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SUr.t1ARY 

Estimates of the test section wall interference effects have been 
computed for an elliptic missi.le body configuration in the Aerodynamic 
Wind Tunnel (4T) of the Propulsion Wind Tunnel Facility. Results are 
presented for test Mach numbers of 0.95 and 1. 05. Compari sons of test 
section wall static pressure measurement~ in 4T with computations show 
relatively good agreement at Mach 0.95 and follow the general trend at 
Mach 1. 05. The wall interference produces a 2.5% decrease in 1 i ft 
coefficient at the highest angle of attack for which calculations were 
made. 
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M 

p 

q 

Subscripts 

NOMENCLATURE 

Lift coefficient 

Pitching moment coefficient 

Pressure coefficient (p-Poo)/qoo 

Interference pressure coefficient (Cp unconfined flow 
- Cp confined flow) 

Mach number 

Pressure, psfa 

Dynamic pressure~ psf 

Model angle of attack, degrees 

Interference lift coefficient (CL unconfined flow 
- CL confined flow) 

Interference pitching moment coefficient 
(Cm unconfined flow - Cm confined flaw) 

Wall static pipe Cp at lift coefficient of 
interest - wall static pipe Cp at tero lift 

Test section reference conditions 
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1.0 INTRODUCTION 

Wa 11 interference produced by a tunnel upon a model is a contri­
butor to errors inherent to measured wi nd tunne 1 data? I n every tran­
sonic wind tunnel test, wall interference exists to some degree. There­
fore, it is advantageous to correctly identify the level of wall inter­
ference in wind tunnel tests. 

Recently an elliptic missile configuration (Fig. 1) was tested in 
Tunnel 4T to provide a data base for verification of computational fluid 
dynamics (CFD) methods. Because of the relatively large model size 
(1.2% blockage) and high transonic Mach numbers tested, wall 
interference effects were of major concern. The ARO-1 code, an Euler 
solver, developed at AEDC (Ref. 1) is used in this analysis to estimate 
the wall interference on the elliptic missile configuration. The method 
consists of computing the flow field about a body within a tunnel with 
the porous walls modelled by an empirical correlation and then computing 
the unconfi ned flow about the same body. The wall interference is the 
difference between the two solutions. 

The calculations were made on the elliptic body at free-stream Mach 
numbers of 0.95 and 1.05. The angle of attack was 10 deg for both Mach 
numbers; a flow case of a = 20 deg and M~ = 0.95 was also computed: 

Calculations of wall interference effects on an elliptic missile 
body geometry, Fig. 1, was requested by Air Force Wright Aeronautical 
Laboratories (AFWAL/FIMG), Wright-Patterson AFB, Ohio, under Program 
Element 62201F, Control Number 2404. The program manager was Lt. Norman 
Schmoeker, AEDC/DOFA. The results were obtained by Cal span 
Corporation/AEDC Division, operating contractor for the aerospace flight 
dynamics testing effort at the AEDC, AFSC, Arnold Air Force Station, 
Tennessee. The analysis was conducted in the Propulsion Wind Tunnel 
Facility (PWT) during the period from 17 September through 20 December 
1985 under AEDC project number CD48PB, PWT Test Number TC793. Docu­
mentation of the test is contained in Ref. 2. 

2.0 COMPUTATIONAL MESH 

The process of computing wall interference in the present method­
ology requ i res two computat i ona 1 meshes. One mesh models the space 
between the aerodynamic body and the tunnel walls to calculate the con­
fined flow in the tunnel. This simulation is done by applying approp­
ri ate porous wa 11 boundary cond i t ions at the mesh outer boundary. Com­
putational space is then added to the exterior of the first mesh resul­
ting in the second mesh for calculations of the unconfined flow about 
the body. With the additional space and freestream conditions imposed 
on the second mesh outer boundary, unconfi ned flow on the body may be 
simulated. The difference of the two solutions is the wall inter-
ference. Two meshes are required for each angle of attack case con-
sidered because of the change in model attitude relative to the tunnel 
wa 11 s. 
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The B25 elliptic body configuration (Fig. 1) was described ana­
lytically and a computational surface grid constructed. The present 
method requires the body to be closed; therefore, a conical section was 
added to the base of the body. This addition simulates the wake region 
better than a fl at base. Because of symmetry, only half of the tunne 1 
and model were modelled to mlmm1Ze the mesh points required. 
Approximately 900 mesh points were used on half the model surface. 

The surface grid was transformed into a warped spherical grid 
topology to be used as the inner boundary of the tunnel mesh. Two views 
of the surface mesh are shown in Fig. 2. After analytically describing 
the tunnel surface, the inner model surface and outer tunnel surface 
were used as boundary conditions for a three-dimensional Poisson 
equation solver (Ref. 3) to create the interior mesh. Two planar views 
of the model at 10° angle of attack are shown within Tunnel 4T (Figs. 3 
and 4) to demonstrate the interior mesh. Also, the model surface is 
shown positioned inside the tunnel surface in Fig. 5. 

