
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Documentation Driven Development for

Complex Real-Time Systems

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

This paper presents a novel approach for development of complex real-time systems, called the 

documentation-driven

development (DDD) approach. This approach can enhance integration of computer aided software development 

activities, which

encompass the entire life cycle. DDD will provide a mechanism to monitor and quickly respond to changes in 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; federal purpose rights

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

Software development, documentation, agility, information representation, complex systems, real-time systems

Luqi, Lin Zhang, Valdis Berzins, and Ying Qiao

Naval Postgraduate School (NPS)  14,973.00

Office of Sponsored Programs

Naval Postgraduate School

Monterey, CA 93943 -5000

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Old Reprint

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

ARO_MI-PR--

611102

Form Approved OMB NO. 0704-0188

45614-CS.14

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

Lucia Luqi

831-656-2735

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

-



Documentation Driven Development for

Complex Real-Time Systems

Report Title

ABSTRACT

This paper presents a novel approach for development of complex real-time systems, called the documentation-driven

development (DDD) approach. This approach can enhance integration of computer aided software development 

activities, which

encompass the entire life cycle. DDD will provide a mechanism to monitor and quickly respond to changes in 

requirements and

provide a friendly communication and collaboration environment to enable different stakeholders to be easily involved 

in development

processes and, therefore, significantly improve the agility of software development for complex real-time systems. 

DDD will also

support automated software generation based on a computational model and some relevant techniques. DDD includes 

two main

parts: a documentation management system (DMS) and a process measurement system (PMS). DMS will create, 

organize, monitor,

analyze, and transform all documentation associated with the software development process. PMS will monitor the 

frequent changes

in requirements and assess the effort and success possibility of development. A case study was conducted by a tool set 

that realized

part of the proposed approach.



This paper presents a novel approach for development of complex real-time systems, called the documentation-driven

development (DDD) approach. This approach can enhance integration of computer aided software development 

activities, which

encompass the entire life cycle. DDD will provide a mechanism to monitor and quickly respond to changes in 

requirements and

provide a friendly communication and collaboration environment to enable different stakeholders to be easily involved 

in development

processes and, therefore, significantly improve the agility of software development for complex real-time systems. 

DDD will also

support automated software generation based on a computational model and some relevant techniques. DDD includes 

two main

parts: a documentation management system (DMS) and a process measurement system (PMS). DMS will create, 

organize, monitor,

analyze, and transform all documentation associated with the software development process. PMS will monitor the 

frequent changes

in requirements and assess the effort and success possibility of development. A case study was conducted by a tool set 

that realized

part of the proposed approach.



REPORT DOCUMENTATION PAGE (SF298)

(Continuation Sheet)

Continuation for Block 13

ARO Report Number 

Documentation Driven Development for

Block 13:  Supplementary Note

©  . Published in IEEE Transactions on Software Engineering, Vol. , (-952).  DoD Components reserve a royalty-free, 

nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authroize 

others to do so (DODGARS §32.36).  The views, opinions and/or findings contained in this report are those of the author(s) and 

should not be construed as an official Department of the Army position, policy or decision, unless so designated by other 

documentation.

Approved for public release; federal purpose rights

...

45614.14-CS



Documentation Driven Development for
Complex Real-Time Systems
Luqi, Fellow, IEEE, Lin Zhang, Valdis Berzins, and Ying Qiao

Abstract—This paper presents a novel approach for development of complex real-time systems, called the documentation-driven

development (DDD) approach. This approach can enhance integration of computer aided software development activities, which

encompass the entire life cycle. DDD will provide a mechanism to monitor and quickly respond to changes in requirements and

provide a friendly communication and collaboration environment to enable different stakeholders to be easily involved in development

processes and, therefore, significantly improve the agility of software development for complex real-time systems. DDD will also

support automated software generation based on a computational model and some relevant techniques. DDD includes two main

parts: a documentation management system (DMS) and a process measurement system (PMS). DMS will create, organize, monitor,

analyze, and transform all documentation associated with the software development process. PMS will monitor the frequent changes

in requirements and assess the effort and success possibility of development. A case study was conducted by a tool set that realized

part of the proposed approach.

Index Terms—Software development, documentation, agility, information representation, complex systems, real-time systems.

�

1 INTRODUCTION

A complex real-time system is generally composed of

individual real-time systems that were developed by

different organizations with different tools and run on

different platforms. Development of a complex system is

much more difficult than development of individual real-

time systems. Nonessential software complexity of complex

systems can have a greater negative impact on system

behavior than for a single system. In general, complex real-

time systems are usually deployed for long periods of time,

are used globally, and have mission critical requirements.

They demand real-time performance and high confidence.

Attributes like system effectiveness, availability, reliability,

safety, security, and clarity of design are all essential. Most

importantly, complex systems must rapidly accommodate

frequent changes in requirements, mission, environment,

and technology. Consequently, they are often structured as

coalitions of separate components to form systems of real-

time systems with dynamic configurations. These compo-

nent systems were generally developed by different

organizations with different tools and run on different

platforms. In addition, a wide variety of stakeholders

(sponsors, developers, users, maintainers, etc.) are involved

in the overall lifecycle of a complex system [9], [35].
These common traits of complex real-time systems

invoke some complicated challenges in software system

development, such as:

. How to improve the agility of system development,
which means making development promptly adapt
to quickly changes in requirements, mission, etc.

. How to lower the cost and shorten the time of
development as well as guarantee the success.

. How to guarantee the quality and high confidence of
the system.

. How to support the participation of a variety of
stakeholders.

A large amount of research has been conducted on real-
time systems. Progress has been made, but mostly on “point
solutions” that address subareas of complex system devel-
opment, e.g., real-time constraints and high confidence
issues. Integrated systematic approaches that are clearly
defined and easy to use are needed to meet the challenges
in development of complex real-time systems.

1.1 Contributions

Based on our many years of research on real-time software
systems, we realize that documentation plays a crucial role
in overcoming problems throughout the software life cycle.
This is especially true for complex systems. Despite the fact
that documentation has proven to be a requirement in the
quest to improve software quality, the full capabilities of
using appropriate documentation have yet to be realized.
This paper introduces a new documentation-based ap-
proach to software development, Documentation Driven
Development (DDD) approach, which is comprehensive
enough to apply to all phases of software development yet
robust enough to handle the complicated issues associated
with complex real-time systems.

In software development, the concept of documentation
has been augmented to not only include static informal text
and diagrams intended for human consumption, but also
include dynamic information, such as executable test cases
[14], [25]. In the approach proposed in this paper, we
further extend documentation to all information needed to

936 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

. The authors are with the Software Engineering Automation Center,
Department of Computer Science, US Naval Postgraduate School, 833
Dyer Rd., Monterey, CA 93943.
E-mail: {luqi, lzhang, berzins, yqiao}@nps.edu.

Manuscript received 5 Jan. 2004; revised 6 Oct. 2004; accepted 18 Oct. 2004.
Recommended for acceptance by D. Rombach.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0003-0104.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



carry out the development process. Effective documenta-
tion should support humans to the extent that the relevant
development processes are carried out by humans, and
should support software tools to the extent development
processes are carried out by tools. In the common case
where an aspect of the development process is carried out
by a collaboration of both humans and software tools, the
documentation should provide two views, one for humans
and one for tools. For such aspects, consistency and
accurate correspondence between the two views are of
most importance, and computer aid is needed to effectively
realize these properties.

In this approach, models and simulations are included

as documentation. Some typical models include computa-

tional models and design models. They serve as the basis to

support development activities such as requirements

analysis, architecture design, validation, and verification.

Simulation and prototyping are examples of computer

aided processes used to check the correctness of the

requirements for the system under development. With this

extension, documentation can provide more effective

support for whole development process. The DDD ap-

proach proposed in this paper will address issues

associated with complex real-time systems including needs

to promptly adapt to new requirements and support

participation of diverse stakeholders, while preserving

high confidence and timing constraints. This approach will

significantly improve the agility of software development

and support partial automation of software development

as well.

1.2 Related Work

Software Engineering aims to improve software quality and
productivity by providing systematic, disciplined, and
quantifiable approaches to software development. Docu-
mentation has been proven to play a key role in software
engineering. Many theories, methods, and techniques
related to documentation have been developed in the past
decades. There are different specific documents associated
with different development phases. Typical phases in the
software life cycle include requirements analysis and
definition, architectural design, implementation, composi-
tion, deployment, maintenance, and evolution.

In the requirements phase, a requirement definition,
which is a kind of documentation, serves as a starting point
for the whole software development process. Natural
language is the most common form of requirement
definition [22]. By modeling and formalizing the require-
ment definition, the formal documentation—the require-
ment specification—can be derived. In this case, the
requirements specification is usually written in formal
language. Typical examples include [13], [21], [52]. They
use temporal logic to represent the formal requirements
specifications that further serve as the basis for verification
and validation.

