the 

framework of adaptive randomization [20-24]. However, most of the works are based on large 

sample sizes, and focus on asymptotic properties [4, 12, 22, 25, 26]. But these properties have not 

been fully studied with small sample sizes. The mathematical challenge imposed by correlated 

data makes it extremely difficult to derive exact solutions for finite samples. Up to now, only 

limited results on exact solutions have been available [15, 27], and computer simulation has to be 

relied upon when sample size is small [23, 24], which is often the case in early phase II trials. 
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Each RAR design has its own objective, and there are both advantages and disadvantages 

associated with that objective. It is not our purpose to give a comprehensive assessment of 

different designs by comparing their advantages and disadvantages. Instead, the primary objective 

of the present study is to characterize the small sample properties of RAR based on a frequentist 

approach. In particular, we focus on comparing the performance of commonly used test statistics 

in RAR of two-arm comparative trials with a binary outcome. Due to the departure from normality 

caused by data correlation and the discrete nature of a binary outcome, hypothesis tests usually can 

not be controlled at any given levels of nominal significance. Thus, to make our simulation 

comparison more relevant, our assessment of hypothesis testing methods and RAR procedures is 

based on the calculation of both statistical power and the comparison to the nominal type I error 

rate. Several RAR methods studied in our simulations can assign patients according to a given 

allocation target, which may be optimal in terms of maximizing the power or minimizing the 

expected treatment failure. Therefore, we also compare the properties of test statistics at different 

optimal allocation targets.  

 

The remaining parts of this paper are organized into 4 sections. In the Methods Section, we 

introduce the adaptive randomization procedures, the optimal allocation rates, and the test 

statistics used in the simulation. In the Results Section, we present the simulation results. We 

provide a discussion and final recommendations regarding the RAR methods and hypothesis tests 

in the Discussion and Conclusions Sections.  
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Methods 

In the present section, we briefly describe the randomization methods, asymptotic hypothesis test 

statistics, and optimal patient allocation targets that are relevant to our simulations. More detailed 

information can be found in the corresponding references. 

Response-based Adaptive Randomization (RAR) 

The RAR procedures investigated in the present study are randomized play-the-winner (RPW) 

[8] [10], drop-the-loser (DL) [28], sequential maximum likelihood estimation (SMLE) [12], 

doubly-adaptive biased coin [2, 3], sequential estimation-adjusted urn (SEU) [13], and 

generalized drop-the-loser (GDL) [11] designs. RPW, DL, SEU and GDL are all urn models in 

the sense that treatment assignment for each patient can be obtained by sampling balls from an 

urn. In the usual clinical trial setting, an urn model consists of one urn with different types of 

balls that represent the different treatments under study. Patients are assigned to treatments by 

randomly selecting balls from the urn. Initially, the urn contains an equal number of balls for 

each of the treatment offered in the trial. With the progress of a clinical trial, certain rules are 

applied to update the contents of the urn in such a way that favors the selection of balls 

corresponding to the better treatment. For example, under the RPW design, the observation of a 

successful treatment response leads to the addition of a (>0) balls of the same type to the urn; a 

lack of success leads to the addition of b (>0) balls of the other type to the urn (a=b=1 in our 

simulation). The limiting allocation rate of patients on treatment 1 is q2/(q1+q2), where q1=1-p1 

and q2=1-p2 are failure rates, and p1 and p2 are success rates (or response rates) for treatments 1 

and 2. In the DL model, patients are assigned to a treatment based on the type of ball that is 

drawn; however a treatment failure results in the removal of a treatment ball from the urn, and 
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treatment successes are ignored. Due to the finite probabilities of extinction, immigration balls 

are added to the urn. If an immigration ball is drawn, an additional ball of each type is added. 

The sampling process is repeated until a treatment ball is drawn. The DL urn design has the same 

limiting allocation as the RPW urn, but less variability in patient allocation. Both SEU and GDL 

are urn models allowing fraction number of balls, and can target any allocation rate. For SEU 

method [13], if the limiting allocation of RPW urn is the target in a two-arm trial, then 

1 1 2ˆ ˆ ˆ( ) / [ ( ) ( )]q i q i q i+  balls of type 2 and 2 1 2ˆ ˆ ˆ( ) / [ ( ) ( )]q i q i q i+  balls of type 1 are added to the urn 

following the allocation of the ith patient. Obviously, the response status of the ith patient is 

related to the contents of SEU urn only through the calculation of )(ˆ1 iq  and )(ˆ2 iq . For a 

two-arm GDL urn model [11], when a treatment ball is drawn, a new patient is assigned 

accordingly, but the ball will not be returned to the urn. Depending on the response of the patient, 

the conditional average numbers of balls being added back to the urn are b1 and b2 for treatments 

1 and 2, respectively. Therefore, the conditional average numbers of type 1 and type 2 balls being 

taken out of the urn can be defined as d1 and d2, where d1=1-b1 and d2=1-b2. Immigration balls 

are also present in a GDL urn. Whenever an immigration ball is drawn, a1 and a2 balls are added 

for treatments 1 and 2, respectively. Zhang et al [11] have shown that the limiting allocation rate 

of patients on treatment 1 is 

2

2

1

1

1

1

1

d
a

d
a

d
a

n
n

+
→ .                 (1) 

The GDL urn becomes a DL urn when a1=1, a2=1, b1=p1, and b2=p2. Although GDL is a general 

method with different ways of implementation, a convenient approach is taken in our simulation. 

When a treatment ball is drawn, the ball is not returned, and no ball is added regardless of the 
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response of the patient. When an immigration ball is drawn, Cρ1 and Cρ2 balls of type 1 and 2 are 

added, where C is a constant, and ρ1 and ρ2 are allocation targets on treatments 1 and 2, which 

are estimated sequentially using the maximum likelihood estimates (MLE) [11]. 

The SMLE and doubly-adaptive biased coin design (DBCD) methods can also target any 

allocation ratios, and SMLE can be implemented as a special case of DBCD method. In DBCD 

method, the probability of the (i+1)th patient being assigned to treatment 1 is calculated by 

1
11

( )P , ( )i
n ig i

i
ρ+

⎛ ⎞
= ⎜ ⎟

⎝ ⎠ ,               (2) 

where 1 1( ) /r n i i=  and 1( )iρ  are the current allocation rate and estimated allocation rate on 

treatment 1 [2, 3]. The properties of the DBCD depend largely on the selection of g, which can 

be considered as a measuring function for the deviation from the allocation target. In the present 

study, we use the following function suggested by Hu and Zhang [3]: 
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where α is a tuning parameter. When α approaches infinity, the DBCD becomes deterministic 

and the patients are assigned to the putatively better treatment with probability 1. When α equals 

to 0, the MLE of ρ becomes the allocation target, and the DBCD method is essentially the same 

as the SMLE design proposed by Melfi et al [12]. 

Hypothesis Tests for Two-Arm Comparative Trials 

In two-arm comparative trials, the results of a binary outcome variable can be summarized in a 

2×2 contingency table (Table 1). The following hypothesis test is often conducted to compare 

treatment efficacy: 
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Nine test statistics for the hypothesis test in (4) are given in Table 2. When relative risk (q1/q2) 

and odds ratio (p1q2/q1p2) are used to quantify the differences between 2 treatment arms, the test 

statistics are log-relative-risk and log-odds-ratio, TRisk and TOdds, which are asymptotically 

distributed as chi-square distribution with one degree of freedom ( 2
1χ ). When simple difference 

is used to measure the treatment effect, the applicable test statistics are the Wald-type test 

statistic TWald and the score-type test statistics TChisq, where the variance of simple difference in 

response rates is evaluated at H1 or H0 respectively. Additionally, the test statistics based on the 

logarithm of likelihood ratio (TLLR) can also be constructed. Besides the 5 commonly used test 

statistics mentioned above, four modified test statistics are also included in Table 2. TMO is a 

modified log-odds-ratio test proposed by Gart using the approximation of discrete distributions 

by their continuous analogues [29]. As shown in Table 2, TMO is essentially a modification to 

TOdds by adding 0.5 to each cell of a 2×2 table. Similarly, Agresti and Caffo proposed a 

modification to TWald by adding 1 to each cell of a contingency table [30], which results in the 

test statistic TMW in Table 2. TMC is the Cook’s continuity correction to chi-square test statistics 

TChisq. Williams provided a modification to log-likelihood-ratio test TLLR [31]. The original test 

statistic TLLR is improved by multiplying a scale factor such that the null distribution of the new 

test statistic TML has the same moments as the chi-square distribution.  

 

Since all test statistics in Table 2 are based on 2
1χ , they are asymptotically equivalent and any one 

of them can be used for large sample sizes. Meanwhile at small sample sizes, an exact test can be 

conducted if a model is specified for the data given in Table 1. For example, depending on the 
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number of fixed margins predetermined for the design, one of the following three models can be 

applied [32]: 

1 1 1 1Pr( | , , ) ( | , , )r n n r h r n n r= ,              (5) 

1 1 1 1Pr( , | , , ) ( | , , ) ( | , )r r n n p h r n n r b r n p= ,           (6) 

and 

1 1

1 1 1

Pr( , , | , , )
( | , , ) ( | , ) ( | , ),
r r n n p

h r n n r b r n p b n n
ρ

ρ=
                (7) 

where 1 1( | , , )h r n n r  represents the hypergeometric distribution of r1, ( | , )b r n p  gives the 

binomial distribution of r under the null hypothesis of equal response rates (H0: p1 = p2 = p), and 

1( | , )b n n ρ  denotes the binomial distributions of patients on arm 1 with an allocation ratio of ρ (ρ 

= 0.5 for equal randomization). The p value of exact test can be calculated by maximizing the 

probability in (5), (6), or (7) over the two nuisance parameters, p and ρ. However, due to data 

dependency, none of the above three models are directly applicable in adaptive randomization. 

For example, the allocation ratio ρ in adaptive randomization is a random variable with unknown 

distribution, and the binomial distribution of n1 assumed in model (7) is not valid even when the 

null hypothesis is true. Therefore, in adaptive randomization, unconditional exact tests are not 

available and asymptotic test statistics such as the ones in Table 2 are required for testing the 

hypothesis in (4). 

Optimal Allocation Ratios 

The SMLE, DBCD, SEU, and GDL methods can be utilized to allocate patients based on 

different allocation targets. The allocation targets simulated in the present study are summarized 

in Table 3, where RRisk, ROdds, RWald, RChisq, and RLLR are optimal allocation ratios maximizing the 

power of TRisk, TOdds, TWald, TChisq, and TLLR respectively, at fixed sample size. The derivation of 
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TRisk, TOdds, TWald, TChisq, and TLLR can be found in [33, 34], which is equivalent to minimizing the 

variance of corresponding test statistic at a fixed total sample size, and consequently the power 

of that test statistic is maximized. RRSIHR is a recently proposed allocation target that minimizes 

the expected total number of failures among all trials with the same power [15, 33]. The general 

theoretical framework and the practical implementation of optimal allocation in k-arm trials with 

binary outcomes are discussed and demonstrated by Tymofyeyev et al [35], where the 

optimization can be conducted over different goals. In practice, the performance of the 

methodology depends on the chosen RAR procedure. The present simulation study only focuses 

on two-arm trials, with a goal of maximizing the power or minimizing the total number of 

failures. 

Results 

Simulations are conducted at different total numbers of patients ranging from 20 to 200. To 

simplify the presentation, the results for trials with 30 patients are shown here. When patients are 

less than 30, adaptive randomization is generally not recommended. For sample size of 100 or 

larger, all methods yield similar properties in general. For all of the urn models, one ball for each 

treatment is consistently used as the initial contents of the urn. The number of immigration balls 

is 1 for both the DL and GDL urns. The tuning parameter of DBCD, α, is fixed at 0 or 2. When α 

is 0, it results in the SMLE method. The value of the constant C in GDL is 2, which is equivalent 

to adding 2 treatment balls on average when an immigration ball is drawn. All simulation results 

are calculated based on 10,000 replicates. 

 

For the purpose of comparison, the true allocation rates are shown in Table 4, and the simulated 

results for allocation rates on arm 1 are shown in Table 5. Among all RAR methods, DBCD has 
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the best ability to attain the true allocation target. The comparison between SMLE and DBCD 

shows that, the allocation becomes more unbalanced and the variation of DBCD decreases with 

increasing value of tuning exponent α. On the other hand, the patient allocation of SEU results in 

more balanced mean allocation between two arms with a much larger variation as compared with 

other RAR methods. The GDL has the lowest variation among the four sequential RAR methods. 

When RRPW (the same as RDL) is the allocation target, DL urn method has the lowest variation in 

patient allocation, which is consistent with the fact that the lower bound of the estimate of 

Var(RRPW) is attained by DL urn [4]. The comparison among allocation targets shows that RLLR 

has the lowest variation in patient allocation, and the highest variation is usually found at RRPW  

or RRisk. However, RRPW and RRisk are usually the top two allocation targets that assign more 

patients to the better treatment. RWald, ROdds, and RLLR assigns more patients to the worse arm in 

some simulation cases. Among the three allocation targets that assign more patients to the better 

treatment (RRSIHR, RRisk and RRPW), RRSIHR has a stable and often the lowest variation in patient 

allocation.  

 

The simulation results are obtained for five null cases and ten alternative cases, and Table 6 gives 

the summary by averaging the results over the five null cases and the ten alternative cases for a 

given RAR method and at a given allocation target. Detailed simulation results for each test 

statistic are shown in Tables 7-12 with one table for each of the six allocation targets. To simplify 

the presentation, the results are shown only for the four modified test statistics TMW, TMO, TMC, 

TML, and the log-relative-risk test statistic TRisk because they tend to have better performance than 

the four corresponding unmodified tests. The qualitative comparisons among test statistics, RAR 

methods, and allocation targets can be made based on the results in Table 6. 
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As shown in Table 6 (also see Tables 7-12), the worst performance can be found in the results of 

TMO and TRisk, which are often conservative with less than nominal type I error rate. TMW is 

always slightly conservative across all simulation cases. Overall, TMC is the best in attaining the 

correct type I error rate. TML, is slightly inflated as compared with chi-square test TMC. However, 

the simulation results not shown here indicate that TML is very robust against the unbalance in 

patient allocation even when sample size is 20. The comparison between different RAR methods 

shows that the mean type I error of GDL and SEU can usually match the correct size of tests 

better than other methods when TMC and TML are used respectively. The type I error of DBCD is 

usually the largest one, except at ROdds. The overall type I error of SEU is comparable with GDL.  

 

The power comparison of different test statistics indicates that TRisk is the statistic with the 

highest power at RRisk but with a much inflated type I error. Except at RRisk, TMC or TML is the one 

with the highest power. Usually, GDL has the highest power and SEU has the lowest power 

among all RAR methods. DBCD and SMLE have similar power, but DBCD is more powerful in 

most cases. At target RRPW, DL urn has the best statistical properties. On the average, the target 

with the lowest power achieved by test statistics is RRisk. The highest overall power can usually 

be achieved by test statistics at RRSIHR and RLLR, but RLLR has the disadvantage of assigning more 

patients to the worse treatment in some cases. 

Discussion 

In response-adaptive randomization, the assignment of a new patient depends on the treatment 

outcomes of patients previously enrolled in the trial. Delayed responses are often encountered in 

practice. Recently, the problem of delayed response in multi-arm generalized drop-the-loser urn 

and generalized Friedman’s urn design is studied for both continuous and discontinuous outcomes 
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[11, 16, 17, 36]. It is shown that, under reasonable assumption about the delay, the asymptotic 

properties of adaptive design are not affected by the delay. In the present study, the primary focus 

is the comparison between commonly used test statistics for 2×2 tables. Based on results not 

shown here, a less extreme allocation with higher variation would be expected when a random 

delay is assumed. It is assumed that the response status of each of the patients already in the trial is 

available before the allocation of a new patient in our simulations evaluation.  

The RAR methods simulated in the present study are aimed at assigning patients to the better 

treatment with probabilities higher than what otherwise would be allowed by equal 

randomization. The price being paid is that the sample sizes on the two comparing arms are no 

longer fixed, and the adaptation in patient allocation can complicate the statistical inference at 

the end of the trial. The properties of test statistics will change when the patient allocation ratio 

changes in adaptive randomization. The power of test statistics shown in the present simulation 

study is obtained by averaging over trials with an unknown distribution of allocation ratios. As 

shown in our simulation results, a large deviation from the nominal significance level of the 

hypothesis test can be found even under the null hypothesis. Therefore, the practice of comparing 

asymptotic hypothesis testing methods based solely on statistical power under the alternative 

hypothesis is not recommended. It is important to compare adaptive randomization methods 

based on both the type I error rate and the statistical power, especially when the sample size is 

small.  

 

General recommendations given in the result section are based on the aggregated results across 

different settings. Because the performance of different test statistics, RAR methods, and 

allocation target are closely related to each other, recommendations under a specific scenario can 
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be found based on the detailed simulation results in Tables 7-12. 

 

Based on simulation results, the Cook’s correction to chi-square test statistic TMC and Williams’ 

correction to log-likelihood-ratio test TML are recommended to be used for hypothesis testing at 

the end of adaptive randomization. TMC has good ability to attain the correct significance levels, 

and is relatively robust against the change of RAR method or allocation target. TML has more 

robust performance than TMC and has higher power, but its type I error is slightly inflated as 

compared with TMC. However, TML attains more accurate type I error than TMC when the sample 

size is small. The original Wald-type Z test statistic TWald, which is very sensitive to patient 

allocation and has inflated type I error, should be avoided at small sample sizes. On the other 

hand, TMW, the Argresti’s correction to TWald, and TMO the modified log-odds-ratio test are too 

conservative and under powered at small sample sizes. 

 

The primary objective of current study is to compare test statistics. Since the recommended test 

statistics are TMC and TML, the comparison between RAR methods and allocation targets are 

mainly based on these two selected test statistics. Among SMLE, DBCD, SEU, and GDL 

methods, GDL seems to be the best one due to its ability to attain the correct size of hypothesis 

test and comparatively higher overall power at most allocation targets. Therefore, GDL is the 

recommended RAR method. The sequential estimation-adjusted urn (SEU) method is comparable 

with GDL in controlling the type I error. However, SEU is often under powered, and the high 

variation in patient allocation makes it less useful in practice. The DBCD method with tuning 

exponent α equal to 2 is the best in targeting the true allocation ratio. When TMC is the test 

statistic, DBCD has slightly inflated type I error and slightly lower power as compared with 
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GDL. Therefore, among values of α , the balances among controlling the type I error, obtaining 

higher power, and targeting a given allocation ratio can be reached when α is equal to 2. The 

simulation comparison of statistical power for different RAR methods also indicates that DL urn 

has the best statistical properties at RRPW, mainly due to its low variation in patient allocation. 

 

The statistical characteristics of hypothesis tests and RAR methods also depend on allocation 

targets. At RWald, ROdds, and RLLR targets, more patients could be assigned to the inferior treatment 

in certain parameter spaces. In contrast, RRisk, RRPW, and RRSIHR always assign more patients to the 

better treatment. However, due to the more extreme allocation of RRisk and RRPW, both power and 

type I error of RRisk and RRPW will suffer as compared with RRSIHR. On the other hand, the 

variation of patient allocation at RRISHR is relatively small with a stable value across all 

simulation scenarios. Additional, among all designs with similar power using Wald-type test 

statistic, RRSIHR allocation ration can achieve fewer failures in the whole trial. Therefore, RRSIHR is 

recommended among all the allocation targets in the present study.  

In addition to the frequentist development on the response adaptive randomization, Bayesian 

decision theoretic methods has also been proposed in the context of bandit problem. The concept 

of “patient horizon” was brought up to include future patients to whom the current study results 

might be applied.  The goal is to maximize the total number of success in patients enrolled in the 

study with or without including the patient horizon.  More detailed exposition of Bayesian 

methods for response adaptive randomization is beyond the scope of this paper and interested 

readers should consult the original work on this topic [37-40].  
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Conclusions  

The Cook’s correction to chi-square test and Williams’ correction to log-likelihood-ratio test are 

recommended for hypothesis test of RAR at small sample sizes. Among all the RAR methods 

compared, GDL method has better statistical properties in controlling type one error and 

maintaining high statistical power. The RSIHR allocation target provides a good balance between 

assigning more patients to the better treatment and maintaining a high overall power.   
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Tables 

Table 1. Summary of data from a two-arm comparative clinical trial  
 Response Failure Margins 

Treatment 1 r1 f1 n1 

Treatment 2 r2 f2 n- n1 = n2 

Margins r1+r2 = r n-r = f1+f2 = f n 

n: total number of patients; n1, n2: patients on treatment 1 and 2; r: total number of treatment successes; r1, 
r2: number of successes on treatment 1 and 2. 

 
Table 2. Test statistics 

Log-Relative-Risk ( ) ( )2
2 1 1 2 1 1 1 2 2 2log( / )RiskT f n f n r n f r n f= +  

Log-odds-ratio ( ) ( )2
2 1 1 2 1 2 1 2log( / ) 1 1 1 1OddsT f r f r f f r r= + + +  

Wald-type Z ( ) ( )2 3 3
1 1 2 2 2 1 1 1 2 2/ /WaldT r n r n f r n f r n= − +  

Chi-Square ( )2
1 2 2 1 1 2( 1)ChisqT n r f r f rfn n= − −  

Log-likelihood-ratio 1 1 2 2 1 1 2 2

1 1 2 2

2 ( log log log log
log log log log log )

LLRT r r r r f f f f
r r f f n n n n n n

= ⋅ + + +
− − − − +

 

Gart’s Correction to TOdds [29] ( ) ( )2
2 1 1 2 1 1 1 2 2 2log( ' ' / ' ' ) ' ' ' ' ' 'MOT f n f n r n f r n f= +  

Agresti’s Correction to TWald ( ) ( )2 3 3
1 1 2 2 2 1 1 1 2 2" / " " / " " " " " " "MWT r n r n f r n f r n= − +  

Cook’s Correction to TChisq ( )2
1 2 2 1 1 2( 1) 0.5MCT n r f r f rfn n= − − −  

William’s Correction to TLLR [31] 1
2 2 1 2 1 2[1 ( )( ) / 6 ]ML LLRT n rf n n n rfn n n T−= + − − ⋅  

r'1=r1+0.5, r'2=r2+0.5, f '1=f1+0.5, f '2=f2+0.5, r'=r+1, f '=f+1, n'1=n1+1, n'2=n2+1, n'=n+2 
r"1=r1+1, r"2=r2+1, f"1=f1+1, f"2=f2+1, r"=r+2, f"=f+2, n"1=n1+2, n"2=n2+2, n"=n+4 

 
Table 3. Allocation targets 

Optimal allocation ratio (n1/n2) for maximizing powers 
RRisk 1 2 2 1p q p q  
ROdds / 
RChisq 2 2 1 1p q p q  
RWald / 
RNeyman 1 1 2 2p q p q  

RLLR 2 2 1 2 2 1 1 1 1 2 2 1{ exp[ / ( )]} { exp[ / ( )]}q p I I p p q p I I p p− − − − + − −  
Other allocation targets 

RRPW / 
RDL 2 1/q q  

RRSIHR 1 2p p  (Minimize the number of failure at fixed power of TWald) 

1 1 1 1 1log( ) log( )I p p q q= + , 2 2 2 2 2log( ) log( )I p p q q= +  



 

Table 4. Asymptotic allocation rates on arm 1 calculated from true p1 and p2 
p1 0.100 0.100 0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.700 
p2 0.300 0.500 0.700 0.900 0.500 0.700 0.900 0.700 0.900 0.900 
RWald / RNeyman 0.396 0.375 0.396 0.500 0.478 0.500 0.604 0.522 0.625 0.604 
RRisk 0.337 0.250 0.179 0.100 0.396 0.300 0.179 0.396 0.250 0.337 
ROdds / RChisq 0.604 0.625 0.604 0.500 0.522 0.500 0.396 0.478 0.375 0.396 
RLLR 0.534 0.538 0.528 0.500 0.507 0.500 0.472 0.493 0.462 0.466 
RRSIHR 0.366 0.309 0.274 0.250 0.436 0.396 0.366 0.458 0.427 0.469 
RRPW / RDL 0.438 0.357 0.250 0.100 0.417 0.300 0.125 0.375 0.167 0.250 

 
Table 5. Mean and standard deviation (in parenthesis) of allocation rate on arm 1 for n = 30.  

 
 

Null p1 0.2 0.3 0.5 0.7 0.8 

 p2 0.2 0.3 0.5 0.7 0.8 

Urn RPW 0.500(0.081) 0.500(0.095) 0.500(0.129) 0.500(0.179) 0.500(0.209) 
 DL 0.500(0.048) 0.500(0.058) 0.500(0.078) 0.500(0.092) 0.500(0.097) 

SMLE RWald 0.500(0.106) 0.500(0.103) 0.500(0.098) 0.500(0.103) 0.500(0.106) 
 RRisk 0.500(0.130) 0.500(0.134) 0.500(0.140) 0.500(0.151) 0.500(0.158) 
 ROdds 0.500(0.109) 0.500(0.098) 0.500(0.091) 0.500(0.099) 0.500(0.109) 
 RLLR 0.500(0.093) 0.500(0.092) 0.500(0.091) 0.500(0.093) 0.500(0.094) 
 RRSIHR 0.500(0.117) 0.500(0.116) 0.500(0.109) 0.500(0.106) 0.500(0.102) 
 RRPW 0.500(0.100) 0.500(0.109) 0.500(0.131) 0.500(0.166) 0.500(0.192) 

DBCD RWald 0.500(0.090) 0.500(0.075) 0.500(0.055) 0.500(0.075) 0.500(0.090) 
 RRisk 0.500(0.126) 0.500(0.124) 0.500(0.123) 0.500(0.127) 0.500(0.140) 
 ROdds 0.500(0.082) 0.500(0.061) 0.500(0.047) 0.500(0.061) 0.500(0.082) 
 RLLR 0.500(0.049) 0.500(0.046) 0.500(0.044) 0.500(0.047) 0.500(0.049) 
 RRSIHR 0.500(0.107) 0.500(0.099) 0.500(0.078) 0.500(0.060) 0.500(0.054) 

 RRPW 0.500(0.064) 0.500(0.074) 0.500(0.104) 0.500(0.148) 0.500(0.185) 

SEU RWald 0.500(0.113) 0.500(0.106) 0.500(0.098) 0.500(0.106) 0.500(0.114) 
 RRisk 0.500(0.155) 0.500(0.168) 0.500(0.195) 0.500(0.223) 0.500(0.237) 
 ROdds 0.500(0.101) 0.500(0.104) 0.500(0.130) 0.500(0.176) 0.500(0.196) 
 RLLR 0.500(0.093) 0.500(0.091) 0.500(0.091) 0.500(0.093) 0.500(0.092) 
 RRSIHR 0.500(0.149) 0.500(0.146) 0.500(0.131) 0.500(0.116) 0.500(0.106) 

 RRPW 0.500(0.135) 0.500(0.155) 0.500(0.192) 0.500(0.222) 0.500(0.233) 

GDL RWald 0.500(0.056) 0.500(0.046) 0.500(0.033) 0.500(0.047) 0.500(0.056) 
 RRisk 0.500(0.106) 0.500(0.114) 0.500(0.128) 0.500(0.144) 0.500(0.154) 
 ROdds 0.500(0.040) 0.500(0.035) 0.500(0.055) 0.500(0.090) 0.500(0.112) 
 RLLR 0.500(0.029) 0.500(0.026) 0.500(0.024) 0.500(0.026) 0.500(0.029) 
 RRSIHR 0.500(0.073) 0.500(0.070) 0.500(0.058) 0.500(0.045) 0.500(0.039) 

 RRPW 0.500(0.053) 0.500(0.065) 0.500(0.088) 0.500(0.116) 0.500(0.133) 

Alternative p1 0.1 0.1 0.1 0.1 0.3 

 p2 0.3 0.5 0.7 0.9 0.5 

Urn RPW 0.444(0.080) 0.375(0.092) 0.287(0.096) 0.181(0.088) 0.430(0.109) 
 DL 0.447(0.046) 0.383(0.055) 0.316(0.056) 0.249(0.053) 0.437(0.067) 

SMLE RWald 0.440(0.100) 0.424(0.098) 0.441(0.100) 0.501(0.102) 0.483(0.101) 
 RRisk 0.397(0.117) 0.325(0.107) 0.259(0.095) 0.186(0.079) 0.415(0.133) 



 

 ROdds 0.562(0.110) 0.577(0.107) 0.561(0.110) 0.499(0.126) 0.517(0.095) 
 RLLR 0.519(0.094) 0.522(0.094) 0.515(0.094) 0.499(0.095) 0.506(0.092) 
 RRSIHR 0.417(0.108) 0.369(0.100) 0.335(0.093) 0.312(0.087) 0.447(0.112) 
 RRPW 0.447(0.099) 0.384(0.105) 0.297(0.106) 0.179(0.091) 0.434(0.117) 

DBCD RWald 0.417(0.081) 0.393(0.073) 0.416(0.081) 0.499(0.095) 0.475(0.065) 
 RRisk 0.371(0.106) 0.285(0.086) 0.216(0.071) 0.138(0.054) 0.394(0.116) 
 ROdds 0.585(0.085) 0.607(0.078) 0.586(0.086) 0.499(0.110) 0.520(0.053) 
 RLLR 0.474(0.048) 0.468(0.046) 0.477(0.047) 0.500(0.047) 0.493(0.045) 
 RRSIHR 0.392(0.093) 0.332(0.077) 0.297(0.069) 0.273(0.063) 0.431(0.088) 

 RRPW 0.440(0.063) 0.366(0.072) 0.266(0.078) 0.129(0.064) 0.422(0.087) 

SEU RWald 0.476(0.113) 0.464(0.110) 0.473(0.113) 0.505(0.117) 0.493(0.104) 
 RRisk 0.433(0.143) 0.361(0.130) 0.296(0.115) 0.234(0.091) 0.440(0.166) 
 ROdds 0.514(0.108) 0.497(0.124) 0.462(0.143) 0.388(0.137) 0.489(0.119) 
 RLLR 0.510(0.093) 0.512(0.094) 0.508(0.093) 0.501(0.094) 0.503(0.092) 
 RRSIHR 0.461(0.143) 0.425(0.130) 0.402(0.122) 0.383(0.113) 0.475(0.136) 

 RRPW 0.469(0.129) 0.424(0.136) 0.367(0.135) 0.294(0.113) 0.462(0.164) 

GDL RWald 0.450(0.051) 0.437(0.046) 0.452(0.051) 0.500(0.058) 0.486(0.040) 
 RRisk 0.397(0.093) 0.320(0.085) 0.251(0.071) 0.181(0.055) 0.407(0.114) 
 ROdds 0.527(0.043) 0.508(0.053) 0.454(0.072) 0.341(0.080) 0.484(0.045) 
 RLLR 0.517(0.027) 0.521(0.026) 0.515(0.027) 0.500(0.028) 0.505(0.024) 
 RRSIHR 0.431(0.065) 0.389(0.057) 0.362(0.051) 0.342(0.047) 0.454(0.062) 

 RRPW 0.454(0.052) 0.399(0.063) 0.329(0.067) 0.236(0.059) 0.444(0.075) 

Alternative p1 0.3 0.3 0.5 0.5 0.7 

 p2 0.7 0.9 0.7 0.9 0.9 

Urn RPW 0.341(0.120) 0.227(0.123) 0.411(0.147) 0.288(0.160) 0.375(0.202) 
 DL 0.363(0.071) 0.290(0.066) 0.424(0.082) 0.343(0.082) 0.416(0.092) 

SMLE RWald 0.500(0.104) 0.559(0.100) 0.517(0.100) 0.576(0.099) 0.558(0.101) 
 RRisk 0.334(0.124) 0.238(0.109) 0.411(0.139) 0.298(0.131) 0.375(0.149) 
 ROdds 0.500(0.098) 0.438(0.109) 0.485(0.095) 0.423(0.107) 0.438(0.109) 
 RLLR 0.499(0.091) 0.483(0.093) 0.495(0.092) 0.477(0.094) 0.481(0.094) 
 RRSIHR 0.408(0.107) 0.378(0.103) 0.459(0.106) 0.429(0.105) 0.468(0.101) 
 RRPW 0.343(0.122) 0.209(0.110) 0.405(0.141) 0.255(0.136) 0.332(0.174) 

DBCD RWald 0.500(0.075) 0.585(0.081) 0.525(0.065) 0.607(0.073) 0.584(0.081) 
 RRisk 0.300(0.104) 0.187(0.083) 0.391(0.118) 0.250(0.108) 0.337(0.130) 
 ROdds 0.501(0.061) 0.413(0.086) 0.480(0.054) 0.394(0.079) 0.414(0.084) 
 RLLR 0.500(0.046) 0.524(0.047) 0.508(0.045) 0.532(0.046) 0.527(0.048) 
 RRSIHR 0.387(0.080) 0.353(0.075) 0.453(0.069) 0.417(0.066) 0.464(0.055) 

 RRPW 0.317(0.095) 0.157(0.082) 0.386(0.118) 0.201(0.112) 0.284(0.158) 

SEU RWald 0.502(0.106) 0.535(0.108) 0.509(0.102) 0.540(0.102) 0.532(0.108) 
 RRisk 0.365(0.154) 0.280(0.126) 0.437(0.197) 0.337(0.171) 0.411(0.212) 
 ROdds 0.453(0.134) 0.384(0.131) 0.469(0.150) 0.399(0.146) 0.438(0.177) 
 RLLR 0.500(0.091) 0.493(0.094) 0.498(0.093) 0.490(0.094) 0.490(0.092) 
 RRSIHR 0.449(0.126) 0.429(0.121) 0.479(0.124) 0.460(0.117) 0.481(0.109) 

 RRPW 0.408(0.162) 0.326(0.141) 0.456(0.197) 0.366(0.173) 0.423(0.208) 

GDL RWald 0.499(0.047) 0.548(0.052) 0.514(0.041) 0.562(0.046) 0.548(0.051) 
 RRisk 0.319(0.104) 0.220(0.078) 0.397(0.128) 0.274(0.104) 0.356(0.138) 



 

 ROdds 0.431(0.064) 0.327(0.072) 0.447(0.071) 0.342(0.080) 0.390(0.102) 
 RLLR 0.500(0.026) 0.485(0.027) 0.495(0.025) 0.479(0.026) 0.483(0.028) 
 RRSIHR 0.423(0.056) 0.398(0.052) 0.466(0.052) 0.440(0.046) 0.472(0.038) 

 RRPW 0.367(0.082) 0.263(0.073) 0.420(0.098) 0.303(0.092) 0.370(0.121) 

 
 

Table 6. The mean and standard deviation (in parenthesis) of type I error and power.  
  Type I error of test statistics 

Target Method TMW TRISK TMO TMC TML Row 
Mean 

SMLE 4.4(1.1) 4.6(4.1) 2.0(1.4) 5.0(0.6) 6.8(0.9) 4.6(2.4) 
DBCD 4.3(1.4) 5.1(5.1) 1.7(1.7) 4.8(1.2) 7.2(0.8) 4.6(2.9) 
SEU 4.0(0.9) 3.4(2.4) 2.3(1.2) 4.8(0.2) 5.6(0.6) 4.0(1.7) 
GDL 4.4(0.8) 3.7(3.1) 2.1(1.6) 5.2(0.4) 6.6(1.0) 4.4(2.2) 

RWald 

Mean 4.3(1.0) 4.2(3.6) 2.0(1.4) 5.0(0.7) 6.5(1.0) 4.4(2.3) 
SMLE 4.4(1.4) 8.6(3.5) 2.4(1.8) 5.5(1.4) 6.0(1.0) 5.4(2.8) 
DBCD 4.6(2.0) 10.2(4.4) 2.6(2.3) 5.7(2.2) 6.5(1.4) 5.9(3.5) 
SEU 3.7(0.8) 7.6(2.3) 2.1(0.8) 5.4(1.3) 5.1(0.4) 4.8(2.2) 
GDL 4.2(1.3) 7.9(2.4) 2.4(1.9) 5.4(1.6) 5.8(1.4) 5.1(2.5) 

RRisk 

Mean 4.2(1.3) 8.6(3.1) 2.4(1.7) 5.5(1.5) 5.9(1.2) 5.3(2.8) 
SMLE 3.7(0.6) 2.4(0.5) 2.9(0.5) 4.8(0.4) 4.5(0.4) 3.7(1.0) 
DBCD 3.6(0.7) 2.1(0.8) 3.1(0.7) 4.7(0.3) 4.1(0.2) 3.5(1.1) 
SEU 3.6(0.5) 3.6(0.8) 2.3(0.7) 4.7(0.3) 4.9(0.7) 3.8(1.1) 
GDL 3.7(0.8) 3.4(0.8) 3.0(1.1) 5.1(0.4) 4.5(0.4) 3.9(1.0) 

ROdds 

Mean 3.7(0.6) 2.9(0.9) 2.8(0.8) 4.9(0.4) 4.5(0.5) 3.7(1.1) 
SMLE 4.0(0.6) 2.7(1.2) 2.7(1.0) 5.0(0.2) 5.2(0.6) 3.9(1.3) 
DBCD 4.2(0.8) 3.3(2.6) 2.4(1.5) 5.0(0.4) 6.1(0.8) 4.2(1.9) 
SEU 4.0(0.6) 2.8(1.6) 2.4(1.0) 4.9(0.2) 5.4(0.8) 3.9(1.5) 
GDL 3.7(0.5) 2.5(1.3) 2.7(1.2) 4.9(0.4) 5.4(0.9) 3.8(1.5) 

RLLR 

Mean 3.9(0.6) 2.8(1.6) 2.5(1.1) 5.0(0.3) 5.6(0.8) 4.0(1.5) 
SMLE 4.2(1.1) 6.2(4.0) 2.3(1.5) 5.2(0.8) 6.1(0.7) 4.8(2.4) 
DBCD 4.3(1.5) 6.9(5.2) 2.0(1.6) 5.2(1.3) 6.5(1.1) 5.0(3.0) 
SEU 3.9(0.8) 4.8(3.4) 2.3(1.0) 4.8(0.4) 5.5(0.5) 4.3(1.9) 
GDL 4.3(0.9) 4.7(3.0) 2.2(1.6) 5.1(0.6) 6.1(0.9) 4.5(2.0) 

RRSIHR 

Mean 4.2(1.0) 5.7(3.8) 2.2(1.3) 5.1(0.8) 6.1(0.8) 4.6(2.3) 
RPW 4.2(0.8) 6.2(0.5) 2.5(1.6) 5.5(1.4) 5.4(0.8) 4.8(1.7) 
DL 4.3(0.8) 4.8(1.0) 2.6(1.7) 5.3(0.9) 5.3(0.4) 4.5(1.4) 

SMLE 4.2(0.9) 6.5(0.6) 2.8(1.8) 5.4(1.6) 5.1(0.8) 4.8(1.7) 
DBCD 4.3(0.9) 6.7(1.0) 2.9(2.1) 5.7(1.8) 4.8(1.0) 4.9(1.9) 
SEU 3.8(0.6) 5.7(1.3) 2.2(0.6) 5.4(0.8) 5.1(0.6) 4.5(1.5) 
GDL 4.0(0.8) 5.1(0.6) 2.7(1.6) 5.2(0.7) 5.0(0.8) 4.4(1.3) 

RRPW 

Mean 4.1(0.8) 5.8(1.1) 2.6(1.5) 5.4(1.2) 5.1(0.7) 4.6(1.6) 
Equal Allocation 4.0(0.5) 2.9(1.7) 2.4(1.0) 5.0(0.2) 5.6(0.8) 4.0(1.5) 

  Power of test statistics 

Target Method TMW TRISK TMO TMC TML Row 
Mean 

SMLE 56.6(34.1) 48.6(35.2) 48.5(36.8) 57.6(33.4) 59.4(31.9) 54.2(33.2) 
DBCD 56.9(34.4) 49.5(35.9) 48.0(37.6) 57.7(33.9) 60.2(31.8) 54.5(33.7) 
SEU 56.0(34.0) 47.7(34.8) 49.6(36.1) 57.5(33.0) 58.4(32.3) 53.8(32.9) 
GDL 57.3(34.0) 50.0(36.2) 50.6(36.9) 58.4(33.2) 60.0(32.0) 55.3(33.3) 

RWald 

Mean 56.7(32.8) 49.0(34.2) 49.2(35.4) 57.8(32.1) 59.5(30.7) 54.4(33.0) 
SMLE 53.4(33.2) 57.9(31.5) 45.4(35.2) 56.2(32.7) 55.1(31.1) 53.6(31.7) 
DBCD 53.3(33.4) 60.0(30.5) 43.7(36.0) 56.5(32.9) 55.0(31.1) 53.7(31.9) 
SEU 52.5(32.8) 55.3(32.2) 45.9(34.1) 55.2(32.1) 54.2(31.2) 52.6(31.3) 
GDL 53.2(33.3) 58.1(31.6) 45.8(35.8) 56.5(32.6) 55.2(31.7) 53.8(31.9) 

RRisk 
 

Mean 53.1(31.9) 57.8(30.3) 45.2(33.9) 56.1(31.3) 54.9(30.1) 53.4(31.5) 
SMLE 54.6(33.9) 47.1(34.3) 52.1(34.9) 57.6(32.6) 56.4(32.9) 53.6(32.5) 
DBCD 54.8(34.2) 47.3(35.2) 53.4(34.5) 57.8(32.7) 56.5(33.4) 53.9(32.8) 
SEU 54.8(33.5) 50.8(33.8) 50.4(34.8) 57.5(32.5) 56.6(32.2) 54.0(32.1) 
GDL 54.6(34.2) 53.0(34.6) 52.5(35.0) 58.1(32.7) 56.8(33.0) 55.0(32.5) 

ROdds 

Mean 54.7(32.6) 49.5(33.2) 52.1(33.4) 57.8(31.4) 56.6(31.6) 54.1(32.3) 



 

SMLE 55.9(33.9) 48.4(35.0) 51.6(35.6) 58.0(32.8) 58.0(32.6) 54.4(32.8) 
DBCD 57.2(34.0) 49.9(35.9) 51.4(36.6) 58.6(33.1) 60.0(32.2) 55.4(33.2) 
SEU 56.1(33.9) 48.5(34.8) 51.2(35.7) 58.1(32.8) 58.2(32.5) 54.4(32.8) 
GDL 56.4(34.1) 50.4(35.8) 53.1(35.9) 58.9(33.1) 59.5(32.5) 55.7(33.1) 

RLLR 

Mean 56.4(32.6) 49.3(34.0) 51.8(34.6) 58.4(31.7) 58.9(31.2) 55.0(32.7) 
SMLE 56.0(33.9) 54.8(33.7) 48.7(36.4) 57.5(33.2) 58.4(32.0) 55.1(32.6) 
DBCD 56.8(34.0) 56.3(33.4) 48.2(37.0) 58.2(33.2) 59.4(31.8) 55.7(32.8) 
SEU 54.5(33.8) 50.5(34.5) 48.6(35.8) 56.4(33.0) 56.6(32.4) 53.3(32.7) 
GDL 57.4(33.7) 54.4(34.5) 50.6(36.6) 58.7(33.0) 59.7(32.1) 56.2(32.8) 

RRSIHR 

Mean 56.2(32.6) 54.0(32.8) 49.0(35.0) 57.7(31.8) 58.5(30.8) 55.1(32.5) 
RPW 52.4(32.3) 55.9(32.1) 46.3(34.1) 55.8(32.1) 52.9(30.1) 52.7(31.0) 
DL 56.0(33.5) 55.9(33.4) 50.0(36.1) 58.2(32.6) 57.4(32.5) 55.5(32.4) 

SMLE 51.7(32.3) 56.2(31.8) 46.7(33.7) 55.7(31.9) 51.7(30.2) 52.4(30.9) 
DBCD 51.2(31.8) 57.3(31.2) 47.0(34.1) 56.0(31.5) 48.3(29.2) 52.0(30.6) 
SEU 54.0(33.1) 54.0(32.7) 48.3(34.4) 56.7(32.1) 55.9(31.7) 53.8(31.6) 
GDL 54.6(33.5) 56.0(33.0) 50.2(35.3) 57.8(32.4) 56.4(32.3) 55.0(32.0) 

RRPW 

Mean 53.3(31.4) 55.9(31.0) 48.1(33.2) 56.7(30.7) 53.8(29.8) 53.5(31.2) 
Equal Allocation 56.2(33.9) 48.5(35.0) 50.9(35.9) 58.1(32.9) 58.4(32.4) 54.4(32.9) 

Mean values are calculated by averaging simulation results over the five null cases and the ten alternative cases 
of simulation scenarios listed in Tables 7-12. All results have been multiplied by 100% (alpha = 0.05, n = 30). 

 



 

Table 7. Power and type I error at RWald (alpha = 0.05, n = 30).  
p1 0.200 0.300 0.500 0.700 0.800 0.100 0.100 0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.700 
p2 0.200 0.300 0.500 0.700 0.800 0.300 0.500 0.700 0.900 0.500 0.700 0.900 0.700 0.900 0.900 

TMW 0.031 0.048 0.056 0.050 0.033 0.196 0.674 0.953 0.999 0.201 0.600 0.950 0.203 0.680 0.202 
TRisk 0.102 0.072 0.039 0.014 0.003 0.326 0.693 0.940 0.996 0.181 0.501 0.798 0.113 0.288 0.024 
TMO 0.007 0.022 0.041 0.024 0.007 0.063 0.492 0.928 0.999 0.162 0.563 0.923 0.161 0.495 0.069 
TMC 0.044 0.052 0.056 0.055 0.044 0.231 0.689 0.954 0.999 0.203 0.601 0.952 0.205 0.693 0.235 

SMLE 

TML 0.074 0.066 0.055 0.067 0.079 0.308 0.709 0.954 0.999 0.203 0.595 0.951 0.205 0.711 0.309 
TMW 0.029 0.050 0.057 0.052 0.026 0.186 0.685 0.957 0.999 0.212 0.607 0.958 0.206 0.696 0.191 
TRisk 0.120 0.085 0.041 0.008 0.001 0.361 0.721 0.954 0.998 0.204 0.524 0.811 0.109 0.257 0.010 
TMO 0.004 0.017 0.045 0.017 0.003 0.041 0.462 0.933 0.999 0.169 0.587 0.934 0.164 0.475 0.042 
TMC 0.037 0.056 0.058 0.056 0.034 0.211 0.696 0.958 0.999 0.215 0.607 0.959 0.208 0.706 0.215 

 
DBCD 

TML 0.077 0.074 0.059 0.073 0.077 0.311 0.718 0.958 0.999 0.217 0.607 0.959 0.210 0.727 0.315 
TMW 0.031 0.045 0.048 0.044 0.030 0.200 0.655 0.946 0.999 0.190 0.583 0.948 0.191 0.675 0.213 
TRisk 0.067 0.048 0.033 0.016 0.006 0.259 0.646 0.922 0.991 0.154 0.486 0.812 0.114 0.342 0.046 
TMO 0.013 0.026 0.039 0.027 0.011 0.094 0.522 0.921 0.999 0.158 0.553 0.926 0.157 0.533 0.095 
TMC 0.046 0.051 0.049 0.050 0.046 0.248 0.675 0.949 0.999 0.195 0.585 0.950 0.195 0.698 0.258 

SEU 

TML 0.062 0.055 0.047 0.055 0.062 0.285 0.683 0.947 0.999 0.190 0.577 0.949 0.193 0.710 0.305 
TMW 0.036 0.051 0.051 0.049 0.034 0.223 0.696 0.954 1.000 0.195 0.601 0.958 0.200 0.692 0.214 
TRisk 0.075 0.060 0.040 0.010 0.001 0.309 0.703 0.949 0.999 0.184 0.543 0.868 0.124 0.304 0.015 
TMO 0.007 0.022 0.046 0.023 0.006 0.077 0.549 0.937 0.999 0.167 0.588 0.945 0.169 0.547 0.077 
TMC 0.048 0.057 0.051 0.055 0.047 0.260 0.708 0.955 1.000 0.198 0.602 0.960 0.204 0.705 0.253 

 
GDL 

TML 0.074 0.064 0.052 0.063 0.076 0.319 0.721 0.956 1.000 0.200 0.602 0.960 0.205 0.720 0.314 
For each RAR methods, the results of the following 5 test statistics are shown: Agresti’s correction to 
Wald-type Z test TMW, log-relative-risk test TRisk, Gart’s correction to log-odds-ratio test TMO, Cook’s correction 
to chi-square test TMC, and Williams’ correction log-likelihood-ratio test TML. 

 
Table 8. Power and type I error at RRisk (alpha = 0.05, n = 30).  

p1 0.200 0.300 0.500 0.700 0.800 0.100 0.100 0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.700 
p2 0.200 0.300 0.500 0.700 0.800 0.300 0.500 0.700 0.900 0.500 0.700 0.900 0.700 0.900 0.900 

TMW 0.024 0.045 0.061 0.051 0.041 0.156 0.615 0.923 0.990 0.185 0.560 0.898 0.189 0.611 0.214 
TRisk 0.136 0.105 0.078 0.061 0.050 0.363 0.716 0.945 0.997 0.230 0.588 0.923 0.206 0.612 0.210 
TMO 0.002 0.008 0.032 0.039 0.040 0.022 0.278 0.792 0.988 0.096 0.466 0.903 0.157 0.615 0.220 
TMC 0.033 0.047 0.060 0.064 0.068 0.177 0.615 0.923 0.996 0.183 0.570 0.939 0.202 0.701 0.316 

SMLE 

TML 0.069 0.071 0.061 0.049 0.051 0.278 0.659 0.921 0.975 0.195 0.543 0.883 0.179 0.621 0.253 
TMW 0.018 0.046 0.072 0.054 0.042 0.134 0.617 0.931 0.993 0.198 0.565 0.896 0.199 0.586 0.207 
TRisk 0.166 0.123 0.091 0.066 0.062 0.402 0.744 0.951 0.998 0.253 0.606 0.926 0.225 0.649 0.243 
TMO 0.001 0.003 0.030 0.046 0.049 0.004 0.164 0.746 0.994 0.074 0.457 0.904 0.158 0.623 0.248 
TMC 0.023 0.047 0.070 0.068 0.077 0.148 0.612 0.928 0.998 0.193 0.575 0.940 0.218 0.707 0.327 

 
DBCD 

TML 0.071 0.083 0.071 0.050 0.050 0.278 0.665 0.928 0.979 0.207 0.549 0.880 0.184 0.596 0.240 
TMW 0.026 0.039 0.045 0.043 0.032 0.172 0.598 0.903 0.988 0.178 0.537 0.888 0.183 0.606 0.198 
TRisk 0.105 0.092 0.075 0.059 0.049 0.307 0.686 0.935 0.996 0.201 0.546 0.903 0.186 0.581 0.193 
TMO 0.009 0.018 0.029 0.027 0.023 0.062 0.372 0.794 0.986 0.121 0.468 0.887 0.146 0.582 0.176 
TMC 0.041 0.044 0.050 0.064 0.070 0.209 0.605 0.903 0.994 0.178 0.542 0.922 0.194 0.681 0.289 

SEU 

TML 0.057 0.052 0.047 0.049 0.048 0.266 0.640 0.900 0.981 0.183 0.526 0.879 0.178 0.624 0.245 
TMW 0.023 0.043 0.059 0.047 0.038 0.168 0.617 0.929 0.993 0.182 0.558 0.902 0.196 0.580 0.195 
TRisk 0.113 0.092 0.076 0.062 0.053 0.347 0.720 0.950 0.998 0.227 0.593 0.928 0.220 0.617 0.213 
TMO 0.001 0.006 0.031 0.040 0.042 0.016 0.283 0.831 0.994 0.094 0.473 0.908 0.161 0.604 0.220 
TMC 0.030 0.047 0.058 0.064 0.070 0.194 0.618 0.928 0.998 0.180 0.567 0.943 0.214 0.696 0.311 

 
GDL 

TML 0.077 0.068 0.058 0.044 0.045 0.292 0.653 0.927 0.990 0.189 0.540 0.901 0.182 0.606 0.236 



 

Table 9. Power and type I error at ROdds (alpha = 0.05, n = 30).  
p1 0.200 0.300 0.500 0.700 0.800 0.100 0.100 0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.700 
p2 0.200 0.300 0.500 0.700 0.800 0.300 0.500 0.700 0.900 0.500 0.700 0.900 0.700 0.900 0.900 

TMW 0.030 0.040 0.042 0.040 0.031 0.202 0.630 0.935 0.998 0.178 0.562 0.939 0.174 0.637 0.205 
TRisk 0.022 0.023 0.030 0.026 0.017 0.143 0.502 0.857 0.984 0.128 0.475 0.884 0.129 0.497 0.112 
TMO 0.024 0.031 0.036 0.031 0.023 0.163 0.587 0.926 0.999 0.154 0.536 0.929 0.151 0.598 0.167 
TMC 0.053 0.048 0.043 0.047 0.052 0.283 0.682 0.946 0.999 0.184 0.566 0.947 0.180 0.690 0.285 

SMLE 

TML 0.048 0.045 0.040 0.044 0.049 0.266 0.662 0.938 0.998 0.174 0.551 0.941 0.171 0.672 0.270 
TMW 0.029 0.040 0.044 0.040 0.028 0.191 0.632 0.940 0.999 0.180 0.572 0.941 0.178 0.644 0.198 
TRisk 0.011 0.018 0.032 0.026 0.018 0.085 0.448 0.864 0.994 0.120 0.490 0.906 0.141 0.547 0.134 
TMO 0.026 0.033 0.042 0.031 0.024 0.178 0.609 0.934 0.999 0.165 0.555 0.933 0.161 0.619 0.185 
TMC 0.052 0.046 0.045 0.046 0.048 0.280 0.688 0.948 0.999 0.185 0.573 0.949 0.181 0.696 0.284 

 
DBCD 

TML 0.040 0.043 0.043 0.043 0.038 0.244 0.667 0.945 0.999 0.178 0.565 0.944 0.174 0.680 0.252 
TMW 0.032 0.041 0.043 0.037 0.030 0.207 0.647 0.935 0.996 0.183 0.562 0.924 0.186 0.636 0.204 
TRisk 0.047 0.040 0.035 0.032 0.028 0.214 0.605 0.903 0.993 0.152 0.503 0.894 0.140 0.528 0.146 
TMO 0.014 0.026 0.032 0.023 0.020 0.127 0.540 0.900 0.995 0.148 0.520 0.914 0.150 0.587 0.159 
TMC 0.049 0.047 0.043 0.047 0.052 0.268 0.676 0.938 0.998 0.187 0.564 0.945 0.191 0.695 0.284 

SEU 

TML 0.059 0.049 0.042 0.044 0.049 0.285 0.677 0.935 0.995 0.182 0.551 0.922 0.183 0.665 0.268 
TMW 0.029 0.037 0.049 0.041 0.030 0.203 0.657 0.943 0.999 0.167 0.573 0.929 0.178 0.617 0.192 
TRisk 0.024 0.032 0.046 0.035 0.031 0.183 0.625 0.936 0.999 0.158 0.560 0.922 0.165 0.583 0.166 
TMO 0.013 0.026 0.043 0.034 0.033 0.124 0.587 0.930 0.999 0.150 0.552 0.928 0.161 0.619 0.204 
TMC 0.051 0.047 0.050 0.050 0.058 0.281 0.700 0.948 0.999 0.177 0.579 0.949 0.187 0.695 0.298 

 
GDL 

TML 0.050 0.047 0.046 0.039 0.043 0.282 0.700 0.947 0.999 0.176 0.563 0.933 0.169 0.652 0.258 
 

Table 10. Power and type I error at RLLR (alpha = 0.05, n = 30).  
p1 0.200 0.300 0.500 0.700 0.800 0.100 0.100 0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.700 
p2 0.200 0.300 0.500 0.700 0.800 0.300 0.500 0.700 0.900 0.500 0.700 0.900 0.700 0.900 0.900 

TMW 0.034 0.043 0.046 0.044 0.031 0.212 0.659 0.946 0.999 0.187 0.575 0.948 0.182 0.667 0.218 
TRisk 0.039 0.034 0.033 0.022 0.008 0.203 0.597 0.911 0.995 0.146 0.490 0.869 0.124 0.432 0.072 
TMO 0.018 0.029 0.040 0.031 0.017 0.129 0.577 0.931 0.999 0.162 0.549 0.934 0.156 0.587 0.133 
TMC 0.052 0.050 0.046 0.052 0.051 0.274 0.692 0.951 0.999 0.192 0.578 0.953 0.185 0.700 0.278 

SMLE 

TML 0.060 0.050 0.044 0.051 0.057 0.289 0.691 0.948 0.999 0.186 0.567 0.950 0.181 0.698 0.289 
TMW 0.036 0.047 0.050 0.045 0.031 0.223 0.688 0.957 0.999 0.192 0.591 0.956 0.192 0.697 0.225 
TRisk 0.063 0.049 0.037 0.012 0.001 0.278 0.686 0.947 0.998 0.171 0.528 0.872 0.129 0.356 0.026 
TMO 0.010 0.028 0.046 0.026 0.009 0.094 0.569 0.946 0.999 0.169 0.579 0.942 0.171 0.580 0.094 
TMC 0.050 0.055 0.051 0.052 0.044 0.265 0.710 0.959 0.999 0.197 0.592 0.959 0.197 0.715 0.267 

 
DBCD 

TML 0.071 0.062 0.051 0.057 0.066 0.315 0.727 0.960 0.999 0.198 0.591 0.959 0.199 0.733 0.316 
TMW 0.034 0.043 0.046 0.043 0.033 0.215 0.665 0.947 0.999 0.187 0.581 0.947 0.186 0.671 0.214 
TRisk 0.047 0.038 0.031 0.018 0.007 0.226 0.617 0.915 0.995 0.148 0.492 0.854 0.125 0.414 0.063 
TMO 0.016 0.027 0.038 0.028 0.013 0.124 0.573 0.931 0.999 0.161 0.553 0.929 0.157 0.574 0.123 
TMC 0.052 0.049 0.047 0.050 0.050 0.276 0.696 0.952 0.999 0.191 0.583 0.951 0.191 0.701 0.270 

SEU 

TML 0.063 0.051 0.044 0.052 0.061 0.294 0.696 0.949 0.999 0.186 0.573 0.948 0.186 0.701 0.292 
TMW 0.033 0.037 0.043 0.038 0.032 0.230 0.670 0.950 1.000 0.178 0.585 0.956 0.177 0.675 0.215 
TRisk 0.035 0.032 0.036 0.018 0.005 0.230 0.645 0.937 0.999 0.151 0.537 0.905 0.139 0.449 0.049 
TMO 0.016 0.030 0.043 0.031 0.014 0.139 0.614 0.945 1.000 0.172 0.582 0.951 0.172 0.612 0.127 
TMC 0.052 0.050 0.044 0.048 0.053 0.293 0.719 0.955 1.000 0.189 0.588 0.960 0.186 0.722 0.275 

 
GDL 

TML 0.063 0.051 0.044 0.049 0.064 0.322 0.722 0.955 1.000 0.189 0.587 0.960 0.187 0.728 0.302 



 

Table 11. Power and type I error at RRSIHR (alpha = 0.05, n = 30).  
p1 0.200 0.300 0.500 0.700 0.800 0.100 0.100 0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.700 
p2 0.200 0.300 0.500 0.700 0.800 0.300 0.500 0.700 0.900 0.500 0.700 0.900 0.700 0.900 0.900 

TMW 0.028 0.045 0.056 0.048 0.035 0.174 0.648 0.944 0.999 0.192 0.588 0.946 0.202 0.678 0.228 
TRisk 0.118 0.085 0.058 0.034 0.018 0.343 0.712 0.950 0.999 0.207 0.568 0.910 0.172 0.515 0.102 
TMO 0.004 0.012 0.040 0.034 0.023 0.037 0.397 0.890 0.998 0.130 0.538 0.936 0.170 0.616 0.156 
TMC 0.038 0.049 0.056 0.057 0.057 0.200 0.657 0.945 0.999 0.192 0.591 0.953 0.208 0.718 0.290 

SMLE 

TML 0.070 0.065 0.056 0.054 0.062 0.291 0.685 0.945 0.998 0.196 0.579 0.946 0.197 0.705 0.301 
TMW 0.020 0.050 0.057 0.050 0.038 0.157 0.654 0.948 0.999 0.201 0.605 0.956 0.217 0.700 0.242 
TRisk 0.138 0.103 0.062 0.030 0.013 0.383 0.732 0.953 0.999 0.227 0.594 0.922 0.186 0.534 0.097 
TMO 0.001 0.007 0.038 0.034 0.020 0.017 0.323 0.887 0.999 0.123 0.554 0.942 0.185 0.628 0.159 
TMC 0.028 0.056 0.057 0.057 0.060 0.183 0.662 0.948 0.999 0.202 0.607 0.959 0.221 0.733 0.304 

 
DBCD 

TML 0.074 0.079 0.057 0.052 0.064 0.293 0.693 0.948 0.999 0.208 0.593 0.954 0.207 0.726 0.317 
TMW 0.029 0.039 0.050 0.044 0.033 0.181 0.626 0.930 0.998 0.178 0.559 0.932 0.182 0.653 0.214 
TRisk 0.095 0.070 0.044 0.024 0.010 0.275 0.650 0.926 0.996 0.163 0.512 0.875 0.137 0.449 0.071 
TMO 0.014 0.021 0.037 0.028 0.016 0.075 0.466 0.892 0.997 0.137 0.521 0.921 0.152 0.574 0.128 
TMC 0.044 0.045 0.050 0.053 0.049 0.225 0.642 0.932 0.998 0.181 0.562 0.945 0.189 0.696 0.271 

SEU 

TML 0.058 0.053 0.050 0.052 0.062 0.268 0.657 0.929 0.997 0.178 0.548 0.934 0.179 0.684 0.289 
TMW 0.031 0.048 0.052 0.050 0.036 0.206 0.682 0.951 1.000 0.197 0.610 0.961 0.212 0.690 0.235 
TRisk 0.084 0.065 0.050 0.026 0.009 0.321 0.715 0.952 1.000 0.201 0.591 0.919 0.173 0.495 0.076 
TMO 0.002 0.016 0.042 0.034 0.017 0.047 0.476 0.923 1.000 0.147 0.577 0.947 0.186 0.613 0.142 
TMC 0.040 0.052 0.052 0.056 0.053 0.228 0.689 0.952 1.000 0.198 0.611 0.964 0.216 0.721 0.289 

 
GDL 

TML 0.074 0.062 0.051 0.055 0.063 0.301 0.707 0.952 1.000 0.199 0.602 0.962 0.207 0.722 0.316 

 



 

Table 12. Power and type I error at RRPW (alpha = 0.05, n = 30).  
p1 0.200 0.300 0.500 0.700 0.800 0.100 0.100 0.100 0.100 0.300 0.300 0.300 0.500 0.500 0.700 
p2 0.200 0.300 0.500 0.700 0.800 0.300 0.500 0.700 0.900 0.500 0.700 0.900 0.700 0.900 0.900 

TMW 0.031 0.039 0.050 0.050 0.042 0.191 0.631 0.918 0.966 0.166 0.538 0.859 0.183 0.585 0.204 
TRisk 0.071 0.058 0.059 0.061 0.060 0.287 0.683 0.939 0.993 0.193 0.565 0.905 0.197 0.607 0.216 
TMO 0.004 0.012 0.032 0.038 0.039 0.047 0.410 0.840 0.967 0.105 0.467 0.867 0.151 0.584 0.196 
TMC 0.045 0.042 0.050 0.063 0.075 0.227 0.640 0.921 0.988 0.167 0.546 0.914 0.196 0.680 0.301 

RPW 

TML 0.067 0.050 0.049 0.049 0.053 0.288 0.661 0.916 0.931 0.172 0.523 0.820 0.173 0.573 0.235 
TMW 0.032 0.043 0.052 0.050 0.040 0.208 0.658 0.944 0.998 0.183 0.586 0.939 0.204 0.658 0.219 
TRisk 0.057 0.051 0.055 0.048 0.032 0.273 0.679 0.947 0.998 0.192 0.588 0.935 0.199 0.612 0.164 
TMO 0.003 0.013 0.038 0.041 0.033 0.047 0.464 0.906 0.998 0.123 0.527 0.934 0.172 0.641 0.193 
TMC 0.043 0.045 0.052 0.062 0.064 0.237 0.662 0.944 0.999 0.184 0.592 0.956 0.216 0.723 0.307 

DL 

TML 0.058 0.050 0.050 0.049 0.056 0.275 0.672 0.943 0.998 0.183 0.567 0.940 0.188 0.688 0.283 
TMW 0.027 0.040 0.048 0.049 0.044 0.188 0.626 0.921 0.968 0.167 0.537 0.848 0.175 0.550 0.195 
TRisk 0.073 0.062 0.058 0.063 0.072 0.283 0.678 0.936 0.993 0.193 0.563 0.910 0.196 0.617 0.247 
TMO 0.006 0.012 0.031 0.040 0.049 0.054 0.409 0.840 0.969 0.108 0.463 0.864 0.148 0.584 0.229 
TMC 0.039 0.044 0.049 0.061 0.079 0.226 0.636 0.922 0.989 0.168 0.547 0.911 0.190 0.671 0.315 

SMLE 

TML 0.064 0.054 0.046 0.046 0.047 0.287 0.659 0.917 0.925 0.171 0.519 0.794 0.165 0.528 0.200 
TMW 0.031 0.037 0.053 0.049 0.044 0.202 0.635 0.929 0.969 0.181 0.529 0.813 0.173 0.503 0.192 
TRisk 0.063 0.054 0.065 0.072 0.081 0.290 0.685 0.942 0.994 0.202 0.572 0.911 0.209 0.640 0.285 
TMO 0.003 0.010 0.033 0.043 0.054 0.041 0.407 0.866 0.981 0.110 0.460 0.856 0.146 0.573 0.257 
TMC 0.041 0.040 0.054 0.067 0.083 0.236 0.640 0.930 0.990 0.181 0.543 0.905 0.195 0.660 0.325 

 
DBCD 

TML 0.061 0.048 0.052 0.042 0.036 0.289 0.661 0.925 0.857 0.183 0.511 0.696 0.160 0.407 0.144 
TMW 0.033 0.040 0.047 0.041 0.032 0.204 0.633 0.924 0.994 0.183 0.553 0.908 0.185 0.618 0.199 
TRisk 0.076 0.059 0.058 0.048 0.043 0.278 0.664 0.929 0.996 0.183 0.529 0.899 0.170 0.564 0.182 
TMO 0.012 0.021 0.028 0.027 0.024 0.100 0.467 0.855 0.993 0.130 0.493 0.900 0.143 0.578 0.169 
TMC 0.051 0.047 0.050 0.059 0.065 0.251 0.652 0.925 0.997 0.186 0.556 0.933 0.197 0.686 0.286 

SEU 

TML 0.062 0.051 0.048 0.047 0.049 0.293 0.671 0.923 0.992 0.185 0.541 0.904 0.183 0.642 0.251 
TMW 0.032 0.045 0.049 0.045 0.032 0.216 0.658 0.937 0.998 0.171 0.576 0.916 0.192 0.602 0.196 
TRisk 0.056 0.053 0.053 0.050 0.042 0.281 0.681 0.942 0.998 0.180 0.586 0.927 0.196 0.615 0.197 
TMO 0.004 0.017 0.036 0.040 0.037 0.066 0.480 0.900 0.998 0.122 0.525 0.918 0.165 0.622 0.219 
TMC 0.044 0.049 0.050 0.058 0.061 0.250 0.666 0.939 0.999 0.173 0.584 0.948 0.206 0.700 0.314 

 
GDL 

TML 0.061 0.054 0.047 0.044 0.043 0.294 0.681 0.937 0.998 0.175 0.560 0.920 0.179 0.639 0.256 
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ABSTRACT 
Nanoparticle quantum dots (QDs) are ideal materials for multiplexed biomarker detection, localization, and 
quantification. Both direct and indirect methods are available for QD-based immunohistofluorescence (QD-IHF) 
staining; the direct method, however, has been considered laborious and costly. In this study, we optimized 
and compared the indirect QD-IHF single staining procedure using QD-secondary antibody conjugates and 
QD-streptavidin conjugates. Problems associated with sequential multiplex staining were identified quantitatively. 
A method using a QD cocktail solution was developed allowing simultaneous staining with three antibodies 
against E-cadherin, epidermal growth factor receptor and β-catenin in formalin-fixed and paraffin-embedded 
(FFPE) tissues. The expression of each biomarker was quantified by using the cocktail and the sequential 
methods. Comparison of the two methods demonstrated that the cocktail method provided more consistent 
and stable QD signals for each multiplexed biomarker than the sequential method, and provides a convenient 
tool for multiplexing biomarkers in both research and clinical applications. 
 
