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Abstract 

The Team Software Process (TSP) provides a framework to predictably and effectively build 

software-intensive products. It relies on data collected by team members to provide insight into 

how a software project is operating. For this paper, an exploratory data analysis was conducted to 

investigate other ways that TSP data could be used. A set of measures was determined that allow 

analyses of TSP projects in terms of their fidelity to the TSP process and their project perfor-

mance. These measures were applied to a data set of 41 TSP projects from an organization to 

identify their strengths and weaknesses. Software engineering teams already using TSP for soft-

ware development can use the measures provided in this report to gain further insight into their 

projects. 
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1 Introduction 

The Team Software Process (TSP) provides a framework to predictably and effectively build 

software-intensive products [Humphrey 2010]. TSP has shown to be particularly effective for me-

dium to large projects where intricate coordination is required among team members with differ-

ent skill sets [Jones 2009]. TSP relies heavily on data collected by team members to provide in-

sight into how the project is operating. Team members can identify areas of the project where they 

are performing well, and areas where they are not, by analyzing the data. They can then tailor 

their processes to strengthen the areas where they are not performing well, to continuously im-

prove their performance. 

For this report, an exploratory data analysis was conducted to provide insight into the types of 

information an organization’s TSP data can provide. A data set consisting of 41 TSP projects 

from one organization was analyzed for fidelity and performance using a set of derived measures 

from TSP data. Fidelity indicates how well the teams followed the TSP process. Project perfor-

mance is determined by factors related to cost, quality, and functional completion. From the anal-

ysis, the process maturity, strengths, and weaknesses of the organization became clear.  

Software engineering teams already using TSP for software development can use the measures 

provided in this report to gain further insight into their projects. Also, given a large data set, TSP 

projects can be classified into high performers and low performers using the provided measures. 

The measures for such high and low performers can be analyzed for purposes of performance 

benchmarking [Kasunic 2008]. 

In the following section, the basic statistics of the data set are introduced to familiarize you with 

the data. Then, the results of analyzing the projects for their fidelity and performance are presented. 
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2 Characteristics of a Sample of TSP Projects 

This section provides an overview of the data set that was analyzed. Becoming familiar with these 

basic statistics will help you better understand the analyses of fidelity and performance provided 

in upcoming sections. 

2.1 Database Integrity 

A data set based on 41 software project data from one organization was used. All projects in the 

set used TSP as their software development process. The data was obtained in the form of a Mi-

crosoft Access database. The database was consolidated from individual projects contained in the 

TSP Tool, which is a Microsoft Excel based tool provided by the SEI for managing TSP projects. 

Initially, the database contained information from 44 TSP Tools. However, two projects contained 

identical data in terms of team, architecture, tasks, and schedule. One of the two identical projects 

was discarded prior to analysis. Two other projects contained only data from the TSP launch be-

fore the plan was put into use, so they were also discarded prior to analysis. 

Also, it was apparent that some projects were related after observing the names and the schedules 

of the projects. For example, Figure 1 shows a timeline of four TSP Tools with identical project 

names, distinguished by version numbers such as 3.1 and 3.2. The timeline could indicate that a 

separate TSP Tool was used for each of the four iterations of a single project. However, after fur-

ther investigation of similar patterns in the 41 projects, it was found that none of them contained 

duplicate architectural components or tasks. Also, each data point contained a full development 

phase, from design to system testing, showing a preference by the organization to have smaller 

projects separated by versions of software. Each of these projects was retained and treated as a 

separate project.  Thus, all 41 data points were treated as independent for this analysis.   

Finally, as will be indicated during the analyses performed, some projects were missing certain 

types of data, notably time log data, defect data, and size data. Time log data was unavailable for 

5 of the 41 projects. Only 15 projects collected defect data, out of which 3 teams had recorded 

defects found in phases that were not a part of their plan. Also, 2 teams failed to record size data. 

 

 

Figure 1: Timeline of Four Related TSP Tools 
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2.2 Team Size 

The statistics for team size for the 41 projects are summarized in Table 1. The average size of the 

team was about 9 members, with the smallest team consisting of 4 members and the largest team 

consisting of 19 members. Only 12 of the 41 projects (less than 30%) had teams larger than 10, as 

shown in Figure 2. 

 

Min 4.0 

1
st

 Quartile 6.0 

Median 8.0 

Mean 9.3 

3
rd

 Quartile 12.0 

Max 19.0 

Table 1: Descriptive Statistics of Team Size 

 

 

Figure 2: Histogram of Team Size 

 



 

5 | CMU/SEI-2010-TR-038 

2.3 Project Duration 

The statistics for project duration (in days) are summarized in Table 2. The duration of the project 

was defined as the number of days from the start date to the end date of the project as indicated in 

the TSP Tool. None of the projects had breaks between the start and end dates. The average 

project was about 127 days, or 4 months, with the smallest project being slightly less than a month 

and the largest being almost one year. As shown in the histogram in Figure 3, most of the projects 

were between 50 and 150 days in duration. 

