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1. Introduction
High-fidelity, six-degree-of-freedom (6-DoF) simulations 
play an important part in the development of weapon  
systems. These so-called constructive simulations are used 
in technology trade studies, preliminary design, hardware-
in-the-loop evaluation, flight testing and training.1

The first all-digital, constructive simulations were cre-
ated by the National Aeronautics and Space Administration 
(NASA), U.S. Department of Defense (DoD) and industry. 
In 1966 Litton Industries developed the architecture for a 
missile simulation in FORTRAN IV that had all of the fea-
tures of a full 6-DoF simulation. It was the source of many 
derivatives by Hughes Aircraft, North American Aviation 
and Aerospace Corporation. Noteworthy is the U.S. Army 
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ENDOSIM simulation.a The U.S. Air Force also adopted it 
to its own needs and named the simulation Computer Aided 
Design of Aerospace Concepts (CADAC).

a.  AMTEC Corporation. Endo-atmospheric Non-nuclear Kill 
Simulation. Report No. TR 1147. Huntsville, AL: U.S. Army 
Strategic Defense Command, August 1989 (restricted distri-
bution).



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
FEB 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
CADAC: Multi-use Architecture For Constructive Aerospace 
Simulations 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Air Force Research Laboratory,Eglin AFB, 73 Country Club 
Road,Shalimar,FL,32579 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology February 9, 
2011. 

14. ABSTRACT 
In today?s network-centric world, aerospace vehicles interact with many objects. They navigate by
overhead satellites, synchronize their flight paths with other vehicles, swarm over hostile territory and
attack multiple targets. Studying these engagements with high-fidelity constructive simulations has become
an important task of modeling and simulation (M&S). The simulation framework Computer Aided Design
of Aerospace Concepts (CADAC) has its roots in FORTRAN code that dates back to the 1960s and was
used by industry and the U.S. Air Force to simulate aerospace vehicles in all flight environments. To adapt
CADAC to the new environment, a complete rewrite was carried out in C++, taking advantage of
object-oriented programming techniques. The architecture of CADAC++ is based on the hierarchical
structure of inherited classes. The vehicles (aircraft, missiles, satellites or ground targets), inherit the
six-degree-of-freedom (6-DoF)equations of motion from the classes ?Flat6? or ?Round6?, conveying either
the flat or elliptical Earth model. In turn, these classes inherit the communication structure from the base
class ?Cadac?. The components of the vehicle, e.g., aerodynamics,propulsion and autopilot, are
represented by modules, which are member functions of the vehicle class. Communication among the
modules occurs by protected module-variable arrays. Every instantiated vehicle object is encapsulated
with its methods and data. To communicate between vehicles, data packets are loaded onto a global data
bus for recall by other vehicles. Input occurs by ASCII file and output is compatible with CADAC Studio,
a plotting and data processing package. CADAC++ is chiefly an engineering tool for refining the
components of the primary vehicle and exploring its performance as it interacts (possibly repeatedly
instantiated) with the multi-object environment. Its modular structure enables reuse of component models
across simulations. In the 10 years of development, CADAC++ based constructive simulations have been
built for many types of aerospace vehicles and integrated with mission-level simulations. 



15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

17 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



2  Journal of Defense Modeling and Simulation:  Applications, Methodology, Technology XX(X)

CADAC, since its inception in 1978, has morphed 
through many stages of improvements, but has remained 
faithful to its FORTRAN language. But in today’s network-
centric world, aerospace vehicles interact with many 
objects: they navigate by overhead satellites, synchronize 
their flight paths with other vehicles, swarm over hostile ter-
ritory and attack multiple targets. Studying this connectivity 
has become an important aspect of high-fidelity simula-
tions. FORTRAN, lacking the power of object-oriented 
programming, has therefore been replaced by C++. A new 
architecture, called CADAC++, was created to enable the 
conceptualization of aerospace vehicles. 

Other organizations followed the same trend and con-
verted from FORTRAN to C++, or started entirely new 
frameworks in C++. Best known is JSBSim,2 an open-
source aircraft simulation that is also the basis of the Flight 
Gear Simulator.3 The U.S. Army created an entirely new 
framework called CMD C++ Model Developer.4 At its core 
is a kernel that supports any kind of modeling described by 
time-phased differential equations. Its distribution is unre-
stricted. Another U.S. Army organization, MSIC (Missile 
and Space Intelligence Center) contracted with Dynetics 
for the MSIC++ Generic Simulation,b which is a multi-pur-
pose missile simulation environment, but not generally 
available to the public.

CADAC is a joint development by the U.S. Air Force and 
the University of Florida. Its framework architecture and 
some of the academic simulations are publicly available. The 
original FORTRAN version and the plotting and analysis 
programs, CADAC Studio, can be downloaded from the 
American Institute of Aeronautics and Astronautics (AIAA).5 
The C++ simulations are available as a three-part Self-Study 
Series, based on lectures at the University of Florida.6-8 
CADAC Studio also supports these C++ simulations. 

CADAC++, in its 10-year history, has been used as a 
simulation test bed for missiles, aircraft, unmanned aerial 
vehicles (UAVs) and spacecraft. Its modular structure 
enables reuse of subsystem models and its well defined 
interfaces allow integration into higher level simulations, 
like FLAMES®-based mission models.9

This paper summarizes the process that led from require-
ments definition to architecture development and full-up 
constructive simulation. Some examples are presented that 
highlight the features of CADAC++.

2. Requirements
CADAC++ is an engineering tool aiding in the develop-
ment of aerospace vehicles. Although it focuses on the 

b.  Dynetics. MSIC++ Generic Simulation Documentation. 
Report No.: MSIC C.M. Control Number COV0. Dynetics, 
18 April 1995 (restricted distribution).

main vehicle – missile, aircraft, spacecraft – it also portrays 
the interactions with outside elements, such as satellites, 
targets and sister vehicles. The main vehicle is modeled 
with greatest fidelity, while the secondary objects have sim-
pler representations.

The synthesis and conceptualization process places 
distinct requirements on the simulation architecture.  
To support the design engineer in evaluating the aerody-
namics, propulsion, guidance and control components, 
CADAC++ should mirror the same modular structure and 
closely control the interfaces between them. It should 
encapsulate each vehicle object for multiple instantiation 
and provide global communication between them. Input 
and output must be flexible and compatible with CADAC 
Studio, a post-processing and analysis tool. More specific 
requirements follow.

2.1 Face to the User
Users like to focus on the evaluation of the main vehicle 
without being burdened by the details of the simulation’s 
execution. They want control of the input/output and the 
vehicle modules that define the subsystems.