3.0 RESULTS AND DISCUSSION 

Computations of wall interference have been made on the B25 
elliptic missile body configuration in Tunnel 4T. The calculations were 
obtained at three flow conditions: 

1) Moo = 0.95, a = 10 deg 
2) Moo = 1.05, a = 10 deg 
3) Moo = 0.95, a = 20 deg 

The wall porosity for all cases is 5%. The results are presented sepa­
rately for each of the above cases. In each case, the wall interference 
is illustrated as a pressure coefficient increment produced by the wall. 
Therefore, the pressure contours shown in Figs. 6-14 are the differences 
(ICp) between the unconfined flow pressures and the tunnel confined flow 
pressures. In addition, the pressure differences were integrated over 
the body to obtain the incremental interference lift and pitching 
moment coefficients. These coefficients are presented in Table 1 for 
the three cases investigated. 

As illustrated in Fig. 15, the ARO-1 code underpredicted the lift 
on the model; consistently lower lift curve slopes are always evident in 
the calculations when compared to experimental data. The measured lift 
coefficient data were obtained from the Elliptic Missile Body Force Test 
documented in Ref. 4. The mi smatch occurs because vi scous effects are 
ignored and computer storage restrictions do not allow complete 
resolution of the entire model. However, the results are usable if one 
recognizes that the increment attributable to wall interference is 
proportional to lift. Therefore, the comparisons with experimental data 
should be made with matched lift coefficients rather than angle of 
attack. 
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3.1 M~ = 0.95, a = 10 deg 

The pressure difference distribution on the elliptic body is shown 
in Fig. 6 for the top and bottom surfaces. The wall interference on the 
body is initially small near the nose but increases axially along the 
body. Also, the bottom surface pressure difference contours are shifted 
aft from the corresponding contours on the top surface illustrating the 
angle of attack. 

The wall interference effect at the tunnel walls is shown in Fig. 
7. Th~ proximity of the base-of the body to the bottom wall is evident 
by the hi gh gradi ent and 1 eve 1 of contours on the walL At the tunnel 
symmetry plane, the patterns of pressure difference in the tunnel are 
shown in Fig. 8. The pressure difference contours on the base conical 
addition are significant, but since this addition does not exist in the 
actual testing of the model, these contours may be disregarded. 

3.2 M~ = 1.05, a = 10 deg 

The effect of a higher free-stream Mach number is shown in this 
flow case. The pressure difference contours are at a lower absolute 
level on the body (Fig. 9) however, the interference lift coefficient is 
higher as shown in Table 1. The pressure difference contours are at a 
higher absolute level on the tunnel walls (Fig. 10) with the same basic 
patterns as Case 1. The interference effects at the symmetry plane 
(Fig. 11) are also consistent with the previous case but show a more 
pronounced interference pattern in the tunnel. 

3.3 M~ = 0.95, a = 20 deg 

This flow case shows the effect of a higher angle of attack on the 
wall interference in the tunnel. As shown in Figs. 12 thru 14, the 
pressure difference contour levels have intensified on the body and the 
tunne 1 walls. The contour patterns have also changed on the tunne 1 
walls since the model attitude is different. The interference is exten­
sive as compared to the previous cases. 

Considering these three flow cases, the results show that a higher 
free-stream Mach number causes higher levels of wall interference on the 
model based on interference lift coefficient. Also, higher angles of 
attack result in a significant increase in wall interference. 

4.0 WAll PRESSURE COMPARISONS 

In this section, wall pressure measurements, taken by static 
pressure pi pes located on the center 1 i ne of the top and bottom wa 11 s, 
arE compared to calculations on the top and bottom walls for four cases: 

1) M~ = 0.95, CL = 0.6 
2) M~ = 0.95, CL = 2.1 
3) M~ = 1.05, CL = 0.6 
4) M~ = 1.05, CL = 2.1 
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Because of local effects of the static pipe, wall pressure data at zero 
lift were subtracted from wall pressure data of each case considered and 
compared to cal cul ations made simil arly. These pressure differences 
(~Cp) are plotted versus tunnel station in Fig. 16. 

The wall pressure comparisons at Moo = 0.95 and CL = 0.6 (Fig. 16a) 
show good agreement on the top wall with fair prediction of the pressure 
trends on 'the bottom wall. For the higher lift case (Fig. 16b), the 
same trends ocCur on both walls. For the Moo = 1.05 cases (Figs. 16c and 
16d), the data is scattered enough that no good comparison can be made. 
However, the calculations show a consistent trend as compared to the Moo 
= 0.95 cases and a general trend may be seen in the data as compared to 
the calculations. This data scatter may occur because of inherent 
problems associated with testing near Moo = 1. 

Based on previous experience, the quality of the comparisons 
between calculated and measured pressure coefficients near the wall is 
an indication that the actual wall effects on the model should be rela­
tively close to those of the calculations. 

5.0 CONCLUSIONS 

Computations of wall interference on the B25 elliptic missile con­
figuration have been presented. Agreement between the measured and 
computed wall pressures provides a level of confidence that the computed 
interference on the body is good. The wall interference produces a 2.5% 
decrease in lift coefficient at the highest angle of attack for which 
calculations were made. These wall interference effects should be 
accounted for if the measured data are to be used to verify 
computational fluid dynamics codes. 
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Table 1. Summary of Integrated Wall Interference Effects 
on Model Force and Moment 

CL = 0.6 

Cm = 0.49 

0.0177 

0.0033 

CL = 0.6 

Cm = 0.47 

0.0195 

-0.0015 

M(X) = 0.95 
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CL = 2.1 

Cm = 0.86 

0.0540 

-0.0002 