The most important documentation used in the design
phase is design specification. This acts as a blueprint for the
actual coding by outlining the logic of individual code
modules. It also assists maintenance programmers as they
modify the program to add enhancements or fix errors. A

design specification is generally described by formal or
semiformal methods, such as hierarchy charts, logic charts,
state transition diagrams, state machines, data flow dia-
grams, data dictionaries, object-oriented approaches, and a
great number of formal languages [27]. Some typical formal
and semiformal notations used for design specification
include UML and some kinds of architecture description
language. Prototype system description language (PSDL)
[32], [33] is another typical design specification language for
real-time embedded systems.

Configuration is another important aspect of software
development that is done based on documentation support,
such as architectural specification and component specifica-
tion. In complex control systems, the configuration of
components must be flexible enough to allow rapid online
reconfiguration and adaptation to react to environmental
changes and unpredictable events at runtime. For this
purpose, an open software architecture [51] has been used
for integrating control technologies and resources.

Although a lot of effort has been applied toward

improving documentation technology [18], [20], [42], there

are still open challenges that hinder documentation from

providing efficient support for complex real-time systems

development. The various representations of documenta-

tion increase the complexity of maintaining information

consistency, increase the intellectual burden on stake-

holders, and introduce the need for transformations that

are tedious and error prone when carried out manually.

Some formal representations with rigorous logic are

conducive to machine manipulation but are difficult for

human understanding. Informal representations such as

natural language are comfortable for many system stake-

holders but are too vague and ambiguous for direct use by

computer tools. How to maintain consistency among

information presented to both the humans and computer

tools is still a challenge. In addition, to guarantee software

quality in the end product, the information should be kept

consistent among documents of successive development

phases. Traditional documentation technologies do not

solve this problem. Our DDD approach in this paper is

going to attack above problems and enable documentation

to provide more effective support for complex real-time

system development.
Progress has been made on research on real-time

systems. Stanford University conducted research on static
verification of real-time embedded systems [6]. They
presented a modular framework for proving temporal
properties of real-time systems based on clocked transition
systems and linear temporal logic. In this framework, the
properties of real-time systems can be established by using
deductive verification rules, verification diagrams, and
automatic invariant generation. Carnegie Mellon University
[12], [21], [47] and Kansas State University [15], [17] have
conducted much research on static verification for high
confidence embedded systems. This research uses model
checking to verify the satisfactory realization of some
properties related to high confidence that are defined in
the requirements specification and architecture specifica-
tion. In addition to research on static verification, research

ZHANG ET AL.: DOCUMENTATION DRIVEN DEVELOPMENT FOR COMPLEX REAL-TIME SYSTEMS 937

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



efforts have explored dynamic verification. Typical work in
this area is runtime assurance based on formal specification,
such as runtime testing and runtime monitoring. Lee and
his real-time group at the University of Pennsylvania have
conducted much research on this aspect [13], [26], [30]. Broy
and Slotosch presented a method with comprehensive tool
support to structure requirements and construct models
from categorized requirements for embedded systems [9],
[10]. These results can be used to address requirements
changes. Within the framework of documentation driven
development approach in this paper, many of these state-of-
the-art methods can be incorporated and integrated to
achieve a high confidence system.

How to deal with frequent changes of requirements is
drawing increasing attention in the software engineering
community. Agile software development has been pre-
sented as a solution [50]. This informal approach focuses on
individuals and interactions over processes and tools,
working software over comprehensive documentation,
customer collaboration over contract negotiation, and
responding to change over following a plan [5]. Thus,
compared to other methods heavily depending on tradi-
tional documentation, many current agile software devel-
opment methods try to provide better communications with
the user, reduce comprehensive documentation, and adapt
rapidly to requirements changes. Some typical agile devel-
opment methods are extreme programming (XP) [4],
SCRUM [46], dynamic software development method
(DSDM) [49], adaptive software development [24], feature-
driven development [41], lean development [43], rapid
application development [38], etc.

Agile methods obtain the advantage of speedy response
by increasing direct communications between users and
developers. A problem with these approaches is that the
users are required to be knowledgeable and well versed in
software domain skills to be able to participate in the
development process. Following some of the agile princi-
ples runs a high risk when the participating individuals do
not have the required domain skills [16].

Our idea is to improve agility on a large scale by
integrating different disciplines through an efficient doc-
umentation system. Making suitable use of documentation
in the development process can reduce the requirements for
participants to have specific information. Moreover, by
generalizing and abstracting the essence of documentation
and exploiting the capability for computer-aided documen-
tation, documentation can be used to significantly improve
the agility of software development of complex systems
while sacrificing automation to a minimum extent.

The rest of this paper is organized as follows: Section 2
gives an overview of the Documentation Driven Develop-
ment (DDD) approach. Section 3 describes the Documenta-
tion Management System (DMS) in detail. Section 4
describes the Process Measurement System (PMS).
Section 5 introduces the computational model used for
automated software generation. Section 6 introduces the
tool set CAPS-PC that has realized part of ideas of DDD.
Section 7 gives a case study conducted by CAPS-PC.
Section 8 provides the conclusions and future work.

2 OVERVIEW OF DOCUMENTATION DRIVEN

DEVELOPMENT

Agility of development requires that the development
group, comprising system designers, hardware developers,
software developers, and customer representatives should
be well-informed, competent, and authorized to consider
possible adjustment needs emerging during the develop-
ment process life-cycle [1]. Our idea to improve agility is to
improve the documentation system. First, we generalize the
idea of documentation to make it an active part of the
process and to provide value added via automated decision
support. Documentation in our approach is computation-
ally active structured information with automated decision
support and representations in multiple formats.

Documentation can be classified into two categories:

documentation for tools and documentation for humans.

Formats of documentation for tools include mathematical

notations (such as temporal logic or process algebra), design

languages (such as PSDL or ADL), programming languages

(such as Ada or Java), system models, requirements/design

specifications, ontologies, source code, test cases, and

application data (such as geographic databases, results of

measurements, medical records, financial databases, tables

of properties of physical materials, and any other reference

information relevant to system design). Formats of doc-

umentation for humans are typically graphical or in a form

easily understood by humans including text annotations in

natural language, decision tables, spread sheets, or com-

puted attributes. They can be expanded to include video

and audio clips, live simulations, queries, etc.

Fig. 1 depicts a framework for the Documentation Driven

Development (DDD) approach. It includes a Document

Management System (DMS) and a Process Measurement

System (PMS). Information from any activity involved in

the software development process as well as the entire

software life cycle will be recorded, managed, and

transformed by the DMS. The information will be stored

in a form that will support a variety of formal and informal

documents for different stakeholders and can be manipu-

lated by a set of software tools. Eventually, the DMS will

monitor and drive the overall development process and be

applied throughout the entire software life cycle. The DMS

makes the development processes transparent and trace-

able, enables documentation to be updated quickly, and

facilitates communication and collaboration between stake-

holders to promptly respond to changes in requirements.

The Process Measurement System (PMS) is used to track

and analyze changes in requirements to verify the feasibility

of the requirements, assess effort and risk of development,

provide clues to modify the requirements, and measure the

required high confidence properties. PMS is based on a set

of quantitative metrics, most of which can be automatically

collected in requirements phase. These metrics are stored

and organized in the documentation management system.

PMS and DMS will help to rapidly accommodate frequent

changes in requirements for the development of complex

systems.

938 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



3 DOCUMENTATION MANAGEMENT SYSTEM (DMS)

DMS will create, organize, monitor, analyze, manipulate,

and display documentation. These are basic operations on

documents associated with system development. It will

record documentation including requirement specifications,

abstracted models, stakeholder input, design rationale,

project management information, source code, etc. It will

extract relevant information from all development activities

such as requirements analysis, prototyping, architectural

design, software composition, system verification and

validation, and system deployment. It will also support

key activities including automated software generation via

computational models [35], interoperability via connection
models [56], etc.

DMS mainly consists of three parts (Fig. 2):

1. The Documentation Repository (DR) is the core of
DMS. It is used to store the information in a
structured, well-organized format with a well
defined meaning, to find appropriate subsets and
projections of the documents for particular pur-
poses, and to extract computed attributes of
documents.

2. The Representation Converter is used to transform
and present documentation in DR to different
stakeholders and tools.

ZHANG ET AL.: DOCUMENTATION DRIVEN DEVELOPMENT FOR COMPLEX REAL-TIME SYSTEMS 939

Fig. 1. DDD technical framework. RA: requirements analysis. AD: architecture design. CD: component design.

