
JDMS

1. Introduction
High-fidelity, six-degree-of-freedom (6-DoF) simulations
play an important part in the development of weapon
systems. These so-called constructive simulations are used
in technology trade studies, preliminary design, hardware-
in-the-loop evaluation, flight testing and training.1

The first all-digital, constructive simulations were cre-
ated by the National Aeronautics and Space Administration
(NASA), U.S. Department of Defense (DoD) and industry.
In 1966 Litton Industries developed the architecture for a
missile simulation in FORTRAN IV that had all of the fea-
tures of a full 6-DoF simulation. It was the source of many
derivatives by Hughes Aircraft, North American Aviation
and Aerospace Corporation. Noteworthy is the U.S. Army

Journal of Defense Modeling and
Simulation: Applications,
Methodology, Technology
XX(X) 1 –17
© 2011 The Society for Modeling
and Simulation International
DOI: 10.1177/1548512910395641
dms.sagepub.com

Original article

U.S. Air Force Research Laboratory, Eglin AFB, FL, USA

Corresponding author:
Peter H Zipfel, U.S. Air Force Research Laboratory,
Eglin AFB, 73 Country Club Road, Shalimar, FL 32579, USA.
Email: mastech.zipfel@cox.net

CADAC: Multi-use Architecture for
Constructive Aerospace Simulations

Peter H Zipfel

Abstract
In today’s network-centric world, aerospace vehicles interact with many objects. They navigate by overhead satellites,
synchronize their flight paths with other vehicles, swarm over hostile territory and attack multiple targets. Studying these
engagements with high-fidelity constructive simulations has become an important task of modeling and simulation (M&S).
The simulation framework Computer Aided Design of Aerospace Concepts (CADAC) has its roots in FORTRAN code
that dates back to the 1960s and was used by industry and the U.S. Air Force to simulate aerospace vehicles in all flight
environments. To adapt CADAC to the new environment, a complete rewrite was carried out in C++, taking advantage
of object-oriented programming techniques. The architecture of CADAC++ is based on the hierarchical structure of
inherited classes. The vehicles (aircraft, missiles, satellites or ground targets), inherit the six-degree-of-freedom (6-DoF)
equations of motion from the classes ‘Flat6’ or ‘Round6’, conveying either the flat or elliptical Earth model. In turn, these
classes inherit the communication structure from the base class ‘Cadac’. The components of the vehicle, e.g., aerodynamics,
propulsion and autopilot, are represented by modules, which are member functions of the vehicle class. Communication
among the modules occurs by protected module-variable arrays. Every instantiated vehicle object is encapsulated with
its methods and data. To communicate between vehicles, data packets are loaded onto a global data bus for recall by
other vehicles. Input occurs by ASCII file and output is compatible with CADAC Studio, a plotting and data processing
package. CADAC++ is chiefly an engineering tool for refining the components of the primary vehicle and exploring its
performance as it interacts (possibly repeatedly instantiated) with the multi-object environment. Its modular structure
enables reuse of component models across simulations. In the 10 years of development, CADAC++ based constructive
simulations have been built for many types of aerospace vehicles and integrated with mission-level simulations.

Keywords
aircraft and missile simulations, engagement simulations, high fidelity modeling, constructive simulations, C++ programming
language, six degrees of freedom, CADAC, CADAC studio, three-stage booster, dual role missile, self defense missile,
hypersonic cruise missile, multi-object programming, run-time polymorphism classes, communication bus.

ENDOSIM simulation.a The U.S. Air Force also adopted it
to its own needs and named the simulation Computer Aided
Design of Aerospace Concepts (CADAC).

a. AMTEC Corporation. Endo-atmospheric Non-nuclear Kill
Simulation. Report No. TR 1147. Huntsville, AL: U.S. Army
Strategic Defense Command, August 1989 (restricted distri-
bution).

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
CADAC: Multi-use Architecture For Constructive Aerospace
Simulations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Air Force Research Laboratory,Eglin AFB, 73 Country Club
Road,Shalimar,FL,32579

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology February 9,
2011.

14. ABSTRACT
In today?s network-centric world, aerospace vehicles interact with many objects. They navigate by
overhead satellites, synchronize their flight paths with other vehicles, swarm over hostile territory and
attack multiple targets. Studying these engagements with high-fidelity constructive simulations has become
an important task of modeling and simulation (M&S). The simulation framework Computer Aided Design
of Aerospace Concepts (CADAC) has its roots in FORTRAN code that dates back to the 1960s and was
used by industry and the U.S. Air Force to simulate aerospace vehicles in all flight environments. To adapt
CADAC to the new environment, a complete rewrite was carried out in C++, taking advantage of
object-oriented programming techniques. The architecture of CADAC++ is based on the hierarchical
structure of inherited classes. The vehicles (aircraft, missiles, satellites or ground targets), inherit the
six-degree-of-freedom (6-DoF)equations of motion from the classes ?Flat6? or ?Round6?, conveying either
the flat or elliptical Earth model. In turn, these classes inherit the communication structure from the base
class ?Cadac?. The components of the vehicle, e.g., aerodynamics,propulsion and autopilot, are
represented by modules, which are member functions of the vehicle class. Communication among the
modules occurs by protected module-variable arrays. Every instantiated vehicle object is encapsulated
with its methods and data. To communicate between vehicles, data packets are loaded onto a global data
bus for recall by other vehicles. Input occurs by ASCII file and output is compatible with CADAC Studio,
a plotting and data processing package. CADAC++ is chiefly an engineering tool for refining the
components of the primary vehicle and exploring its performance as it interacts (possibly repeatedly
instantiated) with the multi-object environment. Its modular structure enables reuse of component models
across simulations. In the 10 years of development, CADAC++ based constructive simulations have been
built for many types of aerospace vehicles and integrated with mission-level simulations.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

CADAC, since its inception in 1978, has morphed
through many stages of improvements, but has remained
faithful to its FORTRAN language. But in today’s network-
centric world, aerospace vehicles interact with many
objects: they navigate by overhead satellites, synchronize
their flight paths with other vehicles, swarm over hostile ter-
ritory and attack multiple targets. Studying this connectivity
has become an important aspect of high-fidelity simula-
tions. FORTRAN, lacking the power of object-oriented
programming, has therefore been replaced by C++. A new
architecture, called CADAC++, was created to enable the
conceptualization of aerospace vehicles.

Other organizations followed the same trend and con-
verted from FORTRAN to C++, or started entirely new
frameworks in C++. Best known is JSBSim,2 an open-
source aircraft simulation that is also the basis of the Flight
Gear Simulator.3 The U.S. Army created an entirely new
framework called CMD C++ Model Developer.4 At its core
is a kernel that supports any kind of modeling described by
time-phased differential equations. Its distribution is unre-
stricted. Another U.S. Army organization, MSIC (Missile
and Space Intelligence Center) contracted with Dynetics
for the MSIC++ Generic Simulation,b which is a multi-pur-
pose missile simulation environment, but not generally
available to the public.

