

Source Code Analysis Laboratory
(SCALe) for Energy Delivery Systems

Robert C. Seacord
William Dormann
James McCurley
Philip Miller
Robert Stoddard
David Svoboda
Jefferson Welch

December 2010

TECHNICAL REPORT
CMU/SEI-2010-TR-021
ESC-TR-2010-021

CERT® Program
Unlimited distribution subject to the copyright.

http://www.cert.org

http://www.cert.org

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

CMU/SEI-2010-TR-021 | i

Table of Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Software Security 1
1.2 SCALe 2
1.3 Conformance Assessment 3
1.4 CERT Secure Coding Standards 4
1.5 Automated Analysis Tools 5

1.5.1 Static Analysis Tools 5
1.5.2 Dynamic Analysis and Fuzz Testing 6

1.6 Portability and Security 6
1.7 SCALe for Energy Delivery Systems 7

2 Conformance Testing 9
2.1 Conformance Testing Outcomes 9
2.2 SCALe Laboratory Environment 9
2.3 Conformance Testing Process 10
2.4 The Use of Analyzers in Conformance Testing 11
2.5 Conformance Test Results 13

2.5.1 Conformance Test Results Generation 13
2.5.2 Additional Documentation 16

2.6 Tracking Diagnostics Across Code Base Version 17
2.6.1 Standard Approach 18

2.7 Quality Control 19
2.7.1 Personnel 19
2.7.2 Quality Assurance Procedures 20

3 Conformance Testing 28
3.1 Introduction 28

3.1.1 Impartiality 29
3.1.2 Complaints and Appeals 29
3.1.3 Information Disclosure Policy 29

3.2 CERT SCALe Seal 29
3.3 CERT SCALe Service Agreement 30

3.3.1 Conformance Certificates 31
3.4 SCALe Accreditation 31
3.5 Transition 32
3.6 Conformance Test Results 32

3.6.1 Energy Delivery System A 32
3.6.2 Energy Delivery System B 34

4 Related Efforts 37
4.1 Veracode 37
4.2 ISCA Labs 37
4.3 SAIC Accreditation and Certification Services 37
4.4 The Open Group Product Certification Services 37

CMU/SEI-2010-TR-021 | ii

5 Future Work and Summary 39
5.1 Future Work 39
5.2 Summary 39

Bibliography 41

CMU/SEI-2010-TR-021 | iii

List of Figures

Figure 1: SCALe Process Overview 3

Figure 2: C and C++ “Breadth” Case Coverage [Landwehr 2008] 5

Figure 3: Source Code Analysis Laboratory 10

Figure 4: SCALe Conformance Testing Process 11

Figure 5: Attribute Agreement Analysis using Minitab 26

Figure 6: CERT SCALe Seal 30

CMU/SEI-2010-TR-021 | iv

CMU/SEI-2010-TR-021 | v

List of Tables

Table 1: True Positives (TP) Versus Flagged Nonconformities (FNC) 8

Table 2: Conformance Testing Outcomes 9

Table 3: Nominal Limiting Quality 15

Table 4: Failure Mode, Effects, and Criticality Analysis 16

Table 5: Attribute Agreement Analysis Test Results 24

Table 6: Flagged Nonconformities, Energy Delivery System A 33

Table 7: Analysis Results, Energy Delivery System A 34

Table 8: Flagged Nonconformities, Energy Delivery System B 35

Table 9: Analysis Results, Energy Delivery System B 36

CMU/SEI-2010-TR-021 | vi

CMU/SEI-2010-TR-021 | vii

Acknowledgments

We would like to acknowledge the contributions of the following individuals to the research pre-
sented in this paper: Doug Gwyn, Paul Anderson, William Scherlis, Jonathan Aldrich, Yekaterina
Tsipenyuk O’Neil, Roger Scott, David Keaton, Thomas Plum, Dean Sutherland, Timothy Morrow,
Austin Montgomery, and Martin Sebor. We would also like to acknowledge the contribution of the
SEI support staff and management, including Paul Ruggiero, Shelia Rosenthal, Terry Ireland, San-
dra Brown, Michael Wright, Archie Andrews, Bill Wilson, Rich Pethia, and Clyde Chittister. This
research was supported by the U.S. Department of Energy (DOE) and the U.S. Department of De-
fense (DoD).

CMU/SEI-2010-TR-021 | viii

CMU/SEI-2010-TR-021 | ix

Abstract

The Source Code Analysis Laboratory (SCALe) is an operational capability that tests software
applications for conformance to one of the CERT® secure coding standards. CERT secure coding
standards provide a detailed enumeration of coding errors that have resulted in vulnerabilities for
commonly used software development languages. The SCALe team at CERT, a program of Car-
negie Mellon University’s Software Engineering Institute, analyzes a developer’s source code and
provides a detailed report of findings to guide the code’s repair. After the developer has addressed
these findings and the SCALe team determines that the product version conforms to the standard,
CERT issues the developer a certificate and lists the system in a registry of conforming systems.
This report details the SCALe process and provides an analysis of energy delivery systems.
Though SCALe can be used in various capacities, it is particularly significant for conformance
testing of energy delivery systems because of their critical importance.

CMU/SEI-2010-TR-021 | x

CMU/SEI-2010-TR-021 | 1

1 Introduction

A key mission of the U.S. Department of Energy’s (DOE) Office of Electricity Delivery and
Energy Reliability (OE), and specifically its Cybersecurity for Energy Delivery Systems (CEDS)
program, is to enhance the security and reliability of the nation’s energy infrastructure. Improving
the security of control systems that enable the automated control of our energy production and
distribution is critical for protecting the energy infrastructure and the integral function that it
serves in our lives.

The Source Code Analysis Laboratory (SCALe) provides a consistent measure that can be used
by grid asset owners and operators and other industry stakeholders to assess the security of dep-
loyed software systems, specifically by determining if they are free of coding errors that lead to
known vulnerabilities. This in turn reduces the risk to these systems from increasingly sophisti-
cated hacker tools.

1.1 Software Security

Software vulnerability reports and reports of software exploitations continue to grow at an alarm-
ing rate, and a significant number of these reports result in technical security alerts. To address
this growing threat to the government, corporations, educational institutions, and individuals, sys-
tems must be developed that are free of software vulnerabilities.

Coding errors cause the majority of software vulnerabilities. For example, 64 percent of the nearly
2,500 vulnerabilities in the National Vulnerability Database in 2004 were caused by programming
errors [Heffley 2004].

An interesting and recent example is Stuxnet, the first publicly known worm to target industrial
control systems and take control of physical systems. Stuxnet included malicious STL (Statement
List) code, an assembly-like programming language that is used to control industrial control sys-
tems, as well as the first-ever PLC (programmable logic controller) rootkit1 hiding the STL code.
It also included zero-day vulnerabilities,2 spread via USB drives, used a Windows rootkit to hide
its Windows binary components, and signed its files with certificates stolen from unrelated third-
party companies.

Stuxnet uses a total of five vulnerabilities: one previously patched (Microsoft Security Bulletin
MS08-067) and four zero-days. The vulnerability reported by MS08-067 could allow remote code
execution if an affected system received a specially crafted remote procedure call (RPC) request.
The code in question is reasonably complex code to canonicalize path names, for example, to strip
out “..” character sequences and such to arrive at the simplest possible directory name. The coding
defect allows a stack-based buffer overflow from within a loop. The loop inside the function
walks along an incoming string to determine if a character in the path might be a dot, dot-dot,

1 A rootkit is software that enables continued privileged access to a computer while actively hiding its presence

from administrators by subverting standard operating system functionality or other applications.
2 A zero-day vulnerability is a previously unknown vulnerability that is revealed in an exploit.

CMU/SEI-2010-TR-021 | 2

slash, or backslash. If it is, then the loop applies canonicalization algorithms. The bug occurs
while calling a bounded function call:
_tcscpy_s(previousLastSlash, pBufferEnd - previousLastSlash, ptr + 2);

This is a violation of the CERT® C Secure Coding rule “ARR30-C. Do not form or use pointers or
array subscripts that are out of bounds” and can be detected by the static analysis tools and tech-
niques being implemented by CERT, part of Carnegie Mellon University’s Software Engineering
Institute, and deployed in SCALe.

CERT takes a comprehensive approach to identifying and eliminating software vulnerabilities and
other flaws. CERT produces books and courses that foster a security mindset in developers, and it
develops secure coding standards and automated analysis tools to help them code securely. Secure
coding standards provide a detailed enumeration of coding errors that have caused vulnerabilities,
along with their mitigations for the most commonly used software development languages. CERT
also works with vendors and researchers to develop analyzers that can detect violations of the se-
cure coding standards.

Improving software security by implementing code that conforms to the CERT secure coding
standards can be a significant investment for a software developer, particularly when refactoring
or otherwise modernizing existing software systems [Seacord 2003]. However, a software devel-
oper does not always benefit from this investment because it is not easy to market code quality.

1.2 SCALe

To address these problems, CERT has created the Source Code Analysis Laboratory (SCALe),
which offers conformance testing of software systems to CERT secure coding standards.

SCALe evaluates client source code using multiple analyzers, including static analysis tools, dy-
namic analysis tools, and fuzz testing. CERT reports any deviations from secure coding standards
to the client. The client may then repair and resubmit the software for reevaluation. Once the ree-
valuation process is completed, CERT provides the client a report detailing the software’s con-
formance or nonconformance to each secure coding rule. The SCALe process consists of the se-
quence of steps shown in Figure 1.

® CERT is a registered mark owned by Carnegie Mellon University.

Figure 1: SCALe Process Overview

SCALe does not test for unknown
flaws, the code’s operational envi
formed for a particular set of softw
a particular execution environmen

Successful conformance testing o
detect violations of rules defined
testing does not provide any guar
entirely and permanently secure.
they implement an insecure desig

Software that conforms to a secur
conforming or untested software
disprove this claim.

1.3 Conformance Assessmen

SCALe applies conformance asse
that specified requirements relatin

1. Client contacts CERT. The pro
evaluate a software system.

2. CERT communicates requirem
(1) selection of secure coding sta
evaluated, and (3) a build engine

3. Client provides buildable soft
the software to be evaluated, an
build questions for the system.

4. CERT selects tool set. CERT ch
using that tool set in evaluation

5. CERT analyzes source code a
system against specified standa
the system is found to be confo
testing process.

6. Client repairs software. Clien
sends system back to CERT for f

7. CERT issues conformance tes
tools and procedures used in th
to the client and, if the system i

CMU/SEI-2010-

w

n code-related vulnerabilities, high-level design and arch
ironment, or the code’s portability. Conformance testing
ware, translated by a particular implementation, and exec
nt [ISO/IEC 2005].

of a software system indicates that the SCALe analysis di
by a CERT secure coding standard. Successful conforma
antees that these rules are not violated nor that the softw
Conforming software systems can be insecure, for examp

gn or architecture.

re coding standard is likely to be more secure than non-
systems. However, no study has yet been performed to p

nt

essment in accordance with ISO/IEC 17000: “a demonstr
ng to a product, process, system, person, or body are fulf

ocess is initiated when a client contacts CERT with a request

ments. CERT communicates requirements to the client, inc
andard(s) to be used, (2) a buildable version of the softwar
eer.

tware. Client selects standard(s), provides a buildable vers
nd identifies the build engineer, who is available to respon

hooses and documents the tool set to be used and procedu
of the system.

nd generates conformance test report. CERT evaluates th
ard(s) and provides the conformance test results to the clie
orming, CERT issues a certificate and terminates the confor

nt has the opportunity to repair nonconforming code. Clien
final evaluation.

sts results and certificate. CERT reevaluates the system usi
he initial assessment. CERT provides the conformance test r
is found to be conforming, a certificate.