There should be only one input file that controls the 
simulation. It displays the run title, an option line for direct-
ing the output, the calling sequence of the modules, the 
sizing of the integration step and the initializing of the vehi-
cle parameters. The integration step size should be variable. 
The aerodynamics and propulsion tables should be kept 
separate for safekeeping rather than being part of the source 
code. Their file names, given in the input file, would load 
the data decks into memory prior to execution. Multiple 
instantiation of the vehicle objects should be accomplished 
by simply duplicating the vehicle input data and changing 
selected variables as necessary.

The output control should be simple yes/no choices. 
An option line would provide output to the screen of the 
primary and secondary vehicles, together with the event 
messages that indicate their changing flight status. 
There should also be an option to archive the screen 
output to a file. Plot files as well as statistical data files 
would be written for individual vehicles and merged 
together for multi-vehicle displays. These output files 
should be compatible with the existing CADAC Studio 
for two- and three-dimensional plotting and statistical 
analysis. 

The components of the vehicles should be mirrored by 
modules that model their features. Strict control of the 
interfaces will make the modules interchangeable amongst 
simulations. The modules should define these interface 
variables, execute integration of state variables and enable 
table look-up. Any vehicle changes that the user wants to 
make should be confined to these modules.
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2.2 Multiple Encapsulated Vehicle Object

Each aerospace vehicle (be it missile, aircraft or spacecraft) 
should be built up from a hierarchy of classes, starting with 
the base class Cadac, followed by the equations of motion, 
and completed by the vehicle itself. Each vehicle is a C++ 
object with its data (aerodynamics and propulsion) and 
methods (modules) encapsulated. Run-time polymorphism 
should be used to sequence through the vehicle objects 
during execution.

2.3 Modularity of Vehicle Components
The modules, representing the vehicle components, should 
be public member functions of the vehicle classes. Their 
interfaces, the module-variables, would be stored in pro-
tected data arrays that are available to all modules of the 
vehicle object. During execution, the modules should 
define all module variables, make initializations, integrate 
state variables and conduct post-run calculations.

2.4 Event Scheduling
Just as aerospace vehicles transition though flight phases, 
the simulation should be able to sequence through such 
events. These events should be controlled by the input file 
without any code changes in the modules. Relational opera-
tors such as <, =, > would be applied to the module-variables 
and trigger the events.

2.5 Global Communication Bus 
Because vehicle objects are encapsulated into classes, a 
global communication bus should enable the transfer of 
data. Each vehicle should be able to publish and subscribe 
to any of the module-variables.

2.6 Table Look-up
Table utilities should provide for one, two and three indepen-
dent variable look-up. Tables must be stored in separate files 
and modifications easily accomplished. Simple syntax 
should make the table look-up easy to program in the 
modules.

2.7 Monte Carlo Capability
To automate the evaluation of random processes, a Monte 
Carlo methodology should be implemented. Distributions 
like uniform, Gaussian, Rayleigh, exponential and Markov 
should be identified in the input file by keywords. Stochastic 
output data must be written to files compatible with 
CADAC Studio for post-processing.

2.8 Matrix Utility Operations

The full power of C++ should be applied to matrix opera-
tions. Matrix utilities should be tailored to the specific needs 
of flight simulations and not burdened by C++ container 
classes. Efficient pointer arithmetic will speed up the execu-
tion and allow unlimited stringing of matrix operations.

2.9 Documentation and Error Checking
The module-variables, being the key interfaces between the 
modules, should be fully documented. The definitions pro-
vided in the modules should be collected in a single output 
file. The module-variables in the input file should also be 
documented with the same definitions.

Error checking should identify module-variables that 
have not been assigned the correct names or locations in the 
input file or the modules. Incompatible matrix operations 
should be flagged, as well as problems with opening of file 
streams. A variable should be displayed on the console that 
indicates the computational precision of the attitude 
calculations.

3. Architecture
These requirements can be satisfied with object oriented 
programming in C++. Hierarchical class structures, encap-
sulation of data and methods, run-time polymorphism, 
overloading of functions and operators, are all features 
used in CADAC++ to build a simulation environment suit-
able for flight vehicle synthesis.

CADAC++ programming follows the International 
Standard for C++ defined by the American National 
Standards Institute/International Organization for 
Standardization (ANSI/ISO) Committee in 1998 and imple-
mented by most compilers like Microsoft Visual C++. 
Thus, portability is assured and low-cost operation is made 
possible.

Each requirement is now addressed separately, with par-
ticular focus on the classes that structure the features of 
CADAC++ 

CLASS DESCRIPTION

Cadac,...  Hierarchical class structure 
of vehicles

Vehicle  Hosting a pointer array of 
type Cadac

Module Storing module information
Variable Declaring module-variables
Event Storing event information
Packet  Declaring data packets for global 

communication bus
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TITLE 2 Missiles (RF seeker) against 2 targets with 1 recce

MONTE 1 123456

OPTIONS y_scrn y_events y_tabout y_plot y_merge y_doc y_comscrn y_traj y_stat

MODULES

 Environment  def,exec

 kinematics  def,init,exec

 propulsion  def,init,exec

 aerodynamic def,init,exec

 seeker   def,exec

 filter   def,exec

 ins  def,init,exec

 datalink def,exec

 guidance def,exec

 control def,exec

 actuator def,exec

 forces  def,exec

 euler  def,exec

 newton  def,init,exec

 intercept def,exec

END

TIMING

 scrn_step 2

 plot_step 0.05

 traj_step 0.2

 int_step 0.001

 com_step 2

END

VEHICLES 5

 MISSILE6 Missile #1

 tgt_num 1 //’int’ Target tail # attacked by ‘this’ missile module combus

 /Initial conditions

 sbel1 0 //Initial north comp of SBEL - m module newton

 sbel2 0 //Initial east comp of SBEL - m module newton

 sbel3 -4000 //Initial down comp of SBEL - m module newton

 dvbe 250 //Missile speed - m/s module newton

 /Aerodynamics

 AERO_DECK drmdr6_aero_deck.asc

 /Propulsion

 PROP_DECK drmdr6_prop_deck.asc

…………………………………………………………………………………………………………………………………………………………………………………………………

 END

ENDTIME 18

STOP
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Datadeck Hosting a pointer array of type Table
Table Storing tabular data
Markov Storing Markov data
Matrix Storing matrix operations
Document Storing module-variable definitions

3.1 Face to the User
The user friendly requirements are met with an architecture 
that enables easy use and modification of the simulations. 
The input file has all the features that control the execution: 
title, option line, module call, timing control and vehicle 
initialization.
The option line provides nine possible outputs. During run-
time, y_scrn, y_event and y_comscrn write data to 
the console; y_tabout, y_plot, y_merge, y_
doc, y_traj and y_stat write the output to ASCII 
files for later processing by CADAC Studio. An important 
feature is the control that the user has over the loading and 

execution sequence of the modules. For sophisticated  
simulations, the calling sequence may become very impor-
tant. Each of the timing events can be controlled separately 
in order not to overload the output devices. With the key-
word VEHICLES begins the loading of the vehicle objects. 
Only a fraction of the first object MISSILE6 is shown, 
though there are five vehicles to be loaded. By simply rep-
licating MISSILE6 or other objects and incrementing the 
integer after VEHICLES, new objects are loaded. Note how 
the file names that contain the tables are identified by the 
keywords AERO_DECK and PROP_DECK.

