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ABSTRACT 

The purpose of this thesis is to develop a model for allocating the Consolidated 

Automated Support System (CASS) to the intermediate repair sites.  The model uses 

integer, linear, and nonlinear programming (optimization) to determine the approximate 

number of CASS stations at a site based on demand, operational availability of the 

aircraft at the site, budget, and utilization of the CASS stations.  The model can be used 

as a decision tool by NAVAIR PMA 260 to allocate CASS stations to that site.  Monte 

Carlo simulation with Crystal Ball is used to examine the impact of variability on the 

current and the proposed solution.  Determining the number of CASS at a site affects the 

number of spare parts and the operational availability, and in turn will affect the budget 

of PMA 260.  In this thesis, we develop a decision support tool to assist PMA 260 in 

making these CASS allocation decisions.  Moreover, the most significant contributions 

are the proof of concept that variable and peak demand can be incorporated into capacity 

planning (beyond planning for average demand) and linking predicted congestion to 

operational availability of aircraft (readiness). 
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I. INTRODUCTION 

A.  THE PROBLEM 

The allocation of resources is a critical function to any organization.  

Understanding how many resources to be allocated and for what reason is critical in 

meeting customer demand in order to meet the required service level.  The Consolidated 

Automated Support System (CASS) program office at Naval Air (NAVAIR) PMA 260 

has the task of allocating five different CASS stations to 52 different United States Navy 

(USN) and United States Marine Corps (USMC) sites.   

The program office receives calls from these sites periodically requesting more 

CASS stations in order to clear their backlog (queue) of parts.  PMA 260s current method 

of CASS allocation has been effective but can be improved.  One factor the current 

method does not explicitly consider is variability.  If queues constantly build at sites, they 

contribute to long turn-around times (TAT), which “affect customer service level,” also 

known as “operational availability” (Ao).  The program office must be confident in their 

allocation in order to satisfy the Ao of each site. 

B. FACTORS BEYOND THE CONTROL OF SITES 

There are many inherent factors in the aviation community beyond the control of 

local repair sites which make support of aviation weapons systems difficult to manage.  

These factors are: (a) aircraft overfly hours, (b) actual failure rates exceed projected rates, 

(c) aircraft delivered prior to replacement parts, (d) readiness desired above that 

planned/designed, (e) TAT for repairs exceeds the plan, (f) configurations of aircraft and 

equipment frequently change, and (h) limited off-the-shelf buys (NALDA, 2003). 

Aviation managers at each site face these issues, due to new political 

environments, such as changes in presidential administrations and Chief of Naval 

Operations, which were not originally planned for.  At each site, control of external 

inherent factors (i.e., flight hours, configurations, number of replacement parts, etc.) is 

too limited to control variability.  It is the responsibility of NAVAIR to support sites to 

meet requirements set within NAVAIR offices, even though changes in demand, high or 
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low, occur (NAVAIRSYSCOM, 2002). PMA 260 cannot predict the future nor get a 

promise from another NAVAIR office to determine future demand to meet a service level 

consistently.  PMA 260 can, on the other hand, support their sites by allocating resources 

based on possible increases in demand, and possible changes in the other factors 

mentioned above. To do this, they need to estimate variance for factors examined in this 

project (in some cases from sources outside PMA 260, and use this projects algorithms to 

choose CASS allocation which is robust to major sources of risk. 

Additionally, the high variation in demand with current deployment schedules 

causes larger than predicted queues for CASS during some time periods, seriously 

affecting aircraft readiness.  Allocating CASS based on real-time service rates is difficult 

and, concurrently, when demand is high, can be too costly.  Currently, PMA 260 cannot 

allocate stations to meet every sites’ peak periods.  It strives to meet the long-run average 

of all sites combined with a surge load factor (SLF).  

C. ADDITIONAL CONTRIBUTING FACTORS AFFECTING DOWNTIME 

Other contributing factors affecting system downtime of weapons systems at the 

local level attributed to material management which CASS cannot improve: (a) improper 

material requested by the squadron, (b) lack of adequate technical research by 

maintenance and or supply, (c) improper trouble shooting practices, (d) delay in turn-in 

of removed material, (e) maintenance not returning not-mission-capable supply (NMCS) 

items to a ready-for-issue (RFI) condition expeditiously, (f) improper management and 

supervision practices, (g) lack of material planning for maintenance and supply 

personnel, (h) inadequate packaging/protection of repairable components, (i) improper 

utilization of existing resources, (j) improper application of established maintenance and 

supply practices, and (k) lack of coordination between maintenance and supply.  These 

other factors do not play into this project’s algorithm because adding additional CASS 

does not address the problems caused by these factors.  

An improved CASS allocation as suggested in this project cannot by itself 

improve the entire fleet readiness or service level, but can address variability in demand 

and service times of CASS, to reduce backlogs during periods of peak demand, and 



 3

provide a proper mix of each type of CASS.  Additionally, the CASS network is part of a 

supply chain network, which is large and complex and could take months or years to 

adjust the entire network.  This project focuses on understanding the current workload 

model formula, the history of it, why it should be adjusted to account for variability, and 

whether adding CASS stations will improve the queue length in order to meet a probable 

level of demand during a given time.  

D. AN ALTERNATE SOLUTION PROPOSED BY THIS PROJECT 

Controlling variability is a difficult task.  Authors Wallace Hopp and Mark 

Spearman discuss variability and control in Factory Physics (Hopp & Spearman, 2000).  

Collecting data over time in order to forecast the service and demand to allocate CASS is 

a way to adapt to the variability, which, in turn, controls variability, or keeps it under 

control in order to meet the required customer service level.  Understanding and 

capturing variability in service rates and demand (arrival rate) is important in order to 

have a maintenance capability to support the billions of dollars invested on the flight line.  

Once the variability is captured, the allocation of the CASS allocation decision can be 

made against any level of probable demand, not just the expected demand.  For example, 

PMA 260 would be able to allocate stations to meet the demand of 80% of the time 

(rather than 50% of the time implied by allocating to average demand).  

This projects goal is to allocate CASS using Integer Linear and Nonlinear 

Programming.  Using this approach will give an integer value for the number of CASS to 

allocate based on a service level for a site and the distributions of each sites demand and 

service rate.  The service rates of each site will vary due to several factors, including the 

time period of their turnover of experienced personnel.  Such variance has an important 

impact on capacity, but may be the same for each site, because each site will go through 

the same turnover situation. 
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E. RESEARCH QUESTIONS 

CASS is a critical logistics function to support the aircraft readiness of each site.  

The decision to add one more CASS station increases costs but can reduce TAT and 

spare repairable UUTs.  The question in order to minimize total site cost is:  

1. Primary Research Question 

What is the best mix of CASS stations required at a site?  

2. Secondary Research Questions 

How does the current workload formula assign capacity and what are its key 

assumptions? 

Can an alternative model be developed to account for demand and service rate 

variance? 
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II. LITERATURE REVIEW 

In examining the literature pertinent to our research, it is necessary to first review 

a) the various levels of maintenance supported by Consolidated Automated Support 

System (CASS), b) the various types of units being repaired by CASS, and c) the various 

types of CASS benches.  Following this review of the technology, we will review the 

central problem at hand, determining the correct number of benches and their allocation, 

and examine the current approach to solving this problem.  Finally, since we are 

proposing an optimization approach coupled with a risk-based contingency analysis, we 

will review work on related problems which have used similar approaches.   

A. MAINTENANCE LEVELS 

The location of each CASS is important to Naval Aviation.  The maintenance 

actions that are performed are dispersed through three levels of maintenance, each having 

its own degree of repair difficulty.  Before beginning to define CASS and the way it 

works, it is necessary to understand the different levels of repair in Naval Aviation and 

how they affect the allocation of CASS.  The Naval Aviation Maintenance Program 

(NAMP) defines three levels of maintenance as: 

1. Depot Level Maintenance (D-Level)  

This is the most in-depth, time-consuming, and costly maintenance level in Naval 

Aviation.  This level of maintenance works on material requiring major rework or a 

complete rebuild of parts, assemblies, subassemblies, and end items, including 

manufacture, modification, testing, and reclamation of parts as required.  D-level 

maintenance serves to support lower levels of maintenance by providing technical 

assistance and performing maintenance beyond the responsibility of O-level and I-level 

maintenance.  D-level maintenance provides stocks of serviceable equipment by using 

more extensive facilities for repair than are available in lower-level maintenance 

activities.  Items that are repaired or serviced here are called Depot Level Repairables, 

also commonly referred to as DLRs.  
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2. Intermediate Level Maintenance (I-Level)  

This level of maintenance is referred to as Fleet Readiness Center (FRC), 

previously referred to as the Aviation Intermediate Maintenance Detachment (AIMD), 

attached to the Type Commander (TYCOM) of a specific aircraft platform. Its workforce 

consists of active duty aviation maintenance technicians, active duty ground maintenance 

officers, and civilian artisans with over 15 years of experience on the equipment which is 

repaired. Additionally, the artisans provide training and continuity to the facility, base, 

and operational capability of the squadrons. An I-level FRC is located on the same Naval 

Air Base/Station as the type/model/series aircraft it services.  The I-level FRC performs 

(a) calibration, (b) repair or replacement of damaged or unserviceable parts, components, 

or assemblies; (c) the emergency manufacture of non-available parts. It also provides 

technical assistance to the squadrons.  The D-level FRC is regionally located and 

performs in-depth overhaul, repair, and modification of aircraft, engines, and aeronautical 

components. Both levels of FRC are under the command of a Navy or Marine Corps O-6 

in a respective region (i.e., Northwest, Southwest, East, etc.).  A region can have up to 

eight I-level and one D-level FRCs, consisting of more than 20,000 active duty and 

civilian personnel.    

3. Organizational Level Maintenance (O-Level) 

These are squadrons of specific type/model/series aircraft. They are operationally 

deployable forces using assets and manpower in order to project naval power at sea and 

abroad. In order to maintain and sustain this war-fighting capability, the squadron must 

be able to maintain its own aircraft but with a little supply and equipment footprint. The 

maintenance performed at this level is trivial, but troubleshooting can be the time-

consuming difficult task. The responsibility of the maintenance department for its 

assigned equipment consists of inspecting, servicing, lubricating, adjusting, and replacing 

parts, minor assemblies, and subassemblies (COMNAVAIRSYSCOM, 2008). If a part is 

broken or needs repair or a in-depth inspection, the O-level sends it to I- or D-level.  This 

level of maintenance is commanded by a Navy or Marine Corps O-5 pilot or Naval flight 

officer and operates between 4 and 12 aircraft with 160 to 350 personnel. 
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B. AUTOMATIC TEST SYSTEM (ATS) 

The Automated Test System (ATS) is a fully-integrated, computer-controlled 

suite of electronic test equipment and instrumentation hardware, software, 

documentation, and ancillary items designed to verify at any level of maintenance the 

functionality of a Unit Under Test1 (UUT).  The term UUT includes weapons replaceable 

assemblies and shop replaceable assemblies, described further in the next section 

(Belcher, 2009)   The ATS combines three elements: 

First, Automatic Test Equipment (ATE), which is an instrument or set of 

instruments to measure the reliability and figure out the faults and defects of various 

electronic and avionic parts which are currently used in the fleet. The ATE may be a 

single computer or several computers, depending on the size of its utility purpose. ATE 

software includes operating system software, test executive software, and instrument 

control software.  

As for the ATE’s operational rationale, they perform their jobs in line with the 

software by giving the input stimuli and by measuring the UUT output responses. These 

responses define a UUT’s operational ready-for-issue (RFI) state or isolate a fault 

detection.  Furthermore, ATE is used to meet I- and D-level maintenance requirements 

for electronic and avionic weapon systems and also tests their circuit boards. 

Second, in order to connect the UUT to the ATE, a Test Program Set (TPS) is 

used.  It is an interface set of hardware devices (with ancillary equipment) with test 

program software specific to a UUT with required documentation.  The TPS software 

directs all test functions, including fault isolation and diagnostics, and can certify the 

condition of a UUT.  The ancillary hardware consists of cables, probes, holding fixtures, 

and other peculiar instrumentation (Belcher, 2009). A set of UUTs has a unique TPS that 

has the electrical and mechanical tools and the test software to test those UUTs (Flynn, 

2007). 