-TR-021 | 3

hitectural
is per-
cuting in

id not
ance
are is

mple, if

prove or

ration
filled”

t to

cluding
re to be

sion of
d to

ures for

e
ent. If
mance

nt

ing the
results

CMU/SEI-2010-TR-021 | 4

[ISO/IEC 2004]. Conformance assessment generally includes activities such as testing, inspection,
and certification. SCALe limits the assessments to software systems implemented in standard ver-
sions of the C, C++, and Java programming languages.

Conformance assessment activities are characterized by ISO/IEC 17000 [ISO/IEC 2004] as
• first party. The supplier organization itself carries out conformance assessment to a standard,

specification, or regulation—in other words, a self-assessment—known as a supplier’s decla-
ration of conformance.

• second party. The customer of the organization (for example, a software consumer) performs
the conformance assessment.

• third party. A body that is independent of the organization providing the product and that is
not a user of the product performs the conformance assessment.

Which type of conformance assessment is appropriate depends on the level of risk associated with
the product or service and the customer’s requirements. SCALe is a third-party assessment per-
formed by CERT or a CERT-accredited laboratory on behalf of the supplier or on behalf of the
customer with supplier approval and involvement.

1.4 CERT Secure Coding Standards

SCALe assesses conformance of software systems to a CERT secure coding standard. As of year-
end 2010, CERT has completed one secure coding standard and has three additional coding stan-
dards under development.

The CERT C Secure Coding Standard, Version 1.0, is the official version of the C language stan-
dards against which conformance testing is performed and is available as a book from Addison-
Wesley [Seacord 2008]. It was developed specifically for versions of the C programming lan-
guage defined by
• ISO/IEC 9899:1999 Programming Languages — C, Second Edition [ISO/IEC 2005]

• Technical Corrigenda TC1, TC2, and TC3

• ISO/IEC TR 24731-1 Extensions to the C Library, Part I: Bounds-checking interfaces
[ISO/IEC 2007]

• ISO/IEC TR 24731-2 Extensions to the C Library, Part II: Dynamic Allocation Functions
[ISO/IEC 2010a]

Most of the rules in The CERT C Secure Coding Standard, Version 1.0, can be applied to earlier
versions of the C programming language and to C++ language programs. While programs written
in these programming languages may conform to this standard, they may be deficient in other
ways that are not evaluated by this conformance test.

It is also possible that maintenance releases of The CERT C Secure Coding Standard will address
deficiencies in Version 1.0, and that software systems can be assessed against these releases of the
standard.

There are also several CERT secure coding standards under development that are not yet available
for conformance testing, including
• The CERT C Secure Coding Standard, Version 2.0 [CERT 2010a]

CMU/SEI-2010-TR-021 | 5

• The CERT C++ Secure Coding Standard [CERT 2010b]

• The CERT Oracle Secure Coding Standard for Java [CERT 2010c]

1.5 Automated Analysis Tools

Secure coding standards alone are inadequate to ensure secure software development because they
may not be consistently and correctly applied. Manual security code audits can be supplemented
by automated analysis tools, including static analysis tools, dynamic analysis tools, tools within a
compiler suite, and various testing techniques.

1.5.1 Static Analysis Tools

Static analysis tools operate on source code, producing diagnostic warnings of potential errors or
unexpected run-time behavior. Static analysis is one function performed by a compiler. Compilers
can frequently produce higher-fidelity diagnostics than analyzer tools, which can be used in mul-
tiple environments, because they have detailed knowledge of the target execution environment.

There are, however, many problems and limitations with source code analysis. Static analysis
techniques, while effective, are prone to both false positives and false negatives. For example, a
recent study found that more than 40 percent of the 210 test cases went undiagnosed by all five of
the study’s C and C++ source analysis tools, while only 7.2 percent of the test cases were success-
fully diagnosed by all five tools (see Figure 2) [Landwehr 2008]. The same study showed that
39.7 percent of 177 test cases went undiagnosed by all six of the study’s Java code analysis tools
and that 0 percent of the test cases were discovered by all six tools. Dynamic analysis tools, while
producing lower rates of false positives, are prone to false negatives along untested code paths.
The NIST Static Analysis Tool Exposition (SATE) also demonstrated that developing compre-
hensive analysis criteria for static analysis tools is problematic because there are many different
perspectives on what constitutes a true or false positive [Okun 2009].

Figure 2: C and C++ “Breadth” Case Coverage [Landwehr 2008]

To address these problems, CERT is working with analyzer vendors and with the WG14 C Secure
Coding Guidelines Rules Group (CSCR SG) to precisely define a set of analyzable secure coding

42%

12%
12%

13%

15%

7%

No Tool
One Tool
Two Tools
Three Tools
Four Tools
Five Tools One Tool Breakdown

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

Tool E
Tool D
Tool C
Tool B
Tool A

CMU/SEI-2010-TR-021 | 6

guidelines for the C99 version of the C Standard [ISO/IEC 2005], as well as for the emerging
C1X major revision to the C standard [Jones 2010]. Having such a set of guidelines and standar-
dizing them through the ISO/IEC process should eliminate many of the problems encountered at
the NIST SATE and also increase the percentage of defects found by more than one tool. CERT is
working on tools to support the set of analyzable secure coding guidelines. First, CERT is coordi-
nating a test suite, under a Berkeley Software Distribution (BSD)-type license,3 that will be freely
available for any use. This test suite can be used to determine which tools are capable of enforcing
which guidelines and to establish false positive and false negative rates. Second, CERT has ex-
tended the Compass/ROSE tool,4 developed at Lawrence Livermore National Laboratory, to diag-
nose violations of the CERT Secure Coding Standards in C and C++.

1.5.2 Dynamic Analysis and Fuzz Testing

Dynamic program analysis analyzes computer software by executing that software on a real or
virtual processor. For dynamic program analysis to be effective, the target program must be ex-
ecuted with test inputs sufficient to produce interesting behavior. Software testing techniques such
as fuzz testing can stress test the code [Takanen 2008], and code coverage tools can determine
how many program statements have been executed.

1.6 Portability and Security

Portability and security are separate, and sometimes conflicting, software qualities. Security can
be considered a measure of fitness for use of a given software system in a particular operating
environment, as noted in Section 1.2. Software can be secure for one implementation and insecure
for another.5

Portability is a measure of the ease with which a system or component can be transferred from
one hardware or software environment to another [IEEE Std 610.12 1990]. Portability can conflict
with security, for example, in the development of application programming interfaces (APIs) that
provide an abstract layer over nonportable APIs while cloaking underlying security capabilities.
Portability can become a security issue when developers create code based upon a set of assump-
tions for one implementation and port it, without adequate verification, to a second implementa-
tion where these assumptions are no longer valid. For example, the C language standard defines a
strictly conforming program as one that uses only those features of the language and library speci-
fied in the standard [ISO/IEC 2005]. Strictly conforming programs are intended to be maximally
portable among conforming implementations. Conforming programs may depend upon nonporta-
ble features of a conforming implementation.

Software developers frequently make assumptions about the range of target operating environ-
ments for the software being analyzed:
• The null pointer is bitwise zero. This assumption means that initializing memory with all-

bits-zero (such as with calloc) initializes all pointers to the null pointer value.

3 http://www.opensource.org/licenses/bsd-license.php
4 http://www.rosecompiler.org/compass.pdf
5 An implementation is “a particular set of software, running in a particular translation environment under particu-

lar control options, that performs translation of programs for, and supports execution of functions in, a particular
execution environment” [ISO/IEC 2005].

http://www.opensource.org/licenses/bsd-license.php
http://www.rosecompiler.org/compass.pdf

CMU/SEI-2010-TR-021 | 7

• A floating-point value with all bits zero represents a zero floating-point value. This assump-
tion means that initializing memory with all-bits-zero (such as with calloc) initializes all
floating-point objects to a zero value.

• A pointer-to-function can be converted to a pointer-to-void and back to a pointer-to-function
without changing the value. This is true of all POSIX systems.

• Integers have a twos-complement representation. This assumption means that the bitwise
operators produce well-defined results upon signed or unsigned integers, subject to restric-
tions upon the range of values produced.

• Integers are available for 8-, 16-, 32-, and 64-bit values. This assumption means that the li-
brary provides standardized type definitions for int8_t, int16_t, int32_t, and
int64_t.

While not guaranteed by the C standard, these assumptions are frequently true for most imple-
mentations and allow for the development of smaller, faster, and less complex software. The
CERT C Secure Coding Standard encourages the use of a static assertion to validate that these
assumptions hold true for a given implementation (see guideline “DCL03-C. Use a static assertion
to test the value of a constant expression”) [Seacord 2008].

Because most code is constructed with these portability assumptions, it is generally counterpro-
ductive to diagnose code constructs that do not strictly conform. This would produce extensive
diagnostic warnings in most code bases, and these flagged nonconformities would largely be per-
ceived as false positives by developers who have made assumptions about the range of target plat-
forms for the software.

Consequently, conformance testing for the CERT C Secure Coding Standard is performed with
respect to one or more specific implementations. A certificate is generated for the product version,
but each separate target implementation increases the cost of conformance testing. It is incumbent
upon the developer requesting validation to provide the appropriate bindings for implementation-
defined and unspecified behaviors evaluated during conformance testing.

1.7 SCALe for Energy Delivery Systems

Because of the flexibility of the C language, software developed for different application domains
often has significantly different characteristics. For example, applications developed for the desk-
top may be significantly different than applications developed for embedded systems.

For example, one of the CERT C Secure Coding Standard rules is “ARR01-C. Do not apply the
sizeof operator to a pointer when taking the size of an array.” Applying the sizeof operator
to an expression of pointer type can result in under allocation, partial initialization, partial copy-
ing, or other logical incompleteness or inconsistency if, as is usually the case, the programmer
means to determine the size of an actual object. If the mistake occurs in an allocation, then subse-
quent operations on the under-allocated object may lead to buffer overflows. Violations of this
rule are frequently, but not always, a coding error and software vulnerability. Table 1 illustrates
the ratio of true positives (bugs) to flagged nonconformities in four open source packages.

CMU/SEI-2010-TR-021 | 8

Table 1: True Positives (TP) Versus Flagged Nonconformities (FNC)
Software System TP/FNC Ratio

Mozilla Firefox version 2.0 6/12 50%

Linux kernel version 2.6.15 10/126 8%

Wine version 0.9.55 37/126 29%

xc, version unknown 4/7 57%

The ratio of true positives to flagged nonconformities shows that this checker is inappropriately
tuned for analysis of the Linux kernel, which has anomalous results. Customizing SCALe to
work with energy system software will help eliminate false positives in the analysis of such code,
decrease the time required to perform conformance testing, and subsequently decrease the asso-
ciated costs.

CMU/SEI-2010-TR-021 | 9

2 Conformance Testing

This section describes the processes implemented in SCALe for conformance testing against a
secure coding standard.

2.1 Conformance Testing Outcomes

Software systems can be evaluated against one or more secure coding standards. Portions of a
software system implemented in languages for which a coding standard is defined and for which
conformance tests are available can be evaluated for conformance to those standards. For exam-
ple, a software system that is partially implemented in PL/SQL, C, and C# can be tested for con-
formance against The CERT C Secure Coding Standard. The certificate issued will identify the
programming language composition of the system and note that the PL/SQL and C# components
are not covered by the conformance test.

For each secure coding standard, the source code is found to be provably nonconforming, con-
forming, or provably conforming against each guideline in the standard as shown in Table 2.