The user who wants to modify a vehicle component has 
only to deal with the corresponding module. The module 
contains all code and interfaces that define the components, 
carries out the table look-up and integrates the state variables. 
Re-use of modules for other simulations is facilitated by the 
strict control and detailed documentation of the interfaces.

As an example, let us look at the much abbreviated 
‘newton’ module.

void Flat6::def_newton()

{

 //Definition and initialization of module-variables

flat6[210].init(“VBEBD”,0,0,0,” Velocity deriv. - m/s^2”,”newton”,”state”,””);

flat6[213].init(“VBEB”,0,0,0,”Missile velocity - m/s”,”newton”,”state”,””);

flat6[230].init(“FSPB”,0,0,0,”Specific force - m/s^2”,”newton”,”out”,””);

flat6[239].init(“hbe”,0,”Height above ground - m”,”newton”,”out”,”scrn,plot”);

flat6[247].init(“mfreeze_newt”,”int”,0,”Saving mfreeze “,”newton”,”save”,””);

}

void Flat6::init_newton()

{

//initializations

....................

}

void Flat6::newton(double sim_time,double int_step)

{

//local module-variables

Matrix FSPB(3,1);

double hbe(0);

//localizing module-variables

//from initialization

....................

//getting saved value

int mfreeze_newt=flat6[247].integer();

//input from other modules

Matrix TBL=flat6[120].mat();

//state variables
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The module consists of three parts: the definition of 
module variables, the initialization and the integration. In 
def_newton() the creation of capitalized Matrix vari-
ables, lower case real and integer variables is shown. 
Any new module-variable will be added here. Conversion 
of trajectory parameter from the input file to more suitable 
variables occurs in init_newton(). The integration 
takes place in newton(…) with a call to the function 
integrate(…). This part shows the three sections of the 
code: creating or localizing variables, executing code and 
loading module-variables to the array flat6[]. 

More detail of the modules is provided below under the 
heading Modularity of Vehicle Components.

3.2 Multiple Encapsulated Vehicle Object
The rewriting of CADAC was motivated by the unique fea-
ture of C++ allowing encapsulation of vehicle objects. 
Encapsulation means binding together data and functions 
while restricting their access. The aerodynamic and propul-
sion data are bound together with the table look-up functions 
and many other functions that support the missile and air-
craft objects. In turn, these objects are created from a 

hierarchical class structure derived from the common 
abstract base class Cadac.

This hierarchical class structure in CADAC depends on the 
particular simulation. For instance, the CADAC 6-DoF air-
craft simulation consists of a single branch Cadac ← 
Flat6 ← Plane, where Flat6 models the equations of 
motion over the flat Earth, and Plane models the compo-
nents of an airplane. The more elaborate CADAC missile 
engagement simulation has multiple branches. Its main branch 
represents the high-fidelity 6-DoF missile model Cadac ← 
Flat6 ← Missile. The supporting vehicle branches 
Cadac ← Flat3 ← Target and Cadac ← Flat3 
← Recce are the 3-DoF target and reconnaissance aircraft. 
As another example, the 3-DoF CADAC cruise missile simu-
lations over the round rotating Earth has the three branches: 
Cadac ← Round3 ← Cruise, Cadac ← Round3 
← Target and Cadac ← Round3 ← Satellite.

The vehicle objects, declared by their respective classes, 
are created during run-time by the polymorphism capability 
of C++. Polymorphism (many forms, one interface) uses 
inheritance and virtual functions to build one vehicle-list of 
all vehicle objects, be they 6-DoF missiles, 3-DoF targets 
and recce aircrafts or satellites. At execution, this vehicle- 

Matrix VBEBD=flat6[210].vec();

Matrix VBEB=flat6[213].vec();

//------------------------------------------------------------------------

....................

//integrating acceleration in body coord to obtain velocity

FSPB=FAPB*(1/vmass);

Matrix VBEBD_NEW=FSPB-ATB+TBL*GRAVL;

VBEB=integrate(VBEBD_NEW,VBEBD,VBEB,int_step);

VBEBD=VBEBD_NEW;

....................

//------------------------------------------------------------------------

//loading module-variables

//state variables

flat6[210].gets_vec(VBEBD);

flat6[213].gets_vec(VBEB);

//saving values

flat6[247].gets(mfreeze_newt);

//output to other modules

flat6[230].gets_vec(FSPB);

flat6[239].gets(hbe);

//diagnostics

....................

}
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list is cycled through at each integration step in order to 
compute the respective vehicle parameters.

The class Vehicle facilitates the run-time polymor-
phism. It has a private member **vehicle_ptr, which 
is a pointer to an array of pointers of the class Cadac that 
contains the pointers to all the vehicles objects. It also 
declares the offset operator Cadac *operator[](int 
slot) that returns the pointer to the vehicle object located 
at the offset slot in the vehicle-list.

In main(), the object Vehicle vehicle_
list(num_vehicles) is created, initialized and its 
constructor allocates memory for the array of pointers

vehicle_ptr=new Cadac *[num_ 
vehicles];

Then the global function Cadac *set_obj_type(…) 
interrogates the input file input.asc to identify the vehi-
cle types by keywords such as MISSILE6, TARGET3, 
RECCE3, etc. It allocates memory to the vehicle objects 
Missile, Target, Recce, etc. and returns point-
ers of base class Cadac. These pointers are stored in 
the vehicle_ptr[] array by the Vehicle member 
function

vehicle_list.add_vehicle
(*vehicle_type);

Now the Vehicle object vehicle_list is ready to be 
addressed by its offset operator []. For instance, the vehi-
cle specific data are read from input.asc by

vehicle_list[i]->vehicle_
data(input);

where i is the (i+1)th vehicle object in the sequence 
established in input.asc. Here is the explanation of the 
logic flow. The offset operator [] takes i and returns the 
vehicle_ptr[i] of the (i+1)th vehicle. Although the 
vehicle_ptr array is of the base class Cadac, the 
compiler has knowledge of the individual pointer being 
of the derived class Missile, Target or Recce. 
Such is the marvel of run-time polymorphism! Another 
important example is the call of a vehicle module, say the 
aerodynamic module

vehicle_list[i]->aerodynamics();

If the (i+1)th vehicle is the MISSILE6, a pointer of type 
Missile is furnished that is used to call the member function 
aerodynamics() of the derived class Missile. On 
the other hand, if the vehicle is the TARGET3, the pointer 
is of type Target and points to the Target member 
function aerodynamics().