CADAC is a joint development by the U.S. Air Force and
the University of Florida. Its framework architecture and
some of the academic simulations are publicly available. The
original FORTRAN version and the plotting and analysis
programs, CADAC Studio, can be downloaded from the
American Institute of Aeronautics and Astronautics (AIAA).5
The C++ simulations are available as a three-part Self-Study
Series, based on lectures at the University of Florida.6-8
CADAC Studio also supports these C++ simulations.

CADAC++, in its 10-year history, has been used as a
simulation test bed for missiles, aircraft, unmanned aerial
vehicles (UAVs) and spacecraft. Its modular structure
enables reuse of subsystem models and its well defined
interfaces allow integration into higher level simulations,
like FLAMES®-based mission models.9

This paper summarizes the process that led from require-
ments definition to architecture development and full-up
constructive simulation. Some examples are presented that
highlight the features of CADAC++.

2. Requirements
CADAC++ is an engineering tool aiding in the develop-
ment of aerospace vehicles. Although it focuses on the

b. Dynetics. MSIC++ Generic Simulation Documentation.
Report No.: MSIC C.M. Control Number COV0. Dynetics,
18 April 1995 (restricted distribution).

main vehicle – missile, aircraft, spacecraft – it also portrays
the interactions with outside elements, such as satellites,
targets and sister vehicles. The main vehicle is modeled
with greatest fidelity, while the secondary objects have sim-
pler representations.

The synthesis and conceptualization process places
distinct requirements on the simulation architecture.
To support the design engineer in evaluating the aerody-
namics, propulsion, guidance and control components,
CADAC++ should mirror the same modular structure and
closely control the interfaces between them. It should
encapsulate each vehicle object for multiple instantiation
and provide global communication between them. Input
and output must be flexible and compatible with CADAC
Studio, a post-processing and analysis tool. More specific
requirements follow.

2.1 Face to the User
Users like to focus on the evaluation of the main vehicle
without being burdened by the details of the simulation’s
execution. They want control of the input/output and the
vehicle modules that define the subsystems.

There should be only one input file that controls the
simulation. It displays the run title, an option line for direct-
ing the output, the calling sequence of the modules, the
sizing of the integration step and the initializing of the vehi-
cle parameters. The integration step size should be variable.
The aerodynamics and propulsion tables should be kept
separate for safekeeping rather than being part of the source
code. Their file names, given in the input file, would load
the data decks into memory prior to execution. Multiple
instantiation of the vehicle objects should be accomplished
by simply duplicating the vehicle input data and changing
selected variables as necessary.

The output control should be simple yes/no choices.
An option line would provide output to the screen of the
primary and secondary vehicles, together with the event
messages that indicate their changing flight status.
There should also be an option to archive the screen
output to a file. Plot files as well as statistical data files
would be written for individual vehicles and merged
together for multi-vehicle displays. These output files
should be compatible with the existing CADAC Studio
for two- and three-dimensional plotting and statistical
analysis.

The components of the vehicles should be mirrored by
modules that model their features. Strict control of the
interfaces will make the modules interchangeable amongst
simulations. The modules should define these interface
variables, execute integration of state variables and enable
table look-up. Any vehicle changes that the user wants to
make should be confined to these modules.

Zipfel 3

2.2 Multiple Encapsulated Vehicle Object

Each aerospace vehicle (be it missile, aircraft or spacecraft)
should be built up from a hierarchy of classes, starting with
the base class Cadac, followed by the equations of motion,
and completed by the vehicle itself. Each vehicle is a C++
object with its data (aerodynamics and propulsion) and
methods (modules) encapsulated. Run-time polymorphism
should be used to sequence through the vehicle objects
during execution.

2.3 Modularity of Vehicle Components
The modules, representing the vehicle components, should
be public member functions of the vehicle classes. Their
interfaces, the module-variables, would be stored in pro-
tected data arrays that are available to all modules of the
vehicle object. During execution, the modules should
define all module variables, make initializations, integrate
state variables and conduct post-run calculations.

2.4 Event Scheduling
Just as aerospace vehicles transition though flight phases,
the simulation should be able to sequence through such
events. These events should be controlled by the input file
without any code changes in the modules. Relational opera-
tors such as <, =, > would be applied to the module-variables
and trigger the events.

2.5 Global Communication Bus
Because vehicle objects are encapsulated into classes, a
global communication bus should enable the transfer of
data. Each vehicle should be able to publish and subscribe
to any of the module-variables.

2.6 Table Look-up
Table utilities should provide for one, two and three indepen-
dent variable look-up. Tables must be stored in separate files
and modifications easily accomplished. Simple syntax
should make the table look-up easy to program in the
modules.

2.7 Monte Carlo Capability
To automate the evaluation of random processes, a Monte
Carlo methodology should be implemented. Distributions
like uniform, Gaussian, Rayleigh, exponential and Markov
should be identified in the input file by keywords. Stochastic
output data must be written to files compatible with
CADAC Studio for post-processing.

2.8 Matrix Utility Operations

The full power of C++ should be applied to matrix opera-
tions. Matrix utilities should be tailored to the specific needs
of flight simulations and not burdened by C++ container
classes. Efficient pointer arithmetic will speed up the execu-
tion and allow unlimited stringing of matrix operations.

2.9 Documentation and Error Checking
The module-variables, being the key interfaces between the
modules, should be fully documented. The definitions pro-
vided in the modules should be collected in a single output
file. The module-variables in the input file should also be
documented with the same definitions.

Error checking should identify module-variables that
have not been assigned the correct names or locations in the
input file or the modules. Incompatible matrix operations
should be flagged, as well as problems with opening of file
streams. A variable should be displayed on the console that
indicates the computational precision of the attitude
calculations.

3. Architecture
These requirements can be satisfied with object oriented
programming in C++. Hierarchical class structures, encap-
sulation of data and methods, run-time polymorphism,
overloading of functions and operators, are all features
used in CADAC++ to build a simulation environment suit-
able for flight vehicle synthesis.

CADAC++ programming follows the International
Standard for C++ defined by the American National
Standards Institute/International Organization for
Standardization (ANSI/ISO) Committee in 1998 and imple-
mented by most compilers like Microsoft Visual C++.
Thus, portability is assured and low-cost operation is made
possible.