Fig. 2. Structure of documentation management system.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



3. The Transition Driver promotes the transition of
information in the DR from one development
process to the next.

3.1 Documentation Repository

Keeping documentation consistently up to date is difficult

because of the various representations of information used

in various stages of the development. Differing representa-

tions of the same documentation increase the complexity of

maintaining information consistency and also decrease the

efficiency of communications between humans and com-

puter tools. This paper presents a documentation repository

in which a common internal representation is used to

represent all information contained in the documentation.
The repository representation is the core of the doc-

umentation driven development approach. All the informa-

tion related to development process is modeled and stored

in the documentation repository. Each development phase

has its own area in the documentation repository and its

own modeling level. The information is transformed

between different documentation areas that belong to

successive development phases. Typical examples of the

information stored in the repository are requirement

specifications, abstracted models, stakeholder input (from

sponsors, end users, developers, technical supporters, etc.),

ontologies, design rationale, project management informa-

tion, and the source code. The repository uses a structured

central representation for this information so that different
stakeholders can communicate with each other based on

consistent information and this information can be consis-

tently transformed between successive development

phases. Fig. 3 illustrates the repository representation and

shows that the documentation repository includes three

kinds of artifacts, i.e., document elements (DEL), a set of

syntactic templates and a set of attribute computation rules.

A document element is a basic building block consistent

with the semantics of the information contained in the

documentation. It is represented as an Attributed Object

Graph Model (discussed in detail later). This object model

represents the information contained in the documentation,

and its instances form an attributed object graph. The

schema for this object model is part of the ontology for the

documents in the repository, and serves to define the

meanings of the documents. The document elements are the
nodes of this graph.

The amount of information associated with each node
depends on the degree of formalization for each documen-
tation type. Formal representations have explicit structure
at a fine granularity and very simple information associated
with individual document elements. Informal representa-
tions have only a large granularity structure and can have
lengthy annotations attached to the nodes. Document
elements hold the key information extracted from all the
requirements, models, activities, and processes related to
system development. Consistent transformations can be
automated for the aspects of the information that have been
formalized in the graph structure.

Syntactic templates are object operations with para-
meters. The purpose of a syntactic template is to materialize
the part of a specific documentation view that corresponds
to a given document element. The parameters represent the
relevant properties of the context and the descendent nodes
of the document element. Syntactic templates are designed
together with specific sets of rules that govern the
manipulation of the data stored in the document elements.
The content of the document elements is treated as
repository information and the different templates govern
how that information is used and presented to the
stakeholders and tools in the computer development
environment. The combination of a document element
and different syntactic templates forms the multiple view
presentation of the same information. Combining document
elements with appropriate templates and rules can also
transform the information between representations written
in different description languages.

Attribute computation rules represent the methods for
computing derived document attributes. They turn the
repository into an active project support system. These rules
are organized in a rule base. The rule base is designed to be
open in the sense that new rules can be added without
changing the effect of any complete subset of the previous
version of the rules. This property supports reliable
incremental extension of the automation support provided
by the repository and enables steady improvement of
decision support processes. In the long term, the repository
will perform a variety of automated and computer aided
functions such as the following:

940 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

Fig. 3. Documentation repository.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



. materialize external representations of documents
suitable for particular stakeholders or tools,

. find appropriate subsets and projections of the
documents suitable for particular purposes,

. extract computed attributes of documents,

. transform data among different representations as
needed to support integration of development
processes and tools,

. configuration management of the documents,

. project management based on management
documents, and

. consistency checking and consistency maintenance
by rederivation of the dependant attributes in
response to changes.

In summary, the proposed view of documentation is

much closer to an active and intelligent information base

than it is to a passive stack of paper.

3.1.1 Attributed Object Graph Model

Attributed Object Graph Model is an object model of

information in the documentation repository. It has a nested

structure with potentially shared nodes, i.e., directed acyclic

graph structure. This representation is a generalization of

abstract syntax trees and is designed to represent and

efficiently analyze constructs that appear in more than one

context. This is a common pattern in software artifacts—for

example, an operation is typically defined once and called

from many different contexts.
In the attributed object graph model, each node

represents a semantically meaningful structure, such as an

individual requirement, a subsystem, an operation, or an

operator within a logical expression. The nodes are the

finest grained structures visible to the attribute computation

rules. Each node is an instance of an abstract data type. The

computed attributes of each node correspond to operations

of the data type. Invoking appropriate methods of the data

type can derive the value of an attribute. Attribute

computation rules are declarative definitions of these

methods.
The semantics of attribute evaluation in the attributed

object graph model is a generalization of the corresponding

semantics in an ordinary attribute grammar. The two are

the same when the graph is a tree. The difference shows up

for inherited attributes of shared nodes: In an attribute

grammar, each node can have at most one parent, but a

shared node in an attributed object graph can have more

than one parent.
We require the type of an inherited attribute to be a

lattice. In implementation terms, the type must implement

the lattice [T] interface with operations

bottom : T — least element

lubðT; T Þ : T — least upper bound

leðT; T Þ : bool — approximation ordering

and these operations must satisfy the standard properties of

a mathematical lattice.1

The semantics of an inherited attribute A with a defining
expressionE is the least upper bound of the values ofE in all
contexts (i.e., the set of all parent nodes). In implementation
terms, an attribute computation rule of the form child:A ¼
Eðparent:AÞ can be realized with an initialization node:A :¼
bottom (for all nodes) and an incremental update step
child:A :¼ lubðchild:A;Eðparent:AÞÞ which is enabled in the
context of each parent node whenever the value of parent:A
changes in that context.

To make the above restriction on attribute types less
burdensome, we propose a default extension of all types (a
uniform subtype definition) that adds a new constant
“bottom” representing an undefined value, another new
constant “conflict_error” representing a conflict between
two incompatible values inherited from different contexts,
and the usual flat ordering on simple data types:

leðx; yÞ ¼ ðx ¼ bottomÞ or ðx ¼ yÞ or ðy ¼ conflict errorÞ
lubðx; yÞ ¼ if ðx ¼ bottomÞ or ðx ¼ yÞ then y

else if ðy ¼ bottomÞ then x

else conflict error — display an error diagnostic

This default can be explicitly overridden by the designer
for data types where this makes sense. An example from the
domain of timing constraints illustrates the idea:

TYPE DEADLINE EXTENDS INTEGER

bottom ¼ MAXIMUM INTEGER

leðx; yÞ ¼ x � y

lubðx; yÞ ¼ MINðx; yÞ
This corresponds to the idea that if a program meets a

given deadline, then it also meets any later deadline. This
idea is made precise by the definition of the le operation on
deadlines, and the corresponding definitions of bottom (the
least restrictive deadline possible) and the lub operation (the
simultaneous application of two different deadline con-
straints). Thus, a component that inherits deadlines of
100ms, 75ms, and 120ms from three different requirement
documents is subject to a design constraint to execute
within 75ms (since lubðlubð100; 75Þ; 120Þ ¼ 75 for the dead-
line type defined above). This example illustrates the kind
of structure needed to do decision fusion, for data types in
which two different decisions may not necessarily conflict,
and instead may be consistently combined into a refined
composite decision.

To ensure the high confidence of a real-time system, it is
important to keep timing properties consistent during the
whole development processes. This means the information
related to timing properties needs to be consistently
identified in documents belonging to different development
phases. In the next section, we will use timing properties as
an example to illustrate the application of the proposed
attributed object graph model to the problem of maintain-
ing document consistency.

3.1.2 Attribute Computations for Document

Management

The attributed object graph model was designed to realize
documentation checks and transformations that support
high confidence system development. These computations
are used to

ZHANG ET AL.: DOCUMENTATION DRIVEN DEVELOPMENT FOR COMPLEX REAL-TIME SYSTEMS 941

1. The following must be true for all x; y; z in T : leðx; xÞ,
leðx; yÞ & leðy; zÞ ! leðx; zÞ, leðx; yÞ & leðy; xÞ ! x ¼ y, leðbottom; xÞ,
leðx; lubðx; yÞÞ, leðy; lubðx; yÞÞ, leðx; zÞ & leðy; zÞ ! leðlubðx; yÞ; zÞ.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



1. calculate the attributes from the information in the
documentation repository,

2. transform the information from one development
phase to another,

3. analyze the consistency between the information
transformed between development phases, descrip-
tion languages, and information views, and

4. extract subsets of documents needed for particular
purposes. The declarations of these computations
form a set of attribute computation rules.

In the development process, the documentation gener-
ated in early development phases is taken as input for the
next phases and guides the development activities in that
phase to generate the output documentation. To ensure the
quality of the end product, it is important to keep selected
nonfunctional properties needed for high confidence visible
and consistent during the whole development process.
These high-confidence properties should be kept consistent
between the documentation generated in an early phase
and that generated in the next phase. Although the format
of this kind of “key information” may be different between
two development phases, the information of the later phase
should imply that of the earlier. For example, in the
requirement phase, requirement documentation may in-
clude information describing a customer request for
deriving the computation result within a constrained time.
In the design phase, the design documentation should
include information with the same implication, such as
information related to the deadline, period, and maximum
execution time that is sufficient to guarantee a response
within the required time interval.