Through run-time polymorphism any number of differ-
ent vehicles can be called using the common pointer array 
of type Cadac. These calls are executed during initializa-
tion and at every integration step. A limitation of this 

architecture is that all vehicle objects have to be instanti-
ated at the beginning of the run.

3.3 Modularity of Vehicle Components
A key feature of CADAC is its modularity, which reflects 
the component structure of an aerospace vehicle. Just as the 
hardware is divided into subsystems (such as propulsion, 
autopilot, guidance and control) CADAC simulations are 
broken into propulsion module, autopilot module, etc. This 
is extended to include non-hardware modules like aerody-
namics, Newton’s and Euler’s equations of motion and 
environmental modules. This one-for-one correspondence 
ensures clean interfaces between the modules.

Each module is a pure virtual member function of the 
abstract base class Cadac and is overridden in the derived 
class, be it Flat6, Flat3, Missile, Target, 
Recce or others. If the derived class does not use a module, 
the module will return empty.

The calling sequence of the modules is controlled by 
their sequential listing in the input file input.asc. Each 
module may consist of four parts: the definition part (iden-
tified by def), the initialization part (init), the execution 
part (exec) and the last call (term). All are called only 
once, with the exception of exec which is called during 
every integration step.

The structure Module declares the name and the four 
parts of the module. Reading from input.asc, the mod-
ules are loaded into the module_list by the global 
function

order_modules(input,num_
modules,module_list);

At creation of the vehicle object, at module initialization 
and at each integration cycle the module_list is inter-
rogated for the module names. For example, the definition 
of the aerodynamic module occurs in the vehicle’s 
constructor

if((module_list[j].
name==”aerodynamics”)&&(module_list[j].
definition==”def”));

def_aerodynamics();

Then the initialization of the module takes place in main()

if((module_list[j].
name==”aerodynamics”)&&(module_list[j].
initialization==”init”))

 vehicle_list[i]->init_aerodynamics();

where vehicle_list[i] is the pointer to the vehicle 
object. During integration, the module is called inside the 
execute(…) function which is called directly from main()
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if(module_list[j]. 
name==”aerodynamics”)

vehicle_list[i]->aerodynamics();

Currently, the terminal calls are not needed.
Data are transferred between modules by module-vari-

ables and stored in arrays of type Variable. Each derived 
object from the base class Cadac has an array with its own 
name, such as flat6[], missile[], target[], 
etc. They are protected members of Cadac. The arrays
are sized by global constants NFLAT6, NMISSILE, 
NTARGET, etc. and each module is assigned a block of 
indices in its respective arrays.

The class Variable declares the module-variable 
object. Its private members store the label, the initial value, 
the type of variable (int, double, 3 x 1 vector, 3 x 3 
matrix), the definition and units, the module where the 
value is calculated, its role (input data, state variable to be 
integrated, diagnostic, output to other modules and data 
saved for the next integration cycle), the output direction 
(screen, plot file, communication bus) and two error codes. 
The public methods of Variable contain a four times 
overloaded function init(…) for integer, double, vector 
and matrix variables which are used for the variable defini-
tions in the definition part of the module, e.g.

missile[110].init(“ca”,0,”Axial 
force coefficient”,”aerodynamics”, 
”out”,”plot”);

Other public methods of Variable govern the reading 
and loading of the module-variables inside a module. To 
make the module-variables local variables, the member 
functions integer(), real(), vec() and mat() 
are used. For instance,

int mfreeze_newt=flat6[247].
integer();
double grav=flat6[55].real();
Matrix TBL=flat6[120].mat();

 Matrix FAPB=flat6[200].vec();

By convention, scalar variables are named with all lower-
case letters, while upper-case letters designate matrices. 
Only 3 x 1 vectors and 3 x 3 matrices are permitted as 
module-variables.

The loading of the local module-variables into the pro-
tected arrays uses the member functions gets(…), 
gets_vec(…) and gets_mat(…) where gets(…) is 
overloaded and serves both int and double types. For 
instance,

flat6[247].gets(mfreeze_newt);
flat6[248].gets(dvbef);

flat6[230].gets_vec(FSPB);
 flat6[120].gets_mat(TBL);

Module-variables provide the sole data transfer 
between the modules of a vehicle object. For documenta-
tion they are recorded in sequential order in doc.asc 
with their definitions and other relevant information. 
Between their label and array location, there is a unique 
one-to-one relationship. Any deviation from that rule is 
flagged in doc.asc.

3.4 Event Scheduling
As aerospace vehicles fly their trajectories, they may 
sequence through several events towards their destinations. 
Just think of rockets staging, airplanes taking off, cruising 
and landing and missiles passing through midcourse and 
terminal phases towards the intercept. Events in CADAC++ 
are interruptions of the trajectory for the purpose of reading 
new values of module-variables. They can only be sched-
uled for the main vehicle object. The maximum number of 
events is determined by the global integer NEVENT, while 
the number of new module-variables in each event is lim-
ited by the global integer NVAR.

An event is defined in the input file input.asc by the 
event block starting and ending with the keywords IF … 
ENDIF. Appended to IF is the event criterion. It consists 
of the watch variable (any module-variable except of type 
Matrix) and a relational operator followed by a numerical 
value. For instance,

IF dbt < 8000
 mseek 12 //’int’ =x2:Enable, 
=x3:Acquisition, =x4:Lock module seeker
ENDIF

means, if the range to the target is less than 8000 m, the 
seeker is enabled. The supported relational operators are 
<, =, >.

The Event class supports the creation of Event type 
objects. The pointer of each event is stored in the event_
ptr_list[NEVENT], which is a protected member of 
the vehicle class. The private members of the Event class 
store information about the event, such as watch variable, 
relational operator, threshold value and new module-vari-
ables. The public methods are ‘set’ and ‘get’ functions for 
the data. To expedite execution, the new module-variables 
are not stored by their name, but by their offset index in the 
module-variable array. Therefore, rather than cycling 
through all the module-variables, the new module-variables 
are directly picked out by their offset indices. These index 
lists are also part of the private data members of Event. 