Third, it gathers information in order to design test environment and TPS software 

for UUTs.  This test environment includes a description of the ATS architecture, 
                                                 

1 UUT: A component that is being tested on the CASS station. 
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programming, and test specification languages; compiler; and development tools.  It also 

provides for capturing and using UUT design requirements and test strategy information 

in the generation and maintenance of TPS software (Belcher, 2009). 

C. WRAs AND SRAs 

ATSs are used throughout the Department of Defense (DoD) to perform both 

functional and diagnostic testing of different UUTs.  UUTs include, but are not limited 

to, shop replaceable units (SRUs), line replaceable units (LRUs), shop replaceable 

assemblies (SRAs), weapons replaceable assemblies (WRAs), and other removable 

components from weapons platforms or support systems. For this project UUTs consist 

only of WRAs and SRAs.  

D. TPS AND OTPS 

A TPS, as mentioned earlier as part of the ATS, includes the software, hardware, 

and documentation needed to test, fault detect, and isolate, or perform any other 

evaluation of a specific UUT. An Operational Test Program Set (OTPS), on the other 

hand, is a logically-bundled group of TPSs (merging of one or more TPSs) that use the 

same set of hardware items, such as interface devices, cables, and mounting plates. An 

OTPS usually contains TPSs that test one or more WRAs and their SRAs 

(COMNAVAIRSYSCOM, 2009).  OTPSs contain the following elements: Operational 

Test Program Hardware, Operational Test Program Medium, Operational Test Program 

Instruction, Master Test Program Set Index, Technical Manual, and User Logistic 

Support Summary. The TPS as part of the OTPS is used by Navy I- and D-level 

maintenance technicians to perform maintenance on selected UUTs.  Each of the Test 

Programs (TPs) of an OTPS does reside on the test program medium (TPM).  The TPM 

is structured in such a manner that it is possible to identify the individual test programs 

residing therein (e.g., a table of contents). 
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E. INTERFACE DEVICE (ID) 

In order to understand the ATS run time and other variables that make up in the 

ATS, it is important to grasp the following: The interface device (ID) provides the 

necessary electrical, mechanical, hydraulic, pneumatic, radiated, and optical interfaces 

between the ATE and the UUT.  An ID can consist of simply a panel ID that mates 

directly with the UUT and ATE interface, but can also include a cable set and test fixture 

as required by individual TPS requirements.  All of the ID requirements of the individual 

TPSs of an OTPS merge into a common ID. 

The ID is the necessary wiring and circuitry to interface the UUT to the ATE and 

to resolve any incompatibilities that exist between the ATE and the UUT in order to 

implement the test requirements. The cable set provides the means to route power, 

stimulus, measurement, and test point signals between the UUT, ID, and ATE to effect 

testing of the UUT and self-test of the panel ID.  When required by a particular UUT, and 

in addition to the panel ID, a test fixture is provided as part of the TPS to provide an 

electrical and mechanical interface with the UUT.  In such cases, the cable set interfaces 

the panel ID to the test fixture. 

F. HISTORY OF AUTOMATIC TEST EQUIPMENT 

Before the introduction of ATEs in the 1970s, the Navy used peculiar support 

equipment (PSE) to meet its testing requirements in avionics and electronics. Those PSEs 

were only supporting a single avionic system each, which resulted in a lot of complexity 

as the weapon systems proliferated and their relative sizes got much bigger after the 

1970s (Meredith, 1990).  

The DoN had its first ATE system in 1972 with Versatile Avionics Shop Tester 

(VAST). However, the problems began to increase with the advent of each new ATE 

system. Some of them required big spaces; others needed special operator training, and 

some others overheated during their operation periods. Moreover, each legacy ATE 

system required different installation and operation procedures and followed various 

supply chains to procure the necessary assemblies (Mena, 1994). All these problems 

made the Navy look meticulously for a single ATE system that was able to meet the 
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requirements of nearly all the avionic and electronic components and is also able to 

operate all the existing TPSs to support both the I- and D-level maintenance needs. To 

better understand the complexity in testing needs, it is necessary to look at the numbers in 

1990. More than 24 different ATEs and  three hundred manual testers were used in 1990 

to meet the test requirements of complex weapon systems (Meredith, 1990).  

Seeing that the legacy test systems were pushing the maintenance costs up and 

only met the needs of their own specific components, DoN initiated programs to unify all 

test equipment during the late 1980s (Kelly, 2002). Finally, the Navy ordered the first 

new breed of ATE, CASS, in 1990 and introduced it to the fleet in 1994 to supplant all 

legacy ATE systems in order to solve testing, maintainability, and supportability 

problems. The last of the 553 mainframe CASS stations was delivered in December 

2003. Currently, the Navy and Marine Corps use 713 of these stations for afloat and 

shore-based I- and D-level maintenance support.  Some stations are used at various Navy 

depots, a National Oceanic and Atmospheric Administration depot, and around the world 

by more than 10 different countries (DoD, 2006). 

Throughout its development, introduction, and operation, CASS was configured, 

designed, and developed with the sole aim of maximizing the utility of the new ATE 

system while eradicating the issues that the legacy ATE systems presented, such as 

overheating, space requirements, special operator training, and expensive TPS software 

(Mena, 1994). One of its biggest advantages was that it was designed to be easily 

adaptable to new technologies (Mulato, 1999). 

“The CASS project was established in 1978 in response to the NAVAIR ATE 

Program Plan to provide a long-term solution to the many historical ATE problems and 

meet the challenge of emerging testing needs during its life cycle” (Meredith, 1990).  

CASS aesthetics, configurations, and design, were intended to meet the Navy’s 

maintenance and testing needs through 2011.  After that, e-CASS will replace CASS 

stations beginning in 2016. 
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1. Allocation of ATE 

The allocation of ATE used a linear algebraic workload model called the ATE 

Workload Model.  This model used averages for inherently random parameters, such as 

Elapsed Maintenance Time (EMT) and number of UUT inductions.  The averages were 

used in an attempt to account for the repair queue of random surges in UUT inductions 

and variations in EMT by setting the CASS station utilization to some value less than one 

(Meredith, 1990).  This was the Surge Load Factor (SLF) in the model in order to capture 

and integrate increased workload into the ATE network.  If the SLF were one, it would 

not be capable of supporting a higher workload, in theory, and then there would be no 

allowance of additional workload if the average flight hours were increased 

unexpectedly.  If the SLF were 50%, then there would be a planned 50% surge allowance 

of UUTs in order to handle additional demand, and then there would be two ATEs for the 

UUTs at the site.  This would allow the site to account for any possible surge in demand..  

If the flight hours increased, the UUTs that fell under that ATE would have to wait in a 

queue or be subject to Beyond Capability of Maintenance (BCM) action and be routed to 

another site.  Problems arising from this Workload Model could be (a) having an 

underutilized network, (b) increasing costs if 100% were used, and (c) reducing worker 

efficiency below 100%, which could increase the TAT and cause a queuing problem.  

G. CONSOLIDATED AUTOMATED SUPPORT SYSTEM (CASS) 

CASS is defined by the Navy Training System Plan (NAVAIRSYSCOM, 2002) 

as “a computer-assisted, multi-functional automatic test equipment used to test various 

electronic components at Navy and Marine Corps Intermediate Maintenance Activities, 

Naval Weapons Stations, Naval Aviation Depots, and Naval Sea System Command 

support activities.”  

Similarly, Meredith (Meredith, 1990) defines CASS as “a modular, 

reconfigurable, computer driven automatic test station capable of providing performance 

verification and diagnostic fault isolation for all complex electronic components.” 

According to his study, though CASS primarily targets I-level maintenance, it will also 

include D-level maintenance. So, while the official definition of CASS from Navy 
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Training System Plan focuses on the level of maintenance for various components, 

Meredith’s definition of CASS explains its basic capabilities.  

H. OBJECTIVE OF CASS 

Officially, Navy Training System Plan (NAVAIRSYSCOM, 2002) defines the 

objective of CASS as “to consolidate electronic and avionics support into one standard 

ATE system.” So, the most basic objective of the CASS was to provide common-ground 

ATE for the Navy and the Marine Corps. This commonality, then, was expected to 

eliminate various kinds of ATEs, which the literature defines as legacy systems, and it 

did so.  The objectives of the CASS Project were two-fold: First, increase the throughput, 

which means to improve operational availability, readiness, and capability to meet sortie 

requirements. Second, have a standard ATE hardware, software, and support, which 

mean less ownership costs of diversified test equipment (Meredith, 1990). 

A third objective might be providing commonality throughout the Navy and the 

Marine Corps, so that the I-level and D-level artisans and technicians can be the masters 

of the new ATE system, and they can address the needs of the fleets faster, better, and in 

a more accurate way. Moreover, eliminating these legacy systems would also decrease 

costs for the ATEs.  Since CASS is common ATE now, and all kinds of parts, pieces, and 

assemblies are procured with their CASS-compatible TPSs, which will also be consistent 

with the next-phase ATE in the future, DoN has been reaping the harvest of this common 

ATE system by means of decreased costs. 

I. FUNCTIONAL DESCRIPTION OF CASS 

Navy Training Systems Plan (NAVAIRSYSCOM, 2002) describes a CASS 

station as “a five-rack integrated test system known as Hybrid Tester.” The mounting of 

particular racks to the Hybrid Tester enables CASS to test different kinds of components 

for different kinds of aircraft platforms. Also, CASS was designed to accommodate 

deviations in the workload and to use common TPSs in different configurations. As of 

2010, there are five CASS configurations (see Figure 1): 
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1. Hybrid (HYB) 

The CASS Hybrid station provides the core test capability for general-purpose 

electronics, computers, instruments, and flight controls. 

2. Radio Frequency (RF) and Ancillary High Power Device Test Set 
(HPDTS) 

The CASS RF station provides Hybrid station test capability plus Electronic 

Countermeasure, Electronic Counter-Countermeasure, Electronic Warfare, Support 

Measures, Fire Control Radar, Navigation Radar, Tracking Radar, Surveillance Radar, 

and Radar Altimeter support capability. The CASS High Power station provides RF 

station capability plus the capability to test high power RADAR systems, such as the 

APG-65 and APG-73. 

3. Communication, Navigation, Identification (CNI) 

The CASS CNI station provides RF station capability plus communication, 

navigation, interrogation, and spread spectrum system support capability. 

4. Electro-Optical (EO3) 

The CASS EO3 station provides Hybrid station test capability plus support 

capability for Forward Looking Infrared, Lasers/Designators, Laser Range Finders, and 

Visual Systems. 

5. Reconfigurable Transportable (RTCASS) 

The RTCASS provides a man-portable CASS configuration using computer off-

the-shelf hardware and software to meet USMC V-22 (Osprey) and H-1 (Helicopter 

models) support requirements as well as to replace mainframe CASS stations at USMC 

fixed wing aircraft EA-6B (Prowler), F/A-18 (Hornet), and AV-8B (Harrier) support 

sites. 
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J. HOW MANY CASS STATIONS ARE REQUIRED? 

The objective in assigning a number of CASS stations to sites is related to cost 

effectiveness. On the one hand, if the Navy assigns more stations than a site needs, then it 

incurs unnecessary capital costs.  On the other hand, if the Navy assigns fewer than a site 

needs, then this can lead to higher turn-around times, transportation costs due to BCMs, 

lower aircraft readiness, more cannibalization, and longer maintenance delays, which 

together might undermine the effectiveness and overall readiness in the Navy.  

“Implementation of CASS at a site is ultimately a question of cost-effectiveness: How 

many CASS stations are enough” (Lynn, 1996)?  This question has been a challenge for 

NAVAIR, and for the past decade they have been using a workload formula (described 

below) to determine the number of CASS stations for each site. The workload formula is 

essentially the same as the past ATE workload model.  One of the objectives of this 

research is to evaluate the suitability of the workload formula, and to suggest 

improvements in the formula and its application.  

1. Assigning CASS Stations to Maintenance Centers  

There are a lot of studies, articles, and government reports about how many CASS 

stations to assign to each maintenance center and what kind of factors to take into 

account. While the NAVAIR CASS program office (PMA 260) is using a workload 

formula depending on some variables, assumptions, and constants, Lynn (1996) uses five 

measures of effectiveness to evaluate CASS requirements: full-mission-capable (FMC) 

and mission-capable (MC) rates, sortie-generation rate, cannibalization rate, and turn-

around time.  According to the study, adding more CASS stations, at some point, does 

not improve the performance of a maintenance center (Lynn, 1996).  The goal of Lynn’s 

study is to find out both the type and the number of CASS stations to assign to each site.  