Each requirement is now addressed separately, with par-
ticular focus on the classes that structure the features of
CADAC++

CLASS DESCRIPTION

Cadac,... Hierarchical class structure
of vehicles

Vehicle Hosting a pointer array of
type Cadac

Module Storing module information
Variable Declaring module-variables
Event Storing event information
Packet Declaring data packets for global

communication bus

4 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

TITLE 2 Missiles (RF seeker) against 2 targets with 1 recce

MONTE 1 123456

OPTIONS y_scrn y_events y_tabout y_plot y_merge y_doc y_comscrn y_traj y_stat

MODULES

 Environment def,exec

 kinematics def,init,exec

 propulsion def,init,exec

 aerodynamic def,init,exec

 seeker def,exec

 filter def,exec

 ins def,init,exec

 datalink def,exec

 guidance def,exec

 control def,exec

 actuator def,exec

 forces def,exec

 euler def,exec

 newton def,init,exec

 intercept def,exec

END

TIMING

 scrn_step 2

 plot_step 0.05

 traj_step 0.2

 int_step 0.001

 com_step 2

END

VEHICLES 5

 MISSILE6 Missile #1

 tgt_num 1 //’int’ Target tail # attacked by ‘this’ missile module combus

 /Initial conditions

 sbel1 0 //Initial north comp of SBEL - m module newton

 sbel2 0 //Initial east comp of SBEL - m module newton

 sbel3 -4000 //Initial down comp of SBEL - m module newton

 dvbe 250 //Missile speed - m/s module newton

 /Aerodynamics

 AERO_DECK drmdr6_aero_deck.asc

 /Propulsion

 PROP_DECK drmdr6_prop_deck.asc

………

 END

ENDTIME 18

STOP

Zipfel 5

Datadeck Hosting a pointer array of type Table
Table Storing tabular data
Markov Storing Markov data
Matrix Storing matrix operations
Document Storing module-variable definitions

3.1 Face to the User
The user friendly requirements are met with an architecture
that enables easy use and modification of the simulations.
The input file has all the features that control the execution:
title, option line, module call, timing control and vehicle
initialization.
The option line provides nine possible outputs. During run-
time, y_scrn, y_event and y_comscrn write data to
the console; y_tabout, y_plot, y_merge, y_
doc, y_traj and y_stat write the output to ASCII
files for later processing by CADAC Studio. An important
feature is the control that the user has over the loading and

execution sequence of the modules. For sophisticated
simulations, the calling sequence may become very impor-
tant. Each of the timing events can be controlled separately
in order not to overload the output devices. With the key-
word VEHICLES begins the loading of the vehicle objects.
Only a fraction of the first object MISSILE6 is shown,
though there are five vehicles to be loaded. By simply rep-
licating MISSILE6 or other objects and incrementing the
integer after VEHICLES, new objects are loaded. Note how
the file names that contain the tables are identified by the
keywords AERO_DECK and PROP_DECK.

The user who wants to modify a vehicle component has
only to deal with the corresponding module. The module
contains all code and interfaces that define the components,
carries out the table look-up and integrates the state variables.
Re-use of modules for other simulations is facilitated by the
strict control and detailed documentation of the interfaces.

As an example, let us look at the much abbreviated
‘newton’ module.

void Flat6::def_newton()

{

 //Definition and initialization of module-variables

flat6[210].init(“VBEBD”,0,0,0,” Velocity deriv. - m/s^2”,”newton”,”state”,””);

flat6[213].init(“VBEB”,0,0,0,”Missile velocity - m/s”,”newton”,”state”,””);

flat6[230].init(“FSPB”,0,0,0,”Specific force - m/s^2”,”newton”,”out”,””);

flat6[239].init(“hbe”,0,”Height above ground - m”,”newton”,”out”,”scrn,plot”);

flat6[247].init(“mfreeze_newt”,”int”,0,”Saving mfreeze “,”newton”,”save”,””);

}

void Flat6::init_newton()

{

//initializations

....................

}

void Flat6::newton(double sim_time,double int_step)

{

//local module-variables

Matrix FSPB(3,1);

double hbe(0);

//localizing module-variables

//from initialization

....................

//getting saved value

int mfreeze_newt=flat6[247].integer();

//input from other modules

Matrix TBL=flat6[120].mat();

//state variables

6 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

The module consists of three parts: the definition of
module variables, the initialization and the integration. In
def_newton() the creation of capitalized Matrix vari-
ables, lower case real and integer variables is shown.
Any new module-variable will be added here. Conversion
of trajectory parameter from the input file to more suitable
variables occurs in init_newton(). The integration
takes place in newton(…) with a call to the function
integrate(…). This part shows the three sections of the
code: creating or localizing variables, executing code and
loading module-variables to the array flat6[].

More detail of the modules is provided below under the
heading Modularity of Vehicle Components.

3.2 Multiple Encapsulated Vehicle Object
The rewriting of CADAC was motivated by the unique fea-
ture of C++ allowing encapsulation of vehicle objects.
Encapsulation means binding together data and functions
while restricting their access. The aerodynamic and propul-
sion data are bound together with the table look-up functions
and many other functions that support the missile and air-
craft objects. In turn, these objects are created from a

hierarchical class structure derived from the common
abstract base class Cadac.

This hierarchical class structure in CADAC depends on the
particular simulation. For instance, the CADAC 6-DoF air-
craft simulation consists of a single branch Cadac ←
Flat6 ← Plane, where Flat6 models the equations of
motion over the flat Earth, and Plane models the compo-
nents of an airplane. The more elaborate CADAC missile
engagement simulation has multiple branches. Its main branch
represents the high-fidelity 6-DoF missile model Cadac ←
Flat6 ← Missile. The supporting vehicle branches
Cadac ← Flat3 ← Target and Cadac ← Flat3
← Recce are the 3-DoF target and reconnaissance aircraft.
As another example, the 3-DoF CADAC cruise missile simu-
lations over the round rotating Earth has the three branches:
Cadac ← Round3 ← Cruise, Cadac ← Round3
← Target and Cadac ← Round3 ← Satellite.

The vehicle objects, declared by their respective classes,
are created during run-time by the polymorphism capability
of C++. Polymorphism (many forms, one interface) uses
inheritance and virtual functions to build one vehicle-list of
all vehicle objects, be they 6-DoF missiles, 3-DoF targets
and recce aircrafts or satellites. At execution, this vehicle-

Matrix VBEBD=flat6[210].vec();

Matrix VBEB=flat6[213].vec();

//--

....................

//integrating acceleration in body coord to obtain velocity

FSPB=FAPB*(1/vmass);

Matrix VBEBD_NEW=FSPB-ATB+TBL*GRAVL;

VBEB=integrate(VBEBD_NEW,VBEBD,VBEB,int_step);

VBEBD=VBEBD_NEW;

....................

//--

//loading module-variables

//state variables

flat6[210].gets_vec(VBEBD);

flat6[213].gets_vec(VBEB);

//saving values

flat6[247].gets(mfreeze_newt);

//output to other modules

flat6[230].gets_vec(FSPB);

flat6[239].gets(hbe);

//diagnostics

....................

}

Zipfel 7

list is cycled through at each integration step in order to
compute the respective vehicle parameters.

The class Vehicle facilitates the run-time polymor-
phism. It has a private member **vehicle_ptr, which
is a pointer to an array of pointers of the class Cadac that
contains the pointers to all the vehicles objects. It also
declares the offset operator Cadac *operator[](int
slot) that returns the pointer to the vehicle object located
at the offset slot in the vehicle-list.