Table 2: Conformance Testing Outcomes
Provably
nonconforming

The code is provably nonconforming if one or more violations of a rule are dis-
covered for which no deviation has been allowed.

Conforming The code is conforming if no violations of a rule can be identified.

Provably
conforming

The code is provably conforming if the code has been verified to adhere to the
rule in all possible cases.

Strict adherence to all rules is unlikely, and, consequently, deviations associated with specific rule
violations are necessary. Deviations can be used in cases where a true positive finding is uncon-
tested as a rule violation, but the code is nonetheless determined to be secure. This may be the
result of a design or architecture feature of the software or because the particular violation occurs
for a valid reason that was unanticipated by the secure coding standard. In this respect, the devia-
tion procedure allows for the possibility that secure coding rules are overly strict. Deviations will
not be approved for reasons of performance, usability, or to achieve other nonsecurity attributes in
the system. A software system that successfully passes conformance testing must not present
known vulnerabilities resulting from coding errors.

Deviation requests are evaluated by the lead assessor, and if the developer can provide sufficient
evidence that deviation will not result in a vulnerability, the deviation request will be accepted.
Deviations should be used infrequently because it is almost always easier to fix a coding error
than it is to provide an argument that the coding error does not result in vulnerability.

Once the evaluation process has been completed, CERT delivers to the client a report detailing the
conformance or nonconformance of the code to the corresponding rules in the secure coding stan-
dard.

2.2 SCALe Laboratory Environment

Figure 3 shows the SCALe laboratory environment established at CERT.

Figure 3: Source Code Analysis Lab

The SCALe laboratory environme
These are supported by a large sto
capabilities. The two ESX servers
figured to support analysis in vari
vCenter Server provides control o

The VMs are connected by a segm
The Windows VMs can be remot
Desktop Protocol (RDP) and the L
erwise disconnected from the inte

Source code being analyzed is cop
VMs. Analyzers and other tools a

2.3 Conformance Testing Pro

Figure 4 illustrates the SCALe co
taining the code for analysis. This
Microsoft Windows/Visual Studio
produce fatal errors. If the target
the target environment must be fu

CMU/SEI-2010-T

boratory

ent consists of two servers running VMware ESX hyperv
orage area network (SAN) with redundant storage and ba
s support a collection of virtual machines (VMs) that can
ious environments, such as Windows XP and Linux. A V
over the virtual environment.

mented-off network and to a file server running Samba a
ely accessed from within the CERT network by using Re
Linux VMs by using Secure Shell (SSH). The machines
ernet.

pied onto the file server, where it is available to all the an
are installed through a similar process or by using vCente

ocess

onformance testing process. The client provides the softw
s software must build properly in its build environment, s
o or Linux/GCC. It may produce compiler warnings but
operational environment is different than the build envir

ully specified, including all implementation-defined beha

TR-021 | 10

visors.
ackup
n be con-
VMware

nd NFS.
emote
are oth-

nalysis
er.

ware con-
such as
may not

ronment,
aviors.

Figure 4: SCALe Conformance Tes

2.4 The Use of Analyzers in C

The client code is analyzed using
information on various types of an
duces a set of flagged nonconform

Dynamic analysis tools must be a
ecution environment but also suit
ment may include custom or spec
dles can make dynamic analysis t
documents the degree to which dy

Also, an analyst may manually re
techniques, and record any violati
scanning costs considerably more
skill and tenacity of the analyst.

6 The C Secure Coding Rules Study

in software programs. This may inc

CMU/SEI-2010-T

sting Process

Conformance Testing

multiple analyzers.6 Section 1.5 contains additional back
nalysis. Each analyzer accepts the client code as input an

mities.

able to run the program, which requires not only the corre
table representative inputs. Additionally, the execution en
cial-purpose hardware, test rigs, and other equipment. Th
tools challenging. The final report provided to the client
ynamic analysis was applied during conformance testing

eview the source code, using both structured and unstruct
ions of secure coding rules discovered. However, manua
e than automated analysis, and the results depend more o

y Group defines an analyzer to be the mechanism that diagnoses co
clude static analysis tools, tools within a compiler suite, and code re

TR-021 | 11

kground
nd pro-

ect ex-
nviron-

hese hur-

g.

tured
al code
n the

oding flaws
eviewers.

CMU/SEI-2010-TR-021 | 12

Each analyzer produces a set of flagged nonconformities. Diagnostic formats vary with each tool,
but they typically include the following information:
• name of source file where the flagged nonconformity occurs

• flagged nonconformity line number

• flagged nonconformity message (error description)

Some diagnostic messages may indicate a violation of a secure coding guideline or security viola-
tion, and others may not. Analyzer diagnostic warnings that represent violations of secure coding
guidelines are mapped to the respective guideline, typically using a regular expression. This map-
ping can be performed directly by the tool or by the SCALe infrastructure. Analyzers that directly
support a mapping to the CERT secure coding standards include Compass/ROSE, LDRA
Testbed,7 and Klocwork.8

When possible, SCALe also uses dynamic analysis and fuzz testing techniques to identify coding
defects and for true/false positive analysis in addition to the routinely performed static analysis.
An example of this is the basic fuzzing framework (BFF) developed by CERT. The BFF has two
main parts:
• a Linux VM that has been optimized for fuzzing

• a set of scripts and a configuration file that orchestrate the fuzzing run

The VM is a stripped-down Debian installation with the following modifications:
• The Fluxbox window manager is used instead of the heavy Gnome or KDE desktop envi-

ronments.

• Fluxbox is configured not to raise or focus new windows. This can help in situations where
you may need to interact with the guest operating system (OS) while a graphical user inter-
face (GUI) application is being fuzzed.

• Memory randomization is disabled for reproducibility.

• VMware Tools is installed, which allows the guest OS to share a directory with the host.

• The OS is configured to automatically log in and start X.
• The sudo command is configured not to prompt for a password.

• The strip command is symlinked to /bin/true, which prevents symbols from being
removed when an application is built.

The goal of fuzzing is to generate malformed input that causes the target application to crash. The
fuzzer used by the BFF is Sam Hocevar’s zzuf application.9 CERT chose zzuf for its deterministic
behavior, number of features, and lightweight size. By invoking zzuf from a script (zzuf.pl),
additional aspects of a fuzzing run are automatable:
• Collect program stderr output, Valgrind memcheck, and gdb backtrace. This informa-

tion can help a developer determine the cause of a crash.

7 http://www.ldra.com/certc.asp
8 http://www.klocwork.com/solutions/security-coding-standards/
9 http://caca.zoy.org/wiki/zzuf

http://www.ldra.com/certc.asp
http://www.klocwork.com/solutions/security-coding-standards/
http://caca.zoy.org/wiki/zzuf

CMU/SEI-2010-TR-021 | 13

• De-duplication of crashing test cases. Using gdb backtrace output, zzuf.pl determines if a
crash has been encountered before. By default, duplicate crashes are discarded.

• Minimal test case generation. When a mutation causes a crash, the BFF will generate a test
case where the number of bytes that are different from the seed file is minimized. By provid-
ing a minimal test case, the BFF simplifies the process of determining the cause of a crash.

The zzuf.pl reads the configuration options from the zzuf.cfg file. This file contains all of
the parameters relevant to the current fuzz run, such as the target program and syntax, the seed file
to be mutated, and how long the target application should be allowed to run per execution. The
configuration file is copied to the guest OS when a fuzzing run has started. The zzuf script period-
ically saves its current progress within a fuzzing run as well. These two features work together to
allow the fuzzing VM to be rebooted at any point, allowing the VM to resume fuzzing at the last
stop point. The fuzzing script also periodically touches the /tmp/fuzzing file. A Linux soft-
ware watchdog checks for the age of this file, and if it is older than the specified amount of time,
the VM is automatically rebooted. Because some strange things can happen during a fuzzing run,
this robustness is necessary for full automation. The zzuf.pl script takes this one step further by
collecting additional information about the crashes. Cases that are determined to be unique are
saved.

In addition to the BFF, CERT has developed a GNU Compiler Collection (GCC) prototype of the
as-if infinitely ranged integer (AIR) model that, when combined with fuzz testing, can be used to
discover integer overflow and truncation vulnerabilities. Assuming that the source code base can
be compiled with an experimental version of the GCC 4.5.0 compiler, it may be possible to in-
strument the executable using AIR integers. AIR integers either produce a value equivalent to that
obtained using infinitely ranged integers or cause a runtime-constraint violation. Instrumented
fuzz testing of libraries that have been compiled using a prototype AIR integer compiler has been
effective in discovering vulnerabilities in software and has low false positive and false negative
rates [Dannenberg 2010].

With static tools, the entire code base is available for analysis. AIR integers, on the other hand,
can only report constraint violations if a code path is taken during program execution and the in-
put data causes a constraint violation to occur.

2.5 Conformance Test Results

CERT provides conformance test results to the client following step 5, “CERT analyzes source
code and generates conformance test report,” as shown in the SCALe process overview in Figure
1, and again following step 7, “CERT issues conformance tests results and certificate.”

When available, violations that do not prevent successful conformance testing, or other diagnostic
information, can be provided to the client for informational purposes.

2.5.1 Conformance Test Results Generation

The SCALe lead assessor integrates flagged nonconformities from multiple analyzers into a single
diagnostic list. Flagged nonconformities that reference the same rule violation, file, and line num-
ber are grouped together and assigned to the same analysts based on the probability that these are
multiple reports of the same error. In case these do refer to different errors, the individual reports

CMU/SEI-2010-TR-021 | 14

are maintained for independent analysis. However, it still makes sense to assign these as a group
because the locality makes it easier to analyze them together.

Diagnostic warnings may sometimes identify errors not associated with any existing secure cod-
ing rule. This can occur for three reasons. First, it is possible that a diagnostic represents a vulne-
rability not addressed by any existing secure coding rule. This may represent a gap in the secure
coding standard, which necessitates the addition of a new secure coding guideline. Second, a di-
agnostic may have no corresponding secure coding rule because the diagnostic does not represent
a security flaw. Many analysis tools report portability or performance issues that are not consi-
dered to be secure coding rule violations. Third and finally, the diagnostic may be a false positive,
that is, a diagnostic for which it is determined that the code does not violate a rule. False positives
may arise through the normal operation of an analyzer, for example, because of the failure of a
heuristic test. Alternatively, they may represent a defect in the analysis tool and consequently an
opportunity to improve it. It is important to remember, however, that simultaneously avoiding
both false positives and false negatives is generally impossible. Once a flagged nonconformity is
determined to be a false positive, it is not considered or analyzed further.

Finally, the merged flagged nonconformities must be evaluated by a SCALe analyst to ascertain
whether they are true or false positives. This is the most effort-intensive step in the SCALe
process because there may be thousands of flagged nonconformities for a small- to medium-sized
code base. Inspecting each flagged nonconformity is cost-prohibitive and unnecessary because it
is possible to be confident—with a specified level of risk—that no true positives escape detection
through statistical sampling and analysis.

Homogeneous buckets group flagged nonconformities based on the specific analyzer checker that
reported it (as determined by examining the diagnostic). A statistical sampling approach selects a
random sample of flagged nonconformities from a given bucket for further investigation. The
specific statistical sampling approach used is called lot tolerance percent defective (LTPD) single
sampling [Stephens 2001]. This LTPD reference uses an industry standard consumer risk of
10 percent, meaning that there is only a 10 percent chance of the security analyst being wrong in
declaring a bucket of flagged nonconformities free of true positives based on the selected nominal
limiting quality (defined in Table 3). The LTPD decision tables guiding the sample size for a giv-
en bucket require the following parameters as inputs:
1. bucket size—the number of flagged nonconformities for a given analyzer checker from

which a sample will be investigated
2. nominal limiting quality (LQ)—the minimum percentage of true positives within a bucket of

flagged nonconformities that the sampling plan will detect with 90 percent confidence and
consequently confirm a violation of the coding rules

For the purposes of SCALe, the nominal LQ is assumed to be 2 percent. Note that the higher the
LQ percentage, the smaller the sample of nonconformities for further investigation.