Min 28.0 

1
st

 Quartile 71.8 

Median 108.5 

Mean 126.5 

3
rd

 Quartile 145.2 

Max 350.0 

Table 2: Descriptive Statistics of Project Duration in Days 

 

 

Figure 3: Histogram of Project Duration 
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2.4 System Size 

The statistics for system size are summarized in Table 3. System size is defined as the size of the 

entire architecture in lines of code (LOC). From the TSP Tool, the system size was extracted as 

the summation of the components in the SUMS forms that used LOC as the size measure. Size 

data was unavailable for 2 projects, so the statistics were derived from the other 39 projects. The 

average system size was about 9,000 LOC or 9 Kilo LOC (KLOC), with the smallest being 265 

LOC and the largest being about 60 KLOC. Figure 4 shows a histogram of system size. Thirty of 

the 39 projects were less than 10 KLOC, and a more detailed histogram of these systems is also 

shown in Figure 4. 

Min 265.0 

1
st

 Quartile 2,682.0 

Median 4,340.0 

Mean 9,011.0 

3
rd

 Quartile 9,044.0 

Max 60,600.0 

Table 3: Descriptive Statistics of System Size in Lines of Code (LOC) 

 

Figure 4: Histogram of System Size in Lines of Code (LOC) 
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2.5 Time in Phase 

Table 4 shows the average percent of time spent in each development phase. The phases shown in 

the table are standard phases used in TSP. Testing phases, which include test development, unit 

test, build and integration, system testing, and acceptance testing combined for the largest portion 

with about 42% of the total effort. The design phases accounted for about 17% of the total effort, 

and coding phases accounted for about 19%. All other phases accounted for about 22% of the to-

tal effort. 

Type of Phase Phase Time in Phase (%) 

Planning Launch and Strategy 5.91 

 Planning 1.88 

 System Test Plan 2.00 

 Integration Test Plan 0.57 

Requirements Requirements 1.65 

 Requirements Inspection 1.63 

Design High-Level Design 1.55 

 High-Level Design Inspection 1.00 

 Detailed Design 7.92 

 Detailed Design Review 2.85 

 Detailed Design Inspection 3.48 

Code Code 11.22 

 Code Review 3.66 

 Code Inspection 3.56 

 Compile 0.91 

Test Test Development 7.91 

 Unit Test 5.66 

 Build and Integration Test 15.43 

 System Test 12.67 

 Acceptance Test 0.18 

Other Management and Miscellaneous 5.21 

 Documentation 2.58 

 Postmortem 0.47 

 Product Life 0.08 

Table 4: Average Percent of Time Spent in Each Phase 
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2.6 Defects 

Out of the 41 projects examined, only 15 projects tracked defect data in LOGD, the form recom-

mended by TSP. Using LOGD, every defect found in every phase of the project is recorded in the 

defect log. Table 5 shows the system size and total number of logged defects per team along with 

logged defects per KLOC. It is important to note that the logged defects per KLOC is a measure of 

defects found during development, not a measure of the post-production defects. The system sizes 

for teams 1 and 11 were unavailable. Table 6 shows the average percent of total defects injected 

per phase, and Table 7 shows the average percent of total defects removed per phase. Among the 

projects, defects were mostly injected in the coding phase and detailed design phase. On average, 

appraisals (reviews and inspections) were successful in capturing half of the defects. 

ID System Size (LOC) Defects Defects/KLOC 

1 - 254 - 

2 265.0 125 471.7 

3 844.0 41 48.58 

4 2,467.0 43 17.43 

5 2,696.0 90 33.38 

6 2,090.0 9 4.31 

7 3,893.0 92 23.63 

8 2,772.0 158 57.00 

9 2,668.0 13 4.87 

10 3,606.0 196 54.35 

11 - 142 - 

12 7,331.0 60 8.18 

13 9,220.0 280 30.37 

14 7,669.0 196 25.56 

15 49,333.0 1,447 29.33 

Table 5: System Size and Total Number of Logged Defects per Team 

 

Phase Defects Injected (%) 

Requirements 2.23 

High-Level Design 1.42 

Test Development 1.65 

Detailed Design 28.93 

Code 62.20 

Unit Test 1.98 

Other 1.59 

Table 6: Average Percent of Total Defects Injected per Phase Across Projects 
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Phase Defects Removed (%) 

Requirements Inspection 1.56 

High Level Design Inspection 0.39 

Detailed Design Review 12.09 

Detailed Design Inspection 9.86 

Code Review 22.53 

Code Inspection 10.34 

Unit Test 15.82 

Integration Test 8.03 

System Test 11.70 

Other 7.68 

Table 7: Average Percent of Total Defects Removed per Phase Across Projects 
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3 Fidelity 

Fidelity indicates how faithfully the teams followed the TSP process. In this section, the measures 

that were used to analyze the fidelity of the TSP projects are defined. The measures are then ap-

plied to the data set introduced in the previous section. 

