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Towards Development of an Improved Technique for Remote Retrieval 
of Water Quality Components: 

An Approach Based on the Gordon's Parameter Spectral Ratio 

Sokoletsky, Leonid'; Gallegos, Sonia 
'Elizabeth City State University 1704 Weeksville Road, Elizabeth City, NC, 27909, United States; 

2Naval Research Laboratory Building 1009, Stennis Space Center, MS, 39529, United States 

INTRODUCTION 

Remote-sensing retrieval of water quality components (WQCs) such as chlorophyll-a, suspended 
solids concentration, or dissolved organic matter absorption is based on relationships between the 
WQCs and underwater spectral radiances or reflectances. The use of spectral radiance ratios or spectral 
reflectance ratios largely decreases errors caused by the angular scattering features of water particles, 
geometrical conditions of illumination and observation, and bottom effect. Additionally, it flattens the 
non-linear behavior of reflectance as a function of Gordon's parameter G = b\>l(a+bb) (a and b*, arc the 
absorption and backscattering coefficients, respectively). Numerous successful examples of this 
approach may be found in Dekker and Peters (1993), O'Reilly et al. (1998), Kalio et al. (2001), 
Doxaran et al. (2002), Brezonik et al. (2005), Dall'Olmo and Gitelson (2005), Ouillon et al. (2008), 
Lunetta et al. (2009), Morel and Gentili (2009). However, these ratios are not free from uncertainties 
caused primarily by lighting geometry, paniculate scattering phase function p( #), and contribution dy 
of the diffuse downwelling irradiance to the total (direct+diffuse) downwelling irradiance £d- To 
overcome these uncertainties in remote-sensing, the use of the Gordon's parameter spectral ratio is 
recommended over the application of spectral reflectance ratios. In this paper, the above inaccuracies 
taking place under using the spectral reflectance ratios of two different types of underwater 
reflectances (irradiance reflectance R and remote-sensing reflectance rre) arc examined and compared 
to the G(A) ratios. 

CONCISE DESCRIPTION OF THE MAIN CALCULATIONS 

The R and r^ may be defined in terms of physical (optical) quantities as follows (Haltrin, 1998; 
Sokoletsky, 2005; Sokoletsky et al., 2009a): 

/? = dESA + (\-dE)PA, (1) 
and 

r„=-[</fSA + (l-c/f)RF], (2) 
n 

where SA, PA, and RF are the spherical albedo, plane albedo, and reflectance factor, respectively. 
Determinations of these quantities are given, for instance, in Hulst (1974), Nicodemus et al. (1977), 
Hapke (1993), Kokhanovsky and Sokoletsky (2006), and briefly repeated below. The reflectance factor 
is defined as the ratio of the intensity of light reflected from a given layer to the intensity of light 
reflected from the Lambertian absolutely white surface. The plane albedo is defined as the integral of 
the reflectance factor RF(/j„ //v, <p)' 

PA(/i,) = - J j RF(//(., /A , <p)^vdnvdcp, (3) 
K   0 0 
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and the spherical albedo is defined as the integral of the plane albedo: 

(4) 

where fi\ is the cosine of the incidence angle #, in the medium (water), /uv is the cosine of the viewing 
angle #v in the medium, and <p is the azimuthal angle between the incident and scattered beam 
directions. Note that it follows from the conservation energy law: SA = 1 and also PA(/ij) = 1 at any /j, 
for nonabsorbing semi-infinite media (Sobolev, 1975; Kokhanovsky, 2004), although RF^;, /jv, <p) 
may be > 1 at a>o = 1, where a>o is the single-scattering albedo. The d^ may vary approximately from 
1/8 to 1/2 in the visible range for different atmospheric and geometrical conditions (#, < 45°) (Haltrin, 
1997; Rigollier et al., 2000; Hojerslev, 2004). 

Calculations of RF were performed following an algorithm and FORTRAN code developed by 
Mishchenko et al. (1999) for the numerical solution of the radiative transfer equation (invariant 
imbedding method). PA and SA were derived by numerical integration following Eqs. (3) and (4). 
Input parameters for calculation RF, PA, SA, R and r„ were: the given scattering phase function p(0) 
(with the known backscattering probability B = b\,lb, where b is the total scattering coefficient), coo and 
0\. The viewing angle #v was accepted as 0° relative to the zenith direction for all simulations; in this 
particular case a dependence of RF (and, hence, rre) on azimuth ^disappears. 

5 different p{9) were selected for simulations (Kokhanovsky and Sokoletsky, 2006; Sokoletsky et al., 
2009b) so that maximally to cover possible situations in natural waters    from the very clear oceanic to 
completely turbid inland waters (Table 1, Fig. 1): 

Table 1. Scattering phase functions used for the study simulations. 