Event data are read in main() from input.asc by 
the vehicle member function
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vehicle_list[i]->vehicle_data(input);

for each vehicle object and they are ’set‘ into Event 
objects, whose pointers are stored in the event_ptr_ 
list.

In the function execute(…), the watch variables are 
monitored at every integration interval by the vehicle 
member function event(…). If the criterion of an event is 
satisfied, the new values for the module-variables are 
loaded and a message is written to the console to announce 
the event.

Event scheduling provides great flexibility to shaping 
the trajectory of an aerospace vehicle. However, as a design 
matures and the switching logic becomes well defined, the 
events can be scheduled in the module itself and any event 
scheduling in the input.asc file may be completely 
eliminated at the inconvenience of having to recompile the 
module if changes are made.

3.5 Global Communication Bus

Encapsulation by classes isolates vehicle objects from each 
other. However, this feature of C++ prevents direct  
communication between the vehicles. For instance, the 
missile object needs to know the coordinates of the target 
object in order for its seeker to track it. How can the missile 
get access to the protected target data?

In CADAC++ the global communication bus, called 
combus, provides this interface. Selected module-vari-
ables are stored in combus so that other vehicles can 
download them. To identify this process we use the terms 
‘publish’ and ‘subscribe’.

Every vehicle prepares a data set of module-variables 
and publishes it to combus. These module-variables are 
identified by the keyword ‘com’ in their definition; for 
instance vmach is added to the data set by

flat6[56].init(“vmach”,0,”Mach 
number”,”environment”,”out”, 

”scrn,plot,com”);

Any vehicle can subscribe to the data set of any other vehi-
cle. Utility methods enable the process.

The enabling global class is Packet. One of its private 
data member stores the vehicle ID, the status of the vehicle 
(alive, hit, dead), the number of module-variables in the 
data set and a pointer to the array of module-variables of 
type Variable. Each vehicle object contributes one 
packet to the communication array combus of type 
Packet. The slot # is the same as that of the vehicle in the 
vehicle_list.

Under the main() scope, the pointer to the commu-
nication array is created (Packet *combus) and 

dynamic memory is allocated (combus=new Packet 
[num_vehicles]), where the array is dimensioned 
by the number of vehicle objects. In the vehicle construc-
tor, the vehicle member function com_index_arrays() 
is called, which collects the offset indices of the module-
variables into integer arrays. Still under the main() 
scope, combus is initialized with the packet of each
vehicle i

combus[i]=vehicle_list[i] 
->loading_packet_init(…);

Then, in function execute(…),at every integration step, 
the values of the module-variables are updated

combus[i]=vehicle_list[i]->loading_
packet(…);

Each packet has a data set of module variables stored in the 
array pointed to by Variable *data. The storage sequence 
in the data set is determined by the order the module-vari-
ables are read. The module sequence is defined in the input 
file input.asc. This sequence is important for the sub-
scription process.

The subscription of module-variables occurs in the mod-
ules. For instance, the seeker in order to track the target has 
to subscribe to the target position and velocity. First, the 
target ID is built from the string ’t‘ and the tail number of 
the target. Then combus is searched for this packet and the 
data set is downloaded

data_t=combus[i].get_data();

 Knowing that the target position and velocity vectors are at 
offset 1 and 2, they can be subscribed

Matrix STEL=data_t[1].vec();

Matrix VTEL=data_t[2].vec();

Now STEL and VTEL of the target object are local vari-
ables of the missile object and can be used by the seeker.

The number of module-variables in the data set is unre-
stricted. If you are unsure of the storage sequence, you can 
find it by selecting y_comscrn and counting the labels. 
However, be aware that the three components of vectors 
count as one label only.

3.6 Table Look-up
Interpolating aerodynamic and propulsion tables is an 
important task in any aerospace simulation. Aerodynamic 
coefficients are usually given as functions of incidence 
angles and Mach number. Sometimes they are also 
expressed as functions of altitude and control surface 
deflections. Propulsion data are tailored to the type of pro-
pulsion system. For rocket motors, simple thrust tables may 
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suffice. Turbojet and ramjet engines depend on throttle, 
Mach number and sometimes on incidence angles.

The more variables are used to describe the system, the 
greater the complexity of the table. Seldom is the dimension 
higher than three due to run-time considerations. CADAC++ 
supports table look-up schemes up to third dimension and 
interpolates linearly between the discrete table entries. It 
keeps the so-called ‘data decks’ as separate files so they can 
be properly protected as the need may arise.

The handling of the tables is accomplished by two classes, 
Datadeck and Table. The class Datadeck has a pri-
vate member **table_ptr, which is a pointer to an array 
of pointers of the class Table that contains the pointers to 
all of the tables of a data deck. Under the ‘main vehicle’ 
scope, inside the ‘protected’ access specifier, the objects 
Datadeck aerotable and Datadeck proptable 
are declared along with the table pointer Table *table. 
At execution, two distinct phases take place: loading the 
tables and extracting the interpolated value. 

The loading of the tables starts when the file input.
asc is read by the function

void input_data(fstream &input);

and the keywords AERO_DECK and PROP_DECK are 
encountered with their trailing file names. Then the calls

read_tables(file_name,aerotable)and 
read_tables(file_name,proptable);

execute the code of the function

void read_tables(char *file_name, 
Datadeck &datatable);

which picks up one of the file_name and returns by ref-
erence the object datatable of type Datadeck. 
Internally, read_tables(…)opens the data file and allo-
cates dynamic memory first to the array of Table pointers 
(pointed to by **table_ptr which is a private member 
of the object Datadeck aerotable) then to the Table 
object (pointed to by table) and its data arrays. Now the 
numerical values are read into the data arrays for each table 
and read_tables(…)returns void. Both functions 
input_data(…)and read_tables(…) operate 
within the scope of the ‘main vehicle’ object.

The extraction of the interpolated value occurs in the 
modules. The Datadeck objects aerotable or 
proptable, declared under the ‘main vehicle’ object, 
give access to the public Datadeck member function

double look_up(string name,
double value1,…);

which is overloaded three times for one, two and three 
independent variables. A typical example, taken from an 
‘aerodynamic’ module of a two-dimensional table look-up, is

double cm=aerotable.look_up(“cm_vs_
elev_alpha”,delex,alphax);

It returns the interpolated value. This call to look_up(…) 
initiates two other calls to member functions of Datadeck. 
First, in find_index(…), a binary search locates the 
indices of the independent variables just below the table 
entries. Then interpolate(…) linearly interpolates 
between the next higher discrete value and passes the inter-
polated value back up to the look_up(…) function for 
return.