2. Current Situation at PMA-260 

The Program Office, PMA 260, for CASS in NAVAIR is using a workload 

formula right now to allocate the CASS stations to the 52 USN/USMC sites. Below are 

the workload formula and its assumptions. 



 15

(# of aircraft)  (monthly flight hours) (MTOS)Workload
(CASS A )  (monthly op. hours)  (MTBUM)o

× ×
=

× ×
 

• # of aircraft: The number of specific type/model/series aircraft at a 
specific site. 

• monthly flight hours: Average monthly flight hours for each aircraft. 

• MTOS: End-to end run time and other times for WRA 

• CASS Ao : Operational Availability of the CASS station in a given month 
is assumed to be 80%.  This was the SLF of the ATE workload model.  

• Site Monthly Operating Hours: Total available hours of a CASS station in 
a month: 

• SEA = 2 shifts x12 hrs x 30 days x .85 = 612 hrs 

• SHORE = 2 shifts x 8 hrs x 22 days x .85 = 299.2 (300) (15% 
allowance for other activities of total man-hours). 

• MTBUM: Mean time between unscheduled maintenance for each UUT 
(Cervenak, 2010) 

 

PMA 260 is using this workload formula and calculating the CASS and 

TPS/OTPS requirements for each UUT.  Finally, they add up all those requirements and 

figure out the total specific type of CASS and TPS/OTPS requirement.  The formula 

contains several constants, which are estimates for the values of random variables.  For 

example, the MTOS for any UUT includes an additional 180 minutes to represent 

administrative and setup delays.  But, the MTOS is a global random variable.  The 

constants are not necessarily estimates of mean values:  they are standards that have built-

in allowances for excess time required, but there is not a probability associated with the 

estimate, which would allow a risk-based contingency analysis.  Because of congestion 

effects (delays in busy periods), assuming a constant value, even if that constant is 

inflated, might lead to an under-allocation of workstations in periods of peak demand.  

This argument is also true for other constant assumptions.  We contend that a better way 

to deal with the built-in variability in this process is to use tools which explicitly 

incorporate the impact of variability.  Therefore, our optimization approach 
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will incorporate estimates of queuing delays due to variability, and we will use a Monte 

Carlo simulation tool (Crystal Ball) to conduct post-hoc sensitivity analyses in order to 

build contingency plans.  

The current workload is a basic linear algebraic model where number of aircraft 

times monthly flight hours (200 * 30 = 6000) is the total number of expected flight hours. 

This is divided by the MTBF of the UUT (6000 / 100 = 60), which has an output of the 

expected demand of the UUT in a given month while flying 30 hours per aircraft. The 

other part of the workload is MTOS divided by the Ao (SLF/utilization/expected down 

CASS station) times availability of man-hours to work (4 / (.8 * 300) = .0166).  This 

UUT workload requirement is (60 * .016667 = 1.00) one CASS station.  The formula 

says that, with each increase in flight hours, the demand of a CASS station will linearly 

increase as in Figure 1. 

 

Figure 1.   Workload linear relationship 

The values in the example are approximations; an increase in flight hours will 

increase the expected number of failures.  The workload output is a constant value 

affecting current and future months; thus the actual arrivals or demand will not be the 
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same each month.  If the average or the max (max peak hours) is calculated, the total will 

capture either 50 % or 100 % of the possible demand for a month for a UUT.  This will 

affect the arrival rate into the I-levels for each type of CASS.  This can cause an 

underutilized network of CASS stations or overutilized network of CASS and cause 

backlog of many UUTs.  

K. RELATED PROBLEMS USING SIMILAR APPROACHES 

Many public and private organizations are effectively using mathematical models 

of the sort we are proposing to solve their resource allocation problems (ReVelle & 

Eiselt, 2005). The managers in these organizations (emergency ambulance services, fire 

departments, forest services, military sites, banks, manufacturers, retailers, etc.) are 

looking for better methods to allocate their scarce resources and two of those methods are 

linear and nonlinear programs.  However, these mathematical models also need constant 

values for the aforementioned assumptions.  In order to decrease the effect of 

deterministic values for the processes, we are incorporating the spreadsheet simulation 

for our sensitivity analysis.  Hence, we will see the effects of change in each assumption 

on the CASS requirement and provide a better model to the decision makers.  

At the heart of our proposed optimization method is a linear and a nonlinear 

program.  A good review of linear programming and its restrictions can be found in 

(Balakrishnan, Render, & Stair, 2007).  In the linear mathematical programming, the 

objective function and the constraints are assumed to have linear relationship with the 

decision variables (Ragsdale, 2004). Although many of the problems we face in the real 

world are nonlinear, we can sometimes approximate these nonlinearities with linear, or 

piecewise-linear, elements, which are acceptable approximations of the more complex 

real-world problems (Jensen & Bard, 2003). But we cannot model all problems with 

linear approximations.  

Below, we categorize and describe work related to our problem of determining 

the allocation of CASS stations to depot and intermediate maintenance sites. 

A known problem which bears a superficial resemblance to ours is the maximal 

covering location problem (MCLP).  Church and Revelle (1974) assert that MCLP tries 
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to maximize the population to be served within a predetermined service distance or time 

given the number of facilities being constrained.  According to Berman and Krass (2002), 

the MCLP is one of the best facility location models from theoretical and practical 

perspectives.  The objective of the MCLP is to locate a number of facilities in order to 

maximize the total area of covered demand from customers or citizens, where they are 

accepted as covered if they are located within a specified distance from the closest 

facility location. 

This is related to our CASS allocation problem if one considers the CASS stations 

as facilities to be located and part demand as a kind of consumer demand to be satisfied.  

However, the MCLP assumes coverage as binary.  In other terms, a specific customer 

area is either covered or not covered by the location of a single facility, whereas we are 

concerned with the degree (or percentage) of coverage provided by some number n of 

workstations.  Also, in the MCLP, the coverage depends on the specified distance, 

meaning that, if the facility is within the accepted distance, it is considered to have full 

coverage.  But that assumption may be unrealistic, even in the MCLP problem (Berman 

& Krass, 2002), and in any event is not directly analogous to our CASS allocation 

problem.  

Linear and integer programs differ from the goal programming (GP) in that they 

have single-objective functions.  However, GPs have multiple-objective functions which 

most of the time conflict with each other.  So, GP tries to satisfy each objective to a 

certain extent by ranking them in terms of their importance (Balakrishnan et al., 2007).  

Armstrong and Cook (1979) discuss some applications of GP to optimally allocate a 

number of search and rescue (SAR) aircraft to a fixed number of available bases.  Their 

model also includes the type of SAR, along with the number of those available SAR 

aircraft.  In fact, their model is similar to the resource allocation model. 

Assigning the appropriate number of SAR aircraft to locations is a critical 

function to support economies and public safety.  Armstrong and Cook (1979) use GP to 

derive the most effective level of service relative to various occurrences of air and marine 

emergencies.  Their goal is to determine the appropriate mix of SAR aircraft allocation to 
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bases and search areas.  This programming technique is quite similar to the CASS 

allocation problem, which tries to determine both the type of CASS station and its 

location. 

The SAR aircraft allocation model uses number of aircraft, man-hours, and 

hundreds and thousands of square miles of territory to be covered.  These variables are 

similar to the CASS model in the following way: the number and type of CASS stations 

(number and type of aircraft), manpower to run the stations (man-hours), and number of 

aircraft squadrons to be served (area).  This analogy supports the relevance to GP, which 

will validate the CASS model.  When a UUT requires repair, the accessibility, 

availability, and capability of CASS stations are critical and essential to the mission 

capability of aircraft.  Failure to meet demand with CASS availability could result in 

expensive depot-level repair and diminish squadron and aircraft readiness and reduce 

supply departments’ stock due to the variability in transportation times and schedules. 

The time phases mentioned in the model are: notification time, action time, transit 

time, search time, and rescue time.  Notification, action, and rescue time can be assumed 

fixed.  Transit time is a function of aircraft type and transit distance.  Search time is a 

random variable.  These time functions are critical to the SAR Aircraft model to 

determine area covered and speed of an aircraft relative to the amount of area that needs 

to be covered.  The time variables may apply to CASS in the following ways: 

• Notification Time – the clock time the failed UUT arrives in work center 
to be worked on; the time the stop watch begins to calculate total time in 
repair cycle. 

• Action Time – time it takes a UUT to be set up on CASS work station; this 
is fixed with random variability but is the same for each UUT. 

• Transit Time – time it takes for CASS to run system diagnostics.  The 
times are different for each type of CASS and UUT. 

• Search Time – time it takes for CASS to search for problems with the 
UUT and the quantity.   

• Rescue Time – time it takes to repair the WRA software within the UUT.  
Search and rescue time is the other time counted in total TAT. 
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These time variables are critical to determine the appropriate capacity to meet 

demand.  It is as essential to SAR to save lives in a timely manner to meet happy endings 

as it is to meet customer service/mission capability requirements. 

However, Armstrong and Cook (1979) also discuss the problems with forecasting 

demand related to the model.  To determine the number of aircraft required for applicable 

bases, demand should be forecasted.  The nature of SAR operations is unknown since it is 

stochastic.  That makes historical data the only route to making any reasonable forecast. 

One of the studies about the multi-period set covering location model is the 

deployment of ambulances.  Since the demand for the medical treatment is not constant 

throughout the time period (week, month, etc.), the best way to improve the system 

performance is to use a dynamic relocation model (Rajagopalan, Saydam, & Xiao, 2008).  

The objective of their study is to minimize the number of ambulances and determine their 

locations for each time period that a significant change occurs in the demand for 

ambulances while addressing the coverage requirement.  Time permitting; our project 

will also look at the multi-period set covering location model for the dynamic 

redeployment of CASS stations each year.  We are planning to update the model on a 

yearly basis, assuming that no significant change in the number of aircraft occurs 

throughout the year.  Moreover, we also have to consider the Navy readiness level as one 

of our crucial constraints while redeploying the CASS stations on a yearly basis.  

Finally, it is worth noting that one can use GP models in a different environment 

through adding some variations into the SAR model.  For example, it is possible to use 

GP in the allocation of CASS stations to sites while achieving a predetermined service 

level, which is the Navy readiness level in our case.  

The U.S. Coast Guard used optimization and simulation in a study called; 

“Operations Research Enhances Supply Chain Management at the U.S. Coast Guard 

Aircraft Repair and Supply Center.”  This study was conducted by Purdue University and 

members of the U.S. Coast Guard during a period of five years (2001–2006), analyzing 

the substantial effects of implementing four separate operations research methodologies 

for efficient supply chain management to improve fleet readiness. The four projects 
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focused on the improvement of the maintenance throughput and supply inventory of 

aircraft parts.  The projects provided critical decision support for planning various repair 

and maintenance activities at their repair and supply centers (Everingham et. al., 2008).  
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III. METHODOLOGY 

A. STOCHASTIC RESOURCE ALLOCATION 

The problem with allocating CASS is that it has a larger scope and higher degree 

of commonality between CASS stations, as compared to its predecessor ATE, which 

permits UUTs to be run on several different station configurations (Meredith, 1990). The 

ATE workload calculation was more accurate for that type of equipment because the 

demand and service times were not as variable for each UUT on each ATE.  For systems 

that have known service parameters, low utilization and planned demand, we can easily 

determine the amount of equipment and material to buy and the number of employees to 

use while limiting the queue, backlog, and waiting line.  If UUTs arrive one every five 

hours with a service rate of one every three hours, then there will be a minimal queue for 

getting the UUT back to the customer.  With CASS, utilization is high during surge, and 

there are various service times and high variability in demand for each type of CASS 

because of commonality.   