KEYWORDS 
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Introduction 

In recent years, nanotechnology has developed rapidly 
and been used in molecular detection, imaging, 
diagnostics, and therapeutics in the cancer field [1, 2]. 
Quantum dots (QDs) are nanoscale particles made 
from inorganic semiconductors that can produce 
different fluorescence signals depending on their size 
and components. Compared with organic dyes, QDs 
have superior signal brightness and photostability, 
relatively long excited-state lifetime, and optimized 

signal-to-background ratios [3]. QDs can be covalently 
linked to biological molecules such as peptides, 
proteins, and nucleic acids, as well as streptavidin 
[4, 5]. Due to their long excitation time and narrow 
emission spectra, QDs can be excited simultaneously 
through one appropriate excitation source. Together 
these properties render QDs ideal for multiplexed 
biological imaging and they have been used for both  
molecular and cellular labeling [3–7].  

Many researchers reported that QDs can immuno- 
stain more than three biomarkers in formalin-fixed 
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paraffin-embedded (FFPE) tissues using QD-based 
immunohistofluorescence (QD-IHF) [8–11]. To date, 
several different staining procedures have been utilized, 
including direct and indirect staining, such as QDs 
linked to primary antibodies and QDs linked to 
secondary antibodies or streptavidin, respectively [9, 
10, 12, 13]. Although the direct staining method (QDs 
linked directly to a primary antibody) is straight- 
forward, the affinity of some primary antibodies may 
be reduced during the QD conjugation process. The 
conformation and function of the primary antibody 
may be changed and its binding properties are likely 
altered by covalent modifications at either –NH2 or 
–COOH sites [9, 14]. Furthermore, the reagent costs 
are considerable because each conjugation reaction 
requires up to 300 μg of antibody (Invitrogen protocol) 
and the yield of QD-antibody conjugates is usually 
low. Since each primary antibody is covalently 
conjugated to just one type of QD, changing the 
antibody for a particular QD probe is not possible 
once the conjugation is completed. Many researchers 
have abandoned the direct staining method since these 
problems can be avoided by indirect QD staining  
methods.  

The main advantages of indirect QD staining are 
its flexibility, lower costs, and the reduced constraints 
on primary antibodies. Although many studies have 
described detailed protocols for tissue specimen 
preparation, multicolor QD staining, and image 
processing [8, 9, 15], these have not provided  
detailed discussion or quantitative analysis of the 
optimization of their multiplexed biomarker staining 
procedures. In this study, we compared multiple QD 
staining in a sequential order with that in a 
simultaneous combination while using different 
methods—QD-secondary antibody conjugates and 
QD-streptavidin conjugates. QD staining of three 
biomarkers, epidermal growth factor receptor (EGFR), 
E-cadherin (E-cad), and β-catenin (β-cat), was examined 
and quantitatively evaluated with these staining  
methods for each of the tested biomarkers.  

1. Experimental 

Using an institutional review board-approved consent 
for tissue acquisition, tissue samples for this study 

were obtained from surgical specimens from patients 
who were diagnosed at Emory University Hospital 
with squamous cell carcinoma of the head and neck 
(SCCHN). After a routine process to generate FFPE 
samples, the blocks were sectioned to 4 μm each and 
mounted on coated slides. Each sample was analyzed 
by hematoxylin and eosin (H&E) staining. Before 
QD-IHF staining, we confirmed that the primary 
antibodies were suitable for immunohistochemistry 
(IHC) and also selected FFPE samples which were 
strongly positive for staining of the primary antibodies 
as positive control slides.  

We selected mouse anti-human E-cad, rabbit anti- 
human EGFR, and goat anti-human β-cat as the 
primary antibodies, since these antigens are strongly 
expressed in SCCHN tissues. We found previously 
that expression and localization of E-cad and EGFR 
correlated with metastasis and poor prognosis [16]. 
QD-secondary antibody conjugates (QD-2nd Ab) and 
QD-streptavidin conjugates (QD-streptavidin) were 
selected as follows: Qdots® 565 goat F(ab´)2 anti-mouse 
immunoglobulin G (IgG) conjugate, Qdots® 605 goat 
F(ab´)2 anti-rabbit IgG conjugate, Qdots® 655 rabbit 
F(ab´)2 anti-goat IgG conjugate, and Qdots® streptavidin 
conjugate (565, 605, 655). 

The QD-IHF procedure with single QD-2nd Ab 
was carried out as follows (shown in the cartoon in 
Fig. 1(a)). After deparaffinization and rehydration, 
antigen retrieval was performed by heating with citric 
acid (10 mmol/L, pH 6.0) in a microwave to 95 °C for 
10 min. The tissue slides were blocked with 5% normal 
goat serum (Dako) for 10 min before the primary 
antibody incubation (E-cad 1:2000 dilution, EGFR 
1:150 dilution, or β-cat 1:2000 dilution) for 1 h at  
37 °C. Following three washes with phosphate-buffered 
saline (PBS) (5 min each), the slides were incubated 
with QD [QD565 goat F(ab´)2 anti-mouse IgG con- 
jugate, QD605 goat F(ab´)2 anti-rabbit IgG conjugate, 
or QD655 rabbit F(ab´)2 anti-goat IgG conjugate, 
accordingly] in 6% bovine serum albumin (BSA) for 
1 h at 37 °C. After washing three times with PBS, the 
nuclei were counterstained with 4´,6-diamidino-2- 
phenylindole (DAPI) (Invitrogen, Carlsbad, CA, USA). 
The slides were mounted with CytosealTM 60 mounting  
medium (Richard-Allan Scientific, MI). 
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For QD-IHF staining with QD-streptavidin (shown 
in the cartoon in Fig. 1(b)), slides were prepared as 
above. After the primary antibody incubation, slides 
were incubated with biotinylated 2nd Ab for 20 min 
at room temperature (RT), and washed three times 
with PBS (5 min each). Slides were incubated with 
QD565-, QD605-, or QD655-streptavidin (1:100) in  
6% BSA for 1 h at 37 °C and washed three times with 
PBS (5 min each). After nuclei counterstaining and 
mounting, the slides were kept in the dark at 4 °C for 
visualizing and quantifying. Mouse, rabbit or goat  

IgG was used as a negative control.  
For sequential QD-IHF staining with QD-streptavidin, 

after the first primary antibody E-cad incubation 
(1:2000 dilution), the slides were incubated with the 
biotinylated 2nd Ab for 20 min at room temperature 
and washed three times with PBS (5 min each). Slides 
were then incubated with QD565-streptavidin (1:100) 
in 6% BSA for 1 h at 37 °C and washed three times with 
PBS (5 min each). After staining the first biomarker 
with QDs, the staining procedure was repeated from 
the blocking step, except the primary antibody and 

 

Figure 1 Comparison of single QD-IHF staining using QD-2nd Ab with QD-streptavidin: (a) cartoon showing single QD-IHF staining
with QD-2nd Ab conjugates; (b) cartoon showing single QD-IHF staining with QD-streptavidin conjugates; (c) RGB image of E-cad
QD-IHF staining with QD565-2nd Ab; (d) RGB image of E-cad QD-IHF staining with QD565-streptavidin; (e) signal intensity comparison
between QD-2nd Ab and QD-streptavidin 
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QD conjugate were replaced with second biomarker 
EGFR (1:150) and QD605-streptavidin (1:100), 
respectively. Then the slides were mounted after 
nuclear counterstaining. For QD signal comparison, 
we also switched the staining sequence from EGFR 
with QD565-streptavidin staining as the first step to 
E-cad with QD605-streptavidin staining as the second. 
Mouse and rabbit IgG were used as a negative control. 

For the cocktail staining method, we chose primary 
antibodies of distinct species origins, including mouse 
anti-human E-cad, rabbit anti-human EGFR, and goat 
anti-human β-cat. Therefore, for QD-2nd Abs, we 
selected QD565 goat F(ab´)2 anti-mouse IgG, QD605 
goat F(ab´)2 anti-rabbit IgG, and QD655 rabbit F(ab´)2 
anti-goat IgG, respectively. After preparation steps, 
the slides were incubated with the three primary 
antibodies against E-cad (1:2000), EGFR (1:150), and 
β-cat (1:2000) simultaneously for 1 h at 37 °C. After 
washing three times with PBS, the three QD-2nd Abs 
in a cocktail solution at 1:100 dilution were added to 
the slides with further incubation for 1 h at 37 °C. 
Slides were washed three times in PBS, counterstained, 
mounted, and stored as described above. For the 
sequential method (shown in the cartoon in Fig. 4(a)(ii)), 
the additional biomarker β-cat was stained by 
incubation with QD655-streptavidin following staining 
for E-cad with QD565-streptavidin and EGFR with 
QD605-streptavidin as above. The IgG with the same 
host species as the 2nd Ab was used as a negative  
control. 

An Olympus microscope IX71 with CRi Nuance 
spectral imaging and quantifying system (CRi Inc., 
Woburn, MA, USA) was used to observe and quantify 
the QD signals. All cubed image files were collected 
from the FFPE tissue slides at 10-nm wavelength 
intervals from 500 to 800 nm with an auto exposure time 
at 200×  magnification. Taking the cube with a long 
wavelength bandpass filter allowed transmission of 
all emission wavelengths above 450 nm. Both mixed 
and separated QD images were established after 
determining the QD spectral library and unmixing 
the cube. Background and auto-fluorescence were 
removed for accurate quantification of each QD 
signal. For comparison of the QD signals, we defined 
the measurement threshold as the same in each case. 

An arbitrary unit (a.u.) was defined as the average 
fluorescence signal intensity per exposure time (ms), 
in which the exposure time was optimized so that the 
differences in fluorescence intensity among QDs 
were minimized and the same exposure time could 
be used for all QDs. These values were obtained 
directly from the Nuance software. Ten randomly 
selected fields in each sample slide were used for 
quantification. Data are presented as a mean of ten  
readings with the standard deviation (S. D.). 

2. Results and discussion 

We used the quantification results to evaluate the 
working conditions. It was found that (1) the same 
antigen retrieval method as used in IHC also 
performed well in QD-IHF staining of FFPE samples; 
(2) the optimized working conditions for primary 
antibodies in IHC also worked well for QD-IHF; (3) 
incubation of the QD-conjugates from Invitrogen at 
10–20 nmol/L and 37 °C for 1 h was sufficient to reach 
a balance of the maximum staining effect with 
minimized non-specific binding. Non-specific binding 
increased when increasing either the concentration or 
the incubation time of the QD-conjugates, suggesting 
that 10–20 nmol/L of QD-conjugate may be a saturating 
level for staining. There was almost no significant 
difference in the intensity of QD signal when the 
concentration of QD-conjugates reached 20 nmol/L, 
but the non-specific binding increased directly (data 
not shown), suggesting that the QD binding was 
saturated at 20 nmol/L; (4) multiple PBS washing up 
to three times did not reduce the QD signal intensity. 
The effects of other washing buffers, such as PBS 
with Tween-20 (PBS-T) or Tris-buffered saline with 
Tween-20 (TBS-T), were similar to that of PBS. The 
antigen retrieval method, dilution, and incubation 
condition of the antibody are the main factors that 
affect the results of immunostaining FFPE tissues. 
Most researchers use the same retrieval method and 
incubation conditions for primary antibodies when 
conducting IHC and IHF stained with QDs. There are 
several issues that we have to address before 
immunostaining with QD-bioconjugates: (1) do the 
optimized working conditions for IHC work well for 
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QD-IHF? (2) how can we control the dilution ratio for 
QD-conjugates and the incubation conditions to obtain 
a balance between an optimal signal and minimized 
non-specific binding? (3) how can we optimize the 
QD-IHF staining procedure, especially in multiple 
staining? These potential problems have been addressed  
using the quantification data in our studies. 

Figure 1 shows that the signal when staining with 
QD-2nd Ab was lower than that with QD-streptavidin 
(Figs. 1(c), 1(d)). The quantification results also 
showed that the average intensity from QD- 
streptavidin staining was 1.36–1.73-fold greater than 
that from QD-2nd Ab staining (Fig. 1(e)). The staining  
with QD-streptavidin had some amplification effect.  

For multiplex QD staining, the sequential staining 
method is used by most researchers [8, 12]. To 
investigate whether the intensity of the QD signal 
after the first step changes or not after the subsequent 
biomarker staining and many washing steps, we 
initially tested sequential QD-IHF staining of E-cad 
with QD565-streptavidin followed by EGFR with 
QD605-streptavidin, and then altered this sequence. 
The staining signals from the two experiments were 

quantified and compared. It was found that the QD 
intensity of E-cad staining when stained first was 
0.104 ± 0.050 compared with 0.534 ± 0.132 when stained 
second (Fig. 2(a)). Similarly, the intensity of EGFR 
staining when stained first was 0.189 ± 0.104 compared 
with 0.565 ± 0.098 when stained second (Fig. 2(b)). 
This result indicated that the intensity of the first QD 
signal after the initial biomarker staining was reduced  
following the second blocking and washing steps.  

In order to achieve the best staining of each 
biomarker using the QD-IHF sequential method, the 
selection of QDs may be considered. Our study has 
demonstrated that the intensity of QDs from 
Invitrogen at the same concentration was different 
and varied in the order QD655 > QD605 > QD565 
(Fig. 3). In theory, the QD with highest intensity is 
recommended to be used in the first step to offset the 
decreasing signal when staining with QD-IHF in a  
sequential manner. 

In order to avoid the decrease in signal observed 
with sequential staining, we applied three mixed 
primary antibodies with distinct species origins to the 
tissue slides and then incubated the relevant QD-2nd 

 

Figure 2 Comparison of the first signal with the second signal in a sequential QD-IHF staining. (a) E-cad with QD565-streptavidin as
the first biomarker and EGFR with QD605-streptavidin as the second. (b) EGFR with QD605-streptavidin as the first biomarker and
E-cad with QD565-streptavidin as the second. (i) unmixed first signal; (ii) unmixed second signal; (iii) quantification comparison
between these two biomarkers 
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Abs in a cocktail solution in order to make the IHF 
staining efficient and simple [shown in the cartoon in 
Fig. 4(a)(i)]. The level of each QD signal obtained from 
the cocktail method was quantified and compared to  
that obtained with the sequential method. It was 
found that all of the QD signals obtained by the 
QD-IHF cocktail method were consistent (Fig. 4(b)). 
The intensities of E-cad, EGFR, and β-cat were 0.318 ± 
0.015, 0.309 ± 0.034, and 0.362 ± 0.036, respectively 
(Fig. 4(d)). In contrast, the signals from the sequential 
staining method were not consistent (Fig. 4(c)). 
Intensities of the second and the third signals were, 
respectively, 1.57–2.20- and 5.80–8.24-fold higher than  
the first signal (Fig. 4(d)). 

Because the properties of nanocrystals are highly 
dependent on the surface environment, whether the 
stability with respect to the optical emission peak 
maximum and color purity of the QDs in such a 
cocktail solution may be changed is always a 
consideration. As recommended by the QD 
manufacturer, Invitrogen Cooperation, we diluted 
the three QDs with 6% BSA in PBS solution, and 
tested the signal intensity of the QDs either singly or 
in a cocktail solution using a spectrofluorimeter 
[QuantaMaster™ UV VIS, Photon Technology 

International (PTI)]. Our study confirmed that the 
QD signals in PBS appeared at the expected 
wavelength with reasonable sensitivity (Fig. 3). 
Furthermore, the fluorescence intensity of each QD 
was not altered in the cocktail solution when compared  
to the single QD solution (Fig. 3).  

One of the drawbacks of the cocktail method is 
that it can be challenging to find more than four 
primary antibodies with distinct species origins for 
simultaneous IHF staining, which limits the use of 
this method to not more than four biomarkers. In the 
case of multiplexing more than four biomarkers, the 
cocktail plus the sequential method may be applied. 

3. Conclusions 

We have demonstrated that the signal intensities 
using the QD-streptavidin-based staining method 
were higher than those with QD-2nd Ab. QD staining 
signals using the cocktail method were more 
consistent and stable than those obtained using the 
sequential method. In order to achieve the optimal 
signal for each biomarker in a QD-IHF multiplexed 
staining procedure, the staining method selection  
and QD intensity should be considered.  

 

Figure 3 Comparison of QD emission intensity in single QD and cocktail PBS solutions. Fluorescence intensity of each of the three
QDs was detected by QuantaMaster™ UV VIS, (Photon Technology International, Birmingham, NJ) 
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1. ABSTRACT  
 

We review the semiparametric approach 
previously proposed by Kong and Lee and extend it 
to a case in which the dose-effect curves follow the 
Emax model instead of the median effect equation. 
When the maximum effects for the investigated drugs 
are different, we provide a procedure to obtain the 
additive effect based on the Loewe additivity model. 
Then, we apply a bivariate thin plate spline approach 
to estimate the effect beyond additivity along with its 
95% point-wise confidence interval as well as its 
95% simultaneous confidence interval for any 
combination dose. Thus, synergy, additivity, and 
antagonism can be identified. The advantages of the 
method are that it provides an overall assessment of 
the combination effect on the entire two-dimensional 
dose space spanned by the experimental doses, and it 
enables us to identify complex patterns of drug 
interaction in combination studies. In addition, this 
approach is robust to outliers. To illustrate this 
procedure, we analyzed data from two case studies.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
         Studies of interactions among biologically active 
agents, such as drugs, carcinogens, or environmental 
pollutants have become increasingly important in many 
branches of biomedical research. For example, in cancer 
chemotherapy, the therapeutic effect of many anticancer 
drugs is limited when they are used as single drugs. 
Finding combination therapies with increased treatment 
effect and decreased toxicity is an active and promising 
research area (1). An effective and accurate evaluation 
of drug interaction for in vitro and/or in vivo studies can 
help to determine whether a combination therapy should 
be further investigated.  
 
          The literature supports the Loewe additivity 
model as the gold standard for defining drug interactions 
(2-5). The Loewe additivity model defines an additive 
effect based on the following equation 

1 2

1 2

1
y , y ,

d d .
D D

+ =          (E1)
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Figure 1. Dose-effect curves. Panel A shows a typical 
curve with the maximum effect, Emax, less than 1. ED50 is 
the dose required to produce half of the maximum effect, E0-
0.5Emax. Panel B shows two dose-effect curves with different 
maximum effects, say, Emax,1>Emax,2. In Panel B, drug 1 at dose 
level D1-Emax2,1 produces the maximum effect produced by drug 
2 alone.     
 
Here y is the predicted additive effect, which is produced 
by the combination dose (d1, d2) when the two drugs do not 
interact; and Dy,1 and Dy,2  are the respective doses of drug 1 
and drug 2 required to produce the same effect y when 
applied alone. If we know the dose-effect relationship for 
each single agent, say E(d)=fi(d) for agent i (i=1,2), we are 
able to obtain the dose Dy,i by using the inverse function of 
fi, denoted as fi

-1(y). By replacing Dy,1 and Dy,2 in equation 
(E 1) with f1

-1(y)  and   f2
-1(y), respectively, we can obtain 

an equation that includes the single variable y, i.e.,         

                       
                       (E2)                        

 
 

By solving equation (E2), we can obtain the predicted 
additive effect y. If the observed effect at (d1,d2) is more 
than (equal to, or less than) the predicted effect, we say that 
the combination dose (d1, d2) is synergistic (additive, or 
antagonistic).  
 
                In our previous studies (6-8), we found that Chou 
and Talalay’s (9) median effect equation was appropriate to 
describe the dose-effect relationships. Chou and Talalay’s 
median effect equation, in its nonlinear form, can be 
written as follows: 
 

   

                          
                                          (E3) 

 
where ED50 is the dose required  to produce 50% of the 
maximum effect, and m is the slope factor (Hill coefficient), 
measuring the sensitivity of the effect to the dose range of 
the drug. For the data in the case studies (see Section 4 for 
details), we found that the median effect equation (E3) 
could not adequately describe the marginal dose-effect 
relationship because the plateau of the effect does not go to 
zero when a large dose level of a drug is applied. Instead, 
the following Emax model (E4) presented by Ting (10) 
describes the dose-effect relationship very well: 
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In the Emax model (E4), E0 is the base effect, corresponding 
to the measurement of response when no drug is applied; 
Emax is the maximum effect attributable to the drug; ED50 is 
the dose level producing half of Emax, i.e., ED50 is the dose 
level required to produce the effect at a value of E0-0.5Emax 
(Figure 1.A); d is the dose level, which produces the effect 
E. Thus, E0-Emax will be the asymptotic net effect when a 
large dose of the drug is applied. Different maximum 
effects for agents may reflect different mechanisms of 
action for the drugs (11).  For in vitro studies, cell growth is 
commonly used as an endpoint to measure the effect of 
inhibitors. When no drugs (or, no inhibitors) are applied, 
the cell proliferation obtains its largest value. In this case, 
the dose-effect curve is similar to the one shown in Figure 
1.A, where Emax>0. The effect range determined by the 
dose-effect curve lies between (E0-Emax, E0), and the 
asymptotic measurement for the maximum drug effect is 
E0-Emax. 
 
                 In the investigation of drug interactions, 
theoretically, we expect the measurements for the endpoints 
to be similar when no drug is applied. We use the 
measurements that are made without any drugs applied as 
controls. However, we realize that environmental factors 
other than the experimental conditions may lead to different 
measurements for the controls under different environments. 
Thus, we may need to standardize the observed effects by 
the mean of the control for each environmental condition (1, 
6), and then take E0=1. In this paper, we consider the 
following dose-effect curve for each drug:      

                           
                        (E5) 
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which assumes an effect at value 1 when no drug is applied. 
Once we obtain the dose-effect curve for each single drug, 
we can use the Loewe additivity model (E1) to obtain the 
additive effect for any combination dose, particularly, for 
the combination dose with observed effects. Thus, we may 
obtain the differences in observed effects and the predicted 
additive effect at each observed combination dose. We use 
the bivariate thin plate splines approach (12) to estimate the 
relationship between these differences and the combination 
doses. Consequently, we obtain a response surface of the 
differences over the combination doses, and can construct 
95% confidence surfaces of the response surface. When the 
dose-response curves decrease with increasing dose, an 
observed effect that is smaller in magnitude than the 
prediction of Loewe additivity implies that the observed 
effect is stronger than the predicted effect, indicating that 
the combination dose is synergistic. Conversely, an 
observed effect that is larger in magnitude than the 
prediction of Loewe additivity implies that the observed 
effect is weaker than the predicted effect, indicating that the 
combination dose is antagonistic. However, these 
inferences should be made based on sound statistical 
considerations. Based on the fitted response surface and its 
upper and lower confidence surfaces, we can judge whether 
the difference is significantly less than zero, not different 
from zero, or greater than zero, and we can determine the 
patterns of drug interaction in terms of synergy, additivity, 
and antagonism. This paper is organized as follows. In 
Section 3.1, we describe the underlying stochastic 
assumption for the dose-effect curve and the procedure to 
estimate the parameters in each marginal dose-effect curve. 
In Section 3.2, we explain how we obtained the additive 
response surface based on the Loewe additivity model, in 
particular for studies in which the maximum effects of the 
drugs are different. In Section 3.3, we explain how we 
assessed the response surface beyond the additivity surface 
and how we constructed its 95% confidence surfaces. 
These procedures allow us to identify drug interactions in 
terms of synergy, additivity, or antagonism for all of the 
combination doses in the region containing the combination 
design points. In Section 4, we illustrate the procedure 
introduced in Section 3 by analyzing real data in two case 
studies. The last section is devoted to a short summary and 
perspective. 
 
3. STATISTICAL METHODS 
 
            Assume that the observed data are (d1i, d2i, Ei) for 
i=1, … , n. For each i,  (d1i, d2i) is the observed 
combination dose and Ei is the corresponding observed 
effect. When only a single drug is applied (drug 1 or drug 
2), we refer to the observations as marginal observations. 
That is, the marginal observations for drug 1 are the 
observations (d1i, d2i, Ei)  with d2i=0 (i=1, … , n), and the 
marginal observations for drug 2 are the observations (d1i, 
d2i, Ei) with d1i=0 (i=1, … , n). The marginal dose-effect 
curves are estimated based on the marginal observations, 
which we present in Section 3.1. It is commonly accepted 
that the additive effect should be obtained based on the 
dose-effect relationships for each individual drug. In 
Section 3.2, we explain how we obtained the predicted 

effect at combination dose (d1, d2) based on the Loewe 
additivity model (E1) and the marginal dose-effect curves 
(E5). We denote the predicted effect as ( )1 2pF̂ d ,d . By 

definition, there is no drug interaction when only a single 
drug is applied. Therefore, the term for drug interaction is 
meaningful only for the combination dose (d1, d2) with 
nonzero d1 and d2. In Section 3.3, we develop a procedure 
to estimate the effect beyond additivity for any combination 
dose (d1, d2) with nonzero d1  and d2, denoted by ( )1 2 f̂ d , d . 
 
3.1. Estimating dose-effect curves 
                Chou and Talalay (9), Chou (4), and Kong and 
Lee (6) estimated the parameters in the median effect 
equation (E3) by using the transformation  

501log E /( E ) m log( d / ED ) m log( d )α− = = +  and applying the 
least squares method in the linear regression setting, where 
α=-m log( ED50). The case studies we evaluated (see 
Section 4) included many low doses, the effects of which 
are larger than 1 after setting the effect at the control level 
to be 1. Thus, a similar transformation for models (E3) and 
(E5) cannot be carried out. Because the measurements are 
continuous, we propose applying nonlinear least squares 
regression to estimate the parameters in models (E3) and 
(E5) with the assumption that a stochastic error with N(0, 
σ2) exists on the right-hand side of the two models. We note 
that estimating the dose-effect curve for drug i requires 
only the marginal observations for drug i with i=1, 2. We 
apply nonlinear least squares regression to estimate the 
parameters in the marginal dose-effect curves in the two 
case studies (shown in Section 4).   
 
3.2. Predicting additive effects 
                We obtain the predicted effect based on the 
Loewe additivity model (E 1) when model (E 5) is applied 
as the marginal dose-effect curve for each drug. When 
model (E 5) is applied, the dose required to produce effect 
E is given by 

( )

1

5 0
1
1

/ m

m a x

Ed E D .
E E

 −
=   − − 

     

However, the maximum effects for the two drugs may be 
different. Without a loss of generality, we assume that the 
maximum effect of drug 1 is larger than the maximum 
effect of drug 2, i.e., Emax,1>Emax,2. For this case, when the 
dose-effect curves are decreasing, neither drug applied 
alone can produce an effect in (0, 1- Emax,1) (Figure 1.B). 
Based on the Loewe additivity model (E 1), we can see that 
the predicted effect will be in the interval of (1- Emax,1, 1) 
for any combination dose  (d1, d2). 
 
                Recall that the Loewe additivity model (E1) can 
be rewritten as ( )1 1 2 2 1y , y , y ,d D / D d D+ = , and the ratio 

1 2y, y,D / D  (denoted as ρ(y)), is often called the relative 

potency of drug 2 versus drug 1 at effect level y, which 
means that the effect of 1 unit of drug 2 produces the same 
effect as  ρ(y) units of drug 1. Generally speaking, the 
relative potency ρ(y) is dose-dependent (7). When there is 
no drug interaction, the effect of the combination dose (d1, 
d2) produces the same effect as drug 1 alone at dose level  
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Figure 2. Additive isoboles. Panel A shows additive 
isobole under the Loewe additivity model. Any 

combination dose (d1, d2) on the line PQ  produces the 
same effect as drug 1 alone at dose Dy,1 ( d1+ ρ(y)d2), or 
drug 2 alone at dose Dy,2 ( ρ(y)-1d1+d2), y is the 
predicted effect for any combination dose at the line 
P Q , and ρ(y) is the relative potency at the effect level 

y. Panel B shows that the additive isoboles associated 
with the effect level in (1-Emax2, 1) cover the bound 
between the two solid vertical lines under the 
assumption Emax,1>Emax,2. Each dashed line corresponds 
to an isobole. 

 
Dy,1, which equals d1+ρ(y)d2, or drug 2 alone at dose Dy,2 , 
which equals ρ(y)-1d1+d2 (Figure 2.A). All the combination 
doses (d1, d2) on the line P Q  have the predicted effect y, 
where P Q is the line connecting the points P=( Dy,1,0) and 
Q=(0,Dy,2 ) (Figure 2.A). This line P Q  is often called an 
additive isobole (3, 4).  

                 When Emax,1>Emax,2, as illustrated in Figure 1.B, 
we can calculate the dose of drug 1 required to produce the 
maximum effect of drug 2, i.e., 

1

2
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2
1 1 5 0 1

1 2
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E , ,

m a x , m a x ,

E
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 Note that the range of 

the effect for drug 2 is (1- Emax,2, 1), which could be 
produced by drug 1 alone at a dose level between 0 and 

21 1m a x ,E ,D −
. Based on the Loewe additivity model, for any 

level of effect y in (1-Emax,2, 1), the associated additive 
isobole is the line connecting (Dy,1, 0) and (0, Dy,2). When y 
varies from 1-Emax,2 to 1, the dose of drug 1 required  to 
produce effect y varies from

21 1m a x ,E ,D −
to 0, while the dose 

of drug 2 required  to produce effect y varies from infinitely 
large to 0. In particular, when y is close to 1- Emax,2,  the 
dose of drug 1 required  to produce effect y is close 
to

21 1m a x ,E ,D −
, and the dose of drug 2 required  to produce 

effect y  goes to infinity. Figure 2.B shows four typical 
additive isoboles (dashed lines), which connect equally 
effective doses of drug 1 and drug 2 at different effect 
levels. From left to right, the effect level decreases in 
magnitude. The additive isoboles may not be parallel 
because the relative potency may not be constant. When y 
varies in (1-Emax,2, 1), all the additive isoboles cover the 
region between the two solid vertical lines (Figure 2.B). 
Meanwhile, any combination dose (d1, d2) with 

21 1 1m a x ,E ,d D −< must lie on one of these isoboles. Therefore, 

for any combination dose (d1, d2) with
21 1 1m a x ,E ,d D −< , the 

predicted additive effect, say y, can be obtained by solving 
the following nonlinear equation for E: 

( ) ( )
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Now we examine the predicted effect for the combination 
dose (d1, d2) with

21 1 1m a x,E ,d D −≥ . When 
21 1 1m a x ,E ,d D −≥ , 

drug 1 alone at dose d1  produces an 
effect ( )

( )

1
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1 5 0 1 1

1 5 0 1
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d / E D E
E
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+

, an effect beyond  

1- Emax,2, which cannot be produced by drug 2 alone at any 
dose level. In this case, if the effect of the combination 
dose is more than the effect produced by drug 1 alone, then 
drug 2 potentiates the effect of drug 1, and synergy occurs 
because the predicted additive effect is the effect produced 
by drug 1 alone at dose level d1. Alternatively, because 
drug 2 alone cannot produce such an effect, we could 
consider Dy,2 to be infinitely large. Thus, the Loewe 
additivity model is reduced to d1/Dy,1=1, and the predicted 
additive effect is the effect produced by drug 1 alone at Dy,1. 
No matter which approach we take, the predicted effect y is 
the same. We can determine the predicted effect y from the 
following equation:  
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Thus, we can obtain the predicted effect for any 

combination dose (d1,d2). Using notation similar to that 
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from the previous study of Kong and Lee (6), we denote the 
predicted effect at the combination dose (d1,d2) as 

( )1 2pF̂ d ,d . In the following subsection, we develop a 

procedure to estimate the effect beyond additivity, denoted 
by ( )1 2f̂ d ,d  and to construct its 95% point-wise 

confidence interval and simultaneous confidence interval. 
We assess the drug-drug interaction based on the 
estimated ( )1 2f̂ d ,d  and its confidence intervals.  

 
3.3. Assessing drug interactions using bivariate thin 
plate splines      
              By definition, there is no drug interaction when a 
single drug is used alone. Therefore, we set the differences 
between the observed and predicted effects at zero for the 
marginal observations, that is, for the combination doses 
(d1, d2) with only one nonzero component. We apply a 
bivariate thin plate spline to estimate the differences as a 
function of the combination dose, say, f(d1,d2).  When the 
dose-effect curves are decreasing, f(d1, d2)<0 indicates that 
the observed effect is more than the predicted effect at 
(d1,d2), thus the combination dose (d1,d2) is synergistic. 
Inversely, f(d1, d2)>0 indicates that the combination dose 
(d1, d2) is antagonistic. Kong and Lee (6) used the different 
observed combination doses as the knots for the bivariate 
thin plate splines (12). The choice of knots works well 
when the number of combination doses is not large and the 
combination doses are not close, such as those from 
factorial designs or uniform designs (13). However, when 
ray designs are applied and the doses are low, the 
combination doses are very close and some columns of the 
design matrix (i.e., Ω and Z1 in the following notations) 
may be highly correlated, which results in a nearly singular 
matrix for estimating the parameters in the function f . If 
that happens, a low rank smoothing thin plate spline (14) 
should be applied to avoid the singularity of the involved 
matrix due to the low rank of the design matrix. An 
example of such a low rank smoothing thin plate spline is 
the knots formed by selecting the observed combination 
doses with distances larger than some pre-specified small 
number. Alternatively, one may use an appropriate 
transformation of the dose, such as the log-transformation, 
to evenly distribute the experimental combination doses in 
certain regions in order to improve the ability to estimate 
the effect beyond additivity using bivariate thin plate 
splines.  
             
                  Suppose the selected knots are ( )1 2k k,κ κ   

(k=1,…,K) , then the bivariate thin plate spline can be 
expressed by the following form: 
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denote  

 
( ) ( )( )

( )( ) { } ( )( ) { }

[ ] ( ) ( )( )
11 21 1 2

1 2 1 2
1

1
1 11 21 1 20 & 0 0 & 0 

3
1 2 1 1 2 1 21 1 1

1 1

1   Z

and 1

n n

T T K K
k k k' k'

k ,k' K

T
n

R p n p n nd d d d

T Tn n K
i i i i k ki n k K i n

T

|| , , || R ,

ˆ ˆY E F d ,d ,..., E F d ,d R

X , d ,d R , || d ,d , || R ,

T ,

η κ κ κ κ

η κ κ

×

≤ ≤

×
≠ ≠ ≠ ≠

× ×
≤ ≤ ≤ ≤ ≤ ≤

 Ω= − ∈  

 = − − ∈ 
 = ∈ = − ∈  

=[ ] 3
1 2 1

K
k k k K
, R .κ κ ×

≤ ≤
∈

 

 
The coefficient γ and ν can be obtained by minimizing the 
following penalized residual sum of squares: 
  ( ) ( )1 1

T T
R RY X Z Y X Zγ ν γ ν λν ν− − − − + Ω     (E6) 

subject to 0Tν = .      
 

Following the notation by Kong and Lee (6) and 
Green and Silverman (12), consider a QR decomposition of 
TT, say TT=FG, where F is a K K× orthogonal matrix and 
G is a 3K × upper triangular matrix. Let F1 be the first 
three columns of F, and F2 be the last K-3 columns of F. 
We can show that 0T ν = if and only if ν can be 
expressed as F2ξ  for some ξ. Thus, the penalized residual 
sum of squares can be expressed as 
( ) ( )1 2 1 2 2 2

T T T
R RY X Z F Y X Z F F Fγ ξ γ ξ λ ξ ξ− − − − + Ω . 

Set ( )
1
2

2 2
Tu F F ξ= Ω   and ( )

1
2

1 2 2 2
TZ Z F F F ,

−
= Ω  

where ( )
1
2

2 2
TF FΩ  is the matrix square root of 

2 2
TF FΩ . 

The penalized residual sum of squares can be expressed as  
 

( ) ( )T T
R RY X Z u Y X Zu u uγ γ λ− − − − +       (E7)                   

 
Based on the approach proposed by Ruppert, Wand, and 
Carroll (15) and Wang (16), and detailed by Kong and Lee 
(6) in this setting, the parameters in terms of  γ  and u can 
be obtained by solving the following mixed effect model: 
 

RY X Zuγ ε= + +                                            (E8)     

where 
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.                  

 Thus, the parameters can be estimated by  

( ) 1T T
R

ˆ ˆC C D C Y
û
γ

λ
− 

= + 
 

 with 2 2
u

ˆ ˆ ˆ/ελ σ σ= , 

[ ]C X Z= , and D=diag(0, 0, 0, 1, …, 1), where the 

number of zeros in the matrix D corresponds to the number 
of 

i ' sγ  (i=0,1,2) and the number of ones corresponds to 

the number of ( )1 3iu ' s i , ..., K .= −  Under these 

notations, for any combination dose  (d1, d2),  f(d1, d2) can 
be predicted by ( )1 2 0 1 1 2 2 0

ˆ ˆ ˆ ˆ ˆf d ,d d d Z uγ γ γ= + + +  with 

( ) ( )( ) ( ) 1 2

0 1 2 1 2 2 2 2
1

Z
/T T T

k k
k K

|| d ,d , || F F Fη κ κ
−

≤ ≤

 = − Ω
 

, and 

an approximate 100(1-α)% point-wise confidence interval 
for f(d1,d2) can be constructed by  
  

  (E9)    
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where Cd=(1, d1, d2, Z0) and 2/zα  is the upper 

2 100/ %α ×  percentile of the standard normal distribution. 
Thus, we can construct a 95% point-wise confidence band 
for f = 0 by taking the intercept lines of the lower and upper 
confidence surfaces with the dose plane. We then claim that 
the combination doses in the area outside the confidence 
bound with f < 0 are synergistic, the combination doses 
inside the bound are additive, and the combination doses in 
the area outside the bound with f  > 0 are antagonistic.  
 
          Based on the 95% point-wise confidence intervals 
constructed from (E9), some combination doses that are 
additive may be claimed as synergistic or antagonistic. To 
be conservative and to control the family-wise error rate, 
we also construct the 95% lower and upper simultaneous 
confidence surfaces, which are based on a format similar 

to that of equation (E9) except that 2/zα  is replaced by 

E D F ,n E D FE D F F α
−×  (17), where EDF is the 

effective degrees of freedom from the resulting bivariate 
smoothing splines (12) and is defined as the trace of the 

matrix ( ) 1T TˆC C C D Cλ
−

+
, and  EDF ,n EDFFα

−  is the 
upper 1 0 0 α×  percentile of the F distribution with 
EDF and n-EDF degrees of freedom. Here n is the total 
number of observations except controls. A 95% 
simultaneous confidence band for f = 0 can be formed 
by taking the intercept lines of the 95% lower and upper 
simultaneous confidence surfaces with the dose plane. 
For the two case studies presented in the next section, 
we will present the plots of different patterns of drug 
interaction based on the respective 95% point-wise 
confidence intervals and the 95% simultaneous 
confidence band.     
   
4. CASE STUDIES 
 
            The following two data sets were provided by Dr. 
William R. Greco. The data were collected during a study 
of the joint effect of trimetrexate (TMQ) and AG2034 on 
cells grown in medium with different concentrations of 
folic acid (FA): 2.3 µM in the first experiment (the low FA 
experiment), and 78 µM in the second experiment (the high 
FA experiment). TMQ is a lipophilic inhibitor of the 
enzyme dihydrofolate reductase, and AG2034 is an 
inhibitor of the enzyme glycinamide ribonucleotide 
formyltransferase. The unit of drug concentration is the 
micromole (µM) for all data analyzed in the case studies. 
The endpoint was the growth of human ileocecal 
adenocarcinoma (HCT-8) cells in 96-well assay plates as 
measured by the sulforhodamine B (SRB) protein stain. 
The drug treatments were randomly assigned to the cells in 
the assay wells. Each 96-well plate included 8 wells as 
instrumental blanks (no cells); thus 88 wells were used for 
drug treatments. Five replicate plates were used for each set 
of 88 treated wells. Each of the two large data sets were 
obtained from two 5-plate stacks with a maximum of 880 
treated wells per experiment. Each experiment included 
110 control wells, in which no drugs were applied to the 
cells. Ray designs were used, with the experimental doses 

being distributed in 14 rays, including two rays for TMQ 
and AG2034 when used alone. The complete details and 
mechanistic implications of the study were reported by 
Faessel et al (18). Assuming that the first observation 
recorded in each dose or combination dose from the first 5-
plate stack was from the same plate, say the 1st plate, the 
second observation from the 2nd plate, and so on, and also 
assuming that the first observation recorded in each dose or 
combination dose from the second 5-plate stack was from 
the same plate, say the 6th plate, the second observation 
from the 7th plate, and so on, we have a total of 10 plates 
for each of the two data sets. 
 
             To examine whether there is a significant 
difference among the plates, we applied one-way 
analysis of variance (ANOVA) to the controls in each 
data set. The p-values were 0.001 for the low FA 
experimental data and 0.005 for the high FA 
experimental data.  The results indicate a significant 
plate effect among the 10 plates for each experiment, 
that is, the inter-plate variability is high. To attenuate 
the effect from the inter-plate variability, we applied a 
standardization procedure to each data set, dividing the 
effect readings by the mean of the controls in each 
associated plate. Thus, the mean for the controls within 
each plate was standardized to 1, and the effect for the 
controls was treated as 1. In addition to 110 controls for 
each experiment, the data included 761 observations for 
the low FA experiment and 769 observations for the 
high FA experiment. We applied the statistical method 
described in Section 3 to each of the two standardized 
data sets. We present the results for each experiment in 
the following two subsections.  
 
         Lee et al (19) performed extensive exploratory 
analyses on the same data sets and identified 129 outliers 
out of 871 (14.8%) effect readings in the low FA 
experiment and 126 outliers out of 879 (14.3%) effect 
readings in the high FA experiment. To compare our 
findings with the results previously obtained (19), we 
removed the outliers from the data and then again applied 
the statistical method described in Section 3. For each 
experiment, we report the detailed analyses of the original 
data set and of the modified data set that excluded the 
outliers.  
 
4.1. Case study 1: cancer cells grown in a medium with 
2.3 µM folic acid (low FA experiment)               
              In this experiment, the cells were grown in a 
medium with 2.3 µM folic acid. We fitted marginal dose-
effect curves for TMQ and AG2034 by using both the 
median effect equation (E3) and the Emax model (E5). The 
dose levels for TMQ when applied alone were 5.47×10-6, 
4.38×10-5, 1.38×10-4, 4.38×10-4, 8.75×10-4, 1.75 ×10-3, 
3.5×10-3, 7×10-3, 2.21×10-2, 7 ×10-2, and 0.56 µM, and 
the dose levels for AG2034 when applied alone were 
2.71× 10-5, 2.71× 10-4, 6.87× 10-4, 2.17× 10-3, 4.3× 10-3, 
8.7 ×10-3, 1.74×10-2, 3.48×10-2, 0.11, 0.3475, and 2.78 
µM. Note that some effect readings at low doses or 
combination doses are greater than 1, thus, the logit 
transformation could not be carried out. We applied



Emax model and bivariate splines for drug interaction 

285 

Table 1. Estimated parameters for the Emax models in the case studies  
 Low FA1 High FA2 
Drug name Emax

3 ED50
4 Slope m5 Emax

3 ED50
4 Slope m5 

TMQ6 0.8810 
(0.0161) 

0.0013 
(0.0001) 

2.2496 
(0.2330) 

0.8847 
(0.0326) 

0.0134 
(0.0015) 

3.7230 
(0.7323) 

AG20347 0.8688 
(0.0154) 

0.0060 
(0.0003) 

3.1644 
(0.3703) 

0.8184 
(0.0311) 

0.4700 
(0.0540) 

1.6869 
(0.2400) 

1Estimated parameters for the marginal dose-effect curves in the low-concentration folic acid experiment; 2 estimated parameters 
for the marginal dose-effect curves in the high-concentration folic acid experiment; 3 maximum effect attributable to the drug; 4 
dose level producing half of Emax; 5 factor (Hill coefficient) measuring sensitivity of the effect to the drug dose range; 6 

trimetrexate; 7 experimental drug. 
 
nonlinear least squares regression to estimate the 
parameters in models (E3) and (E5). Figures 3.A and 3.B 
show the respective fitted marginal dose-effect curves for 
TMQ and AG2034 with the dose levels shown on a log 
scale. The dotted-dashed lines are the curves based on the 
median effect model (E3), and the solid lines are the dose-
effect curves based on the Emax model (E5). From the fitted 
dose-effect curves, we found that the Emax model (E5) 
provided a much better fit than the median effect equation 
for the marginal data. Therefore, we chose the Emax model 
(E5) to describe the dose-effect relationship in this case 
study. The parameters estimated for TMQ and AG2034 are 
shown in the three columns under the title “Low FA” in 
Table 1. Here, the estimate of Emax,TMQ is slightly larger 
than the estimate of Emax,AG2034. We plotted the distribution 
of the combination doses using the original scale (not 
shown) and found that most of the combination doses were 
crowded in the region of the low doses, which could cause 
a singularity of the involved matrices due to the low rank of 
Ω and Z1 used for estimating the effect beyond additivity 
when using bivariate thin plate splines (see Section 3.3). 
Hence, we applied a log transformation of the form 
log(dose+δ) for each dose level, where δ is a small number, 
say 2.74×10-6, half of the smallest dose level for the two 
drugs when applied alone. We plotted the distribution of 
the combination doses on the log(dose+δ) scale, as shown 
in Figure 3.C. The points on the horizontal line in Figure 
3.C are the doses of TMQ on the log(dose+δ) scale; the 
points on the vertical line are the doses of AG2034 on the 
log(dose+δ) scale; and the points on each of the remaining 
12 design rays are the combination doses at each ray with 
each dose component on the log(dose+δ) scale. The 12 
design rays for combination doses appearing left to right in 
Figure 3.C correspond to the combination doses at 12 ratios 
of TMQ to AG2034, i.e., 1:250, 1:125, 1:50, 1:20, 1:10, 1:5, 
1:5,  2:5, 4:5, 2:1, 5:1, 10:1. The 12 rays are denoted by the 
letters E, F, G, H, I, J, K, L, M , N, O, P, which represent 
the respective curves 15, 13, 11, 7, 5, 3, 9, 4, 6, 10, 12, 14 
in the original data set for the low FA experiment. Note that 
rays 3 and 9, denoted by J and K, indeed have the same 
fixed dose ratio. To obtain the predicted additive effects, 
we applied the procedure described in Section 3.2, keeping 
the dose levels on the original scale. The contour plot of the 
predicted additive effect is shown in Figure 3.D. Note that 
the effect levels for TMQ applied alone are obtained from 
(1-Emax,TMQ, 1), which is (0.1190, 1), and the effect levels 
for AG2034 applied alone are obtained from (1-Emax,AG2034, 
1), which is (0.1312, 1). The vertical line with contour level 
0.13 is the predicted effect produced by TMQ alone. The 
plot of the differences of the observed effects and predicted 
effects versus the dose levels of AG2034 on log(dose+δ) 

scale is shown in Figure 3.E. That plot shows that the 
differences are not distributed around zero, rather, for some 
observations of AG2034, the differences are significantly 
less than zero, in the range of (-7, -4) on the log (dose+δ) 
scale with δ=2.74×10-6, i.e., in the range of 0.001 µM to 
0.018 µM on the original dose scale. Therefore, the pure 
additive effect model could not describe the data well. We 
used bivariate thin plate splines to fit the differences versus 
the transformed doses, with the knots at all the distinct 
transformed dose levels. The transformation is taken as log 
(dose+δ) for all single and combination doses. By 
convention, there is no drug interaction when a single drug 
is applied. Therefore the differences were set to zero for the 
marginal doses. Applying the bivariate thin plate splines 
(Section 3.3), we obtained 2 20 0041  0 2318uˆ ˆ. , . ,εσ σ= =  

2 2and = 0 0178u
ˆ ˆ ˆ/ . .ελ σ σ =   Next, we constructed 95% point-

wise upper and lower confidence surfaces for the fitted 
bivariate spline function f(d1,d2) based on equation (E9).  
Figure 3.F shows the contour plot of the fitted spline 
function f(d1,d2) at the levels of -0.1, 0, and 0.1 as thin solid 
lines; the intercept lines of the corresponding 95% point-
wise upper confidence surface with the dose plane as thick 
dashed lines; and the intercept lines of the corresponding 
95% point-wise lower confidence surface with the dose 
plane as thick solid lines. The combination doses inside the 
thick dashed curves, shown in light blue, are synergistic 
because the effects beyond additivity at these combination 
doses are significantly smaller than zero. The combination 
doses inside the thick solid curves, shown in light pink, are 
antagonistic because the effects beyond additivity at these 
combinations were significantly larger than zero. The 
combination doses in the uncolored region, which lie 
between the thick solid curves and the thick dashed curves, 
are additive because the effects beyond additivity are not 
significantly different from zero. In particular, the 
combination doses with AG2034 in the transformed scale 
in the range of (-7, -4) inside the thick dashed lines are 
synergistic, which is consistent with the residual plot in 
Figure 3.E. The fitted response surface was obtained by 
adding the fitted spline function f  (i.e., the effect beyond 
additivity) to the predicted additive surface. The contour 
plot of the fitted response surface at the contour levels of 
0.2, 0.5, and 0.9 is shown in Figure 3.I. The final residuals 
were obtained by subtracting the fitted effects from the 
observed effects. The plots of final residuals versus the 
dose levels of TMQ and AG2034 on the log (dose+δ) scale 
are shown in Figures 3.G and 3.H, respectively. From these 
two plots, we see that the residuals are centered around 
zero along the experimental dose range. We conclude that 
the model fits the data reasonably well. 
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Figure 3. Analysis of the low FA experimental data. Panels A and B show the fitted marginal dose-effect curves for TMQ and 
AG2034 respectively, where the dotted-dashed line in each panel is the fitted dose-effect curve based on the median effect 
equation (E 3), while the solid line in each panel is the fitted dose-effect curve based on the Emax model (E 5). Panel C shows the 
distribution of the experimental doses and combination doses on the log (dose+δ) scale with δ=2.74×10-6, along with the 12 rays 
from left to right with dose ratios of TMQ versus AG2034 at 1:250, 1:125, 1:50, 1:20, 1:10, 1:5, 1:5,  2:5, 4:5, 2:1, 5:1, 10:1, 
denoted by the letters E, F, G, H, I, J, K, L, M , N, O, and P, representing the curves 15, 13, 11, 7, 5, 3, 9, 4, 6, 10, 12, and 14 in 
the original data set. Panel D shows the contour plot of the predicted additive effect, while Panel E shows the plot of the 
differences between the observed effects and the predicted effects versus the dose level of AG2034 on the log (dose+δ) scale. 
Panel F shows the contour plot of the fitted effect beyond the additivity effect at levels -0.1, 0, and 0.1 as thin solid lines, along 
with the intercept line of the 95% point-wise upper confidence surface with the dose plane as thick dashed lines and the intercept 
line of the 95% point-wise lower confidence surface with the dose plane as thick solid lines. In Panel F, the combination doses in 
the light blue area are synergistic, the combination doses in the light pink area are antagonistic, and the combination doses in the 
uncolored area are additive. The colored lines in Panels C and I are the design rays. Panels G and H are the plots of the final 
residuals versus TMQ and AG2034 on the log (dose+δ) scale, respectively, and Panel I is the contour plot of the fitted response 
surface at the levels of 0.9, 0.5, and 0.2, along with some representative design rays. 
 
              To examine the patterns of drug interactions in 
different rays and different experimental combination doses, 
we combined Figures 3.F and 3.I, that is, we plotted the 
contour curves of the fitted response surface at the levels of 0.2, 
0.5, and 0.9 in Panel F. We also plotted the representative 
design rays, with the experimental combination doses shown 
as dots on these rays (Figure 4.A), As seen in that figure, the 
combination doses on the rays E through K (curves 15, 13, 11, 
7, 5, 3, 9 in the original data set) are synergistic when the effect 
levels are between 0.9 and a number smaller than 0.2. The 

combination doses on these rays are additive when the effect 
level is less than this small number, and the combination doses 
at low levels on these lines are either additive or antagonistic. 
The combination doses on the rays N, O, and P (curves 10, 12, 
and 14 in the original data set) are additive when the effects are 
less than 0.9, and the combination doses at low dose levels are 
antagonistic. 
  
           In addition to the 95% point-wise confidence 
interval, we constructed the 95% simultaneous confidence 
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Figure 4. Different patterns of drug interactions for the low FA experimental data. Panel A is based on 95% point-wise 
confidence intervals; Panel B is based on 95% simultaneous confidence band. Panel A is the combination of Figures 3.F and 3.I, 
along with the design points shown as dots on each ray. Thin solid lines are contour lines of the fitted effect surface beyond the 
additivity surface at the levels of -0.1, 0, and 0.1; thick dashed lines are the intercept lines of the upper 95% point-wise 
confidence surface with the dose plane; thick solid lines are the intercept lines of the lower 95% point-wise confidence surface 
with the dose plane. The colored lines labeled E, G, J, K, N, and P are the representatives of the design rays. The red dotted-
dashed lines are the contour lines of the fitted response surface at the levels of 0.9, 0.5, and 0.2, respectively. Based on Panel A, 
the combination doses in the light blue area are synergistic, the combination doses in the light pink area are antagonistic, and the 
combination doses on the uncolored area are additive. Panel B presents the same information as Panel A except that the thick 
dashed lines are the intercept lines of the upper 95% simultaneous confidence surface with the dose plane and there are no 
intercept lines for the lower 95% simultaneous confidence surface with the dose plane. Based on Panel B, the combination doses 
inside the dashed lines are synergistic, otherwise additive. Panel B gives more conservative results for assessing drug interactions. 
Panels C and D are the results from fitting the data set excluding outliers for the low FA experiment, where the information in 
Panel C is parallel to that in Panel A, and the information in Panel D is parallel to that in Panel B.  
 
band based on equation (E9) with 

2/z α
replaced by 

ED F ,n E D FED F F .α
−×  Here EDF=119, n=761, 

E D F ,n E D FE D F F α
−×  = 12.20, and 0 0 5.α = . The 

resulting patterns of drug interactions are shown in 
Figure 4B, in which the thick dashed line is the intercept 
line of the 95% upper simultaneous confidence surface 
with the dose plane. Based on Figure 4B, we conclude 
that the combination doses inside the thick dashed 
curves, shown in light blue, are synergistic. The 
combination doses outside the thick dashed curves are 

additive. As seen in the figure, compared to the point-wise 
confidence interval approach, the simultaneous confidence 
band method shrinks the synergistic area and results in the 
disappearance of the antagonistic area. A point-wise 
confidence interval is appropriate for making inferences for 
each observed combination dose. The simultaneous confidence 
band is suitable for making a global assessment; however, it 
can be overly conservative.  
 
                 Following those analyses, we evaluated the low 
FA experimental data set from which we had removed the 
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outliers (19). The results of our assessment of drug 
interactions for this data set are presented in Figures 4.C 
and 4.D. Figures 4.A and 4.C contain parallel information, 
as do Figures 4.B and 4.D. Comparing the plots across the 
panels, we conclude that the results from fitting the original 
data set and those from fitting the data set excluding 
outliers are very similar. Therefore, the semiparametric 
method presented in Section 3 is robust to outliers in this 
example.   
 
              We recommend using caution when considering 
extrapolations based on spline estimations. The fitted 
response surface for the differences between the observed 
effects and predicted effects gives an overall picture of the 
drug interactions (see Figures 4.A and 4.B). However, the 
fitted results on the two larger areas outside experiment 
rays E and P should not be over-interpreted because (i) 
there are no experimental data in those areas and (ii) we 
forced the differences of the observed effects and predicted 
additive effects to be zero at the marginal observed dose 
levels. 
 
4.2. Case study 2: cancer cells grown in a medium with 
78 µM folic acid (high FA experiment) 
                In the high FA experiment, the dose levels for 
TMQ when applied alone were 5.47 × 10-6, 4.38 × 10-5, 
1.38×10-4, 4.38×10-4, 8.75×10-4, 1.75 ×10-3, 3.5×10-3, 
7×10-3, 2.21×10-2, 7 ×10-2, and 0.56 µM, and the dose 
levels for AG2034 when applied alone were 2.71× 10-4, 
2.17×10-3, 6.87×10-3, 2.17×10-2, 4.34×10-2, 8.68 ×10-2, 
1.74 × 10-1, 3.47 × 10-1, 1.1, 3.47, and 27.8 µM. The 
procedure we used to analyze this data set was the same as 
that used in case study 1. By applying nonlinear least 
squares regression, we estimated the marginal dose-effect 
curves using the median effect equation (E3) (dotted-
dashed lines) and the Emax model (E5) (solid lines), (shown 
in Figures 5.A and 5.B). It is clear that the Emax model (E5) 
fits the data better than the median effect equation, thus, we 
chose the Emax model (E5) as the dose-effect curve for this 
data set. The estimated parameters for the marginal dose-
effect curves for the Emax model are shown in the three 
columns under the title “High FA” in Table 1. The 
combination doses on the original scale (not shown) are 
crowded in the region of the low doses, thus we applied the 
transformation in the form of log(dose+δ) to each dose 
level, where δ is a small number, say 2.74×10-6, one half 
of the lowest dose level for TMQ and AG2034 when 
applied alone. The distribution of the experimental dose 
levels on the log(dose+δ) scale is shown in  Figure 5.C. 
The 12 design rays for the combination doses correspond to 
the 12 dose ratios of TMQ versus AG2034 at 1:2500, 
1:1250, 1:500, 1:200, 1:100, 1:50, 1:50, 1:25, 1:12.5, 1:5, 
1:2, and 1:1, which are denoted by the letters E, F, G, H, I, 
J, K, L, M , N, O, and P, representing the curves 15, 13, 11, 
7, 5, 3, 9, 4, 6, 10, 12, 14 in the original data set for the 
high FA experiment. Applying the procedure described in 
Section 3.2, we obtained the contour plot of the predicted 
additive effect that is shown in Figure 5.D. We see that the 
contour line at level 0.15 is the predicted effect produced 
by TMQ alone because AG2034 could not produce such an 
effect when applied alone; the effect levels for AG2034 
applied alone range from 0.1816 to 1. Figure 5.E shows the 

differences of the observed effects and predicted effects 
versus the dose levels of AG2034 on the log(dose+δ) scale. 
That plot shows that the differences are not centered around 
zero, rather for some observations of AG2034, the 
differences are significantly less than zero, in the range of 
(-5, 0) on the log(dose+δ) scale, i.e., in the range of 
6.7×10-3 µM to 1.0 µM on the original dose scale. These 
findings indicate that some combination doses were 
synergistic and that the pure additive effect model could 
not describe the data well. We used bivariate thin plate 
splines to fit these differences versus the transformed doses 
or combination dose, with the knots at all the distinct 
transformed dose levels. The transformation is taken as log 
(dose+δ) for all single doses and combination doses. We 
constructed its 95% point-wise confidence surfaces based 
on equation (E9). The estimated 2 20 0066  0 0779uˆ ˆ. , .εσ σ= = , 

2 2and = 0 0842u
ˆ ˆ ˆ/ . .ελ σ σ =  Figure 5.F shows the contour plot 

of the fitted spline function f  at the levels of -0.1, 0, and 
0.1 as thin solid lines; the intercept lines of its 
corresponding 95% point-wise upper confidence surface 
with the dose plane as thick dashed lines; and the intercept 
lines of its corresponding 95% point-wise lower confidence 
surface with the dose plane as thick solid lines. The 
combination doses inside the thick dashed curves, shown in  
light blue, are synergistic; the combination doses inside the 
thick solid curves, shown in light pink, are antagonistic; 
and the combination doses in the uncolored area are 
additive. We obtained the fitted response surface by adding 
the fitted spline function f to the predicted additive surface 
(shown in Figure 5.I). The plots of the final residuals versus 
the dose levels of TMQ and AG2034 on the log(dose+δ) 
scale are shown in Figures 5.G and 5.H, respectively. From 
these two plots, we see that the residuals are centered 
around zero along the experimental dose range, indicating 
that the model describes the data reasonably well.  
 