3.1 Fidelity Measures 

The first three measures indicate whether the project’s development phases support early removal 

of defects. TSP is based on studies indicating that reviews and inspections are more efficient than 

testing [Humphrey 1995]. Defects removed in earlier phases of development are cheaper and lead 

to a higher quality product. The following are the three measures of early defect removal:  

• Planned Phases 

• Planned A/FR 

• Actual A/FR 

Planned and actual time is fundamental to these process fidelity measures. Therefore, reliability of 

the time data becomes a concern. TSP urges team members to collect their data in real time. Data 

reported from memory after the fact are usually guesses or rounded and not as accurate, leading to 

poor data quality. The four measures below quantify this aspect of data quality (and also this as-

pect of process fidelity) by examining the deviation of digits from the expected distribution, such 

as Benford’s law.  Further information about Benford’s law can be found in see Appendix A. The 

following are the measures related to data quality: 

• Leading Digit Deviation for Effort 

• Trailing Digit Deviation for Effort 

• Leading Digit Deviation for Defects 

• Trailing Digit Deviation for Defects 

All seven measures related to fidelity are explained below in detail. 

3.1.1 Measures Indicating Early Defect Removal 

1. Planned Phases 

Planned phases is related to whether a team has planned for a competent software develop-

ment process. The following nine phases are required: 

• design 

• design review 

• design inspections 

• code 

• code review 

• code inspections 

• unit testing 
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• integration testing 

• system testing 

Whether or not a team has done this planning can be checked by investigating the project’s 

planned percent time in phase [Humphrey 1995]. If the project has at least 1% of its overall 

planned effort in each phase, those phases can be marked as having been included in the 

plan. To convert the planned phases into a numerical value, the following formula is used: 

 

�������	���	�	 
 	�	�
�

��  

where �
 is the binary indicator (1 or 0) indicating whether the plan contained phase i. 

 

2. Planned A/FR 

 �/�� 
 	���� � ������� � �� � ��������������� � � � � � �  

 

 where 

DLDR is the planned time in phase for detailed design review. 

DLDINSP is the planned time in phase for detailed design inspection. 

CR is the planned time in phase for code review. 

CODEINSP is the planned time in phase for code inspection. 

COMPILE is the planned time in phase for compile. 

UT is the planned time in phase for unit testing. 

IT is the planned time in phase for integration testing. 

ST is the planned time in phase for system testing. 

 

The planned appraisal to failure ratio (A/FR) is defined as the ratio between the percent of 

total development time planned for reviews and inspections to the percent of total develop-

ment time planned for compile and test [Humphrey 1995]. This measure can be obtained 

from the above formula using planned time in phase as input. If the planned A/FR is low, 

that indicates that not enough time was planned for appraisals and the software may have 

low quality. 

 

3. Actual A/FR 

The formula for the actual A/FR is the same as the formula for planned A/FR above, except 

for the use of actual time in phase instead of planned time in phase. While the planned A/FR 

indicates whether sufficient appraisals were planned, the actual A/FR indicates if the team 

actually conducted sufficient reviews and inspections while executing the plan. 
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3.1.2 Measures Indicating Data Quality 

1. Leading Digit Deviation for Effort 

The leading digit deviation for effort is a measure of the quality of the effort data that was col-

lected by the team members in their time log. In order to assure high quality of data, PSP/TSP 

urges members to collect their data in real time. This measure uses Benford’s law to detect 

whether the team members are in fact collecting data in real time and not manipulating the da-

ta after the fact. 

 

 

Figure 5: Leading Digit Plot Showing Largest Point of Deviation 

 

Figure 5 shows a plot of the leading digits of the actual effort data (delta time) collected from 

a project’s task list. The red line represents the expected frequency of digits according to the 

Benford’s law (Appendix A). The blue line represents the observed frequency of digits, 

based on actual data taken from the project’s time log. The black vertical intervals surround-

ing the expected frequencies signify one standard deviation from the expected frequency. In 

Figure 5, the largest deviation between the expected and the observed frequency occurs at 

digit 6. The leading digit deviation for effort is a measure related to the distance between the 

observed frequency and two standard deviations from the expected frequency of the largest 

deviation point, as indicated in the diagram by a dashed bracket. 