In main(), the object Vehicle vehicle_
list(num_vehicles) is created, initialized and its
constructor allocates memory for the array of pointers

vehicle_ptr=new Cadac *[num_
vehicles];

Then the global function Cadac *set_obj_type(…)
interrogates the input file input.asc to identify the vehi-
cle types by keywords such as MISSILE6, TARGET3,
RECCE3, etc. It allocates memory to the vehicle objects
Missile, Target, Recce, etc. and returns point-
ers of base class Cadac. These pointers are stored in
the vehicle_ptr[] array by the Vehicle member
function

vehicle_list.add_vehicle
(*vehicle_type);

Now the Vehicle object vehicle_list is ready to be
addressed by its offset operator []. For instance, the vehi-
cle specific data are read from input.asc by

vehicle_list[i]->vehicle_
data(input);

where i is the (i+1)th vehicle object in the sequence
established in input.asc. Here is the explanation of the
logic flow. The offset operator [] takes i and returns the
vehicle_ptr[i] of the (i+1)th vehicle. Although the
vehicle_ptr array is of the base class Cadac, the
compiler has knowledge of the individual pointer being
of the derived class Missile, Target or Recce.
Such is the marvel of run-time polymorphism! Another
important example is the call of a vehicle module, say the
aerodynamic module

vehicle_list[i]->aerodynamics();

If the (i+1)th vehicle is the MISSILE6, a pointer of type
Missile is furnished that is used to call the member function
aerodynamics() of the derived class Missile. On
the other hand, if the vehicle is the TARGET3, the pointer
is of type Target and points to the Target member
function aerodynamics().

Through run-time polymorphism any number of differ-
ent vehicles can be called using the common pointer array
of type Cadac. These calls are executed during initializa-
tion and at every integration step. A limitation of this

architecture is that all vehicle objects have to be instanti-
ated at the beginning of the run.

3.3 Modularity of Vehicle Components
A key feature of CADAC is its modularity, which reflects
the component structure of an aerospace vehicle. Just as the
hardware is divided into subsystems (such as propulsion,
autopilot, guidance and control) CADAC simulations are
broken into propulsion module, autopilot module, etc. This
is extended to include non-hardware modules like aerody-
namics, Newton’s and Euler’s equations of motion and
environmental modules. This one-for-one correspondence
ensures clean interfaces between the modules.

Each module is a pure virtual member function of the
abstract base class Cadac and is overridden in the derived
class, be it Flat6, Flat3, Missile, Target,
Recce or others. If the derived class does not use a module,
the module will return empty.

The calling sequence of the modules is controlled by
their sequential listing in the input file input.asc. Each
module may consist of four parts: the definition part (iden-
tified by def), the initialization part (init), the execution
part (exec) and the last call (term). All are called only
once, with the exception of exec which is called during
every integration step.

The structure Module declares the name and the four
parts of the module. Reading from input.asc, the mod-
ules are loaded into the module_list by the global
function

order_modules(input,num_
modules,module_list);

At creation of the vehicle object, at module initialization
and at each integration cycle the module_list is inter-
rogated for the module names. For example, the definition
of the aerodynamic module occurs in the vehicle’s
constructor

if((module_list[j].
name==”aerodynamics”)&&(module_list[j].
definition==”def”));

def_aerodynamics();

Then the initialization of the module takes place in main()

if((module_list[j].
name==”aerodynamics”)&&(module_list[j].
initialization==”init”))

 vehicle_list[i]->init_aerodynamics();

where vehicle_list[i] is the pointer to the vehicle
object. During integration, the module is called inside the
execute(…) function which is called directly from main()

8 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

if(module_list[j].
name==”aerodynamics”)

vehicle_list[i]->aerodynamics();

Currently, the terminal calls are not needed.
Data are transferred between modules by module-vari-

ables and stored in arrays of type Variable. Each derived
object from the base class Cadac has an array with its own
name, such as flat6[], missile[], target[],
etc. They are protected members of Cadac. The arrays
are sized by global constants NFLAT6, NMISSILE,
NTARGET, etc. and each module is assigned a block of
indices in its respective arrays.

The class Variable declares the module-variable
object. Its private members store the label, the initial value,
the type of variable (int, double, 3 x 1 vector, 3 x 3
matrix), the definition and units, the module where the
value is calculated, its role (input data, state variable to be
integrated, diagnostic, output to other modules and data
saved for the next integration cycle), the output direction
(screen, plot file, communication bus) and two error codes.
The public methods of Variable contain a four times
overloaded function init(…) for integer, double, vector
and matrix variables which are used for the variable defini-
tions in the definition part of the module, e.g.

missile[110].init(“ca”,0,”Axial
force coefficient”,”aerodynamics”,
”out”,”plot”);

Other public methods of Variable govern the reading
and loading of the module-variables inside a module. To
make the module-variables local variables, the member
functions integer(), real(), vec() and mat()
are used. For instance,

int mfreeze_newt=flat6[247].
integer();
double grav=flat6[55].real();
Matrix TBL=flat6[120].mat();

 Matrix FAPB=flat6[200].vec();

By convention, scalar variables are named with all lower-
case letters, while upper-case letters designate matrices.
Only 3 x 1 vectors and 3 x 3 matrices are permitted as
module-variables.

The loading of the local module-variables into the pro-
tected arrays uses the member functions gets(…),
gets_vec(…) and gets_mat(…) where gets(…) is
overloaded and serves both int and double types. For
instance,

flat6[247].gets(mfreeze_newt);
flat6[248].gets(dvbef);

flat6[230].gets_vec(FSPB);
 flat6[120].gets_mat(TBL);

Module-variables provide the sole data transfer
between the modules of a vehicle object. For documenta-
tion they are recorded in sequential order in doc.asc
with their definitions and other relevant information.
Between their label and array location, there is a unique
one-to-one relationship. Any deviation from that rule is
flagged in doc.asc.

3.4 Event Scheduling
As aerospace vehicles fly their trajectories, they may
sequence through several events towards their destinations.
Just think of rockets staging, airplanes taking off, cruising
and landing and missiles passing through midcourse and
terminal phases towards the intercept. Events in CADAC++
are interruptions of the trajectory for the purpose of reading
new values of module-variables. They can only be sched-
uled for the main vehicle object. The maximum number of
events is determined by the global integer NEVENT, while
the number of new module-variables in each event is lim-
ited by the global integer NVAR.

An event is defined in the input file input.asc by the
event block starting and ending with the keywords IF …
ENDIF. Appended to IF is the event criterion. It consists
of the watch variable (any module-variable except of type
Matrix) and a relational operator followed by a numerical
value. For instance,

IF dbt < 8000
 mseek 12 //’int’ =x2:Enable,
=x3:Acquisition, =x4:Lock module seeker
ENDIF

means, if the range to the target is less than 8000 m, the
seeker is enabled. The supported relational operators are
<, =, >.

The Event class supports the creation of Event type
objects. The pointer of each event is stored in the event_
ptr_list[NEVENT], which is a protected member of
the vehicle class. The private members of the Event class
store information about the event, such as watch variable,
relational operator, threshold value and new module-vari-
ables. The public methods are ‘set’ and ‘get’ functions for
the data. To expedite execution, the new module-variables
are not stored by their name, but by their offset index in the
module-variable array. Therefore, rather than cycling
through all the module-variables, the new module-variables
are directly picked out by their offset indices. These index
lists are also part of the private data members of Event.