In this paper, we use timing property transformation
between the requirements phase and design phase as an
example to illustrate the application of attribute computa-
tion rules. Suppose that the requirements specification
includes a maximum response time (MRT) constraint for a
given service S and that, at the architectural level, S is
realized by a software component C. The MRT appears at
the requirements level because it is directly visible to the
system stakeholders and is of vital concern to them since
late control signals can have catastrophic consequences.

At the design level, this constraint is transformed into
lower level constraints on the period and maximum
execution time (MET) of a periodic software process. If
the document element S in the requirements document is a
parent node of the document element C in the design
document, the design rule that ensures consistency of the
two documents with respect to this issue can be expressed
by the following simple attribute computation rules, where
MRT is an attribute of S; timing_check, period, MET, and
diagnostic are four attributes of C:

C:timing check ¼ ðC:periodþ C:MET � S:MRT Þ
C:diagnostic ¼ UnlessðC:timing check; error messageÞ
— Unless (C;M) displays M if

C ¼ false and does nothing otherwise.

The rationale for this rule is that the worst case occurs
when a request arrives just after the request stream has been
polled. In this case, the transaction will start processing one
period later, and the software can take up to the maximum

execution time after the transaction starts to produce the
result. This simplified example assumes that all processing
is done locally, so that we do not have to account for any
latency in the communications link between the machine
running the component C and the machine running the
consumer process waiting for the output of C.

A mature documentation repository will actively check
many different generic design rules like the one illustrated
in this simple example. The rule base will gradually grow as
processes are improved and constraints related to high
confidence attributes are gradually formalized, and rules
are created to automatically check or realize them.

3.2 Representation Converter

The representation converter presents the repository doc-
umentation to different stakeholders and tools in a trace-
able, consistent, and understandable way. The converter is
based upon the combination of the syntactic templates and
a collection of specifying document elements. It will
“combine” the content of the document elements and the
syntactic templates together to create and present desired
documents for different stakeholders and tools.

Subject hierarchies are used to control the representation
complexity of documentation. Subject hierarchies are
defined according to the level of the software development
activities with related specific document customers. Differ-
ent stakeholders have different responsibilities and levels of
interest in the overall project. For this reason, different
levels of information need to be identified to support
accurate review, modification, and evaluation of the
delivered documents. Subject hierarchy controls the ab-
straction level of information presented to stakeholders
thereby eliminating the problems and confusion caused by
presenting too much or too little information.

Formal specification, graphical depiction, natural lan-
guage narration, and even multimedia files are used to
present abstracted data models and/or development
activities. The very nature of formalized and graphical
presentations of intellectual models, methods, and design
activities can provide support for both the computer
element (with formal specification) and the human
element (through graphical depiction). The former serves
as the input to various computer processes (different
software tools such as a code generator or a model
checker), while the latter provides an easily understood
graphical depiction to the various human stakeholders
(manager, designer, and implementer).

3.3 Transition Driver

A transition driver serves as a process transition tool based
on the combination of syntactic templates and a collection
of document elements. Its function is to analyze the key
information held by the templates and the document
elements and to promote the transition of repository
information from one development process to the next. A
transitional driver has the ability to act in both a forward
and reverse direction. It can drive the transition of
information from one process to a succeeding one (forward)
or from one process to a preceding one (reverse). In the first
mode, the transitional driver promotes forward engineering
of software products. The transition driver analyzes the

942 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



preceding information (information used as an input),
guides user’s intervention, and then generates succeeding
information (process output). In the second mode, the
driver promotes reverse engineering of legacy software
systems if necessary. In this case, the driver serves as an
extractor. It performs analysis and extracts useful informa-
tion from what is normally considered the output informa-
tion from a phase and generates what should have been the
input information for that phase. A challenge in this area is
how to best manage designer and user interaction to extract
specification and design information the way it should have
been built, rather than capturing the way it actually was
built, including all of the errors and faults. A first step is to
support annotations that identify such faults with links to
explanations of why they constitute faults.

4 PROCESS MEASUREMENT SYSTEM (PMS)

The function of the process measurement system is to
monitor the frequent changes in system requirements,
assess the effort and success possibility of the project, and
measure the high confidence properties of the system. The
PMS obtains necessary information from the documentation
repository. The analysis results will be presented to the
developers and users as feedback. This quick communica-
tion is a key factor to make development of a system agile:
Feedback is most useful when it can be delivered while the
relevant aspect of the system is still in the process of being
created, rather than after it has been completed and other
system decisions have been made based on a faulty version
of that aspect.

The process measurement system will include two parts:
1) a measurement model for effort and risk of a project, 2) a
measurement model for high confidence. We have intro-
duced a set of metrics to measure the effort and the risk in
an evolutionary software project [19], [40]. These metrics
can be automatically obtained early in the requirements
phase. They accommodate changes in requirements, pro-
cess, technology, and resources of a project. Based on the set
of metrics, a measurement model for effort and risk of
failure of a project has been proposed [39]. With respect to
the high confidence measurement model, we developed an
Instantiated Activity Model (IAM) that supports a formal
approach for safety analysis by providing precise metrics
[36]. However, due to the limit of length, this issue will not
be discussed in this paper.

4.1 Indicators for Risk Assessment

The success of a software project relies on many different
factors. Much research has addressed the problem of
identification of risk factors. Different kinds of taxonomies
were given [7], [29]. We identified four major risk
contributors: resource risk, process risk, product risk, and
technology risk. Each of these factors introduces risks
individually and due to their interactions.

Resource risk is affected by organizational, operational,
managerial, and contractual parameters, such as outsour-
cing, personnel, time, and budget among other resources.
Various approaches use subjective techniques, like guide-
lines and checklists [23], [29], [48], which when even
supported by metrics, require experts’ opinions.

Engineering development work procedures, such as
software development, planning, quality assurance, and
configuration management cause process risk. The more
complex a process is, the more difficult it is to manage, and
the more education, standards, reviews, and communica-
tion are required. Consequently, complexity grows. The
software process risk has been partially covered by research
in terms of subjective assessments about maturity levels and
expertise [23], [48]. However, a more precise and objective
method is required.

The interaction between the process and the resources
defines the organizational fit. If there is a perfect match
between the process and the resources, it is expected that
the efficiency of the organization will reach its maximum.
By contrast, if mismatches between the process and the
resources exist, then it is expected that the efficiency will
decrease. This observation has been proved in previous
research [11].

Product risk is related to the final characteristics of the

product, its complexity, its conformance with specifications

and requirements, its reliability, and customer satisfaction.

Requirements volatility and complexity are two basic

product-risk factors. Requirements volatility refers to the

speed of changes in the requirements. This measure shows

the difficulty of the requirement elucidation elicitation

process. The requirements volatility can be measured from

the requirements baseline. The complexity of an object, in

general, is a function of the relationships among the

components of the object. The correlation between complex-

ity and size has been showed by [2]. More size implies more

time, effort, cost, and defects [7]. Changes in requirements

are inevitable. However, a change needs not to be directly

related to an increase in the complexity. For that reason,

complexity and requirements volatility are independent

metrics that represent different aspects of the product.

Technology risk mainly consists of two parts. One arises

from the software technologies that are selected to

implement the project. The other arises from the domain

technologies involved in the project. The choice of

implementing technologies should be subordinated to the

project domain technologies and requirements. We can

expect that the risk of a project based on a new technology

will be definitely greater than that of a project based on a

mature technology. A complex system is usually deployed

for long periods of time. In the process of evolutionary

development of a complex system, the related technologies

will change significantly. Generally, the newer the technol-

ogy is, the more quickly the technology changes. The

impact of technology maturity on risk is apparent and

nonnegligible.
The indicators requirements volatility, organization

efficiency, product complexity, and technology maturity
will be the cornerstone of the risk management in software
projects.

4.2 Metrics for Requirements Volatility

Requirements changing is the most significant characteristic
for a complex real-time system. Requirements volatility
clearly influences the possibility of project success. From the

ZHANG ET AL.: DOCUMENTATION DRIVEN DEVELOPMENT FOR COMPLEX REAL-TIME SYSTEMS 943

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



point of view of the metrics, a change in a requirement can
be viewed as a death of the old version and a birth of the
new one. The requirements volatility can be obtained from

birth-rate and death-rate. Birth-rate is defined as the
percentage of new requirements incorporated in each cycle
of the evolution process. Death-rate is defined as the

percentage of requirements that are dropped by the
customer in each cycle of the evolution process. The
requirements volatility (RV) is defined as:

RV ¼ BRþDR;

where,

BR ¼ jNR� PRj=jNR [ PRj � 100%;

DR ¼ jPR�NRj=jNR [ PRj � 100%;

NR is the set of requirements in the current version, PR is
the set of requirements in the previous version, and |S|
denotes the number of elements in set S.