Additions and deletions of tables in the AERO_DECK or 
PROP_DECK are automatically adjusted during the loading 
of the tables. If a simulation requires data tables of a dif-
ferent type (e.g., antenna pattern) one has to do four things: 
(1) create an ASCII file with the data tables, (2) identify the 
file name by a keyword ANT_DECK antenna_data.
asc in the input.asc file, (3) declare an additional 
Datadeck object in the ‘main vehicle’ class antennat-
able and (4) replicate in the function input_data(…).

3.7 Monte Carlo Capability
High fidelity simulations use random variables to model 
noise, disturbances and uncertain phenomena. If we make a 
single run, it represents only one realization of the total 
population of random variables. To do a complete stochas-
tic analysis, many repetitive runs have to be executed, each 
drawing a different value from a distribution. This process 
can be automated and is referred to as the Monte Carlo 
capability of a simulation.

Randomized variables may be needed at initialization 
(e.g., seeker bias) or during the execution of the simulation 
(e.g., seeker noise). CADAC++ supports both. They are 
identified in the input file input.asc by the capitalized 
keywords that designate their distributions UNI, GAUSS, 
RAYL, EXP and MARKOV. The first four are used for 
initialization only. MARKOV models a Markov process with 
Gaussian distribution and first-order time correlation. It has 
to be called every integration cycle. 

To initiate a Monte Carlo run, the keyword MONTE with 
two arguments is inserted right before the OPTION line in 
input.asc. The first argument is the run repetition 
number and the second is the random number seed. If the 
repetition number is set to zero, one run is executed using 
the mean values of the distributions.

The stochastic variables, identified in input.asc, are 
read by the vehicle object function

vehicle_data(fstream &input,int 
nmonte);

If there are initialization variables, a value is drawn from 
their respective distribution and held constant until it is re-
initialized for the next trajectory. Module-variables 
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identified by MARKOV are initialized with their Gaussian 
distribution and stored in the markov_list, which is of 
type Markov and sized by the global integer NMARKOV. 
If nmonte=0, the mean values are selected.

The class Markov handles the storage of the Markov 
data. It declares as private members the sigma and time cor-
relation values of the Markov process and the index of the 
module-variable of its array. The Markov markov_list 
is a protected member of the Cadac hierarchy. Therefore, 
each main vehicle object has its own list of Markov vari-
ables with its own random draws.

At every integration step, for each vehicle, the Markov 
noise function is called in function execute(…)

vehicle_list[i]->markov_noise(sim_
time,int_step,nmonte);

This function downloads the Markov data from the 
markov_list and calls the utility function markov(…) 
to refresh the value.

Because Markov noise is a first order correlation pro-
cess, the current value depends on the previous value. 
Therefore, there is a provision in the Markov class to save 
the current value for the next cycle.

Stochastic analysis is an important aspect of the perfor-
mance evaluation of any aerospace vehicle. CADAC++ 
support stochastic initialization for all vehicles, but reserves 
the Markov process for only the main vehicle. For post-run 
analysis, the stochastic data of the main vehicle are written 
to stat files by exercising the OPTION y_stat.

3.8 Matrix Utility Operations
Modern programming uses matrix operations wherever 
possible to condense code and eliminate errors caused by 
coordinating equations. CADAC++ has a rich set of matrix 
operations which are public members of the class Matrix. 
This class is tailored to the special needs of flight dynam-
ics. Generality has been sacrificed for efficiency. Rather 
than using template classes and particularly the vector con-
tainer class of the STL, the CADAC++ matrix operations 
are restricted to variables of type double.

 The class Matrix declares a private pointer to the 
matrix array double *pbody together with the array 
dimensions. There are 55 matrix operations declared in the 
public access area. They are divided into 34 functions and 
21 overloaded operators.

In the following examples, capitalized variables are 
arrays, lower-case names are either functions or scalars. 

Matrix AAPNB=TBLC*WOELC.skew_
sym()*UTBLC*gnav_mid_pn*dvtbc;

This example calculates the (3 x 1) acceleration vector 
AAPNB from the LOS rates WOELC.

The next example calculates the 8 x 8 gain matrix of the 
filter:

Matrix GK=PMAT*~HH*INV. 
inverse();

And, finally, the 3 x 1 accelerometer vector error is deter-
mined by

Matrix EAB=ESCALA.diamat_ 
vec()+EMISA.skew_sym();

Note the limitless possibilities of stringing together matrix 
operations.

Matrix variables are created by specifying their name 
and dimensions, e.g., Matrix MAT(3,6). The construc-
tor allocates dynamic memory to the Matrix pointer 
*pbody and zeros all elements. The operations themselves 
use pbody and perform pointer arithmetic to accomplish 
the various matrix manipulations. Those operations that re-
create a matrix return *this; i.e. they return the 
re-calculated object that was originally created and initial-
ized, e.g.

Matrix UNIT(3,3);

UNIT.identity();

The matrix utilities have a full suite of overloaded oper-
ators. The assignment operator requires a copy constructor 
to provide for a deep copy of the object to assure that the 
new object has its own memory allocated and that it is 
recoverable when the object is destroyed.

The offset operator [] is also overloaded to access the 
elements of a Matrix array. However, this works only for 
one-dimensional arrays because two-dimensional arrays 
require more than one offset operator. For those instances, 
the Matrix functions assign_loc(..) and get_
loc(…) must be used.

3.9 Documentation and Error Checking
Self-documentation is an essential part of any simulation. 
Of primary interest are the variables that are used for input/
output as interfaces between modules and those of particu-
lar interest for diagnostics. All are referred to as 
module-variables. The description of a module-variable 
occurs only once in the ‘def_module’ function. This 
description is used to document the input file input.asc 
and to create a list of all module-variables in the output file 
doc.asc. The documentation of input.asc is auto-
matic, while the file doc.asc is only created if the 
OPTION y_doc is selected. 

CADAC error checking focuses in particular on the cor-
rect formatting of the input.asc file and the enforcement 
of the one-to-one correspondence rule, ’One module-vari-
able name for one array location‘. Other checks assure that 
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matrix operations are performed on compatible matrices 
and that file streams open correctly.