The above parameters, when used in conjunction with published LTPD tables, will determine the
required sample size (n), from a bucket of flagged non-conformities associated with a given ana-
lyzer checker, that must be investigated by the SCALe analyst. Table 3 presents the set of the
most likely scenarios that will be encountered by the security analysts, as derived from The

CMU/SEI-2010-TR-021 | 15

Handbook of Applied Acceptance Sampling [Stephens 2001].10 The column headings contain the
nominal LQ in percent, the row headings represent the bucket size, and their intersections in the
table body are the sample size required by the nominal LQ and bucket size.

Table 3: Nominal Limiting Quality
Bucket Size (# of flagged
nonconformities for a
given analyzer checker)

Nominal Limiting Quality in Percent (LQ)

0.5% 0.8% 1.25% 2.0% 3.15% 5.0%

Sample Size

16 to 25 100%
sampled

100%
sampled

100%
sampled

100%
sampled

100%
sampled

100%
sampled

25 to 50 100%
sampled

100%
sampled

100%
sampled

100%
sampled

100%
sampled

2811

51 to 90 100%
sampled

100%
sampled

100%
sampled

50 44 34

91 to 150 100%
sampled

100%
sampled

90 80 55 38

151 to 280 100%
sampled

170 130 95 65 42

281 to 500 280 220 155 105 80 50

501 to 1,200 380 255 170 125 125∗ 80*

1,201 to 3,200 430 280 200 200* 125* 125*

3,201 to 10,000 450 315 315* 200* 200* 200*

Assuming there are zero true positives found in a sample, the security analyst will be able to dec-
lare, for example, “Based on an investigation of a random sample of flagged nonconformities
within a given bucket (of an analyzer checker), there is 90 percent confidence that the bucket of
flagged nonconformities for a given analyzer checker contains no more than 2 percent true posi-
tives,” where 2 percent true positives is the previously determined nominal LQ.

The procedure consists of the following steps for each bucket:
1. Identify the nominal LQ desired for the security analysis. For example, a 5 percent nominal

LQ implies that the sampling scheme will identify buckets that have 5 percent or more true
positives. The available tables offer LQ percentages of 0.5, 0.8, 1.25, 2.0, 3.15, 5.0 percent,
and higher. The default LQ value for SCALe is 2 percent.

2. Identify the bucket size (number of flagged nonconformities within a bucket for a given ana-
lyzer checker).

3. Use the table to identify the required sample size (n). Note that at the 2 percent LQ, all
flagged nonconformities are investigated if the bucket size totals 50 or fewer.

4. Randomly select the specified number (n) of flagged nonconformities from the bucket.

10 For purposes of SCALe, the allowable number of defects found in a sample for a given quality level (Ac) is con-

strained to zero with the implication that any true positive found in a sample will be a basis for rejecting the
bucket and declaring a violation of the security rule.

11 If the required sample size is greater than the bucket size, then the sample size is the bucket size.

∗ At this LQ value and bucket size, the sampling plan would allow one observed true positive in the sample inves-
tigated, but the SCALe analyst would continue using the zero observed true positive rule to decide if the bucket
is acceptable or not.

CMU/SEI-2010-TR-021 | 16

5. Investigate each flagged nonconformity in the sample to determine whether it is a false or
true positive flagged nonconformity, and label it accordingly.

6. If all flagged nonconformities in the sample are false positives, all remaining flagged non-
conformities in the bucket are discarded as false positives.

7. If a flagged nonconformity in the sample is determined to be a violation of the secure coding
rule, it is categorized as a confirmed violation. No further investigation is conducted of the
remaining nonconformities in the bucket, and these will continue to be categorized as un-
known.

At the end of this process, there may be a small set of confirmed violations and a larger set of un-
known or unevaluated violations. A confirmed violation represents a genuine security flaw in the
software being tested and will result in the software being found provably nonconforming with
respect to the secure coding guideline and failing to pass conformance testing. CERT will provide
a list of unknown violations of the same secure coding rules to the client along with confirmed
violations. The final diagnostic report consists of the confirmed violations together with the list of
unknown violations.

2.5.2 Additional Documentation

Each rule provides additional information, including a description of the rule, noncompliant code
examples, compliant solutions, and risk assessment, that provides software developers with an
indication of the potential consequences of not addressing a particular vulnerability in their code
(along with some indication of expected remediation costs). This metric is based on failure mode,
effects, and criticality analysis (FMECA) [IEC 2006]. A development team can use this informa-
tion to prioritize the repair of vulnerability classes.12 It is generally assumed that new code will be
developed to be compliant with all applicable guidelines.

As seen in Table 4, each rule in the CERT C Secure Coding Standard is scored on a scale of 1 to 3
for severity, likelihood, and remediation cost.

Table 4: Failure Mode, Effects, and Criticality Analysis

Severity – How serious are
the consequences of the rule
being ignored?

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal termination

2 medium data integrity violation, unintentional information dis-
closure

3 high run arbitrary code

Likelihood – How likely is it
that a flaw introduced by
ignoring the rule can lead to an
exploitable vulnerability?

Value Meaning

1 unlikely

2 probable

3 likely

Cost – How much will mitigat-
ing the vulnerability cost?

Value Meaning Detection Correction

1 high manual manual

2 medium automatic manual

3 low automatic automatic

12 Vulnerability metrics, such as the Common Vulnerability Scoring System (CVSS), measure the characteristics

and impacts of specific IT vulnerabilities, not the risk from a coding rule violation.

CMU/SEI-2010-TR-021 | 17

2.6 Tracking Diagnostics Across Code Base Version

Infrequently, source code submitted for conformance assessment will be discovered to be free
from secure coding violations on the initial assessment. More commonly, at least a single iteration
is required. Consequently, this iteration has been designed into the process. Often, multiple itera-
tions are required to discover and eliminate secure coding violations in software that has not been
developed in conformance with the appropriate secure coding standards.

Depending on the analyzers used, it is not uncommon for code bases to have substantial numbers
of false positives in addition to the true positives that caused the software to fail conformance test-
ing. False positives must be eliminated before a software system can be determined to be con-
forming. However, analyzing the code to determine which diagnostics are false positives is time
consuming and labor intensive. Furthermore, this process needs to be repeated each time the code
base is submitted for analysis. Consequently, preventing the issuance of diagnostics determined to
be false positives can reduce the cost and time required for conformance testing in most cases.

Diagnostics determined to be false positives can be eliminated in a variety of ways. Code con-
structs may be diagnosed because they correspond to common programmer errors. In other cases,
these same code constructs may be intentional, but the analyzer cannot determine that a particular
usage is secure. In these cases, the programmer simply needs a mechanism to express design in-
tent more clearly.

Design intent can be expressed with the stylistic use of code or with special annotations. For ex-
ample, given a guideline such as “FIO04-C. Detect and handle input and output errors,” the fol-
lowing line of code would require a diagnostic:

 puts("..."); // diagnostic required

However, the following code would be considered conforming:

 if (EOF == puts("...")) // okay: error handled

 exit(1);

If the failure to test the return value from the puts function was intentional, this design intent
could be expressed by casting the resulting expression to void:

 (void)puts("..."); // don't care about errors here

Special comments or pragmas may also be used for this purpose. For example, lint is silent about
certain conditions if a special comment such as /*VARARGS2*/ or /*NOTREACHED*/ is
embedded in the code pattern triggering them. The comment

 /*NOTREACHED*/

is equivalent to

 #pragma notreached

Of course, to suppress the diagnostic, both approaches must be recognized by the analyzer, and
there is no standard set of stylistic coding conventions (although some conventions are more
widely adopted than others).

CMU/SEI-2010-TR-021 | 18

Both approaches also require modification of source code, which, of course, is not a process or
output of conformance testing. In fact, diagnostics are typically unsuppressed during analysis to
ensure that secure coding violations are not inadvertently being suppressed.

A related approach is frequently referred to as “stand-off annotations,” in which the annotations
are external to the source code. This approach is more practical for SCALe and other processes in
which the source code cannot be modified.

In step 6 of the SCALe process overview shown in Figure 1, the client has the opportunity to re-
pair nonconforming code and can send the system back to CERT for a further assessment. Be-
cause the initial and subsequent code bases are separated by time and potentially multiple code
restructurings, it can be difficult to match a new flagged nonconformity with a flagged noncon-
formity from an earlier version of the system. No matching technique will be perfect for all users,
and it may fail in two ways:
1. It may fail to match a flagged nonconformity that should have been matched, so the false

positive reappears.
2. It may erroneously match a flagged nonconformity that should have been treated separately.

In this case the old flagged nonconformity’s annotation will replace the newer flagged non-
conformity. If the old flagged nonconformity was annotated as a false positive and the new
flagged nonconformity is a true positive, then the user may never see it, creating a false neg-
ative.

GrammaTech CodeSonar, Coverity Prevent, and Fortify Source Code Analysis (SCA) each have a
proprietary solution for solving this problem. SCALe could use these proprietary mechanisms to
indicate at the individual tool level which diagnostics are false positives and should no longer be
reported. This solution may be effective, but it requires direct access to the tool (as opposed to
dealing strictly with aggregate results), and this approach is only feasible when the underlying
tool provides the mechanism. Another drawback is that the false positive must be silenced by the
conformance tester in each reporting analyzer.

Following the initial generation of a diagnostic report as described in Section 2.5.1, each diagnos-
tic also has a validity status: true, probably true, unknown, probably false, or false. Each diagnos-
tic starts in the unknown state. Any diagnostic that is manually inspected by an auditor becomes
true or false. When the audit is complete, all other diagnostics will be probably true or probably
false. This information needs to be transferred from the previous conformance test to minimize
the amount of time spent reevaluating false positive findings.

2.6.1 Standard Approach

A potentially feasible approach to standardization is to specify a #pragma for analyzers to im-
plement. With the _Pragma operator, the pragma name and number would not need to be the
same across tools, although it would help if the pragma name and number mapped to equivalent
functionalities such as those being produced by the WG14 C Secure Coding Rules Study Group.
The following code illustrates a standard approach to using pragmas to suppress diagnostics:

#ifdef SA_TOOL_A

define DISABLE_FOO \

CMU/SEI-2010-TR-021 | 19

 _Pragma(push: tool_a_maybe_foo, disable: tool_a_maybe_foo)

define RESTORE_FOO _Pragma(pop: tool_a_maybe_foo)

#elif defined SA_TOOL_B

 #...

 void f() {

 DISABLE_FOO();

 /* do bad foo */

 RESTORE_FOO();

 }

Unfortunately, there are serious practical obstacles to portability when using pragmas.

The biggest problem with pragmas is that even though the language requires implementations to
ignore unknown pragmas, they tend to be diagnosed by strict compilers. Compliers that do not do
so make debugging incorrect uses of otherwise recognized pragmas difficult.

Another caveat about pragmas is that they have the effect of applying to whole statements rather
than to expressions. Consider this example:

 void f(FILE *stream, int value) {

 char buf[20];

 #pragma ignore IO errors

 fwrite(buf, 1, sprintf("%i", value), stream);

 }

The pragma silences the diagnostics for both I/O functions on the next line, and it is impossible to
make it silence just one and not the other. Of course, it is possible to rewrite this code so that the
pragma would apply only to a single function call.