Event data are read in main() from input.asc by
the vehicle member function

Zipfel 9

vehicle_list[i]->vehicle_data(input);

for each vehicle object and they are ’set‘ into Event
objects, whose pointers are stored in the event_ptr_
list.

In the function execute(…), the watch variables are
monitored at every integration interval by the vehicle
member function event(…). If the criterion of an event is
satisfied, the new values for the module-variables are
loaded and a message is written to the console to announce
the event.

Event scheduling provides great flexibility to shaping
the trajectory of an aerospace vehicle. However, as a design
matures and the switching logic becomes well defined, the
events can be scheduled in the module itself and any event
scheduling in the input.asc file may be completely
eliminated at the inconvenience of having to recompile the
module if changes are made.

3.5 Global Communication Bus

Encapsulation by classes isolates vehicle objects from each
other. However, this feature of C++ prevents direct
communication between the vehicles. For instance, the
missile object needs to know the coordinates of the target
object in order for its seeker to track it. How can the missile
get access to the protected target data?

In CADAC++ the global communication bus, called
combus, provides this interface. Selected module-vari-
ables are stored in combus so that other vehicles can
download them. To identify this process we use the terms
‘publish’ and ‘subscribe’.

Every vehicle prepares a data set of module-variables
and publishes it to combus. These module-variables are
identified by the keyword ‘com’ in their definition; for
instance vmach is added to the data set by

flat6[56].init(“vmach”,0,”Mach
number”,”environment”,”out”,

”scrn,plot,com”);

Any vehicle can subscribe to the data set of any other vehi-
cle. Utility methods enable the process.

The enabling global class is Packet. One of its private
data member stores the vehicle ID, the status of the vehicle
(alive, hit, dead), the number of module-variables in the
data set and a pointer to the array of module-variables of
type Variable. Each vehicle object contributes one
packet to the communication array combus of type
Packet. The slot # is the same as that of the vehicle in the
vehicle_list.

Under the main() scope, the pointer to the commu-
nication array is created (Packet *combus) and

dynamic memory is allocated (combus=new Packet
[num_vehicles]), where the array is dimensioned
by the number of vehicle objects. In the vehicle construc-
tor, the vehicle member function com_index_arrays()
is called, which collects the offset indices of the module-
variables into integer arrays. Still under the main()
scope, combus is initialized with the packet of each
vehicle i

combus[i]=vehicle_list[i]
->loading_packet_init(…);

Then, in function execute(…),at every integration step,
the values of the module-variables are updated

combus[i]=vehicle_list[i]->loading_
packet(…);

Each packet has a data set of module variables stored in the
array pointed to by Variable *data. The storage sequence
in the data set is determined by the order the module-vari-
ables are read. The module sequence is defined in the input
file input.asc. This sequence is important for the sub-
scription process.

The subscription of module-variables occurs in the mod-
ules. For instance, the seeker in order to track the target has
to subscribe to the target position and velocity. First, the
target ID is built from the string ’t‘ and the tail number of
the target. Then combus is searched for this packet and the
data set is downloaded

data_t=combus[i].get_data();

 Knowing that the target position and velocity vectors are at
offset 1 and 2, they can be subscribed

Matrix STEL=data_t[1].vec();

Matrix VTEL=data_t[2].vec();

Now STEL and VTEL of the target object are local vari-
ables of the missile object and can be used by the seeker.

The number of module-variables in the data set is unre-
stricted. If you are unsure of the storage sequence, you can
find it by selecting y_comscrn and counting the labels.
However, be aware that the three components of vectors
count as one label only.

3.6 Table Look-up
Interpolating aerodynamic and propulsion tables is an
important task in any aerospace simulation. Aerodynamic
coefficients are usually given as functions of incidence
angles and Mach number. Sometimes they are also
expressed as functions of altitude and control surface
deflections. Propulsion data are tailored to the type of pro-
pulsion system. For rocket motors, simple thrust tables may

10 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

suffice. Turbojet and ramjet engines depend on throttle,
Mach number and sometimes on incidence angles.

The more variables are used to describe the system, the
greater the complexity of the table. Seldom is the dimension
higher than three due to run-time considerations. CADAC++
supports table look-up schemes up to third dimension and
interpolates linearly between the discrete table entries. It
keeps the so-called ‘data decks’ as separate files so they can
be properly protected as the need may arise.

The handling of the tables is accomplished by two classes,
Datadeck and Table. The class Datadeck has a pri-
vate member **table_ptr, which is a pointer to an array
of pointers of the class Table that contains the pointers to
all of the tables of a data deck. Under the ‘main vehicle’
scope, inside the ‘protected’ access specifier, the objects
Datadeck aerotable and Datadeck proptable
are declared along with the table pointer Table *table.
At execution, two distinct phases take place: loading the
tables and extracting the interpolated value.

The loading of the tables starts when the file input.
asc is read by the function

void input_data(fstream &input);

and the keywords AERO_DECK and PROP_DECK are
encountered with their trailing file names. Then the calls

read_tables(file_name,aerotable)and
read_tables(file_name,proptable);

execute the code of the function

void read_tables(char *file_name,
Datadeck &datatable);

which picks up one of the file_name and returns by ref-
erence the object datatable of type Datadeck.
Internally, read_tables(…)opens the data file and allo-
cates dynamic memory first to the array of Table pointers
(pointed to by **table_ptr which is a private member
of the object Datadeck aerotable) then to the Table
object (pointed to by table) and its data arrays. Now the
numerical values are read into the data arrays for each table
and read_tables(…)returns void. Both functions
input_data(…)and read_tables(…) operate
within the scope of the ‘main vehicle’ object.

The extraction of the interpolated value occurs in the
modules. The Datadeck objects aerotable or
proptable, declared under the ‘main vehicle’ object,
give access to the public Datadeck member function

double look_up(string name,
double value1,…);

which is overloaded three times for one, two and three
independent variables. A typical example, taken from an
‘aerodynamic’ module of a two-dimensional table look-up, is

double cm=aerotable.look_up(“cm_vs_
elev_alpha”,delex,alphax);

It returns the interpolated value. This call to look_up(…)
initiates two other calls to member functions of Datadeck.
First, in find_index(…), a binary search locates the
indices of the independent variables just below the table
entries. Then interpolate(…) linearly interpolates
between the next higher discrete value and passes the inter-
polated value back up to the look_up(…) function for
return.

Additions and deletions of tables in the AERO_DECK or
PROP_DECK are automatically adjusted during the loading
of the tables. If a simulation requires data tables of a dif-
ferent type (e.g., antenna pattern) one has to do four things:
(1) create an ASCII file with the data tables, (2) identify the
file name by a keyword ANT_DECK antenna_data.
asc in the input.asc file, (3) declare an additional
Datadeck object in the ‘main vehicle’ class antennat-
able and (4) replicate in the function input_data(…).