The class Document is used to make the module-vari-
able descriptions available. Its private data are essentially a 
subset of the class Variable. They store name, type, def-
inition and module of each module-variable. Under the 
main() scope (during initialization), arrays of type 
Document are built for each vehicle object, followed by 
the function call document()

vehicle_list[i]->document 
(fdoc,title,doc_missile6);

This function, under the vehicle object scope, writes to 
doc.asc formatted information of each module-variable 
and identifies the empty slots in the module-variable arrays. 
Under the same scope, input.asc is documented if 
OPTION y_doc is set

document_input(doc_missile6, doc_
target3,doc_recce3);

This function operates under the global scope. It uses the 
arrays of type Document to extract the module-variable 
descriptions and appends them after the numerical value of 
the variable. If it cannot find a matching name it prints out 
an error message.

 To flag violations of the one-on-one correspondence 
rule, both Document and Variable classes cooperate. 
In the Variable class the private char error[2] 
holds the error codes (* or A).

During initialization, as the init(…) functions of 
the modules are called, a check is made whether that slot 
is empty and can receive a new variable. If not, the error 
code ‘*’ is set. As document (…) writes the output 
file doc.asc, the module-variable array is checked 
for duplicate names. The error code ‘A’ is set if this 
occurs. Both codes are inserted in the first column of the 
doc.asc file and a warning message is sent to the 
console.

A good description of a particular simulation is pro-
duced if the modules, the input.asc and the doc.
asc files are combined in a document. It should enable 
someone else, who is familiar with the CADAC++ archi-
tecture, to pick up, run and understand the simulation.

4. Constructive Simulations
Constructive simulations have become the engineer’s major 
integration tool. With their realistic portrayal of the physical 
interactions between aerodynamics, propulsion, guidance 
and control they support concept studies, hardware inte-
gration tasks, flight testing and training. Specifically they 
enable the following: 

• Developing performance requirements. A variety 
of concepts are simulated to match up technologies 
with requirements and to define preliminary perfor-
mance specifications.

• Performing technology trade studies. Various sub-
system are modeled and analyzed as they interact 
with other subsystems to determine the specifica-
tions that best meet the performance requirements.

• Guiding and validating designs. Sensitivity stud-
ies are conducted to determine the optimal design 
parameters; models of subcomponents are tested as 
they interact with other parts of the system; overall 
performance is established.

• Test support. Test trajectories and footprints are
pre-calculated and test results are correlated with 
simulations.

• Reduction in test cost. A simulation, validated by 
flight test, is used to investigate other points in the 
flight envelope.

• Investigating inaccessible environments. Simula-
tions are the most cost effective way to check out 
vehicles that fly through the Martian atmosphere or 
land on Venus.

• Pilot and operator training. Thousands of flight 
simulators help train military and civilian pilots.

• Practicing dangerous procedures. System failures, 
abort procedures, and extreme flight conditions can 
be explored safely on simulators.

• Gaining insight into flight dynamics. Dynamic vari-
ables can be traced through the simulation and limit-
ing constraints can be identified.

• Integration of components. Understanding how sub-
systems interact to form a functioning vehicle.

CADAC, during its long history, has supported all of 
these tasks. It has been used to develop missile performance 
requirements, to conduct technology trades (airframe, pro-
pulsion, seeker, guidance and control), and to support flight 
test planning and data analysis. Air-to-air missile concepts 
have been integrated into air combat domes and into mis-
sion-level simulation frameworks like FLAMES®.

Not all CADAC simulations are at the 6-DoF fidelity, 
though high-fidelity modeling is required for delivery accu-
racy, hardware-in-the-loop and flight testing. However, 
during weapon conceptualization, lower fidelity 5-DoF or 
3-DoF models often suffice or are mandated by the lack of 
detailed component data. These simpler simulations drop 
one or three of the attitude degrees of freedom. Most of the 
recent CADAC simulations are of 6-DoF fidelity, but some 
UAV, air-to-air and air-to-ground missiles are modeled at 
5-DoF. All these simulations have the same CADAC++ 
framework. The distinction is reflected in the vehicle class 
structure and the associated modules.



Zipfel 13

For efficient use of constructive simulations, versatile 
plotting options and stochastic data processing must be 
available. CADAC Studio satisfies that need. Its history is 
as distinguished as that of the CADAC simulations. 
Originally developed for mainframes, then for VAXes and 
finally for PCs, it provides for interactive plotting, auto-
mated launch envelope and footprint generation and 
post-processing of Monte Carlo runs.

The plotting options consist of two dimensional traces 
and three dimensional trajectories either in a Cartesian grid 
or in longitude, latitude, altitude over the globe. A strip-
chart capability plots up to 12 traces against time.

The SWEEP program of CADAC Studio automates the 
generation of footprints for air-to-ground missile and 
launch envelopes for air-to-air missiles. A single CADAC 
submittal will spawn trajectory runs against a target grid. 
Plotting options then generate carpet plots of selected 
parameters.

Monte Carlo runs draw from a variety of stochastic dis-
tributions for insertion of numerical values into uncertain 
parameters such as aerodynamic uncertainties, INS errors, 
seeker errors and wind gusts. CADAC Studio analyzes the 
output and generates CEPs, bivariate ellipses and mean 
values in the target or intercept planes with plots that also 
display the scatter points. Even the SWEEP program can be 
executed in the Monte Carlo mode to generate CEPs 
throughout the envelope or footprint.

CADAC and CADAC Studio provide a complete envi-
ronment for constructive simulations. They have been used 
for bombs, missiles, UAVs, aircraft and spacecraft. Some 
recently developed simulations are summarized next.

5. Multi-use Examples

During the course of the CADAC++ development many 
simulations were built on the same framework. The modular  
architecture lends itself to multi-use applications. For 
example the environmental module is suitable for all simu-
lations. The 6-DoF equations of motion over the WGS 8410 
or flat Earth apply to all corresponding simulations (Newton 
and Euler modules are the same). Seeker, INS, guidance 
and control laws can be shared where appropriate. With the 
strict enforcement of the interfaces between modules, the 
integration of an existing module into a new simulation is 
simplified.

Table 1 summarizes the currently active CADAC++ 
simulations. They cover the breadth of aerospace vehicles. 
Among the 13 simulations are two 5-DoF models, six over 
the flat Earth, and five over the elliptical WGS84 Earth. 
Most have Monte Carlo capability and use the U.S. Standard 
Atmosphere 1976;11 some can implement a test atmosphere 
with winds aloft as well as Dryden-type turbulence.12 The 
simulations are also distinguished by the type of vehicle 
objects they model. Some have just one object, while others 
have two or three. The first object is always the vehicle of 
primary interest. It determines the degree-of-freedom clas-
sification. It can morph into different configurations as 
indicated by the ‘+’ sign. The semicolon separates the 
objects. Each vehicle object can be instantiated multiple 
times making possible the engagement of many-on-many. 
Two simulations have been integrated into the mission-
level FLAMES® framework: Long Range Strike Missile 
and Self Defense Missile.