Some vocabulary and variables need to be defined before explaining how to calculate this 

measure. First, let n be the total number of observations, which is the number of tasks in the 

task list. A leading digit is the left most digit of a number. For example, the set of numbers: � 
 !10, 100, 30, 25, 90, 4* 

 



 

14 | CMU/SEI-2010-TR-038 

has the following leading digits: � 
 !1, 1, 3, 2, 9, 4* 
Benford’s distribution for the numbers 1 through 9 is defined as the following vector: 

+ 
 	
,--
---
.log�231 �	114log�231 �	124⋮log�231 �	19467

777
78
 

The product n * B, which is the expected frequency of digits, is represented in Figure 5 by 

the points connected by the red line. Given B and n and using a binomial distribution, the 

standard deviation for each digit’s expected frequency is: 

�9 
	
,-
--
-.:� ∗ 	+� ∗ 31 <	+�4=�>:� ∗ 	+> ∗ 31 <	+>4=�>⋮:� ∗ 	+� ∗ 31 <	+�4=�>67

77
78
 

The standard deviation is represented in Figure 5 by the vertical black intervals. The actual 

observed frequency of digits is defined as: 

� 
	 ?@�@>⋮@�A 
where oi is the observed frequency of digit i. For example, for the above example set of lead-

ing digits L, o1 is 2, since there are two occurrences of digit 1. The observed frequency of di-

gits is derived from the leading digits of the actual effort data (delta time) collected from the 

project’s task list. The observed frequency of digits is represented in Figure 5 by the points 

connected by the blue line. 

The absolute value function (abs) is an element-wise function that takes the absolute value of 

each element in the vector. For example, for the following vector: 

� 
 	 ?<25<16 A 
applying the absolute value function, abs(A), will return: 

�C	3�4 
 	 ?2516A 
Finally, the max function (max) is a function that returns the maximum value of a vector. For 

the above vector, max(A) will return 6. 
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Using the above definitions, the leading digit deviation for effort is defined as: 

���� 
 max	3�C	3� ∗ + < �4 < 	2 ∗ 	�94�  

That is, ���� is the maximum deviation in excess of two standard deviations of the expec-

tation, divided by the number of observations. This statistic estimates the fraction of observa-

tions that were not consistent with Benford’s distribution.  

 

2. Trailing Digit Deviation for Effort 

The trailing digit deviation for effort is also a measure of the quality of the effort data col-

lected by the team members. When members do not collect data in real time as the work is 

being performed, the last digits are often rounded to 5 or 0. This measure will capture fre-

quent occurrences of such rounding. Instead of Benford’s law, which only applies to the 

leading digits, the trailing digit deviation for effort uses the uniform distribution to calculate 

the expected frequency of digits. A modification of Benford’s law could be used, however, a 

uniform distribution is a good approximation with more than a few significant figures.  

Let n be the total number of observations, which is the number of tasks in the task list. A 

trailing digit is the right-most digit of a number. For example, the following set of numbers: 

� 
 !32, 143, 242, 25, 92, 4* 
has the following trailing digits: 

 
 !2, 3, 2, 5, 2, 4* 
A discrete uniform distribution with possible values G 
 1, 2,… 10	is defined as: 

� 
	?0.10.1⋮0.1A 
with 10 elements of value 0.1. The product n * U represents the expected frequency of digits. 

Given U and n, the standard deviation for each digit’s expected frequency is: 

�J 
	
,-
--
-. :� ∗ 	�� ∗ 31 <	��4=�>:� ∗ 	�> ∗ 31 <	�>4=�>⋮:� ∗ 	��2 ∗ 31 <	��24=�>67

77
78
 

The observed frequency of digits is defined as: 

� 
	 ? @�@>⋮@�2A 
where oi is the observed frequency of digit i. The observed frequency of digits is derived 

from the trailing digits of the actual effort data (delta time) collected from the project’s task 
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list. It is important to note that the last entry of the vector at position 10 is the occurrence of 

digit 0. 

The trailing digit deviation for effort is defined as: 

 ��� 
 max	3�C	3� ∗ � < �4 < 	2 ∗ 	�J4�  

The TDDE again uses the excess two standard deviations above the expectation. 

  

3. Leading Digit Deviation for Defects 

The leading digit deviation for defects uses the same formula as the leading digit deviation 

for effort, except the observed frequency of digits is derived from the recorded defect fix 

times instead of the effort time log. Thus, 

���� 
 max	3�C	3� ∗ + < �4 < 	2 ∗ 	�94�  

where observed frequency of digits is derived from recorded defect fix times and n is the to-

tal number of defects in the defect log. This measure is an indication of the quality of the de-

fect fix times being collected by the team members. 

 

4. Trailing Digit Deviation for Defects 

The trailing digit deviation for defects uses the same formula as the trailing digit deviation 

for effort, except the observed frequency of digits is derived from the recorded defect fix 

times instead of the effort time log. Thus, 

 ��� 
 max	3�C	3� ∗ � < �4 < 	2 ∗ �J4�  

where observed frequency of digits is derived from recorded defect fix times and n is the to-

tal number of defects in the defect log. This measure is also an indication of the quality of 

the defect fix times being collected by the team members. 

To get a better intuitive numerical representation of the deviation measures, they can be converted 

into a scale from 0 to 100 by using the following formula: 

�KLKM	��NK�MK@�	�O@P� 
 31 < �4 ∗ 100 

where x is one of the four measures of deviation. 