4.3 Metrics for Organization Efficiency

The efficiency of the organization can be measured by
observing the fitness between people and their roles in the

software process. The skill match between the person and
the job is required to estimate the speed in processing
information and the rate of exceptions, which in turn affect

efficiency. Efficiency also depends on many factors like
team structure, experience, and tools. Simulations we
conducted have shown that there exists an easier way to

estimate efficiency by observing the ratio between direct
working time and idle time. The efficiency metric (EF) is
defined as:

EF ¼ Dwork%=Idle%;

where Dwork% is the percentage of direct working time and
Idle% is the percentage of idle time.

4.4 Metrics for Product Complexity

To estimate the complexity before a product is finished is
challenging. Based on our previous work, the Prototype
System Description Language (PSDL) [33], we developed

complexity metrics that can be calculated in the require-
ments phase [19]. These metrics can be defined by using a
hybrid complexity measure that properly accounts for data

flow and the properties associated with each operator and
data stream in PSDL. A complexity metric FC is defined as
follows:

FC ¼
Xn
i¼1

wðoiÞ½dsiðoiÞ � dsoðoiÞ�;

where, wðoiÞ ¼ 1þ
Pm

k¼1 pwk � cik is the total property
weight of operator oi. pwk is the property weight of the
kth property, with 0 � pwk � 1 and

Pm
k¼1 pwk ¼ 1. cik is the

property occurrence coefficient, with cik ¼ 1 if operator oi
has property pk and cik ¼ 0 otherwise. m is the number of
property types in PSDL. dsiðoiÞ is one plus the number of

data streams flowing into operator oi. dsoðoiÞ is one plus the
number of data streams flowing out of operator oi. n is the
total number of operators.

4.5 Metrics for Technology Maturity

A new technology becomes mature in the process of

transition from a scientific discovery to routine engineering

practice in product development. Technology transition is

referred to as diffusion in the literature. Diffusion is the

process by which an innovation is communicated through

certain channels over time among the members of a social

system. Based on information theory, communication

theory, and statistical mechanics, we developed a metric,

named “technology temperature T”, to measure the

maturity of a technology [45].
According to information theory, the quantity of in-

formation in an ensemble of possible messages is measured

by entropy. A message is made up of sets of terms. In this

context, the relevant information is about a technology.

Following reasoning similar to that used in statistical and

condensed particle physics and recalling the standard

definition from the thermodynamics, the temperature T

for technology transition can be defined as

1

T
¼ �SH

�n
;

where,�n is the change in the number of terms of a message
alphabet �. �SH is the change in entropy. The entropy is
defined as follows: For the message alphabet � with the
given probability mass function pðxÞ ¼ PrfX ¼ xg; x 2 �, X
is a discrete random variable, the definition of information
entropy is SHðXÞ ¼ �

P
x2� pðxÞ log2 pðxÞ. The temperature

is measured in “degrees” in a physical system; however, in
the context of information degrees can be expressed in
information units (bits). The value of T represents the
maturity of a technology.

4.6 Measurement Model

A Weibull distribution can be used to build the measure-
ment model. The Weibull distribution was originally used
to model strength of Bofors’s steel, fiber strength of Indian
cotton, length of syrtoideas, fatigue life of steel, statures of
adult males, and breadth of beans. Many authors have
advocated the use of this distribution in reliability and
quality control [28], [37]. The three parameter Weibull
probability distribution function (pdf) is defined as follows:

pdf : fðxÞ ¼ 0 x < �
ð�=��Þðx� �Þ��1 expð�ððx� �Þ=�Þ�Þ x � �;

�

where

. x is the random variable under study. In our context,
x can be interpreted as development time.

. �ð> 0Þ is a shape parameter. It affects the skew of the
function. When � ¼ 1, the function reduces to the
exponential distribution. The combined effect of �
and � controls the variability of the pdf.

. �ð> 0Þ is a scale parameter that stretches or
compresses the graph in the x direction.

. � is a location parameter that determines the mean of
the pdf.

Relationships between the parameters in the model and
the quantitative metrics above have been identified via a

944 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



large number of empirical experiments. This model works
well especially for real-time applications [39]. When the

metrics are input then development effort and success
possibility of the project can be estimated by the model. The

outputs of the model are important supporting information
to help the sponsors and developers to make decisions

about the next process.

5 AUTOMATED SOFTWARE GENERATION BASED ON

A COMPUTATIONAL MODEL

DDD integrates key processes in the software life cycle by

the documentation management system (DMS). Models,

activities, prototypes, and simulations involved in these

processes will be stored and manipulated in DMS.

Supported by DMS, automated program generation can

be realized based on a well-defined computational model

and series of relevant techniques. A computational model

was developed to describe the emergent properties, the

interactions between component systems, and constraints

associated with both functional and nonfunctional proper-

ties of a complex real-time system [35]. A system � is

modeled as:

� ¼ ðS;E;C;D; F1; F2Þ;

where S is the component system set, S ¼ fsiji 2 ½1; n�g, si
denotes the component system constituting the whole

system (n is the number of component systems in the

whole system), E ¼ fejkjj; k 2 ½1; n�g denotes the interaction

sets between component systems, ejk denotes the set of

interactions from component system sj to component

system sk, and C ¼ fciji 2 ½1; n�g denotes constraint sets

on how the component systems are used in the given

environment. ci is a set of constraints on si. D ¼ fdjkjj; k 2
½1; n�g denotes constraint sets on interactions between

component systems, djk is a set of constraints applied to

interactions in ejk.
Constraint sets C and D include the constraints for the

design phase. They are refined from emergent properties G

and high confidence constraints H of a system,

C ¼ F1ðG;HÞ; D ¼ F2ðG;HÞ;

where G and H reflect the functional and nonfunctional

aspects of requirements for whole system. G can be used for

1) generating code for monitoring failure events during the

reliability assessment and testing and 2) verification. H can

be used for 1) experimental assessment of high-confidence

attributes and 2) possible static verification for some

metrics, such as Maximum Execution Time (MET). F1 and

F2 are two maps that map emergent properties and high

confidence measures into local constraint sets on compo-

nent systems and local constraint sets on interactions

between component systems respectively. The maps specify

what must be assessed to ensure that the system satisfies its

requirement with high confidence, if it has already been

certified that the individual si meet their requirements with

high confidence. The constraint sets also represent a design

for the systems integration, which will be realized by

wrappers around the si.

Based on this model, a prototype system can be

established to validate the requirements for a complex

system. Well-formulated prototyping documentation can be

used to promote system transition by extracting composi-

tional architecture and evolving components. We found a

way to build an explicit architecture for a prototyping

system so that the product system can evolve through a

transitional procedure [31]. The compatible composition

model allows both explicit architecting and componential

evolving by incorporating computer-aided prototyping

techniques into a transitional process. Additionally, we

introduced an object-oriented model for interoperability via

wrapper-based translation [56]. This model performs

transition from a computational phase, through a composi-

tional phase, to a componential phase. During the transi-

tional process, documentation passes throughout the

development process. These results support automated

software generation.

6 CAPS-PC

We have developed a Software Automation Integration
Environment (CAPS-PC) that has realized part of ideas of
Documentation Driven Development (DDD) approach
proposed in this paper. CAPS-PC is based on our
previously developed Computer Aided Prototyping Sys-
tem (CAPS) [33].

This tool set provides a PC-based computer-aided

environment to support the modeling, analysis, and

prototyping of systems under development. The environ-

ment helps create, modify, and maintain the requirements

specification and architecture description documentation

based on the information mapped from informal natural

language descriptions. By building prototypes, CAPS-PC

can be used to check the reliability of the software attributes

and monitor the characteristics of the software according to

changes in the context environment. It can also be used to

explore the characteristics of high confidence real-time

systems during the efforts of building and detailing the

prototype models [34].

6.1 Overview of CAPS-PC

CAPS-PC is composed of five parts: Software Specification
Editors, Software Project Management, Automatic Code
Generation, Software Quality Facilities, and Software
Execution Support. Each part is supported by extended
facilities.

In CAPS-PC, a unified internal knowledge representa-
tion of software requirements is formalized in terms of
PSDL definitions, which are designed for supporting
automatic materialization of multiple views for different
purposes. To the extent that the processes supported by
documentation are performed manually, its representation
should be understandable by humans. To the extent the
processes are performed by tools, the representation should
be tractable by software. CAPS-PC provides both kinds of
views.

ZHANG ET AL.: DOCUMENTATION DRIVEN DEVELOPMENT FOR COMPLEX REAL-TIME SYSTEMS 945

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



The tool set provides a system model editor for users to

create and modify the computational model described in

Section 5, a translator to check the syntax/semantics of the

system model and to generate glue and wrapper codes to

realize the design for the target system architecture, and a

scheduler to analyze the timing constraints and to generate

code to realize these constraints in the target architecture

[32]. The software project management provides a platform

to support the building of new software projects, retrieval of

former projects, retracing of software development process,

and software version control. The tool interface provides

menus for users to manage their projects and compile

source code into an executable prototype. The interface of

CAPS-PC is shown in Fig. 4.