Table 1. CADAC++ Active Simulations

TYPE VEHICLE OBJECTS DoF EARTH FEATURES

Cruise Missile Missile;  Target;  Satellite 5 Spherical Remote Targeting
Fighter Aircraft Aircraft 6 Flat Generic F16
Air-to-Ground Missile Missile; Aircraft; Target 6 Flat Weather Deck, MC
Air-to-Air Missile Missile; Target Aircraft 6 Flat MC
National Aerospace 
Plane

Plane + Transfer Vehicle + Interceptor; 
Tracking Station; Satellite

6 WGS84 Generic X30,
Weather Deck, MC

Generic Defense Missile Defensive Missile; Aircraft; Offensive Missile 6 Flat MC
Three Stage Booster Rocket with Three Stages 6 WGS84 Insertion Guidance, Weather 

Deck, MC
Long Range Strike Missile Missile; Target 5 Spherical Hypersonic, FLAMES®

Dual Role Missile Missile; Target; Recce Aircraft 6 Flat Two Pulse Rocket, Integral 
Rocket Ramjet, MC

Global Strike Booster + Waverider + Munition; Satellite; 
Target

6 WGS84 Wave Rider, MC

Self Defense Missile Defensive Missile; Aircraft; Offensive Missile 6 Flat Real time, MC, FLAMES®

Small Smart Bomb Bomb; Satellite; Target 6 WGS84 Weather Deck, MC
Hypersonic Cruise Missile Missile; Satellite; Target 6 WGS84 Scramjet, Weather Deck, MC

MC=Monte Carlo capable
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Two simulations are presented as examples. The Three 
Stage Booster simulation represents a model of a rocket 
that can place a payload into low Earth orbit using the 
WGS84 equations of motions. The Generic Defense Missile 
simulation (which models three objects) represents a blue 
missile launched from a blue aircraft against an incoming 
red missile using the flat Earth equations of motions.

5.1 Three Stage Booster Simulation

This is a typical solid rocket delivery booster. It is con-
trolled by thrust vector control (TVC) and reaction control 
system (RCS) but has no aerodynamic control fins. The 
autopilot uses accelerometer and rate gyro feedback from 
the inertial measurement unit (IMU) to steer the missile. 
During the first stage, a pitch program is executed while 
maintaining small incidence angles in the high dynamic 
pressure region. Stages two and three are under ascent 
guidance to meet the terminal insertion conditions. This 
guidance law implements linear tangent guidance for mini-
mum fuel consumption.13,14 The onboard inertial navigation 
system (INS), updated by the global precision system 
(GPS) and a star tracker, provides the navigation states of 
the booster.

The class hierarchy of this simulation has only one 
branch, Cadac ← Round6 ← Hyper. ‘Round6’ models the 
6-DoF equations of motion over the WGS84 Earth and 
‘Hyper’ contains all the subsystems of the booster coded in 
modules (see Figure 1). The protected arrays of the classes 
are labeled round6[] and hyper[]and the assigned 
locations are indicated in the brackets.

A typical trajectory is launched and places a payload at 
the suborbital conditions of 110 km altitude, 1.5° flight path 
angle and 6600 m/s inertial speed. Figure 2 was generated 
with the CADAC Studio Globe program.

Figure 1. Modular architecture of the three stage booster simulation.

Figure 2. Ascent of the three stage booster and suborbital 
insertion.
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To evaluate the performance of the booster the engineer 
requires the traces of many trajectory parameters. Some of 
them are plotted with CADAC Studio 2Dim and displayed 
in Figure 3.

Note the dynamic pressure peak at 30 seconds into 
flight. The incidence angles are small during the peak to 
keep the structural loads within limits. Afterwards, the 
angle of attack increases dramatically to alter the flight path 
towards the insertion point.

This simulation makes use of the Round6 class common 
to all 6-DoF simulations over the WGS84 Earth. It uses the 
INS, GPS and star-track modules from other simulations. 
Only the aerodynamics(), propulsion(), guidance() and 
control() modules are specific to this application.

5.2 Generic Defense Missile Simulation
This simulation highlights the multiple instantiation of 
three vehicle objects. An aircraft launches a missile (blue) 
to intercept an attacking missile (red). The blue missile 
receives target updates during midcourse until its seeker 
locks onto the red missile for terminal homing.

The class structure has three branches. For the main mis-
sile object Cadac ← Flat6 ← Missile, for the red missile 
Cadac ← Flat3 ← Target, and for the aircraft Cadac ← 
Flat3 ← Aircraft. The modules are shown in Figure 4. 
Inside each object data flows through the protected arrays 
while across objects the data is provided by the communi-
cation bus ‘combus’ packets. Note that three levels of 
modeling fidelity are combined. The major focus of the 
analysis is on the blue missile. It is modeled in 6-DoF while 
the red missile is in 5-DoF and the aircraft in 3-DoF (though 
both, red missile and blue aircraft use the 3-DoF equations 
of motion).

The multiple instantiation of the vehicle objects is dem-
onstrated in Figure 5. The aircraft launches two defensive 
missiles against two incoming threat missiles. The graph 
was drawn by the 3Dim plotting program of CADAC 
Studio.

As an example of a typical Monte Carlo result, Figure 6 
shows the impact points of the blue missile on the red mis-
sile intercept plane created by 100 MC runs. The generation 
of this graph is fully automated in CADAC Studio. The 
CEP and the bivariate ellipse are shown. It reveals a 

Figure 3. Trajectory parameters of the three stage booster ascent.
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Figure 4. Modular architecture of the Generic Defense Missile simulation.
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significant bias in the system due to guidance and control 
lags and limiters.

The Generic Defense Missile simulation makes use of 
the common class Flat6 with its 6-DoF equations of motion 
over the flat Earth. Several modules of the blue missile are 
shared with other simulations. These include modules such 
as rcs(), tvc(), actuator(), ins() and sensor(). The modules 
aerodynamics(), propulsion(), guidance() and control() are 
specific to the Generic Defense Missile.

These are just two examples of the family of 
CADAC++ simulations shown in Table 1. Other simula-
tions also demonstrate the commonality made possible 
by the class structure and modularity of the CADAC++ 
architecture. 

6 Summary
The conversion of CADAC from FORTRAN to C++ is 
essentially complete. During the ten years since the switch 
has been made, several simulations were updated and new 
models created. CADAC Studio also experienced modifi-
cations to make it compatible with the C++ output. The 
new code has been applied to various US Air Force projects 
and found to be invaluable for concept explorations, tech-
nology assessments and mission-level studies.
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