              To examine the patterns of drug interactions in 
different rays and different experimental combination doses, 
we combined the plots in Figures 5.F and 5.I to form Figure 
6.A (as we did when analyzing the data from the low FA 
experiment). From Figure 6.A, we see that the combination 
doses on all 12 rays are synergistic when the effect levels 
are between 0.9 and 0.15. The combination doses at high 
dose levels are additive, and most of the combination doses 
at low dose levels are additive. In addition, we constructed 
a 95% simultaneous confidence band based on equation 
(E9) with 

2/z α
replaced by

ED F ,n ED FED F F α
−× . Here 

EDF=91, n=769, and 
ED F ,n ED FED F F α

−× =10.77. The 

results are presented in Figure 6.B, in which the thick 
dashed line is the intercept line of the upper 95% 
simultaneous confidence surface with the dose plane. Based 
on Figure 6.B, we conclude that the combination doses 
inside the thick dashed curves, shown in light blue, are 
synergistic. The combination doses outside the thick dashed 
curves are additive. As in our analysis of the data from case 
study 1, in this analysis, we found the simultaneous 
confidence band to yield more conservative results and to 
be more suitable for a global assessment. For this case 
study, we also assessed the data set from which we had 
removed the outliers. The results for assessing drug 
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Figure 5. Analysis of the high FA experimental data. Panels A and B show the fitted marginal dose-effect curves for TMQ and 
AG2034 respectively; the dotted-dashed line is the fitted dose-effect curve based on the median effect equation (E 3); the solid 
line is the fitted dose-effect curve based on the Emax model (E 5).  Panel C shows the distribution of the experimental doses and 
combination doses on the log(dose+δ) scale with δ=2.74×10-6, along with the 12 rays (left to right) with dose ratios of TMQ 
versus AG2034 at 1:2500, 1:1250, 1:500, 1:200, 1:100, 1:50, 1:50,  1:25, 1:12.5, 1:5, 1:2, 1:1, denoted by the letters E, F, G, H, I, 
J, K, L, M , N, O, P, representing the curves 15, 13, 11, 7, 5, 3, 9, 4, 6, 10, 12, 14 in the original data set. Panel D shows the 
contour plot of the predicted additive effect. Panel E shows the plot of the differences between the observed effects and the 
predicted effects versus the dose level of AG2034 on the log(dose+δ) scale. Panel F shows the contour plot of the fitted effect 
beyond the additivity effect at levels -0.1, 0, and 0.1, along with the intercept line of the upper 95% point-wise confidence surface 
with the dose plane as thick dashed lines and the intercept lines of the lower 95% point-wise confidence surface with the dose 
plane as thick solid lines. In Panel F, synergistic combination doses are in light blue; antagonistic combination doses are in light 
pink; additive combination doses are in the uncolored area. The colored lines in Panels C and I represent the design rays. Panels 
G and H are the plots of the final residuals versus TMQ and AG2034 on the log(dose+δ) scale, respectively. Panel I is the contour 
plot of the fitted response surface at the levels of 0.9, 0.5, and 0.15, along with some representative design rays. 
 
interactions are presented in Figures 6.C and 6.D. 
Comparing Figures 6.A to C and 6.B to D, we conclude 
that the results from fitting the original data set and those 
from fitting the data set excluding outliers are very similar. 
Thus, the results indicate that the semiparametric method is 
robust to outliers. 
 
5. SUMMARY AND PERSPECTIVE 
 
                We extended the approach proposed by Kong and 
Lee (6) to a situation for which the Emax model is more 

appropriate to describe the marginal dose-effect relationship. 
We considered the possibility that some effect readings at low 
doses may fall beyond the mean of the controls. Under such 
circumstances, the standardized effect is greater than 1 and a 
logit transformation to a linear model (4, 8, 9) cannot be 
carried out. Hence, other models such as the Emax model are 
needed and nonlinear least squares regression methods can be 
applied for estimating parameters for the dose-effect curves. 
We applied nonlinear least squares regression in the case 
studies to estimate the parameters for the dose-effect curves 
specified by the median effect equation and the Emax model. 
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Figure 6. Different patterns of drug interactions for the high FA experiment.  Panel A is based on 95% point-wise confidence 
intervals; Panel B is based on 95% simultaneous confidence band. Panel A is the combination of Figures 5.F and I, along with the 
design points shown as dots on each ray. Thin solid lines are contour lines of the fitted effect surface beyond the additivity 
surface at the levels of -0.1, 0, and 0.1; thick dashed lines are the intercept lines of the upper 95% point-wise confidence surface 
with the dose plane; thick solid lines are the intercept lines of the lower 95% point-wise confidence surface with the dose plane. 
The colored lines labeled E, G, J, K, N, and P represent the design rays; red dotted-dashed lines are the contour lines of the fitted 
response surface at the levels of 0.9, 0.5, and 0.15. In Panel A, the synergistic combination doses are in light blue; the 
antagonistic combination doses are in light pink; additive combination doses in the uncolored area. Panel B gives the same 
information as Panel A except that the thick dashed lines are the intercept lines of the upper 95% simultaneous confidence 
surface with the dose plane. Based on Panel B, the combination doses inside the dashed lines are synergistic, otherwise additive. 
Panel B gives more conservative results for assessing drug interactions. Panels C and D are the results excluding outliers, and are 
parallel to the results in Panels A and B, respectively.  
 
               Additionally, we extended the approach of Kong 
and Lee (6) as a solution to the problem arising when the 
experimental points are very close and the low rank of the 
design matrix may cause computational problems in matrix 
inversion. For this situation, we considered a low-rank thin 
plate spline (14) to estimate the surface beyond additivity, 
and, alternatively, we applied an appropriate transformation 
to the doses so that the combination doses on the 
transformed scale were more evenly distributed. In the case 
studies, we first applied the transformation log(dose+δ)  to 
each component of the combination doses and then applied 
bivariate thin plate splines with knots representing all the 
different observed doses on the log(dose+δ) scale. In both 

case studies, we chose δ as half of the smallest non-zero 
dose among TMQ and AG2034 when applied alone, that is, 
δ=2.74×10-6 for both experiments. The value of δ selected 
should not be too small or too large compared with the 
magnitude of the dose levels. An extremely small δ results 
in a relatively large distance between the marginal doses 
and combination doses. Conversely, a large δ dominates in 
the transformation log(dose+δ) when the dose levels are 
low. From the final residual plots, it is evident that the 
current transformation works well.  
  
           It is well known that the smoothing parameter λ 
governs the trade-off between the goodness-of-fit and the 
smoothness of the function f.  When λ becomes larger, the 
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fitted function f tends to be smoother and the residuals tend 
to be larger. The selection of the smoothing parameter 
plays a key role in the fitted results. In the case studies, the 
smoothing parameter, λ̂ , was selected as 2 2

uˆ ˆ/εσ σ ,  which 
is almost identical to the selected smoothing parameter 
based on the generalized cross validation criterion and 
"leave-out-one" cross validation criterion. For example, for 
the low FA experimental data, the selected parameters 
based on the mixed model approach used in this paper, 
cross validation criterion, and generalized cross 
validation criterion were 0.0178, 0.0112, and 0.0071, 
respectively. For the high FA experimental data, the 
corresponding selected parameters were 0.0842, 0.0842, 
and 0.0531, respectively. Indeed, Kohn, Ansley, and 
Tharm (20) showed that the estimation of the smoothing 
parameter based on a mixed model approach is 
comparable with the standard method of the generalized 
cross validation criterion. By applying a mixed effects 
model, the smoothing parameter can be automatically 
determined by 

2 2
uˆ ˆ/εσ σ . This method has been 

implemented in S-PLUS by Ruppert et al (15) using the 
lme function (21). In our previous study (1), based on 
extensive simulations, we showed that the selection of 
the smoothing parameter provides a good estimate to the 
underlying function in general.   
                
             In the two case studies, we also performed the 
same analyses for the two reduced data sets analyzed by 
Lee et al (19), and achieved almost identical results, which 
indicates that this semiparametric method is robust to 
outliers. The semiparametric method we have developed 
can also be used to assess drug interactions for the 
combination doses not on the design rays, and to identify 
complex patterns of drug interaction in combination studies. 
In addition, the method gives an overall assessment of the 
combination effect in the entire two-dimensional dose 
space spanned by the experimental doses with a caveat that 
extrapolation beyond data points can be risky.  
 
             We also note that the estimated function f(d1,d2) 
and its 95% confidence surfaces can guide the exploration 
of whether some parametric models are sufficient to 
describe the data. Many parametric models have been 
proposed in the literature. Greco, Bravo, and Parsons (3) 
provided an excellent review of the response surface 
approach. However, without prior knowledge of the 
response surface model, or adequate representation of the 
data by a parametric model, most parametric approaches 
will fail. Blindly using any parametric model can be 
dangerous and may lead to wrong conclusions of drug 
interactions. In our proposed approach, there is no need to 
assume any parametric models for f(d1,d2). We provide a 
promising approach by modeling the mixture effect data 
with spline techniques via a mixed-effect model. We 
advocate the use of the semiparametric method for model 
building because the true patterns of drug interactions are 
typically not known. The conclusions regarding drug 
interactions are based on the estimated f and its confidence 
surfaces, which are determined by the underlying data. The 
S-PLUS code used to evaluate the case studies can be 
obtained from the first author.  
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1.   ABSTRACT 

 
Applying the Emax model in a Lowe additivity 

model context, we analyze data from a combination study 
of trimetrexate (TMQ) and AG2034 (AG) in media of low 
and high concentrations of folic acid (FA). The Emax model 
provides a sufficient fit to the data. TMQ is more potent 
than AG in both low and high FA media. At low TMQ:AG 
ratios, when a smaller amount of the more potent drug 
(TMQ) is added to a larger amount of the less potent drug 
(AG), synergy results. When the TMQ:AG ratio reaches 
0.4 or larger in low FA medium, or when the TMQ:AG 
ratio reaches 1 or larger in high FA medium, synergy is 
weakened and drug interaction becomes additive. In 
general, synergistic effect in a dilution series is stronger at 
higher doses that produce stronger effects (closer to 
1−Emax) than at lower dose levels that produce weaker 
effects (closer to 1). The two drugs are more potent in the 
low compared to the high FA medium. Drug synergy, 
however, is stronger in the high FA medium.  

 
 
 
 
 
 
 
 
 
 
 
 
2.   INTRODUCTION 
 
 Due to complex disease pathways, combination 
treatments can be more effective and less toxic than 
treatments with a single drug regimen. Successful 
applications of combination therapy have improved 
treatment effectiveness for many diseases.  For example, 
the combination of a non-nucleoside reverse transcriptase 
inhibitor or protease inhibitor with two nucleosides is 
considered a standard front-line therapy in the treatment of 
AIDS. Typically, a combination of three to four drugs is 
required to provide a durable response and reconstitution of 
the immune system (1). Another example is platinum-based 
doublet chemotherapy regimens as the standard of care for 
patients with advanced stage non–small-cell lung cancer (2). 
Combination treatments have also been shown to prevent 
and to overcome drug resistance in infectious diseases such 
as malaria and in complex diseases such as cancer (3, 4). 
Emerging developments in cancer therapy involve 
combining multiple targeted agents with or without 
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chemotherapy, or combining multiple treatment modalities 
such as drugs, surgical procedures, and/or radiation therapy 
(5, 6). 
 
 How do we assess the effect of a combination 
therapy? It is a simple question, yet it requires a complex 
answer. A superficial way to answer the question is to 
determine that a combination therapy is working if its 
effect is greater than that produced by each single 
component given alone. The notion of classifying drug 
interaction as additive, synergistic, or antagonistic is logical 
and easily understood in a general sense, but can be 
confusing in specific application without consensus on a 
standard definition. Excellent reviews of drug synergism 
have been written by Berenbaum (7), Greco et al (8), 
Suhnel (9), Chou (10), and Tallarida (11), to name a few. In 
essence, to quantify the effect of combination therapy, we 
must first define drug synergy in terms of “additivity.” An 
effect produced by a combination of agents that is more (or 
less) than the additive effect of the single agents is 
considered synergistic (or antagonistic). Then, we must 
further assess drug interaction in a statistical sense. Under a 
more rigorous definition, synergy occurs when the 
combined drug effect is statistically significantly higher 
than the additive effect. Conversely, antagonism occurs 
when the combination effect is statistically significantly 
lower than the additive effect.   
 
 Despite the controversy arising from multiple 
definitions of additivity or no drug interaction, the Loewe 
additivity model is commonly accepted as the gold standard 
for quantifying drug interaction (7-11). The Loewe 
additivity model is defined as  
 

1 2

1 2

1
y , y ,

d d .
D D

+ =                                         (E1)                                                    

 
Here y is the predicted additive effect at the combination 
dose (d1, d2) when the two drugs do not interact. Dy,1 and 
Dy,2  are the respective doses of drug 1 and drug 2 required 
to produce the same effect y when used alone. Note that the 
Loewe additivity can be easily demonstrated in a “sham 
combination” (i.e., a drug combined with itself or its 
diluted form).  For example, suppose drug 2 is a 50% 
diluted form of drug 1.  The combination of one unit of 
drug 1 and one unit of drug 2 will produce the same effect 
as 1.5 units of drug 1 or 3 units of drug 2.  Plugging the 
respective values in equation (E1), we have 1/1.5 + 1/3 = 1.  
Given the dose-effect relationship for each single agent, say 
Ei(d)= fi(d) for agent i (i=1,2), Dy,i  can be obtained by 
using the inverse function of fi, say, fi

-1(y). Replacing Dy,1 
and Dy,2 in equation (E1) with f1

-1(y)  and    f2
-1(y), 

respectively, we can rewrite equation (E1) as         
 

1 2
1 1

1 2

1d d .
f ( y ) f ( y )− −+ =                (E2) 

                  
Note that (E2) involves an unknown variable y.  By solving 
equation (E2), the predicted additive effect yadd can be 
obtained under the Loewe additivity model.  Denote that 
the observed mean effect is yobs at the combination dose (d1, 
d2).  The drug combination at that dose is considered 
synergistic, additive, or antagonistic when the effect yobs is 

greater than, equal to, or less than  yadd, respectively.  When 
the dose-effect curve is decreasing (or increasing), a 
synergistic effect corresponds to a smaller (or larger) value 
than the predicted quantity. 
 
 Alternatively, to measure and quantify the 
magnitude of drug interaction, the interaction index (II) can 
be defined as 
 

1 2

1 2o b so b sy , y ,

d dI I
D D

= +                                (E3) 

                    
Note that II < 1,  II =1, and II >1 correspond to the drug 
interaction being synergistic, additive, and antagonistic, 
respectively.  Chou and Talalay (12) proposed the 
following median effect equation (E4) to characterize the 
dose-effect relationship in combination studies:  
 

( )
( )

5 0

5 0

( )   ,   
1

m

m

d / E D
E d

d / E D
=

+
                                   (E4)              

 
where ED50 is the dose required to produce 50% of the 
maximum effect. Although the median effect equation can 
be applied in many settings, it assumes that when m is 
positive, E(d)=0 for d=0 and E(d)=1 for d=∞. On the other 
hand, when m is negative, E(d)=1 for d=0 and E(d)=0 for 
d=∞. If we assume that the data follow the median effect 
equation, a linear relationship can be found by plotting 
the logit transformation of the effect versus the 
logarithm transformed dose. A more detailed account of 
the interpretation and use of the interaction index can be 
found in a number of references (13-16). Several 
methods for constructing the confidence interval 
estimation of the interaction index were proposed by 
Lee and Kong (17).   
 
 To help advance research developing and 
comparing methods for analyzing data for combination 
studies, Dr. William R. Greco at the Roswell Park 
Cancer Institute has organized an effort and invited 
several groups to participate in an exercise to compare 
rival modern approaches to model data from two-agent 
concentration-effect studies.  We describe the data and 
statistical methods, including the Emax model, and the 
calculation of the interaction index under the Emax model 
in Section 3.  We describe an exploratory data analysis 
in Section 4, and data preprocessing for outlier rejection 
and standardization in Section 5.  We present the main 
results of the data analysis in Section 6 and summarize 
our findings in Section 7.  We close with a discussion in 
Section 8. 
 
3.   STATISTICAL METHODS 
 
3.1. Data sets 
 Two data sets provided by Dr. Greco are used to 
examine the effect of the combination treatment of 
trimetrexate (TMQ) and AG2034 (AG) in HCT-8 human 
ileocecal adenocarcinoma cells. The cells were grown in a 
medium with two concentrations of folic acid: 2.3 µM (the 
first data set, called low FA) and 78 µM (the second data 
set, called high FA). Trimetrexate is a lipophilic inhibitor 
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of the enzyme dihydrofolate reductase; and AG2034 is an 
inhibitor of the enzyme glycinamide ribonucleotide 
formyltransferase. The experiment was conducted on 96-
well plates. The endpoint was cell growth measured by an 
absorbance value (ranging from 0 to 2) and recorded in an 
automated 96-well plate reader. Each 96-well plate 
included 8 wells as instrumental blanks (no cells); the 
remaining 88 wells received drug applications. The 
experiments were performed using the “ray design,” which 
maintains a fixed dose ratio between TMQ and AG in a 
series of 11 dose dilutions. With 88 wells in each plate, 
each 5-plate stack allowed for an assessment of the 
combination doses at 7 curves (i.e., design rays) plus a 
“curve” with all controls. Two stacks were used for 
studying 14 design rays: TMQ only, AG only, and twelve 
other design rays with a fixed dose ratio (TMQ:AG) for 
each ray. The fixed dose ratios in the low FA experiment 
were 1:250, 1:125, 1:50, 1:20, 1:10, 1:5 (2 sets), 2:5, 4:5, 
2:1, 5:1, and 10:1. The fixed dose ratios in the high FA 
experiment were 1:2500, 1:1250, 1:500, 1:200, 1:100, 1:50 
(2 sets), 1:25, 2:25, 1:5, 1:2, and 1:1. Data from each of the 
16 curves (2 for controls, 2 for single agents, and 12 for 
combinations) are grouped together. Curves 1-8 were 
performed on the first stack with curve 8 serving as the 
“control” experiment while curves 9-16 were performed on 
the second stack with curve 16 serving as the “control” 
experiment. The assignment of different drug combinations 
to the cells in the wells was randomized across the plates. 
Five replicate plates were used for each set of two stacks, 
resulting in a total of 10 plates for each of the two medium 
conditions (low FA and high FA). The maximum number 
of treated wells per medium condition is 880 (16 curves x 
11 dilutions x 5 replicates). Complete experimental details 
and mechanistic implications were reported by Faessel et al 
(18).  
 
3.2. Emax model 
 Due to a plateau of the measure of cell growth 
such that it does not reach zero at the maximum dose levels 
used in the experiments, the median effect equation (E4) 
does not fit the data.  Instead, we take the Emax model (19) 
to fit the data at hand.  
 

( )0
5 0

( )
1

m a x
m a x m

EE d E E ,
d / E D

= − +
+

(E5) 

 
where E0 is the base effect, corresponding to the 
measurement of cell growth when no drug is applied; Emax 
is the maximum effect attributable to the drug; ED50 is the 
dose level producing half of Emax; d is the dose level that 
produces the effect E(d), and m is a slope factor (Hill 
coefficient) that measures the sensitivity of the effect 
within a dose range of the drug. Thus, E0 − Emax is the 
asymptotic effect when a very large dose of the drug is 
applied. Figure 1 shows a few examples of the Emax model 
where E0 is assumed to be 1. The parameter m governs how 
quickly the curve drops. For the three cases in the first row 
in Figure 1, ED50 is fixed at 2 and Emax is at 0.8, while the 
slope varies. When m=1 (Figure 1.A), the dose-response 

curve drops slowly; when m=5 (Figure 1.B and E), a 
sigmoidal curve is formed, and when m=20 (Figure 1.C and 
F), the drop of the sigmoidal curve becomes very steep. In 
the three curves in the first row, as the dose increases, the 
curves drop, and the effect asymptotes to 1 − Emax = 0.2. In 
the second row, the three plots are set at Emax = 1, which 
means that as the dose increases, the treatment will reach 
the theoretical full effect. For example, if the measure of 
the treatment effect is cell count, all the cells will be killed 
at very high doses of the treatment when Emax = 1. The 
figures also show that, as ED50 increases, the curves shift to 
the right, indicating that the treatment is less potent. In all 
cases when m increases, the effect drops more rapidly. We 
apply the nonlinear weighted least squares method to 
estimate the parameters in the Emax model. Due to the 
heteroscedascity observed in the data, which means that the 
variance increases as the observed response increases, we 
use the reciprocal of the fitted response as the weight 
function (20).  We use S-PLUS, R (21), and SAS (22) to 
carry out the estimation.  
 
3.3. Interaction index under the Emax model 
 As when using the median effect model, the Emax 
model can be applied to fit the single-drug and combination 
drug dose-response curves, and then the interaction index 
can be calculated accordingly. Although equation (E5) 
allows for different values of E0 and Emax for different 
curves, when calculating the interaction index, we need to 
assume all curves have the same E0 so that the “base 
measure” of no drug effect is the same in all curves. This 
can be achieved by dividing all of the effect measures with 
the mean of the controls. Note that Emax can vary in 
different curves to signify different drug potencies. 
However, the calculation of the interaction index will be a 
little more complicated when different drugs or 
combinations produce different values of Emax. 
 
 Hereafter, we assume the dose-response curve 
follows the Emax model given in (E6): 
 

( )5 0

( ) 1
1

m a x
m a x m

EE d E .
d / E D

= − +
+

 (E6) 

 
The experiments we analyzed studied the ability of the 
combination treatments to inhibit the growth of cancer cells. 
The measure of the treatment effect was cell growth 
corresponding to the number of cells observed. Hence, the 
height of the dose-effect curve decreases when the dose 
increases. In this case, we have m > 0. In addition, as d 
goes to infinity, the effect plateaus at 1−Emax. Hence, Emax 
must be between 0 and 1.  
 
 In a study of two-drug combinations, we need to 
fit three curves using the Emax model: curve 1 for drug 1 
alone, curve 2 for drug 2 alone, and curve c for the drug 
combinations. Denote Emax, i , ED50, i, and mi as the three 
parameters for drug i (i=1,2, c). Given an effect e (e>1-
Emax), the corresponding dose d(e) can be calculated as
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Figure 1. Dose-response curves under the Emax model by varying the parameters Emax, ED50, and m. 
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Note that the dose for the combination treatment is simply 
the sum of the doses of the single agents. This approach 
works well for a ray design with constant or varying 
relative potency between the two drugs (12, 17). Without 
loss of generality, we can assume that Emax, 1 >  Emax, 2. In 
addition, we assume that the dose ratio for the two drugs in 
the combination treatment (dc=d1+d2) is fixed with d1/ d2 
=p. Upon fitting the three dose-response curves, the 
interaction index at a fixed effect e where e ∈ (1 - max,cÊ , 1) can be 
calculated as follows:  
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(E8) 

 1For  1 max,
ˆe E≤ − , the interaction index cannot be 

calculated. However, the combination effect in this range is 
more than additive because it reaches an effect level that no 
single agent can achieve alone.  If Emax, 1 =  Emax, 2, the 
interaction index can be calculated using the first formula 
in (E8). 
 
3.4. Confidence interval for the interaction index 
 We can apply the delta method to calculate the 
(large sample) variance of the interaction index (23). From 
our previous work (17), we found that better estimation of 

the confidence interval for the interaction index can be 
achieved by working on the logarithmic transformation of 
the interaction index. 
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Ê e , I I

ˆ ˆd ( e ) p /( p ) d ( e ) /( p )V a r ( I I ) V Vˆ ˆD ( e ) D ( e )

d̂ ( e ) p

=

− < <

   × + +
= + +      

   

×
2

1 2

1 2

2

1
1

1 1 ( 9 )

if  1 1  th e n  

1 ( ) ( 1 0 )

c
c

y , y ,

m a x , m a x ,

^
c

c
y ,

ˆ/ ( p ) d ( e ) /( p ) V Eˆ ˆD ( e ) D ( e )
ˆ ˆE e E ,

d̂ ( e ) p /( p )V a r ( I I ) V V . E
D̂ ( e )

 + +
+  

 
− < ≤ −

 × +
= +  

 

where  

502
50 50

2

1
( 1 )

1 1 1 1 1
( 1 ) 1

1 1
1

i max,i

^
,ii max,i i^ ^

ii max,i max,i,i ,i

i max,i

ˆm̂ e E
e ˆ ˆV log Var E ,ED ,mˆ ˆˆˆ mm e E e EED ED

elog ˆm̂ e E

 − 
− + 

  − −    = −    − + − +     
 −
−  − + 

 

for i=1, 2, c.  
 

Upon calculation of the variance for log(
^
II ), the point-

wise (1-α)100% confidence interval for the interaction 
index (II) for a specified effect can be constructed as 

2 2( ( )) ( ( ))
^ ^ ^ ^
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(E11) 
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where 2/zα  is the upper α/2  upper percentile of the 
standard normal distribution. We also construct the 
simultaneous confidence band for the interaction index 
over the range of estimated responses. Because the 
estimation process involves estimating nine parameters 
from three curves, to construct a Scheffe-type simultaneous 
confidence band, we simply replace 2/zα in equation (E11) 
by (chi2

p(α))1/2  where p=9 (24). 
 
3.5. Data analysis plan 
 The overall objective of the data analysis is to 
assess the synergistic effect of the combination of TMQ 
and AG in both low and high FA media. We apply the 
exploratory data analysis first, and then estimate the dose-
response relationship using the Emax model. We evaluate 
the drug interaction by calculating the interaction index 
under the Loewe additivity model. We perform an 
exploratory data analysis in order to understand the data 
structure and patterns and to determine whether 
preprocessing of the data in terms of outlier rejection and 
standardization would be required prior to data modeling. 
We analyze the low FA and high FA experiments 
separately then compare the results. For each experiment, 
we apply the Emax model to fit the two marginal and twelve 
combination dose-response curves. We compute the 
interaction index and its 95% confidence intervals for each 
of the twelve combinations, and assess the overall pattern 
of drug interaction by examining the interaction index from 
the 12 fixed-ratio combinations together. We apply a one-
dimensional distribution plot via the BLiP plot (25) to 
display the data. We use a two-dimensional scatter plot, a 
contour plot, and an image plot as well as a three-
dimensional perspective plot to show the dose-response 
relationship. We also apply a trellis plot (26) to assemble 
the individual plots together into consecutive panels 
conditioning on different values of fixed dose ratios.  
 
4. EXPLORATORY DATA ANALYSIS 
 

As in all data analyses, we begin with an 
exploratory data analysis. For the low and high FA 
experiments, there are 871 and 879 readings, respectively. 
Only 9 and 1 observations, respectively, are missing out of 
a maximum of 880 readings in each experiment. The data 
include designated curve numbers ranging from 1 to 16 
and data point numbers ranging from 1 to 176. Each 
curve number indicates a specific dose combination. We 
re-label the curves as A-P where A and B correspond to 
the control (no drug) curves; C and D correspond to the 
curves of TMQ and AG administered alone, and curves 
E through P correspond to the combination curves with 
fixed dose ratios in ascending order. Each point number 
indicates the readings at each specific dilution of each 
curve. Because five duplicated experiments were 
performed, there are up to five readings for each specific 
point number.  There is, however, no designation of the 
plate number in the data received. Figure 2 shows the 
variable percentile plot of the distribution of the effect 
from the low FA and high FA experiments using the 
BLiP plot, with each segment corresponding to a five 
percent increment (25). The plot gives an overall 

assessment of the distribution of the outcome variable of 
cell growth without conditioning on experimental 
settings. The middle 20% of the data (40th to 60th 
percentiles) are shaded in a light orange color. This 
figure indicates that the data have a bimodal distribution 
with most data clustered around either a low value of 
0.2 or a high value of 1.2. For the low FA experiment, 
the distribution of the effect ranges from 0.072 to 1.506 
with the lower, middle, and upper quartiles being 0.149, 
0.449, and 1.150, respectively. Similarly, for the high 
FA experiment, the effect ranges between 0.070 and 
1.545. The three respective quartiles are 0.213, 0.990, 
and 1.1495. The median of the data from the low FA 
experiment is smaller than the median of the data from 
the high FA experiment. The bimodal distributions 
could result from steep dose-response curves. As a 
consequence, the slope may not be estimated well in 
certain cases. 

 
 To help understand the pattern of the fixed ratio 
dose assignment in a ray design and the relationship 
between the fixed ratio doses and curve numbers, we 
plot the logarithm transformed dose of TMQ and AG in 
Figure 3 for both the low FA and high FA experiments. 
As can be seen, curves A and B are the controls with no 
drugs. Curves C and D correspond to the single drug 
study of TMQ and AG, respectively. Curves E through P 
are the various fixed ratio combination doses of TMQ 
and AG. Note that curves J and K have the same dose 
ratios. Within each curve, the 11 dilutions are marked 
by 11 circles. For the combination studies, the curves 
for different dose ratios are parallel to each other on the 
log dose scale. If the same plot is shown in the original 
scale, these lines will form “rays,” radiating out from 
the origin like sun rays. Hence, the term “ray design” is 
an appropriate name for this type of experiment. The 
corresponding dose ranges used for each drug alone are 
5.47 × 10-6 to 0.56 µM for TMQ in both the low FA and 
high FA experiments, and 2.71 × 10-5 to 2.78 µM for 
AG2034 in the low FA experiment and 2.71 × 10-4 to 
27.78 µM in the high FA experiment. 
 

Figures 4 and 5 show the raw data of the effect 
versus dose level by curve for the low FA and high FA 
experiments, respectively. Instead of using the actual dose, 
we plot the data using a sequentially assigned dose level to 
indicate each dilution within each curve such that the data 
can be shown clearly. In addition, the data points at each 
dilution for each curve are coded from 1 to 5 according to 
the order of the appearance in the data set. We assume that 
these numbers correspond to the replicate number for each 
design point (the well position in the stack of 5 plates). 
Because the plate number was not listed in the data, we are 
not certain that this is the case. From the plot, we can see 
that there are outliers in several dilution series. Of note, in 
Figure 4, the effects from plate (replicate) #1 in curves B, E, 
F, and K tend to be lower than all other replicates. There 
are also some unusually large values, for example, in 
replicate 2 in curve A, dose level (dilution series) 6; 
replicate 3 in curve L, dose level 4; and replicate 2 in curve 
M, dose level 1. Similar observations can be made for the 
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Figure 2. Variable width percentile plot for the observed effect in experiments with low and high folic acid media.  Each vertical 
bar indicates a five percent increment. The middle 20% of the data are shaded in a light orange color.  

 
high FA experiment: plate #1 seems to have some low values 
in curves B, C, H, I, and J, and plate #4 seems to have some 
low values in curves E, K, N, O, and P. These findings indicate 
that certain procedures need to be performed to remove the 
obvious outliers in order to improve the data quality before the 
data analysis.  
 
 Figure 6 shows the perspective plot, contour plot, 
and image plot for the low FA experiment. From the 
perspective plots in Figure 6.A (back view), B (front 
view), and C (side view), we can see that the effect 
starts at a high plane plateau at an effect level of about 
1.2 when the doses of TMQ are AG are small. As the dose 
of each drug increases, the effect remains approximately 
constant for a while and then a sudden drop occurs. This 
steep downward slope can be found by taking the 
trajectory of any combination of the TMQ and AG 
doses; it is also evident in the dose-response curves 
shown in Figures 4 and 5. The steep drop of the effect 
can also be found in the contour plot and the image plot. 
Similar patterns in the dose-response relationship are 
shown in Figure 7 for the high FA experiment. The steep 
drop of the effect occurs at smaller doses in the low FA 
experiment and at larger doses in the high FA experiment.  

 
5.  DATA PREPROCESSING: OUTLIER 
REJECTION AND DATA STANDARDIZATION  
 
5.1. Outlier rejection  
 To address the concern that outliers may adversely 
affect the analysis outcome, we devise the following simple 

plan.   For each of the 176 point numbers (16 curves x 11 
dilutions), the five effect readings should be close to each other 
because they are from replicated experiments. However, 
because the plate number is not in the data set, we cannot 
assess the plate effect. Neither can we reject a certain replicate 
plate entirely should there be a plate with outlying data, nor 
apply a mixed effect model treating the plate effect as a 
random effect. For the four or five effect readings in each point 
number (only 9 point numbers in the low FA and 1 in the high 
FA experiments have 4 readings), we compute the median and 
the interquartile range. An effect reading is considered an 
outlier if the value is beyond the median ± 1.4529 times the 
interquartile range. If the data are normally distributed (i.e., 
follow a Gaussian distribution), the range expands to cover the 
middle 95% of the data. Hence, only about 5% of the data 
points (2.5% at each extreme) are considered outliers. The 
number 1.4529 is obtained by qnorm(.975)/( qnorm(.75) - 
qnorm(.25)) where qnorm(x) is a quantile function which 
returns the xth percentiles from a normal distribution. Upon 
applying the above rule, 129 out of 871 (14.8%) effect 
readings in the low FA experiment and 126 out of 879 (14.3%) 
in the high FA experiment are considered outliers and are 
removed before proceeding to further analysis. The 
numbers of outliers in replicates 1 to 5 are 60, 28, 19, 14, 
and 8 for the low FA experiment and 35, 18, 21, 34, and 
18 for the high FA experiment, indicating a non-random 
pattern of outliers that could be attributed to 
experimental conditions. Note that the outlier rejection 
algorithm is only applied “locally.” In other words, it 
only applies to the replicated readings up to five 
replicates in each of the 176 experimental conditions.
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Figure 3. Experimental design showing the logarithmically transformed AG2034 (AG) dose versus the logarithmically 
transformed trimetrexate (TMQ) dose in the fixed ratio experiments. 16 curves are shown. Curves A and B are controls; no drugs 
applied. Curves C and D are single-drug studies for TMQ and AG, respectively. Curves E through P are the combination drug 
studies. Each curve has 11 dilutions shown in circles. Panel A: low folic acid medium. Panel B: high folic acid medium.  
 
 
5.2. Data standardization  
 After outliers are removed from the data, we 
compute the mean of the control curves. The means for 
curves 8 and 16 are 1.1668 and 1.1534 for the low FA 
experiment and 1.1483 and 1.1477 for the high FA 
experiment, respectively. To apply the Emax model in 
equation (E6) with  E0 = 1, we standardize the data by 
dividing the effect readings of respective curves 1-7 by the 
mean of curve 8 and the effect readings of respective 
curves 9-15 by the mean of curve 16. 
 
6.  RESULTS  
 
6.1. Results for the low folic acid experiment 
 The Emax model in equation (E6) is applied to fit 
all of the dose-response curves. For the low FA experiment, 
the parameter estimates, their corresponding standard errors, 
and the residual sum of squares are given in Table 1. The 
dose-response relationships showing the data and the fitted 
curves are displayed in Figure 8. Note that although model 
fitting is performed on the original dose scale, the dose is 
plotted on the logarithmically transformed scale to better 
show the dose-response relationship. The fitted marginal 
dose-response curves for TMQ (curve C) and AG (curve D) 
are shown in a blue dashed line and a red dotted line, 

respectively. From Table 1, we see that 50

^
ED  is 0.00133 

for TMQ and 0.00621 for AG, indicating that TMQ is 
about 4.7 times more potent than AG at the 50ED level. For 

curves E through P, the fitted dose-response curve for the 
combination treatment is shown as a solid black line 
superimposed on the marginal dose-response curves. The 
proposed Emax model fits all curves well except for curves 
G, H and K. For curve G, although the model estimates 
converge in an initial attempt, the parameter m is estimated 
with a standard error of 30.3. The large standard error 
essentially indicates that the estimate m̂  is not reliable. For 
curve K, the model does not converge on the original dose 
scale but converges on the logarithmically transformed 
dose scale. However, the standard error of the estimate m̂  
is still very large, which leads us to believe that the model 
is not very stable. For curve H, as can be seen in Figure 8, 
there are no observed effects between 0.3 and 1 from the 
second to the fifth dilutions. The parameter m cannot be 
estimated and the model fails to converge on both the 
original scale and the logarithmic scale. To address these 
problems, we conclude that the data do not provide us 
sufficient information to yield a reasonable estimate of the 
parameter m. Therefore, we take a remedial approach by 
fixing m, and then proceed to estimate the other two 
parameters. Upon checking the data, we set the parameter 
m as 5, 4.5, and 5 for curves G, H, and K, respectively. The 
choice of m is somewhat arbitrary with a goal of yielding a 
good fit to the data and producing a small residual sum of 
squares. The resulting “reduced” models fit the data 
reasonably well but with a consequence that there is no 
standard error estimate for m̂ , which affects the variance 
estimation of the interaction index (to be shown later).
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Table 1. Summary of parameter estimates (standard error) for the low FA experiment 

Curve1 
Dose ratio 
(TMQ/AG)2 Emax

3 ED50
4 m5 

Residual sum of 
squares 

C (1)  0.877 (0.007) 0.00133 (0.00006) 2.345 (0.190) 0.0779 
D (2)  0.872 (0.007) 0.00621 (0.00024) 3.045 (0.269) 0.0749 
E (15) 0.004 0.869 (0.008) 0.00359 (0.00017) 3.250 (0.437) 0.0969 
F (13) 0.008 0.863 (0.008) 0.00294 (0.00014) 2.621 (0.276) 0.0897 
G (11*) 0.02 0.865 (0.006) 0.00151 (0.00005) 5.0 0.0817 
H (7*) 0.05 0.889 (0.007) 0.00274 (0.00011) 4.5 0.1025 
I (5) 0.1 0.885 (0.005) 0.00253 (0.00009) 3.449 (0.306) 0.0689 
J (3) 0.2 0.882 (0.005) 0.00244 (0.00007) 4.019 (0.402) 0.0655 
K (9*) 0.2 0.872 (0.007) 0.00233 (0.00007) 5.0 0.0843 
L (4) 0.4 0.889 (0.006) 0.00278 (0.00011) 5.473 (0.583) 0.0855 
M (6) 0.8 0.890 (0.005) 0.00200 (0.00007) 3.208 (0.263) 0.0738 
N (10) 2 0.887 (0.008) 0.00169 (0.00009) 2.544 (0.258) 0.0984 
O (12) 5 0.878 (0.008) 0.00145 (0.00007) 2.206 (0.206) 0.0837 
P (14) 10 0.874 (0.006) 0.00134 (0.00006) 1.971 (0.128) 0.0599 

Footnotes and abbreviations: 1curves without data: curves A(8) and B(16) represent controls; no drugs applied, 
2trimetrexate/experimental drug AG2034, 3maximum effect attributable to the drug, 4dose level producing half of Emax,5slope 
factor, which measures the sensitivity of the effect within a dose range of the drug, is fixed at a certain value 
 
Based on limited sensitivity analysis, the estimation of the 
interaction index remains reasonably robust.       
 
 In all dose-response curves, the standardized 
effect level starts to drop between dose levels (dilutions) 3 
to 6. Once the effect starts to drop, it drops quickly and 
plateaus at the 1 − maxÊ level. There are ample data points 

at the effect levels around 1 (dose levels 1-4) and 1 − maxÊ  
(dose levels 8-11). However, due to the sharp drop in the 
dose-response curves, fewer data points can be found in the 
middle of the effect range. When the data points become 
too few or do not spread out to cover enough range, it 
becomes harder for the model to converge, as seen in 
curves G, H, and K. The overall results for the curve fitting 
of the low FA experiment are that the values of maxÊ  range 

from 0.863 to 0.890; the values of 50

^
ED  range from 

0.00133 to 0.00621; and the values of m̂  range from 1.971 
to 5.473. The residual sum of squares ranges from 0.0599 
to 0.1025 without large values, suggesting that the model 
fits the data reasonably well.  
 
 Based on the fitted dose-response curve, the 
interaction index (II) can be calculated over the entire 
effect range and at specific dose combinations. Table 2 
gives a detailed result of the estimated interaction index 
and its 95% point-wise confidence interval at each dose 
combination for each combination curve. The II is 
calculated at the predicted effect level from the 
combination curve and not at the observed effect level. The 
results are shown in a trellis plot in Figure 9 where the red 
lines represent the 95% point-wise confidence intervals at 
each specific effect level and the black dashed lines 
indicate the 95% simultaneous confidence bands of the II 
for the entire range. From the figure we find that the 
interaction index can be estimated with very good precision 
in all curves except at the two extremes when the effect is 
close to 1 or 1 − maxÊ . The trend and the pattern of the 
interaction index are clearly shown in these figures. For 
curves E through K, i.e., with a TMQ:AG dose ratio 
ranging from 0.004 to 0.2, synergy is observed in the effect 
range between 0.2 to 0.9. For curves L and M, which have 

TMQ:AG ratios of 0.4 and 0.8, we see that synergy is 
observed at the low effect level from 0.2 to about 0.5.  
Beyond 0.5 the combinations are generally additive. For 
curves N, O, and P, with TMQ:AG ratios of 2, 5, and 10, 
the synergistic effect is lost and we see additivity in all 
dose ranges.   
 
6.2. Results for the high folic acid experiment 
 Table 3 lists the parameter estimate, 
corresponding standard error, and sum of squares for all the 
curves in the high FA experiment. Unlike in the experiment 
using low FA media, the model fitting for all curves in the 
high FA experiment converge when using the Emax model. 

The estimated maxÊ  ranges from 0.831 to 0.893; 50

^
ED  

ranges from 0.0137 to 0.1943 except for curve D (AG alone 

with 50

^
ED  = 0.5224); and m̂  ranges between 1.468 and 

3.625.  The residuals sum of squares ranges from 0.0615 to 
0.1134. Compared to the low FA experiment, the values 

of 50

^
ED are greater in the high FA experiment, indicating 

that the drugs are less potent when applied to a high FA 
medium. Note that the doses of TMQ are the same between 
the two experiments but the doses of AG are 10 times 

higher in the high FA experiment. In addition, 50

^
ED  = 

0.0137 and 0.00133 for TMQ alone in the high and low FA 
experiments, respectively, which indicates that the drug is 
10 times less potent in the high FA medium compared to 
the low FA medium. The potency of AG is even more 
dramatically reduced. In Figure 10 we see that the Emax 
model provides an excellent fit to all the curves. Table 4 
gives a detailed account of the interaction index in all 
dilutions for all of the combination curves. The results are 
summarized in a trellis plot in Figure 11. Again, the red 
lines represent the 95% point-wise confidence intervals at 
each specific effect level and the black dashed lines 
correspond to the simultaneous confidence bands of the II 
for the whole range. Using the high FA medium, synergy 
can be achieved for most of the drug combinations in all 
the effect ranges, with the exception of the very low or very 
high effect ranges. The confidence intervals are still very 
tight although they are a little wider compared to their 
counterparts from the low FA experiment. As the TMQ:AG
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Table 2. Estimated interaction index and its 95% confidence interval at each dose combination for the low FA experiment 
95% CI5 for II 

Curve1 
TMQ2  
dose 

AG20343 
dose 

Dose ratio 
TMQ/AG Dilution 

Predicted 
effect II4 Lower limit Upper limit 

E (15) 
1.07E-07 2.66E-05 

0.004 
1 1 0.87 0.18 4.29 

 
8.58E-07 0.000213 

 
2 0.9999 0.73 0.28 1.89 

 
2.71E-06 0.000673 

 
3 0.9962 0.67 0.37 1.20 

 
8.58E-06 0.002129  4 0.864 0.61 0.48 0.78 

 
1.72E-05 0.004259  5 0.4454 0.58 0.52 0.65 

 
3.43E-05 0.008517  6 0.1802 0.56 0.45 0.71 

 
6.86E-05 0.017000  7 0.1368 0.61 0.24 1.55 

 
0.000137 0.034100 

 
8 0.1319 0.91 0 4.35E+03 

 
0.000434 0.107700 

 
9 0.1314 2.71 0 1.30E+157 

 
0.001373 0.340700 

 
10 0.1314 8.58 0 NA 

 
0.011000 2.725500 

 
11 0.1314 68.6 0 NA 

F (13) 2.10E-07 2.61E-05 0.008 1 1 0.28 0.08 0.91 
 

1.68E-06 0.000209 
 

2 0.9991 0.35 0.17 0.71 
 

5.32E-06 0.000660 
 

3 0.9828 0.4 0.26 0.62 
 

1.68E-05 0.002088 
 

4 0.746 0.47 0.4 0.55 
 

3.37E-05 0.004177 
 

5 0.3788 0.52 0.46 0.58 
 

6.73E-05 0.008353 
 

6 0.188 0.59 0.47 0.74 
 

0.000135 0.016700 
 

7 0.1454 0.76 0.4 1.47 
 

0.000269 0.033400 
 

8 0.138 1.26 0.02 67.11 
 

0.000851 0.105700 
 

9 0.1366 3.79 0 1.72E+37 
 

0.002692 0.334100 
 

10 0.1366 11.95 0 NA 
 

0.021500 2.673100 
 

11 0.1366 95.63 0 NA 
G (11) 

4.97E-07 2.47E-05 
0.02 

1 1.0000 5.60 1.90 16.45 
 

3.98E-06 0.000197 
 

2 1.0000 1.09 0.60 1.96 
 

1.26E-05 0.000624 
 

3 0.9885 0.47 0.36 0.63 
 

3.98E-05 0.001974 
 

4 0.2987 0.22 0.19 0.25 
 

7.95E-05 0.003949 
 

5 0.1410 0.17 0.09 0.32 
 

0.000159 0.007898 
 

6 0.1350 0.27 0.00 3.09E+04 
 

0.000318 0.015800 
 

7 0.1348 0.54 0.00 1.62E+161 
 

0.000636 0.031600 
 

8 0.1348 1.09 0.00 NA 
 

0.002012 0.099900 
 

9 0.1348 3.44 0.00 NA 
 

0.006364 0.315900 
 

10 0.1348 10.87 0.00 NA 
 

0.050900 2.527300 
 

11 0.1348 86.95 0.00 NA 
H (7) 

1.09E-06 2.17E-05 
0.05 

1 1.0000 12.11 3.53 41.51 
 

8.75E-06 0.000174 
 

2 1.0000 2.71 1.42 5.15 
 

2.77E-05 0.000549 
 

3 0.9992 1.29 0.88 1.90 
 

8.75E-05 0.001738 
 

4 0.8773 0.65 0.57 0.74 
 

0.000175 0.003475 
 

5 0.3035 0.43 0.38 0.48 
 

>=0.000350 >=0.006950 
 

6 - 11 <= 0.1219 NA NA NA 
I (5) 

1.82E-06 1.81E-05 
0.1 

1 1.0000 2.39 0.70 8.17 
 

1.46E-05 0.000145 
 

2 0.9999 1.17 0.59 2.30 
 

4.61E-05 0.000458 
 

3 0.9966 0.83 0.55 1.24 
 

0.000146 0.001448 
 

4 0.8509 0.61 0.52 0.71 
 

0.000292 0.002896 
 

5 0.3906 0.51 0.47 0.55 
 

0.000583 0.005792 
 

6 0.1506 0.38 0.31 0.47 
 

>=0.001167 >=0.011600 
 

7 - 11 <= 0.1188 NA NA NA 
J (3) 

2.73E-06 1.36E-05 
0.2 

1 1.0000 12.56 2.59 60.87 
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2.19E-05 0.000109 

 
2 1.0000 3.31 1.38 7.95 

 
6.92E-05 0.000343 

 
3 0.9993 1.67 0.99 2.81 

 
0.000219 0.001086 

 
4 0.9344 0.88 0.71 1.08 

 
0.000438 0.002172 

 
5 0.5008 0.61 0.57 0.65 

 
0.000875 0.004344 

 
6 0.1577 0.40 0.33 0.48 

 
>=0.001750 >=0.008688 

 
7 - 11 <= 0.1204 NA NA NA 

K (9) 
2.73E-06 1.36E-05 

0.2 
1 1.0000 88.77 14.80 532.45 

 
2.19E-05 0.000109 

 
2 1.0000 9.70 3.84 24.48 

 
6.92E-05 0.000343 

 
3 0.9998 3.04 1.83 5.06 

 
0.000219 0.001086 

 
4 0.9550 1.02 0.86 1.21 

 
0.000438 0.002172 

 
5 0.4457 0.55 0.51 0.60 

 
0.000875 0.004344 

 
6 0.1429 0.32 0.21 0.47 

 
>=0.001750 >=0.008688 

 
7 - 11 <= 0.1280 NA NA NA 

L (4) 
3.65E-06 9.05E-06 

0.4 
1 1.0000 812.88 82.77 7.98E+03 

 
2.92E-05 7.24E-05 

 
2 1.0000 53.71 13.70 210.53 

 
9.22E-05 0.000229 

 
3 1.0000 12.38 5.18 29.56 

 
0.000292 0.000724 

 
4 0.9964 2.99 1.98 4.51 

 
0.000583 0.001448 

 
5 0.8651 1.31 1.10 1.56 

 
0.001167 0.002896 

 
6 0.2103 0.56 0.50 0.63 

 
>=0.002333 >=0.005792 

 
7 - 11 <= 0.1134 NA NA NA 

M (6) 
4.38E-06 5.43E-06 

0.8 
1 1.0000 4.95 1.18 20.69 

 
3.50E-05 4.34E-05 

 
2 1.0000 2.40 1.01 5.71 

 
0.000111 0.000137 

 
3 0.9989 1.63 0.93 2.87 

 
0.000350 0.000434 

 
4 0.9580 1.12 0.85 1.48 

 
0.000700 0.000869 

 
5 0.7206 0.90 0.80 1.03 

 
0.001400 0.001738 

 
6 0.2804 0.72 0.64 0.80 

 
0.002800 0.003475 

 
7 0.1325 0.41 0.25 0.67 

 
>=0.005600 >=0.006950 

 
8 - 11 <= 0.1128 NA NA NA 

N (10) 
4.97E-06 2.47E-06 

2 
1 1.0000 1.37 0.32 5.84 

 
3.98E-05 1.97E-05 

 
2 0.9998 1.17 0.47 2.89 

 
0.000126 0.000062 

 
3 0.9967 1.08 0.59 1.98 

 
0.000398 0.000197 

 
4 0.9417 0.99 0.72 1.37 

 
0.000795 0.000395 

 
5 0.7418 0.95 0.80 1.13 

 
0.001591 0.000790 

 
6 0.3742 0.90 0.79 1.02 

 
0.003182 0.001580 

 
7 0.1721 0.81 0.64 1.03 

 
>=0.006364 >=0.003159 

 
8 - 11 <= 0.1236 NA NA NA 

         

O (12) 
5.26E-06 1.04E-06 

5 
1 1.0000 0.67 0.18 2.52 

 
4.21E-05 8.35E-06 

 
2 0.9995 0.76 0.33 1.76 

 
0.000133 2.64E-05 

 
3 0.9934 0.82 0.46 1.45 

 
0.000421 8.35E-05 

 
4 0.9227 0.88 0.65 1.21 

 
0.000841 0.000167 

 
5 0.7294 0.92 0.78 1.10 

 
0.001683 0.000334 

 
6 0.4094 0.97 0.87 1.08 

 
0.003365 0.000668 

 
7 0.2060 1.01 0.83 1.24 

 
0.006731 0.001337 

 
8 0.1420 1.05 0.67 1.65 

 
>=0.021300 >=0.004227 

 
9 - 11 <= 0.1239 NA NA NA 

P (14) 
5.36E-06 5.32E-07 

10 
1 1.0000 0.39 0.14 1.09 

 
4.29E-05 4.26E-06 

 
2 0.9988 0.54 0.28 1.05 

 
0.000136 1.35E-05 

 
3 0.9887 0.65 0.42 1.02 

 
0.000429 4.26E-05 

 
4 0.9015 0.79 0.62 1.01 
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0.000858 8.52E-05 

 
5 0.7095 0.88 0.76 1.02 

 
0.001716 0.000170 

 
6 0.4221 0.99 0.89 1.10 

 
0.003431 0.000341 

 
7 0.2272 1.12 0.95 1.32 

 
0.006863 0.000681 

 
8 0.1544 1.30 0.98 1.74 

 
>=0.021700 >=0.002155 

 
9 - 11 <= 0.1292 NA NA NA 

Footnotes and abbreviations: 1 curves without data: curves A (8) and B (16) represent controls; no drugs applied; curves C (1, 
TMQ) and D (2, AG2034) represent single-drug applications, 2 trimetrexate, 3experimental drug, 4 interaction index, 5confidence 
interval
 
Table 3. Summary of parameter estimates (standard error) for the high FA experiment 

Curve1 
Dose ratio 
(TMQ/AG)2 Emax

3 ED50
4 m5 

Residual sum of 
squares 

C (1)  0.883 (0.012) 0.0137 (0.0012) 3.625 (0.650) 0.1074 
D (2)  0.831 (0.015) 0.5224 (0.0439) 1.468 (0.137) 0.0770 
E (15) 0.0004 0.867 (0.014) 0.1943 (0.0122) 2.558 (0.405) 0.1134 
F (13) 0.0008 0.863 (0.010) 0.1447 (0.0068) 2.643 (0.258) 0.0852 
G (11) 0.002 0.859 (0.010) 0.0912 (0.0045) 2.996 (0.355) 0.0999 
H (7) 0.005 0.881 (0.006) 0.0699 (0.0027) 2.887 (0.253) 0.0746 
I (5) 0.01 0.881 (0.009) 0.0484 (0.0026) 2.528 (0.251) 0.0977 
J (3) 0.02 0.884 (0.006) 0.0331 (0.0011) 2.114 (0.136) 0.0615 
K (9) 0.02 0.885 (0.008) 0.0369 (0.0019) 2.160 (0.195) 0.0861 
L (4) 0.04 0.886 (0.008) 0.0288 (0.0014) 2.504 (0.255) 0.0959 
M (6) 0.08 0.885 (0.009) 0.0197 (0.0010) 2.242 (0.214) 0.0881 
N (10) 0.2 0.862 (0.010) 0.0154 (0.0007) 3.309 (0.415) 0.0909 
O (12) 0.5 0.878 (0.009) 0.0139 (0.0006) 3.491 (0.405) 0.0933 
P (14) 1 0.893 (0.008) 0.0183 (0.0009) 2.735 (0.213) 0.0669 

Footnotes and abbreviations: 1curves without data: curves A(8) and B(16) represent controls; no drugs applied, 
2trimetrexate/experimental drug AG2034,  3maximum effect attributable to the drug,  4dose level producing half of Emax, 5slope 
factor, which measures the sensitivity of the effect within a dose range of the drug  
 
Table 4. Estimated interaction index and its 95% confidence interval at each dose combination for the high FA experiment 

95% CI5 for II 

Curve1 
TMQ2 
dose 

AG20343 
dose 

Dose ratio 
TMQ/AG Dilution 

Predicted 
effect II4 

Lower limit Upper 
limit 

E (15) 
1.07E-07 0.000266 

0.0004 
1 1.0000 48.28 2.53 922.71 

 
8.58E-07 0.002128 

 
2 1.0000 10.31 1.36 78.32 

 
2.71E-06 0.006729 

 
3 0.9998 4.39 0.96 20.02 

 
8.58E-06 0.021278 

 
4 0.9970 1.87 0.68 5.14 

 
1.72E-05 0.042555 

 
5 0.9825 1.12 0.55 2.28 

 
3.43E-05 0.085110 

 
6 0.9063 0.67 0.44 1.02 

 
6.86E-05 0.170221 

 
7 0.6388 0.40 0.32 0.48 

 
0.000137 0.340441 

 
8 0.2994 0.21 0.16 0.28 

 
>=0.000434 >=1.076570 

 
9 - 11 <= 0.1433 NA NA NA 

F (13) 
2.10E-07 0.000261 

0.0008 
1 1.0000 42.38 3.74 479.71 

 
1.68E-06 0.002087 

 
2 1.0000 8.02 1.56 41.25 

 
5.32E-06 0.006599 

 
3 0.9998 3.20 0.96 10.63 

 
1.68E-05 0.020868 

 
4 0.9949 1.27 0.59 2.75 

 
3.37E-05 0.041737 

 
5 0.9688 0.73 0.44 1.23 

 
6.73E-05 0.083474 

 
6 0.8363 0.42 0.32 0.56 

 
0.000135 0.166947 

 
7 0.4876 0.24 0.20 0.28 

 
0.000269 0.333894 

 
8 0.2224 0.11 0.08 0.16 

 
>=0.000851 >=1.055866 

 
9 - 11 <= 0.1418 NA NA NA 

G (11) 
4.97E-07 0.000247 

0.002 
1 1.0000 80.07 5.84 1097.54 

 
3.98E-06 0.001973 

 
2 1.0000 9.20 1.67 50.66 

 
1.26E-05 0.006239 

 
3 0.9997 2.78 0.84 9.26 

 
3.98E-05 0.019730 

 
4 0.9913 0.85 0.42 1.71 

 
7.95E-05 0.039460 

 
5 0.9351 0.42 0.28 0.63 

 
0.000159 0.078920 

 
6 0.6609 0.21 0.17 0.25 
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0.000318 0.157841 

 
7 0.2796 0.10 0.08 0.12 

 
>=0.000636 >=0.315682 

 
8 - 11 <= 0.1614 NA NA NA 

H (7) 
1.09E-06 0.000217 

0.005 
1 1.0000 33.80 3.34 342.20 

 
8.75E-06 0.001736 

 
2 1.0000 4.54 1.03 20.08 

 
2.77E-05 0.005491 

 
3 0.9994 1.50 0.54 4.20 

 
8.75E-05 0.017363 

 
4 0.9843 0.51 0.29 0.90 

 
0.000175 0.034725 

 
5 0.8955 0.27 0.20 0.37 

 
0.000350 0.069450 

 
6 0.5603 0.15 0.13 0.17 

 
0.000700 0.138900 

 
7 0.2239 0.07 0.06 0.09 

 
>=0.001400 >=0.277800 

 
8 - 11 <= 0.1344 NA NA NA 

I (5) 
1.82E-06 0.000181 

0.01 
1 1.0000 4.94 0.61 39.76 

 
1.46E-05 0.001447 

 
2 0.9999 1.11 0.30 4.13 

 
4.61E-05 0.004575 

 
3 0.9977 0.50 0.21 1.20 

 
0.000146 0.014469 

 
4 0.9592 0.23 0.15 0.37 

 
0.000292 0.028938 

 
5 0.8071 0.16 0.12 0.20 

 
0.000583 0.057875 

 
6 0.4556 0.11 0.09 0.13 

 
0.001167 0.115750 

 
7 0.2041 0.07 0.06 0.09 

 
>=0.002333 >=0.231500 

 
8  - 11 <= 0.1347 NA NA NA 

J (3) 
2.73E-06 0.000136 

0.02 
1 1.0000 0.67 0.13 3.34 

 
2.19E-05 0.001085 

 
2 0.9993 0.28 0.10 0.74 

 
6.92E-05 0.003432 

 
3 0.9924 0.18 0.09 0.34 

 
0.000219 0.010852 

 
4 0.9206 0.13 0.09 0.17 

 
0.000438 0.021703 

 
5 0.7354 0.11 0.09 0.13 

 
0.000875 0.043406 

 
6 0.4261 0.10 0.09 0.12 

 
0.001750 0.086813 

 
7 0.2139 0.10 0.08 0.11 

 
>=0.003500 >=0.173625 

 
8 - 11 <= 0.1405 NA NA NA 

K (9) 
2.73E-06 0.000136 

0.02 
1 1.0000 0.93 0.15 5.72 

 
2.19E-05 0.001085 

 
2 0.9995 0.36 0.12 1.12 

 
6.92E-05 0.003432 

 
3 0.9946 0.22 0.11 0.47 

 
0.000219 0.010852 

 
4 0.9390 0.15 0.10 0.22 

 
0.000438 0.021703 

 
5 0.7800 0.13 0.10 0.16 

 
0.000875 0.043406 

 
6 0.4722 0.11 0.10 0.13 

 
0.001750 0.086813 

 
7 0.2316 0.11 0.09 0.13 

 
>=0.003500 >=0.173625 

 
8 - 11 <= 0.1443 NA NA NA 

L (4) 
3.65E-06 0.000090 

0.04 
1 1.0000 2.89 0.34 24.37 

 
2.92E-05 0.000723 

 
2 0.9999 0.69 0.18 2.62 

 
9.22E-05 0.002288 

 
3 0.9983 0.33 0.14 0.80 

 
0.000292 0.007234 

 
4 0.9702 0.18 0.12 0.29 

 
0.000583 0.014469 

 
5 0.8538 0.15 0.11 0.19 

 
0.001167 0.028938 

 
6 0.5312 0.13 0.11 0.15 

 
0.002333 0.057875 

 
7 0.2326 0.12 0.10 0.15 

 
>=0.004667 >=0.115750 

 
8 - 11 <= 0.1355 NA NA NA 

M (6) 
4.38E-06 5.43E-05 

0.08 
1 1.0000 0.73 0.10 5.17 

 
3.50E-05 0.000434 

 
2 0.9998 0.27 0.08 0.89 

 
0.000111 0.001373 

 
3 0.9973 0.17 0.08 0.37 

 
0.000350 0.004341 

 
4 0.9660 0.13 0.09 0.21 

 
0.000700 0.008681 

 
5 0.8594 0.13 0.10 0.17 

 
0.001400 0.017363 

 
6 0.5823 0.14 0.12 0.16 

 
0.002800 0.034725 

 
7 0.2842 0.16 0.13 0.18 

 
>=0.005600 >=0.069450 

 
8 - 11 <= 0.1571 NA NA NA 



Emax model and interaction index for drug interaction 

594 

N (10) 
4.97E-06 2.47E-05 

0.2 
1 1.0000 61.54 3.00 1262.99 

 
3.98E-05 0.000197 

 
2 1.0000 4.66 0.64 34.02 

 
0.000126 0.000624 

 
3 1.0000 1.21 0.31 4.73 

 
0.000398 0.001973 

 
4 0.9983 0.41 0.20 0.87 

 
0.000795 0.003946 

 
5 0.9830 0.28 0.17 0.46 

 
0.001591 0.007892 

 
6 0.8570 0.23 0.17 0.31 

 
0.003182 0.015784 

 
7 0.4280 0.21 0.18 0.25 

 
0.006364 0.031568 

 
8 0.1800 0.23 0.18 0.30 

 
>=0.020124 >=0.099827 

 
9 - 11 <= 0.1390 NA NA NA 

O (12) 
5.26E-06 1.04E-05 

0.5 
1 1.0000 194.98 6.90 5509.68 

 
4.21E-05 8.35E-05 

 
2 1.0000 11.38 1.16 111.41 

 
0.000133 0.000264 

 
3 1.0000 2.57 0.51 12.90 

 
0.000421 0.000835 

 
4 0.9998 0.78 0.30 1.97 

 
0.000841 0.001669 

 
5 0.9978 0.50 0.25 0.98 

 
0.001683 0.003339 

 
6 0.9754 0.40 0.24 0.64 

 
0.003365 0.006678 

 
7 0.7849 0.36 0.27 0.48 

 
0.006731 0.013356 

 
8 0.3109 0.35 0.30 0.41 

 
>=0.021285 >=0.042235 

 
9 - 11 <= 0.1263 NA NA NA 

P (14) 
5.36E-06 5.32E-06 

1 
1 1.0000 10.38 0.65 165.28 

 
4.29E-05 4.26E-05 

 
2 1.0000 1.89 0.29 12.19 

 
0.000136 0.000135 

 
3 1.0000 0.87 0.24 3.15 

 
0.000429 0.000426 

 
4 0.9998 0.55 0.23 1.29 

 
0.000858 0.000851 

 
5 0.9986 0.50 0.25 1.03 

 
0.001716 0.001702 

 
6 0.9910 0.51 0.29 0.92 

 
0.003431 0.003404 

 
7 0.9436 0.56 0.37 0.86 

 
0.006863 0.006809 

 
8 0.7232 0.64 0.50 0.83 

 
0.021702 0.021531 

 
9 0.1851 0.80 0.65 0.99 

 >=0.068627 >=0.068088  10, 11 <= 0.1109 NA NA NA 
Footnotes and abbreviations: 1curves without data: curves A(8) and B(16) represent controls; no drugs applied; curves C(1, 
TMQ) and D (2, AG2034) represent single-drug applications, 2trimetrexate, 3experimental drug, 4interaction index, 5confidence 
interval 
 
ratio increases from 0.0004 to 0.5, synergy is observed 
across all dilution series. In addition, higher synergy is 
observed at the lower effect levels, particularly when the 
TMQ:AG is at 0.01 or lower (curves E, F, G, H, and I). In 
the middle effect levels (effects between 0.2 and 0.8), the II 
ranges from about 0.1 in curves J and K, to 0.12 in curve L, 
0.15 in curve M, 0.25 in curve N, and 0.35 in curve O. The 
higher the TMQ:AG ratio, the less synergy it achieves. In 
curve P, for example, when the TMQ:AG ratio reaches 1, 
synergy is lost.   

 
7.  SUMMARY  
 
 In both the low FA and high FA experiments, 
TMQ is more potent than AG. At low TMQ:AG ratios, i.e., 
when a small amount of the more potent drug (TMQ) is 
added to a larger amount of the less potent drug (AG), 
synergy is achieved. However, when the TMQ:AG ratio 
reaches 0.4 or larger for the low FA medium, or when the 
TMQ:AG ratio reaches 1 or larger for the high FA medium, 
synergy decreases, or the interaction becomes additive. In 
general, a synergistic effect in a drug combination dilution 
series is stronger at higher doses that produce stronger 
effects (effects closer to 1−Emax) than at lower dose levels 

that produce weaker effects (effects closer to 1). The two 
drugs in this study are more potent in the low FA medium 
compared to the high FA medium. The drug synergy, 
however, is stronger in the high FA medium.  