3.7 Monte Carlo Capability
High fidelity simulations use random variables to model
noise, disturbances and uncertain phenomena. If we make a
single run, it represents only one realization of the total
population of random variables. To do a complete stochas-
tic analysis, many repetitive runs have to be executed, each
drawing a different value from a distribution. This process
can be automated and is referred to as the Monte Carlo
capability of a simulation.

Randomized variables may be needed at initialization
(e.g., seeker bias) or during the execution of the simulation
(e.g., seeker noise). CADAC++ supports both. They are
identified in the input file input.asc by the capitalized
keywords that designate their distributions UNI, GAUSS,
RAYL, EXP and MARKOV. The first four are used for
initialization only. MARKOV models a Markov process with
Gaussian distribution and first-order time correlation. It has
to be called every integration cycle.

To initiate a Monte Carlo run, the keyword MONTE with
two arguments is inserted right before the OPTION line in
input.asc. The first argument is the run repetition
number and the second is the random number seed. If the
repetition number is set to zero, one run is executed using
the mean values of the distributions.

The stochastic variables, identified in input.asc, are
read by the vehicle object function

vehicle_data(fstream &input,int
nmonte);

If there are initialization variables, a value is drawn from
their respective distribution and held constant until it is re-
initialized for the next trajectory. Module-variables

Zipfel 11

identified by MARKOV are initialized with their Gaussian
distribution and stored in the markov_list, which is of
type Markov and sized by the global integer NMARKOV.
If nmonte=0, the mean values are selected.

The class Markov handles the storage of the Markov
data. It declares as private members the sigma and time cor-
relation values of the Markov process and the index of the
module-variable of its array. The Markov markov_list
is a protected member of the Cadac hierarchy. Therefore,
each main vehicle object has its own list of Markov vari-
ables with its own random draws.

At every integration step, for each vehicle, the Markov
noise function is called in function execute(…)

vehicle_list[i]->markov_noise(sim_
time,int_step,nmonte);

This function downloads the Markov data from the
markov_list and calls the utility function markov(…)
to refresh the value.

Because Markov noise is a first order correlation pro-
cess, the current value depends on the previous value.
Therefore, there is a provision in the Markov class to save
the current value for the next cycle.

Stochastic analysis is an important aspect of the perfor-
mance evaluation of any aerospace vehicle. CADAC++
support stochastic initialization for all vehicles, but reserves
the Markov process for only the main vehicle. For post-run
analysis, the stochastic data of the main vehicle are written
to stat files by exercising the OPTION y_stat.

3.8 Matrix Utility Operations
Modern programming uses matrix operations wherever
possible to condense code and eliminate errors caused by
coordinating equations. CADAC++ has a rich set of matrix
operations which are public members of the class Matrix.
This class is tailored to the special needs of flight dynam-
ics. Generality has been sacrificed for efficiency. Rather
than using template classes and particularly the vector con-
tainer class of the STL, the CADAC++ matrix operations
are restricted to variables of type double.

 The class Matrix declares a private pointer to the
matrix array double *pbody together with the array
dimensions. There are 55 matrix operations declared in the
public access area. They are divided into 34 functions and
21 overloaded operators.

In the following examples, capitalized variables are
arrays, lower-case names are either functions or scalars.

Matrix AAPNB=TBLC*WOELC.skew_
sym()*UTBLC*gnav_mid_pn*dvtbc;

This example calculates the (3 x 1) acceleration vector
AAPNB from the LOS rates WOELC.

The next example calculates the 8 x 8 gain matrix of the
filter:

Matrix GK=PMAT*~HH*INV.
inverse();

And, finally, the 3 x 1 accelerometer vector error is deter-
mined by

Matrix EAB=ESCALA.diamat_
vec()+EMISA.skew_sym();

Note the limitless possibilities of stringing together matrix
operations.

Matrix variables are created by specifying their name
and dimensions, e.g., Matrix MAT(3,6). The construc-
tor allocates dynamic memory to the Matrix pointer
*pbody and zeros all elements. The operations themselves
use pbody and perform pointer arithmetic to accomplish
the various matrix manipulations. Those operations that re-
create a matrix return *this; i.e. they return the
re-calculated object that was originally created and initial-
ized, e.g.

Matrix UNIT(3,3);

UNIT.identity();

The matrix utilities have a full suite of overloaded oper-
ators. The assignment operator requires a copy constructor
to provide for a deep copy of the object to assure that the
new object has its own memory allocated and that it is
recoverable when the object is destroyed.

The offset operator [] is also overloaded to access the
elements of a Matrix array. However, this works only for
one-dimensional arrays because two-dimensional arrays
require more than one offset operator. For those instances,
the Matrix functions assign_loc(..) and get_
loc(…) must be used.

3.9 Documentation and Error Checking
Self-documentation is an essential part of any simulation.
Of primary interest are the variables that are used for input/
output as interfaces between modules and those of particu-
lar interest for diagnostics. All are referred to as
module-variables. The description of a module-variable
occurs only once in the ‘def_module’ function. This
description is used to document the input file input.asc
and to create a list of all module-variables in the output file
doc.asc. The documentation of input.asc is auto-
matic, while the file doc.asc is only created if the
OPTION y_doc is selected.

CADAC error checking focuses in particular on the cor-
rect formatting of the input.asc file and the enforcement
of the one-to-one correspondence rule, ’One module-vari-
able name for one array location‘. Other checks assure that

12 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

matrix operations are performed on compatible matrices
and that file streams open correctly.

The class Document is used to make the module-vari-
able descriptions available. Its private data are essentially a
subset of the class Variable. They store name, type, def-
inition and module of each module-variable. Under the
main() scope (during initialization), arrays of type
Document are built for each vehicle object, followed by
the function call document()

vehicle_list[i]->document
(fdoc,title,doc_missile6);

This function, under the vehicle object scope, writes to
doc.asc formatted information of each module-variable
and identifies the empty slots in the module-variable arrays.
Under the same scope, input.asc is documented if
OPTION y_doc is set

document_input(doc_missile6, doc_
target3,doc_recce3);

This function operates under the global scope. It uses the
arrays of type Document to extract the module-variable
descriptions and appends them after the numerical value of
the variable. If it cannot find a matching name it prints out
an error message.

 To flag violations of the one-on-one correspondence
rule, both Document and Variable classes cooperate.
In the Variable class the private char error[2]
holds the error codes (* or A).

During initialization, as the init(…) functions of
the modules are called, a check is made whether that slot
is empty and can receive a new variable. If not, the error
code ‘*’ is set. As document (…) writes the output
file doc.asc, the module-variable array is checked
for duplicate names. The error code ‘A’ is set if this
occurs. Both codes are inserted in the first column of the
doc.asc file and a warning message is sent to the
console.

A good description of a particular simulation is pro-
duced if the modules, the input.asc and the doc.
asc files are combined in a document. It should enable
someone else, who is familiar with the CADAC++ archi-
tecture, to pick up, run and understand the simulation.