As an example of the CASS network: three UUTs arrive randomly within five 

hours, with a service time of three, four, and five hours respectively with an average 

service rate of ((3+4+5)/3) one UUT every four hours. If they arrive at the same time, we 

would start the shortest service time first in order to get the UUT back to the customer, 

but they arrive randomly and we do not know which one will arrive first.  If the five-hour 

processing time UUT is first, it will use five hours of CASS.  Within one hour, the three-

hour processing time UUT arrives and will have to wait four hours in the queue until the 

first one is done, spending seven hours in the system.  Then, after the second one arrives, 

the third UUT arrives two hours after the second UUT is done, leaving the CASS idle for 

two hours. The third UUT will spend its four hours on CASS and leave.   

Using the scenario above in the current CASS workload model, we would not be 

accounting for the two hours the CASS is idle.  Rather, the workload model plans for an 

80% utilization to allow for this two-hour idle time to be captured.  If during the month 
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the idle time which was planned for is eaten up because of an increase in flying hours, 

there will be a large queue due to the scenario’s first and second UUT arrival pattern.  

In queuing theory, adding another machine will reduce the number in queue 

significantly. For the scenario provided above, the number in the waiting line was at 

worst one, but in the in the long run, assuming Exponential service times and Poisson 

arrival rates, a standard M/M/s queuing formula (Jacobs, Chase, & Aquilano, 2009) 

would predict that there will be 4.8165 UUTs waiting for service on average. Using the 

same formula, if one more CASS station is added, the waiting line on average would be 

0.1873. The cost of adding an additional CASS station is $1,000,000, but the cost of 

having nearly five UUTs in the queue is $2,000,000.  Hence, in this example, adding one 

CASS will have a total savings of $1,000,000.   

The current PMA 260 workload formula, as mentioned in Chapter II, takes a 

UUT’s MTBF (demand) and MTOS (service time) to calculate the demand for that UUT 

in a period. Figure 1 represents how the workload formula allocates CASS without 

considering any variability, which later will be explained.  The workload takes the 

demand of, say, UUT 1 and takes a percentage of CASS utilization without regard for 

any other UUT that may arrive before or after it.  For example, a UUT with a workload 

output of 0.1 is expected to use 10% of a station per time period.  The problem with this 

is, the CASS does not reserve a 10% spot for that UUT at any given time; CASS may be 

serving another UUT at the time that UUT 1 is waiting.  This causes backlogs/queues of 

UUTs, and there is no control of variability.  The site may have to do a Beyond 

Capability Maintenance (BCM) action of the UUT due to backlog, calling it lack of 

equipment, tools, or facilities (BCM-2) or administrative necessity (BCM-8).  

We provide this example because it is similar to the PMA 260 problem with 

allocating its CASS resources throughout all sites.  The one thing PMA 260 cannot 

control is the management style of each site, mentioned above.  All sites must be treated 

equally, so determining an algorithm which meets a steady state across all sites will 

enable PMA 260 to have a site look at their managing practices instead of holding PMA 

260 responsible for queues.  Sites which perform better with fewer CASS than sites with 
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more CASS and similar demand inform PMA 260 that those sites have their variability 

under control through training, hours worked, number of shifts, and maintenance and care 

of their CASS. 

B. THE CURRENT WORKLOAD MODEL 

1. Factors That Affect These Assumptions 

The current workload calculates the average expected demand by summing all 

UUTs’ workload under a CASS station configuration. It does not accurately capture the 

surge in demand for different periods (return from deployments or large flight-hour 

months), nor does it accurately account for the length of the queue at each CASS station 

configuration.  Instead, it allocates slack capacity by using a surge load factor (SLF) of 

80% in the denominator, which allocates more CASS stations in an attempt to reduce 

queues and serve the peak demand.  This SLF of 80% is essentially a buffering factor, 

and it does manage variability better than merely assigning benches based on average 

demand.  Moreover, the SLF can be considered a CASS sparing factor to allocate one 

more CASS to every four assigned.  Our models use queuing theory application to better 

estimate the impact of variability, and improve the allocation of CASS stations to meet 

that variability in demand. 

C. THE NEW MODELS 

We apply queuing theory concepts to our models with the following parameters:  

1. Arrival Rate 

The first parameter for queuing theory formula is the arrival rate.  This is a 

measurement of jobs or UUTs per unit of time.  To be consistent, the arrival rate is in the 

same units as the capacity, which is in hours (per hour).  The arrival rate of a UUT 

entering the CASS work center is the number of UUTs per hour.  

2. Service Rate 

The sum of CASS station configurations make up a service capacity network.  No 

CASS provides a constant service rate; thus, there must be a common measurement in 
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order to determine the required number of CASS for capacity.  The service times for each 

type of UUT vary, which we measure using the mean and standard deviation of all UUTs 

for the CASS configuration network.  According to the current CIP (NAVAIRSYSCOM, 

2002), when additional CASS stations are added, operators are added as well to fulfill 

total capacity.  This calculation, to be consistent with arrival rate, is measured in number 

of UUTs per hour. 

3. Queue Discipline 

The queue discipline associated with the management of UUTs is difficult to 

model.  At I-levels, the queue discipline is (1) Expeditious Repair (EXREP), (2) first 

come, first served (FCFS), then (3) shortest processing times.  The best way to model this 

is through discrete-event simulation.  For parsimony, the models in this project focus 

only on FCFS.   

D. CONSTRUCTION OF LINEAR AND NONLINEAR INTEGER 
PROGRAM FOR CASS IMPLEMENTATION PLAN 

We are looking at four notional USN sites for the CASS allocation problem. 

These sites are assumed to be having F-18 type model series. We are using integer linear 

and nonlinear programming to solve the resource allocation problem. Although demand 

and utilization constraints are linear, readiness constraints are nonlinear and therefore 

make the model nonlinear. We will explain the construction of those models step by step 

and show how we came down to the nonlinear integer programming. Below are the linear 

and nonlinear models that we set up. 

1. Linear program with only demand constraints at 50% (expected demand) 
2. Linear program with demand constraints at 95% (peak demand), 

utilization constraints at 90% (limit congestion) 
3. Linear program with demand constraints at 95%, utilization constraints at 

80% 
4. Nonlinear program with demand constraints at 95%, utilization constraints 

at 80%, and readiness constraints (minimum availability) at 70%. 
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1. Notation  

 i = site, or installation (notional sites 1 through 4) 

 j = workbench type (HYB, RF, CNI, EO3, and RFHP) 

 k = WRA type (HYB, RF, CNI, EO3, and RFHP) 

 Xij = number of CASS benches of type j to install at site i  

 dik = demand by WRA type k at site i  

 ri= Dictated readiness level at site i 

 ui=utilization of CASS type j at site i 

 Cj=unit cost of each type of CASS 

 Z=Available CASS hours per month 

 Qij=Dictated queue time of CASS type j at site i  

2. Initial Pass Assumptions: 

• Single-year horizon (not multi-period) 

• Aircraft at each installation i are stationed at the installation for the whole 
year 

• Every WRA type k demands service from exactly one type workbench, 
type j  

• Ao improves with the increase in the number of CASS stations of specific j 
type.  

• Spare repairable UUT fill rate is included in the readiness calculation. 
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E. LINEAR PROGRAM WITH ONLY DEMAND CONSTRAINTS AT 50% 

Below are the formulations of our first linear program model, including only the 

demand constraints and the explanation of how we find the total demand by WRA type. 

1. Linear Integer Program 

( ) ( ) ( )

ij j
i,j

i1 i2 i2 i3 i3 i5 i5

Min X  * C                                                                                                                     (1)

Subject to:

X  + X  - d  + 0.60 * X - d  + X - d  + ⎡ ⎤⎣ ⎦

∑

( )

( ) ( )

i1
i4 i4 ,

i2
i2 i3 i3 i5 i5

i3
i3 ,

dX  - d    i=1 through 4       (2)
Z

dX  +  0.40 * X - d  + X - d   , i=1 through 4                                              (3)
Z

dX    i=1 through 4                        
Z

≥

≥⎡ ⎤⎣ ⎦

≥

i4
i4 ,

                                                                             (4)

dX    i=1 through 4                                                                                              
Z

≥

i5
i5 ,

        (5)

dX    i=1 through 4                                                                                                     (6)
Z

≥
 

(1) Our objective function is to minimize the total cost of CASS stations given 

that all the constraints are satisfied. 
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2. Demand Constraints: 

Demand by each WRA type k at site i (dik) is calculated using the expected 

number of failure formula. 

Number of failures= k λ t
Where;
k=number of total components requiring same CASS

1λ=
MTBF

t=monthly flight hours

⋅ ⋅

 

Then, we multiply the total number of failures by MTOS, which includes the 1.3 

and 2 runs for the SRA and WRA, respectively. However, this demand is the mean and 

does not take into account the surge in demand (peak demand) during special events like 

extra monthly flight hours due to an unplanned mission or exercise, etc. To account for 

that, we are using an MS Excel Poisson_inverse macro (created using the Visual Basic 

for Applications) function by which we can find the 70%, 80%, or 90% of the surge in 

demand along with the 50% mean demand. So, our demand formula is able to capture the 

surge in demand, which means allocating more CASS stations. 

For the demand constraints, there is one more trade-off, which leads us to the idea 

of sharing. That is, as we noted in the literature review, hybrid CASS is the core test 

station. The other four CASS stations can all provide the core test capabilities as well as 

their specific capabilities.  So, total demand for the hybrid CASS station can be satisfied 

by any CASS type.  The same idea also holds for the RF CASS. However, the demand 

for the RF CASS can be satisfied by RF CASS, CNI CASS, and RFHP CASS stations.  

(2) Hybrid CASS capacity plus the 60% of CNI and RFHP CASS excess 

capacities and 100% EO3 and RF CASS excess capacities at sites-A/B/C/D must be 

greater than or equal to the hybrid CASS station demand. 

(3) RF CASS capacity plus 40% of CNI and RFHP CASS excess capacities at 

sites-A/B/C/D must be greater than or equal to the RF CASS station demand. 



 30

(4) CNI CASS capacity at sites-A/B/C/D must be greater than or equal to the CNI 

CASS demand. 

(5) EO3 CASS capacity at sites-A/B/C/D must be greater than or equal to the EO3 

CASS demand. 

(6) RFHP CASS capacity at sites-A/B/C/D must be greater than or equal to the 

RFHP CASS demand. 

F. LINEAR PROGRAM MODEL WITH DEMAND CONSTRAINTS AT 95%, 
UTILIZATION CONSTRAINTS AT 90% 

In our second LP model, we include the utilization constraints along with the 

demand at 95%.  Below are the formulation of the model and the explanation of the 

utilization constraint. 

1. Utilization Constraints 

Utilization should not be ignored while allocating the scarce resources because 

the processes may create bottlenecks in the system if the utilization rates are high. The 

bottlenecks in the system may in turn create queues, which finally undermine the 

readiness levels in each site. So, we include an average utilization constraint for each site 

and say that it should be less than or equal to 90%. Our utilization formula is: 

Total demand for CASS at each siteAverage Utilization= 
Total available CASS hours at each site  

The following constraints 7, 8, 9, and 10 are average CASS utilization constraints 

at sites A/B/C/D, respectively. 
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( )

( )

( )

1k

1j

2k

2j

3k

3j

d
  90%, k and j=1 through 5                                                      (7)

X *Z

d
  90%, k and j=1 through 5                                                      (8)

X *Z

d
 

X *Z

≤

≤

≤

∑
∑

∑
∑

∑
∑

( )
4k

4j

 90%, k and j=1 through 5                                                     (9)

d
  90%, k and j=1 through 5                                                      (10)

X *Z
≤∑

∑

  

 

(7) Average CASS utilization at site-A must be less than or equal to 90%. 

(8) Average CASS utilization at site-B must be less than or equal to 90%. 

(9) Average CASS utilization at site-C must be less than or equal to 90%. 

(10) Average CASS utilization at site-D must be less than or equal to 90%. 

G. LINEAR PROGRAM MODEL WITH DEMAND CONSTRAINTS AT 95%, 
UTILIZATION CONSTRAINTS AT 80% 

In our third model, we change the utilization constraint from 90% to 80% while 

keeping the demand constraint constant at 95% and try to figure out the effects of the 

utilization rate on the resource allocation process. In fact, the third model is the same as 

the second model except for the utilization rate.  