3.2 Analysis of Fidelity 

The above measures for fidelity were applied to the data set introduced in Section 2, and the re-

sults are discussed below. 
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3.2.1 Analysis of Early Defect Removal 

Table 8 shows the basic statistics of the planned phases measure for the 41 projects, and Figure 6 

shows the histogram of the planned phases. As seen from Figure 6, 19 of the 41 projects con-

tained all 9 phases in their project plan. Over 80% (34 of 41) of the projects had 7 or more of the 9 

required phases. This indicates that most of the teams planned to conduct reviews and inspections 

as a part of their software development process. 

Min 3.0 

1
st

 Quartile 7.0 

Median 8.0 

Mean 7.78 

3
rd

 Quartile 9.0 

Max 9.0 

Table 8: Descriptive Statistics of Planned Phases 

 

 

Figure 6: Histogram of Planned Phases 
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Table 9 and Figure 7 show the descriptive statistics and the histogram of the planned A/FR. Al-

though the planned phases above indicate that reviews and inspections were planned as part of the 

project, the planned A/FR measure indicates that not enough time was planned for these activities. 

The low mean of 0.72, along with the histogram showing that most teams had a planned A/FR less 

than 1, indicates that most teams planned to spend more time in testing than appraisals. 

Min 0.05 

1
st

 Quartile 0.24 

Median 0.48 

Mean 0.72 

3
rd

 Quartile 0.85 

Max 3.82 

Table 9: Descriptive Statistics of Planned A/FR 

 

 

Figure 7: Histogram of Planned A/FR 

Table 10 shows the descriptive statistics of the actual A/FR measure. The measure shows a lack of 

time spent in appraisals. Figure 8 shows a histogram of the actual A/FR, showing that most teams 

spent much more time testing than they did reviewing or inspecting their artifacts. It is highly 

probable that since the planned process did not have adequate appraisals, the teams also did not 

perform adequate appraisals when executing the plan. 
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Min 0.00 

1
st

 Quartile 0.15 

Median 0.30 

Mean 0.46 

3
rd

 Quartile 0.51 

Max 4.93 

Table 10: Descriptive Statistics of Actual A/FR 

 

 

Figure 8: Histogram of Actual A/FR 
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3.2.2 Analysis of Data Quality 

Time log information was not available for 5 of the 41 projects. Therefore, they were excluded 

from the analysis of the quality of the effort data. Table 11 and Figure 9 show the distribution of 

leading digit deviation for effort and trailing digit deviation for effort, after they have been con-

verted to a score ranging from 0 to 100. The scores for the leading digit deviation are high, indi-

cating that the leading digit closely followed Benford’s law. However, the low mean of 79.0 for 

the trailing digit indicates that the recorded values were being rounded.  

 Leading Digit Deviation 

for Effort 

Trailing Digit Deviation 

for Effort 
Min 85.3 40.7 

1
st

 Quartile 93.2 71.9 

Median 95.6 80.0 

Mean 95.0 79.0 

3
rd

 Quartile 97.2 85.4 

Max 99.9 98.6 

Table 11: Descriptive Statistics of Leading and Trailing Digit Deviation for Effort 

 

 

Figure 9: Histogram of Leading and Trailing Digit Deviation for Effort 
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Figure 10 shows an example plot of the trailing digit analysis of effort data. The red line indicates 

the expected distribution, while the blue line joins the points from the sample data. This figure is 

an example of a team that collected most of their data in real time using a stop watch timer. Al-

though some rounding can be seen in the 0 digit, where the 0 digit is shown as the 10th digit in the 

plot, the blue line is not far from one standard deviation indicated by the black vertical bars. This 

team received a score of 98.6.  

Figure 11 shows a plot of a team that did not collect data in real time. The large spikes in the blue 

line at 5 and 0 indicate that the team members often rounded their data at 5-minute intervals, indi-

cating that data was not collected in real time using a timer, but was estimated. This team received 

a score of 80.2. The mean of 79.0 indicates that most teams rounded much of their data, and the 

accuracy of their data may be suspect. Rounded data, though less precise, might still be accurate.  

The trailing digit is, therefore, likely to produce a lower quality indicator score than the leading 

digit.  

 

Figure 10: Trailing Digit Plot for a Team Collecting Data in Real Time 
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Figure 11: Trailing Digit Plot for a Team Not Collecting Data in Real Time 

A somewhat higher degree of estimation was expected for defect data because a timer was not 

provided for collection of defect find and fix time. Table 12 and Figure 12 show the descriptive 

statistics and the histogram for leading digit deviation for defects and trailing digit deviation for 

defects. As indicated in Section 2, only 15 of the 41 projects collected defect data. Thus, the other 

26 projects were discarded for this analysis. As compared to the effort data, the quality indicator 

of the defect data is significantly worse. For the leading digit, the mean score is 86.1, indicating 

that in about 14% of the sample, the leading digit deviates from the expected frequencies of the 

Benford distribution. This indicates that values for defect fix times were less likely to have been 

collected in real time.  Also, the mean of 67.9 for the trailing digit deviation for defects indicates 

that the trailing digits were rounded.  Figure 13 shows an example plot of the trailing digit, indi-

cating severe rounding at digit 5 and 0. 