Developers submitting software for analysis are not required to silence unwanted diagnostics.

2.7 Quality Control

2.7.1 Personnel

2.7.1.1 Training

All SCALe lab personnel undergo basic security training and specialized training as required.
Everyone, including those with client-facing roles, must have a computer science degree or equiv-
alent education, specific training in the application of a particular secure coding standard, and
training in conformance assessment using SCALe.

CMU/SEI-2010-TR-021 | 20

Currently, conformance assessment is being performed only with the CERT C Secure Coding
Standard; therefore secure coding training required for personnel is one of the following:
• Software Engineering Institute (SEI) Secure Coding in C and C++13

• Carnegie Mellon University 15-392 Special Topic: Secure Programming14

• Carnegie Mellon University 14-735 Secure Software Engineering15

• An equivalent course determined by CERT

Following completion of training, a new SCALe employee undergoes an apprenticeship with a
trained SCALe staff person. Upon successful completion of the apprenticeship—where success is
determined by skill and capability, not by the passage of time—the new SCALe employee may
work independently. However, the new employee, and all employees of SCALe, will continue to
work under the transparency and audit controls described in this section.

All SCALe staff members undergo ethics training to ensure that SCALe conforms to the require-
ments of CERT, the SEI, and ISO/IEC 17000.

2.7.1.2 Roles

There are a number of defined roles within the SCALe lab.
• SCALe build specialist

− Responsibilities: Installs the customer build environment on the SCALe lab machines
• SCALe analyst.

− Responsibilities: Evaluates flagged nonconformities to determine if they represent viola-
tions of secure coding rules.

− Additional training: Analysts must satisfactorily complete a formative evaluation as-
sessment, as discussed in Section 2.7.2.

• SCALe lead assessor

− Responsibilities: Organizes and supervises assessment activities, including supervising
analyzers, tool selection, and drafting of reports.

− Additional training: Has performed at least three assessments as a SCALe analyst.
• SCALe assessment administrator

− Responsibilities: Develops and administers analyzer assessments.
• SCALe manager

− Responsibilities: Handles business relationships, including contracting, communications,
and quality assurance.

2.7.2 Quality Assurance Procedures

Every point where human judgment comes into play is an opportunity for SCALe to generate re-
sults that are not reproducible. This will be mitigated. Each judgment point will have a docu-
mented process for making that judgment. Personnel will be trained to faithfully apply the

13 http://www.sei.cmu.edu/training/p63.cfm
14 http://www-2.cs.cmu.edu/afs/cs/usr/cathyf/www/ugcoursedescriptions.htm
15 http://www.ini.cmu.edu/degrees/psv_msit/course_list.html

http://www.sei.cmu.edu/training/p63.cfm
http://www-2.cs.cmu.edu/afs/cs/usr/cathyf/www/ugcoursedescriptions.htm
http://www.ini.cmu.edu/degrees/psv_msit/course_list.html

CMU/SEI-2010-TR-021 | 21

processes. A system of review will be established, applied, and documented. The judgment will
include at least the following.

Flagged nonconformity assessment: Much of the work of a conformity assessment is the human
evaluation of the merged flagged nonconformities produced by the automated assessment tools.
Different SCALe analysts each evaluate a subset of the flagged nonconformities. The intersection
of those subsets is not the null set and is known only to the lead assessor. Consequently, SCALe
analysts will perform audits of each other while simply doing their work. Any disagreement in
results between SCALe analysts triggers a root cause assessment and corrective action.

Client qualification: Client qualification refers to the readiness of the client to engage the SCALe
lab for analysis. The SCALe manager applies guidelines to determine if the potential client has
the organizational maturity to provide software along with the build environment, respond to
communications, maintain standards and procedures, and so forth. The tangible work products
form an audit trail. CERT will conduct periodic review of the audit trail.

Tool selection: Because there is great inter-tool variation in flagging nonconformities, the selec-
tion of tools can have considerable impact on results. It is critical that SCALe lab conformance
testing results be repeatable regardless of which particular person is selecting the tool set. The
SCALe manager specifies, applies, and audits well-defined procedures for tool selection.

Conformance Test Completion: Because there will be far more flagged nonconformities than
will be evaluated by SCALe analysts, the SCALe process applies statistical methods. Determining
when enough flagged nonconformities have been evaluated is a well-defined process documented
in Section 2.5.1.

Report generation: Final reports will be based on a template of predetermined parts, including,
but not limited to, a description of software and build environment, the client’s tolerance for miss-
ing nonconformities (typically less that 10 percent), tool selection, merged and evaluated flagged
nonconformities, and stopping criterion. Both the SCALe lead assessor and the SCALe manager
will sign off on each report. Each report will be reviewed by SEI communications for confor-
mance with SEI standards.

2.7.2.1 Attribute Agreement Analysis

Attribute agreement analysis is a statistical method to determine the consistency of judgment
within and between different SCALe analysts. Popular within the behavioral sciences, attribute
agreement analysis remains a key method to determining agreement within and between raters, in
this case SCALe analysts [von Eye 2006].

Simply, attribute agreement analysis constructs and implements a brief experiment in which the
SCALe analysts participate in a short exercise of rendering judgment on a series of flagged non-
conformities. The exercise specifically includes a variety of flagged nonconformities mapped to
different rules. Attribute agreement analysis evaluates the judgments as correct or incorrect, based
on the flagged nonconformity being a true positive or a false positive. In these situations, an
attribute agreement measures the true-or-false positive judgment similarly to the traditional use of
attribute agreement analysis in the quality control domain for pass/fail situations. The attribute
agreement measure provides feedback in several dimensions:
• individual accuracy (for example, what percentage of judgments are correct)

CMU/SEI-2010-TR-021 | 22

• individual consistency (for example, how consistent is the individual in rendering the same
judgment across time for the same or virtually the same flagged nonconformity; often re-
ferred to as repeatability)

• group accuracy (for example, what percentage of the time does a specific group of SCALe
analysts render the correct judgment)

• group consistency (for example, what percentage of the time does a specific group of SCALe
analysts render the same judgment for a given flagged nonconformity across time; often re-
ferred to as reproducibility)

Any modern statistical package can easily determine the attribute agreement measures, which are
interpreted as follows [Landis 1977]:
• Less than 0 (no agreement)

• 0–0.20 (slight agreement)

• 0.21–0.40 (fair agreement)

• 0.41–0.60 (moderate agreement)

• 0.61–0.80 (substantial agreement)

• 0.81–1 (almost perfect agreement)

A need may arise to assess both accuracy and consistency of SCALe analysts’ judgments with
measures that extend beyond the binary situation (correct or incorrect) to situations in which a
judgment is a gradual measure of closeness to the right answer. In this case, analysts should use
an alternative attribute agreement measure and interpret the output quite similarly to the Kappa
coefficient, with results possible on the dimensions listed above. As such, Kendall coefficients
serve well for judgments on an ordinal scale, in which incorrect answers are closer or farther away
from the correct answer. A hypothetical example of a judgment on an ordinal scale would be if a
SCALe analyst were asked to render judgment of the severity of a flagged nonconformity, say on
a 10-point scale. If the true severity is, for example, 8, and two SCALe analysts provided answers
of 1 and 7, respectively, then a severity judgment of 7 would have a much higher Kendall coeffi-
cient than the severity judgment of 1.

In conclusion, attribute agreement analysis may be conducted via small exercises with SCALe
analysts rendering judgments on a reasonably-sized list of different types of flagged nonconformi-
ties mapped to the set of rules within the scope of a given code conformance test.

2.7.2.2 Formative Evaluation Assessment Using Attribute Agreement Analysis

SCALe analysts participate in a formative evaluation assessment as part of their training and certi-
fication. Certification of a candidate as a SCALe analyst requires attribute agreement scores of
80 percent or higher. In addition, acceptable thresholds for accuracy may be imposed separately
for each rule.

The formative evaluation assessment implements a simple attribute agreement analysis as follows.

First, the SCALe assessment administrator identifies a preliminary set of 20 to 35 different
flagged nonconformities (from the diagnostic output of a software system or code base) for the
evaluation assessment. The administrator ensures that the preliminary set includes a variety of

CMU/SEI-2010-TR-021 | 23

diagnostic codes mapped to a representative collection of security rules. The administrator then
identifies a second set of 20 to 35 different flagged nonconformities, such that there is a similarity
mapping between each flagged nonconformity in the first set to a corresponding flagged noncon-
formity in the second set. The resulting complete set of 40 to 70 flagged nonconformities is then
randomized and used as a test instrument for the participating SCALe analysts to evaluate.

Second, different SCALe analysts are identified to participate in the evaluation assessment. In-
itially, there must be at least two analysts to conduct the evaluation assessment. Subsequently,
additional analysts will take the same evaluation assessment using the same or a similar set of
flagged nonconformities.

Third, the SCALe analysts independently evaluate each flagged nonconformity within the com-
plete set as either a true or false positive, recognizing true positives as rule violations.

Because human judgment can vary across time (for example, SCALe analysts may fall out of
practice in exercising their judgment of flagged nonconformities) and because the scope and na-
ture of flagged nonconformities and rules may vary across time, CERT retests SCALe analysts
using attribute agreement analysis every three years as part of recertification.

Lastly, the SCALe manager uses the results of ongoing attribute agreement exercises to identify
ways to improve the training of SCALe analysts, including possible additional job aids. SCALe
analysts will also be interviewed for context information surrounding incorrect judgments as part
of this improvement activity.

Thresholds will be maintained at established levels until and unless experience indicates that they
should change.

2.7.2.3 Attribute Agreement Analysis Test Experiment

To qualify potential analyst candidates, the SCALe assessment administrator conducted an
attribute agreement analysis test. The test consisted of 60 flagged nonconformities divided into
pairs of similar flagged nonconformities, each having the same validity.

The administrator assigned all flagged nonconformities a numeric ID to identify pairs. The admin-
istrator constructed the test (and answer key) and assigned the test to four SCALe analyst candi-
dates. The analyst candidates had no qualifications for code analysis other than being competent
programmers. Each analyst candidate made a true or a false positive determination for each
flagged nonconformity. Afterward, the analyst candidates and administrator compared results.
While the administrator had initially created the answer key, the group came to different conclu-
sions about some of the diagnostics. Table 5 presents the results of the test. The column marked
“AA” contains the results for the assessment administrator’s answer key, while the columns
marked “AC #” are the results for the four analyst candidates tested.