 
8.  DISCUSSION AND PERSPECTIVE 
 
 The data supplied by Dr. Greco provide an 
excellent opportunity to apply and compare various 
approaches for studying the effects of combination drug 
treatments. For the median effect model, a linear 
relationship between the logit transformed effect and the 
log-dose makes the model fitting straightforward and easy. 
However, when measuring cell growth, as in the 
experiments we analyzed, if the maximum drug effect 
reaches a plateau and does not kill all the cancer cells, even 
at the highest experimental doses, the median effect model 
(12) does not apply. We used the Emax model (19), which 
provides an adequate fit for most data. Parameter 
estimation under the Emax model requires the use of 
iterative procedures such as the nonlinear weighted least 
squares method, which can address the heteroscedascity 
problem. Model convergence is not guaranteed; whether or 
not the model converges depends on the data and the choice 
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Figure 4. Distribution of the effect versus dose level for curves A through P for the experiment in a low folic acid medium.  
 
of the initial values. We find that PROC NLIN in SAS 
provides a more comprehensive and robust environment for 
estimating parameters with nonlinear regression compared 
to the nls() function in S-PLUS/R. It can be useful to apply 
SAS first to estimate the parameters and then feed the 
results into S-PLUS/R for further data analysis and 
production of graphics. Unlike fitting the linearly-
transformed median effect model via linear regression, for 
which a solution can always be found, fitting the Emax 
model via nonlinear regression may result in 
nonconvergence of the model in some cases. This 
nonconvergence may indicate aberrant conditions in the 
data such that the data do not provide adequate information 

for model fitting. We had convergence problems with the 
curves G, H, and K in the low FA experiment. In these 
cases, there were insufficient data in the middle of the 
effect range; hence, the parameters could not be estimated 
reliably. We had to fix the m parameter before we could 
estimate the other two parameters. From the dose-response 
curves, we found that TMQ was more potent than AG, and 
that the drug combination was more potent in the low FA 
medium than in the high FA medium. 
 
 Upon construction of the marginal and 
combination dose-response curves, we applied the Loewe 
additivity model to compute the interaction index. We note 
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Figure 5. Distribution of the effect versus dose level for curves A through P for the experiment in a high folic acid medium.  
 
that a definition of drug interaction such as the 
interaction index is model dependent. Additionally, no 
matter which model is used, based on the definition of 
the interaction index (7,8), the dose levels used in 
calculating the interaction index must be translated back 
to the original units of dose measurement. Under the 
given model, we found that the drug interaction between 
TMQ and AG was largely synergistic. Synergy was 
more clear and evident in the high FA experiment than 
in the low FA experiment. In addition, synergy was 
more likely to be observed when a small dose of the 
more potent drug (TMQ) was added to a large dose of 
the less potent drug (AG). When a large amount of a 

more potent drug is present, adding the less potent drug 
does not show synergy because the effect is already 
largely achieved by the more potent drug. In addition, 
the interval estimation showed that the 95% confidence 
intervals were wider at the two extremes of the effect, 
which were closer to 1 or to 1−Emax. This result is 
consistent with that of many regression settings in which 
estimation achieves higher precision in the center of the 
data distribution but lower precision at the extremes.   
 
 We have provided a simple, yet useful 
approach for analyzing drug interaction for combination 
studies. The interaction index for each fixed dose ratio 
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Figure 6. Perspective plots (A, B, C), contour plots (D, E), and image plot (F) for the effect versus logarithm transformed doses 
of trimetrexate and AG2034 for the experiment in a low folic acid medium.  
 

 
 
Figure 7. Perspective plots (A, B, C), contour plots (D, E), and image plot (F) for the effect versus logarithmically transformed 
doses of trimetrexate and AG2034 for the experiment in a high folic acid medium. 
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Figure 8. Effect versus logarithmically transformed dose plot for the combination study of trimetrexate and AG2034 in a low 
folic acid medium. Raw data are shown in open circles. Blue dashed line and red dotted line indicate the fitted marginal dose-
response curves for trimetrexate and AG2034, respectively. Black solid line indicates the fitted dose-response curve for the 
combination of trimetrexate and AG2034.     
 

 
 
Figure 9. Trellis plot of the estimated interaction index (solid line) and its point-wise 95% confidence interval (red solid lines) 
and the 95% simultaneous confidence band (dashed lines) for the low folic acid experiment. Estimates at the design points where 
experiments were conducted are in red. The interaction index is plotted on the logarithmically transformed scale but labeled on 
the original scale.     
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Figure 10. Effect versus logarithmically transformed dose plot for the combination study of trimetrexate and AG2034 in a high 
folic acid medium. Raw data are shown in open circles. Blue dashed line and red dotted line indicate the fitted marginal dose-
response curves for trimetrexate and AG2034, respectively. Black solid line indicates the fitted dose-response curve for the 
combination of trimetrexate and AG2034.    

 
 
Figure 11. Trellis plot of the estimated interaction index (solid line) and its point-wise 95% confidence interval (red solid lines) 
and the 95% simultaneous confidence band (dashed lines) for the high folic acid experiment. Estimates at the design points where 
experiments were conducted are in red. The interaction index is plotted on the logarithmically transformed scale but labeled on 
the original scale.   
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is computed and then displayed together using a trellis plot. 
This method works well for the ray design. Other methods 
have been proposed to model the entire response surface 
using the parametric approach (27) or the semiparametric 
approach (28). The results from applying the 
semiparametric model are reported in a companion article 
(29).  
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Translational Relevance 

Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor associated with 

chemotherapy resistance and tumor growth, which is repressed by Kelch-like ECH-associated 

protein 1 (Keap1). We tested the hypothesis that the abnormal expression of these two proteins 

correlated with non-small cell lung cancer (NSCLC) patients’ outcome and response to adjuvant 

chemotherapy. We demonstrated that increased Nrf2 expression and decreased Keap1 expression 

are common abnormalities in NSCLC and are associated with clinical outcome. In our study, 

abnormal expression of Nrf2 and Keap1 proteins was more common than that of the 

corresponding gene mutations, suggesting that other mechanisms are involved in the activation 

of NFE2L2 and inactivation of KEAP1. Nrf2 expression may play a role in response to adjuvant 

platinum-based chemotherapy in patients with squamous cell carcinoma. Identifying patients 

with abnormal Nrf2 expression may be important for selection for chemotherapy in NSCLC.  
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ABSTRACT 

Purpose. To understand the role of Nrf2 and Keap1 in NSCLC, we studied their expression in a 

large series of tumors with annotated clinicopathologic data, including response to platinum-

based adjuvant chemotherapy.   

Experimental design. We determined the immunohistochemical expression of nuclear Nrf2 and 

cytoplasmic Keap1 in 304 NSCLCs and its association with patients’ clinicopathologic 

characteristics, and in 89 tumors from patients who received neoadjuvant (n=26) or adjuvant 

platinum-based chemotherapy (n=63). We evaluated NFE2L2 and KEAP1 mutations in 31 tumor 

specimens.  

Results. We detected nuclear Nrf2 expression in 26% of NSCLCs; it was significantly more 

common in squamous cell carcinomas (38%) than in adenocarcinomas (18%; P<0.0001). Low or 

absent Keap1 expression was detected in 56% of NSCLCs; it was significantly more common in 

adenocarcinomas (62%) than in squamous cell carcinomas (46%; P=0.0057). In NSCLC, 

mutations of NFE2L2 and KEAP1 were very uncommon (2 of 29 and 1 of 31 cases, 

respectively). In multivariate analysis, Nrf2 expression was associated with worse overall 

survival (P=0.0139; HR=1.75) in NSCLC patients, and low or absent Keap1 expression was 

associated with worse overall survival (P=0.0181; HR=2.09) in squamous cell carcinoma. In 

univariate analysis, nuclear Nrf2 expression was associated with worse recurrence-free survival 

in squamous cell carcinoma patients who received adjuvant treatment (P=0.0410; HR=3.37).  

Conclusions. Increased expression of Nrf2 and decreased expression of Keap1 are common 

abnormalities in NSCLC and are associated with a poor outcome. Nuclear expression of Nrf2 in 

malignant lung cancer cells may play a role in resistance to platinum-based treatment in 

squamous cell carcinoma.  
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INTRODUCTION 

Lung cancer is the most common cause of cancer-related death in the world (1). Non-

small cell lung carcinoma (NSCLC), adenocarcinoma, and squamous cell carcinoma are the most 

common histologic types (85%) (2). Despite intensive research, the prognosis of lung cancer 

patients remains poor, with a 15% 5-year overall survival (OS) rate (1). For patients with early-

stage disease, surgery is the standard treatment (2). Adjuvant chemotherapy has been found to be 

beneficial for some patients with stage II-IIIA NSCLC (3), whereas for patients with stage IIIB 

and IV disease, chemotherapy is the standard front-line treatment (3, 4). A combination of drugs 

that includes a platinum agent is the most common regimen administered for NSCLC (3, 4). 

However, most tumors either fail to respond due to intrinsic resistance or else develop drug 

acquired resistance after an initial response to therapy (3).  

Nuclear factor erythroid-2-related factor 2 (Nrf2) is a transcription factor that has been 

suggested to be associated with cancer development and progression, including in NSCLC (5-8). 

Nrf2 enables the adaptation of normal cells to oxidants and electrophiles generated by harmful 

exogenous agents and to reactive oxygen species and their secondary metabolites (9). Under 

homeostatic conditions, Nrf2 is principally repressed by Kelch-like ECH-associated protein 1 

(Keap1), which functions as an intracellular redox sensor, targeting Nrf2 for proteosomal 

degradation. Under oxidant or xenobiotic stress, Keap1 releases Nrf2, which translocates to the 

nucleus and activates antioxidant response elements and xenobiotics element genes (including 

NAD(P)H dehydrogenase quinone 1, NQO1), resulting in the protein expression of growth 

factors and receptors, drug efflux pumps, drug-metabolizing enzymes, heat shock proteins, and 

various transcription factors (5, 9, 10).  

One of the mechanisms involved in NSCLC is the nuclear translocation of Nrf2 due to 
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loss of Keap1 expression by biallelic inactivation of the gene by mutation and loss of 

heterozygosity, or promoter methylation (5, 8, 11-13). An alternative mechanism of Nrf2 

activation is mutation of the gene NFE2L2, which affects the region of exon 2 that codes the 

Keap1-binding site of Nrf2 (12); these mutations have been detected in 8-11% of NSCLCs, 

mainly squamous cell carcinoma tumors (12, 14). It has been suggested that abnormalities of the 

Nrf2/Keap1 pathway that lead to nuclear Nrf2 expression in tumors are an important mechanism 

to induce platinum-based chemotherapy resistance by promoting tumor cell survival and 

increasing proliferation (5-8). Recently, it was shown that the inhibition of Nrf2 expression using 

siRNA augmented carboplatin-induced tumor growth inhibition in an NSCLC xenograft mouse 

model (8). 

To date, no comprehensive analysis has been performed of Nrf2 and Keap1 expression 

and associated genetic abnormalities in NSCLC, and no studies have determined the relationship 

between Nrf2 expression and clinical outcome after treatment with platinum-based adjuvant 

chemotherapy. Therefore, in this retrospective study, we characterized the expression of these 

two proteins in a large series of NSCLC tissue specimens with annotated clinicopathologic 

characteristics, including outcome, determined the frequency of exon 2 NFE2L2 and exon 2-5 

KEAP1 mutations and evaluated the relationship between nuclear Nrf2 expression and outcome 

in patients treated with platinum-based adjuvant chemotherapy. Because in NSCLC the presence 

of EGFR and KRAS mutation has been associated to tumor’s response to chemotherapy (15), we 

also investigated in adenocarcinoma tumors the association between both genes mutation status 

and Nrf2 and Keap1 expressions.  

 

MATERIALS AND METHODS 
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Nrf2 and Keap1 Western blot analysis in cell lines. The human NSCLC cell lines A549 and 

H460 (with known downregulation of Keap1 protein) (5), H1993, and an SV40-transformed 

human bronchial epithelial cell line, BEAS2B, were evaluated for nuclear and cytoplasmic 

expression of Nrf2 and Keap1 proteins by Western blot analysis. Nuclear and cytoplasmic 

protein extracts of these cell lines were obtained using NE-PER nuclear extraction reagents 

(Pierce, Rockford, IL). The lung cancer cell lines were provided by Dr. John Minna’s laboratory 

(Dallas, TX) and they were authenticated by testing them using the PowerPlexR 2.1 system 

(Promega, Madison, WI). Protein concentrations were estimated using the Bradford assay (Bio-

Rad, Hercules, CA). For Western blot analysis, 25 μg of cell line protein from nuclear and 

cytoplasmic extracts were loaded in each lane, run on a NuPAGE 4%-12% Bis-Tris gel 

(Invitrogen, Carlsbad, CA), and transferred onto a nitrocellulose membrane. After being blocked 

with 5% non-fat milk, the blots were exposed to rabbit primary antibody against Nrf2 (dilution 

1:500, clone H300; Santa Cruz Biotechnologies, Santa Cruz, CA) and Keap1 (dilution 1:600; 

Proteintech, Chicago, IL), followed by anti-rabbit secondary antibody. The signals were detected 

using SuperSignal West Pico chemiluminescent substrate (Pierce, Rockford, IL). β-actin and 

poly(ADP-ribose) polymerase (dilution 1:100, Cell Signaling Technologies, Danver, MA) were 

used as the controls. The Western blot analysis was performed in triplicate. 

 

Case selection for immunohistochemical analysis. To determine the expression of Nrf2 and 

Keap1 in primary NSCLCs, we selected archived, formalin-fixed, paraffin-embedded (FFPE) 

tumor tissue samples from surgically resected lung cancer specimens from the Lung Cancer 

specialized Program of Research Excellence Tissue Bank at The University of Texas M. D. 

Anderson Cancer Center (Houston, Texas). This study was approved by the M. D. Anderson 
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Cancer Center institutional review board. Tumor tissues were histologically analyzed and 

classified using the 2004 World Health Organization classification system (16). These samples 

were used to evaluate the immunohistochemical expression of Nrf2 and Keap1 in both a tissue 

microarray (TMA) and whole tissue sections.  

 For the TMA, we used 304 tumor tissue samples collected between 1997 and 2003, 

including 190 adenocarcinomas and 114 squamous cell carcinomas. The cases were selected 

based on the availability of FFPE tissue blocks with enough tumor tissue for TMA construction. 

These samples were placed in a TMA, using three 1-mm-diameter cores that included tissue 

from the center, intermediate, and peripheral areas of the tumor, as previously described (17). 

Detailed clinicopathologic information, including demographics, performance status (based on 

Eastern Cooperative Oncology Group, ECOG, scale), smoking history (never, former, or 

current), pathologic TNM stage (I-IV) (Table 1), recurrence-free survival (RFS) and overall 

survival (OS) duration, were available for most cases. To determine the heterogeneity of nuclear 

Nrf2 expression in NSCLC tissues, we evaluated whole tumor tissue sections from 36 tumors, 

including 18 adenocarcinomas and 18 squamous cell carcinomas; 19 of these cases expressed 

nuclear Nrf2. Thirty of these cases were also examined for the expression of NQO1.  The whole 

tumor histology sections consisted of 1 to 2 cm diameter tumor specimens with adjacent normal 

lung tissue.  

 To determine the expression of Nrf2 and Keap1 proteins in NSCLC after chemotherapy, 

we evaluated 26 tumor tissues from patients who had undergone neoadjuvant platinum-based 

chemotherapy. The chemotherapy regimens included carboplatin with paclitaxel (n=21) or 

cisplatin with etoposide (n=4) or docetaxel (n=1). We also determined the association between 

Nrf2 and Keap1 expression and histologic parameters associated with chemotherapy effects in 
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tumor tissues, including the percentages of tumor necrosis, fibrosis, and viable malignant cells.   

 To determine the relationship between nuclear Nrf2 expression and outcome after adjuvant 

chemotherapy, we selected 122 NSCLC tumors, 63 from patients who had undergone adjuvant 

platinum-based chemotherapy, and a similar number of patients who had not undergone any 

adjuvant therapy (n=59) (Supplementary Table 1). The chemotherapy regimens included 

carboplatin with docetaxel (n=9), gemcitabine (n=9), paclitaxel (n=32), or cisplatin (n=1), either 

alone or with pemetrexed (n=4), docetaxel (n=7), etoposide (n=1). 

  

Immunohistochemical analysis of cell lines and tissue specimens. An immunohistochemical 

analysis was performed using commercially available antibodies against Nrf2 (dilution 1:200, 

clone H300; Santa Cruz Biotechnologies), Keap1 (dilution 1:25; Proteintech), and NQO1 

(dilution 1:1000, clone A180; Novus Biological, Littleton, CO). Immunohistochemical staining 

was performed using an automated stainer (Dako, Inc., Carpinteria, CA) with 5-μM-thick 

sections from FFPE tissues. Tissue sections were deparaffinized and hydrated, and antigen 

retrieval was performed in pH 6.0 citrate buffer in a decloaking chamber (121oC x 30 seconds, 

90oC x 10 seconds) and washed on Tris buffer. Peroxide blocking was performed at ambient 

temperature for 30 minutes with 3% H2O2 in distillated water for Nrf2 and methanol for Keap1 

and NQO1. The slides were incubated with primary antibody at ambient temperature and washed 

with Tris buffer, followed by incubation with biotin-labeled secondary antibody for 15 minutes 

and streptavidin peroxidase for 15 minutes (LSAB system, Dako) for Nrf2 and Envision Dual-

Link system-horseradish peroxidase (Dako) for 30 minutes for Keap1 and NQO1. Staining was 

developed with 0.5% 3,3'-diaminobenzidine, freshly prepared with imidazole-HCl buffer, pH 7.5, 

containing hydrogen peroxide and an antimicrobial agent (Dako) for 5 minutes and then 
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counterstained with hematoxylin, dehydrated, and mounted.  

 To determine the association between Nrf2 and Keap1 expression on Western blot and 

immunohistochemical analyses, we prepared FFPE cell pellets from 4 cells lines (A549, H460, 

H1993, and BEAS2B). For the immunohistochemical analysis, the pellets were used as positive 

controls. As negative controls, we used positive control sections, replacing the primary antibody 

with universal negative control anti-rabbit (Dako). 

 Immunohistochemical expression was quantified jointly by 2 pathologists (L.S. and I.W.). 

Nuclear Nrf2, cytoplasmic Keap1 and cytoplasmic NQO1 expressions were quantified using a 4-

value intensity score (0, 1+, 2+, or 3+) and the percentage (0%-100%) of the extent of reactivity. 

An immunohistochemical expression score was obtained by multiplying the intensity and 

reactivity extension values (range, 0-300), and these expression scores were used to determine 

expression levels. Positive nuclear Nrf2 expression was defined as a score >0. Low or absent 

cytoplasmic Keap1 expression was defined as a score <150, which represents the mean of 

expression for all NSCLC TMA cases. High cytoplasmic NQO1 expression was defined as a 

score >130, which represents the median expression for NSCLCs evaluated using whole tissue 

sections. 

 

EGFR and KRAS mutation analyses. Exons 18–21 of EGFR and exon 1 of KRAS were 

polymerase chain reaction (PCR)-amplified using intron-based primers, as described previously 

(18, 19), and DNA specimens were extracted from microdissected FFPE tissue. All PCR 

products were directly sequenced using the PRISM dye terminator cycle-sequencing method 

(Applied Biosystems, Foster City, CA). All sequence variants were confirmed by independent 

PCR amplifications from at least two independent microdissections and were sequenced in both 
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directions, as reported previously (18, 19). 

 

NFE2L2 and KEAP1 mutation analysis in tumor specimens. To determine the mutation status 

of NFE2L2 (exon 2) and KEAP1 (exons 2 to 5) genes, we selected 31 NSCLC tumors from the 

TMA set for which DNA extracted from fresh tumor tissue was available. The cases included 20 

tumors (9 adenocarcinomas and 11 squamous cell carcinomas) with nuclear Nrf2 expression on 

immunohistochemical analysis and 11 (8 adenocarcinomas and 3 squamous cell carcinomas) 

without nuclear Nrf2 expression. The mutation analysis was performed using direct sequencing 

after PCR amplification of NFE2L2 and KEAP1 genes. For NFE2L2, intron-based PCR primers 

(forward 5’-CCACCATCAACAGTGGCATA-3’; reverse 5’-AGGCAAAGCTGGAACTCAAA-

3’) for exon 2 were designed using Primer3 software (http://frodo.wi.mit.edu/) and synthesized 

by Sigma-Aldrich (St. Louis, MO). The PCR cycling conditions were 94°C (15 minutes) for 1 

cycle; 94°C (30 seconds), 58°C (45 seconds), and 72°C (1 minute) for 45 cycles; and a final 

extension of 72°C (5 minutes). For the KEAP1 gene, we analyzed exons 2-5 using intron-based 

PCR primer sequences, as previously described (5). All PCR products were directly sequenced 

using the Applied Biosystems PRISM Aldrich (St. Louis, MO) dye terminator cycle sequencing 

method. All sequence variants were confirmed by independent PCR amplifications and 

sequenced in both directions.  

 

Statistical analysis. The clinicopathologic data were summarized using descriptive statistics and 

frequency tabulations. Wilcoxon rank-sum and Kruskal-Wallis tests were used to compare 

biomarker expression among different prognostic factor levels. We determined the association 

between 5-year RFS and OS rates and Nrf2 and Keap1 expression in NSCLC patients with stage 
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I or II disease who had not undergone adjuvant or neoadjuvant chemotherapy and in patients 

with stage I-IIIB disease who had and had not undergone platinum-based adjuvant therapy. RFS 

was defined as the time from surgery to recurrence or the end of the study, and OS was defined 

as the time from surgery to death or the end of the study. The cut-off for nuclear Nrf2 expression 

was a score >0, which was defined as positive staining; and the cut-off for cytoplasmic Keap1 

was 150, which represents the mean score. Survival curves were estimated using the Kaplan-

Meier method. Univariate and multivariate Cox proportional hazards models were used to assess 

the effects of covariates on RFS and OS rates. Two-sided P values <0.05 were considered 

statistically significant. All analyses were conducted using SAS (v 9.1, Cary, NC) and S-plus (v 

8.0, Seattle, WA) software.  

 

RESULTS 

Nrf2 and Keap1 protein expression in cell lines by Western blot analysis and validation of 

immunohistochemical results. We found on Western blot analysis that Nrf2 protein levels were 

higher in the nucleus of NSCLC cell lines A549 and H460 than in the cytoplasm (Supplementary 

Fig. 1). The BEAS2B bronchial epithelial cell line had a significantly lower Nrf2 expression 

level, both in the nucleus and cytoplasm, than did the malignant cell lines. These findings are 

consistent with previously reported data (5). In contrast, BEAS2B cells had significantly higher 

Keap1 expression levels in the nucleus and cytoplasm than did the NSCLC cell lines evaluated, 

and in all cells, Keap1 was expressed mostly in the cytoplasm (Supplementary Fig. 1). The cell 

line H1993 had a similar Nrf2 and Keap1 expression pattern to that of BEAS2B on Western blot 

analysis, which is consistent with H1993 cell line being heterozygous for KEAP1 mutation (5). 

We evaluated the immunohistochemical expression of Nrf2 and Keap1 in FFPE cell pellets and 
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found similar expression patterns to those found on Western blot analysis (Supplementary Fig. 

1). In FFPE tumor specimens, in malignant tumor cells, we found both nuclear and cytoplasmic 

expression of Nrf2 and exclusively cytoplasmic expression of Keap1 (Fig. 1). For the study of 

the expression of these markers in NSCLC TMAs and whole section tissue specimens, we 

focused on nuclear Nrf2 expression because this is the subcellular location where is considered 

to be biologically active (5), and on cytoplasmic Keap1 expression because it was the only 

expression detected in malignant tumor cells in the FFPE tissue specimens.    

 

Nrf2 and Keap1 immunohistochemical expression in NSCLC TMA and association with 

clinicopathologic and genetic features. We determined nuclear Nrf2 and cytoplasmic Keap1 

protein expression in 304 tumors in TMAs using levels and scores of expression. Positive 

nuclear Nrf2 expression (score >0) was detected in 26% of NSCLCs, and the frequency of 

positive cases was significantly (P < 0.001) higher in squamous cell carcinomas (38%) than in 

adenocarcinomas (18%) (Table 2). In most positive tumors (49/77, 64%), the Nrf2 nuclear 

expression was mild, and in the remaining cases was moderate to strong. On the other hand, 

negative or low levels of cytoplasmic Keap1 expression (score <150) were observed in 56% of 

NSCLCs. The frequency of low or negative Keap1 expression was significantly higher in 

adenocarcinomas (62%) than in squamous cell carcinomas (46%) (P= 0.0057).  Overall, the 

expression of nuclear Nrf2 was statistically associated (P = 0.0041; r= 0.17) with higher 

cytoplasmic Keap1 expression in all NSCLCs. However, we identified a subset (39 of 295 

[13%]) of tumors with positive Nrf2 and low or absent Keap1 expression, including squamous 

cell carcinomas (19 of 111 [17%]) and adenocarcinomas (20 of 184 [11%]). Nrf2 and Keap1 

expression was not associated with sex, smoking history, or pathologic tumor stage (stages I or II 
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vs. III or IV; data not shown). 

Among adenocarcinomas, EGFR and KRAS mutations were detected in 23 of 172 (13%) 

and 28 of 171 (16%) cases, respectively. Interestingly, no EGFR mutant adenocarcinomas 

expressed Nrf2, whereas 21% of EGFR wild-type tumors expressed nuclear Nrf2; this difference 

was statistically significant (P=0.009). Although EGFR mutations were significantly higher in 

tumors from non-smokers (13/40, 33%) compared with smokers (10/130, 8%), the distribution of 

smoking status of the 23 patients with EGFR mutation and lack of Nrf2 expression was similar: 

10 (43%) smokers and 13 non-smokers (57%).  There was no association between cytoplasmic 

Keap1 expression and EGFR mutation status. No relationship was found between the expression 

of these 2 markers and tumors with KRAS mutation. 

 

NFE2L2 and KEAP1 mutation analysis. In NSCLC tumor, we studied mutation status of both 

genes at sites (NFE2L2, exon 2; and, KEAP1, exons 2 to 5) to be previously reported as mutated 

in lung cancer (5, 12, 13). To correlate mutation status of both genes with activation of Nrf2, we 

selected 20 tumors with DNA-extracted from fresh tissue available, and with nuclear Nrf2 

immunohistochemical expression; as controls, we used 11 tumors lacking nuclear Nrf2 

expression. NFE2L2 mutation was found in 2 of 29 tumors successfully examined. Both 

mutations were located in codon 28 (ACA to ATA; substitution of threonine for isoleucine) and 

codon 79 (CAG to GAG; substitution of glutamic acid for glutamine) of exon 2. These 2 cases 

corresponded to squamous cell carcinomas with nuclear Nrf2 expression and high cytoplasmic 

Keap1 expression. KEAP1 mutation (exons 2 to 5) was detected in only 1 of 31 tumors 

examined. This was a non-sense mutation (TAC to TAA; substitution of tyrosine for stop codon) 

in codon 537 (exon 5) in a squamous cell carcinoma with nuclear Nrf2 expression and low 
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cytoplasmic Keap1 expression.  

 

Nrf2, Keap1 and NQO1 immunohistochemical expression in NSCLC tumors and 

corresponding normal adjacent tissues using whole tissue section analysis. To determine the 

heterogeneity of nuclear Nrf2 and cytoplasmic Keap1 expression in tumor tissues, we evaluated 

the expression of both markers using whole histologic sections obtained from 36 NSCLCs (18 

adenocarcinomas and 18 squamous cell carcinomas) included in the TMA, 19 of which were 

Nrf2 positive and 17 of which were negative. Nuclear Nrf2 expression was highly heterogeneous 

throughout the positive tumors, with 14 (78%) expressing nuclear Nrf2 in 5%-30% of malignant 

cells. Of interest, only 1 of the 17 tumors that was Nrf2 negative on the TMA analysis was 

positive on whole histologic section examination.  

 To determine the biological effect of Nrf2 expression in NSCLC malignant cells, we 

studied the correlation of expression of nuclear Nrf2 with the immunohistochemical protein 

expression of NQO1, a gene transcriptionally regulated by Nrf2 (5, 10), using a subset (n=30) 

NSCLC with whole tissue sections available. Of interest, 12 of 16 (75%) nuclear Nrf2 positive 

cases expressed high levels of cytoplasmic NQO1, while only 3 of 12 nuclear Nrf2 negative 

tumors expressed this protein at high levels. Similarly, the tumors expressing nuclear Nrf2 had a 

significantly (P=0.0211) higher NQO1 expression score (mean 176.3) compared with the Nrf2 

negative tumors (mean 92.9). 

On the other hand, we found that regardless of the intensity of expression, cytoplasmic 

Keap1 was homogeneously expressed throughout the tumors. Only 4 of 36 (11%) tumors showed 

small distinct areas of malignant cells (defined as 10%-30% of the tumor section) lacking 

cytoplasmic Keap1 expression. 
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Nrf2 expression was detected in the nucleus of normal bronchial epithelia adjacent 

tumors in 6 of 127 (5%) chemotherapy-naïve NSCLCs on whole histologic section, including 19 

cases with Nrf2-positive tumors. The 6 cases with nuclear Nrf2 expression in normal epithelium 

did not express the marker in their corresponding tumors. As expected, Keap1 cytoplasmic 

expression was found in normal bronchial epithelium in all 25 chemotherapy-naïve NSCLCs 

evaluated. Similar cytoplasmic Keap1 expression scores were detected in the tumors (mean 

score=126.0, SD=81.8) and corresponding normal bronchial epithelia (mean score=130.0, 

SD=59.2). 

 

Association between Nrf2 and Keap1 expression and NSCLC patient outcome using TMA 

specimens. We determined the association between nuclear Nrf2 and cytoplasmic Keap1 

expression and RFS and OS rates in patients with stage I and II NSCLC who had not undergone 

neoadjuvant or adjuvant treatment. In patients with NSCLC (n=235), positive nuclear Nrf2 

expression (score >0) was associated with worse 5-year RFS and OS on univariate analysis and a 

worse OS on multivariate Cox model analysis (P=0.0139; hazard ratio [HR]=1.75; 95% 

confidence interval [95% CI], 1.12-2.73) when adjusted for  age at surgery, smoking history, and 

pathologic stage (Table 3)(Fig. 2A and 2B). No association was found between nuclear Nrf2 

expression and outcome by histologic tumor type (Supplementary Fig. 2).  

No association was found between Keap1 expression and patients’ outcome for all 

NSCLCs (Supplementary Fig. 3). Then, we examined the effect of Keap1 in the outcome of 

patients by individual histologic tumor types. We found that negative and low cytoplasmic 

Keap1 expression (score <150) was associated with worse 5-year RFS and OS in patients with 

squamous cell carcinomas on univariate analysis and a worse OS on multivariate Cox model 
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analysis (P=0.0181; HR=2.09; 95% CI, 1.13-3.84) when adjusted for age at surgery and 

pathologic stage (Table 3) (Fig. 2C and 2D). No association was found between Keap1 

expression and outcome in patients with adenocarcinoma (Supplementary Fig. 3). 

The subset (39 of 295 [13%]) of NSCLCs tumors with both positive Nrf2 and low or 

absent Keap1 expression was significantly associated with worse OS (P=0.0111; HR=1.97; 95% 

CI, 1.17-3.31) and RFS (P=0.0325; HR=1.69; 95% CI, 1.04-2.73) on the univariate and 

multivariate analysis when adjusted for age at surgery, pathologic stage and smoking history 

(Table 3) (Fig. 2E and 2F). 

 

Nrf2 and Keap1 expression in neoadjuvant therapy-treated NSCLC. To investigate if 

neoadjuvant platinum-based chemotherapy leads to increased nuclear Nrf2 expression in NSCLC 

tumors, we determined the expression of Nrf2 and Keap1 in 26 surgically resected tumors from 

patients who had undergone platinum-based chemotherapy before surgery. Nuclear Nrf2 

expression (score >0) was found in 7 (27%) tumors (Table 2), but negative or low Keap1 

expression (score <150) was detected in 18 (69%). The expression of these markers was not 

associated with the histologic effects of chemotherapy in tumor tissues, including percentages of 

tumor necrosis, fibrosis, and viable malignant cells (data not shown).  

 

Association between Nrf2 expression and outcome in patients treated with adjuvant 

chemotherapy. To evaluate the role of Nrf2 in response to platinum-based chemotherapy, we 

determined nuclear Nrf2 expression in whole histologic sections of 122 surgically resected 

NSCLC tumors (stages I to IIIB) and the RFS and OS rates. These samples were obtained from 

63 patients who had undergone adjuvant chemotherapy (35 adenocarcinomas and 28 squamous 
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cell carcinomas) and 59 patients who had not undergone adjuvant treatment (27 

adenocarcinomas and 32 squamous cell carcinomas). Overall nuclear Nrf2 expression was 

detected in 47 (39%) of these NSCLCs (Table 2).  

Because the significant difference observed in the nuclear Nrf2 expression frequency 

between squamous cell carcinomas and adenocarcinomas examined in the TMA specimens, we 

evaluated the predictive effect of Nrf2 expression in adjuvant-treated patients in both tumors 

histologies separately. In patients with squamous cell carcinoma who had undergone adjuvant 

treatment, nuclear Nrf2 expression (score >0) was associated with worse RFS on univariate Cox 

model analysis (P=0.0410; HR=3.37; 95% CI, 1.05-10.81) (Supplementary Fig. 4); however, this 

association was not significant on multivariate analysis (P = 0.0618, HR = 3.11, 95% CI = 0.95 – 

10.20). In the same tumor type, nuclear Nrf2 showed a trend towards worse OS in patients who 

received adjuvant chemotherapy; this association was not significant on univariate Cox model 

analysis (P=0.0590; HR=3.52; 95% CI, 0.95-13.04) and multivariate analysis (P = 0.092). In 

patients with squamous cell carcinomas who had not undergone adjuvant treatment, Nrf2 

expression was not associated with the RFS or OS rate (Supplementary Fig. 4).  

In patients with adenocarcinoma who had not undergone adjuvant therapy, Nrf2 was 

statistically associated with RFS (P = 0.0092) in univariate analysis, although no association was 

found between Nrf2 expression and the RFS or OS rate on the multivariate analysis. Of interest, 

in patients with adenocarcinoma the nuclear expression of Nrf2 did not associate with outcome 

in patients who received adjuvant chemotherapy. 

 

DISCUSSION 

In lung cancer, Nrf2 activation in malignant cells has been associated with tumor 



Solis et al. 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.  
Copyright © 2010  American Association for Cancer Research 

 
 

progression and chemotherapy resistance (8, 11, 20-22). High levels of nuclear Nrf2 facilitate 

cancer cell growth and cell survival as a result of the transactivation of cytoprotective genes (8, 

20, 21). In NSCLC, the overexpression of nuclear Nrf2 is principally attributable to genetic and 

epigenetic alterations and the loss of function of its repressor, Keap1 (5, 21, 23). In NSCLC, 

KEAP1 mutations at exons 2-6 have been detected in 50% (n=12) of cell lines (5) and 8% (n=65) 

and 19% (n=54) of tumors (5, 21). Promoter hypermethylation of KEAP1 was found in all lung 

cancer cell lines (3 of 3) and tumor tissues (5 of 5) evaluated (11). In addition, mutations of the 

Nrf2 gene, NFE2L2, that affect the region that codes for Keap1 binding sites have been proposed 

as an alternative mechanism of Nrf2 activation in lung cancer (12), but Nrf2 mutations have only 

been found in 2% (2 of 85) of lung cancer cell lines and 8-11% of lung cancer tumor specimens, 

principally in patients with a smoking history and squamous cell carcinoma histologic tumor 

type (12, 14).. Despite all these recent findings, the characteristics of NSCLC tumors with Nrf2 

activation and loss of Keap1 expression and the role of Nrf2 and Keap1 in the response to 

platinum-based chemotherapy are not well understood. 

 We performed a comprehensive immunohistochemical analysis of Nrf2 and Keap1 

expression in FFPE NSCLC tumors. We used a validated method in which we tested both 

antibodies in a panel of NSCLC cell lines with known Nrf2 and Keap1 expression (5) by 

Western blot analysis and immunohistochemical analysis of FFPE cell pellets. The protein 

expression pattern and subcellular localization of Nrf2 and Keap1 on Western blot analysis in 

our cell lines was consistent with previously reported data (5), and the expression found on 

Western blot analysis was consistent with that in cell line pellets.  

In our study of TMA specimens, nuclear Nrf2 was expressed in a subset of NSCLCs 

(26%), more commonly in squamous cell carcinomas (38%) than in adenocarcinomas (18%). To 
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our knowledge, only one report exists of the immunohistochemical expression of Nrf2 in lung 

cancer; evaluations of whole histologic sections from stage I NSCLCs revealed that 62% (55 of 

89) of tumors expressed nuclear Nrf2 (24). Although we were not able to obtain detailed 

information from this report (24), this study seems to differ significantly from ours in the 

immunohistochemical method used to evaluate Nrf2 expression in tissue specimens, including 

the quantification method. One intriguing observation of our study is that the frequency of 

nuclear Nrf2 expression was significantly higher in EGFR wild-type (21%) adenocarcinomas 

than in mutant (0%) tumors, and this association was independent of patients smoking history. 

Although the number of EGFR mutant tumors evaluated was relatively small, this finding is of 

potential interest. To the best of our knowledge, this association has not been previously 

reported, and it warrants further study. Our observation concurs with the finding that EGFR 

mutations associates with better survival in advanced NSCLC patients treated with 

chemotherapy (carboplatin and paclitaxel) with and without an EGFR tyrosine kinase inhibitor 

(erlotonib) (15). We speculate that the lack of nuclear Nrf2 expression in EGFR mutant NSCLCs 

may contribute to the benefit of administering platinum-based chemotherapy.   

Nrf2 can be activated by several mechanisms, including mutations of the gene (NFE2L2) 

affecting the Keap1-binding site (12, 14). In our NSCLC samples, exon 2 NFE2L2 mutations, 

which code for the Keap1-binding site region of the Nrf2 protein, were infrequently detected, 

occurring in 2 of 29 (7%) tumors examined. Interestingly, both tumors were squamous cell 

carcinomas that expressed nuclear Nrf2 and had high Keap1 cytoplasmic expression levels. 

Others NFE2L2 mutation analyses in lung cancer has been conducted; they reported that 8-11% 

of NSCLCs had mutations on exon 2, including both mutations detected in our study, and they 

associated with tumors’ squamous cell carcinoma histology and patients’ smoking history (12, 
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14). 

Our analysis of whole histologic NSCLC sections demonstrated that nuclear Nrf2 

expression in tumor tissues was heterogeneous and involved a small percentage (5% to 30%) of 

malignant cells. Despite the heterogeneity of nuclear Nrf2 expression in tumor cells, we found an 

association between Nrf2 expression in whole histologic sections and corresponding TMA tissue 

cores in 36 cases examined. The correlation observed between the expressions of nuclear Nrf2 

with cytoplasmic NQO1 protein in a subset of our NSCLC, suggest that Nrf2 is biologically 

active in the nucleus of the malignant cells. NQO1 gene is transcriptionally regulated by Nrf2, 

and, as expected, higher levels of NQO1 protein expression was observed in tumors showing 

nuclear Nrf2 compared with tumor lacking nuclear Nrf2 (5, 10). Nuclear Nrf2 expression has 

been reported at different frequencies (range, 54% to 92%) in other epithelial tumors, including 

squamous cell carcinoma of the head and neck (25) and gallbladder carcinoma (13).  

Keap1 is the principal cytoplasmic repressor of Nrf2 (23, 26-28). Ours is the first 

reported study to determine the frequency of low or absent cytoplasmic Keap1 expression in 

NSCLC and its association with tumors’ clinicopathologic characteristics. Low or absent Keap1 

expression was common in NSCLC (56%), mainly in adenocarcinomas. However, we identified 

only 1 KEAP1 mutation (exons 2-5) in 31 tumors examined, including 20 with nuclear Nrf2 

expression, suggesting that KEAP1 mutation is not the main mechanism of protein loss or 

reduction. Our findings differ from those of previous publications that reported KEAP1 

mutations in 8% and 19% of two NSCLC cohorts, predominantly adenocarcinomas (26% and 

30%) (5, 21). Our findings of a positively significant correlation between the expression of 

nuclear Nrf2 and cytoplasmic Keap1, and that only 13% of tumors in our study had low or absent 

Keap1 and nuclear Nrf2 expression, suggest that other mechanisms, not associated with Keap1 
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inactivation, promote Nrf2 nuclear localization and subsequent activation. There are few 

alternative mechanism proposed to activate Nrf2, including phosphorylation of Nrf2 protein by a 

number of protein kinases, including protein kinase C, extra-cellular regulated kinase, Jun N-

terminal kinase and phosphatidylinositol kinase (7). Additionally, there is recent evidence that 

the presence of certain protein motifs determine Nrf2 subcellular localization (29). The Nrf2 

protein has the nuclear export signal (NES) motif, which transports the protein from nucleus to 

cytoplasm; as well as the nuclear localization signal (NLS) motif, which transports the protein 

from cytoplasm to nucleus. It has been suggested that the net result of these two driving forces is 

important to regulate Nrf2 subcellular localization independently of its interaction with Keap1 

(29). 

Nuclear Nrf2 expression in all NSCLC patients, low or absent Keap1 expression in 

patients with squamous cell carcinoma as well as the subset of NSCLC with both nuclear Nrf2 

and low or absent Keap1  were associated with poor outcome. Regardless of the mechanism that 

leads to nuclear Nrf2 activation in tumor cells, there is evidence that this phenomenon promotes 

cell survival in malignant cells (8, 12, 13, 21) and may explain the low RFS and OS rates in our 

NSCLC patients who had undergone surgical resection with curative intent. Our finding of poor 

survival in patients with low or absent Keap1 expression suggests that inactivation of this 

putative tumor suppressor gene affects the growth and progression of tumors by mechanisms that 

are not mediated by Nrf2. One of those unknown mechanisms could involve other Keap1 

binding proteins that have antiapoptotic and proliferative functions (30-32), including 

phosphoglycerate mutase family member 5 (31), the nuclear oncoprotein prothymosin α (30), 

and fetal Alz-50 reactive clone 1 protein (32). The association between Keap1 and patient 

outcome has not been previously reported in human epithelial tumors, except in one study of 
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renal cell carcinoma that showed that Keap1 overexpression was associated with more advanced 

tumor stage and poor overall survival (33). 

It has been suggested that abnormalities in the Nrf2/Keap1 pathway that lead to Nrf2 

overexpression in tumors induce platinum-based chemotherapy resistance by promoting tumor 

cell survival and increasing proliferation (5-8). In NSCLC cell lines, the upregulation of Nrf2’s 

downstream genes plays a critical role in platinum chemoresistance, mainly because of increased 

transcription of the genes involved in drug efflux systems and of antioxidant proteins, including 

glutathione, thioredoxins and NQO1 (20, 24, 34). Furthermore, studies in in vitro and in vivo 

NSCLC models have shown that inhibition of Nrf2 expression by RNAi suppressed tumor 

growth and induced sensitivity to platinum-based chemotherapy drugs (8, 20). We hypothesized 

that neoadjuvant platinum-based chemotherapy would lead to increased nuclear Nrf2 expression 

in NSCLC tumors; however, we found similar nuclear Nrf2 expression in both chemotherapy-

naïve and chemotherapy-treated tumors, including those with pathologic characteristics that are 

associated with no response to neoadjuvant chemotherapy.  

We observed a trend towards an association between nuclear Nrf2 expression and worse 

RFS and OS in patients with squamous cell carcinomas who had undergone surgery and received 

adjuvant platinum-based chemotherapy. Interestingly, this phenomenon was not observed in 

adenocarcinoma patients. These findings suggest that, as has been demonstrated in in vitro and in 

vivo studies using NSCLC cell lines (8, 20, 22, 34), nuclear Nrf2 expression in malignant lung 

cancer cells may play a role in chemotherapy resistance in squamous cell carcinoma subtype. 

However, these observations need to be studied further in a larger number of cases as part of 

prospectively conducted clinical trials. Importantly, the role of Nrf2 expression as a potential 

predictive marker associated to resistance to platinum-based chemotherapy needs to be addressed 
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in NSCLC patients with advanced (metastatic) tumors in which a more direct correlation 

between Nrf2 expression and response to chemotherapy can be established.  

In summary, increased Nrf2 expression and decreased expression of Keap1 are common 

abnormalities in surgically resected NSCLCs and are associated with clinical outcome. In our 

study, abnormal expression of Nrf2 and Keap1 proteins was more common than that of the 

corresponding gene mutations, suggesting that other mechanisms are involved in the activation 

of NFE2L2 and inactivation of KEAP1. Nrf2 expression may play a role in response to adjuvant 

platinum-based chemotherapy in patients with squamous cell carcinoma. Identifying patients 

with abnormal Nrf2 expression may be important for selection for chemotherapy in NSCLC, and 

our data suggest that Nrf2 expression could be added to the list of potential molecular markers to 

be tested to personalize treatment of NSCLC when platinum-based chemotherapeutic agents are 

used. 
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FIGURE LEGENDS 

Figure 1. Microphotographs showing positive (blue arrows)  and negative nuclear Nrf2 

expression; and absent, low and high cytoplasmic Keap1 expression in NSCLC tumor tissue 

specimens: squamous cell carcinoma (A, C to E), and adenocarcinoma (B and F) (magnification, 

x100, except C x200).  

Figure 2. A, Five-year OS and B, RFS rated by nuclear Nrf2 protein expression in all patients 

with NSCLC. C, Five-year OS and D, RFS rates by cytoplasmic Keap1 protein expression in 

patients with squamous cell carcinoma. E, Five-year OS and F, RFS rated by nuclear Nrf2 and 

low cytoplasmic Keap1 proteins expression in all patients with NSCLC. (E, events; and N, total 

number of cases). 
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Supplementary Figure 1. Nrf2 and Keap1 protein expression analysis by Western blot (A) and 

immunohistochemical  analysis in NSCLC cell lines and immortalized bronchial epithelial 

BEAS2B cells (B). A: On Western blot analysis, Nrf2-positive NSCLC cell lines had higher 

expression in the nucleus (N) than in the cytoplasm (C). Poly (ADP-ribose) polymerase 

expression (PARP) indicates nuclear protein lysates. B: Microphotographs (magnification, x400) 

showing nuclear Nrf2 expression (blue arrows) in 2 cell lines (H460 and A549); the other 2 cell 

lines (H1933 and BEAS2B) demonstrated cytoplasmic expression only. Microphotographs 

(magnification, x400) showing cytoplasmic Keap1 (red arrows) expression in 2 cell lines 

(H1933 and BEAS2B); the other 2 cell lines (H460 and A549) showed low cytoplasmic Keap1 

expression. 

 

Supplementary Figure 2. A, Five-year OS and B, RFS rated by nuclear Nrf2 protein expression 

in adenocarcinoma patients. C, Five-year OS and D, RFS rates by nuclear Nrf2 protein 

expression in patients with squamous cell carcinoma. (E, events; and N, total number of cases). 

 

Supplementary Figure 3. A, Five-year OS and B, RFS rated by cytoplasmic Keap1 protein 

expression in all NSCLC patients. C, Five-year OS and D, RFS rates by cytoplasmic Keap1 

protein expression in patients with adenocarcinoma. (E, events; and N, total number of cases). 

 

Supplementary Figure 4. A, Five-year RFS rated by nuclear Nrf2 protein expression squamous 

cell carcinoma patients treated with adjuvant therapy. B, F Five-year RFS rated by nuclear Nrf2 

protein expression squamous cell carcinoma patients not treated with adjuvant therapy. (E, 

events; and N, total number of cases). 
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Table 1. Clinicopathologic features of NSCLCs evaluated for Nrf2 and Keap1 expression in TMA 

†Smoking history was not available for 1 patient. 
# ECOG (Eastern Cooperative Oncologic Group) performance status of the patients was 0 and 1  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Characteristic# Total  
(n=304) 

Adenocarcinoma 
(n=190) 

Squamous cell 
carcinoma 

(n=114) 
    
Age Mean (years) 66 65 68 
    
Sex    
 Female 157 113 44 
 Male 147 77 70 
     
Pathologic stage    
 I 191 127 64 
 II 58 24 34 
 III 46 32 14 
 IV 9 7 2 
     
Smoking history†    
 Current/Former 253 144 109 
 Never 50 46 4 



 
Table 2. Nuclear Nrf2 expression according to NSCLC histology type and chemotherapy treatment 
 
 
Sample Type 

Adenocarcinoma Squamous Cell 
Carcinoma 

NSCLC P 
Value# 

Positive Nrf2†/ 
Total (%) 

Positive Nrf2†/ 
Total (%) 

Positive Nrf2†/ 
Total (%) 

 
Tissue Microarray 34/188 (18%) 43/112 (38%) 77/300 (26%) <0.0001
     
     
Whole Sections     

 
Neoadjuvant Treated 4/20 (20%) 3/6 (50%) 7/26 (27%) 0.2929 
     
Adjuvant Treated 13/35 (37%) 14/28 (50%) 27/63 (43%) 0.3055 
     
No Adjuvant Treated 10/27 (37%) 10/32 (31%) 20/59 (34%) 0.6399 

      
† Positive Nrf2, score >0. 
#P value comparison of the frequencies of marker expression  
 



 
Table 3. Multivariate Cox model of 5-year overall survival (OS) and recurrence-free survival (RFS) in 
patients with NSCLC and squamous cell carcinoma. 

 
Variable HR (95% CI) P value 
OS, Nrf2 expression, NSCLC  

Age at surgery (per 1-year increase) 1.067 (1.043-1.092) <0.0001 
Stage (II vs. I) 2.096 (1.332-3.299) 0.0015 
Smoking (current and former vs. never) 2.476 (1.069-5.736) 0.0331 
Nuclear Nrf2 (positive vs. negative) 1.747 (1.120-2.726) 0.0007 
   

OS, Keap1 expression, squamous cell carcinoma   
Age at surgery (per 1-year increase) 1.054 (1.020-1.090) 0.0020 
Stage (II vs. I) 1.876 (1.033-3.409) 0.0389 
Cytoplasmic Keap1 (score <150 vs. ≥150) 2.087 (1.134-3.841) 0.0181 
   

OS, Nrf2 and Keap1 expression, NSCLC    
Age at surgery (per 1-year increase) 1.063 (1.039-1.087 <0.0001 
Stage (II vs. I) 2.093 (1.332-3.290) 0.0014 
Smoking (current and former vs. never) 2.639 (1.134-6.142) 0.0244 
Nrf2/Keap1 status (positive Nrf2 and Keap1 <150 vs. other) 1.966 (1.167-3.313) 0.0111 
   

RFS, Nrf2 and Keap1 expression, NSCLC    
Age at surgery (per 1-year increase) 1.043 (1.023-1.064 <0.0001 
Stage (II vs. I) 1.962 (1.296-2.970) 0.0014 
Smoking (current and former vs. never) 2.115 (1.064-4.203) 0.0325 
Nrf2/Keap1 status (positive Nrf2 and  Keap1 <150 vs. other) 1.688 (1.045-2.727) 0.0325 
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We found that among four master epithelial-to-mesenchymal transition (EMT)-inducing
genes (ZEB1, SIP1, Snail, and Slug) ZEB1expression was most significantly correlated with
the mesenchymal phenotype (high Vimentin and low E-cadherin expression) in non-small
cell lung cancer (NSCLC) cell lines and tumors. Furthermore, ZEB1 knockdown with RNA
interference in three NSCLC cell lines with high ZEB1 expression suppressed to varying
degrees mass culture growth and liquid colony formation but in all cases dramatically sup-
pressed soft agar colony formation. In addition, ZEB1 knockdown induced apoptosis in one
of the three lines, indicating that the growth inhibitory effects of ZEB1 knockdown occurs in
part through the activation of the apoptosis pathway. These results suggest that inhibiting
ZEB1 function may be an attractive target for NSCLC therapeutic development.

� 2010 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Epithelial-to-mesenchymal transition (EMT) is an
embryonic developmental program involving changes in
cell morphology and expression of EMT-associated genes
[1,2]. EMT also occurs during the progression of several
types of human cancer and confers motility and invasive-
ness on cancer cells, leading them to acquire ability to
metastasize to distant sites. Genetics of early development
discovered a number of EMT-inducing genes encoding
transcription factors capable of inducing EMT when ectop-
ically expressed in epithelial cells. Several EMT-inducing
and Ltd. All rights reserved.

x: +81 52 744 2176.
ato).

et al., Knockdown of ZEB1
f lung cancer cells, Cancer
genes that have essential roles in EMT are called master
EMT genes, including Twist, ZEB1, SIP1, Snail, Slug, and
Goosecoid [1,2]. These genes function as transcriptional
repressors of the cell–cell adhesion glycoprotein, E-cad-
herin whose functional loss is one of the hallmarks of
EMT [3]. Among these master EMT genes, Snail was shown
to repress E-cadherin and to induce EMT in cancer cells
[4,5], while Twist was demonstrated to promote breast
cancer metastasis [6]. Increased expression of Twist and
Snail have been shown in hepatocellular, breast, colorectal,
and gastric cancers, often correlating with poor prognosis
[7–10].

Lung cancer is the leading cause of cancer deaths, killing
over 1 million people every year worldwide [11]. It devel-
ops through a multi-step process involving accumulation
, a master epithelial-to-mesenchymal transition (EMT) gene, sup-
Lett. (2010), doi:10.1016/j.canlet.2010.04.008
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of multiple genetic and epigenetic changes that confer
growth advantages on normal lung epithelial cells, leading
them to transform to clinically evident lung cancer cells
[12,13]. Analyzing a large number of lung tumor speci-
mens, Prudkin et al. showed that the majority of primary
lung cancers and even premalignant lesions have the mes-
enchymal phenotype as characterized by down-regulation
of E-cadherin and up-regulation of Vimentin [14].
Although several master EMT genes have been shown to
directly contribute to tumor progression in breast, colon,
and pancreatic cancers, very little is known about func-
tional roles of master EMT genes in lung cancer
progression.

In addition to Snail and Twist, recently ZEB1 has
emerged as a key player in cancer progression. ZEB1 pro-
motes tumor metastasis in colon and breast cancer [15],
is associated with resistance to conventional chemother-
apy in pancreatic cancer [16,17], and potentially has a pre-
dominant role in inducing EMT in NSCLC. First, among
several transcription factors including ZEB1, Snail, and b-
catenin, ZEB1 protein expression showed the most signifi-
cant inverse correlation with E-cadherin in NSCLC and
mesothelioma cell lines [18]. Second, prostaglandin E2
was shown to exert its ability to suppress E-cadherin
through inducing ZEB1 and Snail in lung cancer cell lines
[19]. Third, ZEB1 has been shown to suppress the Semaph-
orin 3F tumor suppressor gene in lung cancer cells [20].
These suggest relevant roles of ZEB1 as an EMT-inducer
as well as an oncogene in lung cancer.

Thus, we performed this study aiming to evaluate the
association between ZEB1 expression and the mesenchy-
mal phenotype in lung cancer, and to test the effects of
ZEB1 knockdown with RNA interference on the growth of
lung cancer cells. We found that ZEB1 expression signifi-
cantly correlates with increased Vimentin and decreased
E-cadherin expression in lung cancer, while knockdown of
ZEB1 resulted in dramatic growth inhibition in lung cancer
cell lines. These results suggest that ZEB1 is a promising
therapeutic target for lung cancer.
2. Materials and methods

2.1. Cell lines and primary tumor tissues

NSCLC cell lines used in this study were purchased from
American Type Culture Collection or obtained from the Ha-
mon Center collection (University of Texas Southwestern
Medical Center). These cells include PC9, A549, NCI-
H157, NCI-H460, NCI-H820, NCI-H838, NCI-H1155, NCI-
H1299, NCI-H1666, NCI-H1650, NCI-H1975, NCI-H3255,
HCC44, HCC827, HCC2279, HCC2935, HCC4006, and
HCC4011 (cells with mutation in epidermal growth factor
receptor (EGFR) gene are underlined) [21]. A mesothelioma
cell line, ACC-MESO-1, which was used as positive control
for western blot of cleaved caspase-3, was established by
ourselves [22]. Cells were cultured with RPMI 1640 (Sig-
ma–Aldrich Corp, MO, USA) supplemented with 10% fetal
bovine serum. Surgically resected 32 primary tumor spec-
imens (19 adenocarcinomas and 13 squamous cell carcino-
mas) were obtained from patients at the Nagoya University
Please cite this article in press as: Y. Takeyama et al., Knockdown of ZEB1
presses anchorage-independent cell growth of lung cancer cells, Cance
Hospital, Nagoya First Japan Red Cross Hospital, Nagoya
Second Japan Red Cross Hospital, Kasugai Municipal Hospi-
tal and Chukyo Hospital in Nagoya, Japan. Before tissue
samples were collected ethical approval of the each insti-
tute and fully informed written consents from all patients
were obtained. We previously analyzed EGFR mutation sta-
tus of these samples and used the data of the analysis for
the present study [23].

2.2. RNA isolation and quantitative real-time PCR analysis

For mRNA analysis, 5 lg of total RNA isolated using Tri-
zol (Invitrogen Corp., CA, USA) were reverse transcribed
with Super script III First-Strand Synthesis System using
Random primer system (Invitrogen Corp.). Quantitative
real-time PCR (qRT-PCR) analysis of E-cadherin, Vimentin,
ZEB1, SIP1 Snail, and Slug, was performed as described pre-
viously using the standard Taqman assay-on-demand PCR
protocol in a reaction volume of 20 lL, including 50 ng
cDNA [24]. We used the comparative Ct method to com-
pute relative expression values. For microRNA analysis,
10 ng of total RNA isolated using mirVana miRNA Isolation
Kit (Applied Biosystems, CA, USA) were reverse transcribed
with TaqMan MicroRNA Reverse Transcription Kit using a
primer set specific for each of microRNAs (miR-200a,
miR-200b, miR-200c, and miR-205) studied (Applied Bio-
systems). qRT-PCR analysis of microRNA was done as de-
scribed above. We used GAPDH (Applied Biosystems
assay-on-demand) for mRNA analysis and U6 small nucle-
ar (sn) RNA for microRNA analysis as internal controls.

2.3. Western blot analysis

Western blot analysis was done as described previously
using whole cell lysates [24]. Primary antibodies used were
mouse monoclonal anti-E-cadherin, anti-Vimentin (BD
Bioscience, NJ, USA), goat polyclonal anti-ZEB1 (Santa Cruz
biotech., CA, USA), and rabbit polyclonal anti-cleaved cas-
pase-3 (Cell Signaling Tech., MA, USA). Actin protein levels
were used as a control for adequacy of equal protein load-
ing. Anti-rabbit, anti-mouse (GE healthcare, Buckingham-
shire, England), or anti-goat antibody (R&D Systems, MN,
USA) was used at 1:2000 dilution as a secondary antibody.

2.4. Transfection of short interfering RNA

The 4.5 � 105 of H1299 and H157 or 9.0 � 105 of H460
cells were plated in 6-well plates. Next day, cells were
transiently transfected with either 10 nM predesigned
short interfering RNA (siRNA) (Stealth Select RNAi) target-
ing ZEB1 or control siRNA purchased from Invitrogen using
Lipofectamine RNAiMAX (Invitrogen Corp.) according to
the manufacturer’s protocol. After 48 h, the transfected
cells were harvested for further analyses or plated for cell
growth assays.

2.5. Cell growth assays

Colorimetric proliferation assay was performed using
WST-1 assay kit (Roche, Basel, Switzerland) according to
, a master epithelial-to-mesenchymal transition (EMT) gene, sup-
r Lett. (2010), doi:10.1016/j.canlet.2010.04.008
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manufacturer’s instruction. Liquid and soft agar colony for-
mation assays were done as described previously [24].
2.6. Cell cycle analysis

Cells were harvested 48 h after the transfection of siR-
NA oligos. Cells were, fixed, treated with RNase A, stained
with propidium iodide using BD Cycletest Plus Reagent
Kit (BD Bioscience) according to the instructions of the
manufacture, and analyzed by flow cytometry for DNA
B

C

Fig. 1. ZEB1 expression significantly correlates with E-cadherin, Vimentin and two
cell lines. (A) Quantitative real-time PCR (qRT-PCR) analysis of E-cadherin, Viment
cell lines. The cell lines are aligned by expression levels of E-cadherin from hi
experiments done in duplicated reactions. Statistic values of correlations betwee
growth factor receptor (EGFR) gene. (B) The association between the ratio of Vim
lines. (C) qRT-PCR analysis of four microRNAs known as repressors of ZEB1. The
associated with ZEB1 expression (Spearman’s correlation coefficients: �0.71, P =

Please cite this article in press as: Y. Takeyama et al., Knockdown of ZEB1
presses anchorage-independent cell growth of lung cancer cells, Cancer
synthesis and cell cycle status [FACSCalibur instrument,
(Becton Dickinson) with BD CellQuest™Pro Ver.5.2.1 (BD
Bioscience)].
2.7. Senescence associated b-galactosidase staining

Cells were stained with b-galactosidase using Senes-
cence b-Galactosidase Staining Kit (Cell Signaling Tech.),
and cells stained blue were counted under a microscope
(200� total magnification).
P=0.008
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2.8. Statistics

SPSS ver.17 software was used for all statistic analyses
in this study. Spearman’s correlation coefficients with
associated P values were calculated between mRNA
expression of Vimentin, E-cadherin, and four EMT-inducing
genes, microRNA expression of the four microRNAs, and
the ratio of Vimentin to E-cadherin expression (RVE).
Mann–Whitney U test was used for analyzing difference
between two groups.

3. Results

3.1. Lung cancer cell lines can be divided into epithelial and mesenchymal
phenotypes based on the expression status of E-cadherin and Vimentin

We first examined whether lung cancer cell lines can be classified into
mesenchymal and epithelial phenotypes based on expression status of E-
cadherin and Vimentin, which are markers for epithelial and mesenchymal
phenotypes, respectively. qRT-PCR analysis of E-cadherin and Vimentin in
18 non-small cell lung cancer cell (NSCLC) lines including 10 with muta-
tions in the epidermal growth factor receptor (EGFR) gene showed that
most predominantly expressed either E-cadherin or Vimentin (Fig. 1A).
We classified NSCLCs as either ‘‘epithelial” (high E-cadherin/low Vimentin)
or ‘‘mesenchymal” (high Vimentin/low E-cadherin) according to the
expression status of E-cadherin and Vimentin. We quantified the ratio of
Vimentin to E-cadherin expression (RVE) as an index that represents the
degree of mesenchymal phenotype, with NSCLCs showing RVE P 1.0 clas-
sified as mesenchymal phenotype (n = 9 NSCLCs) and those with
RVE < 1.0 as epithelial phenotype (n = 9 NSCLCs). Notably, RVEs of EGFR
wild-type NSCLCs were significantly higher than those of EGFR mutant
NSCLCs (Fig. 1B) (Median; 80.0 vs. 0.06, P = 0.008, Mann–Whitney U test).
All but one EGFR wild-type NSCLC lines were ‘‘mesenchymal” while 8 of
10 EGFR mutant NSCLCs were ‘‘epithelial”, suggesting that EGFR mutation
is associated with epithelial characteristics (Fig. 1B).

3.2. Among four master EMT genes only ZEB1 expression was significantly
correlated with both Vimentin and E-cadherin expression in lung cancer cell
lines

To identify master EMT genes whose expressions are significantly
associated with the mesenchymal phonotype in lung cancer cell lines,
we analyzed the expression levels of four master EMT genes (ZEB1, SIP1,
Snail, and Slug) (Fig. 1A, Table 1). ZEB1 expression was inversely correlated
with E-cadherin expression (Spearman’s correlation coefficient = �0.82,
P < 0.001), and positively correlated with Vimentin expression (Spear-
man’s correlation coefficient = 0.80, P < 0.001) (Table 1), resulting in
Table 1
Correlations between mRNA expression of master EMT genes, E-cadherin,
and Vimentin in 18 non-small lung cancer cell lines.

E-cadherin Vimentin RVE ZEB1 SIP1 Snail

E-cadherin
Vimentin �0.74

<0.001
RVE �0.88 0.92

<0.001 <0.001
ZEB1 �0.82 0.80 0.88

<0.001 <0.001 <0.001
SIP1 0.22 �0.05 �0.06 �0.06

0.38 0.85 0.81 0.80
Snail 0.30 �0.22 �0.26 �0.23 �0.03

0.23 0.38 0.30 0.36 0.92
Slug 0.09 0.07 �0.04 0.20 0.24 �0.06

0.72 0.79 0.88 0.46 0.34 0.82

Spearman’s correlation coefficients (upper row) and statistic values
(lower row) are shown. Statistically significant correlations (P < 0.01) are
in bold. RVE; the ratio of Vimentin to E-cadherin.