6.2 Main Features of CAPS-PC

6.2.1 Unified and Multilevel Information Representation

CPAS-PC provides a relatively simple documentation

repository based on the DDD philosophy. Computation

models described by PSDL are a main part of the repository.

It is our initial effort to obtain a sophisticated documenta-

tion repository. The computational model will encapsulate

most of the information related to the development process.

The analysis of the software requirement constraints, such

as real-time constraints, can be done by performing

computation scheduling. The automatic prototype genera-

tion can also be completed by internally analyzing semantic

meanings of the software specifications and doing software

retrieval and adaptation based on matching of the specifica-

tions of the desired component and reusable component

candidates.

CAPS-PC also provides multilevel point of view of the

whole system. The construction of the prototype begins

with a top-level definition, followed with a number of levels

of refinement based on the functional decomposition; the

whole prototype can be built with different granularities for

different aspects, depending on the focus of the effort. For

components with complex control functions that have many

data transitions, the design can be detailed to trace all the

process of data computation. For components with simple

data handling, although the data may be larger scale, it can

be designed as a single operator to handle all the incoming

information.

The hierarchical design of models helps to organize the

requirements specification in a way that can be tracked

throughout the system’s development according to abstrac-

tion level and responsible functionality. The clear and

precise diagrams accompanying the documentation make it

easy for a designer to check the consistency with text. Each

operator defined in the diagram refers to the requirement

item number in narrative documents, which makes it easy

to find cross-references in the whole design model.

6.2.2 Multiview Presentations

CAPS-PC can provide both formal specifications that are

suitable for use by software tools and informal representa-

tions that are easily acceptable for end users and sponsors

and other stakeholders. Multiple views of the documents

for different purposes are used to solve the confliction

problem in information presentation. Views intended for

human consumption will be tailored to stakeholder role

(e.g., developer views are different from manager or user

946 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

Fig. 4. The interface of CAPS-PC environment.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



views), and those for tools will be tailored to the

appropriate API’s or tool input language.

The graphical display of the software structure in

CAPS-PC provides the designer an easy way to define the

functionality and software constraints. Meanwhile, it also

makes it easy for the sponsor to get knowledge of the rough

software product. A dynamic executable prototype with a

user-friendly interface is another efficient information

presentation style, which we treated as another kind of

software documentation. The prototype generated by

CAPS-PC provides another way to show designers their

design results and helps them to find the defects and

incompleteness, which also provides a vivid information

display to show sponsors and let them check if it meets their

imagination of the product. Engineers can instrument the

prototype with gauges that measure and display runtime

properties relevant to the design, such as the longest

observed running time for a time-critical component. This

mechanism will support quick and efficient communica-

tions between different stakeholders and tools and, there-

fore, support quick responses to requirements changes.

6.2.3 User-Centered Design

CAPS-PC not only has strong capabilities for building
prototypes, but also provides high usability for prototype

designers by considering human factors in its own software
design. By involving the human factor consideration in the

design of CAPS-PC, we help the CAPS-PC user to correctly
understand the entire range of functionalities offered by

CAPS-PC, learn how to apply them, and use them
efficiently in a specific context of use or for a specific

project. Several types of interaction principles are designed
and partially implemented in the CAPS-PC tool set:

1. Highlight most important functionalities in the
prototyping effort, such as translating, compiling,
etc.

2. Make visible program artifacts and CAPS-PC func-
tionalities when they are relevant and required.
Irrelevant or rarely needed artifacts and functional-
ities compete with the relevant ones and diminish
their relative visibility.

3. Provide contextualized feedback and appropriate
messages to developers at the time of happening,
which efficiently inform the developer about the
system status and hints for possible consequential
results.

4. Keep the developer informed of the CAPS-PC status
and the prototype being designed would be helpful
for the continuousness of the design activities.

6.2.4 Automated Code Generation

The prototype tool set provides the user with an execution
support system that consists of translator, scheduler, and a

compiler. The translator/scheduler generates the glue code
needed for timely delivery of information between sub-

systems across the target network. For prototypes that
require sophisticated graphic user interfaces, an interface

editor is provided to interactively sculpt the interface in

Unix system by using the TAE+ Workbench and auto-
matically generate corresponding code.

7 CASE STUDY

To validate the feasibility and effectiveness of CAPS-PC, we
used the CAPS-PC tool set to prototype the CARA software
in the Life Support for Trauma and Transport (LSTAT)
system. This effort was required and supported by Army
Research Office.

The LSTAT is a system to administer therapeutic
intravenous (IV) fluids. The purpose of the LSTAT stretcher
is to sustain trauma patients in transit to a medical facility
until they can receive emergency medical treatment. The
LSTAT includes multiple blood pressure sensors and an
intravenous (IV) infusion pump. Computer Assisted Re-
suscitation Algorithm (CARA) software is the key control
software embedded in the LSTAT system, which is a closed
loop software system that drives the high output infusion
pump. By constantly monitoring blood pressure, CARA can
help to prevent hypotension and enforce fluid resuscitation
[3]. The algorithm calculates the driving voltage for the
infusion pump. This determines the volume and rate of IV
fluid administered. Proper operation of the CARA software
should enable safe transport of critically injured patients
without the need for continuous monitoring by medical
professionals. The requirements for the LSTAT system were
given by a requirements definition document written using
natural language expression [53], [54], [55], which gives
detailed descriptions of the real-time constraints for the
application process of the rescue strategies This is a safety
critical real-time system, and the requirements documents
were written by domain experts who were independent
from the prototyping teams.

The situation and context of using CARA is complex and
varied in terms of the level of the patient’s blood pressure,
and the patient’s different body effects after pumping IV
fluid. The driving voltage used to control the IV fluid pump
needs to be calculated dynamically. A delay in delivery or
an improper amount of IV fluid to the patient can result in
serious injury or loss of life.

CAPS_PC was used to design the CARA system. During
the design process, several supporting documents were
built by the designers or generated automatically by using
CAPS-PC. As the central chain of development documenta-
tion, these documents drive the specification, design,
implementation, and even testing of the system develop-
ment. The consistency maintained by the tool set between
these documents provides a solid baseline throughout the
development effort. The documentation generation function
of the tool set makes it easy for the customer, user, and
sponsor to understand, handle, and review the system
during development.

First, the specification of requirements can be generated

with completeness and consistency checking, according to

the system functionalities and constraints. The graphical

design process maintains the syntax of the requirements

specification, and a further translation process ensures the

semantic consistency of the specification document. Fig. 5

gives the top level of the computational model designed

ZHANG ET AL.: DOCUMENTATION DRIVEN DEVELOPMENT FOR COMPLEX REAL-TIME SYSTEMS 947

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



with CAPS-PC. This graphical presentation was obtained

from requirements documentation. Fig. 6 is the decomposi-

tion of the “CARA” bubble in Fig. 5. The consistency of the

decomposition was checked automatically. Second, the

narrative description of a designed model in natural

language can be generated based on the definition of model

functionalities and constraints, which tell the customers and

users what the system will and will not do. For example, for

CARA’s periodic blood pressure corroboration, the model

generated the following narration: “if VALID_BP is

CUFF_BP, and if MEAN_BP > 90, the CUFF_BP will get

data from CUFF_MONITOR every 10 minutes.” Third, by

using technical terminology to describe the system’s

structure, data, and function can be generated based on

the model specification. Information about input, such as

where data comes from and how it is formatted; output,

948 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

Fig. 5. Top level of the computational model of the system.

Fig. 6. Decomposition of “CARA” in Fig. 5.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



such as where data is sent and how it is formatted; general

functional characteristics, such as periodic execution or

sporadic execution; performance constraints, such as Mini-

mum Execution Time; and specific fault-handling ap-

proaches can be generated and described in the design

documentation. Fourth, during the generation of prototype

code, the tool set can generate partial implementation

documentation based on the specification structure. The

name, type, and purpose of major data structures and

variables, simple description of logic flow, expected input

and possible output can be derived from the information

defined in the model.

Furthermore, CAPS-PC can maintain the version control

documentation for requirements specifications and model

design. If any changes are made to the requirements during

the remaining phases of development, the changes can be

tracked from the requirements document, through the

design process, all the way to the test procedures.

In our design efforts of the CARA software, the

documentation generated or maintained by our tools

greatly enhanced the effectiveness of the design procedure

and the communication between the model designer, user,

and reviewer. The specification documents were used by

the tool set to interlink the individual tools. The structured

narrative descriptions of system design models are used for

detailed discussions or for system reviews.

The use of our tool set to prototype the CARA software

based on its requirements documents showed that the

development process and the communication between

customer and the software developer can be improved by

the integration of software development documentation

and the enhanced information representation. An execu-

table prototype (Fig. 7) was automatically generated and

explicitly represented to designers and users. They can

easily compare the prototype with requirements and give

feedback to each other so that the design can be refined.