 Leading Digit Deviation 

for Defects 

Trailing Digit Deviation 

for Defects 

Min 70.4 41.7 

1
st

 Quartile 79.4 58.1 

Median 87.9 71.0 

Mean 86.1 67.9 

3
rd

 Quartile 94.0 75.5 

Max 97.9 93.0 

Table 12: Descriptive Statistics of Leading and Trailing Digit Deviation for Defects 

 



 

23 | CMU/SEI-2010-TR-038 

 

 

Figure 12: Histogram of Leading and Trailing Digit Deviation for Defects 

 

Figure 13: Trailing Digit Plot of Defect Data 
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3.2.3 Summary of Fidelity Analysis 

The analysis of the process fidelity measures indicated that the 41 projects in the organization 

planned for reviews and inspections. However, they did not plan enough time for these activities, 

and thus did not spend enough time in appraisals as indicated by the actual A/FR measure. Also, 

the teams in the organization did not do a uniformly good job collecting their data in real time. As 

shown from the analysis of the trailing digit, a substantial portion of the data was estimated to 

rounded values of 5 and 0. For those teams that collected defect data, the quality of their defect 

data was not as good as the effort data. The measures for both leading and trailing digits for defect 

data indicated that between 15% and 30% of the data was not being collected in real time. More 

significantly, only 15 out of the 41 projects collected defect data.  It can be inferred from the 

above analysis that the organization’s overall process maturity for TSP was low. 
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4 Performance 

Performance measures indicate the average performance of TSP teams. In this section, the meas-

ures that can be used to analyze the performance of TSP projects are defined. The measures are 

then applied to the data set introduced in Section 2. 

4.1 Performance Measures 

The following measures were used to analyze the performance of TSP projects: 

• Cost deviation 

• Yield before system test 

• Fraction of effort in system test 

• Earned product 

The above measures indicate the project’s performance regarding cost, quality, and functional 

completion. Each of these measures is explained in detail below. 

 

1. Cost Deviation 

 �@	M	��NK�MK@� 
 �OMQ��	�RR@PM < +�	��K��	�RR@PM+�	��K��	�RR@PM  

where 

Actual Effort is the actual total effort for the project, in person-hours. 

Baseline Effort is the planned total effort for the project, in person-hours. 

This measure shows the cost performance of the TSP team. A positive value for the cost dev-

iation shows that the project used more resources than planned to complete the project. 

 

2. Yield Before System Test 

 S+� 
 1 <	� 	��R�OM	 � �Q	M@T�P	��R�OM	 @M��	��R�OM	  

where 

ST Defects is the number of defects found during the system test phase of the 

project. 

Customer Defects is the number of defects found by the customer after release. 

Total Defects is the total number of defects found for the project. 
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The yield before system test indicates the percentage of the defects found before the product 

is submitted  for final testing. This measure is important because no system testing method 

can consistently find all the defects in typical software systems. An efficient and effective 

development process will strive to remove all defects before the beginning of final testing. 

 

3. Fraction of Effort in System Test 

 �P�OMK@�	@R	� 	�RR@PM 
 � 	�RR@PM @M��	�RR@PM 
where 

ST Effort is the hours of effort spent on the system test phase of the project. 

Total Effort is the total hours of effort spent for the project. 

The fraction of effort in system test indicates how much of the overall project effort was 

spent in system test. A large value for this measure typically indicates a significant amount 

of defect fixing and rework, indicating a low quality of the output product. 

 

4. Earned Product 

The earned product is similar to the concept of earned value in Earned Value Analysis 

(EVA) [Pressman 2005]. However, unlike earned value, the value is calculated based on the 

planned size of software components instead of the planned task effort. Software compo-

nents are the individual components of the entire software architecture, represented by a row 

in the Program Size Summary (SUMS) Form. The planned product for a single software 

component is calculated as: 

 

�������	�P@�QOMU 
	 �@TV@���M	�KW�U @M��	�@RMX�P�	�KW� ∗ 100 

where 

Component Sizek is the size of a single software component k, usually in LOC. 

Total Software Size is the size of the entire software product for the project, usually 

in LOC. 
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The earned product is calculated as the sum of the individual planned products for all com-

pleted components: 

 

��P���	�P@�QOM 
 	��������	�P@�QOM
 ∗ �@TV@���M	�@TV��M��
Y

��  

where 

Planned Producti is the planned product of the ith component. 

Component Completedi is a binary indicator with value 1 if the ith component is com-

pleted, and 0 if it is not completed. 

Components are considered completed if the actual size of the component is recorded in the 

form SUMS, or if all the tasks related to the component are completed. If all components 

that were planned to be included in the final software product are completed, the earned 

product will have a value of 100. If any of the planned components are not completed, the 

earned product will be reduced proportionally to the planned size of the unfinished compo-

nent. Software development teams, when they face schedule problems, typically reduce 

product function. A low earned product is likely a result of such reduction in functionality. 