H. NONLINEAR PROGRAM WITH DEMAND CONSTRAINTS AT 95%, 
UTILIZATION CONSTRAINTS AT 80%, READINESS CONSTRAINTS 
AT 70%, AND CONGESTION CONSTRAINTS AT 15 HOURS 

In our nonlinear model, we introduce the readiness constraint to our model, and 

that converts our linear model to a nonlinear one. Below are the explanations of the 

readiness constraint and the way we incorporated it into our model. 
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1. Readiness Constraints 

In our CASS allocation problem we had to use a nonlinear program after we 

incorporated site readiness into our model.  The readiness constraint is not linear because 

it is a function of a stochastic turn-around time which incorporates a backlog/queuing 

delay.  Because of this queuing delay, we face nonlinear decrease in the turn-around time 

when the number of CASS stations increase. 

Readiness and operational availability are same ideas in this case where we are 

only examining one system (CASS) since readiness is about a site or command while 

operational availability is about a specific weapon system.  

o
Total time - (MCT+MPT+ALDT)Operational Availability (A )=

Total time  (Jones, 2006)
 

MCT=Mean Corrective Time 

MPT=Mean Preventive Time 

ALDT=Administrative and Logistics Delay Time 

ALDT comprises of delays resulting from spare repairable UUTs, support 

equipment, personnel, facilities, and transportation. Furthermore; readiness is a nonlinear 

constraint since the ALDT decreases (not linearly) with the increase in the number of 

CASS stations. The idea in the model about ALDT is that, adding more CASS stations 

decreases only CASS-related queue time and not the MCT and MPT since they are 

independent of the number of CASS stations. That is, if you have an induction, there is 

no way of avoiding the MCT and MPT. Furthermore, the spare UUT parts also play big 

roles in the aircraft readiness levels since it is not viable to assume 100% fill rate for the 

spares (Jones, 2006).  To account for that, we assume the following RFI (ready for issue) 

spare repairable UUT levels. The RFI levels we assume are based on the authors’ 

professional experience rather than any systematic data gathering and we acknowledge 

that the true RFI rates might be completely different. Our purpose here is to make a proof 

of concept while using RFI estimates that have at least face validity: Detailed analysis of 

RFI rates is not within the scope of our study. 
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Table 1.   Spare part factor for UUTs 

The probability of 0.90 for HYB components at site-A means 90% of the time 

site-A has the hybrid components ready for issue (RFI) in its inventory, and that increases 

the overall readiness level. However, 10% of the time site-A does not have those HYB 

components and, therefore, has to incur the off-base fill time. 

o i iA   r , where r  is 70%, and i=1 through 4                                               (11)≥  

(11) Readiness at sites-A/B/C/D must be greater than or equal to 70% 

2. Congestion Constraints 

Since we do not know the type of distribution (exponential, Poisson, etc.) for 

arrivals and service time, we are using a waiting time approximation, which the literature 

(Jacobs, Chase, & Aquilano, 2009) gives for G/G/s queues. The theory is for the waiting 

and service processes that have no specific distribution type. The “G” refers to general 

distribution for arrival and service rate while the “s” refers to the number of servers. 

Below is the formula for the G/G/s queuing theory (Jacobs, Chase, & Aquilano, 2009). 

( )2 1 2 2     
1- 2

s
a s

q
C CL xρ

ρ

+⎛ ⎞ ⎛ ⎞+⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
  Where: 

Lq= Expected length of the waiting line 

ρ= Utilization of the servers = 
λ Demand/Arrival=
sμ Capacity

 

 HYB RF CNI EO3 RFHP 

Site-A 0.90 0.90 0.80 0.85 0.90 

Site-B 0.85 0.90 0.80 0.85 0.90 

Site-C 0.80 0.85 0.80 0.80 0.85 

Site-D 0.85 0.85 0.80 0.85 0.80 
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λ= customer arrival rate = 1
aX

 

aX  = Mean interarrival time  

µ= Customer service rate = 1
sX

 

sX  = Mean service time  

Ca = Coefficient of variation of interarrival time = a

a

S
X

 

Sa = Standard deviation of the interarrival time sample 

Cs = Coefficient of variation of service time = s

s

S
X

 

Ss = Standard deviation of the service time sample 

Using Little’s law, we can calculate the expected time waiting in line (Wq). 

Wq = Expected time waiting in line = qL
λ  

Finally, we multiply the Wq with the expected number of failures, which we 

calculate using the expected number of failures formula k λ t⋅ ⋅ .  This gives us the total Wq 

that is dependent on the number of servers (CASS stations in our case). Basically, the 

total Wq for a UUT decreases as the number of that specific CASS station increases.  

q ij ij(k λ t) W  Q  , where Q  is 15 hours, i=1 through 4, j=1 through 5           (12)⋅ ⋅ ⋅ ≤  

(12) Total queue time for CASS type j at sites-A/B/C/D must be less than or equal 

to 15 hours. 
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3. Integer and Non-negativity Constraints 

Since rounding the decision variables up or down creates confusion for the 

decision makers, we are using integer non-linear programming in our model. However, 

sensitivity analyses available from integer, nonlinear reports through the Frontline Solver 

are limited. Therefore, we are using Oracle’s spreadsheet simulation with Crystal Ball 

add-in in order to get a sensitivity report and make post-hoc analysis. 

(13) All decision variables must be integers. 

(14) All decision variables must be greater than or equal to zero (Non-negativity 

constraint). 

4. Unit Cost of Each Type of CASS 

There is no current data about the cost of each type of CASS since the acquisition 

of CASS stations was finalized in 2006; however, we can use the historical data and 

convert those costs to FY 2010 dollars using the inflation indices. Table 2 shows the unit 

cost of each CASS station in 1995 and the inflation index to convert those to FY 2010 

dollars. 

Type of CASS Average unit cost 

FY95 

Inflation index 2 Average unit cost 

FY10 

Hybrid $ 1,000,000 1.2897 $ 1,289,700 

RF $ 1,500,000 1.2897 $ 1,934,550 

EO $ 4,500,000 1.2897 $ 5,803,650 

CNI $ 1,700,000 1.2897 $ 2,192,490 

RFHP N/A 1.2897 $ 3,500,000 3 

Table 2.   Cost per CASS 

                                                 
 2 Inflation index is calculated using the inflation calculator of the Naval Center for Cost 
Analysis, and the index is Other Procurement Navy (OPN). 

3 RFHP unit cost is estimated to be about 3.5 million dollars. 
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I. SENSITIVITY ANALYSIS: CONSTRUCTION OF CRYSTAL BALL ON 
THE NON-LP 

Since our model is a nonlinear integer program, we can’t use the MS Excel’s 

built-in sensitivity analysis for the solver.  Setting up a simulation on the nonlinear 

program allows a decision maker to test optimality and compare costs with the desired 

estimated number in the queue.  Mathematical programs use only constant values, and in 

that sense, the solutions prescribed by the mathematical programs which account for 

variability are only approximations. Testing the quality of the solution recommended 

through the mathematical program by applying statistical distributions to variables and 

applying them to a range of decision variables will allow the decision maker to see the 

differences in the output from the number of CASS assigned.  A careful examination of 

this post-hoc sensitivity analysis may indicate to a decision maker that he should allocate 

one more, or one fewer CASS stations at a site in relation to the solution prescribed by 

the mathematical program.  

 

 

Defined Assumption 

Number of CASS Discrete Uniform 

Poisson Demand Constant 

Number of Aircraft Constant 

Flight Hours Constant 

Forecasted Values 

1 Time in queue (Wq) 

2 Ao 

3 Additional may be applied 

Table 3.   Non-LP Crystal Ball defined values 
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Running the simulation a large number of times gives us the output to judge the 

non-linear program optimality and determine how many CASS to allocate to a site.  

J. MONTE CARLO SIMULATION USING CRYSTAL BALL 

We are using the Monte Carlo simulation via an Excel’s add-in Crystal Ball 

simulation as another method for sensitivity analysis. This idea allows us to capture the 

possibility of high and low demand during a period. That is, we can figure out the best-

case and the worst-case scenarios using the stochastic values instead of deterministic 

ones. We can also determine the total number of CASS stations, depending on what 

percentage of the surge in demand to be covered.  

1. Construction of a Crystal Ball Simulation 

We developed a notional sight in MS Excel to compare the current workload 

model output with Poisson distribution demand and Binomial Distributed to account for 

the expected number of down CASS stations.  The second model shows how variability 

in demand and distributed.  The Poisson distribution is a good modeling choice for 

demand processes where demands occur one by one and do not exhibit cyclic 

fluctuations. It is completely specified by one parameter, the mean, and is therefore 

convenient when one lacks information concerning variability of demand (Hopp & 

Spearman, 2000). Since demand is not arriving at the same rate every month, there will 

be high months and low months; the Poisson distribution provides a probability of a 

number of parts arriving per month.  The run of the simulation will collect the high 

demand and low demand, which will provide a significant range of capacity to meet 

demand. 

Setting up the notional site model, we took F/A-18 TPSs that are required at an 

F/A-18 site and chose the UUTs from the PMA-260 master database, which matched 

each TPS to get a total of UUTs for a site.  The master UUT database provides all the 

required data in order to complete the simulation.   

The data elements taken from the master UUT report are MTBF, ETE run time, 

the UUT CASS configuration, and number of runs required.  There was one additional 
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time not included in the UUT master, the “other time” of 180 minutes, which is included 

in the current workload model to calculate total MTOS.  The 180 minutes is extra time 

required for a UUT to be run on a CASS bench.  This time includes: setup time (plugging 

the UUT into the TPS and all the associated hardware), part-approval time (time for 

Production Control Supervisor to approve the part), waiting for parts (time to run and 

pick up parts), remove and replace time (time for part replacement), and identification 

test (self-test time).  These other times are assumed to be consumed on a CASS station 

because, if a part is available, then it will be more efficient to keep the UUT hooked up to 

avoid double set up time.  Moreover, the removing and replacing of a part in a UUT is 

assumed to be minuscule in relation to set up time.  This time must be assumed to be part 

of the total CASS capacity to be fair to all sites. 
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The Crystal Ball setup has the following assumptions assigned: 

 CURRENT 
WORKLOAD 
MODEL (A) 

POISSON 
ARRIVAL, 
BINOMIAL 
10% DOWN 

(B) 

POISSON 
ARRIVAL, 

BINOMIAL 20% 
DOWN (C) 

POISSON 
ARRIVAL, 

BINOMIAL 30% 
DOWN (D) 

INPUT PARAMETERS 
# OF AIRCRAFT CONSTANT CUSTOM CUSTOM CUSTOM 
MONTHLY 
FLIGHT HOURS 

CONSTANT NORMAL NORMAL NORMAL 

CASS 
OPERATIONAL 
AVAILABILITY 
(SLF) 

CONSTANT NOT 
INCLUDED 

NOT INCLUDED NOT INCLUDED 

# OF CASS 
DOWN 
PROBABILITY 

NOT 
INCLUDED 

BINOMIAL BINOMIAL BINOMIAL 

VARIABLES 
# OF RUNS CONSTANT CUSTOM  CUSTOM  CUSTOM  
OTHER TIME 
(180 MIN) 

CONSTANT NORMAL 
(EACH UUT) 

NORMAL 
(EACH UUT) 

NORMAL 
(EACH UUT) 

OUTPUT PARAMETERS 
DEMAND 
FORMULA FOR 
EACH UUT 

kto
scm  

( )p k toλ  ( )p k toλ  ( )p k toλ  

NUMBER OF 
CASS 

NOT 
APPLICABLE

( )p k to
c
λ∑  

( )p k to
c
λ∑  

( )p k to
c
λ∑  

BINOMIAL  
NUMBER OF 
DOWN 
CASS ( , )bin p N  

NOT 
INCLUDED

 

( )(.10, )p k to

c
bin λ∑

  

( )(.20, )p k to

c
bin λ∑

 

( )(.10, )p k to

c
bin λ∑

 

TOTAL # OF 
CASS 

kto
scm∑  

# OF CASS + 
DOWN CASS 

# OF CASS + 
DOWN CASS 

# OF CASS + 
DOWN CASS 

DEFINED 
VARIABLES 

k  =  # OF A/C 
t  =  FLIGHT HOURS PER AIRCRAFT 
o  =  MEAN TIME ON CASS STATION 
s  =  SURGE LOAD FACTOR 
c  =  CASS AVAILABLE HOURS 
m  = MTBF 
λ =   1/MTBF 

()p = POISSON DISTRIBUTION 
bin  = BINOMIAL DISTRIBUTION 

 

Table 4.   Crystal Ball setup and defined values 
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2. Input Parameters 

These assumed distributions are for this model and are drawn from data provided 

from PMA 260.  The number of aircraft is a custom distribution to explain the number at 

a site at a time in Table 5.  This distribution is a probability of having a number of carrier 

air wings (CVW) at a site; each CVW that is not home takes 44 F/A-18s.   