Requirements changes will be considered in the process of

comparing. Due to the time to get a prototype is short,

requirements changes can be responded quickly.

This experiment shows that PSDL can effectively model

complex real-time software. PSDL’s triggering guards and

execution guards provide a convenient means for users to

specify state machines explicitly without being concerned

with target code. The timer feature is useful in modeling

complicated timing policies.
The tool provides an effective means to perform

requirements consistency and understandability checking.

It also provides some degree of computer-aided incon-

sistency checking and data entry propagation at the user

interface level, and a semantic check via the translator.

8 CONCLUSIONS AND FUTURE WORK

This paper explores a new view of documentation that can

better serve development of complex real-time systems. The

agility of development will be improved by the following

merits of the proposed approach DDD:

1. DDD provides unified information management.

All information involved in development process
will be recorded in a form that can be manipu-

lated, automatically analyzed. DDD will track

changes and help to ensure that information will

be transformed consistently from one phase to

another.
2. DDD provides an environment of communication

between stakeholders and tools, which give project

managers, developers, sponsors, maintainers, and

end-users the ability to express their opinions or
propose requirements changes if needed by adding

related documents via a user-friendly interface. This

environment will facilitate stakeholder involvement

while updating the requirements and consistently

providing this information for later use.
3. DDD supports automated software generation by

using a computational model, rapid prototyping,

and other related techniques.
4. DDD provides a method to monitor frequent

changes in requirements and assess the effort and

ZHANG ET AL.: DOCUMENTATION DRIVEN DEVELOPMENT FOR COMPLEX REAL-TIME SYSTEMS 949

Fig. 7. The graphical user interface of the executable prototype.

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



success possibility of the project with respect to
changes in requirements.

By using the DDD approach in every phase of develop-

ment, even the automated processes, it should become

practically feasible to record, compile, and present informa-

tion to different stakeholders and tools in a clear, under-

standable way at a level of complexity required to meet the

stakeholders’ needs. By having these different views

available at various stages of development, stakeholders

will be able to effectively monitor the development process

and communicate with each other. This improved transpar-

ency provides valuable information needed for quality

control and overall process improvement.

DDD also provides comprehensive support for software

maintenance and evolution. In DDD, all the activities and

information used by the development processes are

accurately recorded and organized in a well-formulated

documentation system that drives the system development

and build processes. This will ensure that overall system

properties are precisely documented and consistently

updated and transferred throughout successive phases

and available after system release. The documentation will

retain sufficient detail to provide a sound basis for fault

tracing, bug repairing, and overall system improvement.

DDD will keep track of system configuration, document

dependencies, and system status and enable the software to

respond to future changes in requirements thereby support-

ing maintenance and evolution of the system. Keeping track

of accurate dependency information is critical for auto-

matically locating the relevant parts of a maze of documents

for resolving a given system evolution issue.

From the viewpoint of long-term system construction,

technologies for computer-aided documentation reposi-

tories will drive the form of documentation standard

needed for more effective regulatory management. Much

of the presented infrastructure can be generalized from

software development to the entire systems engineering

and certification process.

The main purpose of this paper is to introduce a new

idea and a framework of a new development approach to

realize the idea. There still have many scientific and

technical details need to be studied and developed in the

future.

Work needs to be done to extend the CPAS-PC to

realize the whole DDD approach, such as, to deal with

more formats of representations, to develop more tem-

plates for different documentation, to develop more precise

quantitative metrics for risk assessment and high con-

fidence property assessment for complex real-time sys-

tems, to develop tools that can fully realize the converter

and the driver, etc. Future enhancements of CAPS-PC also

include abstraction for data streams, visual queues for the

declaration and use of timers, multiple views for require-

ments traces, and better facilities for constructing user

define types.

DDD provides an integrated environment to conduct all

activities involved in the whole development process, in

which the documentation management system provides a

mechanism to integrate different methods and tools for use

by different activities. However, how to integrate current

methods and tools to our environment is still an open

problem. We have studied how to establish software

development tool ontologies to improve interoperability in

heterogeneous software development [44]. Tool ontologies

contain the information needed to bridge semantic differ-

ences between different tools and to guide tool evolution to

reduce the gaps and enable deeper integration. Work needs

to be done to document and manipulate tool ontologies to

integrate tools to support development processes. On the

other hand, the DDD approach can be integrated into

existing methods and tools. For example, the abstracted and

well-organized information in the documentation reposi-

tory can be used by formal verification and validation tools.

Further efforts need to be applied to these issues.

REFERENCES

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile
Software Development Methods-Review and Analysis,” technical
report, ESPOO, 2002.

[2] A. Albrecht and J. Gaffney, “Software Function Source Lines of
Code and Development Effort prediction,” IEEE Trans. Software
Eng., vol. 9, 1983.

[3] R. Alur, D. Arney, E. Gunter, I. Lee, W. Nam, and J. Zhou, “Formal
Specifications and Analysis of the Computer Assisted Resuscita-
tion Algorithm (CARA) Infusion Pump Control System,” Proc.
Conf. Integrated Design and Process Technology (IDPT), 2002.

[4] K. Beck, Extreme Programming Explained: Embrace Change.Addison-
Wesley, 2000.

[5] K. Beck et al., “Manifesto for Agile Software Development,”
www.agilemenifesto.org, Feb. 2001.

[6] N. Bjorner, Z. Manna, H. Sipma, and T. Uribe, “Deductive
Verification of Real-Time Systems Using STeP,” Theoretical
Computer Science, vol. 253, no. 1, pp. 27-60, 2001.

[7] B. Boehm, Software Engineering Economics. Prentice Hall, 1981.
[8] B. Boehm, “Software Risk Management: Overview and Recent

Developments,” Proc. 17th Int’l Forum on COCOMO and Software
Cost Modeling, http://sunset.usc.edu/events/2002/cocomo17,
Oct. 2002.

[9] M. Broy, “Toward a Mathematical Foundation of Software
Engineering Methods,” IEEE Trans. Software Eng., vol. 27, no. 1,
pp. 42-53, Jan. 2001.

[10] M. Broy and O. Slotosch, “From Requirements to Validated
Embedded Systems,” Proc. First Int’l Workshop Embedded Software
(EMSOFT 2001), pp. 51-65, Oct. 2001.

[11] R. Burton and B. Obel, Strategic Organizational Diagnosis and
Design. Developing Theory for Application. Kluwer Academic, 1998.

[12] S. Campos, E. Clarke, W. Marrero, and M. Minea, “Verus: A Tool
for Quantitative Analysis of Finite-State Real-Time Systems,” Proc.
Workshop Languages, Compilers, and Tools for Real-Time Systems,
pp. 70-78, June 1995.

[13] D. Clarke and I. Lee, “Automatic Test Generation for the Analysis
of a Real-Time System: Case Study,” Proc. Third IEEE Real-Time
Technology and Applications Symp. (RTAS ’97), pp. 112-124, June
1997.

[14] A. Cockburn, Agile Software Development. Addison-Wesley, 2001.
[15] J. Corbett, M. Dwyer, J. Hatcliff, and Robby, “Expressing

Checkable Properties of Dynamic Systems: The Bandera Specifi-
cation Language,” Int’l J. Software Tools for Technology Transfer,
2002.

[16] T. DeMarco and B. Boehm, “The Agile Methods Fray,” Computer,
vol. 36, no. 6, pp. 90-92, June 2003.

[17] X. Deng, M. Dwyer, J. Hatcliff, and M. Mizuno, “Invariant-Based
Specification, Synthesis and Verification of Synchronization in
Concurrent Programs,” Proc. 24th Int’l Conf. Software Eng., pp. 442-
452, May 2002.

[18] P. Devanbu, P. Selfridge, R. Branchman, and B. Ballard, “LaSSIE:
A Knowledge-Based Software Information System,” Proc. IEEE
12th Int’l Conf. Software Eng., pp. 249-261, 1990.

950 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



[19] J.P. Dupont, “Complexity Measure for the Prototype System
Description Language (PSDL),” master’s thesis, Naval Postgrad-
uate School, Mar. 2002.

[20] J. French, J. Knight, and A. Powell, “Applying Hypertext
Structures to Software Documentation,” www.cs.virginia.edu/
cyberia/papers/IPM97.pdf, 1997.

[21] D. Garlan, S. Khersonsky, and J. Kim, “Model Checking Publish-
Subscribe Systems,” Proc. 10th Int’l SPIN Workshop Model Checking
of Software (SPIN 03), pp. 166-180, May 2003.

[22] L. Goldin and D. Berry, “AbstFinder: A Prototype Abstraction
Finder for Natural Language Text for Use in Requirement
Elicitation,” Automated Software Eng., no. 4, pp. 375-412, 1997.