4.2 Analysis of Performance 

The above measures for performance were applied to the data set introduced in Section 2. 

4.2.1 Analysis of Cost 

The descriptive statistics of the cost deviation for the data set is shown in Table 13, and the histo-

gram is shown in Figure 14. The data shows that more than half (24 of 41) of the projects com-

pleted within budget, and for those that overran their budget, they only did so by a slight margin. 

The most significant budget overrun was for a project that planned for 3,528 person-hours but  

actually used 4,909 person-hours of effort. 

Min -0.53 

1
st

 Quartile -0.17 

Median -0.03 

Mean -0.07 

3
rd

 Quartile 0.07 

Max 0.29 

Table 13: Descriptive Statistics of Cost Deviation 
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Figure 14: Histogram of the Cost Deviation 

4.2.2 Analysis of Quality 

As indicated in Section 2, only 15 out of the 41 projects collected defect data. Therefore, 26 

projects were excluded from the analysis. Table 14 shows the system size, yield before system 

test, and fraction of effort in system test for each team. Seven of the 15 teams had a fraction of 

effort in system test of 0. This means that there were no tasks allocated to system test. However, 

out of the 7 teams that did not conduct system test, 3 teams had a yield before system test of less 

than 1. This means that even though the 3 teams captured defects in system test, there were no 

tasks allocated to system test. This is an issue in planning or data quality, where teams were 

spending time in a phase that was not a part of their plan.  

For the remaining projects, Table 14 indicates that projects spent a large portion of their time in 

system testing. Two of the projects spent nearly half of their effort on system test, indicating that 

there  was a significant amount of time spent on fixing defects. Project 7 in particular had a low 

yield of 42%, indicating that many defects were still remaining in the system when they reached 

system test, and 48% of the project effort was spent in system test. Projects 10 and 11 show healthy 

measures, with a yield of 98% and only a small portion of their spent time in system testing. How-

ever, Project 5 had a high yield of 98%, yet still spent 30% of their time in system testing. 
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ID System Size (LOC) Yield Before 

System Test 

Fraction of Effort 

in System Test 

1 - 1.00 0.00 

2 265.0 1.00 0.00 

3 844.0 0.95 0.00 

4 2,467.0 1.00 0.00 

5 2,696.0 0.98 0.30 

6 2,090.0 1.00 0.00 

7 3,893.0 0.42 0.48 

8 2,772.0 0.89 0.40 

9 2,668.0 0.54 0.00 

10 3,606.0 0.98 0.16 

11 - 0.98 0.11 

12 7,331.0 0.72 0.28 

13 9,220.0 0.96 0.00 

14 7,669.0 0.87 0.21 

15 49,333.0 0.96 0.11 

Table 14: System Size, Yield Before System Test, and Fraction of Effort in System Test per Team 

4.3 Analysis of Earned Product 

The descriptive statistics of the earned product for the data set are shown in Table 15, and the 

histogram is shown in Figure 15. 

Min 0.00 

1
st

 Quartile 94.31 

Median 100.0 

Mean 91.68 

3
rd

 Quartile 100.00 

Max 100.00 

Table 15: Descriptive Statistics for Earned Product 
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Figure 15: Histogram of Earned Product 

One project had an earned product measure of 0. That was because they did not complete the 

phases that were planned for all of the components they intended to produce. Excluding this out-

lier, teams generally completed all or most of the components that they planned to produce. This 

indicates that during the project, teams did not cut scope and reduce the functionality of the sys-

tem. 

4.3.1 Summary of Performance Analysis 

The projects in the organization were generally completed within budget without reducing the 

functionality of the system. However, the quality profiles of the projects are largely unknown be-

cause most teams did not collect defect data. For the defect data that were collected, there were 

further data quality issues related to teams spending time in phases that were not a part of their 

plan. The fraction of effort in system test shows that those teams that properly collected defect 

data spent a significant amount of time in system testing. This is in agreement with the observa-

tion from Section 3 that the teams generally relied on testing rather than reviews and inspections. 
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5 Future Research 

As shown in the case study, rigor and completeness in real-time data collection are essential to 

obtain accurate information. When data is missing, such as the defect data in this case, it becomes 

difficult to obtain useful information from cross-analysis. Process maturity in TSP teams is essen-

tial to collect a complete set of data. Also, further research should be conducted into the analysis 

of data quality, such as the Benford analysis presented in this report. 

The case study in this report was conducted on a data set of 41 projects from a single organiza-

tion. It would be valuable to increase the scope of the analysis to include multiple organizations 

from the software industry, so we could develop a general profile of the measures and scores 

among industry teams using TSP. Thus, a database of TSP data containing a high volume of vari-

ous industry projects would be valuable for software engineering research. Further, a best- and 

worst-in-class analysis of projects for teams with the highest and lowest measures of performance 

(cost, quality, functional completion) would be useful for obtaining performance benchmarks for 

TSP projects. 