CMU/SEI-2010-TR-021 | 24

Table 5: Attribute Agreement Analysis Test Results
ID Rule Group AA AC 1 AC 2 AC 3 AC 4

1 DCL32-C False False True False False False

1 DCL32-C False False False True False False

2 OOP32-CPP True True True True True True

2 OOP32-CPP True True True True True True

3 MEM41-CPP False False True True False False

3 MEM41-CPP False False True True False False

4 MEM40-CPP False False False True False False

4 MEM40-CPP False False True True True False

5 EXP34-C False False True False True False

5 EXP34-C False False True False True False

6 DCL35-C True False True False False True

6 DCL35-C True False True True False True

7 ERR33-CPP False False False True False False

7 ERR33-CPP False False False True True False

8 ERR33-CPP True True False False False True

8 ERR33-CPP True True False True True True

9 EXP36-C True False False True False True

9 EXP36-C True False False True True True

10 EXP35-CPP True True True True True True

10 EXP35-CPP True True True True False True

11 DCL36-C False False True True True False

11 DCL36-C False False True True True False

12 FLP36-C False False False False False False

12 FLP36-C False False False False False False

13 FIO30-C False False False False False False

13 FIO30-C False False False True True False

14 FLP34-C False False True False False False

14 FLP34-C False False True False False False

15 FLP34-C True True True True True True

15 FLP34-C True True True False True True

16 ARR30-C False True False True True False

16 ARR30-C False True False True True False

17 STR38-C True True True True True True

17 STR38-C True True True True True True

18 OOP37-CPP True True True True True True

18 OOP37-CPP True True False True False True

19 OOP37-CPP False False True True False False

19 OOP37-CPP False False True True False False

20 DCL31-C False False False False True False

20 DCL31-C False False False False True False

21 DCL31-C False False False False False False

CMU/SEI-2010-TR-021 | 25

ID Rule Group AA AC 1 AC 2 AC 3 AC 4

21 DCL31-C False False False False False False

22 INT31-C False False False False False False

22 INT31-C False False True False False False

23 INT31-C False False False False False False

23 INT31-C False False False False False False

24 INT31-C False False True True False False

24 INT31-C False False True True False False

25 MSC34-C True True True True True True

25 MSC34-C True True True True True True

26 MSC34-C False False True True False False

26 MSC34-C False False True True False False

27 EXP36-C False False True True False False

27 EXP36-C False False True True True False

28 INT35-C True True True True True True

28 INT35-C True True True True True True

29 EXP34-C True True False False True True

29 EXP34-C True True True True True True

30 MEM41-CPP False False True True False False

30 MEM41-CPP False False False False False False

The administrator’s findings correlated strongly with the group results. The administrator shared
54 of 60 answers with the group, for a score of 90 percent. The analyst candidates’ scores showed
considerably lower correlation, with results of 56.7, 58.3, 70, and 75 percent, respectively. This
would rate analyst candidates 1 and 2 in moderate agreement with the group and analyst candi-
dates 3 and 4 in substantial agreement.

Most analyst candidates displayed only moderate consistency. They gave the same answer to the
similar flagged nonconformity pairs most of the time but not always. Analyst candidate 1 gave the
same answer to similar flagged nonconformity pairs 24 out of 30 times, for a consistency score of
83.3 percent. The second and third analyst candidates gave the same answer 23 out of 30 times,
for a consistency score of 76.7 percent. The fourth analyst candidate was extremely consistent,
giving the same answer 29 out of 30 times for a consistency score of 96.7 percent.

Attribute agreement analysis can also be conducted with the Minitab 16 Statistical Software16 as
shown in Figure 5. The “Within Appraisers” section depicts the degree of internal consistency for
each analyst and the administrator. Only the administrator and analyst candidate 4 have accepta-
ble Kappa values indicating very good internal consistency. All of the p values are less than 0.05,
indicating that these results are statistically significant and not due to chance. The “Each Apprais-
er vs Standard” section depicts how accurate each analyst and the administrator are in getting the
correct answer. Again, the administrator and analyst candidate 4 have acceptable Kappa values,
indicating very good accuracy in determining both false and true positives. The p values less than
0.05 for the administrator and analyst candidate 4 indicate that the Kappa values are statistically
significant and not due to chance.

16 http://www.minitab.com/en-US/products/minitab/default.aspx

http://www.minitab.com/en-US/products/minitab/default.aspx

CMU/SEI-2010-TR-021 | 26

Figure 5: Attribute Agreement Analysis using Minitab

The analyst candidate errors resulted from a number of factors. Many candidates, while knowled-
geable in C, possessed only a rudimentary knowledge of C++. The analyst candidates expressed a

CMU/SEI-2010-TR-021 | 27

lack of confidence with C++. However, when ignoring the results for C++ specific rules, there
were 21 flagged nonconformity pairs, or 42 individual flagged nonconformities. For the C subset,
the administrator shared 36 of 42 answers with the group, for a score of 85.7 percent. The analyst
candidates scored 59.5, 40.5, and 69 percent, respectively. We would conclude from this that
while lack of C++ experience made the analyst candidates less confident with their test results,
they did not do significantly worse on the C++-flagged nonconformities than they did with the C-
flagged nonconformities.

Some errors resulted from a lack of in-depth knowledge of C. For example, two analyst candi-
dates incorrectly confused the harmless format string “%d\n” with the more notorious format
string “%n”. Ignorance of the Windows function calls and types employed by the code led to some
mistakes.

Analyst candidates also had difficulty deciding if a diagnostic was an actual violation of a CERT
rule, even when they fully understood the code. Two analyst candidates incorrectly marked diag-
nostic pair 26 as false because the diagnostic text referred to a MISRA rule that had been violated,
and the analyst candidates had not considered that MISRA was not authoritative for the purpose
of this test [MISRA 2004].

Some diagnostics were incorrectly marked true because they indicated portability problems rather
than security problems. For instance, diagnostic pair 24 indicated code that was not portable
across different platforms but was perfectly secure when run on its intended platform. The code
depended on specific integer sizes, which are guaranteed by particular implementations of C, but
not by the C standard.

There were also many errors caused by insufficient whole-program analysis. Interestingly, all of
the cases where the analyst candidate disagreed with the group arose because the administrator
failed to perform sufficient whole-program analysis. One (or more) of the analyst candidates per-
formed a more comprehensive analysis on a diagnostic, causing them to come to a different con-
clusion and convince the group that the administrator’s answer key was incorrect.

These scores lead us to conclude that analyst candidates without special training are not qualified
to produce accurate or consistent analysis results. This may be because of the analyst candidates’
lack of knowledge or experience or because of poor testing conditions. Furthermore the test
should be specified more rigorously so that analyst candidates are not unduly influenced by exter-
nal authorities, such as MISRA.

Rules that require whole-program analysis are also problematic because whole-program analysis
is prohibitively expensive, and analysis costs scale exponentially with program size. Many rules
try to not require whole-program analysis, but some cannot be enforced without it. For instance,
checking for memory leaks requires detailed knowledge of the entire codebase. Evaluating these
rules only in the context of a particular function can result in false positives being identified as
actual violations. In many cases, the developer may need to provide the evidence that these are
not true violations.

CMU/SEI-2010-TR-021 | 28

3 Conformance Testing

3.1 Introduction

In general, objective third-party evaluation of a product provides confidence and assurance that
the product conforms to a specific standard. The CERT SCALe assesses a software system, de-
termines if it conforms to a CERT secure coding standard, and provides evidence to that effect.
The services are performed under a service agreement.

Conformance testing by a recognized and respected organization such as CERT ensures the im-
partiality of the assessment, ensures fair and valid testing processes, and fosters confidence and
acceptance of the software by consumers in the public and private sectors.

According to the results of a recent survey conducted for the Independent Association of Accre-
dited Registrars (IAAR), the main motives organizations cited for obtaining a third-party certifica-
tion of conformance to a quality standard were “customer mandate” (29 percent), “competitive
pressure or advantage” (17 percent), “continuous improvement based on customer requirements”
(16 percent), and “improve quality” (14 percent). Less frequently cited were “implementation and
control of best practice” (10 percent) and “corporate mandate” (9 percent). “Reduce cost,” “risk
management,” and “legal reasons” were each cited by 1 percent of respondents [ANAB 2008].

For many organizations, product certification yields financial benefits because of cost reduction
and new sources of revenue. Among respondents to the IAAR survey, 86 percent of companies
certified in quality management realized a positive return on investment (ROI). An ROI of more
than 10 percent was reported by 26 percent of respondents to the survey.

While undergoing third-party audits to become certified may be voluntary, for many organizations
there are compelling reasons to do so:
• improve the efficiency and effectiveness of operations

• satisfy customer requirement

• satisfy contractual, regulatory, or market requirement

• instill organizational discipline

• demonstrate to shareholders, regulators, and the public that a software product has been au-
dited

• instill customer confidence

• identify issues that may be overlooked by those inside the organization, providing fresh in-
ternal improvement strategies

Common elements of conformance assessment include impartiality, confidentiality, complaints
and appeals, and information disclosure policy.

CMU/SEI-2010-TR-021 | 29

3.1.1 Impartiality

CERT resides within Carnegie Mellon University’s Software Engineering Institute, a federally
funded research and development center. The SEI and CERT are frequently called upon to pro-
vide impartial third-party assessments.

3.1.2 Complaints and Appeals

CERT records and investigates complaints received from customers or other parties and, when
warranted, takes corrective action. CERT monitors the results to ensure the effectiveness of cor-
rective actions.

It is not uncommon for a software developer to dispute a finding as being a false positive. In these
cases, the software developer is required to provide evidence to CERT that the finding is a false
positive. CERT then reviews this evidence and either corrects the finding or refutes the evidence.
In cases where the coding construction is determined to be a violation of a secure coding rule but
can be demonstrated to present no vulnerability because of architectural, design, or deployment
constraints, the developer may request, and will be granted, a deviation.

3.1.3 Information Disclosure Policy

CERT holds proprietary information (such as source code) in the strictest confidence and main-
tains its confidentiality by using at least as much care as the client uses to maintain the confiden-
tiality of its own valuable proprietary and confidential information. CERT will not disclose this
information to employees other than to those whose official duties require the analysis of the
source code. CERT will not disclose proprietary information to any third party without the prior
written consent of the customer. All obligations of confidentiality survive the completion of the
conformance assessment process.

CERT may publish company-specific information in aggregate form and without attribution to
source.

3.2 CERT SCALe Seal

Developers of software that has been determined by CERT as conforming to a secure coding
standard may use the seal shown in Figure 6 to describe the conforming software on the develop-
er’s website. The seal must be specifically tied to the software passing conformance testing and
not applied to untested products, the company, or the organization.

CMU/SEI-2010-TR-021 | 30

Figure 6: CERT SCALe Seal

Except for patches that meet the criteria below, any modification of software after it is designated
as conforming voids the conformance designation. Until such software is retested and determined
to be conforming, the new software cannot be associated with the CERT SCALe seal.

Patches that meet all three of the following criteria do not void the conformance designation:
• The patch is necessary to fix a vulnerability in the code or is necessary for the maintenance

of the software.

• The patch does not introduce new features or functionality.

• The patch does not introduce a violation of any of the rules in the secure coding standard to
which the software has been determined to conform.

Use of the CERT SCALe seal is contingent upon the organization entering into a service agree-
ment with Carnegie Mellon University and upon the software being designated by CERT as con-
forming.

3.3 CERT SCALe Service Agreement

Organizations seeking SCALe conformance testing will abide by the SCALe policies and proce-
dures required by the SCALe Service Agreement. Organizations submitting software code for
conformance testing will follow these basic processes:
1. A service agreement must be fully executed by the organization and Carnegie Mellon Uni-

versity’s Software Engineering Institute before conformance testing begins.
2. CERT evaluates the source code of the software against the identified CERT secure coding

standard(s), specified in the statement of work, using the identified tools and procedures and
provides an initial conformance test report to the client that catalogues all rule violations
found as a result of the SCALe evaluation.

3. From receipt of the initial conformance test report, the client has 180 days to repair noncon-
forming code and/or prepare documentation that supports the conclusion that identified vi-
olations do not present known vulnerabilities and resubmit the software and any deviation
requests for a final evaluation of the software against the specified CERT secure coding
standard(s).

CMU/SEI-2010-TR-021 | 31

4. CERT will evaluate any deviation requests and reevaluate the software against the specified
CERT secure coding standard(s) and provide a final conformance test report to the client.

5. Clients are permitted to use the CERT SCALe seal on their website in connection with suc-
cessful product conformance testing after the product version has passed the applicable con-
formance test suite(s). Clients may describe the product version as having been determined
by CERT to conform to the CERT secure coding standard.