Please cite this article in press as: Y. Takeyama et al., Knockdown of ZEB1
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highly significant association between ZEB1 expression and RVE (Spear-
man’s correlation coefficient = 0.88, P < 0.001) (Table 1). By contrast,
SIP1, Snail, and Slug expression were not correlated with E-cadherin
expression, Vimentin expression, or RVE (Table 1). These results suggested
that ZEB1 may induce EMT in lung cancer.

3.3. The expression levels of four miroRNAs known as repressors of ZEB1 were
negatively correlated with ZEB1 expression in NSCLCs

Recently, several groups have shown that ZEB1 expression is down-
regulated by three members of microRNA-200 family (miR-200a, miR-
200b, miR-200c) and miR-205 in different types of cancer cells [25–28].
To confirm these findings in a panel of lung cancer cell lines, we per-
formed qRT-PCR of the four microRNAs in 12 NSCLC cell lines and corre-
lated their expression with ZEB1 expression (Fig. 1C). We found that the
expression levels of miR-200c and miR-205 were negatively correlated
with ZEB1 expression (Spearman’s correlation coefficients: �0.71,
P = 0.01 for miR-200c, �0.79, P = 0.002 for miR-205), while miR-200a
and miR-200b were not correlated with ZEB1 expression. These results
suggest that miR-200c and miR-205 may have a major role in regulating
ZEB1 expression in lung cancer (Fig. 1C).

3.4. ZEB1 and Snail expression were significantly correlated with RVE in
primary lung tumor tissues

Next, we analyzed the expression of E-cadherin, Vimentin, and the four
master EMT genes in 32 NSCLC tumor specimens and found that ZEB1
expression was highly correlated with Vimentin expression (Spearman’s
correlation coefficient = 0.92, P < 0.001) (Table 2). ZEB1 (Spearman’s cor-
relation coefficient = 0.51, P = 0.003), and Snail (Spearman’s correlation
coefficient = 0.45, P = 0.01) expression were significantly correlated with
RVE. However, we note that overall in the tumor specimens in contrast
to the NSCLC lines, E-cadherin and Vimentin expression were positively
correlated (Spearman’s correlation coefficient = 0.63, P < 0.001) (Table 2).
This may be because the primary tumor specimens were macrodissected
and thus included transcripts from both tumor and non-tumorous lung
tissue while the NSCLC lines only reflected tumor expression. Probably
because of this reason, unlike in the NSCLC lines, EGFR mutation status
was not correlated with epithelial characteristics (high E-cadherin and
low Vimentin) in the primary tumors (data not shown).

3.5. Knockdown of ZEB1 induced significant suppression of anchorage-
independent cell growth in lung cancer cell lines

The results presented above suggest that ZEB1 plays a dominant role
in maintaining the mesenchymal phenotype in NSCLCs. To test the ther-
apeutic potential of ZEB1 we performed RNA interference (RNAi)-medi-
ated gene silencing against ZEB1. To minimize the possibility of ‘‘off
target effect”, we used low dose (10 nM) Stealth Select RNAi (Invitrogen),
Table 2
Correlations between mRNA expression of master EMT genes, E-cadherin,
and Vimentin in 32 non-small lung cancer tumor tissues.

E-cadherin Vimentin RVE ZEB1 SIP1 Snail

E-cadherin
Vimentin 0.63

<0.001
RVE �0.26 0.53

0.15 0.002
ZEB1 0.57 0.92 0.51

<0.001 <0.001 0.003
SIP1 0.81 0.73 0.09 0.64

<0.001 <0.001 0.61 <0.001
Snail 0.32 0.71 0.45 0.69 0.49

0.07 <0.001 0.01 <0.001 0.004
Slug 0.29 0.39 0.31 0.41 0.43 0.26

0.11 0.03 0.08 0.02 0.01 0.15

Spearman’s correlation coefficients (upper row) and statistic values
(lower row) are shown. Statistically significant correlations (P < 0.01) are
in bold. RVE; the ratio of Vimentin to E-cadherin.
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which includes three short interfering RNA (siRNA) oligos with non-over-
lapping sequences targeting ZEB1. We studied three NSCLC cell lines,
H1299, H460, and H157, all of which express high levels of ZEB1 mRNA
(Fig. 1A). These cell lines were transiently transfected with each of the
three ZEB1 siRNAs or control oligos and harvested for analyses 48 h after
transfection. Western blot of ZEB1 showed that with all three oligos clear
suppression of ZEB1 protein was obtained in all cell lines (Fig. 2A). Wes-
tern blot of E-cadherin, which is a direct negative transcription target of
ZEB1, showed reexpression of E-cadherin protein in H460 but not in
H1299 or H157 after the transfection (Fig. 2A). This was likely to reflect
the difference in basal expression of E-cadherin protein between the cells;
H460 but not H1299 or H157 expressed detectable levels of E-cadherin
protein (Fig. 2A). However, we also considered the possibility that ZEB1
knockdown did not upregulate E-cadherin mRNA in H1299 or H157 and
thus performed qRT-PCR analysis of E-cadherin. The analysis revealed that
after the ZEB1 knockdown transfection E-cadherin mRNA significantly in-
creased in H157 and H460 but remained unchanged in H1299, indicating
that in H1299 E-cadherin mRNA was not upregulated by ZEB1 knockdown
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(Fig. 2B). Small or no changes in Vimentin protein expression were seen
after the transfection of ZEB1 knockdown oligos (Fig. 2A). Finally, we
did not see significant morphologic changes suggestive of the cells under-
going EMT (data not shown).

We found ZEB1 knockdown to have modest effects suppressing mass
culture and liquid colony formation growth but much greater effects sup-
pressing anchorage-independent growth in soft agar (Fig. 2C–E). This re-
sult indicates that the ability of these cells to grow in soft agar is highly
dependent on ZEB1 expression.
3.6. Growth inhibitory effect of ZEB1 knockdown in lung cancer was caused in
part by apoptosis but not by induction of senescence

The NSCLC cell lines varied in the induction of apoptosis following
ZEB1 knockdown with H460 cells showing the largest amount of ZEB1
knockdown-induced apoptosis (Fig. 3A and B). One study has showed that
mouse embryonic fibroblasts derived from Zeb1 �/� mice underwent
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premature senescence, suggesting that ZEB1 may function as inhibitor of
senescence [29]. Nevertheless, we did not see any increase in the number
of cells exhibiting morphologic changes or b-galactosidase staining sug-
gestive of senescence, in any of cells transfected with ZEB1 knockdown
oligos (data not shown).

4. Discussion

In the present study, we have shown that ZEB1 expres-
sion was correlated with the mesenchymal phenotype in
Please cite this article in press as: Y. Takeyama et al., Knockdown of ZEB1
presses anchorage-independent cell growth of lung cancer cells, Cance
NSCLC, and that its depletion with RNA interference sup-
pressed anchorage-independent growth, thus providing a
rationale for developing therapeutics targeting ZEB1 func-
tion in lung cancer. Consistent with reports in other cancers,
we also found that miR-200c and miR-205 expression were
inversely correlated with ZEB1 expression in NSCLCs, sug-
gesting potential use as therapy targeting ZEB1.

Consistent with the literature [30], we found that EGFR
mutations were associated with epithelial characteristics
, a master epithelial-to-mesenchymal transition (EMT) gene, sup-
r Lett. (2010), doi:10.1016/j.canlet.2010.04.008
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(E-cadherin expression) in NSCLCs. The literature study
showed that EGFR mutant genotype is an independent pre-
dictor for the epithelial phenotype in logistic regression
analysis, excluding the possibility that observed high fre-
quency of the epithelial phenotype in EGFR mutants was
due to other factors that may be associated with or may
cause epithelial phenotype. Such factors include early
stage disease and non- or low smoking history. The finding
that EGFR mutant cells frequently have an epithelial phe-
notype seems to be unexpected because signaling path-
ways activated by EGFR including RAS, AKT, and SRC
pathways can induce EMT [31]. It is possible that EGFR mu-
tant cells are resistant to EMT-inducing signals. Alterna-
tively, it is also possible that mutant cells specifically
express genes that retain cells to the epithelial state. It will
be important to further elucidate the molecular mecha-
nisms leading to epithelial phenotype in EGFR mutant cells
because molecules involved in such mechanisms could
serve as therapeutic targets.

We found that in NSCLC cell lines ZEB1 expression (in
contrast to other master EMT genes) was significantly corre-
lated with both Vimentin and E-cadherin expression. In addi-
tion, we saw that ZEB1 expression was very strongly
correlated with Vimentin expression in primary tumors.
Two previous studies also reported that ZEB1 expression
was most significantly correlated with E-cadherin expres-
sion in lung cancer among several EMT-inducing genes
[18,32]. Although ZEB1 has been shown to directly repress
transcription of E-cadherin in several different types of cells
[33,34], it remains unknown whether ZEB1 up-regulates
Vimentin expression. In our ZEB1 knockdown experiments,
we did not see a significant down-regulation of Vimentin
in any of the three lines studied, suggesting that ZEB1 does
not directly up-regulate Vimentin expression. However,
the observed strong correlation between ZEB1 and Vimentin
expression in both NSCLC cell lines and tumors suggests that
ZEB1 may indirectly up-regulate Vimentin possibly through
some of its downstream targets. Collectively, our results,
along with those of others, suggest a dominant role of ZEB1
in maintaining the mesenchymal phenotype of lung cancer.

ZEB1 knockdown induced E-cadherin mRNA expression
in H157 and H460 but not in H1299. There is one possible
explanation for this. In H1299, the promoter region of E-
cadherin is known to be heavily methylated, causing its si-
lenced expression [35]. Thus, it is possible that transient
knockdown of ZEB1 was unable to overcome methyla-
tion-mediated gene silencing of E-cadherin in H1299,
resulting in the unchanged E-cadherin mRNA. Long-term
ZEB1 knockdown could reverse methylation of E-cadherin,
and thus it wound be interesting to see the effects of stable
ZEB1 knockdown on methylation status of E-cadherin in
H1299.

ZEB1 knockdown inhibited NSCLC growth most dramat-
ically noted in soft agar colony formation assay. Since the
ability of transformed cells to grow under anchorage-inde-
pendent condition is the most reliable predictor for tumor-
igenicity and metastatic potential, this strong growth
inhibitory effect of ZEB1 knockdown in anchorage-inde-
pendent condition suggests that ZEB1 expression contrib-
utes to maintaining aggressive phenotype of lung cancer
cells.
Please cite this article in press as: Y. Takeyama et al., Knockdown of ZEB1
presses anchorage-independent cell growth of lung cancer cells, Cance
Studies have shown that Twist, Snail and SIP1 show anti-
apoptotic effects when ectopically expressed [36–38]. Nev-
ertheless, to our knowledge, only one study has demon-
strated anti-apoptotic effect of a master EMT gene in a
gene-silencing experiment; the study demonstrated that
Twist knockdown induced apoptosis in human neuroblas-
toma cells [39]. We also observed that ZEB1 knockdown in-
duced apoptosis in H460. These results including ours
demonstrate that in some cancer cells survival signals are
dependent on expression of master EMT genes such as
Twist and ZEB1. Cancer cells are thought to acquire the abil-
ity to evade apoptosis in early stage of progression, and
thus these finding suggest that master EMT genes may play
an important role not only in late stage but also in early
stage of carcinogenesis.

In conclusion, we have shown that ZEB1 expression is
very well correlated with the mesenchymal phenotype of
NSCLC, and that its removal induces significant growth
inhibition in NSCLC partially through induction of apopto-
sis. These results suggest that ZEB1 is a promising thera-
peutic target for lung cancer.
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a b s t r a c t

Background: Determining the differential diagnosis between typical (TCs) and atypical carcinoid tumors
(ACs) is imperative, as the distinction between TCs and ACs is currently based on histologic criteria that
are not always correlated with the unfavorable clinical outcomes.
Patients and methods: We conducted a retrospective study of patients who were diagnosed with carcinoid
tumors between 1990 and 2005 at M. D. Anderson Cancer Center. We reviewed the slides for the follow-
ing pathologic features: infiltrative growth; pleural, blood, or lymphatic vessel invasion; tumor stroma;
presence of active fibroblastic proliferation; chromatin pattern; presence of nucleolus; and nuclear pleo-
morphism. We also evaluated the necrotic patterns. Finally, we evaluated three methods for calculating
the number of mitoses: randomly selected, the most mitotically active in 10 high-power fields (HPFs), or
overall mean mitotic count.
Results: Our cohort consisted of 80 patients (68 with TCs and 12 with ACs). Older age (P = 0.002),

pathologic stage III or IV disease (P = 0.04), active fibroblastic proliferation (P = 0.041), and comedo-like
necrosis (P = 0.001) were significantly associated with tumor recurrence or patient’s death. Among the
three mitotic counting methods, the overall mean number of mitoses was significantly correlated with
recurrence-free survival (P < 0.0001). Our criteria for distinguishing AC from TC included the presence of
comedo-like necrosis and/or an overall mean number of mitoses ≥0.2/HPF.

rall m
lung
Conclusions: Using an ove
important for classifying

. Introduction

Bronchopulmonary neuroendocrine tumors comprise about
0% of all lung carcinomas and represent a spectrum of
umors arising from neuroendocrine cells. The different types of
ronchopulmonary neuroendocrine carcinomas share structural,
orphologic, immunohistochemical, and ultrastructural features,

nd they are separated into four subgroups in increasing order
f biologic aggressiveness: low-grade (typical carcinoids; TCs),
ntermediate-grade (atypical carcinoids; ACs), and high-grade
Please cite this article in press as: Tsuta K, et al. Histologic features of lo
atypical carcinoid tumors) of the lung. Lung Cancer (2010), doi:10.1016/j.l

large-cell neuroendocrine carcinomas; LCNECs), or (small-cell
ung carcinomas). TCs and ACs account for approximately 1–2% of
ll primary lung carcinomas [1,2].
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ean number in counting mitoses and detecting comedo-like necrosis is
carcinoid tumors.

© 2010 Published by Elsevier Ireland Ltd.

Although TCs are generally regarded as low-grade carcinomas,
approximately 10–23% [3] of cases metastasize to the regional
lymph nodes at presentation, with the 5-year overall survival
rates ranging from 82% to 100% for patients with TCs [4,5].
In contrast, approximately 40–50% of ACs metastasize to the
regional lymph nodes at presentation, with the 5-year overall
survival rates ranging from 25% to 78% for patients with ACs
[2,5–9].

Conventional carcinoid tumors are composed of homogeneous
cellular proliferation with an organoid and trabecular struc-
ture. Tumor cells are composed of small- to medium-sized,
round to polygonal cells with a scant to moderate amount
of eosinophilic cytoplasm and centrally located round to oval
nuclei with fine granular chromatin. Histologic atypia, such as
nuclear atypia, prominent nucleoli, and pleomorphism, is more
w- and intermediate-grade neuroendocrine carcinoma (typical and
ungcan.2010.04.007

common in AC than TC, but these features are sometimes
observed in TC [6,7,10]. Therefore, the unfavorable clinical out-
comes and atypical histologic features associated with these
lung carcinoid tumors are unreliable for distinguishing TCs from
ACs.

dx.doi.org/10.1016/j.lungcan.2010.04.007
http://www.sciencedirect.com/science/journal/01695002
http://www.elsevier.com/locate/lungcan
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Fig. 1. (A) Massive coagulative necrosis surrounded by thick fibrous tissue with a
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Arrigoni et al. [11] first defined ACs as carcinoid tumors with (1)
mitosis/1–2 high-power fields (HPFs) or 5–10 mitoses/10 HPF;

2) necrosis; (3) pleomorphism, hyperchromasia, or an abnormal
uclear/cytoplasmic ratio; and (4) areas of increased cellular-

ty with disorganization. In 1998, Travis et al. [6] proposed that
CNECs be classified in a separate category from ACs, as this poorly
ifferentiated high-grade carcinoma was characterized by a neu-
oendocrine appearance under light microscopy. These criteria
ave been applied to the latest World Health Organization classifi-
ation [10]. With the establishment of diagnostic criteria for LCNEC,
he definition of AC was then restricted to tumors with a mitotic
ate of 2–10 mitoses per 2 mm2 (10 HPF) or the presence of necrosis.

Differentiating ACs from TCs or LCNECs is clinically important
ecause the treatment modalities and prognoses for these types
f tumors are different. However, the distinction between ACs and
Cs is currently based only on the histologic evaluation of mitotic
ount and necrosis. In this study, we sought to retrospectively eval-
ate the various histologic features of ACs and TCs and relate these
o their outcomes (i.e., tumor recurrence, patient death, or lymph
ode metastasis). Furthermore, we revised the relevance of the
atterns of necrosis and mitotic counting methods.

. Materials and methods

.1. Case selection

We retrospectively reviewed the tumor specimens from
atients who were surgically resected and diagnosed with TC or
C between 1990 and 2005. We obtained the tumor specimens

rom cases deposited in the files of the University of Texas M. D.
nderson Cancer Center (Houston, TX, USA) Lung SPORE Tissue
ank, which was approved by the institutional review board. We
eviewed the pathologic records of the specimens and all available
ematoxylin and eosin (HE)-stained slides, some special stains, and
he immunohistochemical and/or ultrastructural analyses avail-
ble. We collected the patients’ clinical information, including
ge, gender, smoking history, presenting symptoms, treatment
odalities, site of any tumor recurrence, duration of recurrence

r survival, tumor location (which lobe and whether central or
ot), maximum tumor size (in cm), and pathologic disease stage
p-stage).

.2. Histologic examination

All available HE-stained slides for each case were examined by
wo pathologists (K.T. and C.A.M.); each pathologist was blinded
o the clinical details of each patient. We evaluated the pathologic
eatures of tumor invasiveness, including the infiltrative growth
f the adjacent normal architecture, presence of pleural invasion,
nd presence of blood or lymphatic vessel invasion. The stroma
etween the tumor nests was mainly composed of capillary or
brous tissue. We also observed active fibroblastic proliferation
12]. We then evaluated the histologic features of the tumor cells,
ncluding the chromatin pattern (i.e., fine granular or coarse) and
he presence or absence of nucleolus and nuclear pleomorphism
i.e., whether there was more than a 3-fold variation in nuclear size
hat did not include the presence of giant cells).

We then evaluated the necrotic pattern, such as the presence
r absence of comedo-like necrosis (necrosis present within the
enter of tumor nest) and coagulative necrosis (necrosis involving
Please cite this article in press as: Tsuta K, et al. Histologic features of lo
atypical carcinoid tumors) of the lung. Lung Cancer (2010), doi:10.1016/j.l

ne or more whole tumor nests and/or forming bridging necro-
is) (Fig. 1A). We also evaluated the histologic features suggesting
umor damage, such as pyknotic cells (i.e., foci of dyscohesive
ells) with somewhat pyknotic nuclei and condensed, shrunken-
ppearing cytoplasms without karyorrhexis, eosinophilic debris,
hemosiderin deposition. The outermost portion of the necrosis consisted of tumor
cells. (B) Foci of dyscohesive cells with somewhat pyknotic nuclei and condensed,
shrunken-appearing cytoplasms without karyorrhexis, eosinophilic debris, or apop-
tosis observed in tumor nests.

or apoptosis (Fig. 1B), cholesterol cleft, stromal hemorrhage, and
psammoma bodies.

2.3. The mitotic counting method

After all slides were reviewed on an Olympus CX31 microscope
(Olympus; Tokyo, Japan), the mitoses were counted on one repre-
sentative slide. This microscope’s standard field of view number is
20 (0.2 mm2); therefore, an HPF magnification of 400× equals to
0.2 mm2. To determine the most suitable mitotic counting method,
we studied three methods: (1) the number of mitoses in a ran-
domly selected 10-HPF area counted; (2) the number of mitoses
in the most mitotically active 10-HPF areas (so called hot spots)
counted; or (3) the mean number of mitoses in the whole section
calculated (the number of mitoses divided by the number of HPFs
in the whole section). To avoid overcounting the number of mitoses
at the telophase, two adjoining mitotic figures were counted as one
mitosis.
w- and intermediate-grade neuroendocrine carcinoma (typical and
ungcan.2010.04.007

2.4. Statistical analysis

We performed all statistical analyses using SPSS version 12.0
software for Windows (SPSS; Chicago, IL). We used the Wilcoxon
rank-sum test to analyze the continuous variables and Fisher’s

dx.doi.org/10.1016/j.lungcan.2010.04.007
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Fig. 2. (A) Bundles of spindle-shaped fibroblasts are shown between tumor nests
(magnification, 10×). (B) The tumor had a large solid nest with comedo-like necrosis
(magnification, 20×). (C) Although this case showed 5 mitoses in 1 high-power field
(HPF), this photomicrograph area is smaller than 1 HPF (0.2 mm2) and corresponded
to a 0.134 mm2 area. Because this image was captured using the Olympus DP-70
system (Tokyo, Japan), this photomicrograph showed 4 mitotic figures, indicated by
the arrows (2 in prophase, 1 in metaphase, and 1 in telophase). This case’s mitotic
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xact test to analyze lymph node metastasis. We calculated the
ecurrence-free survival (RFS) curves using the Kaplan–Meier
ethod, and we compared the curves using the log-rank test. We

onsidered a P-value of ≤0.05 to be significant in two tailed analy-
is.

. Results

.1. Clinical features

We reviewed the tumor specimens from 88 patients with
n original diagnosis of lung carcinoid tumors. We excluded 5
atients who received therapy preoperatively (4 who received
eoadjuvant chemotherapy and 1 who received YAG laser abla-
ion). Furthermore, we excluded 3 patients who had high mitotic
ctivity and massive necrosis; their diagnosis was then changed
o LCNEC based on the latest World Heath Organization crite-
ia [10]. Therefore, our final cohort consisted of 80 patients with
ung carcinoid tumors, including 68 patients with TCs and 12

ith ACs. The patients’ mean age (at the time of diagnosis) was
4.3 years (range, 19–80 years). The presenting symptoms were
ocumented in 27 out of 77 patients. Smoking history was doc-
mented in 76 cases; 32 patients were never smokers, 32 were
ormer smokers, and 12 were present smokers. The tumor was
ocated in the right-upper lobe in 11 patients, the middle lobe in
0, the right-lower lobe in 26, the left-upper lobe in 13, and the

eft-lower lobe in 19, and 1 patient had a hilar lesion. The tumor
as located in the central portion of the lung in 49 patients or in

he intermediate or peripheral portion in 31 patients. A preoper-
tive biopsy and/or cytologic diagnostic procedure were carried
ut in 69 patients, including the diagnoses were not tumorous
esions.

The tumor sizes ranged from 1.0 to 13.0 cm (mean, 2.96 cm).
ymph node status was recorded in 79 patients, and metastasis
as observed in 17. Sixty-one cases had p-stage I disease, 6 had p-

tage II disease, 11 had p-stage III disease, 1 had p-stage IV disease,
nd 1 case was unstaged.

Tumor recurrence was observed in 6 of 80 patients (2 cases
f liver recurrence and 1 case each of kidney, brain, chest wall,
nd subclavicular lymph node recurrence). The mean follow-
p time for all 80 patients was 68 months (range, 1–197
onths), with 74 still alive at the time of this report. Only
patient died of a tumor progression, and 5 died of other

auses.

.2. Histologic factors

We reviewed an average of 4.7 (range, 1–16) HE-stained slides
or each case. Infiltrative growth was observed in 47 cases. Blood-
essel, lymph-vessel, and pleural invasion were observed in 34
ases, 29 cases, and 1 case, respectively. Capillary rich stroma was
bserved in 57 cases, and fibrous rich stroma was observed in 23
ases. Active fibroblastic proliferation was observed in 38 cases
Fig. 2A). We found a fine chromatin pattern in 47 cases and a
oarse chromatin pattern in 33 cases. We also observed a conspic-
ous nucleolus in 15 cases and nuclear pleomorphism in 13 cases.
e found other unusual histologic features of the tumors, such as

one formation in 16 cases and granulomatous inflammation in 2
ases.

We found comedo-like necrosis in 5 cases and coagulative
Please cite this article in press as: Tsuta K, et al. Histologic features of lo
atypical carcinoid tumors) of the lung. Lung Cancer (2010), doi:10.1016/j.l

ecrosis in 10 cases (Fig. 2B), and we found both comedo-like and
oagulative necrosis in 2 cases. All but 1 patient with coagulative
ecrosis had undergone preoperative biopsy. Pyknotic cells, choles-
erol cleft, hemorrhage, and psammoma bodies were observed in
4 cases, 4 cases, 29 cases, and 13 cases, respectively.
count in the most mitotically active area was 15 mitoses/10 HPF, but the average
mitosis was 0.18 mitoses/HPF. This patient was alive at 45 months with no evidence
of tumor recurrence (bar = 200 �m).

3.3. Mitotic count

We reviewed a mean of 341.6 HPF (range, 44–762 HPF) per case.
w- and intermediate-grade neuroendocrine carcinoma (typical and
ungcan.2010.04.007

The number of mitoses ranged from 0 to 115, with a mean of 10.9
per case. The number of mitoses in 1 HPF exceeded 2 in 26 cases,
and the highest recorded mitotic count in 1 HPF was 5 (Fig. 2C).
The mean number of mitoses in the randomly selected 10-HPF

dx.doi.org/10.1016/j.lungcan.2010.04.007
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reas was 0.45 mitoses/10 HPF (range, 0–6 mitoses/10 HPF), and
he mean number of mitoses in the most mitotically active 10-HPF
reas was 5.73 mitoses/10 HPF (range, 0–25 mitoses/10 HPF). The
verall mean number of mitoses was 0.04 mitoses/1 HPF (range,
–0.32 mitoses/1 HPF).

Both the presence of comedo-like necrosis and an overall mean
umber of mitoses of ≥0.2 mitoses/1 HPF were observed in 3 cases.
hese cases corresponded to 60% of cases bearing comedo-like
ecrosis and 60% of cases having an overall mean number of mitoses
0.2 mitoses/1 HPF.

.4. Clinicopathologic features based on unfavorable outcomes

We next evaluated whether there was an association between
he patients’ clinicopathologic factors and tumor recurrence,
atient death, and/or lymph node metastasis (Table 1). An older
ge (P = 0.002), p-stage III or IV disease (P = 0.0029), pleural invasion
P < 0.0001), and the presence of active fibroblasts (P = 0.0184) were
ignificantly associated with tumor recurrence or patient death. All
atients with tumor specimens that exhibited an active fibroblastic
roliferation had undergone a preoperative biopsy and/or cytologic
iagnostic procedure. Blood-vessel invasion (P = 0.0417), lymph-
essel invasion (P = 0.0017), coarse chromatin pattern (P = 0.0304),
onspicuous nucleolus (P = 0.0085), and nuclear pleomorphism
P = 0.0019) were significantly associated with lymph node metas-
asis.

.5. Evaluation of necrotic patterns based on the patients’
nfavorable outcomes and RFS

We then sought to determine if there was a correlation between
he tumor specimens’ necrotic patterns and histologic features
uggesting tumor damage and the patients’ unfavorable out-
omes (Table 2). Only the presence of comedo-like necrosis was
ignificantly associated with tumor recurrence or patient death
P < 0.0001).

.6. Evaluation of mitotic count based on the patients’
nfavorable outcomes, RFS, and OS

We investigated whether there was a correlation between the
esults of three mitotic counting methods and the patients’ unfa-
orable outcomes and RFS (Table 3). For specimens in which
he number of mitoses in a randomly selected 10-HPF area was
ounted, the presence of 2–10 mitoses/10 HPF appeared to be
ignificantly associated with tumor recurrence or patient death
P = 0.003). In addition, the 5-year RFS rates for the specimens
ith 0–1 mitoses/10 HPF and 2–10 mitoses/10 HPF were 94.2%

nd 58.3%, respectively (Fig. 3A). However, when we individual-
zed each case and correlated the number of mitotic figures with
he 5-year RFS rates, we obtained the following information: 0

itoses = 95.1%; 1 mitotic figure = 87.5%; 2 mitotic figures = 75.0%;
mitotic figures = 100%. Based on these data, we analyzed chang-

ng the cut off number of mitosis from 0–3 to 4–10. The 5-year
FS rates for the specimens with 0–3 mitoses/10 HPF and 4–10
itoses/10 HPF were 93.1% and 0%, respectively (P = 0.002).
For specimens in which the number of mitoses in the most

itotically active 10-HPF area was counted, this method showed
endency with tumor recurrence or patient death (P = 0.0575). The
-year RFS rates for specimens with 0–1 mitoses/10 HPF, 2–10
itoses/10 HPF, and more than 11 mitoses/10 HPF were 95.5%,
Please cite this article in press as: Tsuta K, et al. Histologic features of lo
atypical carcinoid tumors) of the lung. Lung Cancer (2010), doi:10.1016/j.l

4.6%, and 75.2%, respectively (P = 0.0575; Fig. 3B). Once again,
hen we individualized each case and correlated the number of
itotic figures with the 5-year RFS rates, we obtained the fol-

owing information: 0 mitoses = 100%; 1 mitotic figure = 90.0%; 2
itotic figures =100%; and 3 mitotic figures = 100%. Based on these
 PRESS
xxx (2010) xxx–xxx

data, we analyzed changing the cut off number of mitosis from
0–3 to 4 or more. The 5-year RFS rates for the specimens with
0–3 mitoses/10 HPF and 4 or more mitoses/10 HPF were 97.4% and
83.4%, respectively (P = 0.024).

For specimens in which the overall mean number of mitoses
was calculated, the value of≥0.2 mitoses per 1 HPF was significantly
associated with tumor recurrence or patient death (P < 0.0001). The
5-year RFS rates for specimens with an overall mean mitosis <0.2
and a mean mitosis ≥0.2 were 95.9% and 0%, respectively (Fig. 3C).
Multivariate analysis was not performed because of the small num-
ber of events (recurrence and death) in our patient population.
Based on the 5-year RFS rates, we considered that the overall mean
mitotic counting method was the most useful. Furthermore, we also
found that the criteria on the number of mitosis should be selected
based on the counting methods (0–3 and 4–10 in randomly selected
areas and 0–3 and ≥4 in the most mitotically active areas).

Although there were few deaths, we analyzed 5-year OS rates.
For specimens in which the number of mitoses was counted
in a randomly selected 10-HPF area, the 5-year OS rates with
0–1 mitoses/10 HPF and 2–10 mitoses/10 HPF were 100% and
96.6%, respectively (P = 0.0033; Fig. 3D). For specimens in which
the number of mitoses in the most mitotically active 10-HPF
area was counted, the 5-year OS rates for specimens with 0–1
mitoses/10 HPF, 2–10 mitoses/10 HPF, and >11 mitoses/10 HPF
were 100%, 95.5%, and 82.1%, respectively (P = 0.1471; Fig. 3E). For
specimens in which the overall mean number of mitoses was cal-
culated, the 5-year OS rates for specimens with an overall mean
mitosis <0.2 and a mean mitosis ≥0.2 were 98.7% and 0%, respec-
tively (P < 0.0001; Fig. 3F).

3.7. New recommended definition for AC

Based on these results, we recommend that the definition for
AC include comedo-like necrosis and/or an overall mean number
of mitosis of ≥0.2. Based on this definition, we observed AC in 7
cases rather than the 12 cases specified in the records. The 5-year
RFS rates for patients with TC and AC by this new definition were
97.2% and 0%, respectively (P < 0.0001; Fig. 4). We observed lymph
node metastasis in 14 patients with TC and 3 patients with AC;
however, there was no significant difference between these two
rates (P = 0.166).

4. Discussion

Our results favor a new histological definition for AC. In this
study, we found that the overall mean number of mitoses was supe-
rior to calculate the number of mitoses in a randomly selected
10-HPF area or in the most mitotically active 10-HPF area. Fur-
thermore, the presence of comedo-like necrosis was significantly
associated with tumor recurrence and patient death when com-
pared to the presence of coagulative necrosis.

A high mitotic count is generally reported as an unfavorable
factor in patients with tumors. In general, selecting the most mitot-
ically active 10-HPF area is the preferred method for calculating
mitotic counts [13–15]. Most of the articles on pulmonary neuroen-
docrine tumors, including the first publication on the definition of
LCNEC, counted the mitoses in the most mitotically active areas
[7,16,17]. Our results indicated that the mitotic counts in both
ACs and TCs were distributed heterogeneously. Surprisingly, 21 of
26 cases with a mitotic count exceeding 2 mitoses in only 1 HPF
w- and intermediate-grade neuroendocrine carcinoma (typical and
ungcan.2010.04.007

showed no tumor recurrence or patient death. When compared
with a randomly selected 10-HPF area or the most mitotically
active 10-HPF area, ≥2 mitoses in only 1 HPF had the least selec-
tion bias to go beyond the diagnostic criteria for TC. Furthermore,
when we selected the most mitotically active areas, 20 cases went

dx.doi.org/10.1016/j.lungcan.2010.04.007
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Table 1
Correlation between clinicopathological factors and unfavorable outcomes.

Recurrence/death P-valuea Lymph node metastasis P-valueb

(−) (+) (−) (+)

Original diagnosis
Typical 63 5 <0.0001 55 12 0.1192
Atypical 7 5 7 5

Age (years) 52.5 67.1 0.002 54.1 54.4 1.00

Gender
Female 45 4 0.1944 38 10 0.8536
Male 25 6 24 7

Symptom
None 43 7 0.8271 38 11 0.5524
Present 24 3 23 4

Smoking
Never 31 1 0.0767 27 4 0.5267
Former 25 7 24 8
Present 10 2 10 2

Location
Central 44 5 0.3645 38 11 0.7971
Non-central 26 5 24 6

Tumor size (cm) 2.92 3.23 0.936 3.05 2.69 0.9952

Lymph node metastasis
Absent 55 7 0.4563 – – –

Present 14 3 – –

Pathologic stage
I and II 61 6 0.0029 – – –

III and IV 8 4 – –

Infiltrative growth
Absent 29 4 0.4805 27 5 0.4051
Present 41 6 35 12

Blood-vessel invasion
Absent 46 3 0.088 39 6 0.0417
Present 27 7 23 11

Lymph-vessel invasion
Absent 46 5 0.2246 45 5 0.0017
Present 24 5 17 12

Pleural invasion
Absent 70 9 <0.0001 61 17 1.00
Present 0 1 1 0

Stroma
Capillary rich 52 5 0.1467 43 13 0.7649
Fibrous rich 18 5 19 4

Active fibroblastic proliferation
Absent 40 2 0.0184 34 7 0.3179
Present 30 8 28 10

Chromatin pattern
Fine 40 7 0.5614 40 6 0.0304
Coarse 30 3 22 11

Nucleolus
Inconspicuous 57 8 0.7714 54 10 0.0085
Conspicuous 13 2 8 7

Nuclear pleomorphism
Absent 59 8 0.5684 56 10 0.0019
Present 11 2 6 7

b
t
i

d
p
l

a Log-rank test.
b Fisher’s exact test.

eyond the diagnostic criteria for AC. These results indicated that
he latest WHO criteria for diagnosing ACs is strict only evaluating
Please cite this article in press as: Tsuta K, et al. Histologic features of lo
atypical carcinoid tumors) of the lung. Lung Cancer (2010), doi:10.1016/j.l

n 10 HPFs.
We also attempted to determine if there was a pattern to the

istribution of mitoses (such as within the tumor’s center or in the
eriphery); however, we did not see a uniform tendency (unpub-

ished results). Travis et al. counted the number of mitoses in
pulmonary neuroendocrine tumors in three sets of 10 HPF and
calculated the mean [6,16]. Their results indicated that one set
w- and intermediate-grade neuroendocrine carcinoma (typical and
ungcan.2010.04.007

of 10 HPFs is not enough to evaluate the mitotic activity because
of the mitotic heterogeneity in carcinoid tumors. Tiny material,
such as biopsy specimens may not be suitable for a final diag-
nosis of TC or AC, because there may not be enough HPFs. The
results of our study are based on surgically resected materials,
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Table 2
Correlation between necrosis and unfavorable outcomes.

Recurrence/death P-valuea Lymph node metastasis P-valueb

(−) (+) (−) (+)

Comedo-like necrosis
Absent 69 6 <0.0001 60 14 0.0639
Present 1 4 2 3

Coagulative necrosis
Absent 62 8 0.3143 55 14 0.4414
Present 8 2 7 3

Pyknotic change
Absent 25 1 0.0954 22 3 0.2405
Present 45 9 40 14

Cholesterol cleft
Absent 67 9 0.4762 59 16 1.00
Present 3 1 3 1

Hemorrhage
Absent 47 4 0.102 41 9 0.3176
Present 23 6 21 8

Psammomatous body
Absent 61 6 0.0559 53 13 0.4611
Present 9 4 9 4

a
o
b

i
s
c
r
s
c
u
b
T
n
s
[

a

T
C

a Log-rank test.
b Fisher’s exact test.

nd it is unclear whether calculating the overall mean number
f mitoses would be applicable for materials acquired from a
iopsy.

The presence of necrosis is another criterion for differentiat-
ng TC from AC. In the current study, we analyzed the necrosis
eparating comedo-like and coagulative necrosis. We found that
omedo-like necrosis was significantly associated with tumor
ecurrence and patient death when compared to coagulative necro-
is. In fact, we did not see tumor recurrence or patient death in the
ases with only coagulative necrosis. This may be because coag-
lative necrosis is not related to the tumor’s malignant behavior
ut rather it may be related to preoperative biopsy or erosion.
ravis et al. also pointed out that the large zone of infarct-like
ecrosis (corresponding to current coagulative necrosis) was not
Please cite this article in press as: Tsuta K, et al. Histologic features of lo
atypical carcinoid tumors) of the lung. Lung Cancer (2010), doi:10.1016/j.l

een in ACs but was seen in high-grade neuroendocrine carcinomas
16].

It has been reported that hemorrhage, psammoma bodies,
nd/or cholesterol cleft form after the degeneration and disappear-

able 3
orrelation between three mitotic count methods and unfavorable outcomes.

Recurrence/death P-valuea

(−) (+)

Randomly selected 10 HPF
<2 65 6 0.003
≥2 5 4
<2 69 8 0.002
≥2 1 2

Highest 10 area
<2 21 1 0.0575
2–10 35 4
>11 14 5
0–3 37 2 0.0238
≥4 33 8

Mean mitosis
<0.2 69 6 <0.0001
≥0.2 1 4

a Log-rank test.
b Fisher’s exact test.
ance of tumor cells [18–20]. However, we found that these factors
were not associated with the patients’ clinical outcomes in our
study. We observed pyknotic cells, which can sometimes be con-
fused with incipient necrosis, in 69% of patients with both ACs and
TCs. Similar to previous reports, our results demonstrated that the
presence of pyknotic cells was not associated with the patients’
clinical outcomes [7,8].

The presence of an active fibroblastic proliferation is one of the
known unfavorable clinical outcomes in patients with pulmonary
adenocarcinomas [12]. In our study, we observed active fibrob-
lastic proliferation in 48% of the cases, which was significantly
associated with tumor recurrence or patient death (P = 0.0184).
All patients who had tumor specimens with active fibroblastic
proliferation had undergone a preoperative biopsy and/or cyto-
w- and intermediate-grade neuroendocrine carcinoma (typical and
ungcan.2010.04.007

logic diagnostic procedure. However, these results did not exclude
the possibility of the active fibroblastic proliferation induced by
preoperative diagnostic procedures. Therefore, it will be necessary
to study a larger number of patients who have not undergone

Lymph node metastasis P-valueb

(−) (+)

56 14 0.3957
6 3
60 16 0.522
2 1

21 1 0.0641
28 11
13 5
28 11 0.180
34 6

60 14 0.0639
2 3
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Fig. 3. The recurrence-free survival (RFS) rates for patients with ACs. (A) For cases where the number of mitoses was calculated in randomly selected 10-high-power field
(HPF) areas, the 5-year RFS rates for cases with 0–1 mitoses/10 HPF (solid line) and 2–10 mitoses/10 HPF (dashed line) were 94.2% and 58.3%, respectively. (B) For cases where
the number of mitoses was calculated in the most mitotically active 10-HPF area, the 5-year RFS rates for cases with 0–1 mitoses/10 HPF (solid line), 2–10 mitoses/10 HPF
(dashed line), and ≥11 mitoses/10 HPF (square-dot line) were 95.5%, 94.6% and 75.2%, respectively. (C) For cases where the average mitotic count was calculated, the 5-year
RFS rates for cases with <0.2 mitoses/10 HPF (solid line) and ≥0.2 mitoses/10 HPF (dashed line) were 95.9% and 0%, respectively. (D) specimens with randomly selected
1 were 1
5 HPF w
t pectiv

p
c
t

p
w
t
t
t
e
n
o
r
i
i
v
r
i
I
i
n
t
B

0-HPF are, the 5-year OS rates with 0–1 mitoses/10 HPF and 2–10 mitoses/10 HPF
-year OS rates with 0–1 mitoses/10 HPF, 2–10 mitoses/10 HPF, and >11 mitoses/10
he 5-year OS rates with mean <0.2 and a mean mitosis >0.2 were 98.7% and 0% res

reoperative diagnostic procedures to determine the signifi-
ance of active fibroblastic proliferation in patients with carcinoid
umors.

Although our cohort was not large enough to analyze each
athologic disease stage, patients with p-stage III or IV disease
ere more likely to experience a tumor recurrence or death

han patients with p-stage I or II disease (P = 0.00294). Adapting
he TNM classification scheme for patients with lung carcinoid
umors is an important factor for predicting survival [21]. How-
ver, one of the important factors of TNM classification – lymph
ode metastasis – was not correlated with tumor recurrence
r patient death in our study. Currently, there are conflicting
eports about the effect of lymph node metastasis for survival
n patients with carcinoid tumors. Some studies have found that
n patients with TC, lymph node metastasis did not affect sur-
ival [8,22]. However, if some histologic factors can predict the
isk of lymph node metastasis, they may be useful for determin-
ng the extent of the regional lymph node dissection for surgeons.
Please cite this article in press as: Tsuta K, et al. Histologic features of lo
atypical carcinoid tumors) of the lung. Lung Cancer (2010), doi:10.1016/j.l

n our study, the presence of blood-vessel invasion, lymph-vessel
nvasion, coarse chromatin pattern, nucleolus prominence, and
uclear pleomorphism were correlated with lymph node metas-
asis, but mitotic activity and/or the presence of necrosis were not.
ased on these factors, the presence of a coarse chromatin pattern,
00% and 96% respectively. (E) Specimens with more mitotically active 10 HPF area,
ere 100%, 95%, and 82% respectively. (F) Specimens with overall mean of mitoses,

ely.

nucleolus prominence, and nuclear pleomorphism can be diag-
nostic features for lymph node metastasis in preoperative biopsy
materials.

We found that counting the overall mean number of mitoses
was superior to the other methods for determining the specimens’
mitotic counts. However, counting the number of mitoses in all
fields in each case at a high magnification may be unsuitable for
daily practice because of the substantial time involved. There-
fore, based on our results, we made a flow chart (Fig. 5) to aid
in the diagnosis of low- and intermediate-grade neuroendocrine
carcinomas.

In short, we concluded that the mitotic figures of carcinoid
tumors have a heterogeneous distribution. To reduce the selec-
tion biases of fields and observer variation, we recommended
calculating the overall mean number of mitoses. We also pointed
out the potential for overdiagnosing carcinoid tumors using the
method for counting mitoses in the most mitotically active 10-
HPF. Furthermore, we concluded that comedo-like necrosis was
w- and intermediate-grade neuroendocrine carcinoma (typical and
ungcan.2010.04.007

a more important pattern to look for than coagulative necrosis
for predicting tumor recurrence or patient death. The combination
of calculating the mean number of mitoses and the presence of
comedo-like necrosis should be added to the current criteria for
diagnosing ACs.

dx.doi.org/10.1016/j.lungcan.2010.04.007
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Fig. 4. Based on our recommended criteria for atypical carcinoids, the 5-year
disease-free survival rates for patients with typical carcinoids (solid line) and atypi-
cal carcinoids (comedo-like necrosis and/or an average mitosis ≥0.2 mitoses/10 HPF;
dashed line) were 97.2% and 0%, respectively.
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ig. 5. A dichotomous tree for diagnosing neuroendocrine tumors of the lung,
ccording to our results. Abbreviations: TC, typical carcinoid; AC, atypical carcinoid;
E, neuroendocrine tumor; HPF, high-power field.
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Recent studies have established that amplification of the
MET proto-oncogene can cause resistance to epidermal
growth factor receptor (EGFR) tyrosine kinase inhibitors
(TKIs) in non-small cell lung cancer (NSCLC) cell lines
with EGFR-activating mutations. The role of non-
amplified MET in EGFR-dependent signaling before
TKI resistance, however, is not well understood. Using
NSCLC cell lines and transgenic models, we demonstrate
here that EGFR activation by either mutation or ligand
binding increases MET gene expression and protein levels.
Our analysis of 202 NSCLC patient specimens was
consistent with these observations: levels of MET were
significantly higher in NSCLC with EGFR mutations than
in NSCLC with wild-type EGFR. EGFR regulation of
MET levels in cell lines occurred through the hypoxia-
inducible factor (HIF)-1a pathway in a hypoxia-independent
manner. This regulation was lost, however, after MET
gene amplification or overexpression of a constitutively
active form of HIF-1a. EGFR- and hypoxia-induced
invasiveness of NSCLC cells, but not cell survival, were
found to be MET dependent. These findings establish that,
absent MET amplification, EGFR signaling can regulate
MET levels through HIF-1a and that MET is a key
downstream mediator of EGFR-induced invasiveness in
EGFR-dependent NSCLC cells.
Oncogene advance online publication, 15 February 2010;
doi:10.1038/onc.2010.16

Keywords: EGFR; MET; non-small cell lung cancer;
HIF-1a; invasiveness

Introduction

Non-small cell lung cancer (NSCLC) is the leading cause
of cancer death in the United States. Epidermal growth
factor receptor (EGFR)-activating mutations have been
described in a subset of NSCLC patients, and activated
EGFR is known to influence tumor cell survival,
proliferation, angiogenesis, and invasiveness (Lynch
et al., 2004; Paez et al., 2004; Pao et al., 2004; Janne
et al., 2005; Pao and Miller, 2005; Ciardiello and
Tortora, 2008). EGFR tyrosine kinase inhibitors (TKIs)
such as erlotinib and gefitinib are clinically active in
10–20% of NSCLC patients (Fukuoka et al., 2003; Kris
et al., 2003; Shepherd et al., 2005; Thatcher et al., 2005).
Activating mutations within the EGFR tyrosine kinase
domain including an amino acid substitution at exon 21
(L858R) and in-frame deletions in exon 19 were found
to be predictors of clinical response to EGFR TKIs
(Lynch et al., 2004; Paez et al., 2004; Pao et al., 2004).

Recent evidence suggests that in NSCLC cells
activating EGFR mutations or amplification of the
MET proto-oncogene caused acquired resistance to
EGFR TKIs by driving activation of the PI3K pathway
(Engelman et al., 2007). The role of MET in EGFR-
dependent signaling before the emergence of TKI
resistance is not well understood; however, MET is
regulated by hypoxia and hypoxia-inducible factor-1a
(HIF-1a) and is thought to contribute to invasive tumor
growth (Pennacchietti et al., 2003). The MET protein is
a receptor tyrosine kinases whose activation can cause
malignant transformation and tumorigenesis (Cooper
et al., 1986; Park et al., 1987; Stabile et al., 2004). Upon
ligand binding, MET activates downstream signaling
molecules including PI3K, Src, and signal transducer
and activator of transcription-3 (Rosario and Birchmeier,
2003), triggering the key metastatic steps of cell
dissociation (Qiao et al., 2002), migration (Yi et al.,
1998), and invasion (Bredin et al., 2003). MET is
overexpressed in multiple malignancies and is associated
with aggressive disease (Peruzzi and Bottaro, 2006). In
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NSCLC, MET levels are elevated in resected tumors
compared with normal tissue (Liu and Tsao, 1993;
Ichimura et al., 1996; Olivero et al., 1996), and high
expression of the MET ligand hepatocyte growth factor
(HGF) is associated with aggressive disease and a poor
prognosis (Siegfried et al., 1998).

Recent studies have suggested a link between EGFR
signaling and MET. Expression and phosphorylation of
EGFR and MET correlate in multiple malignancies
(Weinberger et al., 2005). Aberrant EGFR activation
results in elevated MET phosphorylation in thyroid
carcinoma cells (Bergstrom et al., 2000). EGFR function
has been implicated in HGF-induced hepatocyte pro-
liferation (Scheving et al., 2002) and is required for
MET-mediated colon cancer cell invasiveness (Pai et al.,
2003). Recent studies of phosphoprotein networks
reveal an association between EGFR and MET activa-
tion (Huang et al., 2007; Guo et al., 2008), and have
reported direct crosstalk between EGFR and the MET
(Jo et al., 2000; Huang et al., 2007).

A plausible link between the EGFR and MET
pathways is HIF-1, which has two subunits (HIF-1a
and HIF-1b), and is known to contribute to tumor cell
motility and invasiveness. EGF has been shown to
modulate HIF-1a levels in prostate, breast, and lung
cancer cell lines (Zhong et al., 2000; Phillips et al., 2005;
Peng et al., 2006), and positive correlations between
EGFR and HIF-1a expression have been observed in
NSCLC (Hirami et al., 2004; Swinson et al., 2004).

Here, we have used clinical specimens, transgenic
mouse models, and cell lines to investigate the hypo-
thesis that EGFR signaling may regulate MET levels
through HIF-1a but that MET amplification, which
occurs in EGFR TKI resistance, would uncouple MET
levels from EGFR regulation. We hypothesized further
that EGFR-induced invasiveness, like hypoxia-induced
invasiveness, is mediated downstream at least in part by
the HIF-1a/MET axis.

Results

EGFR-activating mutations are associated with elevated
levels of MET in NSCLC clinical samples
To investigate a possible association between EGFR
activation and MET in clinical specimens, we evaluated
MET levels by immunohistochemistry and assessed
EGFR mutations in 202 human NSCLC clinical speci-
mens. Out of 202 samples, 22 had detectable EGFR
mutations. Specimens were immunostained for MET
and scored based on an intensity score (0, 1, 2, or 3)
and an extension percentage. The final score was the
product of these two values. The mean score for MET
expression was 39.46±64.52. Therefore, a score of 40
was considered the cutoff for classifying low and
high levels of MET expression. The mean MET
expression score was significantly higher in specimens
with mutated EGFR (73.64±70.68) than in specimens
with WT EGFR (48.72±71.72; P¼ 0.04; Figure 1a).
Furthermore, 37% of NSCLC tumors with WT EGFR

expressed high levels of membranous MET, whereas
68% of NSCLC tumors with mutated EGFR expressed
high levels of membranous MET (P¼ 0.005; Figure 1b).
Among adenocarcinomas with EGFR-activating muta-
tions, we did not observe any association between
EGFR expression and survival. However, considering
the small sample size, no definitive conclusions can
be drawn.

EGFR activation modulates MET expression
in transgenic murine models of NSCLC
We investigated whether a similar association between
EGFR-activating mutations and MET expression
occurred in murine models of NSCLC. We used
transgenic mice with lung tumors driven by lung-
specific mutated K-RAS or activating EGFR mutation
(Forsythe et al., 1996; Johnson et al., 2001). Lung
tumor sections were immunostained for MET and
scored as described above. K-RAS-driven lesions had an
average score of 6.75, whereas tumors with EGFR-
activating mutations had an average staining score of
40.65 (Figure 1c; Po0.001). Treatment of mice bearing
EGFR-driven lung tumors with the EGFR TKI
erlotinib (50mg/kg/day) for 48 h abolished MET,
providing evidence that MET levels were regulated by
EGFR activation.

EGFR-activating mutations are associated with elevated
HIF-1a and MET levels in NSCLC cell lines
Given our finding that tumors with EGFR mutations
exhibit higher MET expression, we investigated MET
regulation by EGFR and its role in EGFR-mediated
NSCLC invasiveness. We evaluatedMET RNA levels in
NSCLC cell lines by performing gene expression
analysis on gene arrays of 53 previously characterized
NSCLC lines (eight lines with mutated EGFR) (GEO
4824) (Zhou et al., 2006). MET RNA levels were
significantly higher in EGFR-mutated cell lines than in
NSCLC cell lines expressing WT EGFR (Figure 2a;
P¼ 0.002); however, MET expression levels in cell lines
with K-RAS mutations were not significantly different
compared with cell lines with WT K-RAS. Moreover, we
observed a significant association between EGFR gene
copy number (44 copies using RT–PCR) and levels of
MET expression (P¼ 0.03, Figure 2b).

We evaluated MET protein levels in NSCLC with or
without EGFR-activating mutations and observed con-
stitutive EGFR phosphorylation in cell lines with
mutated EGFR, which was associated with increased
phosphorylated MET (p-MET) and MET expression
(Figure 2c). Cell lines with EGFR-activating mutations
were positive for HIF-1a expression in normoxia.
HCC827 cells, which exhibited the most robust expres-
sion of p-EGFR, produced the highest levels of HIF-1a,
p-MET, and MET. Western data are supported by
ELISA analysis showing higher levels of p-EGFR,
p-MET, and HIF-1a in cell lines with EGFR-activating
mutations compared with cells with WT EGFR
(Figures 2d–f).

Activated EGFR regulates MET through HIF-1a
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Activated EGFR modulates p-MET, MET, and HIF-1a
We treated HCC827 cells with 1 mM of erlotinib for
12 h and evaluated p-MET, MET, and HIF-1a levels.
Erlotinib reduced p-MET and MET protein (Figure 3a).
EGFR inhibition resulted in diminished HIF-1a levels.
p-MET, MET, and p-EGFR were further analyzed
by ELISA assay (Figure 3b). Consistant with data
obtained by western blot, erlotinib decreased p-EGFR
(P¼ 0.009), p-MET (P¼ 0.1), and MET (P¼ 0.001)
levels. As HIF-1a is known to regulate MET transcrip-
tion, we determined whether mutated EGFR would
regulate MET mRNA levels. We treated HCC827 cells

with or without erlotinib (1 mM) for 12 h and collected
RNA for RT–PCR to evaluate changes in MET mRNA
relative to GAPDH RNA. Inhibition of EGFR activity
resulted in approximately a 50% decrease in MET RNA
compared with control levels (Figure 3c).

To further show that EGFR signaling modulates
HIF-1a and MET protein expression, we transfected
HCC827 cells with control siRNA and EGFR-, HIF-1a-,
and MET-targeting siRNA. Knockdown of EGFR
decreased p-MET, MET, and HIF-1a levels. HIF-1a-
targeting siRNA did not alter EGFR expression but
reduced MET expression and activation, whereas MET
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Figure 1 Elevated MET and HGF expression correlates with EGFR-activating mutations in NSCLC tumor samples. NSCLC clinical
specimens (n¼ 202) were immunostained with anti-MET ab and scored (a). EGFR-activating mutations correlated with elevated levels
of MET. Bars, s.e.m.; *Po0.05. (b) Data are presented as the percentage of tumors with high MET expression; **Po0.005.
(c). Murine lung tumors driven by K-RAS or EGFR-activating mutations were immunostained with anti-MET ab, and positive staining
was quantified. Weak or negative MET staining was observed in K-RAS-driven tumors, whereas tumors with EGFR-activating
mutations exhibited elevated MET expression. Erlotinib treatment diminished MET expression. Representative images are shown.
Columns, mean score; bars, s.e.m. *Po0.001.
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siRNA reduced MET but not EGFR or HIF-1a
levels (Figure 3d), indicating that HIF-1a and MET
are downstream of EGFR. Similar results were ob-
tained by HIF-1a ELISA assay. siRNA directed against
EGFR but not MET decreased HIF-1a levels (P¼ 0.009;
Figure 3e).

MET amplification has been described in a subset of
NSCLC patients (Zhao et al., 2005; Engelman et al.,
2007). To determine whether MET amplification would
result in MET expression that was independent of
EGFR, we treated H1993 NSCLC cells, which harbor
an amplified MET allele (Engelman et al., 2007;
Lutterbach et al., 2007), with erlotinib, and evaluated
p-EGFR, EGFR, p-MET and MET levels. In contrast
to the EGFR-dependent cell lines tested, pharmacolo-
gical inhibition of EGFR did not diminish MET
expression in this cell line (Figure 3f).

Previous studies suggested that activated EGFR
can directly induce phosphorylation of MET (Bergstrom
et al., 2000; Jo et al., 2000). To evaluate the effect of
EGFR activation on MET in NSCLC, we stimulated
A549 cells with EGF with or without erlotinib.
Phosphorylated EGFR was detected 30min after ligand

stimulation, and EGFR activation was inhibited with
erlotinib (Figure 3g). EGFR levels decreased 12 h after
the addition of EGF, which may have been a result of
receptor internalization. EGF stimulation triggered rises
in p-MET levels at 30min, suggesting that EGFR
directly activated MET. p-MET levels remained detect-
able 6 h after EGF stimulation. Prolonged exposure
(24 h) to EGF resulted in increased levels of MET
protein (Figure 3h).

EGFR-mediated invasion of NSCLC cells is MET
dependent
To show that MET activation increases invasiveness in
NSCLC and that this can be abrogated with the MET
TKI, PHA-665752, we treated A549 and HCC827
tumor cells with the MET ligand HGF alone or with
PHA-66752. Cell invasion was measured using Matrigel-
coated Boyden chambers. In both cell lines, HGF
stimulation resulted in a significant increase in invasive-
ness, and this was inhibited with the addition of PHA-
665752 (Po0.05; Figure 4a). As EGFR activation has
been shown to modulate tumor cell invasion in multiple
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Figure 2 EGFR-activating mutations are associated with elevated MET and HIF-1a levels in NSCLC cell lines. (a) Gene expression
analysis was performed on gene arrays of 53 NSCLC lines. MET expression was elevated in NSCLC cell lines harboring
EGFR-activating mutations; *P¼ 0.002. (b) MET expression in 53 NSCLC cell lines with high EGFR gene copy number (44 copies)
vs low copy number (o4 copies); *P¼ 0.03. (c) Western blot was used to evaluate pEGFR, EGFR, p-MET, MET, and HIF-1a
expression in NSCLC cell lines expressing WT EGFR or mutationally activated EGFR. The presence of EGFR-activating mutations
was associated with increased levels of p-MET, MET, and HIF-1a. (d–f) ELISA assay was used to analyze levels of p-EGFR (d),
p-MET (e), and HIF-1a (f) in NSCLC cell lines expressing WT EGFR or mutationally activated EGFR. # indicates samples that were
out of range.
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cell types including NSCLC (Hamada et al., 1995;
Damstrup et al., 1998), we investigated whether EGFR
activation’s effect on tumor cell invasion is MET
mediated. We stimulated A549 cells with EGF alone
or with erlotinib or the MET TKI, PHA-665752. EGF
induced a twofold increase in cell invasion compared
with control (Po0.05; Figure 4b). The addition of
erlotinib or PHA-665752 reduced the number of
invading cells to control levels, indicating that EGFR-
driven cell invasion is MET dependent. In a similar
experiment using HCC827 cells, in which EGFR is

constitutively activated, EGF stimulation did not in-
crease tumor cell invasiveness compared with control
levels; however, pharmacological inhibition of EGFR or
MET activation significantly reduced the number of
invading cells (Figure 4c; Po0.05).

To further elucidate the mechanism by which
EGFR-activating mutations drive tumor cell invasion,
we transfected HCC827 cells with EGFR-, HIF-1a-, or
MET-targeting siRNA and evaluated cell invasion.
Knockdown of EGFR, HIF-1a, or MET resulted in
decreased invasive capacity (Figure 4d; Po0.001),
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whereas control siRNA did not affect invasive capacity.
To confirm that decreases in the number of invasive cells
after erlotinib or siRNA treatment was indeed do to
changes in the invasive capacity of tumor cells and not
because of changes in cell viability or proliferation, we
separately performed a similar study in which the
number of invasive cells was normalized to the number
of cells that did not invade through the chamber
(Supplemental Figure 1). These data were in agreement
with the findings shown above.

To determine whether MET inhibition impacted
cellular growth, we conducted MTS (3-(4,5-dimethylthia-
zol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium, inner salt) assays in the presence of
increasing concentrations of erlotinib or PHA-665752.
HCC827 cells were sensitive to the EGFR inhibitor
erlotinib (IC50 o10nM), whereas H1993 and A549 cells
were less sensitive (Supplemental Figure 2). None of the
three cell lines were sensitive to PHA-665752 at
concentrations as high as 10mM. This suggested that
invasiveness but not cell survival was MET dependent in
these cell lines.

Hypoxia-induced invasiveness of NSCLC cells
is MET dependent
Previous studies show that hypoxia increases the
invasive capacity of tumor cells (Cuvier et al., 1997).
Therefore, we investigated whether MET activation
mediates hypoxia-induced invasiveness of tumor cells.
A549 cells were plated in Matrigel-coated Boyden
chambers and incubated in normoxia (21% oxygen) or
hypoxia (0.1% oxygen) with or without erlotinib or
PHA-665752. Hypoxia enhanced tumor cell invasion
more than 2.5-fold (Po0.001). Erlotinib caused a
moderate decrease in tumor cell invasiveness, whereas
MET inhibition reduced hypoxia-induced tumor cell
invasion to levels below baseline (Figure 5a; Po0.001).

To examine the role of HIF-1a in this pathway, we
stably transfected A549 cells with a variant form of
HIF-1a (HA- HIF-1a P402A;P564A) that is constitu-
tively stabilized in normoxia because of proline to
alanine substitutions at the VHL binding site critical for
HIF-1a polyubiquitination and degradation (Masson
et al., 2001; Hu et al., 2003; Kim et al., 2006). Expression
of the HIF-1a variant augmented MET production
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Figure 4 MET is required for EGFR-driven invasiveness of NSCLC cell lines. (a) A549 and HCC827 cells were seeded onto Matrigel-
coated invasion chambers. Cells were treated with HGF (40 ng/ml) with or without PHA-663225 (1 mM) and incubated for 48 h.
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(Figure 5b) and was associated with enhanced tumor cell
invasion (Po0.05; Figure 5c). PHA-665752, but not
erlotinib, reduced the number of invading cells to below
baseline values (Po0.05). These findings were consistent
with MET being a downstream mediator of HIF-1a-
mediated invasiveness in thse cells.

We examined the impact of WT and mutated EGFR,
and the role of MET, on invasiveness in NIH-3T3 cells.
NIH-3T3 cells were stably transfected with control GFP
plasmid, WT EGFR or EGFR bearing the L858R
mutation or the deletion mutant DL747-5752del. A
greater than twofold increase in HIF-1a levels was
observed in cells bearing the DL747-5752del deletion
(P¼ 0.02) or the L858R mutation (P¼ 0.01) compared
with GFP transfected controls (Figure 5d). RT–PCR
analysis revealed that NIH-3T3 cells expressing L858R
expressed increased MET mRNA levels compared with
GFP transfected controls (P¼ 0.02; Figure 5e). NIH-
3T3 cells stably transfected with control GFP plasmid,

WT EGFR, or EGFR bearing the L858R mutation or
the deletion mutant DL747-5752del were allowed to
invade Matrigel-coated Boyden chambers with or with-
out PHA-66752. Cells expressing WT or activated
EGFR had enhanced invasive capacity compared with
cells transfected with GFP vector, and inhibition of
MET significantly reduced the number of invasive cells
to near baseline values (Figure 5f).

Discussion

This study offers new insights into the mechanisms by
which EGFR mediates its tumorigenic effects and
provides new evidence that the HIF-1a/MET axis is
critical to regulating invasiveness induced not only by
hypoxia but by EGFR as well, thus illustrating the
convergence of two pathways known to drive invasive
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Figure 5 Hypoxia-induced tumor cell invasion is MET dependent. (a) A549 cells were seeded onto growth factor-reduced Matrigel-
coated invasion chambers and incubated in normoxia or hypoxic (1% O2) conditions with or without erlotinib (1mM) or PHA-663225
(1mM) for 24 h, and the number of invading cells was quantified. Hypoxia-induced invasion was MET dependent but EGFR
independent. Bars, % s.d.; *Po0.05; **Po0.001. (b) A549 cells were transfected to overexpress a degradation-resistant HIF-1a
variant (HA- HIF-1a P402A;P564A), as shown by immunoblot. Increased HIF-1a was associated with enhanced MET expression.
(c) A549 cells and A549 cells transfected with empty vector (EV) or plasmid containing the HIF1a mutant were evaluated for changes
in invasive capacity in media with or without erlotinib (1mM) or PHA-663225 (1mM). After 24 h the number of invading cells was
quantified. Bars, % s.d.; *Po0.05; **P¼ 0.006. (d) NIH-3T3 cells expressing GFP, WT EGFR, or EGFR bearing the L858R mutation
or the deletion mutant DL747-S752del were evaluated for HIF-1a levels by ELISA. *Po0.05. (e) MET mRNA expression was
evaluated by RT–PCR in NIH-3T3 cells expressing WT EGFR and EGFR-activating mutations. *Po0.05. (f) NIH-3T3 cells
expressing GFP, WT EGFR, or EGFR bearing the L858R mutation or the deletion mutant DL747-S752del were allowed to migrate
through Matrigel-coated invasion chambers for 24 h with or without PHA-663225 (1mM). Bars, s.d.; *Po0.05.
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tumor growth. In NSCLC cells, we showed that EGFR
activation, by either EGFR kinase mutations or ligand
binding, increased MET levels through a hypoxia-
independent mechanism involving expression of HIF-
1a. MET was uncoupled from EGFR regulation,
however, in a cell line with MET amplification, a
finding consistent with the recently described role of
MET amplification in EGFR TKI resistance (Engelman
et al., 2007). Overexpression of a constitutively active
form of HIF-1a also abrogated the regulation of MET
levels by EGFR. Therefore, though this study shows
that EGFR signaling can regulate MET levels and that
MET can be downstream mediator of EGFR-induced
invasiveness, it also suggests that there are ways by
which this pathway may be bypassed.