 

Number of Aircraft Number of CVWs at site Probability 

269 5 15% 

225 4 35% 

181 3 25% 

137 2 10% 

93 1 10% 

Table 5.   Crystal Ball number of aircraft defined assumptions 

Monthly flight hours change per aircraft continuously, so distributing them 

normally with a standard deviation of four is our assumption for this model.   

CASS Ao is essentially an SLF for models A.  This SLF acts as a utilization buffer 

to allow 20% more demand to be used on CASS to make it 100% utilized when peak 

demand hits.  Moreover, it is a probability factor that assumes there are only 80% of the 

machines up at a time.  If the latter is the assumption, then the CASS stations (system) 

will not be able to capture higher demand periods if it is also assumed one of five will be 

down, essentially putting the other four CASS stations at 100% utilization for average 

flight hours and max aircraft.  For models B, C and D the SLF is set at 100%.  To account 

for failures of CASS stations for each configuration to include the down CASS stations, 

instead of using the SLF, we assigned a binomial distribution to the probability of failure 

to determine the number of CASS that will be down.   Moreover, by not assigning the 

SLF, this model will not only protect against down CASS, it will provide maximum 

utilization when the CASS are down.  
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Adding the binomial distribution to the required number of CASS to meet demand 

at 100% utilization gives the probability of having x number of that type of configuration 

of CASS down.  We add the failed CASS stations to the number of CASS to meet 

demand to ensure we account for down CASS station(s).   

CASS hours in a month are constant 300 hours for all models.  This is the 

available worker hours in a month to operate CASS.   

3. Variables  

To calculate the processing times, the actual parameters are determined by the 

software development and are provided by PMA 260 to determine each UUT’s end-to-

end (ETE) run time.  There is not a distribution on the ETE run times because they are set 

values at which the software runs in order to find a fault in the UUT.  The number of 

times a UUT will be run on a CASS are provided by PMA 260.  The ID, SRA, and WRA 

are run two times.  This model distributes the probabilities of the number of runs due to 

the possibility of not finding a duplicate discrepancy which will run only once.  The 

processing time on the CASS is multiplied by the number of ETE runs to get total 

processing time of a single UUT. 

 

UUT # of Runs Probability # of Runs Probability 

WRA 2 80% 1 20% 

SRA 2 60% 1 40% 

ID 2 50% 1 50% 

Table 6.   Crystal Ball number of runs defined assumptions 

Processing times include a variable called other times consisting of setup time, 

ordering parts, administration, and miscellaneous times.  The total of this time is 

distributed normally with a standard deviation 20% of the mean.  The reason for this 

distribution is that experience of personnel, training, part runs, and speed of part 

approvals varies from site to site. 
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Total processing times includes the total of the ETE run time plus the other times.  

Once the processing times are totaled and determined, that number is multiplied by the 

expected number of failures (kλ t).  This value will give total processing time required 

during a given time period based on t.   

To determine the number of CASS, UUT processing times are added together for 

each type of CASS then divided by CASS available hours.    

4. Demand and Capacity 

Each UUT’s demand is defined using the formulas in Table 4 (CB setup).  The 

demand from each UUT is added for each type model using the formulas in Table 4.   

This gives the required amount of time demanded of CASS during the month.  Expected 

demand for Models B, C and D uses the Poisson distribution for each UUT.   

The capacity for Model A is the sum of all UUTs’ workload calculations by the 

type of CASS station configuration the UUT uses.  The capacity of Models B, C and D is 

the sum of all the demand of each UUT by the type of CASS station configuration 

divided by the number of CASS hours available in the month.   
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IV. RESULTS AND ANALYSIS 

A. MODEL RESULTS 

In this chapter, we are going to present the results for the linear and nonlinear 

models along with the Crystal Ball simulation results. Then, we are going to present 

results of sensitivity analyses using both the simulation and the optimization tools.   

1. LP: Model 1 

The results for the first linear program are presented below. This model covers the 

demand at 50%, which is the average demand. The LP model is assigning more CASS 

stations to site-A because it has more aircraft and more UUTs than any other site has. 

However, the results of this model are the best-case scenario. That is, it assumes no surge 

in demand, which is not realistic. 

 

 Hybrid RF CNI EO3 RFHP Total 

Site-A 11 9 1 4 2 27 

Site-B 6 5 1 1 1 14 

Site-C 3 3 1 2 1 10 

Site-D 1 3 1 2 1 8 

Total 21 20 4 9 5 59 

Table 7.   LP: Model 1 output 

2. LP: Model 2 

The results for the second linear program model are presented below. This model 

covers the demand at 95% (peak demand) and constrains the utilization of CASS stations 

at 90%. When compared with the previous LP model, this one is more realistic since it 

takes into account the utilization factor. It can be easily observed that this model is 

assigning more CASS stations than the previous model does in view of the fact that 
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CASS stations cannot be utilized above a threshold because of unexpected events. 

However, the number of CNI CASS stations does not change because of their low 

demand. 

 

 Hybrid RF CNI EO3 RFHP Total 

Site-A 11 9 1 4 2 27 

Site-B 6 6 1 1 1 15 

Site-C 3 4 1 2 1 11 

Site-D 2 3 1 2 1 9 

Total 22 22 4 9 5 62 

Table 8.   LP: Model 2 output 

3. LP: Model 3 

The results for the third linear program model are presented below. This model 

covers the demand at 95% (peak demand) and constrains the utilization of CASS stations 

at 80%. The second LP model and this one are the same models except for the utilization 

levels they are using.  Model 3 provides better coverage against higher demand peaks 

(95% v. 90%), and reduces the chance of delays due to congestion (80% utilization limit 

vice 90%). Whether this additional coverage would be worth the cost of the additional 

two work benches would be a point for further analysis and discussion.  Our reason for 

incorporating both models is to demonstrate the flexibility of the tool to provide varying 

levels of protection against variability and queuing delays.  As we discussed earlier, the 

model assigns a total of four CNI CASS stations because of their low demand. 
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 Hybrid RF CNI EO3 RFHP Total 

Site-A 14 9 1 4 2 30 

Site-B 7 6 1 1 1 16 

Site-C 4 4 1 2 1 12 

Site-D 2 3 1 2 1 9 

Total 27 22 4 9 5 67 

Table 9.   LP: Model 3 output 

4. NonLP: Model 4 

The results for the nonlinear program model are presented below. This model 

covers demand at 95% (peak demand), constrains the site readiness level at 70%, 

constrains the CASS utilization rate at 80%, and constrains the total queue time at 15 

hours. The difference between the LP models and the NonLP models is that the latter has 

readiness and congestion constraints, which make the resource allocation more realistic, 

and provides better protection against the impacts of variability and queuing delays. 

Beyond the protection provided by the utilization rate constraints, the readiness 

constraints incorporate availability as a factor into the model, and allow decision makers 

to set a minimum availability level as a constraint.  Multiple parameters determine 

availability in this model, (e.g., fill rates for spare repairable UUTs inventories).  These 

parameters can be made the target of what-if analyses, to examine the impact of various 

performance improvement suggestions (e.g., increasing spare repairable UUT 

allowances). Furthermore, this model may be used when a readiness or congestion level 

is set by higher authority. 
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 Hybrid RF CNI EO3 RFHP Total 

Site-A 15 11 1 4 2 33 

Site-B 8 7 1 1 1 18 

Site-C 4 4 2 2 1 13 

Site-D 3 4 1 2 1 11 

Total 30 26 5 9 5 75 

Table 10.   NonLP: Model 4 output 

5. Output Analysis 

We can say that the lower boundary for the number of CASS stations is Model-1, 

while the upper boundary is Model-4. This makes sense since we used average demand 

with no other constraints in Model-1, whereas we used peak demand (95%) with 80% 

utilization, 70% readiness level, and 15-hour congestion level in Model-4. Model-1 

assigns 59 CASS stations, and those cover only the average demand. However, there are 

other factors to take into account while allocating the resources. When we included those 

factors in our model, it finally assigns 75 CASS stations. Those cover the peak demand 

and ensure the minimum waiting time for the UUTs that are waiting for service on the 

CASS station. Moreover, Model-4 also ensures a certain level of readiness by 

incorporating variability.  

6. Summary of Models’ Output 

Table 11 shows the total number of CASS stations that are assigned to each site 

using the Models 1 through 4.  
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 Model-1 Model-2 Model-3 Model-4 

Site-A 27 27 30 33 

Site-B 14 15 16 18 

Site-C 10 11 12 13 

Site-D 8 9 9 11 

Total 59 62 67 75 

Cost 

(millions) $144.24 $149.40 $155.84 $169.69 

Table 11.   LP and NonLP Models’ total output comparison with cost 

Table 11 shows the total number of CASS stations that are allocated using the 

Models 1 through 4.  Thus, we can conclude that readiness and utilization constraints 

increase the number of CASS stations that are allocated to each site. This increase in the 

allocation results in an increase in the readiness level, which is dictated by the USN.  In 

Model 4, it is always better to use the readiness as a constraint to figure out the 

inefficiencies, if any, in spare repairable UUT stock level, queue time, or MLDT, 

presented below in the use of Goal Seek in MS Excel.  When we examine the number of 

CASS stations assigned by Model-1, we can say that the readiness level is less than 50%. 

Those readiness levels are unacceptable for a Naval Air fleet.  

B. POST HOC ANALYSIS OF READINESS IMPROVEMENT 

Readiness of a site is derived from the operational availability of a single aircraft 

at each site. So, it is worthwhile to look at the Ao formula. 

o
Total time - (MCT+MPT+ALDT)Operational Availability (A )=

Total time  (Jones, 2006)
 

We cannot improve the MCT and MPT by increasing the number of CASS 

stations since they are related to the structure of the maintenance logistics system and 

should be handled accordingly.  But, it is possible to decrease the total queue time in the 
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ALDT and improve the Ao and readiness levels by assigning more CASS stations. But it 

is not possible or cost efficient to improve readiness more after a certain point by 

assigning more CASS stations. So, if the commands or fleets want to improve their 

readiness level toward 80% or more, they have to find ways to decrease the ALDT, MCT, 

and MPT accordingly.  In order to answer such a question with our model, we used the 

Goal-Seek function of Excel.  As an example, we tried to improve the readiness level of 

site-A to 80% while keeping the number of CASS stations constant.  Below is the current 

ALDT and Ao of sites. 

 

 Site-A Site-B Site-C Site-D 

ALDT 75 hours 75 hours 75 hours 75 hours 

Flight Hours 20 hours 20 hours 20 hours 20 hours 

Ao 0.715 0.740 0.722 0.749 

Table 12.   Current ALDT 

1. Goal Seek 

Table 13 shows the required ALDT to improve the readiness levels at sites from 

their current values to 80% without increasing the number of CASS stations. 

 

 Site-A Site-B Site-C Site-D 

ALDT 14.41 hours 31.92 hours 19.54 hours 38.49 hours 

Ao 0.80 0.80 0.80 0.80 

Table 13.   Goal Seek improvement of ALDT 

For Site-A, we have to find ways to improve our ALDT from 75 hours to 14.41 

hours. Similarly, ALDT should be improved from 75 hours to 31.92 hours, from 75 hours 

to 19.54 hours, from 75 hours to 38.49 hours for Site-B, Site-C, and Site-D, respectively. 
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However, finding ways to improve those ALDT is beyond the scope of this project. 

Those improvements are more related to a study about the application of lean six sigma 

or any process improvements to the Naval Air fleets.  

2. Goal Seek 

 Site-A Site-B Site-C Site-D 

Flight Hours 11.96 hours 13.63 hours 12.96 hours 14.40 hours 

Ao 0.80 0.80 0.80 0.80 

Table 14.   Goal Seek flight hours 

For Site-A, we have to decrease the flight hours from 20 hours to 11.96 hours. 