6. Clients whose software passes the conformance testing agree to have their product version
listed on the CERT web registry of conforming systems.

3.3.1 Conformance Certificates

SCALe validation certificates include the client organization’s name, product name, product ver-
sion, and registration date. Certificates also include a list of applicable guidelines and an indica-
tion if, for a particular guideline, the source code being tested was determined to be provably con-
forming or conforming.

Register of Conforming Products

CERT will maintain an online certificates registry of systems that conform to CERT secure cod-
ing standards at https://www.securecoding.cert.org/registry.

3.4 SCALe Accreditation

CERT will not initially seek American National Standards Institute (ANSI), International Organi-
zation for Standardization (ISO), or NIST accreditation for SCALe from an accreditation agency.
However, CERT will endeavor to implement processes, procedures, and systems that comply with
national and international standards. As needed, the program can submit for accreditation by the
following agencies:
• ISO/IEC. This agency has published ISO/IEC 65, which provides principles and require-

ments for the competence, consistency, and impartiality of third-party certification bodies
evaluating and certifying products (including services) and processes. This standard is under
revision and is scheduled to be released as 17065 in July of 2011. The agency has also pub-
lished ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Cali-
bration Laboratories, which specifies the requirements for sound management and technical
competence for the type of tests and calibrations SCALe undertakes. Testing and calibration
laboratories that comply with ISO/IEC 17025 also operate in accordance with ISO 9001.

• NIST National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP provides
third-party accreditation to testing and calibration laboratories. NVLAP’s accreditation pro-
grams are established in response to Congressional mandates, administrative actions by the
federal government, and requests from private-sector organizations and government agen-
cies.

• NVLAP operates an accreditation system that is compliant with ISO/IEC 17011:2004 Con-
formity assessment. It provides general requirements for bodies accrediting conformance as-
sessment bodies, which requires that the competence of applicant laboratories be assessed by
the accreditation body against all of the requirements of ISO/IEC 17025: 2005 General re-
quirements for the competence of testing and calibration laboratories.

https://www.securecoding.cert.org/registry

CMU/SEI-2010-TR-021 | 32

3.5 Transition

Transition of SCALe to practice will follow the SEI’s transition strategy to grow the concept
through engagement with external organizations or SEI partners via a series of deliberate steps.
The proof-of-concept phase will occur with a piloting program of SCALe that engages a small
number of clients. During this phase, CERT will test and refine processes, procedures, systems,
and outputs.

After the pilot phase, CERT will engage a small number of additional organizations that will be
licensed to sponsor SCALe laboratories within themselves. Each organization will be licensed to
perform the assessment, issue the conformance assessment report, report results to CERT, and be
subject to annual quality audits of all processes, procedures, hardware, and software.

3.6 Conformance Test Results

As of the publication of this report, CERT has completed the analysis of one energy delivery sys-
tem and begun analyzing a second.

3.6.1 Energy Delivery System A

Table 6 shows the flagged nonconformities reported from analysis of the first energy delivery sys-
tem. The analysis was performed using four static analysis tools supplemented by manual code
inspection. Dynamic analysis was not used.

CMU/SEI-2010-TR-021 | 33

Table 6: Flagged Nonconformities, Energy Delivery System A
 Manual Analyzer A Analyzer B Analyzer C Analyzer D Total

DCL31-C 0 705 705

DCL32-C 0 119 1 120

DCL35-C 0 51 51

DCL36-C 0 19 19

EXP30-C 0 3 3

EXP34-C 0 54 4 58

EXP36-C 0 24 6 30

EXP37-C 0 49 49

INT31-C 1 4 3,588 3,593

INT35-C 6 0 6

FLP34-C 0 9 9

FLP36-C 0 1 1

ARR30-C 4 2 1 7

STR31-C 3 3

STR36-C 0 6 6

STR37-C 0 1 1

STR38-C 7 7

MEM34-C 0 2 2

FIO30-C 0 12 12

ENV30-C 0 3 3

SIG30-C 1 0 1

CON33-C 1 0 1

MSC31-C 0 1 1

MSC34-C 0 587 587

Total 2 11 16 5,228 18 5,275

The first column marked “Manual” shows violations that were discovered through manual code
inspection, while the four columns marked “Analyzer A,” “Analyzer B,” “Analyzer C,” and
“Analyzer D” show the number of flagged nonconformities detected by each of the four analysis
tools used in this analysis.

Table 7 shows the results of analysis of the flagged nonconformities by the SCALe analysts and
SCALe lead assessor combined.

CMU/SEI-2010-TR-021 | 34

Table 7: Analysis Results, Energy Delivery System A
 False True Unknown Total

DCL31-C 705 705

DCL32-C 2 2 116 120

DCL35-C 2 49 51

DCL36-C 19 19

EXP30-C 2 1 3

EXP34-C 2 4 52 58

EXP36-C 4 4 22 30

EXP37-C 4 1 44 49

INT31-C 1,999 1,594 3,593

INT35-C 6 6

FLP34-C 7 2 9

FLP36-C 1 1

ARR30-C 7 7

STR31-C 3 3

STR36-C 4 2 6

STR37-C 1 1

STR38-C 3 4 7

MEM34-C 2 2

FIO30-C 12 12

ENV30-C 3 3

SIG30-C 1 1

CON33-C 1 1

MSC31-C 1 1

MSC34-C 6 2 579 587

Total: 2,785 34 2,456 5,275

The “False” and “True” columns document the number of flagged nonconformities that were de-
termined to be false and true positives, respectively. Normally it is sufficient to stop after finding
one true positive, but in cases with a small number of flagged nonconformities, all the results
were evaluated to collect data about the true positive and flagged nonconformity rates for the ana-
lyzer checkers. Flagged nonconformities that were not evaluated are marked as “Unknown.”

This particular energy control system violated at least 15 of the CERT C secure coding rules. In
nine other cases, manual analysis eliminated possible rule violations as false positives.

3.6.2 Energy Delivery System B

The second energy delivery system was also evaluated by four static analysis tools supplemented
by manual inspection. Two of the tools (analyzers A and B) were also used in the analysis of
energy delivery system A. The other two analyzers were used for the first time in the analysis of
energy delivery system B. Table 8 shows the flagged nonconformities found from the analysis of
the second energy delivery system.

CMU/SEI-2010-TR-021 | 35

Table 8: Flagged Nonconformities, Energy Delivery System B
 Manual Analyzer B Analyzer C Analyzer E Analyzer F Total

ARR30-C 17 1 18

ARR36-C 2 106 108

DCL35-C 47 47

DCL36-C 2 2

EXP30-C 2 2

EXP33-C 308 1 25 334

EXP34-C 21 483 68 49 621

EXP36-C 109 109

EXP37-C 40 40

EXP40-C 20 20

FIO30-C 2 6 8

FLP34-C 324 324

FLP35-C 9 9

INT31-C 8 7,562 5 2 7,577

INT32-C 7 2 9

MEM30-C 1 2 3

MEM31-C 10 7 4 21

MEM33-C 4 4

MEM34-C 1 1

MSC34-C 362 362

PRE30-C 4 4

PRE31-C 11 11

STR30-C 11 11

STR31-C 1 5 44 50

STR32-C 1 10 11

STR33-C 1 1

Total 2 42 9,431 104 128 9,707

Table 9 shows the results of analysis of the flagged nonconformities by the SCALe analysts and
SCALe lead assessor combined. Unfortunately, this analysis was not completed. Where all
flagged nonconformities for a rule were unknown, the nonconformities have not been evaluated.

CMU/SEI-2010-TR-021 | 36

Table 9: Analysis Results, Energy Delivery System B
 False Suspicious True Unknown Total

ARR30-C 18 18

ARR36-C 2 106 108

DCL35-C 47 47

DCL36-C 2 2

EXP30-C 2 2

EXP33-C 5 329 334

EXP34-C 13 3 605 621

EXP37-C 40 40

EXP40-C 20 20

FIO30-C 3 2 3 8

FLP35-C 9 9

INT31-C 603 2 6,971 7,576

INT32-C 9 9

MEM30-C 3 3

MEM31-C 21 21

MEM33-C 4 4

MEM34-C 1 1

MSC34-C 326 36 362

PRE30-C 4 4

PRE31-C 11 11

STR30-C 11 11

STR31-C 1 50 51

STR32-C 11 11

STR33-C 1 1

Based on our experience with analyzing energy delivery system A, we added a new category of
“suspicious.” This category includes flagged nonconformities that could not easily be proven to
be either true or false positives. This was frequently the case for dereferencing null pointers, for
example, where the pointer dereferences were unguarded but it was difficult to prove that the
pointer was never null without performing whole-program analysis. Suspicious violations are
treated as false positives in that they will not result in a system failing conformance testing and
will not stop the analyst from analyzing other flagged nonconformities reported against the same
coding rule. These are reported as suspicious so that the developer can examine these flagged
nonconformities and take appropriate measures.

Overall, energy delivery system B had considerably more flagged nonconformities than energy
delivery system A, a significant number of which have already been determined to be true posi-
tives.

CMU/SEI-2010-TR-021 | 37

4 Related Efforts

This section describes related conformance assessment activities in today’s marketplace.

4.1 Veracode

Veracode’s17 Risk Adjusted Verification Methodology allows organizations developing or procur-
ing software to measure, compare, and reduce risks related to application security. Veracode uses
static binary analysis, dynamic analysis, and manual penetration testing to identify security flaws
in software applications. The basis for the VERAFIED security mark is the Security Quality Score
(SQS). SQS aggregates the severities of all security flaws found during the assessment and nor-
malizes the results to a scale of 0 to 100. The score generated by each type of assessment is then
mapped to the application’s business criticality (assurance level), and those applications that reach
the highest rating earn the VERAFIED security mark.

4.2 ISCA Labs

ICSA Labs,18 an independent division of Verizon Business, has been providing independent,
third-party product assurance for end users and enterprises for 20 years. ICSA Labs says they
provide “vendor-neutral testing and certification for hundreds of security products and solutions
for many of the world’s top security product developers and service providers” [Cybertrust 2010].
ICSA Labs provides services in three areas:
• Consortium Operations, Security Product Testing, and Certification Programs

• Custom Testing Services

• Accredited Government Testing Services

ICSA Labs is ISO 17025:2005 accredited and ISO 9001:2008 registered.

4.3 SAIC Accreditation and Certification Services

SAIC (Science Applications International Corporation)19 provides security content automation
protocol (SCAP) testing and monitoring of systems for security issues such as software deficien-
cies, configuration issues, and other vulnerabilities. The testing helps ensure that a computer’s
configuration is within guidelines set by the Federal Desktop Core Configuration. Notably, they
became an accreditation body under the NIST accreditation to perform SCAP.

4.4 The Open Group Product Certification Services

The Open Group20 has developed and operates an industry-based product certification program in
several areas, including UNIX, CORBA, POSIX, and LDAP. They have developed and currently

17 http://www.veracode.com/
18 http://www.icsalabs.com/
19 http://www.saic.com/infosec/testing-accreditation/scap.html
20 http://www.opengroup.org/consortia_services/certification.htm

http://www.veracode.com/
http://www.icsalabs.com/
http://www.saic.com/infosec/testing-accreditation/scap.html
http://www.opengroup.org/consortia_services/certification.htm

CMU/SEI-2010-TR-021 | 38

maintain conformance test suites for multiple technologies, including those listed above, the X
Window System, Motif, Digital Video Broadcasting Multimedia Home Platform, Secure Elec-
tronic Transactions (SET), Common Data Security Architecture (CDSA), and Linux [Open Group
2010].