# fef, H»" n k B 8 

1 5 1.2 0.01 0.0087 0.9583 

2 0.0163 0.9377 

3 2 1.2 0.01 0.0229 0.9062 

4 0.175 1.25 0.001 0.0588 0.6963 

5 0.116 1.25 0.001 0.1559 0.5033 

Table 1 shows input parameters used for simulation of different p( 0): effective radius rcl of the gamma 
particle size distribution and refractive indices m = n-ik; asymmetry parameter g and backscattering 
probability B for the derivedp{6) are also shown. Note that the phase function #2 is a quasi-Fournier- 
Forand-Mobley/>(6?) is not directly connected with rc{ and m\ this/?(#) has been described separately 
by Sokoletsky et al. (2009b). 
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Fig. 1. Five scattering phase functions used for the study simulations. 

IRRADIANCE REFLECTANCE AND REMOTE-SENSING REFLECTANCE SIMULATIONS 

Simulations of/? and rre as a function of G = a>oB/[\- a>o(\-B)] performed for 5 selected phase 
functions, listed in the Table 1, two incidence angles 0, in the water (0° and 46°) and two values of d\, 
(1/8 and 1/2) are shown in Figs. 2 and 3. As it seems from these figures, the curves may be well 
presented by the linear dependence in the double logarithmic scales, hence, R and rn may be written as 
power dependences on G: 

R(G, p(0), 0„ dE) = aR(p(0), 0„ dE)G
p*ipm0"d°\ (5) 

rJG, p(0\ 0i9 0V, <p, dE) = ar(p(0), 0i9 0V, <p, dE)G PrdHO^O^Or.fp.d,;) 
• (6) 

It is important to stress that irradiance reflectance depends on lesser number of parameters than 
remote-sensing reflectance. Further simplifications may be made by applying the spectral reflectance 
ratios: 
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Fig. 2. Irradiance reflectance calculated for the given p(0) taken from the Table 1 (the first number 
in parentheses), 0j (the second number, in degrees) and dE (the third number). 
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Fig. 3. The same as Fig. 2, but for remote-sensing reflectance. 



nD = R(G(Z]),p(0),0i,dE) ^ 
R(G(A2\p(0\0ndE)' 

GW 
pR{p{6),ei.jE) 

= n, PR(p(0).l>,.JF-\ 

Q_ = 

G(A2) 

rrs(G(^),p(0),0l,0v,cp,dE) 

(7) 

rJG(A2),p(0),0„0v,<p,dE) 

GW 
G(A2) 

= n, pr{,,(0).ei.ev.v.dE\ (8) 

As it can be seen from Eqs. (7) and (8), only Gordon's parameter spectral ratios QG and exponents /?R 

and /?r are included in the spectral reflectance ratio computations. The spectral differences forp{9), #,, 
#v, and dn parameters, generally very small, were excluded. The values of /?R and /?r estimated by the 
least-squares method for different p(ff), G < 0.6, 0V = 0°, and dz=\l% and dn = 1/2 arc shown as 
functions of 0, in Figs. 4 and 5, respectively. The G values used include all known natural waters 
(Haltrin and Gallegos, 2003). As expected, from the optical behavior of RF, PA and SA, variability of 
exponents with 0\ for /?($) is less than for r^Oi), especially for small 6\. Simulations performed for all 
5 p{9) described above, 14 angles 0\ £ [0°; 48°], and 7 values of d? € [1/8; 1/2], yielded values of /?R 

= 1.04±0.02 and pf = 1.05±0.04. 

Variability of QR [Var(f2R) and Qr [Var(Or)] with the above parameters was estimated as the standard 
deviation divided by the average values of QR and Qr, respectively, versus CIQ and dy using Eqs. (7) 
and (8). Plots of this variability (Fig. 6) show that Var(QR) < Var(Qr); the variability is lesser for 
larger values of dy. In any case, the figure demonstrates that inaccuracies resulting from the different 
p{9) and 9\ are rather small. It explains the success of the remote-sensing methods based on spectral 
reflectance ratios. This modeling has shown that uncertainties lie in the range of [0%; 4.1%] and [0%; 
11.3%] for QR and f2r, respectively, if the QG ^ [0.1; 10]. However, within the more realistic range of 
QG £ [0.5; 2], the same uncertainties are significantly smaller: [0%; 1.3%] and [0%; 3.1%]. 

It is important to stress that the Gordon's parameter spectral ratios Q.Q (over of the spectral reflectance 
ratios considered in the study) do not depend completely on illumination/observation and atmospheric 
conditions and, hence, their using is more preferable than Q.R and C1T. The spectral values of G(A) can 
be directly derived from the inherent optical measurements of ocean optics sensors such as WctLabs 
ac-9 or ac-s spectrophotometers. 
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Fig. 4. Irradiance reflectance exponent calculated for the given p(9) taken from the 

Table I (the first number in parentheses) and ds (the second number). 
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Fig. 5. The same as Fig. 4, but for the remote-sensing reflectance exponent. 
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