4. Constructive Simulations
Constructive simulations have become the engineer’s major
integration tool. With their realistic portrayal of the physical
interactions between aerodynamics, propulsion, guidance
and control they support concept studies, hardware inte-
gration tasks, flight testing and training. Specifically they
enable the following:

• Developing performance requirements. A variety
of concepts are simulated to match up technologies
with requirements and to define preliminary perfor-
mance specifications.

• Performing technology trade studies. Various sub-
system are modeled and analyzed as they interact
with other subsystems to determine the specifica-
tions that best meet the performance requirements.

• Guiding and validating designs. Sensitivity stud-
ies are conducted to determine the optimal design
parameters; models of subcomponents are tested as
they interact with other parts of the system; overall
performance is established.

• Test support. Test trajectories and footprints are
pre-calculated and test results are correlated with
simulations.

• Reduction in test cost. A simulation, validated by
flight test, is used to investigate other points in the
flight envelope.

• Investigating inaccessible environments. Simula-
tions are the most cost effective way to check out
vehicles that fly through the Martian atmosphere or
land on Venus.

• Pilot and operator training. Thousands of flight
simulators help train military and civilian pilots.

• Practicing dangerous procedures. System failures,
abort procedures, and extreme flight conditions can
be explored safely on simulators.

• Gaining insight into flight dynamics. Dynamic vari-
ables can be traced through the simulation and limit-
ing constraints can be identified.

• Integration of components. Understanding how sub-
systems interact to form a functioning vehicle.

CADAC, during its long history, has supported all of
these tasks. It has been used to develop missile performance
requirements, to conduct technology trades (airframe, pro-
pulsion, seeker, guidance and control), and to support flight
test planning and data analysis. Air-to-air missile concepts
have been integrated into air combat domes and into mis-
sion-level simulation frameworks like FLAMES®.

Not all CADAC simulations are at the 6-DoF fidelity,
though high-fidelity modeling is required for delivery accu-
racy, hardware-in-the-loop and flight testing. However,
during weapon conceptualization, lower fidelity 5-DoF or
3-DoF models often suffice or are mandated by the lack of
detailed component data. These simpler simulations drop
one or three of the attitude degrees of freedom. Most of the
recent CADAC simulations are of 6-DoF fidelity, but some
UAV, air-to-air and air-to-ground missiles are modeled at
5-DoF. All these simulations have the same CADAC++
framework. The distinction is reflected in the vehicle class
structure and the associated modules.

Zipfel 13

For efficient use of constructive simulations, versatile
plotting options and stochastic data processing must be
available. CADAC Studio satisfies that need. Its history is
as distinguished as that of the CADAC simulations.
Originally developed for mainframes, then for VAXes and
finally for PCs, it provides for interactive plotting, auto-
mated launch envelope and footprint generation and
post-processing of Monte Carlo runs.

The plotting options consist of two dimensional traces
and three dimensional trajectories either in a Cartesian grid
or in longitude, latitude, altitude over the globe. A strip-
chart capability plots up to 12 traces against time.

The SWEEP program of CADAC Studio automates the
generation of footprints for air-to-ground missile and
launch envelopes for air-to-air missiles. A single CADAC
submittal will spawn trajectory runs against a target grid.
Plotting options then generate carpet plots of selected
parameters.

Monte Carlo runs draw from a variety of stochastic dis-
tributions for insertion of numerical values into uncertain
parameters such as aerodynamic uncertainties, INS errors,
seeker errors and wind gusts. CADAC Studio analyzes the
output and generates CEPs, bivariate ellipses and mean
values in the target or intercept planes with plots that also
display the scatter points. Even the SWEEP program can be
executed in the Monte Carlo mode to generate CEPs
throughout the envelope or footprint.

CADAC and CADAC Studio provide a complete envi-
ronment for constructive simulations. They have been used
for bombs, missiles, UAVs, aircraft and spacecraft. Some
recently developed simulations are summarized next.

5. Multi-use Examples

During the course of the CADAC++ development many
simulations were built on the same framework. The modular
architecture lends itself to multi-use applications. For
example the environmental module is suitable for all simu-
lations. The 6-DoF equations of motion over the WGS 8410
or flat Earth apply to all corresponding simulations (Newton
and Euler modules are the same). Seeker, INS, guidance
and control laws can be shared where appropriate. With the
strict enforcement of the interfaces between modules, the
integration of an existing module into a new simulation is
simplified.

Table 1 summarizes the currently active CADAC++
simulations. They cover the breadth of aerospace vehicles.
Among the 13 simulations are two 5-DoF models, six over
the flat Earth, and five over the elliptical WGS84 Earth.
Most have Monte Carlo capability and use the U.S. Standard
Atmosphere 1976;11 some can implement a test atmosphere
with winds aloft as well as Dryden-type turbulence.12 The
simulations are also distinguished by the type of vehicle
objects they model. Some have just one object, while others
have two or three. The first object is always the vehicle of
primary interest. It determines the degree-of-freedom clas-
sification. It can morph into different configurations as
indicated by the ‘+’ sign. The semicolon separates the
objects. Each vehicle object can be instantiated multiple
times making possible the engagement of many-on-many.
Two simulations have been integrated into the mission-
level FLAMES® framework: Long Range Strike Missile
and Self Defense Missile.

Table 1. CADAC++ Active Simulations

TYPE VEHICLE OBJECTS DoF EARTH FEATURES

Cruise Missile Missile; Target; Satellite 5 Spherical Remote Targeting
Fighter Aircraft Aircraft 6 Flat Generic F16
Air-to-Ground Missile Missile; Aircraft; Target 6 Flat Weather Deck, MC
Air-to-Air Missile Missile; Target Aircraft 6 Flat MC
National Aerospace
Plane

Plane + Transfer Vehicle + Interceptor;
Tracking Station; Satellite

6 WGS84 Generic X30,
Weather Deck, MC

Generic Defense Missile Defensive Missile; Aircraft; Offensive Missile 6 Flat MC
Three Stage Booster Rocket with Three Stages 6 WGS84 Insertion Guidance, Weather

Deck, MC
Long Range Strike Missile Missile; Target 5 Spherical Hypersonic, FLAMES®

Dual Role Missile Missile; Target; Recce Aircraft 6 Flat Two Pulse Rocket, Integral
Rocket Ramjet, MC

Global Strike Booster + Waverider + Munition; Satellite;
Target

6 WGS84 Wave Rider, MC

Self Defense Missile Defensive Missile; Aircraft; Offensive Missile 6 Flat Real time, MC, FLAMES®

Small Smart Bomb Bomb; Satellite; Target 6 WGS84 Weather Deck, MC
Hypersonic Cruise Missile Missile; Satellite; Target 6 WGS84 Scramjet, Weather Deck, MC

MC=Monte Carlo capable

14 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

Two simulations are presented as examples. The Three
Stage Booster simulation represents a model of a rocket
that can place a payload into low Earth orbit using the
WGS84 equations of motions. The Generic Defense Missile
simulation (which models three objects) represents a blue
missile launched from a blue aircraft against an incoming
red missile using the flat Earth equations of motions.