We initially investigated MET levels in tumor speci-
mens from 202 NSCLC patients by immunohistochem-
istry and observed increased levels of MET in tumors
with EGFR-activating mutations compared with tumors
with WT EGFR. Consistent with these findings, we
observed elevated levels of MET in a previously
described transgenic murine model of NSCLC with
lung-specific expression of an EGFR-activating muta-
tion. MET levels decreased significantly after treatment
with the EGFR inhibitor erlotinib. We also observed
that NSCLC cell lines expressing mutated EGFR
exhibited elevated MET gene expression and protein
levels compared with cells with WT EGFR, and these
levels could be reduced by pharmacologically inhibiting
EGFR or with siRNA directed against EGFR. The
addition of an EGFR inhibitor decreased MET mRNA,
indicating that in NSCLC cells, EGFR-activating muta-
tions augment MET expression at the transcriptional
level. Collectively, these results provide evidence that
activated EGFR has a critical role in regulating MET
expression in NSCLC tumor cells.

MET amplification has been described in the setting
of gastric cancers (Smolen et al., 2006) and NSCLC
(Engelman et al., 2007). Engelman et al. (2007) reported
that among lung cancers with EGFR-activating muta-
tions,MET amplification occurred in 22% of tumors that
developed resistance to gefitinib or erlotinib. Overall,
MET amplification occurs in only 4% of all NSCLC cases
(Zhao et al., 2005), whereas high levels of MET and
p-MET are detectable in 36 and 21% of NSCLC cases,
respectively (Nakamura et al., 2007). MET expression
also has been shown to be regulated by hypoxia
(Pennacchietti et al., 2003). Here, we found evidence that
EGFR is a key regulator of MET levels in cells without
MET amplification, and that this occurs through hypoxia-
independent regulation of HIF-1a. By contrast, in H1993
cells bearing MET gene amplification, EGFR blockade
did not result in a reduction in MET levels, suggesting
that MET amplification resulted in an uncoupling of
MET protein levels from EGFR regulation.

Ligand-induced phosphorylation of EGFR has been
shown to induce rises in HIF-1a in a cell type-specific
manner. We observed that HIF-1a levels were elevated
in NSCLC cell lines bearing EGFR mutations even in
the absence of added ligand, and that treatment with
an EGFR inhibitor diminished HIF-1a expression.

Although this study did not specifically address the
regulation of angiogenic factors such as VEGF, these
findings are consistent with recent studies that EGFR
regulates angiogenic factors, at least in part, through
HIF-1a-dependent mechanisms (Swinson et al., 2004;
Luwor et al., 2005; Pore et al., 2006; Swinson and
O’Byrne, 2006). Studies designed to elucidate the
mechanism by which EGFR-activating mutations reg-
ulate HIF-1a levels are ongoing.

In addition to enhancing MET levels, EGFR activa-
tion resulted in increases in MET receptor phosphoryla-
tion within 30min of EGF stimulation, an effect
blocked by erlotinib. Similar observations have been
made with other cell types (Bergstrom et al., 2000; Jo
et al., 2000); these and other published data support the
idea that EGFR may directly phosphorylate MET
(Bergstrom et al., 2000; Jo et al., 2000). Hypoxia is a
known regulator of HGF, presumably through HIF-1a
(Ide et al., 2006). It is feasible that EGFR-activating
mutations promote HGF production through HIF-1a.
Collectively, these data suggest that EGFR/HIF-1a
activation may not only regulate MET levels, but may
also impact MET signal transduction through other
mechanisms.

We investigated the consequences of EGFR-regulated
MET. We observed that the invasiveness (Figure 4)
but not survival (Supplemental Figure 2) of NSCLC
cells bearing EGFR-activating mutations was MET de-
pendent, as pharmacological inhibition or siRNA
directed against MET abrogated cell invasion. Invasive-
ness and MET levels were reduced by siRNA knock-
down of HIF-1a, whereas EGFR levels were unaffected;
indicating that MET is downstream of HIF-1a and
EGFR. We observed that EGF- and hypoxia-induced
invasiveness were both MET dependent, and that
heterologous expression of a constitutively active form
of HIF-1a induced invasiveness that was independent
of EGF stimulation but remained MET dependent
(Figure 5). Furthermore, heterologous expression of
wild-type or mutated EGFR in NIH 3T3 fibroblasts
increased invasiveness in an MET-dependent manner,
providing further evidence that EGFR-mediated
invasiveness is mediated at least in part by MET. These
results support a model in which either hypoxia or
EGFR activation can drive invasiveness by converging
on a common HIF/MET pathway, which appears to
be separable from EGFR-induced survival and proli-
feration. MET amplification appears to provide one
route for circumventing this pathway. Others will
likely emerge, and these findings do not exclude the
likelihood that other pathways contribute to the
invasive phenotype.

Our findings that EGFR can regulate MET levels
through hypoxia-independent regulation of HIF-1a,
and that MET is a downstream mediator of both
EGFR- and hypoxia-induced invasivenss, have impor-
tant clinical and biological implications. Even for
tumors thought to be primarily driven by the EGFR
pathway (that is with activating EGFR mutations),
targeting of the MET pathway in combination with
EGFR blockade may further reduce tumor invasiveness
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beyond the effect of EGFR inhibition alone, in addition
to the previously noted potential benefit of preventing
the emergence of resistance through MET amplification
(Engelman et al., 2007). It also raises the question of
whether other tyrosine kinases may regulate MET in a
similar manner in NSCLC and other diseases. Finally,
the observation that the EGFR and hypoxia converge
on the HIF-1a/MET axis suggests that there may be
additional overlap in the mechanisms by which EGFR
and hypoxia promote malignant behavior and thera-
peutic resistance.

Materials and methods

Cell lines
Drs John Minna and Adi Gazdar (UT Southwestern Medical
School, Dallas, TX, USA) provided H3255, H1975, H1993,
and HCC827 cells. A549 and Calu-6 were obtained from the
ATCC (Rockville, MD, USA). NIH-3T3 cells expressing WT
EGFR or EGFR bearing the L858R mutation or the deletion
mutant DL747-S752del (Shimamura et al., 2005) were obtained
from Dr Jeffrey Engelman (Dana-Farber Cancer Institute) and
were maintained in 10% FBS DMEM containing 1mg/ml
puromycin.

Mice
Animals were treated in accordance with the guidelines of the
US Department of Agriculture and the NIH. KrasLA1 mice
(Johnson et al., 2001) were obtained from Dr Tyler Jacks
(Massachusetts Institute of Technology, Cambridge, MA,
USA). CCSP-rtTA transgenic mice (obtained from J Whitsett
at The University of Cincinnati, Cincinnati, OH, USA) were
bred with Tet-op-hEGFR L858R-Luc to yield mice with lung
tumors driven by EGFR activation (Ji et al., 2006). At 6
months of age, lungs were collected. Animals bearing EGFR-
driven lung tumors were treated with vehicle (1% Tween-80;
Sigma-Aldrich, St Louis, MO, USA), or erlotinib (50mg/kg/
day) by gavage for 48 h.

Gene expression analysis
Affymetrix GeneChip Human Genome U133A (HG-U133A)
was used to perform gene expression analysis on 53 gene arrays
of NSCLC cell lines prepared by John Minna and colleagues
(UT Southwestern, Dallas, TX, USA; (Zhou et al., 2006).
CEL-type data files were obtained from NCBI-GEO dataset
GSE4824 (NCBI-GEO, 2007). CHIP (2007) software (http://
biosun1.harvard.edu/complab/dchip/) was used to generate probe-
level gene expression, median intensity, percentage of probe set
outliers, and percentage of single probe outliers (Lin et al., 2004).
Information files, including the HG-U133A gene information
files and Chip Description Files, were downloaded from the
Affymetrix web site. CEL and other data files were extracted.
Array images were inspected for contamination and bad
hybridization. Normalization was performed using the invar-
iant-set normalization method (Li and Hung Wong, 2001).
Model-based expression and background subtraction using the
5th percentile of region (perfect match only) was completed by
checking for single, array, and probe outliers. In the array
analysis and clustering, array outliers were treated as missing
values and no log transformation was performed. Comparison
within dCHIP of the WT EGFR vs mutated EGFR groups
using a more than 1.2-fold change in gene expression, a 90%
confidence interval for fold change, and a 90% present call

yielded one probeset for MET (203510_at). Data were further
analyzed using GraphPad software (version 5, GraphPad
Software Inc., La Jolla, CA, USA).

Detection of HIF-1a, MET, and EGFR
Protein lysates were extracted using RIPA buffer (50mM Tris–
HCl, pH 7.4, 150mM NaCl, 1mM EDTA, 1% Triton X-100,
1% sodium deoxycholate, and 0.1% SDS, and protease
inhibitors. Protein (60 mg) was used for western blotting.
Antibodies against EGFR (Y1068, Cell Signaling Technology
Inc., Danvers, MA, USA), EGFR (Santa Cruz Biotechnology
Inc., Santa Cruz, CA, USA) MET (Santa Cruz), HIF-1a
(Pharmingen, San Diego, CA, USA), b-actin (Sigma), and
vinculin (Sigma) were used. HIF-1a, p-EGFR, MET, and
p-MET ELISAs were obtained from R&D systems
(Minneapolis, MN, USA).

RNA isolation and RT–PCR
HCC827 cells were treated with complete media with or
without 1 mM erlotinib for 12 h. Total RNA was extracted
using Trizol (Life Technologies, Carlsbad, CA, USA), and
purified with the RNeasy kit (Qiagen, Hilden, Germany). We
used SuperScriptTM III RNase H-Reverse Transcriptase
(Invitrogen, Carlsbad, CA, USA) to convert RNA into cDNA.
The oligonucleotide primers used were published previously
(Shimazaki et al., 2003).

Plasmids and transfections
HIF-1a cDNA (OriGene Technologies Inc., Rockville, MD,
USA) was subcloned into the pcDNA3.1 vector with a flag
tagged in the N-terminal, and the HIF-1a mutant with proline
to alanine substitutions positions 402 and 564 (HA- HIF-1a
P402A;P564A), which are known VHL-binding sites, was
constructed as described (Kim et al., 2006). This form is
stabilized in normoxia because of the loss of VHL-mediated
polyubiquitination and subsequent degradation (Masson et al.,
2001; Hu et al., 2003). For siRNA transfections, HCC827 cells
were transfected with siRNA targetting EGFR, MET, HIF-1a
and control siRNA at a final concentration of 100 nM using
Dharmafect 1 transfection reagent (Dharmacon, Lafayette,
CO, USA). Protein was isoloated after 72 h. Transfected cells
were plated for invasion assays after 48 h.

Invasion assay
We seeded 2.5� 104 cells in the upper chamber of 24-well BD
Biocoat growth factor reduced Matrigel invasion chambers
(8.0 mm pore, Becton Dickinson, Bedford, MA, USA) with 0%
FBS media and added media containing 10% FBS to the lower
chamber. After 24 h, cells in the upper chamber were removed
by scraping. Cells that migrated to the lower chamber were
stained and counted using bright-field microscopy under a
low-power (� 40) objective. PHA-663225 was obtained
from Pfizer (New York, NY, USA).

Clinical specimens
Tissue specimens from 202 surgically resected lung carcinomas
were obtained from the Lung Cancer Specialized Program of
Research Excellence (SPORE) Tissue Bank at The University
of Texas MD Anderson Cancer Center (Houston, TX, USA).
Two hundred and two specimens had known EGFR status.
Microarrays for each specimen were created with three cores
from formalin-fixed, paraffin-embedded blocks. All specimens
were of pathologic TNM stages I–IV according to the revised
International System for Staging Lung Cancer (Beadsmoore
and Screaton, 2003).
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Immunohistochemistry staining
Using paraffin-embedded tissue sections, antigen retrieval was
performed by steaming in citrate buffer (pH 6.0). Endogenous
peroxidases were blocked using 3% H2O2. After protein
blocking, slides were incubated with anti-HGFR (1:50; R&D
Systems), washed, and incubated with a Universal
LSABþKit/HRP, visualization kit (DakoCytomation, Car-
pinteria, CA, USA). For tumor sections from transgenic
animals, antigen retrieval and blocking was performed as
above. Slides were incubated in 1:100 anti-mouse MET
antibodies (Santa Cruz) and then in secondary antibody
(Jackson Research Laboratories, Bar Harbor, ME, USA).
NSCLC specimens were used as positive controls for MET
staining. As a negative control, we followed the above
procedure omitting the primary antibodies. For quantifica-
tion, each specimen was evaluated using an intensity score
(0, 1, 2, or 3) and an extension percentage (Yang et al.,
2008). The final staining score was the product of these two
values. An average from the three cores was obtained for
each specimen.

Statistics
Student’s t-tests were performed using two-tailed tests with
unequal variance for Gaussian distributed data. For statistical
analysis of clinical specimens, Wilcoxon rank-sum tests were
used when comparing continuous variables between mutation
groups. To correlate mutation and other discrete covariates,

we used a chi-square test or Fisher’s exact test. Two-sided
P-values p0.05 were considered significant.

Accession numbers
SNP and CGH raw data are available in the Gene Expression
Omnibus (GEO) database: GEO accession GSE4824 (http://
www.ncbi.nlm.nih.gov/geo/).
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Abstract  
 
The mechanisms by which tumors develop resistance to angiogenesis inhibitors, 

and the relative contributions of tumor cells and stroma to resistance, have not 

been established. We developed human NSCLC xenograft models of resistance 

to the VEGF inhibitor bevacizumab in mice and, using species-specific profiling, 

investigated tumor cell and stromal mechanisms of resistance. Mouse- and 

human-specific profiling demonstrated that gene expression changes associated 

with acquired resistance occurred predominantly in stromal (mouse) and not 

tumor (human) cells. Components of the EGFR and FGFR2 pathways were 

significantly upregulated in stroma, but not in tumor cells. Increased 

phosphoEGFR was detected on pericytes of xenografts that acquired resistance 

and on endothelium of tumors with primary resistance. Acquired resistance was 

associated with a pattern of pericyte-covered, normalized revascularization, 

whereas tortuous, uncovered vessels were observed in primary resistance. Dual 

targeting of VEGF and EGFR pathways with bevacizumab and erlotinib, or the 

VEGFR/EGFR inhibitor vandetanib, reduced pericyte coverage and delayed 

resistance. These findings demonstrate that alterations in tumor stromal 

pathways, including EGFR and FGFR2, are associated with, and may contribute 

to VEGF inhibitor resistance and that targeting these pathways may improve 

efficacy. Understanding stromal signaling may be critical for developing 

biomarkers for angiogenesis inhibitors and improving combination regimens. 
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INTRODUCTION 

Tumor growth and metastatic spread are dependent on the acquisition of a 

vascular supply, which occurs at least in part through angiogenesis (1-3). This 

process is regulated by the balance of pro- and anti-angiogenic factors (4). 

Therapeutic approaches to targeting tumor vasculature have focused largely on 

vascular endothelial growth factor (VEGF), the prototypical pro-angiogenic factor 

that stimulates endothelial cells to proliferate, migrate, and produce proteases 

necessary for the formation of new vasculature networks (5-9). Strategies to 

inhibit VEGF-induced angiogenesis have been developed, including anti-VEGF 

monoclonal antibodies, such as bevacizumab (Avastin; Genentech, South San 

Francisco, CA) (10, 11), and VEGF receptor (VEGFR) tyrosine kinase inhibitors 

(TKIs) (12).  

 Phase III trials have shown that the addition of bevacizumab (BV) to standard 

therapy prolonged progression-free or overall survival, and improved objective 

tumor responses, in patients with advanced malignancies, including non-small 

cell lung caner (NSCLC) (13). Despite this initial benefit however, therapeutic 

resistance inevitably emerges in most patients. In patients with colorectal cancer, 

we observed that acquired resistance was associated with a rise in circulating 

proangiogenic factors in plasma including basic fibroblast growth factor (bFGF), 

hepatocyte growth factor (HGF) placental growth factor (PlGF), stromal-derived 

factor-1, (SDF1) as well as factors associated with myeloid recruitment (e.g. 

macrophage chemoattractant protein-3 (14). Preclinical studies of therapeutic 

resistance to angiogenesis inhibitors have described compensatory mechanisms 
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acquired from tumors in the face of anti-angiogenic therapy, including a hypoxia-

induced upregulation of pro-angiogenic molecules, such as FGF family members, 

in tumors with acquired resistance to VEGFR pathway inhibitors (15). Genetic 

alterations in tumor cells, such as p53 loss, may also promote resistance to 

hypoxia-induced apoptosis, resulting in a decreased vascular dependence (16). 

Incomplete target inhibition following treatment with VEGFR antagonists has 

been described in orthotopic models of pancreatic cancer as well as in patients 

(17, 18). Moreover, while showing potent antitumor activity in mouse models of 

pancreatic neuroendocrine carcinoma and glioblastoma, VEGF pathway 

inhibitors concomitantly may also increase invasiveness and metastatic potential 

(19).  

Collectively, these findings emphasize the adaptive nature of tumor cells to anti-

angiogenic therapies, whereas the contribution of stromal cells remains unclear. 

In this study, we specifically investigated stromal changes associated with 

resistance to anti-VEGF therapy in two human NSCLC xenograft models of 

acquired and primary resistance to BV. We performed mouse- (stroma) and 

human (tumor cell)-specific gene expression profiling to further validate the role 

of specific stromal molecules involved in resistance. Our results demonstrate that 

acquired or primary resistance to VEGF inhibition is associated with distinct 

patterns of vascularization in NSCLC xenografts. The vast majority of gene 

expression changes observed in resistant tumors occurred in tumor stroma and 

not in tumor cells themselves, suggesting stromal changes are likely to play a 

role in the resistant phenotype. Among factors known to regulate angiogenesis, 
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overexpression of stromal EGFR and FGFR2 signaling pathways was observed 

in resistant tumors and blockade of the EGFR pathway reversed the increased 

pericyte coverage observed in vessels of resistant tumors. The results suggest 

that stromal mechanisms, including an upregulation of EGFR pathway, can 

contribute to the resistant phenotype, and that targeting these pathways may 

delay tumor growth and the onset of resistance. 

 

RESULTS 

H1975 an d A549 Xenografts Exhibit Acquired and Primar y Resistance to  

Anti-angiogenic Therapy 

To investigate the mechanisms by which NSCLC xenografts develop resistance 

to VEGF blockade, we injected male nude mice with either H1975 or A549 

human NSCLC adenocarcinoma cells. These models were selected because in 

prior studies (20) we observed that A549 xenograft tumors were relatively 

insensitive to VEGF signaling inhibitors including BV (primary resistance), 

whereas H1975 initially experienced significant tumor shrinkage typically lasting 

for more than one month. Furthermore, the tumor cells contain two common 

alterations associated with EGFR TKI resistance: a T790M EGFR mutation 

(H1975 model) (21) and KRas mutation (A549) (22). Approximately 3 weeks after 

tumor cell injection, mice bearing tumors with a mean volume of ~270 mm3 were 

randomized to receive either vehicle (control) or BV, as described in detail in the 

Materials and Methods section. Animals were treated for 2 weeks (short-term 

treatment) or until mice were sacrificed due to tumor burden. Tumors were 
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considered to be resistant when they tripled in volume (progression) compared 

with the pre-treatment tumor size and progression-free survival (PFS) was 

measured as the time from initiation of treatment until tumor progression. In 

H1975 tumors, 2 weeks of BV inhibited tumor growth by 77% compared to 

controls (Figure 1A) whereas in A549 xenografts the drug produced only a 16% 

reduction in tumor growth compared with vehicle-treated tumors (Figure 1B). 

 The individual tumor growth curves shown in Figure 1C&D illustrate the 

growth kinetics of H1975 and A549 xenografts treated with vehicle and BV for a 

longer term until progression. All H1975 vehicle-treated xenografts progressed 

within 31 days of the onset of treatment, showing a median PFS of 7 days. In 

contrast, 67% of xenografts receiving BV developed resistance, and the median 

PFS was 138 days, (p<0.001, log-rank test) (Figure 1C). A549 tumors were less 

responsive to BV, showing a median PFS of 35 days compared with 22 days of 

vehicle-treated tumors (p=0.16), (Figure 1D). Collectively, these results show that 

H1975 tumors are initially responsive to BV therapy but acquire resistance after 

prolonged treatment with the drug, whereas A549 tumors demonstrate primary 

resistance.   

 

Acquired Resistance to BV Is Associ ated With Sustai ned Inhibition of 

VEGFR2 Activation 

To determine whether acquired resistance to BV was due to increased VEGFR2 

signaling, potentially through increased expression of murine VEGF or other 

mechanism to bypass blockade of human VEGF by this agent, we evaluated the 
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phosphorylation status of VEGFR2 in vehicle-treated and BV-resistant tumors 

using immunofluorescence (IF) staining. In control H1975 tumors, p-VEGFR2 

was readily detected on CD31+ tumor-associated endothelial cells (ECs), but it 

was inhibited on vessels of BV-sensitive tumors (short-term treatment) and this 

result was sustained when tumors progressed while receiving BV therapy (Figure 

2A). To evaluate changes in stromal (defined here as non-tumor cells derived 

from the host) and tumor-derived VEGF in H1975 BV-resistant tumors, we 

quantified mouse and human VEGFA mRNA expression by quantitative real-time 

PCR (qRT-PCR). We observed no change in mouse Vegfa mRNA expression in 

resistant xenografts compared with controls, whereas human VEGFA mRNA 

levels were increased in resistant tumors compared with controls (p<0.05, Figure 

2B), despite this ligand increase, VEGFR2 phosphorylation remained suppressed 

during BV treatment in resistant tumors.  

We assessed whether the tumor growth inhibition observed in H1975 xenografts 

after short-term treatment with BV was associated with increased endothelial cell 

apoptosis. We performed double IF staining for CD31 (red) and TUNEL positivity 

(green) to identify apoptotic cells, (Figure 2C). The percentage of apoptotic ECs 

was significantly increased following 2 weeks of BV treatment compared to 

control xenografts (p<0.01). However, at time of progression, H1975 xenografts 

showed a significant decrease in endothelial cell apoptosis compared with short-

term treatment (p<0.05) to levels comparable to control tumors (Figure 2D). 

Thus, endothelial cell apoptosis increased while tumors were initially responding 

to VEGF signaling blockade and returned to levels comparable with controls in 
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tumors that acquired BV-resistance. Furthermore, the percentage of total 

apoptotic (TUNEL+) cells showed a trend toward increase in H1975 BV-sensitive 

xenografts (BV 2 weeks) compared with controls (p=0.06), but not in tumors that 

progressed compared with controls (see Supplemental Figure 1A - B). 

 

Stromal and Tumor Cell Gene Expressi on Changes in H1975 BV-Resistant 

Xenografts 

To identify changes in stromal and tumor gene expression associated with 

acquired resistance to anti-VEGF therapy, we performed RNA microarray 

analyses comparing H1975 control and BV-resistant xenografts (N=3 samples 

each group) using Illumina mouse (WG-6 v2) and human (WG-6 v3)-specific 

expression arrays. Probes in these arrays have been shown to minimize cross-

species reactivity (Eun Sung Park, unpublished data). We found that a larger 

number of stromal mouse genes (1385) were significantly modulated in BV-

resistant (BV progression) vs. control xenografts (vehicle progression) compared 

to human tumor genes (98), according to the statistic criteria described in 

Materials and Methods. We observed significant changes in the expression of 

genes involved in angiogenesis, lymphangiogenesis and hypoxia signaling 

pathway between BV-resistant and control xenografts. Both Egfr and Fgfr2 genes 

were upregulated in the stromal compartment, but not in tumor cells, of H1975 

BV-resistant tumors compared with controls, as well as stromal molecules and 

ligands associated with these signaling pathways (e.g., Epgn, Areg, Fgf13, 

Fgfbp1) (Figure 3A, see Supplemental Table 1). Among human angiogenic 
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genes, CA9 (hypoxia-regulated gene) was significantly upregulated in BV-

resistant tumors (Figure 3A, see Supplemental Table 2).  

We next sought to identify genes predicted to be important in the phenotype of 

acquired resistance to the anti-angiogenic effect of BV through both their 

modulation in expression and molecular interactions. Functional gene-interaction 

network analyses of gene features differentially expressed between the mouse 

stroma of BV-resistant and vehicle-treated H1975 xenografts using Ingenuity 

Pathways Analysis (IPA) revealed the significant modulation in the predicted 

function of a gene neighborhood and interaction network surrounding Egfr, based 

on the number of focus genes and nodes of interaction (p<0.001; Figure 3B). In 

addition, the modulated gene network associated with Egfr gene expression 

included down-regulated pro-apoptotic genes, such as the BH3-only family 

member protein, Bax and the apoptotic peptidase activating factor 1 (Apaf1). 

Genes with pro-survival functions were up-regulated, such as the heat shock 

protein Dnajb1.  

Next, to validate the changes in expression of the significantly modulated 

network-hub gene, Egfr, we assessed the human and mouse mRNA levels using 

qRT-PCR. We observed a 2.5 fold increase in mouse Egfr mRNA levels in 

H1975 resistant xenografts compared with controls (p<0.05), whereas human 

EGFR mRNA levels were not significantly different than controls (Figure 3C). We 

also validated the stromal expression of Fgfr2, which we noted to be upregulated 

in BV-resistant H1975 tumors in the microarray analysis. A significant increase in 
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mouse Fgfr2 mRNA expression, but not human FGFR2, was observed in H1975 

resistant xenografts compared with controls (p<0.05, Figure 3D).  

 

EGFR Is Activated on Stromal Cells  of H1975 and A549 BV-Re sistant 

Tumors  

Given our observation that Egfr mRNA is increased in BV-resistant tumors, we 

next evaluated EGFR protein expression in H1975 tumors by IF staining using 

antibodies directed against CD31 (red) and total EGFR (green) (see 

Supplemental Figure 2A). We observed an increase in EGFR+ staining in H1975 

BV-resistant tumors (BV progression) compared with controls (vehicle 

progression). Quantification of EGFR staining by laser scanning cytometry (LSC) 

analysis indicated a nearly 10-fold increase in the percentage of total EGFR-

expressing cells in H1975 BV-resistant compared with control tumors (p<0.01, 

Figure 4A). We also evaluated EGF protein expression changes by 

immunohistochemistry (IHC) in H1975 vehicle-and BV-treated xenografts at 

progression and noticed increased expression of the EGFR ligand in resistant 

tumors vs. controls (see Supplemental Figure 2B).        

We next evaluated the EGFR activation status in H1975 and A549 

xenografts following treatments with vehicle and BV at time of progression. 

Confocal microscopy was performed to analyze specimens stained with 

antibodies directed to CD31 (red) and p-EGFR (green). As shown in Figure 4B, 

BV resistance was associated with a marked increase in p-EGFR in both H1975 

and A549 tumors compared with controls; however, notable differences in the 
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staining pattern were observed between the two xenograft models. In H1975, p-

EGFR was increased on the vascular supporting cells (VSCs) of resistant tumors 

compared with controls (p<0.01, Figure 4C, left), whereas, p-EGFR expression 

was increased on CD31+ ECs in A549 BV-resistant xenografts compared with 

controls (p<0.05, Figure  4C, right).  

To identify the population of VSCs expressing p-EGFR in H1975 BV-

resistant tumors, we performed IF staining for p-EGFR (red) and desmin (green), 

a marker for pericytes (Figure 4D). We found p-EGFR expression to be 

significantly increased on desmin+ cells (pericytes) of BV-resistant H1975 

xenografts compared with controls (p<0.01, Figure 4E). Taken together our 

results suggest that increased stromal EGFR is associated with BV resistance, 

and that multiple stromal cell types can express EGFR. 

 

bFGF/FGFR2 Overexpression in H1975 Xenografts Resistant to BV Therapy 

Based on our observation that mouse Fgfr2 gene expression was increased in 

the stromal compartment of BV-resistant H1975 tumors, we performed 

immunofluorescent co-localization studies on H1975 vehicle and BV-treated 

xenografts at progression (n=4, each group) using CD31 (red) and FGFR2 

(green) antibodies (Figure 5A). We observed a significant increase in total 

FGFR2 expression in resistant tumors compared with controls (p<0.001; Figure 

5B). Furthermore, to assess changes in the FGFR2 ligand, we next measured 

the plasma concentration (pg/mL) and the expression levels of basic FGF 

(bFGF). We found a 1.5 fold increase in the levels of the circulating cytokine in 
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BV-resistant tumors compared with controls (p=0.058; Figure 5C). The 

immunohistochemical analysis of H1975 vehicle and BV-treated xenografts at 

progression (n=4, each group) suggested that BV-resistance is associated with 

increased expression of bFGF compared with controls (Figure 5D).  

 

Resistance to BV is Associated  w ith Tumor Revascu larization and 

Morphological Changes in the Vasculature 

Because the primary mechanism of action of BV is directed against blood 

vessels, we quantified the microvascular density (MVD) of H1975 and A549 

xenografts. We noted a 3-fold MVD reduction in H1975 tumors treated with BV 

for 2 weeks compared with controls (p<0.01, see Supplemental Figure 3 - Figure 

6B, left). Vessel density of A549 tumors treated for 2 weeks showed a trend 

towards a decrease compared with controls (see Supplemental Figure 3 - Figure 

6B, right). To determine whether the vascular effects observed after 2 weeks of 

BV therapy persisted in tumors receiving BV long-term treatment, we quantified 

the MVD in BV resistant H1975 and A549 tumors. We found that primary and 

acquired resistance was associated with distinct patterns of tumor 

vascularization. In H1975 BV-treated xenografts, MVD was significantly higher at 

progression compared with short-term treatment (p<0.01), returning to levels 

comparable with vehicle-treated controls (Figure 6A, upper panel – Figure 6B, 

left panel). In A549 xenografts, there was a significant increase in MVD of BV-

treated xenografts at progression compared with controls (p<0.05) (Figure 6A, 

lower panel – Figure 6B, right panel). Taken together, these data suggest that BV 
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therapy has a dramatic initial anti-angiogenic effect on sensitive H1975 

xenografts, but that this effect is lost after continued exposure to the drug, and 

that therapeutic resistance is associated with revascularization at levels 

comparable with, or higher than, those in vehicle-treated controls.  

Previous results have demonstrated that anti-angiogenic therapy can alter 

the morphology of the tumor-associated vasculature (23-26). To evaluate the 

tumor vascularization in greater detail, we assessed vascular tortuosity in vehicle 

and BV-treated H1975 and A549 xenografts. We found that short-term 

administration of BV led to a modest, but not statistically significant, reduction in 

the vessel tortuosity of H1975 tumors (Figure 6A upper panel – Figure 6C, left 

panel). However, as these tumors developed BV resistance, we noted a 4-fold 

reduction in vascular tortuosity compared with controls (p<0.01), with larger 

vessels and a greater degree of pericyte coverage (termed “normalized 

revascularization”). In contrast, we observed that in A549 xenografts with primary 

resistance to BV, tumor vascularization was associated with smaller, more 

tortuous vessels with reduced pericyte coverage compared with controls (p<0.05; 

Figure 6A, lower panel – Figure 6C, right panel) (termed “sprouting 

vascularization”), demonstrating that in these models, acquired and primary 

resistance is associated with different patterns of tumor vascularization.   
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Dual Blockade of EGFR and VEGFR2 Signaling Pathw ays Delays Tu mor 

Growth of NSCLC Xenografts  

 To elucidate whether targeting functioning stromal signaling pathways in 

BV-resistant tumors can abrogate therapeutic resistance, we targeted EGFR 

using either the EGFR TKI erlotinib in combination with BV, or the dual 

VEGFR/EGFR inhibitor vandetanib. Both A549 and H1975 cells are known to be 

resistant to erlotinib and vandetanib in vitro, which is thought to be due to the 

presence of a KRAS mutation and a secondary EGFR mutation (T790M), 

respectively (20-22). Consistent with previous results, erlotinib did not inhibit 

H1975 tumor growth compared with vehicle (Figure 6D), as five (5/6) xenografts 

progressed, with a median PFS of 12 days. One xenograft progressed while 

receiving erlotinib plus BV therapy; vandetanib caused tumor growth inhibition in 

all the xenografts and only two of these progressed. The median PFS in the 

vandetanib group was 211 days, whereas it was not reached in erlotinib + BV 

group.  

In A549 xenografts, treatment with erlotinib resulted in median PFS values 

of 53 days, compared with 22 days for vehicle-treated controls (p=0.12, log-rank 

test; Figure 6E). Two tumors progressed on erlotinib plus BV treatment over the 

course of the experiment (median PFS not reached), and the addition of the 

EGFR TKI erlotinib to BV significantly delayed the onset of resistance compared 

with BV alone (p<0.05, log-rank test). Only one tumor progressed while receiving 

vandetanib after 102 days of treatment (p<0.05, vandetanib vs. BV). These 

findings indicate that EGFR inhibition not only reduced the number of NSCLC 
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xenografts that progressed on therapy compared with BV alone, but also delayed 

the onset of resistance to VEGF signalling inhibition.  

Given the aforementioned EGFR expression in pericytes in the H1975 

model, we examined whether targeting EGFR would impact vessel maturation 

and pericyte coverage. Multicolor IF staining was performed using antibodies 

directed to CD31 (red) and desmin (green) and pericyte coverage was quantified. 

In H1975 BV-resistant xenografts, the percentage of blood vessels surrounded 

by pericytes was 50% higher compared with control tumors (p<0.01). However, 

pericyte coverage was significantly reduced in tumors receiving long-term 

treatment with erlotinib plus BV or vandetanib (p<0.01), which likely induced an 

inhibition of the EGFR pathway activation on the pericytes (Figure 6F). In 

contrast, A549 xenografts that progressed on BV therapy had significantly fewer 

blood vessels supported by pericytes compared with controls (p<0.05); 

nevertheless, long-term administration of erlotinib plus BV or vandetanib also 

decreased the pericyte coverage in this model compared with controls (p<0.05; 

see Supplemental Figure 4), providing further support for the role of EGFR in 

tumor stroma.  
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 Discussion 
 
Early reports examining the effects of anti-angiogenic therapies raised the hopes 

that these agents may significantly slow or stop tumor growth, and that 

therapeutic resistance to these agents would be less likely to occur in part 

because the target was diploid and not prone to the same genetic instability as 

tumor cells (27, 28). However, both preclinical studies and clinical experience in 

lung cancer and other solid tumors (13, 15, 29-33) indicate that the vast majority 

of solid tumors either have primary (de novo) resistance, or will eventually 

acquire resistance, to the effects of antiangiogenic agents. Although to date most 

studies of therapeutic resistance to anticancer drugs have focused on the role of 

tumor cells, recent studies have suggested that host factors, including tumor 

stroma, may play a role as well (32, 34-38) 

In this study, we used mouse- and human-specific profiling of human 

NSCLC xenografts in mice to investigate stromal and tumor cell alterations 

occurring in tumors with primary and acquired resistance to BV. This analysis 

revealed that modulation of angiogenesis-related genes during the development 

of the resistant phenotype in this model occurs predominantly in the stromal, and 

not tumor cell, compartment. We validated that two stromal genes, Egfr and 

Fgfr2 become upregulated during the resistant phase and, moreover, 

demonstrated that therapeutic inhibition of the EGFR signaling in BV-resistant 

tumors significantly blocked stromal changes associated with acquired 

resistance, including increased pericyte coverage, and delayed the onset of 

resistance.  

 16



 We studied tumor growth in two human NSCLC xenografts models in 

mice: H1975, which were initially inhibited by BV but subsequently and 

sporadically acquired resistance at times ranging from one to six months, and 

A549, which were not significantly inhibited from the onset of treatment. Human 

NSCLC cells were used to facilitate species-specific profiling to separately 

assess tumor and stroma gene expression. These particular models were 

chosen because of their differences in initial responsiveness to BV and the 

known resistance of the tumor cells to EGFR blockade (20)  which allowed us to 

assess the impact of stromal EGFR blockade.  

We observed that in the acquired resistance model (H1975) BV treatment was 

initially associated with tumor growth inhibition, a marked reduction in tumor MVD 

and an increase in tumor endothelial apoptosis after two weeks. These 

observations are consistent with data from earlier preclinical and clinical reports 

involving multiple tumor types (23, 24, 26, 39-42). Acquired resistance, however, 

was associated with a marked increase in overall MVD to levels similar to those 

of untreated tumors. Furthermore, resistance was not associated with increased 

phosphoVEGFR2. Consistent with this result, previous reports showed 

continuing molecular efficacy of the VEGFR2 signaling blockade during the 

angiogenic evasion phase in a model of pancreatic neuroendocrine tumors (15). 

Our findings, therefore, provide evidence that VEGFR2-independent 

mechanisms were contributing to the observed changes in the tumor vasculature. 

In fact, the vasculature of tumors with acquired resistance had a further, dramatic 

reduction in vessel tortuosity compared to controls, with greater pericyte 

 17



coverage and reduced endothelial apoptosis (“normalized revascularization”). 

Different patterns of vascular changes were observed in the A549 primary 

resistance model, with increased MVD at progression associated with greater 

vessel tortuosity and decreased pericyte coverage (“sprouting vascularization”). 

Studies have shown that the number of pericytes associated with the tumor 

vasculature has important clinical implications in that it can determine the efficacy 

of therapy (43, 44). Pericytes play key roles in maintenance of cancer 

vasculature by producing survival signaling and may provide a protective 

mechanism against antiangiogenic therapies. Our findings provide evidence that 

pericytes may play an important role in the acquisition of resistance in tumors 

that initially responded to VEGF blockade. 

Gene expression analysis showed that among the differentially modulated 

genes of tumor cells and tumor stroma associated with acquired resistance there 

is, upregulation of Egfr and Fgfr2,, as well as other members of these signaling 

pathways, such as epiregulin (Epgn), Amphiregulin (Areg), Fgf13, and Fgfbp1. A 

functional gene-interaction network analyses highlighted the EGFR pathway as a 

major set of interacting genes that were altered in resistant tumors. Alterations in 

the stromal EGFR and FGFR2 pathways in tumors with acquired resistance were 

then validated by qRT-PCR using species-specific probes, and further 

investigation revealed that in resistant tumors, increased activated EGFR was 

localized almost exclusively on VSCs consistent with pericytes. No significant 

phospho-EGFR was detectable on VSCs of control tumors. The dual inhibition of 

VEGFR/EGFR pathways reduced pericyte coverage of tumor vessels and 
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delayed tumor progression compared with BV alone. A trend towards longer PFS 

was observed with dual inhibition compared to BV alone as well. Interestingly, 

primary resistance in A549 xenografts, which was associated with a pattern of 

“sprouting vascularization”, also had increased phosphoEGFR immunoreactivity 

compared with controls but in this model it was localized almost exclusively to 

tumor endothelium, not VSCs. As expected, dual VEGFR/EGFR inhibition did not 

reduce pericyte coverage in this model, but did significantly delay the emergence 

of resistance compared with BV alone. These findings demonstrate that 

increases in stromal EGFR signaling are associated with tumor progression in 

two different models of BV resistance and that targeting the EGFR pathway is 

able to reverse changes associated with resistance (e.g. pericyte coverage) and 

delay the emergence of resistance. It also highlights that a signaling pathway 

may play different roles in tumor stroma depending on the cellular context. 

Studies examining the EGFR distribution on endothelium suggest that it is 

restricted to blood vessels supplying pathologic tissues (45), where it activates 

angiogenic programs (46). Others have reported that EGFR is activated on 

endothelium when tumor cells express EGFR ligands, such as transforming 

growth factor alpha (TGFα) or EGF (47, 48).  We localized p-EGFR to the blood 

vessels of primary resistant A549 xenografts and to the vascular supporting 

pericytes of H1975 xenografts that acquired BV-resistance. Consistent with this 

observation, a recent study found that the EGFR TKI gefitinib significantly 

suppressed tumor-associated pericyte function (49). We also found that EGFR 

blockade decreased pericyte coverage in this model. To our knowledge, this is 
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the first evidence demonstrating a potential role for EGFR signaling in pericytes 

or other stromal cells in resistance to VEGF pathway inhibitors or other 

antiangiogenic agents.   

A recent study has identified a role for PDGF-C expressed by tumor 

associated fibroblasts in VEGF inhibitor resistance (38) and in attenuating tumor 

response to anti-VEGF treatment in a model of glioblastoma (50). Somewhat 

surprisingly, we did not observe upregulation of any PDGF receptors (PDGFR) or 

ligands. In contrast, we observed a modest but statistically significant 

downregulation of stromal genes encoding PDGF-A, PDGF-B and PDGFR-β. 

Given the role of the PDGF family in multiple tumor processes, including pericyte 

recruitment and function (51, 52), it appears that pericyte-expressed EGFR may 

play a complimentary or compensatory role in the increased pericyte coverage 

observed in the acquired resistance model.   

Activation of FGF/FGFR pathway has been shown to be a critical regulator of the 

“angiogenic switch” (53) and to be upregulated in response to anti-angiogenic 

therapy (15). We observed an approximately 6-fold increase in stromal Fgfr2 

gene expression in tumors with acquired resistance and, consistent with this 

finding, an increase in the number of FGFR2-expressing cells in these tumors. 

This immunoreactivity appeared to be largely, but not exclusively, on tumor 

endothelium. This suggests that the FGFR2 pathway may promote VEGF-

independent endothelial survival as previously observed in other preclinical 

models (54, 55) although we cannot rule out the possibility that it plays a role in 

other non-endothelial stromal cells. Circulating levels of the FGFR2 ligand bFGF 
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were also elevated in the plasma of mice with BV-resistant tumors. This 

observation is notable in light of our recent observation that acquired resistance 

to chemotherapy and BV in colorectal cancer patients is associated with an 

increase in circulating bFGF (14), suggesting that similar mechanisms may be 

occurring in cancer patients.      

Other genes differentially expressed in tumors with acquired resistance 

included Thrombospondin 2 (Thbs2), a potent negative regulator of angiogenesis 

(56) and Bax, a pro-apoptotic member of the Bcl-2 family of proteins (57), which 

were both downregulated in resistant tumors. Recent studies have shown 

Amphiregulin to be involved in resistance to targeted therapy in NSCLC cells by 

promoting BAX inhibition (58). Consistent with these observations, our results 

showed an upregulation of Areg gene accompanied by downregulation of Bax in 

the stromal compartment of BV resistant tumors compared with controls. 

The mechanisms underlying regulation of tumor stromal genes altered in 

resistant tumors remains to be established and are likely to differ in the various 

stromal cell types. Expression of many of the genes, including FGFR2 (59) and 

EGFR family members and thromobspondin-2 (as well as tumor cell carbonic 

anhydrase-9), are known to be regulated by hypoxia or to correlate with 

expression of  hypoxia inducible factor 1 alpha (HIF1α), as reviewed in (60). One 

possible explanation is that BV therapy initially triggers a significant decrease in 

tumor MVD and an increase in tumor hypoxia (61), triggering upregulation of 

hypoxia-dependent pathways. It is worth noting, however, that BV resistance was 

not associated with significant increases in many stromal genes known to be 
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upregulated by hypoxia, and many of the genes upregulated in BV resistance are 

not known to be hypoxia-regulated. Hypoxia is likely, therefore, to be only one of 

many factors- both host- and tumor cell dependent- that are likely to be impacting 

the tumor and its microenvironment in resistant tumors.  

To date, studies of therapeutic resistance have almost exclusively focused 

on mechanisms involving tumor cells. Our findings provide evidence that there 

are substantial changes in tumor stroma associated with resistance in our 

models, and in fact a far greater number of stromal genes than tumor cell genes 

were significantly different in tumors with acquired resistance compared with 

vehicle controls. Pathway analysis implicated EGFR as a central pathway 

upregulated in resistant stroma. EGFR localization differed in the two models: in 

pericytes of highly “normalized” vessels (acquired resistance) and tumor 

endothelium (primary resistance). As expected, the addition of EGFR blockade 

reduced pericyte coverage in the acquired resistance model, and delayed the 

emergence of resistance.  

Murine xenograft models such as those used in this study have several 

limitations, such as absence of an intact immune system, and it is likely that 

different types of tumors, or tumors growing in locations (e.g. lung), may employ 

different mechanisms. Nevertheless, taken as a whole, these findings have 

important scientific and clinical implications. They demonstrate that stromal 

mechanisms can play a role- perhaps, in some cases a dominant role- in 

impacting the responsiveness of a tumor. In this regard, it is worth noting that 

stromal cells typically comprise a minority of cells in a tumor, and that detecting 
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stromal-specific changes associated with resistance (for example, endothelial 

phosphoEGFR) requires methodologies different than those in typical clinical 

use. The results also highlight a previously unappreciated role for stromal EGFR 

in therapeutic resistance, and illustrate that EGFR may play different roles in 

stroma depending on the cellular context. Effects on stromal cells may therefore 

contribute to the clinical benefit observed in patients treated with EGFR inhibitors 

even when tumors were negative for EGFR by IHC (62) or FISH (63), or did not 

contain activating mutations (64).  Finally, they suggest that approaches targeting 

stromal resistance pathways may enhance the efficacy of regimens containing 

VEGF inhibitors. It is worth noting, however, that while combinations of VEGF 

and EGFR pathway inhibition have shown promise in NSCLC (65, 66), 

therapeutic resistance nevertheless continues to emerge, indicating that 

additional resistance mechanisms remain to be uncovered.   

 

Materials and Methods 

In Vivo Studies 

All animal studies reported were approved from the local committee for animal 

care. To generate tumor xenografts, A549 and H1975 tumor cells (2.0 × 106) 

were injected in 100 μl of HBSS into the subcutaneous flank of 4 to 8 weeks old 

male athymic nude mice (NCI-nu). Body weights and tumor volumes were 

recorded twice weekly. Tumor volumes (mm3) were calculated as = п/6(a)2(b), 

where a is the smaller measurement of the tumor and b is the larger one. When 

the tumor volumes reached an average of approximately 270 mm3, mice were 
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randomly assigned to one of six treatment groups: (a) control intraperitoneal (i.p.) 

injection of vehicle (PBS) twice weekly; (b) i.p. injection of BV (10 mg/kg) twice 

weekly; (c) control, oral (p.o.) administration of vehicle daily; (d) erlotinib (100 

mg/kg) p.o. daily; (e) erlotinib p.o. daily plus BV i.p. twice weekly; (f) vandetanib 

(50 mg/kg) p.o. daily. Tumors were sacrificed due to tumor burden. Tumors were 

excised and one portion was fixed in formalin and embedded in paraffin; another 

portion was embedded in OCT (Miles, Inc., Elkhart, IN) and rapidly frozen in 

liquid nitrogen. Additional tumor sections for molecular studies were snap-frozen 

in liquid nitrogen. Staining with hematoxylin and eosin (H&E) was used to confirm 

the presence of tumor in each sample included in the analysis. For short-term 

treatment studies, tumor-bearing animals were treated for 2 weeks with vehicle 

and BV and then sacrificed. Tumor tissues were collected for 

immunohistochemical studies.   

 

RNA Microarray Analysis 

Total RNA was extracted from snap-frozen tissues using the mirVanaTM miRNA 

Isolation Kit (Ambion, Austin, TX) and 1 µg of total RNA was amplified using the 

Illumina® TotalPrep RNA Amplification Kit (Ambion) according to the 

manufacturer’s instructions. Labeled cRNA was hybridized on mouseWG-6 v2 

and human WG-6v3 Expression BeadChips (Illumina®, San Diego, CA) for 

analysis of murine and human transcriptomes. Signal intensities determined by 

streptavidin-Cy3 fluorescence were scanned with a Sherlock_1000 Array 

Scanner (Ambion). Data were analyzed using the BRB-ArrayTools Version 3.7.0 
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Beta platform developed by Dr. Richard Simon [http://linus.nci.nih.gov./BRB-

ArrayTools.html]. A log base 2 transformation was applied to the data set prior to 

data normalization. A median array was selected as the reference array for 

normalization and statistical significance was set using a p<0.01. To evaluate the 

expression of genes involved in response to hypoxia, lymphangiogenesis and 

angiogenesis in BV-resistant xenografts compared with controls, a gene list of 

269 genes used in previous publications and associated with and involved in 

these processes and was compared (67). Genes differentially expressed 

between groups were determined applying univariate t-test with estimation of the 

false discovery rate (FDR). Genes were determined using selection criteria of a 

p<0.005 and a fold-change ≥1.5. 

 

 

Determination of Microvessel Density (MVD), vessel tortuosity and pericyte 

coverage of tumor-associated blood vessels 

Tumor MVD was determined as previously described (68). In brief, we examined 

tumors microscopically to identify hot spots by low magnification (x100), and the 

mean MVD was quantified as the total number of CD31+ structures observed in a 

minimum of five microscopic fields at higher power of vision per tumor (x200). 

For each group, tumors from four different mice receiving short- and long-term 

treatment were used. As previously described (69), the tortuosity (T) of blood 

vessel was defined as T = (L/S)-1, where L is the length of the vessel of interest 

and S is the straight-line distance between its endpoints. The vessel length (L) 
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was evaluated in 4 samples for each treatment group by tracing along the midline 

of the blood vessels that showed up in a longitudinal cut within an image (100x) 

and the number of pixels was converted into distance in millimeters with Image J 

v1.34 software (NIH). 

To determine the extent of pericyte coverage on the tumor vasculature, tumor 

sections were stained for CD31 (red) and desmin (green) as described above. 

Five fields in each tumor were randomly identified at original magnification x200, 

and those blood vessels that were at least 50% covered by green-desmin 

positive cells were considered to be positive for pericyte coverage.  

 

 

Standard Methods 

Reagents, tumor cell lines and conditions, and standard techniques for qRT-

PCR, IHC, confocal microscopy and LSC are described in the Supplemental 

Data. 

 

 

Plasma bFGF Concentration Analysis 

Basic FGF levels were measured in the plasma of tumor-bearing animals by 

multiplex bead assay (BioRad, Hercules, CA; Millipore, Billerica, MA) in a 96-well 

plate according to the manufacturer’s protocol. The concentrations were 

calculated based on a standard curve derived by performing six serial dilutions of 
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a protein standard in assay diluent. Plasma samples were tested in duplicate and 

the mean value used for analysis.   

 

 

Statistics 

Statistical significance was tested using GraphPad Prism 5 software (GraphPad 

Software Inc., San Diego, CA). For comparison between two groups, Student’s t 

test and log-rank test were used. A p value < 0.05 on two-tailed testing was 

considered significant. 

 

 

Supplemental Data 

The Supplemental Data include Supplemental Experimental Procedures, 2 

supplemental tables and 4 supplemental figures. 
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Figure 1. H1975 and  A549 NSCL C Xenografts Show Acquired and  Primary Resistance to 
BV  
A, B.  Tumor growth curves of H1975 xenografts receiving vehicle (control) and BV (n=5) for 2 
weeks (short-term treatment). 
C, D . Individual tumor growth curves of H1975 (A) and A549 (B) vehicle- and BV-treated 
xenografts. Vehicle- and BV-treated tumors are shown in black and pink, respectively. The 
median PFS in H1975 BV-resistant xenografts was 138 days compared with 7 days in the 
control group (p<0.001 BV vs. vehicle, log-rank test); in A549 BV-resistant tumors the median 
PFS was 35 days compared with 22 days in controls (p=0.16 BV vs. vehicle, log-rank test). 
 

 

 



 
 
 
Figure 2. BV Resistance Is  Asso ciated w ith Sustai ned p-VEGFR2 Inhibition and 
Decreased Endothelial Cell Apoptosis  
A. Representative IF staining of H1975 vehicle and BV-treated tumors for 2 weeks and at 
progression show p-VEGFR-2 (green) and CD31+ cells (red). Blue shows the nuclei. 
B. Human and mouse VEGFA mRNA expression in H1975 vehicle- and BV-treated tumors at 
progression using qRT-PCR (n=4, each group). Human GAPDH and mouse tubulin were used 
as housekeeping controls for human and mouse mRNA, respectively. Data were normalized 
relative to mRNA levels in vehicle-progression samples and are graphed as relative fold change 
± SEM, *p<0.05 (t-test). 
C. Representative immunofluorescent images of CD31 (red) and TUNEL (green) staining in 
H1975 xenografts after 2 weeks and at progression with vehicle and BV. Blue shows the nuclei. 
D. Percentage of apoptotic ECs quantified by IF staining, labeling the endothelial marker CD31 
and using the terminal TUNEL kit to identify apoptotic cells. The percentage of CD31+ and 
TUNEL+ cells was counted in a minimum of 5 microscopic fields (200×) in each of minimum 3 
tumor samples per each group. Data are graphed as the percentage ± SEM, *p<0.05 (t-test).  



 
 
Figure 3. BV Resistance Is Associated w ith Increased Expression of Stromal Genes 
Involved in Angiogenesis  
A. Stromal and human angiogenic genes differentially regulated in H1975 BV-resistant 
xenografts compared with vehicle-controls (n=3, each group). Two-sample t-test (p<0.005) with 
random variance model was applied. Exact permutation p-values for significant genes were 
computed based on 10 available permutations. Data are graphed as differences in fold change ± 
SEM of genes in BV-resistant tumors vs. controls. The dashed red line defines the fold change 
of gene expression at 1, indicating no changes in the expression of a specific gene in BV-
resistant tumors vs. controls. B. Functional pathway analysis of selected genes and their 
interaction nodes in a gene network significantly modulated between the BV-resistant and 
control xenografts mouse stroma. The network score was calculated by the inverse log of the p-
value and indicates the likelihood of focus genes in a network being found together than due to 
chance. The selected genes (Egfr, Bax and Dnajb1) and their interaction segments are 
highlighted by a blue border. Gene expression variation by at least 1.5-fold is depicted by color 
(red, upregulated; green, down-regulated; grey, no significant change). C, D. Human and mouse 
EGFR (C) and FGFR2 (D) mRNA expression in H1975 vehicle- and BV- progression xenografts 
(n=4, each group) using qRT-PCR. Human GAPDH and mouse tubulin were used as 
housekeeping controls for human and mouse mRNA, respectively. Data are normalized relative 
to mRNA levels in vehicle-progression samples and graphed as relative fold change ± SEM, 
*p<0.05 (t-test). 



 
 
Figure 4. BV Resistance Is A ssociated w ith Increased EGF R Activation on the Vascular 
Supporting Cells and the Tumor Vasculature  
A. Quantification of EGFR-expressing cells in H1975 tumors following vehicle and BV treatment 
at progression (n=4, each group), using LCS. Data are graphed as the mean ± SEM, *p<0.01 (t-
test). B. Representative IF staining of CD31 (red) and p-EGFR (green) using confocal 
microscopy in vehicle- and BV-treated H1975 (top panel) and A549 xenografts (lower panel) at 
progression (n=4, each group in both xenograft models). C. Quantification of vascular supporting 
cells (VSCs) and endothelial cells (CD31+, ECs) expressing p-EGFR in H1975 and A549 
vehicle- and BV-treated tumors at progression (n=4, each group in both the xenograft models). 
Phospho-EGFR+ cells were counted in a minimum of 5 random microscopic fields for each tumor 
sample at 200× magnification. Data are graphed as percentage ± SEM, *p<0.01, **p<0.05 (t-
test). D. Representative immunofluorescent images of p-EGFR (red) and desmin (green) 
positive staining in H1975 vehicle- and BV-treated H1975 xenografts at progression. The white 
arrow shows the overlapping of p-EGFR and desmin in BV-resistant H1975 tumors at higher 
magnification (400×). E. Quantification of desmin+ cells expressing p-EGFR in H1975 vehicle- 
and BV-treated H1975 tumors at progression. Phospho-EGFR+ cells were counted in a minimum 
of 5 random microscopic fields for each tumor sample at 200× (n=4, each group). Data are 
graphed as percentage ± SEM, *p<0.01, (t-test).  



 
 
 
Figure 5. Increase in Stromal FGFR2 Expression in H1975 BV-Resistant Xenografts  
A. Representative immunofluorescent images of CD31 (red) and FGFR2 (green) staining in 
H1975 vehicle- and BV-treated H1975 xenografts at progression, using confocal microscopy 
(200×). 
B. Quantification of FGFR2+ cells (green) counted in 5 random microscopic fields (200×; n=4, 
each group). Data are graphed as the percentage ± SEM, *p<0.01 (t-test).  
C. Basic FGF (bFGF) levels (pg/mL) were measured in the plasma of vehicle- and BV-treated 
H1975 xenografts at progression, by multiplex bead assay. Data are graphed as the mean ± 
SEM, p=0.058 (t-test). 
D. Representative IHC staining of bFGF in vehicle- and BV-treated H1975 tumors at time of 
progression (n=4, per each group). 
 
 
 
 
 
 
 



 
 

 
Figure 6. Altered patterns of tumor vascular dens ity, tortuosity, and pericyte coverage in 
BV-resistant tumors, and impact of combined EGFR/VEGFR inhibition   
A. CD31+ staining (red) showing representative images of vasculature in H1975 (upper panel) 
and A549 (lower panel) tumors after short-term (2 weeks) treatment with BV and at progression.  
B, C.  Quantification of MVD (B) and tumor vessel tortuosity (C) in the same tumors. CD31+ 
vessels were counted in 5 microscopic fields in each of 4 samples per each group at 200×., 
shown as mean ± SEM, * p<0.01, ** p<0.05 (t-test). 
D, E. Kaplan-Meier plots of PFS in H1975 (D) and A549 xenografts (E). H1975 xenografts: BV 
vs. vehicle p<0.01; BV vs. erlotinib p<0.01; erlotinib + BV vs. BV p=0.24, erlotinib + BV vs. 
vehicle p<0.01; vandetanib vs. BV p=0.295; vandetanib vs. vehicle p<0.01 (log-rank test). A549 
xenografts: BV vs. vehicle p = 0.16; BV vs. erlotinib p = 0.99; erlotinib + BV vs. BV p = 0.044; 
erlotinib + BV vs. vehicle p<0.01 vandetanib vs. BV p = 0.012; vandetanib vs. vehicle p = 0.015 
(log-rank test). 
F. Pericyte coverage in H1975 xenografts. The percentage of CD31+ vessels with at least 50% 
coverage of associated desmin+ cells was counted in 5 microscopic fields at 200× in tumors that 
progressed on the indicated treatment (n=4,  vehicle and BV groups; n=2, vandetanib group, 
and n=1, erlotinib + BV). Data are graphed as percentage ± SEM, *p<0.05 (t-test).  
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Statement of Translational Relevance.  

Membrane transporters FRα and RFC1 are potential biomarkers of tumor response to antifolate 

chemotherapy. Information on the protein expression of these receptors in NSCLC is limited. 

Here, we report for the first time that NSCLC frequently overexpressed FRα and RFC1 proteins 

by studying a large series of cases with annotated clinico-pathologic information. Importantly, 

we report that tumor cells from lung adenocarcinoma histology expressed significantly higher 

levels of cytoplasmic and membrane FRα than squamous cell carcinoma, and tumors from 

never-smokers were significantly more likely to express cytoplasmic FRα than those from 

smokers. In lung adenocarcinomas, the presence of EGFR mutations correlated with higher 

expression of membrane FRα and FOLR1 gene expression. We postulate that this information 

may be useful in selecting which patients with NSCLC may benefit from and should receive 

treatment with antifolate inhibiting agents, including pemetrexed.    
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ABSTRACT  

Purpose. Folate receptor alpha (FRα) and receptor folate carrier-1 (RFC1) regulate cellular 

uptake of folate molecules inside the cell, and are potential biomarkers of tumor response to 

antifolate chemotherapy. Information on the protein expression of these receptors in non−small 

cell lung carcinoma (NSCLC) is limited.  

Experimental Design. Expressions of FRα and RFC1 were examined by 

immunohistochemistry in 320 surgically resected NSCLC (202 adenocarcinomas and 118 

squamous cell carcinomas) tissue specimens using tissue microarrays. The findings were 

correlated with patient clinicopathologic characteristics. FOLR1 mRNA expression was 

examined using publicly available microarray datasets. FRα expression was correlated with 

tumors’ thymidylate synthase (TS) and p53 expression in NSCLCs, and with EGFR and KRAS 

mutations in adenocarcinomas.  

Results. NSCLC frequently overexpressed both FRα and RFC1. In a multivariate analysis, lung 

adenocarcinomas were more likely to express FRα in the cytoplasm (odds ratio [OR] = 4.39; 

P<0.0001) and membrane (OR = 5.34; P<0.0001) of malignant cells than squamous cell 

carcinomas. Tumors from never-smokers were significantly more likely to express cytoplasmic 

(OR = 3.35; P<0.03) and membrane (OR = 3.60; P=0.0005) FRα than those from smokers. FRα 

and RFC1 expressions did not correlate with NSCLC patients’ outcome. In adenocarcinoma, 

EGFR mutations correlated with higher expression of membrane FRα and FOLR1 gene 

expressions. FRα and TS expression inversely and significantly correlated (P=0.03).  

Conclusions. Membrane transporter FRα and RFC1 proteins are frequently overexpressed in 

NSCLC tumor tissues. The higher levels of FRα in lung adenocarcinomas than in squamous cell 

carcinomas may explain these tumors’ different responses to antifolate chemotherapy.  
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INTRODUCTION 
 
Despite intensive research on molecular targeted therapy, chemotherapy still represents 

the main treatment option for patients with advanced non-small cell lung cancer (NSCLC; 

stages IIIB and IV) (1). Over recent years chemotherapy after surgical resection has become 

the standard of care for treatment of selected patients with early stage (i.e., stage IB, II, or IIIA) 

NSCLC (2). However, most tumors develop drug resistance, leading to chemotherapy failure. 

The factors associated with chemotherapy resistance are not well understood, but some 

phenomena have been associated with this resistance, including, among others, decreases or 

alterations in the membrane transporters involved in drug uptake systems or increase in drug 

efflux pumps (3). 

In advanced NSCLC, doublet combinations of a platinum drug with another 

chemotherapy agent are the reference regimens (1). A recent Phase III trial showed that 

cisplatin/gemcitabine offered a significantly longer survival compared to cisplatin/pemetrexed in 

patients with squamous cell carcinoma (SCC) (4). These findings prompted restriction of the 

pemetrexed regimen to patients with NSCLC of “non-squamous” histology only (5). Pemetrexed 

is a potent inhibitor of thymidylate synthase (TS) (6, 7) and other folate-dependent enzymes, 

including dihydrofolate reductase and glycinamide ribonucleotide formyl transferase (8). The 

mechanisms involved in the varying outcomes of patients treated with pemetrexed based on 

tumor histologic type are unknown. 

Folic acid and its reduced congeners are required for one carbon transfer reactions that 

are used in the synthesis of nucleotide bases, amino acids, and other methylated compounds, 

and consequently, they are required in larger quantities by proliferating cells (3). FRα is a 

glycoprotein that is anchored to the apical cell membrane surface of a variety of polarized 

normal epithelial cells (9) and binds folate at a high affinity to mediate transport into the 

cytoplasm of cells (3). RFC1 is more ubiquitously expressed in normal cells, binds folate at low 

affinity, and represents the sole folate uptake pathway for most normal cells (10). 
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In this study we aimed to characterize the expression of FRα and RFC1 proteins in a 

large series of surgically resected NSCLC tissue specimens with annotated clinicopathologic 

features. We correlated the expression of FRα with the expression of TS. Our findings of higher 

expression of FRα expression in lung tumors with adenocarcinoma histology and tumors 

obtained from never-smokers prompted us to correlate the expression of FRα with tumors’ 

epidermal growth factor receptor (EGFR) and KRAS mutation status in adenocarcinomas, and 

with tumors’ p53 protein expression in all NSCLCs.  
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MATERIALS AND METHODS  

Case selection and tissue microarray (TMA) construction. We obtained archived formalin-

fixed and paraffin-embedded (FFPE) NSCLC tissues from the Lung Cancer Tissue Bank at The 

University of Texas M. D. Anderson Cancer Center (Houston, TX). These lung cancer 

specimens were resected with curative intent between 1997 and 2001. The institutional review 

board at M. D. Anderson Cancer Center approved our study. The tissue specimens were 

histologically classified according to the 2004 World Health Organization classification (11). We 

constructed TMAs using three 1-mm diameter cores.  Detailed clinico-pathologic information 

was available for most cases (Table 1).  