The Open Group product certification program provides formal recognition of a product’s con-
formance to an industry standard specification. This allows suppliers to make and substantiate
clear claims of conformance to a standard and allows buyers to specify and successfully procure
conforming products that interoperate [Open Group 2010].

The Open Group’s product certification programs are based on a supplier’s claim of conformance;
testing provides an indicator of conformance. Suppliers typically use test suites to establish confi-
dence that their product conforms. To achieve certification, the supplier must provide a warranty
of conformance ensuring the following [Open Group 2010]:
• products conform to an industry standard specification

• products remain conformant throughout their lifetimes

• the product will be fixed in a timely manner if there is a nonconformance

The Open Group acts as the independent certification authority for industry-based certification
programs. As the certification authority, their web-based conformance testing system is tailored to
guide suppliers through the process of certifying a product [Open Group 2010].

CMU/SEI-2010-TR-021 | 39

5 Future Work and Summary

5.1 Future Work

Work is continuing on the development of secure coding standards for C++, Java, and other pro-
gramming languages. As these standards are completed and adequate tooling becomes available,
SCALe will be extended to support conformance testing against these secure coding standards.

CERT will also expand SCALe’s operational capability, including integrating additional commer-
cial and research analyzers into the SCALe laboratory environment. This process includes acquir-
ing tools, creating a mapping between diagnostics generated by the tool and CERT secure coding
standards, and automating the processing of these diagnostics.

In addition to the use of acceptance sampling plans based on the lot tolerance percent defective,
other techniques can be researched for use when greater amounts of data from conformance test-
ing are available. These techniques, including Bayesian methods, may enable even more informed
decisions for the stopping rules related to the investigation of flagged nonconformities for false
positives. It is anticipated that such analysis will eventually be granular down to the flagged non-
conformity and help further reduce the sample size of flagged nonconformities to be investigated.

Additionally, a number of techniques can be explored to characterize the performance of each of
the security checker tools in terms of each tool’s
• proportion of false positives to true positives

• ability to find certain classes of true positives that are not discovered by other analyzers

Given this information, more informed decisions can be made within each security analysis event
in terms of which checker tools to employ. The SCALe lead assessor would discontinue the use
of specific checkers that have a high proportion of false positives and little, if any, contribution to
the identification of true positives above and beyond what the other checker tools are capable of
finding.

5.2 Summary

Growing numbers of vulnerability reports and reports of software exploitations demand that un-
derlying issues of poor software quality and security be addressed. Conformance with CERT se-
cure coding standards is a measure of software security and quality that provides an indication of
product security. SCALe provides a defined, repeatable process for conformance testing of soft-
ware systems. Conformance testing against the CERT secure coding standard should help estab-
lish a market for secure software by allowing vendors to market software quality and security and
also enable consumers to identify and purchase conforming products.

CMU/SEI-2010-TR-021 | 40

CMU/SEI-2010-TR-021 | 41

Bibliography

URLs are valid as of the publication date of this document.

[ANAB 2008]
ANSI-ASQ National Accreditation Board (ANAB). The Third-Party Process: Waste of Resources
or Added Value? ANAB, 2008.
http://www.anab.org/media/9593/valueofaccreditedcertification.pdf

[Ashling Microsystems]
Ashling Microsystems. Ashling Microsystems. http://www.ashling.com/technicalarticles/APB201-
TestbedDescription.pdf, 2010.

[CERT 2010a]
CERT. The CERT C Secure Coding Standard, Version 2.0. Software Engineering Institute, Car-
negie Mellon University, 2010. https://www.securecoding.cert.org/confluence/x/HQE

[CERT 2010b]
CERT. The CERT C++ Secure Coding Standard. Software Engineering Institute, Carnegie Mel-
lon University, 2010. https://www.securecoding.cert.org/confluence/x/fQI

[CERT 2010c]
CERT. The CERT Oracle Secure Coding Standard for Java. Software Engineering Institute, Car-
negie Mellon University, 2010. https://www.securecoding.cert.org/confluence/x/Ux

[Christy 2007]
Christey, Steve & Martin, Robert A. Vulnerability Type Distributions in CVE, Version: 1.1.
MITRE, 2007. http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf

[Cybertrust 2010]
Cybertrust. About ISCA Labs. http://www.icsalabs.com/about-icsa-labs, 2010.

[Dannenberg 2010]
Dannenberg, Roger B.; Dormann, Will; Keaton, David; Seacord, Robert C.; Svoboda, David;
Volkovitsky, Alex; Wilson, Timothy; & Plum, Thomas. “As-If Infinitely Ranged Integer Model,”
91-100. Proceedings 2010 IEEE 21st International Symposium on Software Reliability Engineer-
ing (ISSRE 2010), San Jose, CA, Nov. 2010. IEEE 2010.

[Heffley 2004]
Heffley, J. & Meunier, P. “Can Source Code Auditing Software Identify Common Vulnerabilities
and Be Used to Evaluate Software Security?” Proceedings of the 37th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS’04) - Track 9 - Volume 9. Island of Hawaii, Janu-
ary 2004. IEEE Computer Society, 2004.

http://www.anab.org/media/9593/valueofaccreditedcertification.pdf
http://www.ashling.com/technicalarticles/APB201-TestbedDescription.pdf
http://www.ashling.com/technicalarticles/APB201-TestbedDescription.pdf
https://www.securecoding.cert.org/confluence/x/HQE
https://www.securecoding.cert.org/confluence/x/fQI
https://www.securecoding.cert.org/confluence/x/Ux
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://www.icsalabs.com/about-icsa-labs

CMU/SEI-2010-TR-021 | 42

[IEC 2006]
International Electrotechnical Commission (IEC). Analysis Techniques for System Reliability -
Procedure for Failure Mode and Effects Analysis (FMEA), 2nd ed. (IEC 60812). IEC, January
2006.

[IEEE Std 610.12 1990]
IEEE. IEEE Standard Glossary of Software Engineering Terminology (Std. 610.12-1990). IEEE,
1990.

[ISO/IEC 2004]
International Organization for Standardization, International Electrotechnical Commission
(ISO/IEC). ISO/IEC 17000:2004 Conformity Assessment — Vocabulary and General Principles,
1st edition. ISO, 2004.

[ISO/IEC 2005]
International Organization for Standardization, International Electrotechnical Commission
(ISO/IEC). ISO/IEC 9899:1999 Programming Languages—C. ISO, 2005. ISO http://www.open-
std.org/JTC1/SC22/wg14/www/docs/n1124.pdf

[ISO/IEC 2007]
International Organization for Standardization, International Electrotechnical Commission
(ISO/IEC). ISO/IEC TR 24731-1:2007 Extensions to the C Library — Part I: Bounds-checking
interfaces. ISO, August 2007.

[ISO/IEC 2010a]
International Organization for Standardization, International Electrotechnical Commission
(ISO/IEC). ISO/IEC TR 24731-2:2010 Extensions to the C Library — Part II: Dynamic Alloca-
tion Functions. ISO, 2010.

[ISO/IEC 2010b]
International Organization for Standardization, International Electrotechnical Commission
(ISO/IEC). Programming Languages—C++, Final Committee Draft, ISO/IEC JTC1 SC22 WG21
N3092. ISO, March 2010.

[Jones 2010]
Jones, Larry. WG14 N1539 Committee Draft ISO/IEC 9899:201x. International Standards Organi-
zation, 2010.

[Landis 1977]
Landis, J. R. & Koch, G. G. “The Measurement of Observer Agreement for Categorical Data.”
Biometrics 33 (1977): 159-174.

[Landwehr 2008]
Landwehr, C. IARPA STONESOUP Proposers Day. IARPA, 2008.
http://www.iarpa.gov/Stonesoup_Proposer_Day_Brief.pdf

http://www.open-std.org/JTC1/SC22/wg14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/wg14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/wg14/www/docs/n1124.pdf
http://www.iarpa.gov/Stonesoup_Proposer_Day_Brief.pdf

CMU/SEI-2010-TR-021 | 43

[MISRA 2004]
Motor Industry Software Reliability Association (MISRA). MISRA-C:2004: Guidelines for the
Use of the C Language in Critical Systems. MIRA, 2004.

[Morrow forthcoming]
Morrow, Tim; Seacord, Robert; Bergey, John; Miller, Phillip. Supporting the Use of CERT Secure
Coding Standards in DoD Acquisitions (CMU/SEI-2010-TN-021). Software Engineering Insti-
tute, Carnegie Mellon University, forthcoming.

[Okun 2009]
Okun, V.; Gaucher, R.; & Black, P. E., eds. Static Analysis Tool Exposition (SATE) 2008 (NIST
Special Publication 500-279). NIST, 2009.

[Open Group 2010]
The Open Group. Collaboration Services.
http://www.opengroup.org/consortia_services/certification.htm, 2010.

[Plum 2005]
Plum, Thomas & Keaton, David M. “Eliminating Buffer Overflows, Using the Compiler or a
Standalone Tool,” 75-81. Proceedings of the Workshop on Software Security Assurance Tools,
Techniques, and Metrics. Long Beach, CA, November 2005. U.S. National Institute of Standards
and Technology (NIST), 2005.

[Plum 2009]
Plum, Thomas & Seacord, Robert C. ISO/IEC JTC 1/SC 22/WG14/N1350 – Analyzability.
International Standards Organization (ISO), 2009.
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1350.htm

[Saltzer 1975]
Saltzer, Jerome H. & Schroeder, Michael D. “The Protection of Information in Computer Sys-
tems.” Proceedings of the IEEE 63, 9 (September 1975): 1278-1308.

[Seacord 2003]
Seacord, R. C.; Plakosh, D.; & Lewis, G. A. Modernizing Legacy Systems: Software Technolo-
gies, Engineering Process and Business Practices. Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[Seacord 2005]
Seacord, R. C. Secure Coding in C and C++ (SEI Series in Software Engineering). Addison-
Wesley Professional, 2005.

[Seacord 2008]
Seacord, R. The CERT C Secure Coding Standard. Addison-Wesley Professional, 2008.

[Stephens 2001]
Stephens, Kenneth S. The Handbook of Applied Acceptance Sampling. ASQ Quality Press, 2001.

http://www.opengroup.org/consortia_services/certification.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1350.htm

CMU/SEI-2010-TR-021 | 44

[Takanen 2008]
Takanen, A.; DeMott, J.; & Miller, C. Fuzzing for Software Security Testing and Quality Assur-
ance. 1. Artech House, Inc., 2008.

[von Eye 2006]
von Eye, Alexander & Mun, Eun Young. Analyzing Rater Agreement: Manifest Variable Me-
thods. Lawrence Erlbaum Associates, 2006.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2010

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Robert C. Seacord, William Dormann, James McCurley, Philip Miller, Robert Stoddard, David Svoboda, Jefferson Welch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-021

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2010-021

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Source Code Analysis Laboratory (SCALe) is an operational capability that tests software applications for conformance to one of the
CERT® secure coding standards. CERT secure coding standards provide a detailed enumeration of coding errors that have resulted in
vulnerabilities for commonly used software development languages. The SCALe team at CERT, a program of Carnegie Mellon Universi-
ty’s Software Engineering Institute, analyzes a developer’s source code and provides a detailed report of findings to guide the code’s re-
pair. After the developer has addressed these findings and the SCALe team determines that the product version conforms to the stan-
dard, CERT issues the developer a certificate and lists the system in a registry of conforming systems. This report details the SCALe
process and provides an analysis of energy delivery systems. Though SCALe can be used in various capacities, it is particularly signifi-
cant for conformance testing of energy delivery systems because of their critical importance.

14. SUBJECT TERMS

software security, conformance testing, secure coding standards

15. NUMBER OF PAGES

57

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