5.1 Three Stage Booster Simulation

This is a typical solid rocket delivery booster. It is con-
trolled by thrust vector control (TVC) and reaction control
system (RCS) but has no aerodynamic control fins. The
autopilot uses accelerometer and rate gyro feedback from
the inertial measurement unit (IMU) to steer the missile.
During the first stage, a pitch program is executed while
maintaining small incidence angles in the high dynamic
pressure region. Stages two and three are under ascent
guidance to meet the terminal insertion conditions. This
guidance law implements linear tangent guidance for mini-
mum fuel consumption.13,14 The onboard inertial navigation
system (INS), updated by the global precision system
(GPS) and a star tracker, provides the navigation states of
the booster.

The class hierarchy of this simulation has only one
branch, Cadac ← Round6 ← Hyper. ‘Round6’ models the
6-DoF equations of motion over the WGS84 Earth and
‘Hyper’ contains all the subsystems of the booster coded in
modules (see Figure 1). The protected arrays of the classes
are labeled round6[] and hyper[]and the assigned
locations are indicated in the brackets.

A typical trajectory is launched and places a payload at
the suborbital conditions of 110 km altitude, 1.5° flight path
angle and 6600 m/s inertial speed. Figure 2 was generated
with the CADAC Studio Globe program.

Figure 1. Modular architecture of the three stage booster simulation.

Figure 2. Ascent of the three stage booster and suborbital
insertion.

Zipfel 15

To evaluate the performance of the booster the engineer
requires the traces of many trajectory parameters. Some of
them are plotted with CADAC Studio 2Dim and displayed
in Figure 3.

Note the dynamic pressure peak at 30 seconds into
flight. The incidence angles are small during the peak to
keep the structural loads within limits. Afterwards, the
angle of attack increases dramatically to alter the flight path
towards the insertion point.

This simulation makes use of the Round6 class common
to all 6-DoF simulations over the WGS84 Earth. It uses the
INS, GPS and star-track modules from other simulations.
Only the aerodynamics(), propulsion(), guidance() and
control() modules are specific to this application.

5.2 Generic Defense Missile Simulation
This simulation highlights the multiple instantiation of
three vehicle objects. An aircraft launches a missile (blue)
to intercept an attacking missile (red). The blue missile
receives target updates during midcourse until its seeker
locks onto the red missile for terminal homing.

The class structure has three branches. For the main mis-
sile object Cadac ← Flat6 ← Missile, for the red missile
Cadac ← Flat3 ← Target, and for the aircraft Cadac ←
Flat3 ← Aircraft. The modules are shown in Figure 4.
Inside each object data flows through the protected arrays
while across objects the data is provided by the communi-
cation bus ‘combus’ packets. Note that three levels of
modeling fidelity are combined. The major focus of the
analysis is on the blue missile. It is modeled in 6-DoF while
the red missile is in 5-DoF and the aircraft in 3-DoF (though
both, red missile and blue aircraft use the 3-DoF equations
of motion).

The multiple instantiation of the vehicle objects is dem-
onstrated in Figure 5. The aircraft launches two defensive
missiles against two incoming threat missiles. The graph
was drawn by the 3Dim plotting program of CADAC
Studio.

As an example of a typical Monte Carlo result, Figure 6
shows the impact points of the blue missile on the red mis-
sile intercept plane created by 100 MC runs. The generation
of this graph is fully automated in CADAC Studio. The
CEP and the bivariate ellipse are shown. It reveals a

Figure 3. Trajectory parameters of the three stage booster ascent.

16 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology XX(X)

l

l

l

l

Figure 4. Modular architecture of the Generic Defense Missile simulation.

0

-2.00

-4.00

-8.00
-10.00

-4.00

0

4.00

8.00

0
4.00

8.00
12.0North - km

East - km

Down - Km

input_test3.asc 2 Blue missile against 2 red missile attacking blue aircraft Jul 9 2007 14:38:54

Threat Missiles

Defensive
Missiles

Aircraft

Figure 5. Two defensive missiles against two offensive missiles
fly-out. Figure 6. Impact of blue missile on red missile intercept plane.

Zipfel 17

significant bias in the system due to guidance and control
lags and limiters.

The Generic Defense Missile simulation makes use of
the common class Flat6 with its 6-DoF equations of motion
over the flat Earth. Several modules of the blue missile are
shared with other simulations. These include modules such
as rcs(), tvc(), actuator(), ins() and sensor(). The modules
aerodynamics(), propulsion(), guidance() and control() are
specific to the Generic Defense Missile.

These are just two examples of the family of
CADAC++ simulations shown in Table 1. Other simula-
tions also demonstrate the commonality made possible
by the class structure and modularity of the CADAC++
architecture.

6 Summary
The conversion of CADAC from FORTRAN to C++ is
essentially complete. During the ten years since the switch
has been made, several simulations were updated and new
models created. CADAC Studio also experienced modifi-
cations to make it compatible with the C++ output. The
new code has been applied to various US Air Force projects
and found to be invaluable for concept explorations, tech-
nology assessments and mission-level studies.

References

 1. Zipfel PH. Modeling and Simulation of Aerospace Vehicle
Dynamics. 2nd ed. American Institute of Aeronautics and
Astronautics, 2007.

 2. Berndt JS. JSBSim, www.jsbsim.org. Last accessed: 19 Jan
2011.

 3. Flightgear Version 2.0.0, http://www.flightgear.org (25
February 2010). Last accessed: 19 Jan 2011.

 4. Hester J. CMD C++ Modeling Developer. Redstone Arsenal,
AL: U.S. Army Research, Development and Engineering
Command; jeffrey.hester@us.army.mil,

 5. Zipfel PH. CADAC4, http://www.AIAA.org/content.cfm?
pageid=403&ID=1592. Last accessed: 19 Jan 2011.

 6. Zipfel PH. Building Aerospace Simulations in C++. 2nd ed.
AIAA, 2008 (CD-ROM).

 7. Zipfel PH. Fundamentals of Six Degrees of Freedom
Aerospace Simulations in FORTRAN and C++. AIAA, 2004
(CD-ROM).

 8. Zipfel PH. Advanced Six Degrees of Freedom Aerospace
Simulation and Analysis. AIAA, 2005 (CD-ROM).

 9. Ternion Corporation. FLAMES Flexible Analysis, Modeling,
and Exercise System, http://www.ternion.com. Last accessed:
19 Jan 2011.

10. NIMA. Department of Defense World Geodetic System 1984.
Report No.: TR 8350.2 4.Bethesda, MD: NIMA, July 1997.

11. NOAA. U.S. Standard Atmosphere 1976. Report No.: S/T
76-1562. U.S. Government Printing Office, 1976.

12. Dryden HL. A review of the statistical theory of turbulence.
Q Appl Math 1943; 1: 7-42.

13. Bryson HO. Applied Optimal Control. Hemisphere
Publishing Co., 1975.

14. Jaggers RF. Multi-Stage Linear Tangent Guidance as Baseline
for the Space Shuttle Vehicle. Technical Report MSC-07458
(Internal Note MSC-EG-72-39). NASA, June 1972.