 

Immunohistochemical staining and evaluation. To test the expression of the membrane 

transporters we used a monoclonal homemade antibody against FRα (clone Mb343, IgG), 

dilution 1:500 (12), and a polyclonal antibody against RFC1 (Abcam, Cambridge, MA), dilution 

1:100. To assess the expression of TS, we used a monoclonal antibody (Zymed Carlsbad, CA, 

USA), dilution 1:100. For p53 analysis, we used mouse monoclonal antihuman p53, clone DO7 

(Dako, Carpinteria, CA), dilution 1:400.  

For FRα we used a previously published immunohistochemistry protocol (12). For RFC1 

and TS, immunohistochemical staining was performed as follows: 5-μM FFPE tissue sections 

were deparaffinized and hydrated, and underwent heat-induced epitope retrieval in a DAKO 

antigen retrieval bath at 121°C for 30 seconds and 90°C for 10 seconds in a decloaking 

chamber (Biocare, Concord, CA), followed by a 30-min cool down. Prior to antibody 

immunostaining, endogenous peroxidase activity was blocked with 3% H2O2 in methanol for 30 

min. To block nonspecific antibody binding, tissue sections were incubated with 10% fetal 

bovine serum in Tris-buffered saline solution with Tween 20 for 30 min. The slides were 

incubated with primary antibody at ambient temperature for 60 min for all antibodies. This was 
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followed by incubation with biotin-labeled secondary antibody (Envision Dual Link +, DAKO) for 

30 min. Staining was developed with 0.05% 3',3-diaminobenzidine tetrahydrochloride, which 

had been freshly prepared in 0.05 mol/L Tris buffer at pH 7.6 containing 0.024% H2O2, and then 

the slides were counterstained with hematoxylin, dehydrated, and mounted.  

Two observers (M.N. and I.W.) jointly quantified the immunohistochemical expression of 

the membrane transporters (magnification 20×) in normal bronchial epithelium and lung tumor 

malignant epithelial cells. For each membrane transporter and TS, we defined 3 categories of 

intensity of immunostaining (0 to 3+). Next, an expression score (range, 0–300) was obtained 

by multiplying the intensity of staining by the percent of cells (0-100%) staining. p53 expression 

was categorized by percentage of tumor cells expressing nuclear p53 as positive (≥5%) or 

negative (0-5%). 

 

EGFR and KRAS mutation analysis. Exons 18 through 21 of EGFR and exon 1 of KRAS were 

amplified by polymerase chain reaction (PCR) using intron-based primers as previously 

described (13, 14).  

 

Assessment of membrane transporter expression in microarray datasets. The cancer 

microarray database and integrated data-mining platform Oncomine (15) was utilized to analyze 

the expression of FOLR1 (FRα) and SLC19A1 (RFC1), and in microarray databases of NSCLC 

available online (16-19). The statistical significances of differences in expression of the genes 

were provided by Oncomine and confirmed by a two-tailed t-test with random variance. Gene 

expression data of lung adenocarcinomas with annotated mutation data of EGFR and KRAS 

were obtained from the Ladanyi and Gerald laboratories at the Memorial Sloan-Kettering 

Cancer Center (MSKCC) (http://cbio.mskcc.org/Public/lung_array_data/) (20).  Available 

Affymetrix® raw data files of the transcriptomes of 190 adenocarcinomas (set I, n=88; set II, 
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n=102) were analyzed using the BRB-ArrayTools version 3.7.0 software developed by using the 

BRB-ArrayTools v.3.7.0 developed by Dr. Richard Simon and BRB-ArrayTools Development 

Team (21). Robust multi-array analysis (RMA) was used for normalization of gene expression 

data using the R language environment (22). FOLR1 mRNA expression levels in both MSKCC 

datasets were median-centered by the Cluster v.2.11 software. Differences in normalized 

median-centered FOLR1 expression levels were assessed for statistical significance by the two-

tailed test and P < 0.05 were considered statistically significant.  

 

Statistical methods. Associations between biomarker expression scores and patient clinico-

pathologic data were assessed using the Wilcoxon’s rank sum test or Kruskal-Wallis test, as 

appropriate, for continuous variables and the chi square test for categorical variables. For 

recurrence free survival (RFS) and overall survival (OS) analyses, we tested binary cutoff points 

of biomarkers using the median expression score for each marker. Univariate and multivariate 

Cox proportional hazards regression models were used to assess the effects of covariates on 

survival. All statistical tests were two-sided, and P values <0.05 were considered statistically 

significant. 
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RESULTS  

Immunohistochemical expression of FRα and RFC1 in NSCLC. Both adenocarcinoma and 

SCC expressed relatively high levels of FRα and RFC1 in the malignant cells (Fig. 1 and Table 

2). For FRα, the average expression scores and frequency of any expression (score >0) were 

significantly higher in adenocarcinomas than in SCCs at membrane (P<0.001) and cytoplasmic 

(P<0.001) localizations (Fig. 2). Both NSCLC histologies demonstrated similar levels of 

cytoplasmic and membrane RFC1 expression. For both markers the tumor cells exhibited 

stronger immunohistochemical expression than the 11 samples of normal bronchial epithelia 

adjacent to tumors (data not shown).  

 

Correlation of FRα and RFC1 expression with clinicopathologic features. The multivariate 

analysis of the immunohistochemical expression of the two membrane transporters as a 

dichotomized variable (positive, score >0, vs. negative, score =0), after adjustment for patient’s 

tumor histology, smoking history, sex, and disease stage, revealed that adenocarcinomas were 

more likely than SCCs to express cytoplasmic (odds ratio [OR] = 4.39; P<0.0001) and 

membrane (OR = 5.34; P<0.0001) FRα. In addition, tumors from never-smokers were 

significantly more likely to express cytoplasmic (OR = 3.35; P < 0.03) and membrane (OR = 

3.60; P=0.0005) FRα than those of smokers. In the multivariate analysis, the patient’s sex was 

not an independent significant factor influencing tumor expression of FRα. No correlation was 

found between expression of both membrane transporters and RFS or OS in 230 patients with 

stage I or II NSCLCs (median follow up, 7.2 years).  

 

Correlation between FRα expression and tumors’ p53 expression and EGFR and KRAS 

mutation status. Our findings of higher expression of FRα expression in lung tumors with 

adenocarcinoma histology and tumors obtained from never-smokers prompted us to correlate 
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the expression of FRα with tumors’ EGFR and KRAS mutation status in adenocarcinomas, and 

with tumors’ p53 protein expression in all NSCLCs.  

In lung adenocarcinomas, EGFR mutant tumors demonstrated significantly higher 

expression scores for membrane FRα (mean scores: mutant 134.8 vs. wild-type 67.1; P=0.002) 

than wild-type tumors. No correlation between FRα expression and adenocarcinoma tumors’ 

KRAS mutation status was detected.   

Of all NSCLCs tested, 38% (75/195) of adenocarcinomas and 69% (80/116) of SCCs 

had a positive p53 level (≥5%). Interestingly, we found that the scores for FRα expression in 

both membrane (P=0.001) and cytoplasm (P<0.001) were significantly lower in malignant cells 

from NSCLC tumors with positive p53 expression (mean score:  membrane 33.4, SD 59.9, and 

cytoplasm 58.3, SD 60.0) than in tumors with negative p53 expression (mean score: membrane 

65.3, SD 90.6, and cytoplasm 83.55.3, SD 65.3).  

 

FOLR1 mRNA expression in tumor tissues. Our findings that protein levels of FRα was 

greater in adenocarcinomas than in SCCs incited us to analyze expression levels of the mRNA 

of the FOLR1 in published microarray datasets of NSCLC tumor specimens and compare them 

by histologic type (16-19). In accordance with our immunohistochemistry data, FOLR1 mRNA 

expression levels were significantly higher in adenocarcinomas (n=197) than in SCCs (n=210) 

in all four datasets available: 1.8 vs. 1.0 (P<0.0001) (17), 0.81 vs. 0.73 (P=0.03) (19), 2.61 vs. 

0.98 (P<0.0001) (18), and 0.93 vs. 0.31 (P<0.0001) (16).  

To confirm our findings on the increased FRα immunoreactivity in tumors obtained from 

EGFR mutant lung adenocarcinomas compared to wild type tumors, we probed this association 

using the mRNA expression levels of FOLR1 in publicly available microarray datasets with 

information on EGFR and KRAS mutation status (20). Notably, the analysis of the microarray 

data further revealed the statistically significant up-regulation of FOLR1 mRNA levels in EGFR 
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mutant lung adenocarcinomas compared to wild-type tumors in both available datasets 

(P=0.00016 and P =0.003) (Fig. 3). In addition, no statistically significant differences were found 

in FOLR1 expression levels between KRAS mutant lung adenocarcinomas and wild-type tumors 

(data not shown). These findings confirm the close positive association between FOLR1 

expression and EGFR mutation status which we had found at the protein level by assessment of 

FRα immunoreactivity.  

 

Correlation of immunohistochemical expression of TS and FRα. TS was expressed 

frequently in the nucleus and cytoplasm of malignant NSCLC cells. However, the frequency of 

any TS expression (score >0) was higher in the cytoplasm (212/267, 79%) than in the nucleus 

(117/267, 44%) of these cells. Although cytoplasmic expression of TS was similar in both 

NSCLC histologic types (Table 2), nuclear expression was significantly higher (P=0.003) in 

SCCs (mean score: 13.8, SD 27.7) than in adenocarcinomas (mean score: 9.3, SD 27.1). The 

level of TS expression did not correlate with clinicopathologic characteristics, including RFS and 

OS. In all NSCLC, significantly (P=0.02) higher expression of nuclear TS immunostaining was 

detected in tumors with positive p53 expression (67/114, 58%) than in those with negative p53 

staining (65/147, 44%). In adenocarcinomas, there was no correlation between TS expression 

and EGFR or KRAS mutation status. 

We correlated the expression of TS and FRα in NSCLC tissue specimens. The score for 

nuclear TS expression correlated negatively with the score for cytoplasmic FRα expression in 

SCCs (r = -0.20; P=0.04), and showed marginally significant negative correlation with 

membrane FRα expression in adenocarcinomas (r = -0.16; P=0.05). When we examined the 

correlation of any expression (score >0) of both markers in tumors, we found that in SCCs 

expression of nuclear TS was significantly inversely correlated (P=0.03) with membrane 

expression of FRα, and that most tumors positive for TS (62/79, 79%) lacked membrane FRα 
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(Table 3). This correlation was not detected in adenocarcinomas. 

We determined the pattern of any expression (score >0) of membrane FRα and nuclear 

TS in both NSCLC tumor types. The most common expression pattern in adenocarcinomas was 

FRα-positive/TS-negative (68/155, 44%), whereas the most common expression pattern in 

SCCs was FRα-negative/TS-positive (43/99, 43%) (Table 3).  
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DISCUSSION 
 
Membrane transporters FRα and RFC1 are potential biomarkers of tumor response to 

antifolate chemotherapy. Information on the protein expression of these receptors in NSCLC is 

limited. Here, we report for the first time that NSCLC frequently overexpress FRα and RFC1 

proteins by studying a large series of cases with annotated clinico-pathologic information. 

Importantly, we report that tumor cells from lung adenocarcinoma histology expressed 

significantly higher levels of cytoplasmic and membrane FRα than squamous cell carcinoma, 

and tumors from never-smokers were significantly more likely to express cytoplasmic FRα than 

those from smokers. In lung adenocarcinomas, the presence of EGFR mutations correlated with 

higher expression of membrane FRα and FOLR1 gene expression. We postulate that this 

information may be useful in selecting which patients with NSCLC may benefit from and should 

receive treatment with antifolate inhibiting agents, including pemetrexed. 

In lung cancer, the factors and mechanisms associated with chemotherapy resistance 

are not well understood. In the past several years, several studies have shown that the 

mechanism associated with resistance to common chemotherapy drugs might be mediated by 

two broad mechanisms: failure of a sufficient amount of drug to reach the target, and failure to 

achieve cell death after the drug reaches the target (23). The underlying complex mechanisms 

by which chemotherapy agents enter into cells remain poorly defined. It has been established 

recently that, among other factors, some cell membrane transporters may play important roles 

in chemotherapy drug influx (24, 25).  

Our study showed that RFC1 is expressed frequently in malignant cells of NSCLC tumor 

tissues.  The only report available on the expression of RFC1 in human tumors showed 

relatively high levels of mRNA gene expression in NSCLC, with similar expression in 

adenocarcinomas and SCCs (26). These data are consistent with our protein expression data 

showing that levels of expression of RFC1 were similar in the two histologic types.  
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Interestingly, in our study the expression of membrane and cytoplasmic FRα was 

significantly higher in adenocarcinomas than in SCCs. FRα has been shown by 

immunohistochemical studies to be overexpressed in several epithelial tumors (26-30). 

However, to the best of our knowledge, there is not published report of FRα protein expression 

in NSCLC tumors and correlation with clinical and pathological features. Our protein expression 

findings agree with the significantly higher levels of expression of FLOR1 (FRα gene) mRNA in 

adenocarcinomas than in SCCs in all four public microarray datasets available (16-19). Similar 

findings have been reported in a quantitative (q)PCR study of mRNA expression of 119 NSCLC 

tissue specimens (26). 

The findings of higher levels of FRα protein and FLOR1 mRNA expression in 

adenocarcinomas than in SCCs of the lung may have important clinical implications. The higher 

level of FRα protein expression in adenocarcinoma cells may explain the better response of 

advanced NSCLC of nonsquamous histology when treated with the combination of cisplatin and 

the multitargeted antifolate agent pemetrexed (4). However, this needs to be further tested in 

NSCLC tumor tissue specimens obtained from patients treated with pemetrexed.   In addition, 

FRα is currently considered an attractive target for biologic therapy in tumors in which it is 

overexpressed  such as ovarian cancer (31), by using FRα-specific approaches and inducing 

inhibition of growth under folate-limiting conditions to boost immunity to tumors (32).  

Our finding that NSCLCs of never-smokers have a higher expression of FRα than those 

of smokers is of interest. Our data showing significantly higher cytoplasmic and membrane FRα 

expression in NSCLCs obtained from never-smokers are in agreement with the previous report 

of higher levels of mRNA FLOR1 by qPCR in adenocarcinomas from nonsmokers and light 

smokers than in those from heavy smokers (26). These differences in the expression of FRα by 

smoking status are consistent with our findings of higher FRα expression in NSCLCs lacking 

p53 expression and in adenocarcinomas harbouring EGFR mutation, two features associated 
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with the pathogenesis of non−smoking-related lung cancer (33). Of interest, the analysis of the 

publicly available microarray data confirmed at mRNA gene expression level our observation 

that EGFR mutant adenocarcinoma tumors expressed higher levels of FRα protein. There are 

not data available on the response to antifolate chemotherapy agents in lung adenocarcinomas 

based on EGFR mutation status.  However, it has been shown that advanced stage 

adenocarcinoma harbouring this mutation showed improved response to other type of 

(carboplatin and paclitaxel) chemotherapy (34). 

Because of their roles in metabolism of the chemotherapy agent pemetrexed (5, 37), we 

correlated the expressions of TS and FRα in NSCLC tissue specimens by histologic type. As 

previously reported (38, 39), TS protein was expressed frequently in the nucleus (44%) and 

cytoplasm (79%) of malignant NSCLC cells. In our analysis we determined that nuclear 

expression was significantly higher in SCCs than in adenocarcinomas. Ceppi et al (38) 

previously reported that immunohistochemical expression of TS mRNA and protein was 

significantly higher in SCCs of the lung than in adenocarcinomas. In this previously reported 

immunohistochemical analysis, however, expression of TS in the malignant cells was not 

distinguished as nuclear or cytoplasmic. It has been shown that low levels of TS mRNA 

expression significantly correlated with in vitro chemosensitivity of freshly explanted human 

tumor specimens to pemetrexed (40). Although there are no data available on the predictive 

value of TS mRNA and protein expressions in NSCLC response to pemetrexed, it has been 

hypothesized that the higher expression of TS observed in SCCs explains the lower rate of 

response to pemetrexed in this NSCLC type (4). 

 When we correlated the two potential markers, FRα and TS protein expression, with 

response to pemetrexed, we found that in SCCs the expression of nuclear TS had a significant 

inverse correlation with expression of membrane FRα, and most TS-positive SCCs (79%) 

lacked membrane FRα immunostaining. Furthermore, we speculate that the more frequent 
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occurrence of the FRα membrane-negative/TS nuclear-positive expression pattern in lung 

SCCs than in adenocarcinomas could be associated with the lower response rate to 

pemetrexed in this tumor type. In contrast, in adenocarcinomas the most frequent pattern 

detected was FRα membrane-positive/TS nuclear-negative which could correlate with the 

higher response to this drug in gystology type. 

In summary, our findings indicate that membrane transporter FRα and RFC1 proteins 

are frequently overexpressed in NSCLC tissues. The higher level of FRα in adenocarcinomas 

than in SCCs may help explain differences in efficacy of antifolate chemotherapy between these 

tumor types. We postulate that this information may be useful in selecting which patients with 

NSCLC may benefit from and should receive treatment with antifolate inhibiting agents, 

including pemetrexed.
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FIGURE LEGENDS 

Figure 1. Photomicrographs showing immunohistochemical expression of FRα, FRC1 and TS 

in NSCLC tissue specimens by histologic type. FRα: A, strong cytoplasmic and membrane 

expression in tumor cells; B and C, moderate expression in tumor cells; D, lack of expression in 

malignant cells. RFC1: E and G, strong cytoplasmic expression in malignant cells. TS: F and H, 

negative and moderate cytoplasmic and nuclear expression in tumor cells, respectively. Original 

magnification, ×200.  

 

Figure 2. FRα expression scores by tumor histology. In the box-plots, black bar indicates 

median scores.  

 

 
Figure 3. FOLR1 mRNA expression scores in lung adenocarcinoma by EGFR mutation status 

using two publicly microarray datasets available (20). In the box-plots, small open box indicates 

median mRNA expression scores.  

 
 



Table 1. Summary of clinicopathologic features of patients with NSCLC examined for membrane transporter 
expression. 
 
 
Feature 

 
NSCLC Histologic Type 

 
Squamous Cell Carcinoma

(n = 118)
Adenocarcinoma 

(n = 202)
Total

(n = 320)
 
Mean age, years (SD), 
(range) 

 
68.4 (9.20), (43-90) 

 
64.9 (11.5), (33-88) 

 
66.2 (10.85), (33-90) 

    
Sex    

Male 73 77 150
Female 45 125 170

    
Smoking status†    

Never 4 52 56
Ever 113 150 263

    
TNM stage    

I 62 134 196
II 36 25 61
III 18 36 54
IV 2 7 9

† Smoking status and history were not available for one patient with squamous cell carcinoma.  
 



Table 2. Frequency of membrane transporters and thymidylate synthase (TS) immmunohistochemical expression in NSCLC by 
tumor histology 
 
 
Marker 

  
Any Expression (Score > 0) Average Score

 
 Squamous Cell 

Carcinoma 
Positive/Total (%) 

Adenocarcinoma
 

Positive/Total (%)

P 
Value* 

Squamous Cell 
Carcinoma 
Score (SD) 

Adenocarcinoma
 

P 
Value† 

 
FRα 

      

Cytoplasm 63 / 110 (57%) 152 / 174 (87%) < 0.001 35.9 (40.3) 91.6 (66.4) < 0.001
Membrane 29 / 110 (26%) 107 / 174 (61%) < 0.001 11.29 (28.8) 72.2 (89.0) < 0.001

       
RFC1       

Cytoplasm 110 / 112 (98%) 181 / 182 (99%) 0.56 153.2 (72.0) 162.7 (83.2) 0.34
Membrane 103 / 112 (92%) 164 / 182 (90%) 0.68 119.2 (86.1) 128.1 (95.9) 0.59

        
TS       

Cytoplasm 82 / 102 (80%) 130 / 165 (79%) 0.75 55.6 (42.0) 52.2 (40.1) 0.565
Nuclear 59 / 102 (58%) 58 / 165 (35%) 0.0003 13.8 (27.7) 9.3 (21.1) 0.0043

*Fisher’s exact test 
†Wilcoxon rank-sum test 
 



 

Table 3. Frequency of membrane FRα and thymidylate synthase (TS) immmunohistochemical 
expression in NSCLC tumor tissues by histology 
 
Expression Pattern Squamous Cell Carcinoma

Positive (%) 
n = 99

Adenocarcinoma
Positive (%) 

n = 155  
   
FRα / TS Nuclear   

Positive / Positive 14 (14%) 29 (9%) 
Positive / Negative 12 (12%) 68 (44%) 
Negative / Positive 43 (43%) 25 (16%) 
Negative / Negative 30 (30%) 33 (21%) 

   
FRα / TS Cytoplasm   

Positive / Positive 17 (17%) 73 (47%) 
Positive / Negative 9 (9%) 24 (16%) 
Negative / Positive 62 (63%) 49 (32%) 
Negative / Negative 11 (11%) 9 (6%) 
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Abstract 
 

Purpose 

The requirement of frozen tissues for microarray experiments limits the clinical usage 

of genome-wide expression profiling using microarray technology. The goal of this 

study is to test the feasibility of developing lung cancer prognosis gene signatures 

using genome-wide expression profiling of formalin-fixed paraffin-embedded (FFPE) 

samples, which are widely available and provide a valuable rich source for studying the 

association of molecular changes in cancer and associated clinical outcomes.  

Patients and Methods 

We randomly selected 100 Non-Small-Cell lung cancer (NSCLC) FFPE samples with 

annotated clinical information from the UT-Lung SPORE Tissue Bank.  We micro 

dissected tumor area from FFPE specimen, and used Affymetrix U133 plus 2.0 arrays 

to attain gene expression data. After strict quality control and analysis procedures, a 

supervised principal component analysis was used to develop a robust prognosis 

signature for NSCLC. Three independent published microarray data sets were used to 

validate the prognosis model.  

Results 

This study demonstrated that the robust gene signature derived from genome-

wide expression profiling of FFPE samples is strongly associated with lung cancer 

clinical outcomes, can be used to refine the prognosis for stage I lung cancer patients 

and the prognostic signature is independent of clinical variables. This signature was 

validated in several independent studies and was refined to 59-gene lung cancer 

prognosis signature.   
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Conclusion 

We conclude that genome-wide profiling of FFPE lung cancer samples can identify a 

set of genes whose expression level provides prognostic information across different 

platforms and studies, which will allow its application in clinical settings.  
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Introduction 

Lung Cancer is the leading cause of death from cancer for both men and 

women in the United States and in most parts of the world, with 5-year survival rate of 

15% 1. Non-small-cell lung cancer (NSCLC) is the most common cause of lung cancer 

death, accounting for  up to 85% of such deaths 2. Clinical-pathologic staging is the 

standard prognosis factor for lung cancer used in clinical practice, but does not capture 

the complexity of the disease so that heterogeneous clinical outcomes within the same 

stage are commonly seen. Several randomized clinical trials showed that adjuvant 

chemotherapy improves survival in resected NSCLC 3-8.  The effect of adjuvant 

chemotherapy on prolonging survival is modest - only 4-15% improvement in 5-year 

survival, while such treatment is associated with serious adverse effects 3, 7, 9-10

Genome-wide expression profiles have been used to identify gene signatures to 

classify lung cancer patients with different survival outcomes 

. 

Therefore, it is of considerable clinical importance to have a robust and accurate 

prognostic signature for lung cancer, especially in early stage lung cancer to improve 

the current clinical decisions on whether an individual lung cancer patient should 

receive adjuvant chemotherapy or not.  

11-20.  However, the 

requirement of frozen tissues for microarray experiments limits the clinical usage of 

these gene signatures. Furthermore, prognostic gene signatures for NSCLC developed 

by different groups show minimal overlap, and are often difficult to reproduce by 

independent groups 21-22. To address the problem of requirement for frozen issues, we 

designed this study to test the feasibility of developing lung cancer prognosis gene 

signatures using genome-wide expression profiling of formalin-fixed paraffin-
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embedded (FFPE) samples, which are widely available and provide a valuable rich 

source for studying the association of molecular changes in cancer and associated 

clinical outcomes. We derived a prognosis signature for NSCLC from FFPE samples 

and validated it in several independent studies.  To facilitate other researchers to 

reproduce all results in this study, we have provided a literate programming R package.  

 

PATIENTS AND METHODS 

Patients  

The overall study design and the flow chart of the derivation and validation of 

the robust gene signature are described in Figure 1. We randomly selected 100 

NSCLC FFPE samples with annotated clinical information from the UT-Lung SPORE 

Tissue Bank from 2001-2005. From these samples, 75 samples passed the mRNA 

quality control criteria. Among these 75 samples, 48 samples are adenocarcinomas 

and 27 are squamous cell carcinomas. The median follow-up time is 2.8 years and the 

maximum follow-up time is 6.9 years; the characteristics of these patients are 

summarized in Supplementary Table 1.  The samples were obtained under approval 

of the institutional review boards at M.D. Anderson Cancer center.  

Sample microdissection and RNA extraction 

FFPE tumor specimens were cut into serial sections with a thickness of 10 μm. 

For the pathological diagnosis, one slide was stained with H&E and evaluated by a 

pathologist. Other sections were stained with nuclear fast red (NFR, American 

MasterTech Scientific Inc., Lodi, CA) to enable visualization of histology.  Tumor tissue 

was isolated using manual macro-dissection when the tumor area was > 0.5 x 0.5 mm 

or laser capture microdissection (P.A.L.M. Microlaser Technologies AG, Munich, 
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Germany) in cases of smaller tumor areas.  At least 50 mm2

Microarray data preprocessing and quality control.   

 of tumor tissue was 

collected from each FFPE block. The extraction of RNA from tissue samples was done 

by a proprietary procedure of Response Genetics, Inc. (United States Patent 

Application 20090092979) designed to optimize the yield of higher molecular weight 

RNA fragments from FFPE specimens.  

Total RNA was processed for analysis on the Affymetrix U133 plus 2.0 arrays 

according to Affymetrix protocols for first- and second-strand synthesis, biotin labeling 

and fragmentation.  The quality control procedure for microarray data analysis was 

based on the percentage of present calls calculated by the MAS5 package. We 

selected arrays with at least 15% of probe sets present; 55 out of 75 arrays passed 

this quality control criterion and will be used for the analysis. We selected probe sets 

that are present on all 55 arrays; 1400 genes past this criterion. These 1400 genes 

were referred as the robust gene set (RGS) since the mRNA expression of these 

genes are robust to FFPE processing.  The 55 samples and the 1400 genes were 

used to develop gene signatures.  

After microarray analysis QC, we used the RMA background correction 

algorithm 23 to remove non-specific background noise. A robust regression model 24 

was fitted to the probe level data, and the fitted expression values for the probes at the 

3’ end were used to summarize the probe set expression values.  Quantile-quantile 

normalization was used to normalize all the arrays. Consortium microarray raw data 15 

was downloaded from the National Cancer Institute’s caArray database and 

preprocessed by RMA background correction and quantile-quantile normalization. All 

gene-expression values were log-transformed (on a base 2 scale). 
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Supervised classification using supervised principal component analysis. 

Classification was performed using supervised principal component analysis 25-

26, a widely used classification method in biomedical research 27-30

Survival analysis.  

. As a supervised 

classification method, each prediction model was trained in a training data and then 

the performance was tested in an independent test dataset.  We used an R package 

(version 2.81), Superpc (version 1.05), to implement the prediction algorithm, and the 

default parameters were used. The implementation details can be found in the 

Supplementary Sweave Report. The training and testing sets for each prediction 

model are summarized in Supplementary Table 2. 

Overall survival time was calculated from the date of surgery until death or the 

last follow-up contact. Survival curves were estimated using the product-limit method of 

Kaplan-Meier 31 and were compared using the log-rank test. The maximum follow-up 

time for the FFPE patient cohort is less than 7 years, while some patients in the 

consortium cohort have been followed for up to 17 years. To avoid the extrapolation of 

the prediction model, the comparison of survival time between predicted groups are 

truncated at 7 years. The analysis results without truncation can be seen in 

Supplementary Sweave Report. Univariate and multivariate Cox proportional-

hazards analysis 32

Results 

 were also performed, with survival as the dependent variable.  

The robust gene set defines two tumor groups  

The expression of these 1400 genes divided the 55 patients into two groups 

based on unsupervised clustering analysis (with euclidean distance and complete 
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linkage for the hierarchical clustering algorithm) (Figure 2). Interestingly, group 1 has 

significantly shorter survival time compared to group 2 (Figure 2b, P=0.017) and 

multivariate Cox proportional-hazards analysis showed that the association between 

RGS groups and survival (P=0.012) is independent of stage. Notably, group 1 was 

dominated by squamous cell carcinoma (23/28), whereas group 2 was dominated by 

adenocarcinomas (25/27) (P<0.0001) (Supplementary Table 3). The other clinical 

characteristics including gender, age and smoking status were not significantly 

different between the two groups.  To explore whether the association between RGS 

groups and survival is due to the histology difference between two groups, we drew 

Kaplan-Meier curves by both histology and RGS groups (Supplementary Figure 1) 

and it shows clearly that RGS can distinguish high and low risk groups within both 

adenocarcinoma and squamous groups indicating the association of RGS groups and 

survival is independent of histology groups.  

We used gene set enrichment analysis (GSEA) to identify the enriched gene 

sets in both RGS groups. Interestingly, an estrogen receptor (ER) negative signature in 

breast cancer 33 is enriched in RGS group 1, meanwhile, an ER positive signature in 

breast cancer 33

 

 is enriched in RGS group 2 (Figures 2c and 2d) indicating the 

relationship between the ER signatures and the RGS groups.  The other enriched 

gene sets are summarized in Supplementary Table 4; notably, genes enriched in 

group 1 are also enriched in mouse neural stem cells and embryonic stem cells. 

Construct and validate RGS prognosis signatures 

FFPE samples training to testing. The strong associations between RGS groups and 

survival outcomes motivated us to explore whether RGS expression profile can be 
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used to construct prognosis signature. We randomly divided 55 patients into training 

(25 samples) and testing (30 samples) sets,  and constructed a prediction model using 

1400 robust gene expression values in the training set through a supervised principle 

component approach 25

Frozen samples training to testing. We then tested whether this robust gene set can be 

used to construct prognosis signature in frozen samples. The largest independent 

public available lung cancer microarray data set is the recently published NCI 

Director’s Consortium for study of lung cancer involving 442 resected 

adenocarcinomas 

. Figure 3a shows that the predicted low risk group has 

significant longer survival time than the predicted high risk group (P=0.013) in the 

testing set. To test if this association was not random, we randomly split the data into 

training and testing sets 200 times, repeated the same prediction and testing 

procedures for each set, and found that the prognosis performance of RGS signature 

is significantly better than random (P=0.02).  

15. From that study, Affymetrix U133A microarray data for the 1012 

robust genes were excerpted with 388 less genes than our FFPE data due to the 

microarray platform difference. We used the same training and testing strategy as in 

the original analyses of these data 15 for constructing and validating prognosis 

signature through supervised principal component approach.  The training set included 

samples from University of Michigan Cancer Center (UM) and Moffitt Cancer Center 

(HLM), and the testing set included the Memorial Sloan-Kettering Cancer Center (MSK) 

and Dana-Farber Cancer Institute (CAN/DF) samples.  This analysis revcealed that the 

predicted low risk group has significant longer survival time than the predicted high risk 

group (P=0.000013) in the testing dataset (Figure 3b). 
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FFPE to frozen samples and vice versa. Next, we used our FFPE and the consortium 

datasets as frozen samples to investigate whether the predication model built from one 

type of sample can be validated in another type of sample. Again, the same supervised 

principal component method was used to construct the prediction model. The 

prediction model built from FFPE samples can significantly distinguish the high and low 

risk groups in frozen samples (Figure 3c, P=5.4*10-7

 

), and the prediction model built 

from frozen samples can also distinguish the high and low risk groups in FFPE 

samples but with marginal significance (Figure 3d, P=0.068).  We also tested the 

performance of FFPE prediction model on four individual datasets in consortium study 

and found that the predicted low risk groups have longer survival time compared to the 

predicted high risk groups for all sets: MSKCC dataset (median survival time 6.5 vs. 

3.3 years; P=0.0093), DFCI dataset (median survival time 5.9 vs. 0.9 years; P=0.0076), 

HLM dataset (median survival time 3.4 vs. 2.2 years; P=0.4) and MI data set (median 

survival time 5.4 vs. 2.2 years; P=0.0011)  (Supplementary Figure 2).  

The RGS prognosis signature is independent of clinical variables  

To test whether RGS is an independent prognosis signature, we fitted a 

multivariate Cox regression model including RGS risk scores, age, gender, stage, 

smoking status, adjuvant chemotherapy usage and clinical sites as co-variables for the 

consortium data set. The RGS risk scores were calculated from the prediction model 

built from the FFPE samples set.  Table 1 shows that the RGS signature is 

significantly associated with the survival time after adjusting for other clinical variables 

(HR=1.3, P=0.007).  Pathological stages based on international staging system is the 

most widely used and important prognosis variable for lung cancer patients 34, here we 
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tested whether RGS signature can further refine the prognosis within each stage.  The 

RGS prognosis signature from FFPE samples was tested within each stage of the 

consortium dataset. The results show clearly that the RGS signature is significantly 

associated with survival outcome within each stage (Figure 3e to g; P=0.036 for stage 

I, P=0.022 for stage II and P=0.021 for stage III), indicating that the RGS signature can 

refine the prognosis for lung cancer patients. The RGS prognosis signature from FFPE 

samples was further tested for patients with or without adjuvant chemotherapy 

separately, and the results show clearly that the RGS signature is significantly 

associated with survival for both groups (Supplementary Figure 3 a,b; P=0.015 for 

patients with chemotherapy, P=0.00062 for patients without chemotherapy). 

 

Refine to 59-gene prognosis signature  

Among all the RGS genes, 131 genes are associated with survival (P<0.05) in 

the FFPE dataset, and 365 genes are associated with overall survival (P<0.05) in the 

consortium dataset by univariate Cox regression analysis. There is significant overlap 

between these two gene lists (Figure 4a; 59 common genes; P=0.0008, hyper-

geometric test). More significant genes were found in the consortium data compared to 

the FFPE data, which is likely due to the larger sample size (n=442) of the consortium 

dataset compared to the FFPE dataset sample size (n=55).  Surprisingly, hazard ratios 

from the two datasets are very consistent with each other.  All 59 genes have the same 

direction of effects (positive or negative) on the survival between the two data sets and 

the hazard ratios from two datasets are highly correlated (Pearson’s correlation = 0.86) 

(Figure 4b), indicating the high consistency of expressions of these genes across 

datasets.  These results motivated us to hypothesize that these 59 genes 
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(Supplementary Table 5) alone can be used for lung cancer prognosis. To test this 

hypothesis, we applied supervised principal component analysis to these 59 genes 

using the FFPE dataset to construct a 59-gene prognosis signature. Because the 

selection of these 59 genes used information from both FFPE and consortium datasets, 

we used another two independent lung cancer datasets including the Bild et al. 

(n=63) 11 dataset and the Bhattacharjee et al. dataset (n=117) 35

To understand the potential biological relevance of these 59 genes significantly 

associated with survival in the FFPE and consortium data sets, we used Ingenuity 

Pathway Analysis (IPA) to explore which known regulatory networks are enriched in 

this 59-gene set. IPA analysis revealed the most significant molecular network to be 

cancer, tumor morphology, and respiratory disease.  This network (Figure 4c) includes 

14 genes of the 59-gene set and is centered on transcription factors HNF4A, HNF1A, 

and ONECUT1 (HNF6A).  This hepatocellular network has been implicated in 

hepatocellular carcinoma as determined by in vitro study 

 downloaded from the 

literature to validate our 59-gene signature. The 59-gene prediction model built from 

FFPE samples can significantly distinguish the high and low risk groups for both the 

Bhattacharjee et al and Bild et al. data sets (Figure 5a, P=0.016 and Figure 5c, 

P=0.011, respectively).  Furthermore this signature can also significantly distinguish 

the high and low risk groups within stage I patients for both datasets (Figure 5b 5d) 

indicating this 59-gene signature can refine the prognosis for lung cancer patients 

within stage I patients. We also found that 59-gene prediction model built from the 

consortium dataset can also distinguish the high and low risk groups for the Bild et al. 

and Bhattacharjee et al datasets (Supplementary Figure 4 a-d). 

36 and molecular interactions 

in this network are putatively involved in lung cancer survival.  
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Discussion  

In this study, we tested the feasibility of deriving a lung cancer prognosis gene 

signature from formalin-fixed paraffin-embedded tumor samples based on genome-

wide mRNA expression profiling. Although RT-PCR method have been used to 

measure gene expression level from FFPE samples 37-39, the selection of genes for 

testing are limited to the current knowledge base which is incomplete and 

inconsistent 40. Due to degradation and chemical alteration of RNA extracted from 

FFPE samples, the use of microarray analysis of gene expression from FFPE samples 

has been hampered 40. New technology and methodologies developed to extract RNA 

from FFPE samples coupled with new array platforms have made it possible to 

measure gene expression from FFPE samples 37, 41-44.  A recent study demonstrated 

the feasibility of using DNA-mediated annealing, selection, extension and ligation 

(DASL) arrays with 6100 preselected genes to profile mRNA expression from 

hepatocellular carcinoma tissue 45

Most published gene signatures identified from different studies are usually very 

different and with little overlap. However, we found that there is significant overlap 

.  No prognosis signature for other types of cancer 

has been developed using microarray analysis of gene expression from FFPE 

extracted RNA. In this study, we built a robust gene signature for NSCLC based on 

microarray analysis of FFPE samples. We claim this is a robust gene signature 

because it has been validated in 6 independent published datasets including 4 sets 

from the consortium study and 2 additional studies from DFCI and Duke. We also built 

a prediction model using the same set of robust genes from frozen samples and 

validated the model in both frozen and FFPE samples.   
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among the robust genes associated with survival outcomes between the FFPE dataset 

and the consortium dataset (P=0.008). More impressively, the hazard ratios, indicating 

the strength of the association of genes expression and survival time, are highly 

consistent between two independent datasets. Our interpretation for this consistency 

across studies is that the gene expression variation across studies is a major 

contribution to signature differences across studies. In this study, we used strict quality 

steps to exclude genes that were not expressed in our FFPE samples.  This allowed 

for analysis of the remaining genes which had more stable expression patterns and 

were more robust to environment changes. Validation of our novel 59-gene signature 

prognostic for NSLC survival in two additional independent datasets further confirmed 

the robustness of these genes.  

Besides the prognostic signature, the predictive signatures to determine the optimal 

chemotherapy regimen for individual patients also have tremendous clinical benefit.  

Tumor samples from clinical trials data are important to develop predictive signatures 

to reduce the selection bias for evaluating treatment efficacy within signature groups.  

However, very limited frozen tumor samples are available from completed clinical trials, 

so no predictive signature for chemotherapy response developed from clinical trial data 

has been confirmed yet.  Our study demonstrated the feasibility of using FFPE 

samples for genome-wide mRNA profiling.  Therefore, this study provides an important 

step to construct and validate predictive signatures for chemotherapy response using 

the available FFPE samples from clinical trials in the future.      
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FIGURE LEGENDS 

Figure 1. (a) Flow chart of the derivation and validation of the robust gene signature 

from formalin-fixed and paraffin-embedded samples collected from M.D. Anderson UT-

Lung Cancer SPORE tissue bank.  (b) Flow chart of the derivation and validation of 

59-gene prognosis signature.  

 

Figure 2. Microarray analysis of the gene-expression profiles from formalin-fixed and 

paraffin-embedded (FFPE) lung tumor samples. (a) Unsupervised cluster analysis of 

the 55 FFPE lung cancer patient cohort using the expression profile of 1400 robust 

genes pass the microarray quality control criterion. Horizontal and vertical axes 

represent robust genes and lung cancer patient clusters, respectively. (b) Kaplan-

Meier plot showing the association of the expression of robust genes with patient 

survival P-values were obtained using the log-rank test. Red color represents sample 

Cluster I and black color represents sample Cluster II defined by unsupervised 

clustering algorithm using robust gene profiling data.  • indicates censored samples.  

Gene set enrichment analysis found that the ER negative signature derived from 

breast cancer patients is enriched in group 1 defined by RGS expression (c), and the 

ER positive signature derived from breast cancer patients is enriched in group 2 

defined by RGS expression (d). The y axis shows running ES scores for the specific 

gene set on the 1400 pre-ranked genes. The x axis shows the rank in the ordered 

dataset. The vertical lines represent the locations of the genes that in the specific gene 

set. 
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Figure 3. Kaplan-Meier plots showing the predictive power of the robust gene 

signature in training and testing sets from different sets. 55 FFPE tumor samples from 

M. D. Anderson Cancer Center were randomly divided into training (25 samples) and 

testing (30 samples) sets (a). Independent validation of the robust gene signature in 

the 442-frozen-sample cohort from multi-institute consortium. The microarray data sets 

were divided into two groups, one for the training and the other for the testing cohort 

according to the original paper (b). The training data is 55 FFPE tumor samples and 

the testing data set is 442-frozen-sample cohort from multi-institute consortium. The 

testing was done for all patients (c), stage I patients (e), stage II patients (f) and stage 

III patients (g) separately. The training data is 442-forzen-sample cohort from 

consortium data and the testing data is 55 FFPE samples from M.D. Anderson Cancer 

Center (d).  P values were obtained by the log-rank test. Red and black lines represent 

predicted high- and low-risk groups, respectively. • indicates censored samples. 

 

Figure 4. Comparison of individual gene effect across FFPE samples from M, D. 

Anderson Cancer Center and 442 frozen samples from consortium.  (a) Venn-diagram 

of genes associated with overall survival (P<0.05 in univariate Cox regression models). 

It shows 59 genes are significantly associated with survival in both FFPE data and 

consortium data.  (b) The hazard ratios from univariate Cox regression models for the 

59 genes common in both sets are consistent between FFPE set and consortium set. 

(c) Regulatory gene and protein interaction networks defined by the 59 predictors. 

Computational molecular interaction network prediction based on genes and proteins 

associated with the significant pathways in the Ingenuity Pathways Knowledge Base 

(IPKB) by Ingenuity Pathways Analysis (IPA). Interactions between the different nodes 
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are given as solid (direct interaction) and dashed (indirect interaction) lines (edges) 

with various colors for the different interaction types. This network received the highest 

score by IPA and is mostly centered on the transcription factors HNF4A and HNF1A, 

and ONECUT1. The genes with shades are the genes belonging to 59-gene signature.   

 

Figure 5. Kaplan-Meier plots showing the predictive power of the 59-gene signature 

for two independent validation sets. The training data is 55 FFPE tumor samples from 

M.D. Anderson Cancer Center and the testing data set is frozen samples from lung 

cancer patients from Bhattacharjee et al 35 dataset (a), the stage I patients from 

Bhattacharjee et al dataset  (b), frozen samples from lung cancer patients from Bild et 

al 11 dataset (c), and the stage I patients from Bild et al dataset (d).  P values were 

obtained by the log-rank test. Red and black lines represent predicted high- and low-

risk groups, respectively. • indicates censored samples. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Kaplan-Meier survival plots for different histology (a) and 

histology combined with RGS groups defined by expression of 1400 robust genes in 

M.D. Anderson Cancer Center  patients (b). P values were obtained by log-rank test. 

Red and black lines represent predicted high- and the low-risk groups, respectively. 

Solid and dash lines represent adenocarcinoma and squamous groups, respectively.  

• indicates censored samples. 

 

Supplementary Figure 2. Kaplan-Meier plots showing the predictive power of the 

robust gene signature from different sets. The training data is 55 FFPE tumor samples 

and the testing data sets are frozen samples from 4 institutions in the consortium data: 

MSKCC (a), DFCI (b), MI (c) and HLM (d).  P-values were obtained by the log-rank 

test. Red and black lines represent predicted high- and low-risk groups, respectively. • 

indicates censored samples. 

 

Supplementary Figure 3. Kaplan-Meier plots showing the predictive power of the 

robust gene signature for patients with (a) and without (b)chemotherapy. The training 

data is 55 FFPE tumor samples and the testing data sets are frozen samples the 

consortium data.  P-values were obtained by the log-rank test. Red and black lines 

represent predicted high- and low-risk groups, respectively. • indicates censored 

samples. 
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Supplementary Figure 4 Kaplan-Meier plots showing the predictive power of the 59-

gene signature for two independent validation sets. The training data is the 442-frozen-

sample cohort from multi-institute consortium dataset, and the testing data set is frozen 

samples from Bhattacharjee et al dataset 35  (a), the stage I patients from 

Bhattacharjee et al dataset  (b), frozen samples from lung cancer patients from Bild et 

al dataset 11 (c), and the stage I patients from Bild et al dataset (d). P values were 

obtained by the log-rank test. Red and black lines represent predicted high- and low-

risk groups, respectively. • indicates censored samples. 
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SUPPLEMENTARY METHODS 

RNA extraction. The extraction of RNA from tissue samples was done by a 

proprietary procedure of Response Genetics, Inc. (United States Patent Application 

20090092979) designed to optimize the yield of higher molecular weight RNA 

fragments from FFPE specimens.  In brief, tissue samples to be extracted are 

incubated for 16 hr at 50 C in a solution of 20 mM Tris, pH 8.0, 3.6 mM EDTA, 1% 

SDS containing 1 µg/mL of proteinase K. After mixing this solution with 

phenol/chloroform/isoamyl alcohol (PCI) and  glycogen, the RNA is precipitated by 

addition of isopropanol, centrifuged down and washed with ethanol. A second 

precipitation is then carried out to further purify the RNA from contaminating DNA.  The 

RNA pellet is mixed with 0.5% sarcosine - guanidine isothiocyanate (GITC), 20 mM 

DTT solution, 50 μL of 5 mM Tris and 50 μL of 2M sodium acetate followed by PCI 

extraction and precipitation of the RNA with glycogen and isopropanol. After washing it 

with ethanol, the RNA pellet is dissolved in 5 mM Tris, pH 7.5. The concentration of 

nucleic acids in the preparation (the yield) is measured by reading the absorbance at 

260 nm in a Nanodrop 2000 (Thermo Scientific) and the purity of the RNA is estimated 

by the 260/280 absorbance ratio.  A quality control procedure is then done (see below) 

to ascertain the amount of “higher quality” (250 bp and greater) RNA and the amount 

of DNA contamination.   

RNA quality control. RNA isolated from FFPE tissue is generally quite extensively 

fragmented. We found that a certain level of 300 base-length or greater RNA 

fragments in the RNA preparation was critical to the success of microarray analysis of 

FFPE tissues. Therefore, each RNA isolation was checked to determine if its content 

of the higher molecular weight RNA reached the required level. The isolated RNA is 
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converted to cDNA as previously described 46 except that oligo dT primers are used. 

Thus, only mRNA fragments containing a 3’-oligo A tail will be extended and converted 

to cDNA, thereby providing a starting point from which to measure fragment length.  

PCR amplification of β-actin mRNA was used to represent the total population of 

mRNA.  Primers were chosen to amplify approximately 85 base-length segments of 

the β -actin gene representing locations approximately 300 and 400 bases from the 3’-

end of the mRNA.  The PCR primer sequences were as follows: for the segment 206-

293 bases from 3’ end, GCCACCCCACTTCTCTCTAAGG, 

ATAATTTACACGAAAGCAATGCTATCAC, 6FAM-

ATGGCCCAGTCCTCTCCCAAGTCCA; for the segment 322-407 from 3’ end, 

CATCCCCCAAAGTTCACAATGT,CAATGCATCTCATATTTGGAATGACT, 6FAM-

CAACAATGTGCAATCAAAGTCCTCGGC. PCR was carried out as previously 

described 46

Hybridization of RNAs to oligonucleotide arrays.  

.  Based on our experience, we judged the RNA preparation to be suitable 

for the microarray if the β-actin Ct for both amplicons was 31 cycles or less. To assess 

DNA contamination, PCR was performed on the RNA solution without first performing 

reverse transcription (i.e., a “no-RT” control).  Thus, any signal here would be due to 

DNA contamination. We judged a preparation to be suitable for the microarray if the β-

actin Ct in the no-RT control was at least 3 cycles less than that of the cDNA 

preparation.   

Total RNA was processed for analysis on the Affymetrix U133 plus 2.0 arrays 

according to Affymetrix protocols for first- and second-strand synthesis, biotin labeling 

and fragmentation.  Genechip®Two-Cycle cDNA Synthesis kit from Affymetrix was 

used according to the manufacturer’s protocol for amplification of signal.  Samples 
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were hybridized to the arrays overnight at 45°C, rotating at 60 r.p.m., and were washed 

and scanned as per the Affymetrix protocol. 

Gene set enrichment and pathway analysis. The fold changes of expression values 

between RGS group 1 and group 2 was used to rank the genes and then applied to 

Gene set enrichment analysis (GSEA) software to test which gene sets are enriched in 

RGS group 1 and group 2. GSEA and Ingenuity Pathway Analysis were applied to the 

1400-gene list to test which gene sets and pathways are enriched in the 1400 robust 

gene set.  

Sweave  report. In order to allow others to reproduce any or all parts of our statistical 

analyses, we used Sweave to generate our program and report. Sweave is a literate 

programming R package for reproducible research; it embeds R code inside LaTeX 

and replaces the code with the result of running the code.  The complete Sweave 

report is included in the supplemental material. 
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Table 1 The association between patients’ characteristics and RGS risk scores and survival time for consortium 
patients based on multivariate Cox regression model. (RGS scores were calculated from the prediction model 
built from MDACC FFPE samples) 
 

Variables HR (95% CI) p-value 
 

RGS risk scores  1.300  (1.074, 1.574)  0.0070  
Gender  (Male vs. Female)  0.803  (0.576, 1.119)  0.1948  
Age  (continuous in unit of 10 years)  1.571  (1.321, 1.868)  <.0001  
Smoking  (Current/Former vs. Never)  1.356  (0.791, 2.322)  0.2677  
Stage   
    Stage II  vs. stage I  2.116  (1.433, 3.126)  0.0002  
    Stage III vs. stage I  4.855  (3.164, 7.449)  <.0001  
Adjuvant Chemotherapy  (Yes vs. No)  1.688  (1.172, 2.431)  0.0049  
Study sites    
     DFCI vs. MI  1.295  (0.741, 2.264)  0.3634  
     HLM vs. MI  1.632  (1.094, 2.434)  0.0163  
     MSKCC vs. MI  0.657  (0.419, 1.031)  0.0679  

 
 



Supplementary Table 1 The characteristics of patients from MDACC  
Feature Cohort 

(n=75) 
Age (y)  
           Median 65 
           Range 32 - 82 
           Mean 64.2 
Gender  
           Female 27 
           Male 48 
Race  
          Caucasian 71 
          Hispanic 1 
          Black 2 
          Asian 1 
TNM Stage  
            I 34 
            II 19 
            III 22 
Histology type  
            Adenocarcinomas 48 
            Squamous cell carcinoma  27 
Smoking history  
          No 7 
          Yes 68 
Adjuvant chemotherapy  
          No 28 
          Yes 47 
Follow-up times (y)  
           Median 2.76 
           Range 0.24 – 6.87 
           Mean 2.79 

Abbreviations: TNM, tumor size, node involvement, metastasis status. 



Supplementary Table 2. The summary of all the training and testing sets, the P-values of log-rank tests 
between the predicted high and low risk groups for all the prediction models derived and validated in this study.  
 

Figure Training Testing P-value  

3A FFPE training (N=25) FFPE testing (N=30) 0.013 
3B Consortium training 

(N=255) 
Consortium testing (N=187) 1.3E-5 

3C FFPE (N = 55) Consortium (N=442) 5.4E-7 
3D Consortium (N=442) FFPE (N = 55) 0.068 
3E FFPE (N = 55) Consortium stage I (N=215) 0.036 
3F FFPE (N = 55) Consortium stage II (N=82) 0.022 
3G FFPE (N = 55) Consortium stage III (N=64) 0.021 
5A FFPE (N = 55) Bhattacharjee et al (N=117) 0.016 
5B FFPE (N = 55) Bhattacharjee et al stage I (N=70) 0.039 
5C FFPE (N = 55) Bild et al (N=63) 0.011 
5D FFPE (N = 55) Bild et al stage I(N=30) 0.024 
S2A FFPE (N = 55) MSKCC (N= 93) 0.0093 
S2B FFPE (N = 55) DFCI (N= 64) 0.0076 
S2C FFPE (N = 55) MI (N= 133) 0.0011 
S2D FFPE (N = 55) HLM (N= 69) 0.40 
S3A Consortium (N=442) Bhattacharjee et al (N=117) 0.011 
S3B Consortium (N=442) Bhattacharjee et al stage I (N=70) 0.037 
S3C Consortium (N=442) Bild et al (N=63) 0.084 
S3D Consortium (N=442) Bild et al (N=30) 0.10 

 
  
 



Supplementary Table 3 The association between patients’ characteristics and RGS groups defined from 
unsupervised clustering analysis for MDACC patients. P-values for age is based on Wilcoxon test and for other 
categorical variables are based on Fisher’s exact test.  
 

Characteristics Group 1 Group 2 p-value 
Age (median) 65 65 0.47  
Male  21 (75%) 17 (63%) 0.57 
Current Smoker 17 (61%) 12 (44%) 0.22 
Stage 
           I 
           II 
           III 

 
10 (36%) 
8 (28%) 
10 (36%) 

 
14 (52%) 
6 (22%) 
7 (26%) 

 
0.51 

Histology 
           Adenocarcinoma 
            Squamous 

 
5 (18%) 
23 (82%) 

 
25 (93%) 
2 (7%) 

 
1.3E-8 

 



Supplementary Table 4. The top gene sets enriched for RGS group 1 and group2 based on gene set enrichment 
analysis. 
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Supplementary Table 5. 59-genes and the association with survival in both FFPE and Consortium set.  
Acession Symbol Hazard Ratio 

from FFPE set 
p-value from 

FFPE set 
Hazard Ratio from 

consortium set 
p-value from 

consortium set 
NM_002107 H3F3A 0.30 0.034 0.57 0.019 
NM_031263 HNRNPK 3.23 0.018 1.73 0.019 
NM_002156 HSPD1 2.23 0.010 1.82 0.000 
NM_003472 DEK 3.89 0.005 1.43 0.004 
NM_016587 CBX3 3.17 0.002 1.78 0.000 
NM_173638 NBPF15 0.19 0.008 0.53 0.001 
NM_001677 ATP1B1 0.61 0.023 0.87 0.028 
NM_005003 NDUFAB1 1.99 0.017 1.57 0.008 
NM_005124 NUP153 4.93 0.012 1.52 0.006 
NM_004390 CTSH 0.57 0.017 0.69 0.000 
NM_014736 KIAA0101 2.04 0.011 1.47 0.000 
NM_000935 PLOD2 1.82 0.019 1.22 0.000 
NM_012322 LSM5 4.64 0.000 1.90 0.000 
NM_002485 NBN 3.39 0.030 1.45 0.012 
NM_002453 MTIF2 2.11 0.046 1.42 0.021 
NM_002789 PSMA4 3.34 0.022 1.31 0.049 
NM_004607 TBCA 3.56 0.026 1.60 0.004 
NM_006660 CLPX 4.05 0.017 1.74 0.000 
NM_002137 HNRNPA2B1 2.25 0.023 1.83 0.009 
NM_001918 DBT 0.25 0.031 0.65 0.001 
NM_003096 SNRPG 2.35 0.019 1.67 0.000 
NM_003090 SNRPA1 1.95 0.035 1.52 0.003 
NM_030881 DDX17 0.17 0.001 0.48 0.000 
NM_007208 MRPL3 2.43 0.015 1.42 0.006 
NM_002129 HMGB2 1.89 0.025 1.33 0.001 
NM_018947 CYCS 2.58 0.027 2.04 0.000 
NM_005596 NFIB 0.49 0.013 0.75 0.001 
NM_007100 ATP5I 2.20 0.037 1.52 0.016 
NM_015149 RGL1 0.44 0.023 0.69 0.000 
NM_170662 CBLB 0.42 0.004 0.79 0.036 

AL136621 ZMYM2 0.44 0.009 0.56 0.016 
NM_006082 TUBA1B 2.44 0.047 1.63 0.005 
NM_000712 BLVRA 0.32 0.040 0.73 0.017 
NM_033551 LARP1 4.72 0.018 1.82 0.001 
NM_015335 MED13L 0.41 0.036 0.78 0.037 
AK057191 IDS 0.42 0.032 0.77 0.015 

NM_002076 GNS 0.44 0.017 0.68 0.009 
NM_005177 ATP6V0A1 0.27 0.015 0.60 0.001 
NM_015962 FCF1 3.18 0.007 1.34 0.043 
NM_033450 ABCC10 0.28 0.025 0.66 0.001 
NM_198843 SFTPB 0.68 0.013 0.85 0.000 

NM_001037637 BTF3 2.74 0.047 1.39 0.020 
NM_148923 CYB5A 0.49 0.010 0.79 0.000 
NM_016061 YPEL5 0.23 0.013 0.66 0.004 
NM_016021 UBE2J1 0.26 0.041 0.76 0.044 
NM_014056 HIGD1A 3.24 0.009 1.36 0.026 
NM_016359 NUSAP1 2.00 0.037 1.31 0.000 
NM_021825 CCDC90B 3.17 0.018 1.28 0.010 
NM_014167 CCDC59 2.55 0.039 1.67 0.000 
NM_013341 OLA1 5.07 0.001 1.58 0.000 
NM_030793 FBXO38 0.39 0.021 0.72 0.011 
NM_003677 DENR 3.55 0.011 1.34 0.041 
NM_144567 ANGEL2 0.18 0.004 0.69 0.011 

CR601845 N4BP2L2 0.40 0.009 0.73 0.003 
NM_182746 MCM4 2.72 0.001 1.37 0.000 
NM_001991 EZH1 0.31 0.034 0.45 0.000 
NM_015349 KIAA0240 0.57 0.049 0.54 0.000 



NM_001040455 SIDT2 0.41 0.015 0.74 0.031 
NM_001012339 DNAJC21 0.20 0.034 0.27 0.001 

 



Supplementary Table 5. The summary of all the training and testing sets, the P-values of log-rank tests 
between the predicted high and low risk groups for all the prediction models derived and validated in this 
study.  
 

Figure Training Testing P-value  

3A FFPE training (N=25) FFPE testing (N=30) 0.013 
3B Consortium training 

(N=255) 
Consortium testing (N=187) 1.3E-5 

3C FFPE (N = 55) Consortium (N=442) 5.4E-7 
3D Consortium (N=442) FFPE (N = 55) 0.068 
3E FFPE (N = 55) Consortium stage I (N=215) 0.036 
3F FFPE (N = 55) Consortium stage II (N=82) 0.022 
3G FFPE (N = 55) Consortium stage III (N=64) 0.021 
5A FFPE (N = 55) Bhattacharjee et al (N=117) 0.016 
5B FFPE (N = 55) Bhattacharjee et al stage I (N=70) 0.039 
5C FFPE (N = 55) Bild et al (N=63) 0.011 
5D FFPE (N = 55) Bild et al stage I(N=30) 0.024 
S2A FFPE (N = 55) MSKCC (N= 93) 0.0093 
S2B FFPE (N = 55) DFCI (N= 64) 0.0076 
S2C FFPE (N = 55) MI (N= 133) 0.0011 
S2D FFPE (N = 55) HLM (N= 69) 0.40 
S3A Consortium (N=442) Bhattacharjee et al (N=117) 0.011 
S3B Consortium (N=442) Bhattacharjee et al stage I (N=70) 0.037 
S3C Consortium (N=442) Bild et al (N=63) 0.084 
S3D Consortium (N=442) Bild et al (N=30) 0.10 
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 ABSTRACT 

Purpose. We studied the role of vascular endothelial growth factor-2 (VEGFR2) 

gene (KDR) abnormalities in malignant cells of surgically resected non-small cell 

lung carcinoma (NSCLC) tissues and correlated with patients’ outcome after 

treatment with platinum adjuvant chemotherapy. 

Patients and Methods. We studied tissues obtained from 248 surgically 

resected NSCLCs. KDR copy number gain (CNG) was examined by quantitative 

PCR and fluorescence in situ hybridization. VEGFR2 expression and 

microvascular density were studied by immunohistochemistry. VEGFR2 levels 

were quantified in 63 NSCLC cell lines by reverse phase protein array and 

correlated with in vitro sensitivity to cisplatin and carboplatin. KDR mutation 

(exons 7, 11 and 21) and single nucleotide polymorphisms (SNPs) 889G/A, 

1416A/T and -37A/G were genotyped by PCR-based sequencing. 

Results. Malignant cells demonstrated KDR CNG in 32% of NSCLC tumors. 

KDR CNG in malignant cells was associated with poor overall survival (OS) 

(HR=4.0; P=0.001) and worse recurrence-free survival (HR=1.83; P=0.044) in 

multivariate analysis. KDR CNG predicted worse OS (HR=5.16; P=0.003) in 

patients who received platinum adjuvant therapy but not in untreated patients 

(P=0.349). Higher VEGFR2 expression levels in cell lines significantly correlated 

with resistance to cisplatin (P=0.0005) and carboplatin (P=0.005). KDR mutations 

were not detected in NSCLC tumor tissues. The KDR variant genotypes SNPs 

1416 AT/TT and -37 AG/GG were associated with a favorable OS in lung 

adenocarcinoma. 

Conclusion. The association between KDR CNG and worse outcome in 

platinum adjuvant therapy-treated NSCLC patients suggests that might be a 

potential biomarker for predicting the efficacy of adjuvant chemotherapy in this 

disease.   
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INTRODUCTION

Tumor growth is critically dependent on neovascularization, which is a 

well-established aspect of cancer biology.1 The ligand vascular endothelial 

growth factor (VEGF) is an endothelial cell-specific mitogen known to be a highly 

potent and specific mediator of angiogenesis, and has two identified receptors. 2-4 

The VEGF receptor 2 (VEGFR2) coded by the gene KDR (located in 4q12) is the 

predominant mediator of VEGF-stimulated endothelial cell functions, including 

cell migration, proliferation, survival, and enhancement of vascular 

permeability.5,6 VEGFR2 exhibits robust protein-tyrosine kinase activity in 

response to the VEGF ligand.7  

In human epithelial tumors, including lung, VEGFR2 has shown to be 

expressed in malignant cells as well as in the endothelial cell of tumor 

vasculature.8-11 In non-small cell lung carcinoma (NSCLC), VEGFR2 has been 

found to be overexpressed in malignant cells of tumor tissues, and associated 

with a poor outcome.8-11 Recently, a relatively high frequency (9%) of mutation 

and amplification of KDR has been detected in lung adenocarcinoma histology.12 

however, the presence of these abnormalities in squamous cell carcinomas of 

the lung is unknown. In addition, there is no data available on the correlation of 

KDR abnormalities with tumor and patients’ characteristics in lung cancer, 

including outcome and response to therapy. 

The objective of this study was to characterize the molecular abnormalities 

of VEGFR2 in epithelial malignant cells of NSCLC major histology types 

adenocarcinoma and squamous cell carcinoma, and correlate with patients’ 
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clinical characteristics. We studied KDR copy number gain (CNG), mutation and 

genetic variations in malignant cells of surgically resected NSCLC tumor tissues 

and correlated with tumor’s pathological features and with patient’s platinum 

adjuvant treatment and outcome. 
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MATERIALS AND METHODS  

Case Selection. We obtained archived frozen and formalin-fixed and paraffin-

embedded (FFPE) tissues from NSCLC surgically resected with curative intent 

from the Lung Cancer Specialized Program of Research Excellence (SPORE) 

tissue bank at The University of Texas M. D. Anderson Cancer Center (Houston, 

TX). The tissue banking and the study were approved by the Institutional Review 

Board. The tumors were classified using the 2004 World Health Organization 

(WHO) classification system.13 We randomly selected 248 NSCLC specimens 

(159 adenocarcinomas and 89 squamous cell carcinomas) to test KDR 

abnormalities. Detailed clinical and pathologic information of the cases is 

presented in Table 1. The median follow-up of the patients was 3.53 years for 

those who are censored.   

 

DNA Extraction. To enrich for malignant cell content, tumor tissues were 

manually microdissected from optimal cutting temperature (OCT) compound-

embedded frozen tissue sections for subsequent DNA extraction. Tumor DNA 

was extracted using Pico Pure DNA Extraction Kit (Arcturus, Mountain View, CA) 

according to the manufacturer’s instructions.  