Finally, an analysis of yield, A/FR, and cost was conducted on 10 of the 41 projects that contained 

a full set of data.
1
 Figure 16 shows a plot of yield before system test, and the fraction of effort in 

system test. Pearson’s linear correlation was -0.74, and Spearman’s rank correlation was -0.83. 

The strong correlation may indicate that if defects are removed effectively prior to system testing, 

teams spend a smaller percentage of their project time in system testing.  

 

Figure 16: Yield Before System Test to Fraction of Effort in System Test 

 
1
 Defect data was collected by 15 of the 41 projects. Out of the 15 projects examined, 2 of the projects did not record 
size data. From the 13 projects remaining, 3 projects recorded defects from system test, but had no task defined for 
system test in their task list. So, the 3 projects were discarded, and a total of 10 projects were included for analysis. 
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Figure 17 shows a plot between actual A/FR and yield before system test. As seen from the figure, 

the relationship was not linear. Pearson’s linear correlation was low at 0.47, but Spearman’s rank 

correlation was high at 0.72. This may indicate that as teams spend more time in appraisals, yield 

will increase. This increase will not be linear because the remaining defects become more difficult 

to find. 

 

Figure 17: Actual A/FR to Yield Before System Test 

The results presented here are based on only 10 data points. Again, having a rich set of complete 

and accurate data points would be beneficial to confirm whether such patterns are in fact general 

trends for software teams using TSP. 

The fine-grained nature of TSP data lend themselves to analyses of the detailed activities of soft-

ware projects in an unparalleled manner.  Future analyses of TSP data may produce other empiri-

cally derived heuristics useful for the planning and management of software projects. 
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6 Conclusions 

A set of measures were introduced to analyze TSP projects in terms of their fidelity and perfor-

mance. The measures were applied to a data set of TSP projects from a single organization to gain 

insight into their project profile. In addition to the basic statistics of the data set, the weaknesses 

and strengths of the organization were explained through the distribution of the fidelity and per-

formance measures among the projects. Further analysis should be conducted on an expanded set 

of data containing many data points from industry projects. This will enable software engineers to 

benchmark their performance against other projects using TSP. 
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Appendix A Benford’s Law 

Benford’s law, also called the first digit phenomenon, is a law stating that certain digits occur 

more often than other digits in a particular position in numbers [Hill 1998, Durtschi 2004]. It was 

first discovered by an astronomer and mathematician, Simon Newcomb, when he noticed that 

library copies of logarithm tables were more worn-out in the beginning pages containing low  

digits [Newcomb 1881]. He concluded that the first significant digits are distributed with proba-

bilities according to the following formula: 

V
 
	 log�231 �	 1�
4 
where V
 is the probability of observing a first significant digit �
.Using the above equation, the 

probability of observing digits 1-9 as the first significant digit is summarized in Table 16. 

First Sig. Digit (d[4 Probability (p[4 
1 30.1% 

2 17.6% 

3 12.5% 

4 9.7% 

5 7.9% 

6 6.7% 

7 5.8% 

8 5.1% 

9 4.6% 

Table 16: Probability of Observing Digits 1 to 9 as the First Significant Digit 

Later, a physicist named Frank Benford rediscovered the law independently of Newcomb and  

popularized it. He conducted a study of naturally occurring numbers ranging from the area of riv-

ers to death rates and showed that the first digits are distributed closely to the Benford’s law [Ben-

ford 1938].  

As an example, market data was extracted from a webpage [FT 2010]. For the set of extracted 

numbers, 

� 
 !128.36, 126.19, 20.42, 175.51, 33.01,… * 
the first significant digit, which is the left-most digit of the number, was taken from each number 

in the set: 

� 
 !1, 1, 2, 1, 3,… * 
The webpage contained 74 data points, and the frequency of the first significant digit is shown in 

Figure 18. 
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Figure 18: Frequency of Digits from 1 to 9 as the First Significant Digit 

As observed, the frequency of occurrence for the digit 1 is much higher than the others. Since 

there were only 74 data points, the distribution does not follow Benford’s law perfectly, but it is 

still evident that the lower digits occur more frequently than the higher digits. The following ex-

cerpt presents an intuitive explanation of Benford’s law [Durtschi 2004]: 

Consider the market value of a firm. If it is $1,000,000, it will have to double in size before the 

first digit is a “2,” in other words it needs to grow 100 percent. For the first digit to be a “3,” it 

only needs to grow 50 percent. To be a “4” the firm must only grow 33 percent and so on. There-

fore, in many distributions of financial data, which measure the size of anything from a purchase 

order to stock market returns, the first digit one is much further from two than eight is to nine. 

Benford’s law is used in forensic accounting to detect fraud [Durtschi 2004]. Most accounting 

data conform to Benford’s law. However, in cases where a person assigns numbers, the first digits 

tend to be distributed uniformly rather than logarithmically. Therefore, a significant deviation 

from Benford’s law can be seen as a potential fraud, where the numbers may have been made up 

or artificially modified. 
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