[23] E. Hall, Managing Risk Methods for Software Systems Development.
Addison Wesley, 1997.

[24] J.A. Highsmith, Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems. Dorset House, 2000.

[25] D. Hoffman and P. Strooper, “API Documentation with Execu-
table Examples,” The J. Systems and Software, vol. 66, pp. 143-156,
2003.

[26] H. Hong, I. Lee, O. Sokolsky, and H. Ural, “A Temporal Logic
Based Theory of Test Coverage and Generation,” Proc. Int’l Conf.
Tools and Algorithms for Construction and Analysis of Systems
(TACAS2002), pp. 327-341, Apr. 2002.

[27] http://www.comlab.ox.ac.uk/archive/formal-methods/, Oct.
2004.

[28] N. Johnson and S. Kotz, and N. Balakrishnan, Continuous
Univariate Distributions, vol. 1. Wiley & Sons, 1994.

[29] D. Karolak, Software Engineering Management. IEEE CS Press, 1996.
[30] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky,

“Monitoring, Checking, and Steering of Real-Time Systems,” Proc.
Second Int’l Workshop Runtime Verification, July 2002, available at
www.cis.upenn.edu/rtg/mac/.

[31] X. Liang, J. Puett, and Luqi, “Perspective-Based Architectural
Approach for Dependable Systems,” Proc. ICSE 2003 Workshop
Software Architectures for Depenable Systems, pp. 1-6, May 2003.

[32] Luqi, “Real-Time Constraints in a Rapid Prototyping Language,”
Computer Languages, vol. 18, pp. 77-103, 1993.

[33] Luqi, V. Berzins, and R. Yeh, “A Prototyping Language for Real
Time Software,” IEEE Trans. Software Eng., vol. 14, no. 10, pp. 1409-
1423, Oct. 1988.

[34] Luqi and Z. Guan, “A Software Engineering Tools for Require-
ment Document Based Prototyping,” Proc. Seventh World Multi-
conf. Systemics, Cybernetics and Infromatics, vol. VI, pp. 237-243, July
2003.

[35] Luqi, Y. Qiao, and L. Zhang, “Computational Model for High-
confidence Embedded System Development,” Proc. Monterey
Workshop—Radical Innovations of Software and Systems Eng. in the
Future, pp. 265-303, Oct. 2002.

[36] Luqi, X. Liang, M. Brown, and C. Williamson, “Formal Approach
for Software Safety Analysis and Risk Assessment via an
Instantiated Activity Model,” Proc. 21st Int’l System Safety Conf.,
pp. 1060-1069, Aug. 2003.

[37] M. Lyu, Software Reliability Engineering. IEEE CS Press, 1995.
[38] J. Martin, Rapid Application Development. Prentice Hall, May 1991.
[39] M. Murrah, “Enhancements and Extensions of Formal Models for

Risk Assessment in Software Projects,” PhD dissertation, Naval
Postgraduate School, Sept. 2002.

[40] J.C. Nogueira, “A Formal Model for Risk Assessment in Software
Projects,” PhD dissertation, Naval Postgraduate School, Sept.
2000.

[41] S.R. Palmer and J.M. Felsing, A Practical Guide to Feature-Driven
Development. Pearson Education, Feb. 2002.

[42] C. Paris and K. Linden, “Building Knowledge Bases for the
Generation of Software Documentation,” Proc. Int’l Conf. Computa-
tional Linguisitics, http://acl.ldc.upenn.edu/C/C96/C96-2124.
pdf, 1996.

[43] M. Poppendieck and T. Poppendieck, Lean Software Development:
An Agile Toolkit for Software Development Managers. Addison-
Wesley, 2003.

[44] J. Puett, “Holistic Framework for Establishing Interoperability of
Heterogeneous Software Development Tools,” PhD dissertation,
Naval Postgraduate School, June 2003.

[45] M. Saboe, “A Software Technology Transition Entropy Based
Engineering Model,” PhD dissertation, Naval Postgraduate
School, Mar. 2002.

[46] K. Schwaber and M. Beedle, Agile Software Development with
SCRUM. Prentice Hall, Oct. 2001.

[47] O. Sheyner, S. Jha, and J. Wing, “Automated Generation and
Analysis of Attack Graphs,” Proc. IEEE Symp. Security and Privacy,
pp. 273-284, May 2002.

[48] Software Engineering Institute, “Software Risk Management,”
Technical Report CMU/SEI-96-TR-012, Carnegie Mellon Univ.,
June 1996.

[49] J. Stapleton, DSDM: Business Focused Development. Addison-
Wesley, 1997.

[50] L. Williams and A. Cockburn, “Agile Software Development: It’s
about Feedback and Change,” Computer, vol. 36, no. 6, pp. 39-43,
June 2003.

[51] L. Wills, S. Sander, S. Kannan, A. Kahn, J. Prasad, and D. Schrage,
“An Open Control Platform for Reconfigurable, Distributed,
Hierarchical Control Systems,” Proc. Digital Avionics Systems Conf.,
Oct. 2000, http://controls.ae.gatech.edu/papers/kannan_
dasc_00 .pdf.

[52] J. Wing, “Scenario Graph Generation and MDP-Based Analysis,”
Presentation at ARO Kickoff Meeting, Univ. of Pennsylvania,
Philadelphia, May 2001, http://www-2.cs.cmu.edu/svc/talks/
html/wing_files/frame.htm.

[53] WRAIR Dept. of Resuscitative Medicine, “Narrative Descrip-
tion of the CARA Software,” Proprietary Document, WRAIR,
Jan. 2001.

[54] WRAIR Dept. of Resuscitative Medicine, “CARA Pump Control
Software Questions,” Version 6.1, Proprietary Document, WRAIR,
Jan. 2001.

[55] WRAIR Dept. of Resuscitative Medicine, “CARA Tagged Require-
ments, Increment 3,” Version 1.2, Proprietary Document, WRAIR,
Mar. 2001.

[56] P. Young, V. Berzins, J. Ge, and Luqi “Using an Object Oriented
Model for Resolving Representational Differences between Het-
erogeneous Systems,” Proc. 17th ACM Symp. Applied Computing
(SAC), pp. 976-983, Mar. 2002.

ZHANG ET AL.: DOCUMENTATION DRIVEN DEVELOPMENT FOR COMPLEX REAL-TIME SYSTEMS 951

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 



Luqi worked on software-intensive system
modeling and automation, computer-aided pro-
totyping for real-time and embedded systems,
project and system risk assessment, and control
systems engineering using requirements speci-
fication languages and software architectures.
Since her US National Science Foundation
Presidential Young Investigator Award and an
IEEE Technical Achievement Award, she
founded the Software Engineering Program,

has successfully completed more than a hundred projects and
supervised hundreds of graduate students including dozens of PhDs,
served as a professor and associate chair of computer science, and the
director of the Software Engineering Automation Center at the US Naval
Postgraduate School. She has also served on many editorial boards,
including IEEE Software, IEEE Expert, and IEEE Transactions on
Software Engineering, and chaired or served on a hundred program
committees of conferences and workshops. She is a fellow of the IEEE.

Lin Zhang received the BS degree in 1986 from
the Department of Computer and System
Science at Nankai University, China. He re-
ceived the MS degree and the PhD degree in
1989 and 1992, respectively, from the Depart-
ment of Automation at Tsinghua University,
China, where he worked as an associate
professor from 1994. He served as the director
of CIMS Office, National 863 Program, China
Ministry of Science and Technology, from 1997

to 2001. He is currently working at the US Naval Postgraduate School as
a senior research associate of the US National Research Council. His
research interests include software engineering, real-time and em-
bedded systems, risk analysis, project management, and system
modeling and control.

Valdis Berzins received the PhD degree from
MIT in 1979 and worked as a professor at the
University of Texas, the University of Minnesota,
and the Naval Postgraduate School, served as
chair of the Software Engineering PhD Program
Committee at Naval Postgraduate School. His
research addresses many aspects of software
engineering, with the objective of increasing
productivity and software quality via automated
decision support. His work has been supported

by the US National Science Foundation, ARO, and computer industry,
resulting in numerous publications, student theses, and software
systems. He designed two specification languages, and initiated
software merging as a research area by developing the first semantically
sound method for automatically combining extensions to software
systems, a comprehensive theory of modifications to software, and
the first methods for combining changes to software that treat parallel
programs and algorithm optimizations. Other research directions include
requirements, lightweight inference, software synthesis, risk reduction,
software architectures, interoperability, reuse, and reengineering. He is
the author of books on software specifications and computer-aided
software maintenance.

Ying Qiao received the PhD degree in computer
science from the Institute of Software, Chinese
Academy of Sciences, in 2001. She is currently
a research associate at the US National Re-
search Council. Her research interests include
software engineering, embedded systems, and
real-time scheduling.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

952 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore.  Restrictions apply. 