Real-time Quantitative PCR (qPCR) for KDR Copy Number Analysis. DNA 

samples from tumor with proportions of microdissected tumor cell greater than 

70% were qualified for qPCR analysis. KDR gene copy number was detected by 

real-time quantitative PCR (qPCR) using the ABI 7300 real time PCR system 
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(Applied Biosystems, Foster City, CA). The primers used to amplify KDR were as 

follows: KF-GACACACCCTCAGGCTCTTG, and KR-

ACTTTTCACCGCCTGTTCTC. Each PCR was performed using Power SYBR 

Green PCR Master Mix (Applied Biosystems, Foster City, CA) at 50°C for 2 min 

and 95°C for 10 min followed by 40 cycles at 95°C for 15 s and 60°C for 1 min. �-

Actin was introduced as the endogenous reference gene and TaqMan Control 

Human Genomic DNA (Applied Biosystems, Foster City, CA) was amplified as a 

standard control for calibration. All sample and standard DNA reactions were set 

in triplicate to gauge reaction accuracy. The target gene copy number was 

quantified using the comparative Ct method. Gene copy number of greater than 4 

was considered as increased, as previously reported.14  

KDR Fluorescence in Situ Hybridization (FISH) Analysis. We analyzed the 

gene copy number per cell using a dual-color FISH assay developed by one of 

the co-authors (M. V-G). The KDR probe was prepared from the BAC clone 

RP11-21A18 obtained from CHORI (Oakland, CA). Detailed information on the 

FISH assay is provided in the Supplementary Methods. Copy number analysis 

was done in approximately 50 malignant cells nuclei per tumor in at least four 

areas. Greater than 2 copies of the gene per cell on average was considered as 

copy number gain. 

NSCLC Cell Lines VEGFR2 Analysis by Reverse-Phase Protein Array 

(RPPA). Sixty-three NSCLC cell lines were provided by a co-author of this study 
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(J.D.M). The identity of each cell line was confirmed by DNA fingerprinting.  

Cisplatin and carboplatin sensitivity was determined by MTS assay for each cell 

line and the concentration required for 50% growth inhibition (IC50) was 

determined.  MTS assays were repeated at least three times for each cell line 

and the mean IC50 value used for analysis.  For RPPA analysis, protein lysate 

was collected from subconfluent cultures after 24 hours growth in media with 

10% fetal bovine serum (FBS) and assayed by RPPA as previously 

described.15,16  

 

VEGFR2 Expression and Microvascular Density (MVD) Analyses. Histology 

tissue sections were incubated with primary antibodies against VEGFR2 (dilution 

1:50, rabbit polyclonal antibody, Abcam, Cambridge,  MA) for 90 min, and CD34 

(dilution 1:100, mouse monoclonal antibody, Lab Vision, Fremont, CA) for 35 min 

at room temperature. Tissue sections were then incubated with the secondary 

antibody (EnVision Dual Link+; DAKO, Carpinteria, CA) for 30 min, after which 

diaminobenzidine chromogen was applied for 5 min.  

 Protein expression was quantified immunohistochemically using light 

microscopy with an original ×20 magnification by two observers (F. Y. and I. W.). 

Immunostained samples of the cytoplasm and membranes were analyzed for 

VEGFR2 using a 4-value intensity score (0, 1+, 2+, 3+) and the percentage (0% 

to 100%) of the extent of reactivity. The final score was obtained by multiplying 

the intensity and extent-of-reactivity values (range, 0 to 300). MVD was assessed 
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by AriolR 2.0 Image System (AriolR, Applied Imaging Inc, San Jose, CA) using the 

criteria of Weidner et al.17  

KDR Mutation and SNPs Genotyping Analyses. For KDR mutation analysis in 

NSCLC cell lines we examined exons 7, 11, 21, 26, 27 and 30, using PCR-based 

sequencing and intron-based PCR primers (details in Supplementary Methods). 

NSCLC tumor specimens were examined for KDR exons 7, 11 and 21 for the 

identification of gene mutations, and for the genotyping of the three SNPs that we 

identified in these exons: 889G/A, rs2305948 (exon 7); 1416 A/T, rs1870377 

(exon 11); and, -37A/G, rs2219471 (exon 21). Mutation and SNP genotyping 

were performed using the ABI Prism 7900 Sequence Detection System (Applied 

Biosystems, Foster City, CA).  

Statistical Analysis. Data were summarized using descriptive statistics such as 

frequency distribution, mean (± s.d.) and median (range) accompanied by graphs. 

Demographic and clinical information was compared using the Chi-squared or 

Fisher exact tests (for category variables) and Wilcoxon rank-sum or Kruskal-

Wallis tests (for continuous variables). The distributions of overall survival (OS) 

and recurrence-free survival (RFS) were estimated by the Kaplan-Meier method 

and compared between groups using the log-rank test. Cox proportional hazard 

models were used for regression analyses of survival data and conducted on OS 

defined as time from surgery to death or last contact, and on RFS defined as 

time from surgery to recurrence or last contact. Follow-up time was censored at 5 
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years. The NSCLC cell lines RPPA data was quantified using the SuperCurve 

method which detects changes in protein level as previously reported.18  
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RESULTS

KDR Gene Copy Gain Analysis.   We examined DNA extracted from 37 NSCLC 

cell lines part of the UT-Lung Cancer SPORE cell line repository, provided by 

one of the co-authors (J. D. M.). Using qPCR, two cancer cell lines H661 and 

H889 showed KDR gene copy gain (� 4 copies); these results were confirmed by 

the available aCGH results (data not shown). 

  In epithelial malignant NSCLC cells microdissected from tumor tissues, 

KDR copy gains were detected in 45 (32%) of 139 tumors examined. Similar 

frequency of KDR copy gain was found in adenocarcinoma (26/85, 31%) and 

squamous cell carcinoma (19/54, 35%) histologies (P=0.572). The range of 

increased KDR copy numbers was from 4.0 to 11.0 gene copies. None of 15 

normal tissue samples adjacent to the NSCLC tested showed KDR gene copy 

gain.  

 To confirm KDR copy gain results by qPCR, 30 tumor specimens were 

selected for FISH analysis, including 20 cases with and 10 cases without KDR 

copy gain by qPCR. KDR copy gains was confirmed in the malignant cells in all 

20 NSCLC specimens detected by qPCR, and also detected in 6 out of 10 cases 

without copy number gain by qPCR. This correlation was statistically significant 

(Kappa coeficient [95% CI]=0.471, 0.149 to 0.792; P=0.007) (Figure 1, Panel A). 

The copy numbers of KDR by FISH and qPCR were significantly correlated 

(r=0.417, P=0.022), and concordance was  observed in 24 out of 30 (80%) cases. 
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Correlation between KDR Gene Copy Gain and VEGFR2 Protein Expression 

and MVD. To assess the immunohistochemical expression of VEGFR2 in 

NSCLC malignant cells and the MVD (CD34) in lung tumor tissue stroma, we 

selected 52 lung tumor specimens with whole histologic sections from FFPE 

tissues (Figure 1, Panels B and C). Of these, 26 cases had KDR copy number 

gain and 26 cases did not. VEGFR2 protein expression was present both in the 

cytoplasm and membranes of malignant cells as well as in vessel endothelial 

cells (Figure 1, Panel B).  

Levels of VEGFR2 expression in cytoplasm and in membrane were 

associated with KDR gene copy gain in malignant cells of NSCLC. Tumors with 

KDR gene copy gains showed significantly higher cytoplasmic (P=0.013) and 

membrane (P=0.009) VEGFR2 protein expression in the malignant cells, and 

higher MVD (P=0.018) and larger vessel areas (P=0.033) in the tumor stroma 

than cases without KDR gene copy gain (Figure 2).  

 

Association between KDR Copy Number Gain and NSCLC 

Clinicopathologic Features. When we correlated KDR copy number gain with 

patients’ clinicopathologic features, we did not find correlation with tumor 

histology, smoking status, and tumor stage. The platinum neoadjuvant-treated 

tumors (33%, 8/24) had similar frequency of KDR copy number gains than cases 

without neoadjuvant therapy (32%, 37/115; P=0.912). 

Interestingly, KDR copy gain was associated with poor OS (HR=4.0; 95% 

CI, 1.76 to 9.07; P=0.001) and shorten RFS (HR=1.83, 95% CI, 1.02 to 3.29; 
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P=0.044) in 115 NSCLC patients who have not received neoadjuvant therapy in 

the multivariate analysis after adjusting for stage and adjuvant therapy. Strikingly, 

KDR copy gain predicted a worse OS (HR=5.16, 95% CI, 1.75 to 15.2, P=0.003) 

in NSCLC patients receiving platinum adjuvant therapy but did not predict a poor 

OS (P=0.349) in patients without adjuvant therapy (Figure 3 and Table 2). These 

data suggest that KDR CNG in malignant cells may represent a predictive marker 

of worse outcome in patients with surgically resected NSCLC treated with 

adjuvant chemotherapy.    

VEGFR2 Protein Levels and Correlation with Platinum Resistance in 

NSCLC Cell Lines.  The association detected between KDR CNG and worse 

outcome in patients treated with platinum adjuvant therapy prompted us to 

examine the correlation between KDR CNG and VEGFR2 protein levels and 

NSCLC cell lines in vitro resistance to platinum-based chemotherapy drugs. We 

did not find association between KDR CNG by aCGH in NSCLC celll lines (n=37) 

with in vitro resistance to cisplatin and carboplatin (data not shown). However, 

when we correlated the expression of VEGFR2 protein in a panel of 63 untreated 

NSCLC cell lines by RPPA with each cell line’s sensitivity to cisplatin or 

carboplatin we found that higher VEGFR2 expression levels were significantly 

associated with resistance to both cisplatin and carboplatin by Pearson 

correlation (Supplementary Figure 1).  The correlation coefficient between 

VEGFR2 expression and the concentration of cisplatin required to inhibit cell 
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growth by 50% (IC50) was r=0.346 (P=0.005).  Similarly, carboplatin IC50s were 

correlated to VEGFR2 levels with an r=0.319 (P=0.011).   

 

KDR Mutation Aanalysis. For KDR mutation analysis in NSCLC cell lines, we 

examined six KDR exons (7, 11, 21, 26, 27 and 30) shown to be mutant in 

adenocarcinoma tumors in a study published by Ding et al.12 In 37 tested NSCLC 

cell lines we found only two mutations in the KDR gene, an intronic T+2A exon 

11 mutation in HCC2450, and a CGT946CAT point mutation in exon 21 in 

HCC2279. No mutation affecting exons 11 and 21 were detected in 200 NSCLC 

tissues specimens examined. 

 

KDR SNP Analysis. Three KDR SNPs (889G/A, 1416A/T, and -37A/G) were 

genotyped in DNA extracted from 200 NSCLC tumors (Supplementary Table 1), 

and correlated with patients clinicopathologic features, including outcome.  We 

did not find correlation between the SNP genotypes distribution and OS and RFS 

of all NSCLC patients examined. When we analyzed the data by tumor histology, 

we found that among the 127 lung adenocarcinoma patients examined both KDR 

1416 AT/TT (HR=0.45; 95% CI, 0.2 to 0.99; P=0.048) and -37 AG/GG (HR=0.43; 

95% CI, 0.2 to 0.92; P=0.031) variant genotypes were associated with a 

favorable OS in the multivariate analysis after adjusting for tumor stage and 

neoadjuvant therapy (Supplementary Figure 2 and Table 3). However, no KDR 

SNP genotype was associated with OS in lung squamous cell carcinoma patients 
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(Supplementary Figure 2). Moreover, no genotype in the three KDR SNPs was 

associated with RFS in NSCLC patients divided by histology type. 

Furthermore, among NSCLC patients with the KDR 889 GA/AA variant 

genotypes, those who received platinum neoadjuvant and/or adjuvant 

chemotherapy showed a significantly better OS (HR=0.22; 95% CI, 0.05 to 0.94; 

P=0.041) than patients who did not receive chemotherapy in the multivariate 

analysis after adjusting for histology and tumor stage. However, no survival 

benefit was found in NSCLC patients with KDR 889 GG wild genotype (HR=1.23; 

95% CI, 0.64 to 2.35; P=0.538).  

 Finally, all KDR SNP genotypes were compared with primary tumor 

expression for VEGFR2 and MVD in 52 NSCLC specimens. However, no 

genotypes correlated with the expression of any of these markers in NSCLC 

tumors. 
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DISCUSSION  

Our study represents the first report in lung cancer showing a relatively 

high frequency of KDR copy number gain (32%) in both major histology types of 

NSCLC, adenocarcinoma and squamous cell carcinoma, by qPCR and 

confirmed in a subset of cases by FISH. Conversely, mutations of KDR were 

rarely detected in NSCLC cell lines and not detected in tumor specimens. 

Notably, KDR copy gain was associated with poor survival of patients receiving 

platinum adjuvant therapy but not in patients without adjuvant therapy. These 

data suggest that KDR CNG in malignant cells may represent a predictive marker 

of worse outcome in patients with surgically resected NSCLC treated with 

platinum adjuvant chemotherapy.  

In our study, tumors with KDR gene copy gain in the malignant cells 

showed significantly higher VEGFR2 protein expression in the cytoplasm and 

membrane of those cells, as well as higher MVD and larger vessel areas in the 

tumor stroma, compared with tumors lacking the KDR gene copy gain. Therefore, 

KDR gene copy gain might result in the overexpression of VEGFR2 in lung 

cancer cells, and subsequently, may promote an enhancement of tumor blood 

vessels formation. One possible explanation for this association is that VEGFR2-

overexpressing lung cancer cells may intensify the surrounded levels of VEGF 

which subsequently stimulates tumor tissue angiogenesis resulting in higher 

MVD. 

A provocative finding of this study is the effect of KDR copy gain in 

malignant cells in the outcome of NSCLC patients receiving platinum adjuvant 
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chemotherapy after surgical resection with curative intent. We report for the first 

time that KDR gene copy gain in tumor cells predicted a worse OS in NSCLC 

patients receiving platinum-based adjuvant therapy but did not predict a poor OS 

in patients without adjuvant therapy. These findings suggest that KDR copy gain 

represents a potential biomarker for predicting the efficacy of adjuvant platinum 

chemotherapy in NSCLC patients. Although the molecular mechanisms of this 

association are unclear, our findings that higher levels of VEGFR2 expression by 

RPPA in 63 NSCLC cell lines were significantly correlated with in vitro resistance 

to both cisplatin and carboplatin provides support to our clinical observation. 

However, further prospective studies with larger patient cohorts are needed to 

assess the role of KDR copy gain in malignant cells and outcome of NSCLC 

patients treated with platinum-based chemotherapy in both surgically resected 

and advanced metastatic tumor settings. 

 In our study, the variant genotypes of KDR SNPs 1416 (AT/TT) and -37 

(AG/GG) associated with a favorable OS in the multivariate analysis. Ours is the 

first report showing association between KDR SNP genotypes and prognosis in 

lung cancer. In breast cancer patients the KDR SNP 1416 A/T genotypic variant 

was associated with the expression of progesterone receptors, and its presence 

suggested a better prognosis for carriers of the T allele.19 Questions remain 

about the functional roles of the KDR SNPs responsible for the associations with 

outcome of NSCLC patients, particularly in adenocarcinoma patients, found in 

our study. Interestingly, the KDR SNP 1416 A/T (Q472H), a non-synonymous 

coding polymorphism, is located in the fifth immunoglobulin-like domain within 
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the extracellular region of VEGFR2 and is important for preventing VEGF-

independent receptor dimerization and signal transduction. 20 The other 

prognostic KDR SNP in lung adenocarcinoma patients, SNP -37AG/GG is 

located in intron 11 within the protein kinase domain and it has not been 

associated to any specific protein functional effect. However, functional studies 

are needed to characterize further the importance of the KDR SNPs in NSCLC.  

In summary, our findings indicate that KDR copy number gain was 

frequently detected in NSCLC tumors and associated with patients’ poor survival 

and tumors’ angiogenesis which might be a potential biomarker for predicting the 

efficacy of platinum adjuvant chemotherapy in NSCLC patients. In addition, KDR 

SNP genotypes correlate with outcome in patients with surgically resected 

NSCLC tumors. To our knowledge, this is the first report to demonstrate the 

clinical importance of copy number gain and genetic variations of KDR in NSCLC. 

However, further studies with larger patient cohorts are needed to ascertain the 

clinical effects of the molecular changes of KDR in lung cancer and to elucidate 

the roles of angiogenesis-related pathways in lung cancer progression and 

response to adjuvant chemotherapy. 
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FIGURE LEGENDS

Figure 1. Panel A, representative examples of KDR copy number examined by 

fluorescence in situ hybridization (FISH) in non-small cell carcinoma (NSCLC) 

tissue specimens. a,  copy number gain; b, no copy number gain. Red signals 

represent the KDR gene probe, and green signals the internal control  probe 

(magnification ×1000). Panel B, representative example of immunohistochemical 

expression of VEGFR2 in NSCLC tissue specimens. VEGFR2 protein expression 

was present both in the cytoplasm and membranes of tumor cells in 

adenocarcinoma (c) and squamous cell carcinoma (d) (magnification ×200). 

Panel C, representative example of immunohistochemical expression of CD34-

positive vessels (microvascular density, MVD) in adenocarcinoma (e) and 

squamous cell carcinoma (f) (magnification ×200).  

Figure 2. Expression of VEGFR2 and microvascular density (MVD) in primary 

lung cancers with KDR copy number gain compared with lung cancers without

KDR copy number gain. The box-plots depicting scores of immunohistochemical 

expression of VEGFR2 cytoplasm, VEGFR2 membrane, and MVD and vessel 

area (mm2) comparing 26 lung cancers having KDR copy number gain (CNG�4) 

with 26 lung cancers without KDR copy number gain (CNG<4) . 

Figure 3. Kaplan-Meier curve for overall survival (OS) and recurrence-free 

survival (RFS) by KDR copy number gain in non small cell lung cancer patients 
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and two subgroups of platinum adjuvant therapy and without adjuvant therapy. 

All patients included in these analyses did not receive neoadjuvant therapy. 
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 VEGFR2 Gene Copy Gain in NSCLC 

SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1.  VEGFR2 protein expression by RPPA associated 

with in vitro resistance to platinum drugs.  Correlation between the concentration 

of (A) cisplatin and (B) carboplatin required to inhibit NSCLC cell growth (IC50) 

and VEGFR2 levels. 

 

Supplementary Figure 2. Kaplan-Meier curve for overall survival (OS) by 

genotypes of two KDR single nucleotide polymorphisms in adenocarcinoma and 

squamous cell carcinoma of lung. 
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Table 1. Clinicopathologic characteristic of non-small cell lung carcinoma 
examined for KDR abnormalities. 

Characteristic
All Cases

Tested
(N=248)

Number (%)  

Cases Tested for
Copy Gain  

(N=139)
Number (%)

Cases Tested for 
SNPs*

(N=200)
Number (%)

Mean Age in Years 
(range)  64.6 (26.4- 86.9) 64.9 (32.2- 84) 63.97 (26.4- 86.9) 

Gender    

    Female 110 (44) 57 (41) 88 (44) 
    Male 138 (56) 82 (59) 112 (56) 
Tumor Histology    
    Adenocarcinoma 159 (64) 85 (61) 127 (64) 
    Squamous cell 
carcinoma 89 (36) 54 (39) 73 (36) 

TNM Pathology Stage    
    I 120 (49) 70 (51) 86 (43) 
    II 50 (20) 28 (20) 40 (20) 
    III 72 (29) 39 (28) 68 (34) 
    IV 6 (2) 2 (1) 6 (3) 
Smoking status±    
    Current  102(41) 52 (37) 89 (45) 
    Former 108 (44) 64 (46) 82 (41) 
    Never 38 (15) 23 (17) 29 (14) 
Neoadjuvant therapy†    
    No 181(73) 115 (83) 133 (67) 
    Yes 67 (27) 24 (17) 67 (33) 
Adjuvant therapy†    
    No 138 (56) 69 (50) 90 (45) 
    Yes 110 (44) 70 (50) 110 (55) 
* SNP, Single Nucleotide Polymorphism. 
±  Patients who had smoked at least 100 cigarettes in their lifetime were defined as ever 

smokers, and smokers who quit smoking at least 12 months before lung cancer 
diagnosis were defined as former smokers.  

†  All patients who received neoadjuvant and adjuvant chemotherapy received platinum 
(cisplatin or carboplatin), and the chemotherapy regimen most frequently administered 
was carboplatin-taxol combination.
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Table 2. Multivariate analysis for outcome by KDR copy gain in non-small cell 
lung carcinoma patients by adjuvant chemotherapy. 

Cases N Comparison Outcome Adjusted Hazard 
Ratio (HR)* (95% CI) P

All patients 115 Gain vs. no gain OS± 4.00 (1.76, 9.07) 0.001 

   RFS† 1.83 (1.02, 3.29) 0.044 

Adjuvant 
therapy  
 

61 Gain vs. no gain OS 5.16 (1.75, 15.2) 0.003 

   RFS 1.87 (0.9, 3.92) 0.1 

No adjuvant 
therapy  54 Gain vs. no gain OS 1.99 (0.47, 8.4) 0.349 

   RFS 1.83 (0.66, 5.05) 0.243 
* Adjusting for tumor stage; follow-up is censored at 5 years. 
± OS, overall survival 
† RFS, recurrence-free survival 
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Table 3. Multivariate analysis for overall survival in three KDR single nucleotide 
polymorphisms (SNP) in non-small cell lung carcinoma.  

Cases KDR SNP Genotype Adjusted Hazard 
Ratio (HR)* (95% CI) P

NSCLC 889 GA/AA vs. GG  0.92 (0.51 to 1.66) 0.78 

 1416 AT/TT vs. AA   0.59 (0.34 to 1.01) 0.056 

 -37 AG/GG vs. AA  0.6 (0.35 to 1.03) 0.062 

Adenocarcinoma 889 GA/AA vs. GG  0.63 (0.24 to 1.65) 0.348 

 1416 AT/TT vs. AA  0.45 (0.2 to 0.99) 0.048 

 -37 AG/GG vs. AA  0.43 (0.2 to 0.92) 0.031 

Squamous cell 
carcinoma 889 GA/AA vs. GG  1.16 (0.53 to 2.51) 0.713 

 1416 AT/TT vs. AA  0.76 (0.36 to 1.61) 0.468 

-37 AG/GG vs. AA  0.84 (0.4 to 1.78) 0.649 

* Adjusting for tumor stage; follow-up is censored at 5 years. 
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Abstract 
Body:

Introduction: While there have been multiple studies identifying differences in phenotypes of small cell lung cancer (SCLC) 
compared to non-small cell lung cancer (NSCLC), identification of key signaling pathways that may differ and may represent 
new therapeutic targets for SCLC need to be specified. To this end, we have compared expression of a large number of 
proteins and genes involved in key cell regulatory pathways of SCLC with those in NSCLC using reverse phase protein array 
(RPPA) and genome-wide mRNA profiling. 
Methods: 34 SCLC and 74 NSCLC cell lines that have been previously characterized for oncogenotype mutations, copy 
number changes, and mRNA expression profiles (using Affymetrix U133A, U133B, U133 Plus 2.0, and Illumina arrays) were 
grown under 10% serum, serum-starved, and serum-stimulated conditions. Cell lysates from each media condition were 
harvested and 176 total and phosphoproteins representing multiple signaling pathways were quantified by RPPA. Differences 
in protein and gene expression levels between SCLC and NSCLC lines were assessed using unsupervised hierarchical 
clustering, t-test, and ANOVA. 
Results: Unsupervised hierarchical clustering separated SCLC from NSCLC cell lines based on their distinct protein 
expression patterns under all three media conditions. Two high-grade neuroendocrine NSCLC cell lines clustered with the 
SCLC cell lines, reflecting their SCLC-like protein expression. Using a false discovery rate of <1% to identify protein 
markers most differentially expressed between SCLC and NSCLC, we observed high levels of proteins in DNA repair 
pathways (ex., PARP1, XRCC1, ATM, Chk1, 53BP1) and in apoptosis pathways (ex., Bcl-2, BIM, BAX). In contrast, MAPK 
pathway activity was downregulated, as reflected by low levels of phospho-ERK1/2. Among SCLC lines, an inverse 
correlation was observed between cKit and cMyc protein levels such that one group overexpressed cKit but had relatively 
lower cMyc levels, while the other group (enriched for cMyc amplification) had high cMyc and low cKit. Gene expression 
analysis showed similar results, with good correlation between non-phosphorylated proteins and mRNA levels among the 
pathways differentially expressed in SCLC. 
Conclusions: Proteomic profiling identified increased DNA repair and apoptosis pathway activity and decreased MAPK 
pathway activity in SCLC. Among the proteins upregulated in SCLC, several have potential as therapeutic targets, such as 
PARP1. Although cKit over expression and cMyc amplification are both common in SCLC, we showed that they were 
mutually exclusive of each other at a protein expression level, reflecting the heterogeneity of SCLC and suggesting a rationale 
for testing targeted therapies specifically in subsets of patients whose tumors overexpress the targeted marker. Pathway 
activation will be further investigated in SCLC patient tumors. 

Page 1 of 1Abstract Print View

6/28/2010http://www.abstractsonline.com/Plan/AbstractPrintView.aspx?mID=2521&sKey=b0682b1...



  

« Back 

» Select day » Please select a type » Select topic

Tuesday, August 4, 2009 

 

 

 BOOK 
MARK D10

Anti-Angiogenesis and Anti-Coagulants 
Moscone West 2001 - 2005, Level 2: 12:30 - 14:00 
Type: Oral 
Moderation: P.A. Janne, H.(. West;  

BOOK 
MARK  

D10.1 - Stromal HGF and VEGFR-1 are associated with acquired resistance to VEGFR
tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC)  

Oral 
Novel Therapeutics and Modalities  

T. Cascone, M. Herynk, D. Du, H. Kadara, E. Hanrahan, M. Nilsson, H.Y. Lin, J..J. Lee, Y.-Y. 
Park, J.-S. Lee, J.V. Heymach; Houston, TX/US 

Body 
Background: Tyrosine kinase inhbitors (TKIs) targeting vascular endothelial grow
factor/receptor (VEGF/VEGFR) pathway, such as cediranib (AZD2171) and the dual VEGF
2/EGFR inhibitor vandetanib (ZD6474) have demonstrated clinical benefit in NSCLC and oth
solid tumors. Unfortunately, while a subset of patients initially responds to these agent
therapeutic resistance inevitably emerges. The mechanisms underlying resistance are not w
understood, but may include incomplete inhibition of VEGFR or EGFR activation, bypass 
these pathways through redundant expression of proangiogenic molecules, a switch in strom
cell dependency from VEGFR activation to alternative signaling pathways or other mechanism
Therefore, there is a critical need for tumoral and stromal molecular markers able to pred
resistance to TKIs such as vandetanib and cediranib in NSCLC.Methods: To generate NSCL
xenograft models with acquired resistance to cediranib and vandetanib, A549 and H197
human NSCLC cells were injected in athymic nude mice. Tumors were considered resistant 
treatments when their volumes tripled compared to the starting volume and were the
sacrificed. A murine specific expression array (mouseWG-6 v2 Expression BeadChip, ILLUMIN
was used to evaluate changes in the stromal microenvironment to develop gene signatur
indicative of therapeutic resistance in vandetanib and cediranib-resistant H1975 tumo
compared to sensitive tumors (2 weeks of treatment) and vehicle treated contro
Differentially expressed genes between the different treatment groups were selected based o
a p<0 005 of the univariate t test and at least a 1 5 fold change in expression Results: H197
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Abstract 
Body:

Emergence of therapeutic resistance to angiogenesis inhibitors, the mechanisms of which are poorly understood, remains a 
major obstacle in treatment of NSCLC patients. Previously we reported that mechanisms governing resistance to anti-
angiogenic therapy may involve both tumor and stromal cells in the tumor microenvironment. In this study we investigated 
potential mechanisms of resistance to the multi-tyrosine kinase inhibitors cediranib (AZD2171, Recentin®) and vandetanib 
(ZD6474, Zactima®) using NSCLC xenografts treated either for 2 weeks (sensitive tumors) or until resistance occurred. 
Quantification of TUNEL+ staining using laser scanning cytometry (LSC) showed increased apoptosis in H1975 xenografts 
sensitive to cediranib (p<0.01) and vandetanib (p<0.05) when compared with controls, whereas no changes were noticed at 
time of resistance. Microvessel density (MVD) was significantly increased in resistant H1975 xenografts compared with 
controls (p<0.05) and sensitive tumors (p<0.01), whereas in A549 model, vandetanib-resistance was associated with an 
angiogenic independent phenotype. To investigate stromal mechanisms of Vascular Endothelial Growth Factor Receptor 
(VEGFR) TKI resistance, we characterized the stromal angiogenic gene expression profiles of H1975 sensitive and resistant 
tumors using a mouse-specific gene expression array (mouseWG-6 v2 Expression BeadChip, Illumina®). Differentially 
modulated genes were selected based on a p<0.005 of the univariate t-test and at least a 1.5 fold-change in expression and 
cross-referenced to defined list(s) of angiogenesis-related genes. Stromal Hgf (hepatocyte growth factor) was up-regulated in 
VEGFR TKI-resistant xenografts compared to sensitive tumors. Hgf up-regulation was confirmed at the protein level using 
immunofluorescent staining and confocal microscopy. HGF protein levels were strongly decreased after 2 weeks of treatment 
with cediranib and vandetanib (p<0.01), whereas a significant increase in HGF was observed in resistant xenografts (p<0.01). 
To assess whether HGF upregulation contributes to tumor resistance to TKIs, we implanted HGF-overexpressing and vector 
control HCC827 NSCLC cells into nude mice. In HCC827-vector control xenografts, cediranib inhibited tumor growth by 
93%, whereas a 60% of growth inhibition was observed in HGF-overexpressing tumors. These data agree favorably with our 
previous analysis of clinical specimens from patients with stage IIIB/IV NSCLC that identified HGF as a predictive marker of 
resistance to vandetanib treatment alone when compared to chemotherapy or the combination of chemotherapy and vandetanib 
(p=0.033). Our results suggest that HGF up-regulation may resistance to VEGFR pathway inhibition and that the HGF/MET 
axis may represent a crucial target for NSCLCs that are resistant to anti-angiogenic therapy. 
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Profiling in pharmacologically re-expressed microRNAs by 5-azacytidine and 
SAHA identified metastases associated miR-148b in malignant pleural 

mesothelioma cell line  
 
Corvalan A, Suraokar M, Xiaoyan Zou, Chow C-W, Gazdar A, Moran C, Raso G, 
Mehran R, Tsao A, Wistuba I. 

 
Background. MicroRNAs (miRNAs) have emerged as key players in human 
carcinogenesis. Recently it has been shown that some miRNAs can be epigenetic up-
regulated by aberrant hypermethylation in human cancer. Malignant pleural 
mesothelioma (MPM) is a highly malignant neoplasm with different histological 
subtypes. To explore the role of epigenetic mediated up-regulation of miRNAs in MPM 
we performed pharmacological unmasking of miRNA expression in cell lines.  
Methods Five mesothelioma cell lines, including one normal mesothelial (Met5A) and 
five MPMs (epitheliod H2452, biphasic H211 and unclassified H28 and H2052) were 
treated with the demethylating agent 5-aza-cytidine (5-Aza;1 uM) and SAHA (2.5 uM) 
for 96 hrs. After RNA extraction (Trizol) miRNA profiling was performed by Agilent 
human microRNA kit v2.  
Results Total miRNA up-regulated (two-fold) after the treatment were 299 (51%) in 
normal mesothelial Met5A cell line, and lower in the malignant cell lines: 171 (29%) in 
H2452,, 79 (13.5%) in 211H, 55 (9.4%) in H28, and 56 (9.6%) in H2052. Interestingly 
167 (55.9%) miRNAs were exclusively up-regulated in Met5A, 56 (32.7%) in H2452, 21 
(26.6%) in 211H, 16 (29.1%), in H28, and 18 (32.1%) in H2052. Among all unique 
miRNA, only 17 (let-7b, let-7c, let-7f-2, miR-302c, miR-328, miR-510, miR-125b-1, 
miR-16-1, miR-223, miR-302b, miR-383, miR-551b, miR-922, miR-148a, miR-18b, 
miR-302d, miR-326) have been previously associated to human carcinogenesis. 
Interestingly one of these miRNA (miR-148a) has been associated with microRNA 
metastasis signature. Discussion The number of total and unique miRNA upregulated 
after 5-Aza and SAHA was lower in malignant mesothelioma cell lines vs normal Met5A 
cell line. Up-regulation of unique miRNAs was found associated with specific subtypes 
of MPM. The identification of metastasis associated miR-148a suggests a potential 
biomarker for metastasis in this highly malignant neoplasm. Further research, including 
tissue specimens, will be necessary to validate these results. Grant support PROSPECT 
DoD W81XWH-07-1-0306. 
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Abstract 
Body:

Phosphorylation is a key regulating switch that plays a critical role in signaling pathways involved in oncogenesis. A high-
throughput analysis of phosphoproteins could provide a useful tool for analysis of biological functions and signaling pathways 
associated with these molecular events. In this study, we developed an innovative functional proteomics platform using 
ProteinChip array-based SELDI-MS for high-throughput profiling and identification of phosphopeptides in human serum to 
identify specific phosphopeptides/phosphoproteins associated with human lung cancer. We performed phosphopeptide 
profiling on serum samples from human normal and lung cancer patients with varying stages and smoking histories. We used 
phospho-tyrosine antibody-conjugated super-paramagnetic beads to capture phosphopeptides generated in trypsin-digested 
serum samples. The captured phospho-tyrosine peptides (pYPs) were separated on a hybrid magnetic plate using a biological 
sample preparation robot. The affinity-enriched pYPs were then randomly loaded onto ProteinChips and analyzed by SELDI-
TOF Mass Spectrometry. We used wavelets and the mean spectrum for peak detection and detected more than 600 pYP peaks 
spanning M/Z range from 50 to 5500 Dalton. For each peak, we recorded the p-value from an F-test and modeled the set of p-
values using a beta-uniform mixture model to estimate the false discovery rate (FDR). We identified 39 pYP peaks with fold 
changes in intensity detected on SELDI-MS profiles to be significantly (at FDR = 10%) differentially expressed between the 
normal and lung cancer serum samples. The phosphopeptides detected on SELDI-MS spectra were further identified using a 
protein chip array-interfaced qSTAR-MS/MS. One of phospho-tyrosine containing peptides was identified as an Alpha-1-acid 
glycoprotein 1 precursor (A1AG1) or ORM-1 (Orosomucoid). The ORM-1 pYP showed a M/Z peak at 1752.3 Da and was 
significantly upregulated in lung cancer serum samples with more than 10-fold increase (P = 0.0024) in mass peak intensity. 
Computer-aided structural and functional analysis predicted the potential association of ORM-1 to the nicotinic acetyl choline 
receptor (nAChRs). We further validated phospho-ORM-1 protein expression in another set of lung cancer and control serum 
samples by Quantitative ELISA and confirmed the significantly upregulated expression of serum phospho-ORM-1 in lung 
cancer patients with ever-smoking history. We also identified protein interactions between the ORM-1 and subunits of nAchRs 
in lung cancer cell lines by immunoprecipitation and immune-blotting analysis. Our results suggest the role of the Phospho-
ORM-1 peptide as a novel NAChR-associated protein in lung cancer pathogenesis and smoking-associated carcinogenesis. 
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Enriched Tumor Expression of Folate  Transporters Correlates With Adenocarcinoma Histology Type, 
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Author Block: Maria Ines Nunez, Carmen Behrens, Denise M. Woods, Heather Lin, Milind Suraokar, Luc 
Girard, John Minna, Jack Lee, W Hofstetter, Wilbur Franklin, Cesar A. Moran, Waun K. Hong, David J. 
Stewart, Ignacio I. Wistuba. Pathology Department - UT M.D. Anderson Cancer Center, Houston, TX, 
Biostatistics Department - UT M.D. Anderson Cancer Center, Houston, TX, Hamon Center - UT 
Southwestern Medical Center, Dallas, TX, Thoracic Surgery Department - UT M.D. Anderson Cancer 
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Background: Membrane bound folate receptor alpha (FOLR1) and transmembrane Reduced folate 
carrier 1 (RFC1) regulate uptake of folate as well as folate linked conjugates inside the cell. FOLR1 and 
RFC1 are over expressed in epithelial primary and metastatic tumors and are promising therapeutic 
targets and tumor biomarkers. Due to limited information on the expression of these receptors in non-
small cell lung carcinoma (NSCLC) we studied the protein immunohistochemical (IHC) expression of 
these receptors in a large set of tumors and correlate our findings with patients’ clinicopathologic 
features.  

Methods: IHC protein expression of FOLR1, RFC1, was examined in 320 surgically resected NSCLCs 
placed in tissue microarrays, including 202 adenocarcinomas and 110 squamous carcinomas, and 
correlated with patients’ clinico-pathological characteristics. A semiquantitative IHC score was obtained 
assessing intensity of immunostaining and percentage of positive tumor cells.  

Results: The pattern of IHC expression varied in malignant cells, with FOLR1 and RFC1 expressed in the 
membrane and cytoplasm. In all cases expression in tumor cells was higher than in non-malignant lung 
epithelial cells. Tumor stroma IHC expression was frequently detected, especially in endothelial cells, 
lymphocytes, macrophages and fibroblasts. Adenocarcinomas showed significantly higher expression 
compared with squamous cell carcinoma for membrane (P<0.001) and cytoplasmic (P<0.001) FOLR1. 
Female NSCLC patients had significantly higher expression of membrane and cytoplasmic FOLR1 (P=0.01) 
compared with male patients. Ever smoker patients demonstrated significantly lower expression of 
membrane (P<0.001) and cytoplasmic FOLR1 (P<0.002), and higher expression of membrane RFC1 
(P=0.01), compared with never smokers. In adenocarcinomas, the presence of EGFR mutations 
correlated with higher expression of membrane FOLR1 (P<0.002).  Finally, squamous carcinomas 
showed higher positive endothelial cell expression of FOLR1 (P=0.00001) than adenocarcinomas.  

Conclusion

Supported by grants US DoD W81XWH-07-1-0306, and UT-Lung SPORE P50CA70907. 

: 1. FOLR1 and RFC1 membrane transporters proteins are over expressed in NSCLC compared 
to normal lung epithelium; 2. significant differences were found between adenocarcinomas and 
squamous lung cancer in both tumor cells and the tumor microenvironment; 3. differences were found 
in tumors of males and females, between tumors from never and ever smokers, and tumors with EGFR 
or KRAS mutations. The different patterns of transporter expression may explain the superior response 
of NSCLC patients with adenocarcinoma histology to pemetrexed. 
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Abstract 
Body:

Background: Primary or acquired resistance to platinum-based therapy remains an important issue in the treatment of 
unresectable non-small cell lung cancer (NSCLC). Our objective was to identify factors of resistance to platinum-based 
therapy. Experimental procedures: Gene expression profiling from the BATTLE program (pretreated resistant tumors stage 
III/IV, N=32) and a control group from 2 independent publicly available datasets (never treated tumors stage III/IV, N=45) 
were compared. Gene expression profiling was generated using the same platform (U133 Plus 2.0 Array). Pathway and gene 
set analyses were used to define networks and pathways associated with resistance. For validation, we used: i-an independent 
set of 38 never treated NSCLC stage III/IV, ii-a set of 53 NSCLC cell lines tested for cisplatin sensitivity with proteomic 
profiling generated by Reverse Phase Protein Array (RPPA) technology using 177 well-characterized antibodies, iii-the 
comparison of two pairs of NSCLC cell lines (H1437, H460) that were made resistant by iterative exposure to cisplatin, and 
iv-transfection experiments. Results: A total of 3,963 probesets were found to be differentially expressed between BATTLE 
samples and the control group with a p-value < 0.001 (two-tailed t-test). DNA repair gene sets were upregulated in BATTLE 
samples compared to never treated tumors. Network analysis found that MYC as well as many of its downstream regulated 
genes were significantly downregulated in BATTLE samples. In particular, a high proportion of MYC target genes associated 
with apoptosis were downregulated. Using real time PCR, MYC gene expression was significantly lower in 15 BATTLE 
samples compared with an independent set of 38 never treated stage III/IV NSCLC (p-value=0.01). The proteomic profiling of 
53 NSCLC cell lines showed that MYC expression was one of the top proteins associated with sensitivity to cisplatin. An 
inverse correlation was observed between sensitivity to cisplatine (IC50) and MYC protein expression evaluated by RPPA 
(total MYC: r=-0.41, p-value=0.003; phosphorylated MYC: r=-0.30, p-value=0.03). MYC gene expression by real time PCR 
was lower in resistant H1437 and H460 cell lines compared to parental cell lines. Finally, transfection of H226 cell lines with 
a vector expressing MYC improved sensitivity to cisplatin compared to the control. Conclusion: This is the first gene 
expression profiling analysis of NSCLC samples pretreated and resistant to chemotherapy included in a prospective clinical 
trial. MYC down regulation may play an important role in NSCLC resistance to platinum-based chemotherapy. Mechanisms 
of MYC down regulation should be further explored. 
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Abstract 
Body:

Background: Stage predicts outcome in NSCLC but some stage I-II patients relapse. Additional prognostic factors are 
needed. 
Methods: From our NSCLC tumor bank we selected tissues of 230 stage I-II patients who had not received adjuvant 
chemotherapy. We assessed by immunohistochemistry (IHC) selected factors related to cell growth rate and regulation, 
hypoxia, transporters and DNA repair. IHC scores (0-300) were calculated by multiplying stain intensity (0-3) by % tumor 
cells stained. We assessed nuclear (N) p53, p21WAF1/CIP1, Ki67; cytoplasmic (C) COX2, DcR2; N and C CTR1, DNMT1, 
HIF1a, Rb, pRb, SHARP2, Survivin, VEGF, p14ARF, p16INK4, ERCC1; C and membrane (M) CAIX, TGF-beta. 
Definitions were: Time to Relapse (TTR): time from surgery to relapse or last follow up (LFU), with censoring at LFU or 
death or diagnosis of a metastatic 2nd primary, if clinically relapse-free from initial NSCLC; Overall Survival (OS): time from 
surgery to death, with censoring at LFU if alive at that time. 
Results: Exponential decay nonlinear regression analysis [EDNRA] of TTR curves suggested that 70% of patients were 
cured, with a TTR half-life = 20 months for those relapsing. By EDNRA, OS was uniphasic with half-life = 89 months and no 
indication of a survival inflection point differentiating those dying from NSCLC vs other causes. In multivariate Cox models, 
factors correlating with high recurrence risk were M CAIX (any vs none, hazard ratio [HR] 2.08, p=0.02) and node stage (N1 
vs N0, HR 2.59, p=0.002). M CAIX (HR 1.92, p=0.05) and node stage (HR 2.54, p=0.003) remain in the model if tumor 
diameter (TD) is forced into the model (TD HR=1.068, p=0.36). M CAIX correlated (p<0.05) directly with TD, squamous vs 
adenocarcinoma, C CAIX, C SHARP2, N DNMT1, N pRb and N Ki67 and inversely with C and N CTR1, C and N p16INK4, 
C DNMT1, C HIF1a, C VEGF, C Rb and N p14ARF. In multivariate Cox models, short OS correlated with age (HR 1.05, 
p<0.0001), smoking history (HR 2.56, p=0.01), node stage (HR 1.67, p<0.05), TD (HR 1.16, p<0.03), high C CAIX (HR 
1.004, p=0.009), low C Rb (HR 0.993, p<0.0001) and high C pRB (HR 1.005, p=0.03). In univariate analyses, factors 
correlating (p<0.05) with high node stage were high TD and N Rb, and low C DNMT1 and C Rb, with trends (p<0.10) to 
correlations with high M CAIX, N Survivin, N p53 and N pRb and with low C CTR1, C HIF1a and N p16INK4. Factors 
correlating (p<0.05) with high TD included high node stage and M CAIX, low C VEGF and other factors. 
Conclusion: CAIX deserves further attention as a prognostic factor and therapy target, and correlated more strongly with TTR 
than did TD or other markers, including the hypoxia markers VEGF and HIF1a. The lack of inflection points on OS EDNRA 
curves suggests that some of the factors may predict comorbidity and not tumor biology. Hence, TTR as defined here may be 
the preferred endpoint to assess tumor biology. Support: DoD grant # W81XWH-07-1-0306 and UT-Lung SPORE 
P50CA070907. 
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Abstract 
Body:

MPM is a lethal neoplasm exhibiting low median survival of patients and lacks effective therapeutic options. There is an 
urgent need to understand the underlying pathobiology and discover novel therapeutic targets. We undertook a messenger 
RNA (mRNA) expression profiling strategy to determine the pathways and biomarkers significantly altered in MPM tumors. 
We isolated total RNA from 55 MPM tumors with 38 paired controls representing 39 epitheloid, 8 biphasic and 6 sarcomatoid 
cases. The paired controls were adjacent non-tumor tissue samples and histopathological analysis revealed a tumor content of 
greater than 70 % in most of these tumors cases. The RNA was labeled and hybridized onto Affymetrix U133 Plus 2.0 chips 
to ascertain the global expression profile in these tumors. 
Bioinformatic analysis of the microarray data using a two sample t-test was applied on a probe-by-probe basis followed by 
Beta-uniform Mixture for multiple comparisons. Finally paired t-test was applied to determine the differences between tumor 
vs normal samples. About ~955 highly significant probesets representing ~ 670 genes, at a FDR of e-09, were obtained and 
subjected to pathway analysis using MetaCore software suite (GeneGo, Inc.). The most significantly altered pathway in MPM 
tumors was the Mitotic Spindle Assembly Checkpoint (MSAC) pathway due to up-regulation of at least 15 genes including a 
~3.4 fold increase in Aurora kinase A, which is currently being explored in other cancers as a potential therapeutic target. The 
other genes belonging to this pathway, also up-regulated in tumors, include Mad2L1 and BUBR1 which together regulate cell 
division cycle 20 (Cdc20) protein, an essential cofactor needed by the Anaphase Promoting Complex to initiate the anaphase 
of cell cycle. Interestingly we also discovered that some of the MSAC pathway genes show a histotype-specific graded 
expression pattern with higher levels in sarcomatoid tumors compared to biphasic tumors and with lowest expression levels 
seen in epitheloid tumors. Additionally survivin, the product of which localizes to the mitotic spindle and negatively regulates 
apoptosis by inhibiting caspase activation, was expressed more than 2 fold in MPM tumors compared to normal samples. The 
microarray data also revealed other pathways significantly upregulated in MPM tumors including the Wnt and Cell-Adhesion 
signaling pathways. We are currently validating the expression microarray data using quantitative Polymerase Chain Reaction 
(PCR) platform with respect to key components of MSAC pathway. This will be followed by proteomic analysis of these 
components on tumor lysates to confirm the alterations in their expression profiles. 
Supported by Grants: DOD PROSPECT W81XWH-07-1-030602, Fleming Foundation for Mesothelioma Research, Aileen 
Dillon and Lee Bourg Mesothelioma Endowment and NIH K12 CA088084 08 award. 
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Abstract: 

Background: Preclinical studies in malignant pleural mesothelioma (MPM) have shown that dasatinib, a 
multitargeted Src kinase/PDGFR inhibitor, has antitumor activity. We designed a novel biomarker-based 
neoadjuvant trial using dasatinib in resectable MPM. Methods: Untreated MPM patients undergo extended 
surgical staging (ESS) with multiple biopsies along the future surgical incision line to account for tumor 
heterogeneity. If deemed a surgical candidate for either P/D or EPP, patients receive 4 weeks of oral dasatinib 
(70 mg BID) followed by P/D or EPP. If a radiographic response is seen, an additional 2 years of dasatinib 
maintenance after adjuvant radiotherapy and chemotherapy is given. Serum/blood/platelets/pleural effusion are 
collected for exploratory analysis of peripheral surrogate biomarkers. Primary endpoint is biomarker modulation of 
Src Tyr419 in tumor tissue. Secondary endpoints: response, survival, safety/toxicity, and peripheral biomarker 
modulation. Results: 15 patients enrolled on the trial (4/08-1/10) have successfully completed ESS, neoadjuvant 
dasatinib, and P/D (n=10) or EPP (n=5). 13 epitheliod and 2 biphasic histology, 12 men: 3 women. The dasatinib 
main side effects were grade 1-2: anemia, nausea, vomiting, anorexia, fatigue, and anxiety. Grade 3 toxicities 
included fluid retention, infection (pneumonia), and hypoxia. There are no grade 4-5 toxicities. Post-surgical grade 
3 toxicity included anemia, arrhythmia, HTN, and pleural effusion; 1 grade 4 episode of hyperglycemia. After 4 
weeks of neoadjuvant dasatinib therapy, there was 1 PD, 12 SD and 2 minor responses. In the initial analysis of 
Src Tyr419 in 13 patients, higher baseline levels of p-Src Tyr419 predicted for an improved PFS with dasatinib 
therapy (p=0.008). Also, patients who had significant modulation of p-Src Tyr419 after dasatinib therapy had 
improved PFS (p=0.008). Conclusions: There is preliminary evidence that a subgroup of MPM patients gain 
clinical benefit from dasatinib therapy and that baseline p-Src Tyr419 levels in MPM tumor tissue may be 
predictive of PFS. This is the first targeted therapy neoadjuvant trial to potentially identify a predictive biomarker in 
MPM. 

 
Abstract Disclosures 

Faculty & Discussant Disclosures 

Annual Meeting Planning Committee Disclosures 

Page 1 of 3Print

6/28/2010http://www.asco.org/portal/site/ASCOv2/template.RAW/menuitem.a1c60e38cd6d5b9f01a...



Abstracts that were granted an exception in accordance with ASCO's Conflict of Interest Policy and are 
designated with a caret symbol (^) here and in the print version.  

 
  Associated Presentation(s): 

 
  Other Abstracts in this Sub-Category: 

 
  Abstracts by A. S. Tsao: 

    1. Evaluation of Src Tyr419 as a predictive biomarker in a neoadjuvant trial using 
dasatinib in resectable malignant pleural mesothelioma. 

Meeting: 2010 ASCO Annual Meeting  
Presenter: Anne S. Tsao   
Session: Lung Cancer - Local-Regional and Adjuvant Therapy (General Poster 
Session)  

    1. A multi-institutional feasibility study of induction pemetrexed (Pem) plus cisplatin 
(Cis) followed by extrapleural pneumonectomy (EPP) and postoperative hemithoracic 
radiation (RT) for malignant pleural mesothelioma (MPM): Japan Mesothelioma 
Research Center (JMRC) 001001 trial.  

Meeting: 2010 ASCO Annual Meeting   Abstract No: TPS285   First Author: F. Tanaka 
 
Category: Lung Cancer - Local-Regional and Adjuvant Therapy - Local-Regional 
Therapy  

    2. A dose-escalation study of vorinostat in combination with radiotherapy for patients 
with non-small cell lung cancer.  

Meeting: 2010 ASCO Annual Meeting   Abstract No: TPS286   First Author: R. H. 
Decker   
Category: Lung Cancer - Local-Regional and Adjuvant Therapy - Local-Regional 
Therapy  

    3. Trial of poor performance status patients (ToPPS): A randomized phase II trial of 
pemetrexed versus pemetrexed/bevacizumab versus 
pemetrexed/carboplatin/bevacizumab in patients with stage IIIb/IV non-small cell lung 
cancer and ECOG performance status 2.  

Meeting: 2010 ASCO Annual Meeting   Abstract No: TPS287   First Author: D. R. 
Spigel   
Category: Lung Cancer - Local-Regional and Adjuvant Therapy - Local-Regional 
Therapy  

    More...  

    1. Evaluation of Src Tyr419 as a predictive biomarker in a neoadjuvant trial using 
dasatinib in resectable malignant pleural mesothelioma.  

Meeting: 2010 ASCO Annual Meeting   Abstract No: 7042   First Author: A. S. Tsao   
Category: Lung Cancer - Local-Regional and Adjuvant Therapy - Local-Regional 
Therapy  

    2. Human papillomavirus (HPV) transmission from oropharyngeal cancer patients to 
sexual partners.  

Page 2 of 3Print

6/28/2010http://www.asco.org/portal/site/ASCOv2/template.RAW/menuitem.a1c60e38cd6d5b9f01a...



 
  Presentations by A. S. Tsao: 

 
  Educational Book Manuscripts by A. S. Tsao: 

 

Meeting: 2010 ASCO Annual Meeting   Abstract No: 5527   First Author: V. 
Papadimitrakopoulou   
Category: Head and Neck Cancer  

    3. Sorafenib treatment efficacy and KRAS biomarker status in the Biomarker-
Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) 
trial.  

Meeting: 2010 ASCO Annual Meeting   Abstract No: 7609   First Author: R. S. Herbst  
Category: Lung Cancer - Metastatic - Metastatic  

    More...   

    1. Evaluation of Src Tyr419 as a predictive biomarker in a neoadjuvant trial using 
dasatinib in resectable malignant pleural mesothelioma. 

Meeting: 2010 ASCO Annual Meeting  
Presenter: Anne S. Tsao   
Session: Lung Cancer - Local-Regional and Adjuvant Therapy (General Poster 
Session)  

    2. Activated Src kinase is expressed in malignant pleural mesothelioma tumors; 
dasatinib inhibition leads to cytotoxicity, cell cycle inhibition, and prevention of invasion 
and migration. 

Meeting: 2007 ASCO Annual Meeting  
Presenter: Anne S Tsao, MD   
Session: Lung Cancer (General Poster Session)  

    3. Phase I/II trial of bevacizumab plus erlotinib for patients with recurrent non-small cell 
lung cancer: Correlation of treatment response with mutations of the EGFR tyrosine 
kinase gene 

Meeting: 2005 ASCO Annual Meeting  
Presenter: Anne S Tsao, MD   
Session: Lung Cancer (General Poster Session)  

    More...   

    No items found. 

Page 3 of 3Print

6/28/2010http://www.asco.org/portal/site/ASCOv2/template.RAW/menuitem.a1c60e38cd6d5b9f01a...



Print this Page 

 
 

 

 
 

 
American Association for Cancer Research 

615 Chestnut St. 17th Floor 
Philadelphia, PA 19106 

 

Presentation Abstract

Abstract 
Number: 

4119 

Presentation 
Title:

Cytoplasmic location of CXCR4 is correlated to loss of EMT marker and activation of downstream signaling pathway in non-
small cell lung cancer 

Presentation 
Time:

Tuesday, Apr 20, 2010, 2:00 PM - 5:00 PM 

Location: Exhibit Hall A-C, Poster Section 10 

Poster 
Section:

10 

Poster 
Board 
Number:

23 

Author 
Block:

Yuxiang Wang1, Donghai Huang1, Hongpeng Fu2, Dongsheng Wang1, Lydia Koenig1, Fadlo R. Khuri1, Dong M. Shin1, 
Zhuo (Georgia) Chen1. 1Emory University, Atlanta, GA; 2China Health Economic Institute, Beijing, China 

Abstract 
Body:

Introduction: Although epidermal growth factor receptor (EGFR) targeted therapy initially proved to be effective in some 
lung cancer patients, emerging resistance to EGFR- tyrosine kinase inhibitor (TKI) became an urgent issue to solve. Some 
research has shown that cancer cells undergoing epithelial mesenchymal transition (EMT) acquired resistance to EGFR-TKI, 
though the underlying mechanism remains unknown. Our preliminary study in non-small cell lung cancer (NSCLC) cell lines 
showed that G-protein coupled chemokine receptor CXCR4 could activate both p-AKT and p-ERK pathways, which have 
been reported to induce EMT. In this study, we hypothesize that CXCR4 may be an alternative route for cancer cells to bypass 
EGFR to activate the downstream pathway under an EMT phenotype. Methods: Immunohistochemistry (IHC) was used to 
detect the expressions of CXCR4, p-AKT, p-ERK, and E-cadherin in 94 clinical NSCLC samples and a weighted index (WI = 
% expression x intensity score) was used to quantify the expression level of these markers. Western blot was used to detect the 
expression of CXCR4 and activation of its downstream pathways in NSCLC cell lines. Results: CXCR4 was detected in 
98.9% (93/94) of lung cancer samples, however, of greater interest were the 3 distinctive expression patterns for CXCR4 
including cytoplasmic, nuclear, and cytoplasmic/nuclear expressions. Since it seems unreasonable to see a transmembrane 
receptor located in nuclei, we confirmed nuclear localization of CXCR4 by western blot using nuclear extractions from 
NSCLC cell lines. Furthermore, we evaluated the correlation of different locations of CXCR4 with p-AKT, p-ERK, and E-
cadherin by ANOVA statistical analysis. The result showed the expression level of p-AKT and p-ERK are both significantly 
higher (p=0.004 and p=0.014, respectively) in CXCR4 cytoplasmic and cytoplasmic/nuclear localization groups than those in 
CXCR4 nuclear localization group. The expression level of E-cadherin in the CXCR4 cytoplasmic and cytoplasmic/nuclear 
localization groups was also significantly lower (p=0.021) than that in CXCR4 nuclear staining group. Conclusions: Our data 
suggested that cytoplasmic CXCR4 may contribute to activation of AKT and ERK signaling pathways under EMT, while 
nuclear localization of CXCR4 may be an inactive form. The functional cytoplasmic CXCR4 may contribute to EGFR-TKI 
resistance by offering an alternative pathway for tumors to maintain progression. (Supported by grants from NIH R21 
CA125062, DOD W81XWH-07-1-0306 Project 5 to ZGC, and GCC Distinguished Scholar Award to ZGC and DMS). 
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Abstract 
Body:

Background. The VEGF receptor 2 (VEGFR2) is the predominant mediator of 
VEGF-stimulated endothelial cell function. Recently, VEGFR2/KDR copy number 
gain and mutation, and VEGF copy number gain, have been described in lung 
adenocarcinoma tumor specimens. To better characterize the molecular changes of 
these two genes in non-small cell lung carcinoma (NSCLC), we investigated their 
abnormalities in NSCLC tumor tissue specimens and correlated with patients 
clinico-pathological characteristics. 
Methods. We extracted DNA from microdissected tissue obtained from 200 
surgically resected NSCLCs. KDR single nucleotide polymorphism (SNP) 889G/A 
(rs2305948), SNP 1416A/T (rs1870377) and SNP -37A/G (rs2219471) were 
genotyped by PCR-based sequencing. KDR and VEGF copy number were 
examined by quantitative (q)-PCR. Protein expressions of VEGF and VEGFR2, and 
CD34 for microvascular density (MVD) analysis were studied by 
immunohistochemistry. SNP genotypes, genes copy number and protein expression 
were correlated with NSCLC clinico-pathological features, including overall 
survival (OS) and recurrence-free survival (RFS). 
Results. KDR 1416 AT/TT genotypes had significantly improved OS (HR = 0.56, 
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95% CI 0.33 to 0.96, P = 0.035) compared with KDR 1416 AA in all NSCLC 
patients in the multivariate analysis with adjustment of histology and tumor stage. 
In lung adenocarcinomas, KDR 1416 AT/TT genotypes and KDR -37AG/GG were 
associated with a favorable OS (HR = 0.43, 95% CI 0.20 to 0.92, P = 0.029; HR = 
0.47, 95% CI 0.23 to 0.96, P = 0.039, respectively). Strikingly, KDR -37 AG/GG 
genotypes predicted a superior OS compared with KDR -37 AA genotype in the 
NSCLC patients treated with adjuvant therapy (HR = 2.45, 95% CI 1.06 to 5.66, P 
= 0.036). No genotype in KDR SNPs was associated with RFS in NSCLC patients. 
Gene copy gain of KDR and VEGF were detected respectively in 34/91 (37.4%) 
and 2/91 (2.2%) NSCLC tumors. Gene copy gain of KDR was associated with a 
poor overall survival in NSCLC patients (HR= 2.96, 95% CI 1.41 to 6.24, P = 
0.004). Furthermore, tumors with gene copy gain of KDR showed significantly 
higher cytoplasmic (P = 0.013) and membrane (P = 0.009) VEGFR2 protein 
expression, lower cytoplasmic VEGF expression (P = 0.044), and higher MVD (P 
= 0.018) and larger vessel areas (P = 0.033) compared with tumors lacking KDR 
gene copy gain. 
Conclusion. Our findings suggest an association between KDR SNP genotypes and 
survival in NSCLC patients receiving adjuvant therapy. KDR copy number gain 
was frequently identified in NSCLC and was associated with worse survival in 
NSCLC patients. (Supported by grant US DoD W81XWH-07-1-0306). 
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Background

 

. C ancer st em c ells (CSCs) o r ca ncer-initiating c ells represent a 
minor p opulation o f s elf-renewing t umor ce lls which ar e bel ieved t o play an  
important role i n tumor dev elopment, metastasis and r esistance t o t herapy. 
Although s ome C SC m arkers have bee n descr ibed i n N SCLC, t here i s no 
comprehensive characterization of multiple CSC markers in this disease. Our aim 
was to investigate the pat terns of protein expression of a panel of CSC-related 
markers in a l arge series of NSCLCs, and correlate those findings with patients’ 
clinico-pathologic characteristics.  

Methods

 

. We examined pr otein ex pression by  i mmunohistochemistry ( IHC) o f 
287 NSCLCs (178 adenocarcinoma, and 109 squamous cell carcinomas (SCC)) 
of a pa nel of nine CSC markers: EZH2, SOX2, CD24, CD44, C-kit, HEY1, Shh, 
BMI-1 and Oct3/4. The patterns of expression of these markers were correlated 
with pat ients and t umors’ cl inico-pathologic characteristics, i ncluding di sease 
outcome. In the adenocarcinoma, CSC markers expression was correlated with 
the EGFR and KRAS mutation status of the tumors.  

Results. EZH2, SOX2, CD44, CD24 and C-kit were detected in the tumor cells. 
The pattern of Immunochemistry staining varied in each markers, EZH2 and 
SOX2 in nuclei, CD44 and CD24 in membrane, and C-kit in cytoplasm. Rare 
cases had HEY1 and Shh expression. We didn’t find BMI-1 and Oct3/4 
expression in our cases. The expression for these markers correlated with 
certain clinico-pathologic characteristics, including tumor histology, pathological 
stage, and patients’ smoking history. EZH2, SOX2 and CD44 expressions were 
significantly higher in SCC than adenocarcinoma (P<0.001), and CD24 
expressions was significantly higher in adenocarcinoma than in SCC (P<0.05). 
Patients with tobacco history showed significantly higher EZH2, SOX2, and 
CD24 expression compared with patients without tobacco history (P <0.001, 
P<0.05). The presence of EGFR mutation in lung adenocarcinoma correlated 
significantly with low EZH2 (P=0.03) and high CD44 (P=0.032) expression. We 
identified a subset of NSCLCs having membrane CD44+/CD24 low or negative 
expression. Interestingly, in multivariate analysis using the expression scores as 
a continuous variable, high nuclear expression of EZH2 correlated significantly 
with worse recurrence free survival (HR=1.004; P=0.021) and overall survival 
(HR=1.006; P=0.017) in patients with stage I/II adenocarcinoma who didn’t 



receive pretreatment. Patients with CD44+/CD24- expression had worse overall 
survival than other subtype in squamous cell  
carcinoma in male (HR=2.935, p=0.037) 
 
Conclusions

 

.  We provide a characterization of multiple CSC markers in a large 
series of NSCLCs. Our f indings indicate that a different pattern of CSC markers 
expression is detected in adenocarcinoma and squamous cell carcinomas of the 
lung, and t heir ex pression co rrelates with p atients’ cl inico-pathologic features, 
including su rvival. T he un derstanding o f t he r ole of C SCs in NSCLC t umor 
development and pr ogression m ay pr ovide o pportunities to design nov el 
strategies to prevent and treat this disease.  
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Appendix: PROSPECT Database Screenshots (new development shown on exhibits 11-14.) 
 
1) Clinical module: Patient Information, Social History, Medical History 

 

 
 
 
 

 



2) Clinical module: Other Malignancy 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3) Clinical module: Treatment: Surgery, Chemotherapy, Radiotherapy and Other Treatments 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4) Clinical module: Staging 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5) Clinical module: Follow up 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6) Pathological module: Tissue Pathological Data 
 
- Primary Diagnosis Specimen 
- Primary Surgical Specimen 
- Metastasis Diagnosis Specimen 
- Metastasis Surgical Specimen 
 

 

 
 
 
 
 
 
 
 
 
 



7) Pathological module: Histology 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8) Pathological module: Staging and Tumor Information 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9) Pathological module: Tissue Bank (Frozen and Paraffin) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10) Dictionary module 
 

 
 
 
 
 
 
 
 
 



11) Query Tool 
 
 
 



12) The query results page 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13) The example of the Excel reports. 
 

 
 



14) Patient Summary Report 
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