Similarly, we have to decrease the flight hours from 20 hours to 13.63 hours, from 20 

hours to 12.96 hours, and from 20 hours to 14.40 hours for Site-B, Site-C, and Site-D 

respectively. Using goal seek function, the decision makers can find all the inefficiencies 

and look for way to improve those inefficiencies in order to reach their target readiness 

level. 

3. Analysis of Flight Hours (Demand) 

 When demand, such as a change in operational tempo, is high and there are CASS 

planned for less demand, then the expected Lq and Wq will be high, which decreases 

readiness.  Figure 2 tests the optimal mix of CASS stations when demand is at 20 flight 

hours and how the Ao is affected when operational tempo is increased at site A.  When 

the operational tempo increases to 23 flight hours per aircraft per month the number of 

CASS is no longer feasible to meet the readiness threshold due to the increase of time in 

the queue.  The solver must be run again on Model 4 when there is a change in flight 

hours to find the new optimal feasible solution.  Figure 3 shows how an increase of one 

selected CASS (RF) improves readiness above 22 flight hours.  Moreover, to achieve 

more readiness, different CASS, such as HYB, CNI, EO3, and RFHP, can be assigned to 

find the optimal mix, which the solver add-in will find, due to the sharing of CASS.  Or 
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working hours, although not recommended, can be increased or another shift can be 

added to increase CASS available working hours, thus increasing throughput. 
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Figure 2.   Ao impact chart 

When one more RF CASS is assigned to site A the mix of CASS stations will be 

able to sustain the Ao when flight hours increase up to 24 flight hours per aircraft per 

month.  If the goal is to achieve greater than 70% readiness with 24 flight hours or more, 

the mix of CASS stations must be reassigned using the solver to get an optimal feasible 

solution.  
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Figure 3.   Ao impact chart + 1 RF CASS  

C. POST-HOC SENSITIVITY ANALYSIS OF  NONLP SOLUTION 

Running Crystal Ball on the NonLP results shows how a proper mix of CASS 

stations is important to achieve minimal cost and meet the readiness threshold.  

Additionally, it shows how increasing the number of CASS stations can improve 

readiness and reduce the queue with additional costs.  The simulation changes the number 

of each type of CASS station under the discrete uniform distribution.  The number of 

CASS changes which provides different mix of CASS on each simulation step.  The 

figures show the average Wq and average Ao for different mixes of the same number of 

CASS stations.  Any of the input variables, such as aircraft, flight hours, and service 

times, can be changed or distributed, but was not modeled here.  The circles around the 

graphs are the optimal results from Model-4. 
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1. Total Number of CASS 
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Figure 4.   Total CASS and Wq 

Figure 4 shows the comparison of how the total number of all CASS stations 

affects the Wq and Ao.  When the total number of CASS stations is at 29, the average Wq 

is 161.29 hours with an average Ao of 53.6%, thus not meeting the readiness threshold of 

70%.  To meet the readiness threshold the total number of CASS should be at least 33 

where average Wq is 33.69 hours and average Ao is 71.3%.  Solver will find the optimal 

mix of each type of CASS station when the total is at 33, we already know that 33 is 

optimal, shown in Table 10.   
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Figure 5.   Total CASS and cost 

Figure 5 shows how much it costs to have the number of total CASS stations at a 

given readiness level.  To achieve 53.6% readiness it costs $65.5 million and to achieve 

71.3% is costs $76.4 million.  To achieve more readiness, it will cost more with minimal 

improvements in readiness.  It is better to allocate the money to other factors, such as 

spare repairable UUTs, logistics, or training to increase readiness.  
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Figure 6.   Crystal Ball NonLP Wq and Ao graph of Hybrid CASS 



 54

Figure 6 shows the comparison of how Hybrid CASS stations affect the Wq and 

Ao.  When Hybrid CASS stations is at 11, the average Wq is 5.94 hours with an average 

Ao of 69.7%, thus not meeting the readiness threshold of 70%.  To meet the readiness 

threshold there should be at least 15 Hybrid CASS where average Wq is .44 hours and 

average Ao is 73.1%.  It is not cost beneficial to buy more Hybrid CASS stations unless 

the operational tempo is expected to increase. 
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Figure 7.   Crystal Ball NonLP Wq and Ao graph of RF CASS 

Figure 7 shows the comparison of how RF CASS stations affect the Wq and Ao.  

When RF CASS stations is at 9, the average Wq is 29.85 hours with an average Ao of 

68.3%, thus not meeting the readiness threshold of 70%.  To meet the readiness threshold 

there should be at least 11 RF CASS where average Wq is 3.20 hours and average Ao is 

72.7%.  It is not cost beneficial to buy more RF CASS stations unless the operational 

tempo is expected to increase. 
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4. CNI 
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Figure 8.   Crystal Ball NonLP Wq and Ao graph of CNI CASS 

Figure 8 shows the comparison of how CNI CASS stations affect the Wq and Ao.  

When CNI CASS stations is at 3, the average Wq is 7.10 hours with an average Ao of 

73.28%, thus meeting the readiness threshold of 70%.  To avoid spending additional 

money and meet the readiness threshold there should be at least 1 CNI CASS where 

average Wq is 12.20 hours and average Ao is 71.7%.  It is not cost beneficial to buy more 

RF CASS stations unless the operational tempo is expected to increase. 
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5. EO3 

6 .1 2

4 .7 3

3 .1 9
2 .4 37 1 .3 8%

72 .1 5%

73 .0 3%
73 .3 9%

0 .7
0 .7 0 5
0 .7 1
0 .7 1 5
0 .7 2
0 .7 2 5
0 .7 3
0 .7 3 5
0 .7 4

0
1
2

3
4
5
6

7

3 4 5 6 O
pe
ra
ti
on
al
 A
va
ila
bi
lit
y 
(A
o)

W
q 
(Q
ue
ue
 W
ai
ti
ng
 T
Ti
m
e)

N um be r  of EO 3  CA SS

EO3

A ve rage  o f  EO 3  W q A ve rage  o f  O pe rational A vailab ility
 

Figure 9.   Crystal Ball NonLP Wq and Ao graph of EO3 CASS 

Figure 9 shows the comparison of how EO3 CASS stations affect the Wq and Ao.  

When EO3 CASS stations is at 3, the average Wq is 6.12 hours with an average Ao of 

71.38%, thus meeting the readiness threshold of 70%.  To meet the readiness level, 4 

EO3 CASS stations, where average Wq is 4.73 hours and average Ao is 72.15%, are 

sufficient enough to support the entire CASS system, which Hybrid UUTs can use EO3 

capacity when there is excess capacity.  It is not cost beneficial to buy more EO3 CASS 

stations unless the operational is tempo is expected to increase. 
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6. RFHP 

4.61

3.29
2.71

71.75%

72.79%
72.91%

0.71

0.715

0.72

0.725

0.73

0

1

2

3

4

5

2 3 4 O
pe
ra
ti
on
al
 A
va
ila
bi
lit
y 
(A
o)

W
q 
(Q
ue
ue
 W
ai
ti
ng
 T
Ti
m
e)

Number of RFHP CASS

RFHP

Average of RFHP Wq Average of Operational Availability
 

Figure 10.   Crystal Ball NonLP Wq and Ao graph of RFHP CASS 

Figure 10 shows the comparison of how RFHP CASS stations affect the Wq and 

Ao.  When RFHP CASS stations is at 4, the average Wq is 2.71 hours with an average Ao 

of 72.91%, thus meeting the readiness threshold of 70%.  To meet the readiness level, 2 

RFHP CASS, where average Wq is 4.61 hours and average Ao is 71.75%, is sufficient 

enough to support the entire CASS system, which Hybrid and RF CASS UUTs can use 

RFHP capacity when there is excess.  It is not cost beneficial to buy more RFHP CASS 

stations unless the operational is tempo is expected to increase. 

D. POST HOC ANALYSIS OF CASS EXPECTED DOWN  

We used Monte Carlo Simulation along with Crystal Ball to compare the 

workload model and determine the number of CASS stations that will be down associated 

with the number of CASS required to meet demand.  We use the binomial distribution in 

order to find the number of down benches according to a failure probability.  We use the 

required number of each type of CASS station to meet demand and determine the number 

of down CASS benches.  We use 10%, 20%, and 30% as our probability of CASS being 

down.  The comparison of the SLF at 80% in the workload model and the binomial 
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distribution will either prove that SLF is good to use or binomial distribution is better.  

Additionally, the model assumes a Poisson distribution arrival of UUTs during a month, 

making the demand more variable.  

While the level of demand varies, the capacity (number of each type of CASS) 

must adapt in order to meet the demand.  Comparing the models, each figure shows the 

level of coverage at 50%, 70%, 80%, and 90%.  This is the demand percentage of the 

total number of CASS required over the simulation.  As a result, picking the number of 

CASS stations at 90% coverage, there will be enough CASS stations 90% of the time.   

The workload model contains no variability in demand or the expected number of down 

CASS stations, but does include the 80% SLF, which is why it is a constant number in all 

figures. 

1. Total Number of CASS Comparison 

 Model A Model B Model C Model D 

Min 38 10 11 10 

50% 38 26 28 30 

70% 38 29 32 34 

80% 38 31 34 37 

90% 38 33 36 40 

Max 38 45 47 54 

Table 15.   Total number of CASS 
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Figure 11.   Total CASS comparison at 50% 

Figure 11 is the total number of CASS stations comparison of the workload 

formula and the binomial distributions, which add CASS expected number of down 

stations to the required number of CASS stations at 100% utilization in order to meet 

demand, even when CASS stations are down.  This figure shows the workload model at 

38 total CASS stations as a constant value.  Model B (total # of CASS 10% Binomial 

Down) shows 28 are required 50% of the time, which means, if this number of CASS 

were assigned, we would meet demand 50% of the time with regards to surge and an 

increase in UUT arrivals.  Model C (total # of CASS 20% Binomial Down) requires 28 

CASS stations 50% of the time and Model D (total # of CASS 30% Binomial Down) 

requires 30 CASS stations 50% of the time.  The difference in each, while each has the 

same demand, is based on the probability of having x number down. 
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Figure 12.   Total CASS comparison at 70% 

Figure 12 is the total number of CASS station comparison of the workload 

formula and the binomial distributions, which add CASS expected number of down 

stations to the required number of CASS stations at 100% utilization in order to meet 

demand, even when CASS stations are down.  This figure shows the workload model at 

38 total CASS stations as a constant value.  Model B shows 29 are required 70% of the 

time, which means, if this number of CASS were assigned, we would meet demand 70% 

of the time with regards to surge and an increase in UUT arrivals as well as having 10% 

down CASS stations.  Model C requires 32 CASS stations 70% of the time and Model D 

requires 34 CASS stations 70% of the time.  The difference in each, while each has the 

same demand, is based on the probability of having x number down. 
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Figure 13.   Total CASS comparison at 80% 

Figure 13 is the total number of CASS stations comparison of the workload 

formula and the binomial distributions, which add CASS expected number of down 

stations to the required number of CASS stations at 100% utilization in order to meet 

demand, even when CASS stations are down.  This figure shows the workload model at 

38 total CASS stations as a constant value.  Model B shows 31 are required 80% of the 

time, which means, if this number of CASS were assigned, we would meet demand 80% 

of the time with regards to surge and an increase in UUT arrivals as well as having 10% 

down CASS stations.  Model C requires 34 CASS stations 80% of the time and Model D 

requires 37 CASS stations 80% of the time.  Model D is one CASS station short of 

meeting the CASS workload model while having 20% of the CASS stations down.  This 

shows by using the binomial distribution with 80% demand coverage and expecting 30% 

of the CASS stations down, we will be less than the workload formula.  This is due to 

variability.  Variability in service times and arrives are not constant, such that, we can 

pick demand level to meet which is enough to satisfy service levels. If we want to meet 

demand at 90% of the time if will increase the number of CASS, as in Figure 14. 
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Figure 14.   Total CASS comparison at 90% 

Figure 14 is the total number of CASS stations comparison of the workload 

formula and the binomial distributions, which add CASS expected number of down 

stations to the required number of CASS stations at 100% utilization in order to meet 

demand, even when CASS stations are down.  This figure shows the workload model at 

38 total CASS stations as a constant value.  Model B shows 33 are required 90% of the 

time, which means, if this number of CASS stations were assigned, we would meet 

demand 90% of the time with regards to surge and an increase in UUT arrivals as well as 

having 10% down CASS stations.  Model C requires 36 CASS stations 90% of the time 

and Model D requires 40 CASS stations 90% of the time.  Model D has two more CASS 

station than the workload model while having 30% of the CASS down.  This shows by 

using the binomial distribution with 90% demand coverage and expecting 30% of the 

CASS stations down, we will nearly cover demand at the peak or highest operational 

tempo.  This is due to variability.  Variability in service times and arrives are not 

constant, such that, we can pick demand level to meet which is enough to satisfy service 

levels. But if we want to meet demand 100% of the time it will add 12 more CASS to 
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Model B, 11 more CASS to Model C, and 14 more CASS to Model D, as in Table 15.  

This is due to max arrivals and slow service times and the largest probability of having 

max number of CASS stations down.  We can also conclude the workload model covers 

approximately between 80% and 90% of the demand.   

2. Expected Number of CASS Stations Down 

 Having examined the total number of CASS stations which included the expected 

number of CASS stations that are down, now we look at the number of down CASS 

stations.  Again the number of CASS stations that are down is based on the binomial 

distribution which assigns x number of CASS from a failure probability. 

 
 Model A Model B Model C Model D 

Min 6 0 0 0 

50% 6 2 4 7 

70% 6 3 6 8 

80% 6 4 6 9 

90% 6 4 8 11 

Max 6 10 13 18 

Table 16.   Expected number of down CASS stations 

Table 16 shows the comparison of each model’s average number of down CASS 

stations determined throughout the simulation.  Model A, the workload model, has no 

variability so the number of CASS stations down remains constant because that is the 

determined number of CASS assigned from the 80% SLF.  Model B (total # of CASS 

10% Binomial Down) is less than the others because it only assumes 10% are down.  

Model C (total # of CASS 20% Binomial Down)is more than Model B and less than 

Model D (total # of CASS 30% Binomial Down) and Model D is the greatest number of 

CASS down due to having an expected number of 30% down.  The figures show the 

50%, 70%, 80%, and 90% of the simulation that that number of down CASS stations was 

required to satisfy the capacity number of CASS stations.   
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Figure 15.   Total number of down CASS stations comparison at 50% 

Figure 15 is the total number of down CASS stations comparison of the workload 

formula’s SLF and the binomial distributions, which are added to the CASS station 

capacity in meeting demand at 100% utilization.  This figure shows the workload model 

is expected to have 6 down CASS stations as a constant value.  Model B shows 2 down 

CASS stations 50% of the time, which means, if this number of down CASS stations 

were assigned, we would meet demand 50% of the time with regards to surge and an 

increase in UUT.  Model C shows 4 down CASS stations 50% of the time and Model D 

has 7 CASS stations 50% of the time.  Model D has one more down CASS station than 

the workload model with 30% down CASS.   
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Figure 16.   Total number of down CASS stations comparison at 70% 

Figure 16 is the total number of down CASS stations comparison of the workload 

formula’s SLF and the binomial distributions, which are added to the CASS station 

capacity in meeting demand at 100% utilization.  This figure shows the workload model 

is expected to have 6 down CASS stations as a constant value.  Model B shows 3 down 

CASS stations 70% of the time, which means, if this number of down CASS stations 

were assigned, we would meet demand 70% of the time with regards to surge and an 

increase in UUT.  Model C shows 6 down CASS stations 70% of the time and Model D 

has 8 CASS stations 70% of the time.  Model D has two more down CASS station than 

the workload model with 30% down CASS.   
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Figure 17.   Total number of down CASS stations comparison at 80% 

Figure 17 is the total number of down CASS stations comparison of the workload 

formula’s SLF and the binomial distributions, which are added to the CASS station 

capacity in meeting demand at 100% utilization.  This figure shows the workload model 

is expected to have 6 down CASS stations as a constant value.  Model B shows 4 down 

CASS stations 80% of the time, which means, if this number of down CASS stations 

were assigned, we would meet demand 80% of the time with regards to surge and an 

increase in UUT.  Model C shows 6 down CASS stations 80% of the time and Model D 

has 9 CASS stations 80% of the time.    
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Figure 18.   Total number of down CASS stations comparison at 90% 

Figure 18 is the total number of down CASS stations comparison of the workload 

formula’s SLF and the binomial distributions, which are added to the CASS station 

capacity in meeting demand at 100% utilization.  This figure shows the workload model 

is expected to have 6 down CASS stations as a constant value.  Model B shows 4 down 

CASS stations 90% of the time, which means, if this number of down CASS stations 

were assigned, we would meet demand 90% of the time with regards to surge and an 

increase in UUT.  Model C shows 8 down CASS stations 90% of the time and Model D 

has 11 CASS stations 90% of the time.    

We believe the optimal results for this test case (not accounting for cost) lie 

somewhere between 31 and 35, depending on the protection level of demand coverage 

and determining the expected number of down CASS from the SLF or Binomial 

reliability factors. We suggest covering between 90% and 95% of the demand with model 

4 at 80% SLF or model D with Binomial expected number down.  But of course, the 

specific levels of coverage need to be examined in the context of costs, and other factors 

(limited CASS station availability) not examined in this thesis. 
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V. RECOMMENDATIONS 

 A. CONCLUSION 

Allocating the optimal number of CASS to ensure UUTs are serviced in minimal 

time is critical in sustaining the fleet readiness level.  Sustaining a demand at 50% is not 

adequate to cover some periods of surges in demand.  A site may have to cover double 

the amount of demand for four months or more when all squadrons (aircraft) are at the 

site or an increase in operational tempo (flight hours).  Meanwhile, each aircraft carrier 

has 19 CASS that are not utilized when aircraft are at their home base, which increases 

the demand at sites when the aircraft are at their home base.  If the sites do not have the 

capacity to meet demand, then there will not be weapons systems available to meet 

aircraft readiness due to queues at the CASS work center or UUTs being repaired (BCM) 

off-site.    Moving capacity of CASS stations is not cost- or time-efficient; this project 

proposes a site should plan on covering 90% of the estimated demand. 

NAVAIR program office PMA 260 has been using a workload formula to allocate 

the CASS stations to the U.S. Navy sites.  The workload formula functions correctly as 

designed, but it has limitations.  First, the input parameters such as MTOS, CASS 

monthly available hours, and the MTBF are treated as constant values.  Second, the 

formula does not capture the surge in demand which may result from either the increase 

in the number of aircraft or the increase in the monthly flight hours.  Third, the formula’s 

aim is to satisfy the workload, without an explicit consideration of the implications of 

workload on readiness.  

To address these limitations and propose a better and easier process to allocate the 

CASS stations, we used modeling and simulation tools from the fields of Management 

Science and Operations Research.  First, we tried to address the readiness issue using a 

nonlinear programming model and tried to achieve a readiness level of 70%.  Moreover, 

we made the linear and nonlinear models to account for the utilization constraints as well.  

Second, we incorporated the sharing idea for the CASS stations into our models since the 

hybrid CASS is the core test station and all others can satisfy its demand.  Third, we 
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addressed the issue of constant parameters by using a simulation model.  We defined 

several distribution types for the changing variables and calculated that accounting for 

variability in those processes significantly changes the total number of CASS stations that 

should be allocated to the sites. Finally, our models are dependent on MS Excel’s features 

and several add-ins.  So, they are accessible and can be used virtually everywhere.  

B. IMPORTANCE OF VARIABILITY 

When we get the results from the Crystal Ball simulation for both the static 

workload formula and the variable workload formula, we see that adding variability to 

several processes may significantly change the number of CASS stations.  It is the 

responsibility of the decision makers and the PMA 260 staff to decide what percent of the 

demand to satisfy, but our analysis gives them a tool to better predict what percentage of 

demand will be satisfied by the planned capacity allocation.  

Aside from increasing capacity, other elements for managing variability, such as 

scheduling, number of shifts (CASS available hours), manpower allocation, CASS failure 

rate (reliability), number of servers (CASS), training, inventory of UUTs, and MLDT, all 

exist in the repair process and have an enormous effect on site readiness.  This project 

only focused on allocating the number of CASS, while the other important elements can 

be topics of other projects since they are out of the scope of this project.   

Eliminating variability and creating better-defined processes prevents 

inefficiencies and can result in large savings.  Keeping inventories for the failed parts 

might be a good example. Depending on the level of CASS workbench utilization, having 

ready for issue (RFI) parts for the failed UUTs may decrease the number of CASS 

stations notably.  However, that is also a cost-benefit analysis and out of the scope of this 

project.  Another important factor to meet the readiness constraint is to manage the 

CASS-independent TAT.  That study would also be a cost-benefit analysis and further 

inform capacity planning for CASS. Furthermore, applying the lean six sigma theories to 

eliminate or to minimize the CASS-independent TAT may have positive effects.  Thus, 

decision makers would have the optimum CASS-independent TAT and focus on the 

resource allocation problem to meet the readiness factor. 
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The management of UUTs consists of a large network of logistics, including 

vendors, item managers, depots, and maintenance facilities, which are all part of the 

supply chain network.  Management Science and Operations Research (MS/OR) tools, 

such as optimization and simulation, are used to look at each process in order to reduce 

cycle time and work in process so that throughput is increased.  This thesis has 

demonstrated the value of MS/OR methodologies to improve the supply chain of UUTs.  

We developed a decision support tool to assist PMA 260 in making these CASS 

allocation decisions.  Moreover, the most significant contributions are the proof of 

concept that variable and peak demand can be incorporated into capacity planning 

(beyond planning for average demand) and linking predicted congestion to operational 

availability of aircraft (readiness). 

There are a couple of ways the Navy can fix this: increase the repair capability, 

get more parts, or improve the reliability of the parts. Each of these requires an 

investment of scarce dollars, so guidance is needed as to which investment would be 

most effective.  There are only so many parts to add; otherwise they will just become part 

of the vicious cycle and will be in the backlog (queue), but aircraft will still fly. The 

tradeoffs are difficult, but we believe our thesis can help PMA260 decision makers assess 

them. 

C. FURTHER RESEARCH 

The linear and nonlinear programming models, along with the simulation model, 

can be effectively used to solve resource allocation problems.  Though we address 

variability by selecting particular thresholds (not the expected or average value) of 

demand and readiness to meet, the models remain deterministic, and are sensitive to the 

selection of input parameters.  In our models, we had to make several assumptions, such 

as CASS-independent TAT and spare repairable UUT factors.  We have conducted 

limited sensitivity analysis on these parameters, but more remains to be done before 

either our linear or non-linear models could be implemented in practice.  Fortunately, 

researchers in the future can study those assumptions and get accurate data for those input 

parameters.  On the other hand, Monte Carlo simulation model is a stochastic decision 
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tool and works with random numbers.  We have made only limited use of this tool, and 

more remains to be done.  In particular, before any widespread implementation of our 

approach, we recommend validate the recommendations of our optimization models in a 

limited setting (e.g., one AIMD) through a detailed simulation model. The time frame of 

our own thesis did not allow us to complete such a detailed simulation model.  Future 

researchers can use the discrete simulation model we have begun (not reported here) to 

further validate and improve results from the optimization model.  

Finally a key assumption we make in our analysis is the spare repairable UUT fill 

rate.  The model results are sensitive to this parameter, but its validation was beyond the 

scope of this study due to time constraints.  Future researchers may also study the level of 

spare repairable UUTs to meet the aircraft readiness restriction and can provide better 

tools for the decision makers with cost-benefit analyses.  

D. RECOMMENDATIONS 

NAVAIR PMA 260 is about to introduce the e-CASS to the sites in the near 

future.  So, it is important to keep in mind the effect of variability during the resource 

allocation process.  We highly recommend PMA 260 use the peak demand at a 

predetermined level (i.e., 95%) and the readiness constraint while allocating the e-CASS 

stations to the U.S. Navy sites.  Our research is a proof-of-concept that this can be done.   

Our approach should be extended to assist in the multi-year capacity planning effort to 

field e-CASS, and retire or refit older technology.  Furthermore, it would also make sense 

to coordinate the spare repairable UUTs level with the responsible NAVAIR and 

NAVSUP office while trying to satisfy the readiness constraint.  
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